1
|
Liu B, Li C, He S, Li Z, Wang H, Feng C, Xiong Z, Tu C, Song D, Li Z. Ubiquitin-conjugating enzyme E2S (UBE2S) as a prognostic biomarker and regulator of tumorigenesis in osteosarcoma. Int Immunopharmacol 2025; 154:114545. [PMID: 40188527 DOI: 10.1016/j.intimp.2025.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/25/2025] [Accepted: 03/21/2025] [Indexed: 04/08/2025]
Abstract
Ubiquitin-conjugating enzyme E2S (UBE2S) is a member of ubiquitin conjugating enzymes with unclear association with osteosarcoma (OS). This study aimed to assess UBE2S's predictive value in OS using data from TCGA and GEO databases. Kaplan-Meier survival analysis and ROC curves were used for prognostic evaluation, and a nomogram was developed for prognostic prediction. Potential biological functions, pathways, and correlations with tumor immune microenvironment, immunotherapy response, and drug sensitivity were analyzed. UBE2S overexpression was linked to poor prognosis, and the nomogram effectively predicted OS survival outcomes. UBE2S was found to impact tumorigenesis pathways, immune landscape, and treatment sensitivity in OS. Transcriptome sequencing, RT-qPCR, Western Blotting, and immunohistochemistry confirmed that UBE2S is abnormally overexpressed in OS. Additionally, a series of in vitro experiments showed that UBE2S knockdown reduced OS cell proliferation and migration while promoting apoptosis. In vivo experiments also confirmed that UBE2S knockdown could inhibit OS cell growth. In summary, our research demonstrates that UBE2S is a reliable prognostic factor for OS. Its abnormal overexpression enhances OS proliferation and migration, indicating its significance for future personalized treatment strategies in OS.
Collapse
Affiliation(s)
- Binfeng Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Changsha Medical University, Changsha 410219, China
| | - Deye Song
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Shenzhen Research Institute of Central South University, Guangdong 518063, China.
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Shenzhen Research Institute of Central South University, Guangdong 518063, China.
| |
Collapse
|
2
|
Xu L, Yang B, Zhang J, Liu S, Zhang Q, Ran L, Li B. Targeting ALPPL2 with a novel CD89 bispecific antibody reprograms macrophages to enhance anti-tumor immunity. Biochem Biophys Res Commun 2025; 762:151761. [PMID: 40209501 DOI: 10.1016/j.bbrc.2025.151761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Immunotherapy holds promise for cancer treatment, but its efficacy in solid tumors is often limited by the immunosuppressive tumor microenvironment (TME). Macrophages, abundant within the TME, can be reprogrammed to elicit anti-tumor immunity. We developed a novel bispecific antibody, ALPPL2-CD89, to specifically target and activate macrophages within the tumor. The ALPPL2-CD89 bispecific antibody demonstrated high binding affinity to both targets and significantly enhanced macrophage-mediated phagocytosis of tumor cells. In vivo studies using human CD89 transgenic mice bearing ALPPL2-expressing tumors showed significant tumor growth inhibition. Analysis of the tumor microenvironment revealed that ALPPL2-CD89 treatment increased CD3+ and CD8+ T cell infiltration, and shifted tumor-associated macrophages toward a pro-inflammatory M1 phenotype. Our findings establish ALPPL2-CD89 as a promising therapeutic candidate that effectively reprograms the myeloid compartment to drive potent anti-tumor immunity against ALPPL2-positive malignancies.
Collapse
Affiliation(s)
- Lijun Xu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Bowen Yang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Junhan Zhang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shujian Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qi Zhang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Longchao Ran
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Bingyu Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China; The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
3
|
Du X, Wei N, Wang A, Sun G. Liver cancer-specific prognostic model developed using endoplasmic reticulum stress-related LncRNAs and LINC01011 as a potential therapeutic target. BMC Med Genomics 2025; 18:71. [PMID: 40234922 PMCID: PMC12001585 DOI: 10.1186/s12920-025-02142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025] Open
Abstract
Liver cancer is a serious malignancy worldwide, and long noncoding RNAs (lncRNAs) have been implicated in its prognosis.It remains unclear how lncRNAs related to endoplasmic reticulum stress (ERS) influence liver cancer prognosis. Here, we analyzed RNA and clinical data from the Cancer Genome Atlas and sourced ERS-related genes from the Molecular Signatures Database. Co-expression analysis identified ERS-related lncRNAs, and Cox regression analysis as well as least absolute shrinkage and selection operator regression highlighted three lncRNAs for a prognostic model. Based on median risk scores, we classified patients into two risk groups. The high-risk group displayed poor prognosis, and this finding was validated in the test set. According to consistency clustering, the patients were assigned to two clusters, and tumor microenvironment scores were computed. Patients with a high mutation burden had worse outcomes. Furthermore, immune infiltration analysis indicated more immune cells and mutations in checkpoint molecules among high-risk individuals. Drug sensitivity varied between the risk groups. LINC01011 was selected for functional assays. Colony formation assay and CCK-8 assay revealed that silencing LINC01011 suppressed liver cancer cell proliferation. Transwell and scratch assays indicated that silencing LINC01011 inhibited liver cancer cell migration. Western blotting assay revealed that inhibiting LINC01011 induced apoptosis and simultaneously inhibited epithelial-mesenchymal transition. These findings confirm the validity of the prognostic model and indicate that LINC01011 could serve as a potential research target.
Collapse
Affiliation(s)
- Xiao Du
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui, 230000, China
| | - Ning Wei
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China
- Department of Radiology, Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230000, China
| | - Anqi Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui, 230000, China
| | - Guoping Sun
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui, 230000, China.
| |
Collapse
|
4
|
Zhao L, Yan F, Tang D, Li W, An N, Ren C, Wang Y, Xu K, Zhao K. The transition between M1 and M2 macrophage phenotypes is associated with the disease status following CD19 CAR-T therapy for B cell lymphoma/leukemia. Cell Death Dis 2025; 16:275. [PMID: 40216772 PMCID: PMC11992075 DOI: 10.1038/s41419-025-07610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Although anti-CD19 chimeric antigen receptor (CAR-T) cells demonstrate high response rates in relapsed/refractory B-cell lymphomas, a considerable proportion of patients eventually encounter disease progression or relapse. The short-term and long-term outcomes of CAR-T treatment are intricately linked to the tumor microenvironment (TME), wherein macrophages with polarized characteristics can exhibit either anti-tumorigenic or pro-tumorigenic roles. Despite evidence implicating the crucial involvement of macrophages in CAR-T cell-treated lymphoma, their dynamic distribution and immune function related to lymphoma progression remain poorly understood. Immunocompetent mice were utilized to establish syngeneic A20 lymphoma/leukemia models. The distribution and polarization of macrophages were detected using immunohistochemistry (IHC) and flow cytometry techniques. We observed that CD19 CAR-T therapy exhibited significant efficacy in protecting mice against lymphoma, leading to increased infiltration of macrophages into the tumor tissue. Notably, during remission stages, M1-like macrophages (CD11b+F4/80+C206-CD80+) were predominant, whereas in relapsed mice, there was a shift towards M2-like phenotypes (CD11b+F4/80+C206+CD80+). The transition from remissive to relapsed status was accompanied by a reduction in the M1/M2 ratio and a decrease in pro-inflammatory cytokines. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) analysis confirmed differential expression levels of CD206 and CD163 between remissive and relapsed mice, while signaling pathways involving PI3K and STAT3 may contribute to the skewing towards M2 polarization. In summary, our findings highlight the dynamic transformation of macrophage polarization during different stages of lymphoma progression and underscore its potential implications for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Li Zhao
- Department of hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fen Yan
- Department of hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Donghai Tang
- Department of hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenwen Li
- Department of hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Na An
- Department of hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunxiao Ren
- Department of hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Wang
- Department of hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Department of hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Blood diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Kai Zhao
- Department of hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Blood diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
5
|
Singh A, Raja D, Kaushal S, Seth A, Singh P, Sharma A. Phenotypic characterization of tumor associated macrophages and circulating monocytes in patients with Urothelial carcinoma of bladder. Immunol Res 2025; 73:66. [PMID: 40195201 DOI: 10.1007/s12026-025-09624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
OBJECTIVES Targeting immune checkpoints has shown clinical efficacy in Urothelial carcinoma of bladder (UBC); however, a substantial percentage of patients remains unresponsive, which warrants the elucidation of novel therapeutic targets to circumvent immune suppression. Tumor associated macrophages (TAMs) are known for their indispensable role in cancer immunosuppression however, their phenotype and functionality in UBC is not yet clear. MATERIALS AND METHODS Phenotypic composition and functional markers of TAMs, and circulating monocytes were assessed in surgically resected bladder tumors and PBMC of UBC patients (n = 40). Besides, 40 healthy volunteers were recruited to draw comparisons for peripheral monocytes. Monocytes from patients were treated with autologous bladder tumor conditioned media (TCM) to assess its effects on macrophage-based markers. RESULTS The infiltration of TAMs was significantly increased in bladder tumor tissue by 21.2% and which displayed both M1 and M2 phenotypic markers, wherein M2 phenotype exhibited positive correlation with disease severity. Circulating monocytes exhibited an increase in frequency of non-classical monocytes by 17.42% and elevated M2-macrophage markers by 20%. Further, TAMs and circulating monocytes exhibits an elevated expression of IL- 10 and inhibitory immune checkpoints (PD-1, PD-L1, and B7-H4). Stimulation of patient-derived monocytes with TCM further augmented the expression of immune checkpoints, and immunosuppressive markers like IL-10, TGF-β and CX3CR- 1. Lastly, M2 phenotype of TAMs and PD-L1+ and B7-H4 + TAMs displayed positive correlation with clinico-pathological parameters in UBC patients. CONCLUSION This study presents TAMs with an immunosuppressive phenotype that correlates positively with disease severity and suggests TAMs as a potential therapeutic candidate to restore the anti-tumor immunity in UBC.
Collapse
Affiliation(s)
- Aishwarya Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - David Raja
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Seema Kaushal
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Prabhjot Singh
- Department of Urology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
6
|
Liu C, Liu N, Zhang T, Tu Y. Adoptive immune cell therapy for colorectal cancer. Front Immunol 2025; 16:1557906. [PMID: 40236691 PMCID: PMC11996668 DOI: 10.3389/fimmu.2025.1557906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/28/2025] [Indexed: 04/17/2025] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related morbidity and mortality worldwide, with limited options for patients at advanced stages. Immunotherapy, particularly immune cell-based therapies, has gained significant attention as an innovative approach for targeting CRC. This review summarizes the progress in various immune cell therapies, including DC vaccine, CAR/TCR-T cells, CAR-NK cells et al, each engineered to recognize and attack cancer cells expressing specific antigens. CAR-T cell therapy, which has been successful in hematologic cancers, faces challenges in CRC due to the solid tumor microenvironment, which limits cell infiltration and persistence. CAR-NK cells, CAR-M and CAR-γδ T cells, however, offer alternative strategies due to their unique properties, such as the ability to target tumor cells without prior sensitization and a lower risk of inducing severe cytokine release syndrome. Recent advances in lentiviral transduction have enabled effective expression of CARs on NK and γδ T cells, providing promising preclinical results in CRC models. This review explores the mechanisms, tumor targets, preclinical studies, and early-phase clinical trials of these therapies, addressing key challenges such as enhancing specificity to tumor antigens and overcoming the immunosuppressive tumor microenvironment. The potential of combination therapies, including immune checkpoint inhibitors and cytokine therapy, is also discussed some as a means to improve the effectiveness of immune cell-based treatments for CRC. Continued research is essential to translate these promising approaches into clinical settings, offering new hope for CRC patients.
Collapse
Affiliation(s)
- Chenxiao Liu
- Guangdong Province Science and Technology Expert Workstation, Huizhou Central People’s Hospital, Huizhou, Guangdong, China
| | - Nan Liu
- Guangdong Province Science and Technology Expert Workstation, Huizhou Central People’s Hospital, Huizhou, Guangdong, China
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Tongcun Zhang
- Guangdong Province Science and Technology Expert Workstation, Huizhou Central People’s Hospital, Huizhou, Guangdong, China
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Yanyang Tu
- Science Research Center, Huizhou Central People’s Hospital, Huizhou, Guangdong, China
- Huizhou Central People’s Hospital Academy of Medical Sciences, Huizhou Central People’s Hospital, Huizhou, Guangdong, China
| |
Collapse
|
7
|
Fan J, Chen Y, Gong Y, Sun H, Hou R, Dou X, Zhang Y, Huo C. Single-cell RNA sequencing reveals potential therapeutic targets in the tumor microenvironment of lung squamous cell carcinoma. Sci Rep 2025; 15:10374. [PMID: 40140461 PMCID: PMC11947091 DOI: 10.1038/s41598-025-93916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Lung squamous cell carcinoma (LUSC), accounting for 30% of lung cancer cases, lacks adequate research due to limited understanding of its molecular abnormalities. Our study analyzed public LUSC datasets to explore the tumor microenvironment (TME) composition using scRNA-seq from two cohorts. Applying non-negative matrix factorization, we identified unique malignant cell phenotypes, or meta-programs (MPs), based on gene expression patterns. Survival analysis revealed the clinical relevance of these MPs. Findings illuminated a TME landscape enriched with immune cells-CD8 + T, exhausted T, CD4 + T, and naive T cells-and suggested roles for myeloid cells, like cDC1 and pDCs, in LUSC progression. Different MPs highlighted the heterogeneity of malignant cells and their clinical implications. Targeting MP-specific genes may enable personalized therapy, especially for early-stage LUSC. This study offers insights into immune cell function in tumor dynamics, identifies MPs, and paves the way for novel LUSC strategies, enhancing early intervention, personalized treatment, and prognosis, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Junda Fan
- Department of Oncology, 242 Hospital Affiliated to Shenyang Medical College, Shenyang, 110034, China
| | - Yu Chen
- Jiamusi Central Hospital, Jiamusi, 154000, China
| | - Yue Gong
- Geneis Beijing Co., Ltd, Beijing, 100102, China
| | - Hongmei Sun
- Department of Medical Oncology, The Cancer Hospital of Jia Mu Si, Jiamusi, 154000, China
| | - Rui Hou
- Geneis Beijing Co., Ltd, Beijing, 100102, China
| | - Xiaoya Dou
- Geneis Beijing Co., Ltd, Beijing, 100102, China
| | - Yanping Zhang
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Cheng Huo
- Departmen of Pathology, Sinopharm Tongmei General Hospital, Datong, 037003, China.
| |
Collapse
|
8
|
Lee CE, Noh KM, Kim S, Hong J, Kim K. Recent Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Engineering Strategies for Precise Strike Therapy against Tumor. Biomater Res 2025; 29:0170. [PMID: 40110051 PMCID: PMC11922527 DOI: 10.34133/bmr.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025] Open
Abstract
Effective drug delivery relies on the selection of suitable carriers, which is crucial for protein-based therapeutics such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). One of the key advantages of TRAIL is its ability to selectively induce apoptosis in cancer cells excluding healthy tissues by binding to death receptors DR4 and DR5, which are highly expressed in various cancer cells. Despite this promise, the clinical application of TRAIL has been limited by its short half-life, limited stability, and inefficient delivery to tumor sites. To overcome currently available clinical and engineering approaches, a series of sophisticated strategies is required: (a) the design of biomaterial-mediated carriers for enhanced targeting efficacy, particularly via optimizing selected materials, composition, formulation, and surface modulation. Moreover, (b) development of genetically modified cellular products for augmented TRAIL secretion toward tumor microenvironments and (c) cell surface engineering techniques for TRAIL immobilization onto infusible cell populations are also discussed in the present review. Among these approaches, living cell-based carriers offer the distinct advantage of systemically administered TRAIL-functionalized cells capturing circulating tumor cells in the bloodstream, thereby preventing secondary tumor formation. This review provides insight into the development of novel TRAIL delivery platforms, discusses considerations for clinical translation, and suggests future directions and complementary strategies to advance the field of TRAIL-based cancer therapeutics.
Collapse
Affiliation(s)
- Chae Eun Lee
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung Mu Noh
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jiyeon Hong
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
9
|
Zhang S, Zhang Y, Feng S, Han M, Wang Z, Qiao D, Tian J, Wang L, Du B, Zhang Z, Zhong J. Tumor-promoting effect and tumor immunity of SRSFs. Front Cell Dev Biol 2025; 13:1527309. [PMID: 40129567 PMCID: PMC11931056 DOI: 10.3389/fcell.2025.1527309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Serine/arginine-rich splicing factors (SRSFs) are a family of 12 RNA-binding proteins crucial for the precursor messenger RNA (pre-mRNA) splicing. SRSFs are involved in RNA metabolism events such as transcription, translation, and nonsense decay during the shuttle between the nucleus and cytoplasm, which are important components of genome diversity and cell viability. SRs recognize splicing elements on pre-mRNA and recruit the spliceosome to regulate splicing. In tumors, aberrant expression of SRSFs leads to aberrant splicing of RNA, affecting the proliferation, migration, and anti-apoptotic ability of tumor cells, highlighting the therapeutic potential of targeted SRSFs for the treatment of diseases. The body's immune system is closely related to the occurrence and development of tumor, and SRSFs can affect the function of immune cells in the tumor microenvironment by regulating the alternative splicing of tumor immune-related genes. We review the important role of SRSFs-induced aberrant gene expression in a variety of tumors and the immune system, and prospect the application of SRSFs in tumor. We hope that this review will inform future treatment of the disease.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Sijia Feng
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Miaomiao Han
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zixi Wang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Dan Qiao
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jiaqi Tian
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lan Wang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Baoshun Du
- Second Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, China
| | - Zheying Zhang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jiateng Zhong
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Henan Province Engineering Technology Research Center of Tumor diagnostic biomarkers and RNA interference drugs, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
10
|
Park SY, Pylaeva E, Bhuria V, Gambardella AR, Schiavoni G, Mougiakakos D, Kim SH, Jablonska J. Harnessing myeloid cells in cancer. Mol Cancer 2025; 24:69. [PMID: 40050933 PMCID: PMC11887392 DOI: 10.1186/s12943-025-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer-associated myeloid cells due to their plasticity play dual roles in both promoting and inhibiting tumor progression. Myeloid cells with immunosuppressive properties play a critical role in anti-cancer immune regulation. Cells of different origin, such as tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), myeloid derived suppressor cells (also called MDSCs) and eosinophils are often expanded in cancer patients and significantly influence their survival, but also the outcome of anti-cancer therapies. For this reason, the variety of preclinical and clinical studies to modulate the activity of these cells have been conducted, however without successful outcome to date. In this review, pro-tumor activity of myeloid cells, myeloid cell-specific therapeutic targets, in vivo studies on myeloid cell re-polarization and the impact of myeloid cells on immunotherapies/genetic engineering are addressed. This paper also summarizes ongoing clinical trials and the concept of chimeric antigen receptor macrophage (CAR-M) therapies, and suggests future research perspectives, offering new opportunities in the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Su-Yeon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany
| | - Vikas Bhuria
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany.
| |
Collapse
|
11
|
Deng Y, Jia X, Liu L, He Q, Liu L. The role of intestinal macrophage polarization in colitis-associated colon cancer. Front Immunol 2025; 16:1537631. [PMID: 40109347 PMCID: PMC11919874 DOI: 10.3389/fimmu.2025.1537631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Chronic inflammation of the intestine is a significant risk factor in the development of colorectal cancer. The emergence of colitis and colorectal cancer is a complex, multifactorial process involving chronic inflammation, immune regulation, and tumor microenvironment remodeling. Macrophages represent one of the most prevalent cells in the colorectal cancer microenvironment and play a pivotal role in maintaining intestinal health and the development of colitis-associated colon cancer (CAC). Macrophages are activated mainly in two ways and resulted in three phenotypes: classically activated macrophages (M1), alternatively activated macrophages (M2). The most characteristic of these cells are the pro-inflammatory M1 and anti-inflammatory M2 types, which play different roles at different stages of the disease. During chronic inflammation progresses to cancer, the proportion of M2 macrophages gradually increases. The M2 macrophages secrete cytokines such as IL-10 and TGF-β, which promote angiogenesis and matrix remodeling, and create the favorable conditions for cancer cell proliferation, infiltration, and migration. Therefore, macrophage polarization has a dual effect on the progression of colitis to CAC. The combination of immunotherapy with reprogrammed macrophages and anti-tumor drugs may provide an effective means for enhancing the therapeutic effect. It may represent a promising avenue for developing novel treatments for CAC. In this review, we focus on the process of intestinal macrophage polarization in CAC and the role of intestinal macrophage polarization in the progression of colitis to colon cancer, and review the immunotherapy targets and relevant drugs targeting macrophages in CAC.
Collapse
Affiliation(s)
- Yujie Deng
- Medical Research Center, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University), College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xiaobing Jia
- The First Outpatient Department, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Liu Liu
- Department of Gastroenterology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Qiao He
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Scie Technology of China, Chengdu, Sichuan, China
| | - Lei Liu
- Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Cao X, Wan S, Wu B, Liu Z, Xu L, Ding Y, Huang H. Antitumor Research Based on Drug Delivery Carriers: Reversing the Polarization of Tumor-Associated Macrophages. Mol Pharm 2025; 22:1174-1197. [PMID: 39868820 DOI: 10.1021/acs.molpharmaceut.4c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The development of malignant tumors is a complex process that involves the tumor microenvironment (TME). An immunosuppressive TME presents significant challenges to current cancer therapies, serving as a key mechanism through which tumor cells evade immune detection and play a crucial role in tumor progression and metastasis. This impedes the optimal effectiveness of immunotherapeutic approaches, including cytokines, immune checkpoint inhibitors, and cancer vaccines. Tumor-associated macrophages (TAMs), a major component of tumor-infiltrating immune cells, exhibit dual functionalities: M1-like TAMs suppress tumorigenesis, while M2-like TAMs promote tumor growth and metastasis. Consequently, the development of various nanocarriers aimed at polarizing M2-like TAMs to M1-like phenotypes through distinct mechanisms has emerged as a promising therapeutic strategy to inhibit tumor immune escape and enhance antitumor responses. This Review covers the origin and types of TAMs, common pathways regulating macrophage polarization, the role of TAMs in tumor progression, and therapeutic strategies targeting TAMs, aiming to provide a comprehensive understanding and guidance for future research and clinical applications.
Collapse
Affiliation(s)
- Xinyu Cao
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shen Wan
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Bingyu Wu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Zhikuan Liu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Lixing Xu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yu Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Haiqin Huang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
13
|
Li J, Mao K, Meng X, Wang J, Zhao M, Lv Y, Xin Y, Sun H, Zhang Y, Yang YG, Sun T. Injectable hydrogel-assisted local lipopolysaccharide delivery improves immune checkpoint blockade therapy. Acta Biomater 2025; 194:153-168. [PMID: 39827003 DOI: 10.1016/j.actbio.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Tumor-associated macrophages (TAMs) significantly influence the clinical outcomes of immune checkpoint blockade (ICB) therapy. Strategies aimed at reprogramming TAMs from the immunosuppressive M2 phenotype to the pro-inflammatory M1 phenotype hold promise for enhancing ICB efficacy. Lipopolysaccharide (LPS), a potent Toll-like receptor 4 (TLR4) ligand, can reprogram TAMs toward an M1 phenotype. However, the systemic application of LPS is restricted due to its pronounced pro-inflammatory properties, which limit safe dosing in cancer treatment. To address this, thermosensitive hydrogels offer a viable solution by optimizing drug bioavailability and reducing systemic dissemination. In our study, carboxymethyl chitosan (CS) was incorporated into Pluronic F127 to extend the hydrogel's degradation period, facilitating the localized delivery and accumulation of LPS within tumor sites. Peritumoral injection of this hydrogel enhanced the tumor-inhibitory effects of anti-PD-1 antibodies, significantly improving the survival of 4T1 tumor-bearing mice. The GelF127CS-LPS hydrogel also increased the expression of the activation marker on tumor-infiltrating dendritic cells, promoted a higher M1/M2 TAM ratio, and enhanced CD8+ T cell infiltration into tumors-key indicators of T-cell-mediated anti-tumor immunity. Notably, no significant liver or hematological toxicity was observed with GelF127CS-LPS treatment, underscoring its favorable safety profile. These findings demonstrate the potential of GelF127CS-LPS as a TAMs-modulating agent and a promising combinatorial strategy to boost ICB therapy effectiveness. STATEMENT OF SIGNIFICANCE: LPS, a potent TLR4 ligand, can reprogram tumor-associated macrophages (TAMs) toward an M1 phenotype, thereby contributing to tumor inhibition. However, its anti-tumor application is constrained by the contradiction between high-dose toxicity and insufficient efficacy at low doses. To address this issue, we developed a thermosensitive hydrogel encapsulating LPS, GelF127CS-LPS, which allows localized LPS release within the tumor area. This hydrogel reprograms TAMs at a picogram level of LPS to achieve a favorable M1/M2 ratio and promotes the activation of T cell-mediated antitumor immunity without observable toxicity. Consequently, when combined with immune checkpoint blockade (ICB), the hydrogel can inhibit tumor growth and improve overall survival. This study provides an effective method for tumor-targeted therapeutic LPS delivery to enhance the efficacy of ICB.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Mengfei Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Yue Lv
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Huating Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China; International Center of Future Science, Jilin University, Changchun, Jilin, PR China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China; International Center of Future Science, Jilin University, Changchun, Jilin, PR China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China; International Center of Future Science, Jilin University, Changchun, Jilin, PR China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, PR China.
| |
Collapse
|
14
|
Li H, Fu A, Hui H, Jia F, Wang H, Zhao T, Wei J, Zhang P, Lang W, Li K, Hu X. Structure characterization and preliminary immune activity of a glucomannan purified from Allii Tuberosi Semen. Carbohydr Res 2025; 549:109375. [PMID: 39765032 DOI: 10.1016/j.carres.2025.109375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
A novel glucomannan, named ATSW-1, was obtained from Allii Tuberosi Semen by ion and gel permeation chromatography purification. Its structure was characterized using high-performance chromatography, Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy. The in vitro immune activities of ATSW-1 were examined using the Cell Counting Kit-8, the neutral red phagocytosis assay, and the secretion of related cytokines. The results showed that the molecular weight of ATSW-1 was 35.9 kDa and mainly constituted of mannose, glucose, and arabinose with a molar ratio of 1:0.72:0.04. Its main backbone was composed of →4)-β-D-Glcp-(1→, →4)-β-D-Manp-(1→, and →4,6)-α-D-Manp-(1→, with the branches β-D-Glcp-(1→, α-L-Araf-(1→ and →5)-α-L-Araf-(1→ linkage substituted at C-6 position of →4)-α-D-Manp-(1 → . ATSW-1 significantly enhanced immune responses, increasing the phagocytic activity of RAW264.7 cells by 1.52 times compared to the blank control group. Further investigations revealed that ATSW-1 promotes immune activity by upregulating the NO, TNF-α, and IL-6 secretion. These findings provide a foundation for the potential development and application of Allii Tuberosi Semen polysaccharides in functional foods or immune-related therapeutics.
Collapse
Affiliation(s)
- Huiwen Li
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Aigen Fu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Heping Hui
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi, 726000, PR China
| | - Feng Jia
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi, 726000, PR China
| | - Huan Wang
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Tong Zhao
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi, 726000, PR China
| | - Jing Wei
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi, 726000, PR China
| | - Peijuan Zhang
- School of Physics, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Wuying Lang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi, 726000, PR China
| | - Kejuan Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan, 610101, PR China
| | - Xuansheng Hu
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi, 726000, PR China.
| |
Collapse
|
15
|
Zeng S, Chen C, Yu D, Jiang M, Li X, Liu X, Guo Z, Hao Y, Zhou D, Kim H, Kang H, Wang J, Chen Q, Li H, Peng X, Yoon J. A One Stone Three Birds Paradigm of Photon-Driven Pyroptosis Dye for Amplifying Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409007. [PMID: 39804952 PMCID: PMC11884606 DOI: 10.1002/advs.202409007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/17/2024] [Indexed: 01/16/2025]
Abstract
Activating the pyroptosis pathway of tumor cells by photodynamic therapy (PDT) for immunogenic cell death (ICD) is considered a valid strategy in pursuit of antitumor immunotherapy, but it remains a huge challenge due to the lack of reliable design guidelines. Moreover, it is often overlooked that conventional PDT can exacerbate the development of tumor immunosuppressive microenvironment, which is apparently unfavorable to clinical immunotherapy. The endoplasmic reticulum's (ER) pivotal role in cellular homeostasis and its emerging link to pyroptosis have galvanized interest in ER-centric imaging and therapeutics. Herein, using the targeted group-assisted strategy (TAGS), an intriguing cyclooxygenase-2-targeted photodynamic conjugate, Indo-Cy, strategically created, which exploits the enzyme's overabundance in the tumoral ER, especially under proinflammatory hypoxic conditions. This conjugate, with its highly precise ER imaging, embodies a trifunctional strategy: i) innovating an electron transfer mechanism, converting the hemicyanine moiety into an oxygen-independent type I photosensitizer, thereby navigating around the hypoxia constraints of traditional PDT; ii) executing precise ER-targeted PDT, amplifying caspase-1/GSDMD-mediated pyroptosis for ICD; 3) attenuating immunosuppressive pathways by inhibiting cyclooxygenase-2 downstream factors, including HIF-1α, PGE2, and VEGF. Indo-Cy's multimodal approach potently induces in vivo tumor pyroptosis and bolsters antitumor immunity, underscoring cyclooxygenase-2-targeted dyes' potential as a versatile oncotherapeutics.
Collapse
Affiliation(s)
- Shuang Zeng
- State Key Laboratory of Fine ChemicalsDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Chen Chen
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Dan Yu
- Shanghai Changzheng HospitalNaval Medical UniversityShanghai20000China
| | - Maojun Jiang
- School of ChemistryDalian University of TechnologyDalian116024China
| | - Xin Li
- School of ChemistryDalian University of TechnologyDalian116024China
| | - Xiaosheng Liu
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Zhihan Guo
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Yifu Hao
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Danhong Zhou
- State Key Laboratory of Fine ChemicalsDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Heejeong Kim
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760South Korea
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841South Korea
| | - Jingyun Wang
- State Key Laboratory of Fine ChemicalsDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Qixian Chen
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
- Innovation Center of Yangtze River DeltaZhejiang UniversityJiaxing314100China
| | - Haidong Li
- State Key Laboratory of Fine ChemicalsDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
- School of BioengineeringDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Xiaojun Peng
- State Key Laboratory of Fine ChemicalsDalian University of Technology2 Linggong Road, Hi‐tech ZoneDalian116024China
| | - Juyoung Yoon
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760South Korea
| |
Collapse
|
16
|
Guo Y, Jin L, Shen Z, Fan L, Yu X, Kuang Y, Cai L, Zhou J, Chen Z, Yan F, Zhang J, Tong M, Yuan J, Mao Z, Chen G. Biomimetic Membrane Vesicles Reprogram Microglia Polarization and Remodel the Immunosuppressive Microenvironment of Glioblastoma via PERK/HIF-1α/Glycolysis Pathway. Adv Healthc Mater 2025; 14:e2404782. [PMID: 39757442 DOI: 10.1002/adhm.202404782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 01/07/2025]
Abstract
The malignant interaction between tumor cells and immune cells is one of the important reasons for the rapid progression and refractoriness of glioblastoma (GBM). As an essential metabolic center of M2 macrophages, the inhibition of protein kinase RNA-like endoplasmic reticulum kinase (PERK) leads to the reduction of M2 macrophages. Nevertheless, the restriction of the blood-brain barrier (BBB) and non-specific cell targeting hinder the application of PERK inhibitors in GBM. Herein, the optimal NP-M-M2pep is developed successfully, which has shown the capacity of BBB penetration and specific targeting of M2 microglia. In addition to inhibiting the polarization of M2 microglia, the administration of iPERK@NP-M-M2pep reprogrammed M2 microglia into M1 ones in vitro via PERK/HIF-1α/glycolysis pathway. Efficient brain accumulation of nanoparticles is achieved after tail vein injection, with effective inhibition of GBM progression after one course of treatment. The glioma-associated microglia and macrophages (GAM) with M2 type are induced to M1 and the immunosuppressive TME is remodeled by upregulating immunostimulatory cells and downregulating immunosuppressive cells. In summary, the biomimetic membrane vesicles (BMVs) specifically delivered iPERK to GAMs offer an inspiring strategy to reprogram microglia polarization, re-educate immunosuppressive TME, and inhibit the progression of GBM.
Collapse
Affiliation(s)
- Yinghan Guo
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhipeng Shen
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Linfeng Fan
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Xian Yu
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Yirui Kuang
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Lingxin Cai
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Jiayin Zhou
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Zihang Chen
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Feng Yan
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| | - Minfeng Tong
- Department of Neurosurgery, affiliated Jinhua Hospital, School of Medicine, Zhejiang University, Jinhua, Zhejiang, 321000, China
| | - Jianlie Yuan
- Department of Neurosurgery, affiliated Jinhua Hospital, School of Medicine, Zhejiang University, Jinhua, Zhejiang, 321000, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Gao Chen
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang Key Laboratory of Research and Transformation for Major Neurosurgical Diseases, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
17
|
Xue Y, Wang Q, Chen Y, Zhang X, Tang J, Liu Y, Liu J. Biomimetic Diselenide-Sonosensitizer Nanoplatform for Enhanced Sonodynamic Therapy and In Situ Remodeling Immunosuppressive Microenvironment via Activating Innate and Adaptive Immunotherapy. Adv Healthc Mater 2025; 14:e2403998. [PMID: 39790035 DOI: 10.1002/adhm.202403998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Sonodynamic therapy (SDT), which is non-invasive and controllable has the potential to treat triple-negative breast cancer (TNBC). However, the hypoxia and immunosuppressive tumor microenvironment (TME) often block the production of reactive oxygen species and the induction of SDT-activated immunogenic cell death, thus limiting the activation of adaptive immune responses. To alleviate these challenges, we proposed the development of a multifunctional biomimetic nanoplatform (mTSeIR), which was designed with diselenide-conjugated sonosensitizers and tirapazamine (TPZ), encapsulated within M1 macrophage membrane. This nanoplatform utilized hypoxia-induced chemotherapy to improve the efficacy of SDT, to further enhance adaptive immunotherapy by activating innate immunity and remodeling the immunosuppressive TME. Firstly, the prodrug TPZ was activated due to the increased oxygen consumption associated with SDT. Subsequently, the mTSeIR enhanced repolarization of M2 macrophages to the M1 phenotype. The diselenide component in mTSeIR effectively activated the natural killer cell-mediated antitumor innate immune response. Ultimately, in vivo studies indicated that mTSeIR+US with good biosafety achieved over 98% tumor inhibition and enhanced adaptive immunotherapy. This research presents an efficient approach that addressed the limitations of SDT and achieves simultaneous activation of both innate and adaptive immunotherapy, resulting in significant antitumor and anti-metastatic efficacy in TNBC.
Collapse
Affiliation(s)
- Yifan Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Qingliang Wang
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - You Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiaoge Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
18
|
Zhao L, Xi L, Liu Y, Wang G, Zong M, Xue P, Zhu S. The Impact of Tertiary Lymphoid Structures on Tumor Prognosis and the Immune Microenvironment in Colorectal Cancer. Biomedicines 2025; 13:539. [PMID: 40149517 PMCID: PMC11940631 DOI: 10.3390/biomedicines13030539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Colorectal cancer (CRC) ranks as the third most common cancer worldwide. Tertiary lymphoid structures (TLSs), organized immune cell aggregates in non-lymphoid tissues, are linked to chronic inflammation and tumorigenesis. However, the precise relationship between TLSs and CRC prognosis remains unclear. This study aimed to develop a TLS-associated genetic signature to predict CRC prognosis and support clinical applications. Methods: Utilizing the TCGA database, we analyzed TLS-related gene expression in CRC versus normal tissues. Prognostic models were constructed using Cox and Kaplan-Meier analyses. CRC samples were stratified into high and low TLS groups via ssGSEA, with validation in the GSE75500 dataset. We identified clinical characteristics associated with TLS scores, created prognostic nomograms, analyzed the top 50 differential genes, assessed tumor mutations, estimated immune infiltration using CIBERSORT, and examined correlations between TLS scores and immune checkpoints. Results: A 13-gene TLS-associated prognostic model for CRC was developed, emphasizing immune response genes. Survival analysis indicated significantly better outcomes for the TLS-high group. Cox regression identified stage IV and M1 as independent factors influencing TLS scores. Nomogram analysis demonstrated that combining TLS scores with clinical features enhances prognostic accuracy. TLS scores were closely associated with immune checkpoint genes, suggesting potential immunotherapy benefits for TLS-high patients. Conclusions: This study developed and validated a TLS-based prognostic model for CRC, exploring relevant immune cells. The model holds promise for predicting clinical prognosis and treatment responsiveness in CRC patients.
Collapse
Affiliation(s)
- Leyi Zhao
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (L.Z.); (L.X.); (G.W.); (M.Z.)
| | - Lingze Xi
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (L.Z.); (L.X.); (G.W.); (M.Z.)
| | - Yani Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
| | - Guoliang Wang
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (L.Z.); (L.X.); (G.W.); (M.Z.)
| | - Mingtong Zong
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (L.Z.); (L.X.); (G.W.); (M.Z.)
| | - Peng Xue
- Oncology Department, Wangjing Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing 100102, China
| | - Shijie Zhu
- Oncology Department, Wangjing Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing 100102, China
| |
Collapse
|
19
|
Guan Q, Zhou LL, Yang Z, Xie B, Li YA, Wang R. An sp 2 Carbon-Conjugated Covalent Organic Framework for Fusing Lipid Droplets and Engineered Macrophage Therapy. Angew Chem Int Ed Engl 2025; 64:e202421416. [PMID: 39812397 DOI: 10.1002/anie.202421416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/16/2025]
Abstract
Engineered immune cell therapy has proven to be a transformative cancer treatment despite the challenges of its prohibitive costs and manufacturing complexity. In this study, we propose a concise "lipid droplet fusion" strategy for engineering macrophages. Because of the integration of hydrophobic alkyl chains and π-conjugated structures, the mildly synthesized sp2C-conjugated covalent organic framework (COF) UM-101 induced lipid droplet fusion and metabolic reprogramming of macrophages, thus promoting their antitumor classical activation. Intravenous injection of UM-101-engineered macrophages effectively inhibited tumor progression. These results represent the first report of room-temperature synthesis of sp2C-conjugated COFs for engineered immune cell therapy, providing a new perspective for the development of therapeutic immune cells via organelle manipulation.
Collapse
Affiliation(s)
- Qun Guan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Le-Le Zhou
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, MoE Key Laboratory of Molecular and Nano Probes, Shandong Normal University, Jinan, 250014, China
| | - Zhiqing Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Beibei Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Yan-An Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, MoE Key Laboratory of Molecular and Nano Probes, Shandong Normal University, Jinan, 250014, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao 999078, China
| |
Collapse
|
20
|
Huang J, Shi J, Ma N, Li Y, Jin W, Zhang H, Zhang X, Luo N, Ding Y, Xie Q, Li Q, Xiong Y. Celastrol-loaded ginsenoside Rg3 liposomes enhance anti-programmed death ligand 1 immunotherapy by inducing immunogenic cell death in triple-negative breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156514. [PMID: 39986227 DOI: 10.1016/j.phymed.2025.156514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC), characterized by high heterogeneity and invasiveness. Currently, inducing immunogenic cell death (ICD) of tumor cells through approaches such as radiotherapy and chemotherapy is an effective strategy to enhance the response to anti-programmed death-ligand 1 antibody (aPD-L1) therapy in TNBC. However, radiotherapy and chemotherapy treatments often upregulate PD-L1 expression in tumor cells, thereby weakening the tumor cells' response to aPD-L1. Celastrol exhibits broad-spectrum and potent anti-tumor activity, efficiently inducing ICD without increasing PD-L1 levels in tumor cells. PURPOSE This study aims to elucidate the tumor-targeting effects of celastrol-loaded liposomes and its synergistic efficacy and mechanism of action in combination with aPD-L1 against TNBC. METHODS The Rg3 liposomes loaded with celastrol (Cel-Rg3-Lp) were prepared using the thin-film hydration method. BALB/c mice were utilized to establish an in situ breast cancer model. Mice were intravenously injected with Cel-Rg3-Lp at a dosage of celastrol 1 mg/kg once every two days for a total of 7 injections. Flow cytometry, western blot, and immunofluorescence techniques were employed to investigate the synergistic effects and mechanisms of Cel-Rg3-Lp combined with aPD-L1 in the treatment of TNBC. RESULTS The findings of this study demonstrate that after 7 administrations of Cel-Rg3-Lp (1 mg/kg celastrol, intravenously), significant anti-tumor effects are observed, including the recruitment of CD8+T cells and dendritic cells (DCs), while reducing the infiltration of immunosuppressive cells. The therapeutic efficacy was further enhanced when combined with aPD-L1. Additionally, Cel-Rg3-Lp markedly downregulated glucose-regulated protein 78 (GRP78) expression, thereby inducing ICD in tumor cells. CONCLUSION This study successfully constructed a multifunctional liposome and proposed a mechanism for inducing ICD through the GRP78-endoplasmic reticulum stress pathway. The liposome downregulates GRP78, triggering endoplasmic reticulum stress in tumor cells, inducing ICD, activating DCs, and enhancing antigen presentation to T cells. This improves the tumor immune microenvironment and provides a theoretical foundation for combining Cel-Rg3-Lp with aPD-L1 in the treatment of TNBC. This mechanism opens unique prospects for using celastrol in TNBC therapy and enhancing the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Jingyi Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jingbin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ninghui Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yujie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Wanyu Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hongyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Xin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ningchao Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ye Ding
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qiong Xie
- Gynecology Department, Zhoushan Hospital of Traditional Chinese Medicine (Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University), Zhoushan, Zhejiang 316000, China.
| | - Qiushuang Li
- Center of Clinical Evaluation and Analysis, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310053, China.
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
21
|
Li Z, Chen L, Wei Z, Liu H, Zhang L, Huang F, Wen X, Tian Y. A novel classification method for LUAD that guides personalized immunotherapy on the basis of the cross-talk of coagulation- and macrophage-related genes. Front Immunol 2025; 16:1518102. [PMID: 40018029 PMCID: PMC11866059 DOI: 10.3389/fimmu.2025.1518102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Purpose The coagulation process and infiltration of macrophages affect the progression and prognosis of lung adenocarcinoma (LUAD) patients. This study was designed to explore novel classification methods that better guide the precise treatment of LUAD patients on the basis of coagulation and macrophages. Methods Weighted gene coexpression network analysis (WGCNA) was applied to identify M2 macrophage-related genes, and TAM marker genes were acquired through the analysis of scRNA-seq data. The MSigDB and KEGG databases were used to obtain coagulation-associated genes. The intersecting genes were defined as coagulation and macrophage-related (COMAR) genes. Unsupervised clustering analysis was used to evaluate distinct COMAR patterns for LUAD patients on the basis of the COMAR genes. The R package "limma" was used to identify differentially expressed genes (DEGs) between COMAR patterns. A prognostic risk score model, which was validated through external data cohorts and clinical samples, was constructed on the basis of the COMAR DEGs. Results In total, 33 COMAR genes were obtained, and three COMAR LUAD subtypes were identified on the basis of the 33 COMAR genes. There were 341 DEGs identified between the three COMAR subtypes, and 60 prognostic genes were selected for constructing the COMAR risk score model. Finally, 15 prognosis-associated genes (CORO1A, EPHA4, FOXM1, HLF, IFIH1, KYNU, LY6D, MUC16, PPARG, S100A8, SPINK1, SPINK5, SPP1, VSIG4, and XIST) were included in the model, which was efficient and robust in predicting LUAD patient prognosis and clinical outcomes in patients receiving anti-PD-1/PD-L1 immunotherapy. Conclusions LUAD can be classified into three subtypes according to COMAR genes, which may provide guidance for precise treatment.
Collapse
Affiliation(s)
- Zhuoqi Li
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ling Chen
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Zhigang Wei
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Hongtao Liu
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pathology, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, China
| | - Lu Zhang
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fujing Huang
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Wen
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Tian
- Department of Radiotherapy Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
22
|
In H, Park M, Lee H, Han KH. Immune Cell Engagers: Advancing Precision Immunotherapy for Cancer Treatment. Antibodies (Basel) 2025; 14:16. [PMID: 39982231 PMCID: PMC11843982 DOI: 10.3390/antib14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Immune cell engagers (ICEs) are an emerging class of immunotherapies designed to harness the immune system's anti-tumor potential through precise targeting and activation of immune effector cells. By engaging T cells, natural killer (NK) cells, and phagocytes, ICEs overcome challenges such as immune evasion and MHC downregulation, addressing critical barriers in cancer treatment. T-cell engagers (TCEs), led by bispecific T-cell engagers (BiTEs), dominate the field, with innovations such as half-life-extended BiTEs, trispecific antibodies, and checkpoint inhibitory T-cell engagers driving their application in hematologic and solid malignancies. NK cell engagers (NKCEs) and phagocyte cell engagers (PCEs) are rapidly progressing, drawing on NK cells' innate cytotoxicity and macrophages' phagocytic abilities to target tumors, particularly in immunosuppressive microenvironments. Since the FDA approval of Blinatumomab in 2014, ICEs have transformed the oncology landscape, with nine FDA-approved products and numerous candidates in clinical trials. Despite challenges such as toxicity, resistance, and limited efficacy in solid tumors, ongoing research into advanced platforms and combination therapies highlights the growing potential of ICEs to provide personalized, scalable, and effective cancer treatments. This review investigates the mechanisms, platforms, research trends, and clinical progress of ICEs, emphasizing their pivotal role in advancing precision immunotherapy and their promise as a cornerstone of next-generation cancer therapies.
Collapse
Affiliation(s)
| | | | | | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea
| |
Collapse
|
23
|
Zhang Y, Lian Y, Zhou C, Cheng J, Zhao S, Liu H, Wang J, Lu X, Shi J, Du G. Self-assembled natural triterpenoids for the delivery of cyclin-dependent kinase 4/6 inhibitors to enhance cancer chemoimmunotherapy. J Control Release 2025; 378:791-802. [PMID: 39732370 DOI: 10.1016/j.jconrel.2024.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Immunogenic cell death (ICD) has recently emerged as a promising strategy in reinforcing anti-PD-L1 blockade immunotherapy of triple-negative breast cancer (TNBC). The CDK4/6 inhibitor palbociclib (PAL), as a clinical star medicine targeting the cell cycle machinery, is an ideal candidate for fabricating a highly efficient ICD inducer for TNBC chemoimmunotherapy. However, the frequently observed chemoresistance and clinical adverse effects, as well as significant antagonistic effects when co-administered with certain chemotherapeutics, have seriously restricted the efficiency of PAL and the feasibility of combination strategies. Herein, we screened and identified six self-assembled natural pentacyclic triterpenoid (PT) molecules that can serve as competent co-administration nanoplatforms for the synergistic or combined delivery of PAL. Analysis of two representative PT-PAL nano-assemblies validated that PT-mediated co-assembly enhances the cytotoxicity and synergy of PAL by inhibiting the PI3K/AKT/mTOR signaling pathway, rather than directly targeting CDK4/6 proteins. Importantly, the PAL nanoassemblies exhibited multiple favorable therapeutic features and stronger accumulative ICD induction, ensuring highly efficient synergistic anti-PD-L1 chemoimmunotherapy by simultaneously facilitating T-cell immune response and reversing the immunosuppressive tumor microenvironment. This study offers possibilities for improving the anticancer efficacy of CDK4/6 inhibitors and potential avenues for clinical applications of chemoimmunotherapy in treating TNBC.
Collapse
Affiliation(s)
- Yongbo Zhang
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China
| | - Yajie Lian
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China
| | - Conglei Zhou
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China
| | - Jianjun Cheng
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China.
| | - Shuang Zhao
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China
| | - Hongjun Liu
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China
| | - Jiacheng Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Xin Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China.
| | - Guanhua Du
- Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475000, PR China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng 475000, PR China; Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
24
|
Pan J, Lin Y, Liu X, Zhang X, Liang T, Bai X. Harnessing amino acid pathways to influence myeloid cell function in tumor immunity. Mol Med 2025; 31:44. [PMID: 39905317 PMCID: PMC11796060 DOI: 10.1186/s10020-025-01099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Amino acids are pivotal regulators of immune cell metabolism, signaling pathways, and gene expression. In myeloid cells, these processes underlie their functional plasticity, enabling shifts between pro-inflammatory, anti-inflammatory, pro-tumor, and anti-tumor activities. Within the tumor microenvironment, amino acid metabolism plays a crucial role in mediating the immunosuppressive functions of myeloid cells, contributing to tumor progression. This review delves into the mechanisms by which specific amino acids-glutamine, serine, arginine, and tryptophan-regulate myeloid cell function and polarization. Furthermore, we explore the therapeutic potential of targeting amino acid metabolism to enhance anti-tumor immunity, offering insights into novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jiongli Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Lin
- Health Science Center, Ningbo University, Ningbo, China
| | - Xinyuan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Sukubo NG, Bigini P, Morelli A. Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:97-118. [PMID: 39902342 PMCID: PMC11789677 DOI: 10.3762/bjnano.16.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/02/2025] [Indexed: 02/05/2025]
Abstract
In the coming decades, the development of nanocarriers (NCs) for targeted drug delivery will mark a significant advance in the field of pharmacology. NCs can improve drug solubility, ensure precise distribution, and enable passage across biological barriers. Despite these potential advantages, the interaction with many biological matrices, particularly with existing macrophages, must be considered. In this review, we will explore the dual role of macrophages in NC delivery, highlighting their physiological functions, the challenges posed by the mononuclear phagocyte system, and innovative strategies to exploit macrophage interactions for therapeutic advantage. Recent advancements in treating liver and lung diseases, particularly focusing on macrophage polarization and RNA-based therapies, have highlighted the potential developments in macrophage-NC interaction. Furthermore, we will delve into the intriguing potential of nanomedicine in neurology and traumatology, associated with macrophage interaction, and the exciting possibilities it holds for the future.
Collapse
Affiliation(s)
- Naths Grazia Sukubo
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, Italy
| | - Paolo Bigini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano, Italy
| | - Annalisa Morelli
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano, Italy
| |
Collapse
|
26
|
Strati A, Adamopoulos C, Kotsantis I, Psyrri A, Lianidou E, Papavassiliou AG. Targeting the PD-1/PD-L1 Signaling Pathway for Cancer Therapy: Focus on Biomarkers. Int J Mol Sci 2025; 26:1235. [PMID: 39941003 PMCID: PMC11818137 DOI: 10.3390/ijms26031235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
The PD1/PD-L1 axis plays an important immunosuppressive role during the T-cell-mediated immune response, which is essential for the physiological homeostasis of the immune system. The biology of the immunological microenvironment is extremely complex and crucial for the development of treatment strategies for immunotherapy. Characterization of the immunological, genomic or transcriptomic landscape of cancer patients could allow discrimination between responders and non-responders to anti-PD-1/PD-L1 therapy. Immune checkpoint inhibitor (ICI) therapy has shown remarkable efficacy in a variety of malignancies in landmark trials and has fundamentally changed cancer therapy. Current research focuses on strategies to maximize patient selection for therapy, clarify mechanisms of resistance, improve existing biomarkers, including PD-L1 expression and tumor mutational burden (TMB), and discover new biomarkers. In this review, we focus on the function of the PD-1/PD-L1 signaling pathway and discuss the immunological, genomic, epigenetic and transcriptomic landscape in cancer patients receiving anti-PD-1/PD-L1 therapy. Finally, we provide an overview of the clinical trials testing the efficacy of antibodies against PD-1/PD-L1.
Collapse
Affiliation(s)
- Areti Strati
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ioannis Kotsantis
- Department of Medical Oncology, Second Department of Internal Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Amanda Psyrri
- Department of Medical Oncology, Second Department of Internal Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| |
Collapse
|
27
|
Jiang L, Wang P, Hou Y, Chen J, Li H. Comprehensive single-cell pan-cancer atlas unveils IFI30+ macrophages as key modulators of intra-tumoral immune dynamics. Front Immunol 2025; 16:1523854. [PMID: 39925804 PMCID: PMC11802554 DOI: 10.3389/fimmu.2025.1523854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
Background The convergence of macrophage-targeted strategies with immune checkpoint blockade therapies defines a pivotal avenue in contemporary tumor therapy. Identifying robust genetic regulators in this context is imperative. Methods This study elucidates IFI30's role in enhancing Major Histocompatibility Complex II (MHC-II) restriction antigen processing. Despite its recognition in cancer immunotherapy, IFI30 remains a nascent focus. Our approach involves a multi-omics analysis of IFI30 tumor immunological profile in the macrophage-mediated Tumor Microenvironment (TME), spanning various cancers and bolstered by rigorous co-culture laboratory work. Results IFI30 predominantly localizes in monocyte/macrophage populations, correlating strongly with immune cell infiltration. Substantiated by single-cell analysis, IFI30 exhibits significant functional enrichment in immune-related pathways. Co-expression with immune-related genes, including MHC elements and immune checkpoints, further validates its relevance. Conclusion Our study positions IFI30 as a promising immunotherapeutic target. Pan-cancer analyses and glioblastoma multiforme (GBM) investigations collectively underscore IFI30's potential as a TME modulator, particularly in its interaction with M2-macrophages. IFI30 emerges as a prospective intervention point in the immunotherapeutic landscape.
Collapse
Affiliation(s)
- Lihe Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Medical College, Guangxi University, Nanning, Guangxi, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Peili Wang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Yixuan Hou
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Jingying Chen
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Hua Li
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Key Laboratory of Tumor Molecular Pathology of Baise, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
28
|
Tan W, Dai F, Ci Q, Deng Z, Liu H, Cheng Y. Characterization of tumor prognosis and sensitive chemotherapy drugs based on cuproptosis-related gene signature in ovarian cancer. BMC Womens Health 2025; 25:37. [PMID: 39849417 PMCID: PMC11761216 DOI: 10.1186/s12905-024-03519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Cuproptosis is a novel form of cell death, acting on the tricarboxylic acid cycle in mitochondrial respiration and mediated by protein lipoylation. Other cancer cell death processes, such as necroptosis, pyroptosis, and ferroptosis, have been shown to play crucial roles in the therapy and prognosis of ovarian cancer. However, the role of cuproptosis in ovarian cancer remains unclear. METHODS The expression profiles of 10 cuproptosis-related genes were extracted from GSE140082. Kaplan-Meier survival and Cox proportional hazards regression were used to identify prognostic genes for constructing risk models. Following this, Least Absolute Shrinkage and Selection Operator regression was employed to construct a risk score model. Next, a nomogram was constructed to predict overall survival in ovarian cancer. Ultimately, our analysis compared the two groups across various dimensions, including clinical characteristics, tumor progression, metabolism-related pathways, immune landscape, and drug sensitivity. RESULTS MTF1 and LIAS were identified as protective factors in ovarian cancer, with patients in the higher risk group being significantly associated with poorer survival. Furthermore, integrating the risk score with clinical characteristics in the nomogram demonstrated high specificity and sensitivity in predicting survival. A higher propotion of M2 macrophages, follicular helper T cells, and resting mast cells was observed in the high-risk group. Additionally, the IC50 values of Dasatinib, Bortezomib, Parthenolide, and Imatinib were significantly lower in the high-risk group. CONCLUSIONS The study highlights the prognostic significance of cuproptosis-related genes and provides new insights into developing pharmacological therapeutic strategies targeting cuproptosis for the prevention and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qinyu Ci
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
29
|
Xu J, Li Z, Tong Q, Zhang S, Fang J, Wu A, Wei G, Zhang C, Yu S, Zheng B, Lin H, Liao X, Xiao Z, Lu W. CD133 +PD-L1 + cancer cells confer resistance to adoptively transferred engineered macrophage-based therapy in melanoma. Nat Commun 2025; 16:895. [PMID: 39837811 PMCID: PMC11751330 DOI: 10.1038/s41467-025-55876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Adoptive transfer of genetically or nanoparticle-engineered macrophages represents a promising cell therapy modality for treatment of solid tumor. However, the therapeutic efficacy is suboptimal without achieving a complete tumor regression, and the underlying mechanism remains elusive. Here, we discover a subpopulation of cancer cells with upregulated CD133 and programmed death-ligand 1 in mouse melanoma, resistant to the phagocytosis by the transferred macrophages. Compared to the CD133-PD-L1- cancer cells, the CD133+PD-L1+ cancer cells express higher transforming growth factor-β signaling molecules to foster a resistant tumor niche, that restricts the trafficking of the transferred macrophages by stiffened extracellular matrix, and inhibits their cell-killing capability by immunosuppressive factors. The CD133+PD-L1+ cancer cells exhibit tumorigenic potential. The CD133+PD-L1+ cells are further identified in the clinically metastatic melanoma. Hyperthermia reverses the resistance of CD133+PD-L1+ cancer cells through upregulating the 'eat me' signal calreticulin, significantly improving the efficacy of adoptive macrophage therapy. Our findings demonstrate the mechanism of resistance to adoptive macrophage therapy, and provide a de novo strategy to counteract the resistance.
Collapse
Affiliation(s)
- Jiaojiao Xu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Zhe Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Qinli Tong
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Sihang Zhang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Jianchen Fang
- Department of Pathology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Aihua Wu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Guoguang Wei
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Chen Zhang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Sheng Yu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Binbin Zheng
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Hongzheng Lin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Xueling Liao
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
| | - Zeyu Xiao
- Department of Pathology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei Lu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China.
- Minhang Hospital, Fudan University, Shanghai, 201199, China.
- Quzhou Fudan Institute, Quzhou, Zhejiang, 324002, China.
| |
Collapse
|
30
|
Shi Y, Li X, Dong Y, Yuan H, Wang Y, Yang R. Exploring the potential of CAR-macrophage therapy. Life Sci 2025; 361:123300. [PMID: 39643037 DOI: 10.1016/j.lfs.2024.123300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Chimeric antigen receptor T cell (CAR-T) cell therapy has achieved significant success in treating hematologic malignancies, but its efficacy in solid tumor treatment is relatively limited. Therefore, researchers are exploring other genetically modified immune cells as potential treatment strategies to address the challenges in solid tumor therapy. Chimeric antigen receptor macrophage (CAR-M) involves the genetic engineering of macrophages to express chimeric antigen receptors, enabling them to recognize and attack tumor cells. In contrast to CAR-T cells, CAR-M cells offer distinct advantages such as enhanced infiltration and survival capabilities, along with a diverse array of anti-tumor mechanisms, making them a promising immunotherapy approach that may yield better results in solid tumor treatment. This article provides an overview of the research advancements in CAR-M-mediated tumor immunotherapy, encompassing topics such as the design and transduction of CAR, cell sources, anti-tumor mechanisms and clinical applications. The future research direction in this field will involve leveraging innovative biological technologies to augment the anti-tumor efficacy of CAR-M, understand the underlying mechanisms, and enhance the safety and efficacy of CAR-M therapy.
Collapse
Affiliation(s)
- Yongyu Shi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China.
| | - Xia Li
- Department of Internal Medicine, Jinan No. 1 People's Hospital, China
| | - Yanlei Dong
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Hong Yuan
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Yingyue Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Ruoxuan Yang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| |
Collapse
|
31
|
Pierini S, Gabbasov R, Oliveira-Nunes MC, Qureshi R, Worth A, Huang S, Nagar K, Griffin C, Lian L, Yashiro-Ohtani Y, Ross K, Sloas C, Ball M, Schott B, Sonawane P, Cornell L, Blumenthal D, Chhum S, Minutolo N, Ciccaglione K, Shaw L, Zentner I, Levitsky H, Shestova O, Gill S, Varghese B, Cushing D, Ceeraz DeLong S, Abramson S, Condamine T, Klichinsky M. Chimeric antigen receptor macrophages (CAR-M) sensitize HER2+ solid tumors to PD1 blockade in pre-clinical models. Nat Commun 2025; 16:706. [PMID: 39814734 PMCID: PMC11735936 DOI: 10.1038/s41467-024-55770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
We previously developed human CAR macrophages (CAR-M) and demonstrated redirection of macrophage anti-tumor function leading to tumor control in immunodeficient xenograft models. Here, we develop clinically relevant fully immunocompetent syngeneic models to evaluate the potential for CAR-M to remodel the tumor microenvironment (TME), induce T cell anti-tumor immunity, and sensitize solid tumors to PD1/PDL1 checkpoint inhibition. In vivo, anti-HER2 CAR-M significantly reduce tumor burden, prolong survival, remodel the TME, increase intratumoral T cell and natural killer (NK) cell infiltration, and induce antigen spreading. CAR-M therapy protects against antigen-negative relapses in a T cell dependent fashion, confirming long-term anti-tumor immunity. In HER2+ solid tumors with limited sensitivity to anti-PD1 (aPD1) monotherapy, the combination of CAR-M and aPD1 significantly improves tumor growth control, survival, and remodeling of the TME in pre-clinical models. These results demonstrate synergy between CAR-M and T cell checkpoint blockade and provide a strategy to potentially enhance response to aPD1 therapy for patients with non-responsive tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuo Huang
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | - Karan Nagar
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | | | - Lurong Lian
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Lauren Shaw
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | | | | | - Olga Shestova
- Center for Cellular Immunotherapies, Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Saar Gill
- Center for Cellular Immunotherapies, Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
33
|
Du F, Ye Z, He A, Yuan J, Su M, Jia Q, Wang H, Yang P, Yang Z, Ning P, Wang Z. An engineered α1β1 integrin-mediated FcγRI signaling component to control enhanced CAR macrophage activation and phagocytosis. J Control Release 2025; 377:689-703. [PMID: 39617174 DOI: 10.1016/j.jconrel.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Treatment of solid tumors remains difficult, and therefore there has been increased focus on chimeric antigen receptor macrophages (CAR-M) to challenge solid tumors. However, CAR domain design of of adoptive cell therapy, which leads to differences in antitumor activity and triggered antitumor potential, remains poorly understood for macrophages. We developed an α1β1 integrin-mediated Fc-gamma receptor I (FcγRI) signaling component for CAR-M specific activation and its antitumor potential. We evaluated CAR-M effects with α1β1 integrin-mediated FcγRI signaling (ACT CAR-M) on the activation and antitumor phagocytic response of macrophages in vitro. Subcutaneous tumor model in BALB/c mice and carcinomatosis model in immunodeficient mice were used to test the antitumor effect of ACT CAR-M compared with CD3ζ CAR-M. The α1β1 integrin-mediated FcγRI signaling engagement of CAR-M was associated with enhanced macrophage activation and specific phagocytosis in primary human macrophages, and significantly improved tumor control and survival in multiple cancer models when compared to CD3ζ CAR-M. RNA-sequencing suggested that α1β1 integrin-mediated FcγRI engagement increased antitumor immunity by enhancing pro-inflammatory M1 phenotype-associated pathways, such as Toll-like receptor signaling, tumor necrosis factor signaling, and IL-17 signaling. α1β1 integrin-mediated FcγRI signaling engagement markedly enhanced antitumor effects of CAR-M immunotherapy, which is proposed as an advanced engineering CAR domain material to expand the clinical application of CAR-M.
Collapse
Affiliation(s)
- Fuyu Du
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Zixuan Ye
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Anna He
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Jingtong Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Maozhi Su
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Qingan Jia
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710038, China
| | - Huaiyu Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Peng Yang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Zuo Yang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| | - Zhongliang Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| |
Collapse
|
34
|
Li P, Gao X, Huang D, Gu X. Identification and Characterization of Prognostic Macrophage Subpopulations for Human Esophageal Carcinoma. Curr Med Chem 2025; 32:123-135. [PMID: 38362682 DOI: 10.2174/0109298673284207240108105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/17/2024]
Abstract
AIMS The aim of the present study was to investigate the relationship between the cellular ecosystem and the progression of esophageal carcinoma (ESCA) based on the evolution of macrophages and to analyze the potential of using macrophages as a new therapeutic approach in ESCA treatment. BACKGROUND Macrophage-based immunotherapy could be used for treating ESCA patients, but its clinical application is limited by the intra-tumor heterogeneity of macrophages. OBJECTIVE The objective of this study was to analyze the diversity, differentiation trajectory, and intercellular communication of macrophages in ESCA and its prognostic significance. METHODS Single-cell RNA sequencing (scRNA-seq) data in the GSE154763 dataset were downloaded from Gene Expression Omnibus (GEO) to identify cell clusters and annotate cell types using the Seurat R package. The scRNA-seq profiles of macrophages were extracted, and cluster analysis was performed to identify macrophage subsets. The differentiation trajectories of macrophage subgroups were visualized employing Monocle2. Finally, ligand-receptor pairs and communication intensity among the classified subgroups were analyzed using Cell Chat. RESULTS A total of 8 cell types were identified between ESCA tissues and paracancer tissues. The most abundant macrophages in ESCA tissues were further divided into 5 cell clusters. Compared with the normal tissues, the proportion of HSPA6+ macrophages in ESCA tissues increased the most, and the number of ligand-receptor pairs that mediated the communication of HSPA6+ macrophages with mast cells and monocytes also increased significantly. More importantly, a high proportion of HSPA6+ macrophages was inversely correlated with the survival outcomes for ESCA patients. CONCLUSIONS This study analyzed the diversity, distribution and differentiation trajectory of macrophages in ESCA tissues at single-cell level and classified a prognostic macrophage subtype (HSPA6+ macrophages) of ESCA, providing a theoretical basis for macrophage-targeted therapy in ESCA.
Collapse
Affiliation(s)
- Penghui Li
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, 471000, China
| | - Xiaohui Gao
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, 471000, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, 471000, China
| |
Collapse
|
35
|
Huang T, Wei L, Zhou H, Liu J. Macrophage Infiltration and ITGB2 Expression in ESCC: A Novel Correlation. Cancer Med 2025; 14:e70604. [PMID: 39825491 PMCID: PMC11742006 DOI: 10.1002/cam4.70604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/22/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent and lethal malignancies worldwide. Despite progress in immunotherapy for cancer treatment, its application and efficacy in ESCC remain limited. Therefore, there is an ongoing need to explore potential molecules and therapeutic strategies related to tumor immunity in ESCC. METHODS In this study, we integrated high-throughput sequencing data, gene chip data, single-cell sequencing data, and various bioinformatics analysis methods along with experimental approaches to identify key genes involved in immune infiltration in ESCC and investigate their relationship with immune cell development, as well as the potential of these key genes in immunotherapy. RESULTS We discovered and validated a positive correlation between macrophage infiltration and ITGB2 expression in ESCC. ITGB2 is overexpressed in ESCC and has potential as a prognostic biomarker for the disease. We present for the first time the finding that the expression of ITGB2 in infiltrating macrophages increases as these macrophages polarize toward a tumor-promoting phenotype in ESCC. Moreover, during the progression of ESCC, ITGB2 expression in infiltrating macrophages is upregulated. The higher the expression of ITGB2, the more feasible it is to target macrophages. Additionally, we found that evaluating immune therapy responses in ESCC patients through ITGB2 expression is a viable approach. Furthermore, we identified three miRNAs associated with abnormal ITGB2 expression, providing insights into the upstream molecular interactions of ITGB2. CONCLUSIONS Macrophage infiltration in ESCC is closely associated with ITGB2, which holds significant potential for immunotherapy applications in ESCC. Based on our findings and prior studies, we propose a novel hypothesis: inducing M1 macrophages in vitro, knocking out ITGB2, and then reinfusing these ITGB2-knockout M1 macrophages into ESCC patients may represent a promising new immunotherapy strategy, providing a new avenue for ESCC immunotherapy.
Collapse
Affiliation(s)
- Tao Huang
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Longqian Wei
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Huafu Zhou
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Jun Liu
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| |
Collapse
|
36
|
Zhao L, Wang Z, Tan Y, Ma J, Huang W, Zhang X, Jin C, Zhang T, Liu W, Yang YG. IL-17A/CEBPβ/OPN/LYVE-1 axis inhibits anti-tumor immunity by promoting tumor-associated tissue-resident macrophages. Cell Rep 2024; 43:115039. [PMID: 39643970 DOI: 10.1016/j.celrep.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a critical component of the immunosuppressive tumor microenvironment, comprising monocyte-derived macrophages (MDM-TAMs) and tissue-resident macrophages (TRM-TAMs). Here, we discovered that TRM-TAMs mediate the pro-tumor effects of interleukin (IL)-17A and that IL-17A-driven tumor progression requires tumor cell production of osteopontin (OPN). Mechanistically, we identified CEBPβ as a transcription factor downstream of IL-17A in tumor cells and LYVE-1 as an OPN receptor on TRM-TAMs. IL-17A stimulates tumor cell production of OPN, and OPN/LYVE-1 signaling activates the JNK/c-Jun pathway, leading to the proliferation of immunosuppressive LYVE-1+ TRM-TAMs. Unlike its effect on LYVE-1+ TRM-TAMs, OPN interacts with α4β1 to promote the chemotaxis of LYVE-1- MDM-TAMs toward tumors. IL-17A neutralization, OPN inactivation in tumor cells, or LYVE-1 deletion in macrophages inhibited TAMs and enhanced anti-tumor immune responses and anti-PDL1 therapy. Thus, the IL-17A/CEBPβ/OPN/LYVE-1 axis offers a mechanism suppressing anti-tumor immune responses and, hence, an effective therapeutic target for cancer.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Zonghan Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Yuying Tan
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Jianan Ma
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Wei Huang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Xiaoying Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Chunhui Jin
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China; Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Ting Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China; International Center of Future Science, Jilin University, Changchun, China.
| |
Collapse
|
37
|
Li C, Dong X, Li B. Tumor microenvironment in oral squamous cell carcinoma. Front Immunol 2024; 15:1485174. [PMID: 39744628 PMCID: PMC11688467 DOI: 10.3389/fimmu.2024.1485174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a highly aggressive and malignant tumor of oral cavity with a poor prognosis and high mortality due to the limitations of existing therapies. The significant role of tumor microenvironment (TME) in the initiation, development, and progression of OSCC has been widely recognized. Various cells in TME, including tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), T lymphocytes, tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs) and dendritic cells (DCs), form a complicated and important cellular network to modulate OSCC proliferation, invasion, migration, and angiogenesis by secreting RNAs, proteins, cytokines, and metabolites. Understanding the interactions among cells in TME provides the foundation for advanced clinical diagnosis and therapies. This review summarizes the current literature that describes the role of various cellular components and other TME factors in the progression of OSCC, hoping to provide new ideas for the novel OSCC treatment strategies targeting the complicated cellular network and factors that mediate the interactive loops among cells in TME.
Collapse
Affiliation(s)
| | | | - Bo Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral
Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
38
|
Zhou L, Zhao S, Luo J, Rao M, Yang S, Wang H, Tang L. Altered Immune Cell Profiles in the Follicular Fluid of Patients with Poor Ovarian Response According to the POSEIDON Criteria. J Inflamm Res 2024; 17:10663-10679. [PMID: 39677298 PMCID: PMC11638477 DOI: 10.2147/jir.s473068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Objective This study aims to investigate alterations in immune cell counts within preovulatory follicles of patients with poor ovarian response (POR) during assisted reproductive technology (ART), classified according to the POSEIDON criteria. Methods This single-centre cross-sectional study included 543 women undergoing IVF/ICSI treatment, selected based on specific inclusion and exclusion criteria: 292 with normal ovarian response and 251 with poor response. Follicular fluid (FF) was collected on the day of oocyte retrieval and analysed by flow cytometry to determine the proportions of macrophages (Mφs), M1 and M2 Mφs, T cells (CD4 and CD8 T cells), dendritic cells (DCs), including type 1 conventional dendritic cells (cDC1) and type 2 conventional dendritic cells (cDC2), and neutrophils. Multivariable logistic regression assessed the relationship between immune cell counts and POR, Pearson correlation determined associations with the number of retrieved oocytes, and receiver operating characteristic (ROC) curves evaluated the predictive power of immune cell counts for POR. Results Immune cells accounted for 52.57% (±23.90%) of the total cell population in the follicular microenvironment, which was approximately equal to that of granulosa cells, with Mφs being the most abundant, followed sequentially by T cells, DCs, and neutrophils. In patients with POR, overall Mφs infiltration in the follicular microenvironment decreased, whereas M1 and M2 polarization increased. T cell infiltration increased, with a decrease in the CD4/CD8 ratio. Both cDC1 and cDC2 were significantly elevated. Moreover, multivariable logistic regression revealed that the total macrophage count, CD4 T cell count, and cDC2 count were independent predictors of POR. Notably, cDC2 showed the largest area under the ROC curve, suggesting its strong potential as a biomarker for predicting POR. Conclusion The proportion of immune cells in preovulatory follicles were significantly altered in patients with POR. These findings suggest that immune cell dynamics in the follicular microenvironment may play a crucial role in determining ovarian response and prognosis, indicating that targeted immunomodulatory strategies could be considered in future therapeutic approaches.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shuhua Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Jiahuan Luo
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Meng Rao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shuangjuan Yang
- The Core Technology Facility of Kunming Institute of Zoology (KIZ), Chinese Academy of Sciences (CAS), Kunming, People’s Republic of China
| | - Huawei Wang
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Li Tang
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
39
|
Cao C, Hu B, Wang J, Li W, Guo L, Sheng J, Zhang C. Swertianin Promotes Anti-Tumor activity by facilitating Macrophage M1 polarization via STING signaling. Int Immunopharmacol 2024; 142:113182. [PMID: 39298821 DOI: 10.1016/j.intimp.2024.113182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
To investigate the mechanism by which swertiamarin (swertianin, SWE) regulates the polarization of tumor microenvironment-associated macrophages to M1 phenotype, thereby exerting anti-tumor effects.SWE promoted the formation of M1 cells and increased the proportion of CD86 + cells in both RAW264.7 and primary monocyte-derived macrophages, while activating the STING-NF-κB pathway. When STING or P65 was knocked out, the effects of SWE were antagonized, inhibiting the formation of CD86 + M1 cells. At the animal level, SWE inhibited tumor growth, activated STING-NF-κB, and promoted the formation of CD86 + cells. STING-KO inhibited the effects of SWE.SWE can activate the STING-NF-κB signal to promote macrophage M1 polarization, playing an anti-tumor role.
Collapse
Affiliation(s)
- Chenxi Cao
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Biwen Hu
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Jin Wang
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Wenyan Li
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Li Guo
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Jian Sheng
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| | - Caiqun Zhang
- The Second Affiliated Hospital of Jiaxing University, 314001, China.
| |
Collapse
|
40
|
Li H, Chen C, Huang W, Shi L, Zhang Q, Zhou L, Huang H, Zhou S. Long-term expanded hepatic progenitor cells ameliorate D-GalN/LPS-induced acute liver failure through repolarizing M1 macrophage to M2-Like phenotype via activation of the IL-10/JAK2/STAT3 signaling pathway. Int Immunopharmacol 2024; 142:113127. [PMID: 39276457 DOI: 10.1016/j.intimp.2024.113127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Acute liver failure (ALF) is a devastating liver disease characterized by the rapid deterioration of hepatocytes, which causes a series of clinical complications, including hepatic dysfunction, coagulopathy, encephalopathy, and multiorgan failure. Cell-based therapy is a promising alternative as it can bridge patients until their livers regenerate, releasing immunomodulatory molecules to suppress inflammation. This study reports an iPSCs-derived long-term expanded hepatic progenitor cell (LTHepPCs), which can differentiate into hepatocyte-like cells (HLCs) in vivo. When introduced into drug-induced ALF models, LTHepPCs mitigate liver damage by modulating the local immune microenvironment. This is achieved by shifting macrophages/Kupffer cells towards an anti-inflammatory state, resulting in a decrease in the expression of inflammatory cytokines such as TNF-a, IL-1β, and IL-8, and an increase in the expression of anti-inflammatory cytokines such as IL-10 and ARG-1. In vitro co-culturing of THP-1 or mBMDMs with LTHepPCs suggested that LTHepPCs could activate the anti-inflammatory state of macrophages/Kupffer cells via the IL-10/JAK2/STAT3 signaling pathway. Therefore, LTHepPC transplantation is a promising therapy for ALF patients.
Collapse
Affiliation(s)
- Hongsheng Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Chen Chen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Weijian Huang
- Celliver Biotechnology Inc., Shanghai, PR China; Department of Anesthesiology and Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, PR China
| | - Lei Shi
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qin Zhang
- Celliver Biotechnology Inc., Shanghai, PR China
| | - Li Zhou
- Celliver Biotechnology Inc., Shanghai, PR China
| | - Hai Huang
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road No.2, Shanghai, PR China.
| | - Shen'ao Zhou
- Celliver Biotechnology Inc., Shanghai, PR China; State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, CAS. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
41
|
Wang X, Zhang Y. Multi-omics joint screening of biomarkers related to M2 macrophages in gastric cancer. Discov Oncol 2024; 15:738. [PMID: 39623254 PMCID: PMC11612128 DOI: 10.1007/s12672-024-01623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Due to high mortality rate and limited treatments in gastric cancer (GC), call for deeper exploration of M2 macrophages as biomarkers is needed. METHODS The data for this study were obtained from the Gene Expression Omnibus (GEO) and Genomic Data Commons (GDC). The Seurat package was utilized for single-cell RNA sequencing (scRNA-seq) analysis. FindAllMarkers was used to identify genes highly expressed among different cell subsets. DESeq2 package was leveraged to screen differentially expressed genes (DEGs), while limma package was utilized for identifying differentially expressed proteins (DEPs). Enrichment analyses of the genes were conducted using KOBAS-i database. MultipleROC was applied to evaluate the diagnostic potential of biomarkers, and rms package was utilized to construct diagnostic models. hTFtarget database was utilized to predict potential transcription factors (TFs). Finally, cell-based assays were performed to validate the expression and potential biological functions of the screened key markers. RESULTS This study found that M2 macrophages were enriched in protein, endoplasmic reticulum, and virus-related pathways. A total of 4146 DEGs and 1946 DEPs were obtained through screening, with 254 common DEGs/DEPs. The results of gene function enrichment analysis suggested that it may affect the occurrence and development of GC through DNA replication and cell cycle. This study identified three biomarkers, HSPH1, HSPD1, and IFI30, and constructed a diagnostic model based on these three genes. The AUC value greater than 0.8 proved the reliability of the model. Through screening TFs, SPI1 and KLF5 were found to be the common TFs for the three biomarkers. The expression of the three genes IFI30, HSPD1 and HSPH1 was up-regulated in GC cells, and IFI30 may play a facilitating role in the migration and invasion of GC cells. CONCLUSION This study identified three biomarkers and constructed a diagnostic model, providing a new perspective for the research and treatment of GC.
Collapse
Affiliation(s)
- Xilong Wang
- Tumor Hematology Department, Liaoyang Central Hospital, Liaoyang, 111000, China
| | - Ying Zhang
- General Surgery Department, Liaoyang Central Hospital, Liaoyang, 111000, China.
| |
Collapse
|
42
|
Yang Y, Xie T, Gao P, Han W, Liu Y, Wang Y. Hsa_Circ_002144 Promotes Glycolysis and Immune Escape of Breast Cancer Through miR-326/PKM Axis. Cancer Biother Radiopharm 2024; 39:755-769. [PMID: 38963787 DOI: 10.1089/cbr.2024.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Background: Breast cancer is a leading cause of cancer-related deaths in women worldwide, posing a significant threat to female health. Therefore, it is crucial to search for new therapeutic targets and prognostic biomarkers for breast cancer patients. Method: Bioinformatics analysis, quantitative real-time PCR (qRT-PCR), and fluorescence in situ hybridization (FISH) were employed to investigate the expression of hsa_circ_002144 in breast cancer. Transwell assay, Western blotting, and cell viability assay were utilized to assess the impact of hsa_circ_002144 on the proliferation, migration, and invasion of breast cancer cells. Additionally, a mouse model was established to validate its functionality. Flow cytometry, WB analysis, enzyme-linked immunosorbent assay (ELISA), qRT-PCR, exosomes isolation, and co-culture system were employed to elucidate the molecular mechanism underlying macrophage polarization. Result: we have discovered for the first time that hsa_circ_002144 is highly expressed in breast cancer. It affected tumor growth and metastasis and could influence macrophage polarization through the glycolytic pathway. Conclusion: This finding provides a new direction for breast cancer treatment and prognosis assessment.
Collapse
Affiliation(s)
- Yong Yang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang City, China
| | - Tianhao Xie
- General Surgery, The Affiliated Hospital of Hebei University, Baoding City, China
| | - Peng Gao
- Anesthesiology department, Affiliated hospital of Qingdao university, Qingdao City, China
| | - Weijun Han
- Third Surgery, Baoji traditional Chinese Medicine Hospital in Shaanxi Province, Baoji City, China
| | - Yuhong Liu
- Rheumatology and Immunology Department, The Affiliated Hospital of Yan 'an University, Yan 'an City, China
| | - Yanmei Wang
- School of Nursing and Health, Medical College of Yan 'an University, Yan 'an City, China
| |
Collapse
|
43
|
Zhou H, Zou J, Han J, Zhou A, Huang S. P4HA3 promotes colon cancer cell escape from macrophage phagocytosis by increasing phagocytosis immune checkpoint CD47 expression. Mol Cell Biochem 2024; 479:3355-3374. [PMID: 38347264 DOI: 10.1007/s11010-024-04927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/05/2024] [Indexed: 10/26/2024]
Abstract
Cancer immunotherapies have greatly changed the prospects for the therapy of many malignancies, including colon cancer. Macrophages as the effectors of cancer immunotherapy provide considerable promise for cancer treatment. Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) plays a cancer-promoting role in a variety of cancers, including colon cancer. In the present work, we provided evidence for the first time that P4HA3 promoted colon cancer cell escape from macrophage phagocytosis, and preliminarily explored its possible molecular mechanism. Immunohistochemistry was used to detect the expression of P4HA3 in tissues. Bioinformatics methods were used to analyze the tumor public databases (including TCGA database and GEO database). Macrophage phagocytosis assay and flow cytometric analysis were used to detect the phagocytic capacity of macrophages. Western blot and qRT-PCR were used to detect the expression of related markers (such as P4HA3, CD47, CD24, IL-34, and M-CSF). First, we found that P4HA3 was significantly and highly expressed in both colon cancer tissues and cells, and that P4HA3 had a positive correlation with lymph node metastasis, Dukes stage and also strongly correlated with poorer survival. Subsequently, we found that P4HA3 was strongly associated with the macrophage infiltration level in colon cancer. Immediately we also found that decreasing P4HA3 expression promoted macrophage phagocytosis in colon cancer cells, whereas P4HA3 overexpression produced the opposite effect. Finally, we demonstrated that P4HA3 promoted the expression of cluster of differentiation 47 (CD47) in colon cancer cells. Moreover, P4HA3 caused colon cancer cells to secrete Interleukin 34 (IL34) and Macrophage colony stimulating factor (M-CSF), which further induced macrophages to differentiate to M2 type and thereby contributed to the progression of colon cancer. We have demonstrated that P4HA3-driven CD47 overexpression may act as an escape mechanism, causing colon cancer cells to evade phagocytosis from macrophages.
Collapse
Affiliation(s)
- Hailang Zhou
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, 223400, Jiangsu, People's Republic of China
- The Institute of Life Sciences, Jiangsu College of Nursing, Huaian, 223300, Jiangsu, People's Republic of China
| | - Junwei Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Jingli Han
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, 223400, Jiangsu, People's Republic of China
| | - Aijun Zhou
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, 223400, Jiangsu, People's Republic of China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Clinical Medicine, Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, People's Republic of China.
| | - Shu Huang
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, 223400, Jiangsu, People's Republic of China.
| |
Collapse
|
44
|
Liao W, Liu T, Li Y, Liang H, Deng J, Shen F. The bioinfomatics analysis of the M1 macrophage-related gene CXCL9 signature in cervical cancer. J OBSTET GYNAECOL 2024; 44:2373951. [PMID: 38963237 DOI: 10.1080/01443615.2024.2373951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND The expression and function of coexpression genes of M1 macrophage in cervical cancer have not been identified. And the CXCL9-expressing tumour-associated macrophage has been poorly reported in cervical cancer. METHODS To clarify the regulatory gene network of M1 macrophage in cervical cancer, we downloaded gene expression profiles of cervical cancer patients in TCGA database to identify M1 macrophage coexpression genes. Then we constructed the protein-protein interaction networks by STRING database and performed functional enrichment analysis to investigate the biological effects of the coexpression genes. Next, we used multiple bioinformatics databases and experiments to overall investigate coexpression gene CXCL9, including western blot assay and immunohistochemistry assay, GeneMANIA, Kaplan-Meier Plotter, Xenashiny, TISCH2, ACLBI, HPA, TISIDB, GSCA and cBioPortal databases. RESULTS There were 77 positive coexpression genes and 5 negative coexpression genes in M1 macrophage. The coexpression genes in M1 macrophage participated in the production and function of chemokines and chemokine receptors. Especially, CXCL9 was positively correlated with M1 macrophage infiltration levels in cervical cancer. CXCL9 expression would significantly decrease and high CXCL9 levels were linked to good prognosis in the cervical cancer tumour patients, it manifestly expressed in blood immune cells, and was positively related to immune checkpoints. CXCL9 amplification was the most common type of mutation. The CXCL9 gene interaction network could regulate immune-related signalling pathways, and CXCL9 amplification was the most common mutation type in cervical cancer. Meanwhile, CXCL9 may had clinical significance for the drug response in cervical cancer, possibly mediating resistance to chemotherapy and targeted drug therapy. CONCLUSION Our findings may provide new insight into the M1 macrophage coexpression gene network and molecular mechanisms in cervical cancer, and indicated that M1 macrophage association gene CXCL9 may serve as a good prognostic gene and a potential therapeutic target for cervical cancer therapies.
Collapse
Affiliation(s)
- Wenxin Liao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Tingting Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yang Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hua Liang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Juexiao Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Fujin Shen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
45
|
Kim EH, Teerdhala SV, Padilla MS, Joseph RA, Li JJ, Haley RM, Mitchell MJ. Lipid nanoparticle-mediated RNA delivery for immune cell modulation. Eur J Immunol 2024; 54:e2451008. [PMID: 39279550 PMCID: PMC11628889 DOI: 10.1002/eji.202451008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as the preeminent nonviral drug delivery vehicles for nucleic acid therapeutics, as exemplified by their usage in the mRNA COVID-19 vaccines. As a safe and highly modular delivery platform, LNPs are attractive for a wide range of applications. In addition to vaccines, LNPs are being utilized as platforms for other immunoengineering efforts, especially as cancer immunotherapies by modulating immune cells and their functionality via nucleic acid delivery. In this review, we focus on the methods and applications of LNP-based immunotherapy in five cell types: T cells, NK cells, macrophages, stem cells, and dendritic cells. Each of these cell types has wide-reaching applications in immunotherapy but comes with unique challenges and delivery barriers. By combining knowledge of immunology and nanotechnology, LNPs can be developed for improved immune cell targeting and transfection, ultimately working toward novel clinical therapeutics.
Collapse
Affiliation(s)
- Emily H. Kim
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sridatta V. Teerdhala
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Marshall S. Padilla
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ryann A. Joseph
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jacqueline J. Li
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Rebecca M. Haley
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Michael J. Mitchell
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Abramson Cancer CenterPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Cellular ImmunotherapiesPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Institute for RNA InnovationPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for ImmunologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Cardiovascular InstitutePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Regenerative MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
46
|
D'Avanzo C, Blaeschke F, Lysandrou M, Ingelfinger F, Zeiser R. Advances in cell therapy: progress and challenges in hematological and solid tumors. Trends Pharmacol Sci 2024; 45:1119-1134. [PMID: 39603960 DOI: 10.1016/j.tips.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024]
Abstract
Cell-based therapies harness the endogenous ability of the immune system to fight cancer and have shown promising results in the treatment of hematological malignancies. However, their clinical application beyond B cell malignancies is hampered by numerous hurdles, ranging from relapsed disease to a hostile tumor microenvironment (TME). Recent advances in cell engineering and TME modulation may expand the applicability of these therapies to a wider range of cancers, creating new treatment possibilities. Breakthroughs in advanced gene editing and sophisticated cell engineering, have also provided promising solutions to longstanding challenges. In this review, we examine the challenges and future directions of the most prominent cell-based therapies, including chimeric antigen receptor (CAR)-T cells, tumor-infiltrating lymphocytes (TILs), and natural killer (NK) cells, and emerging modalities. We provide a comprehensive analysis of emerging cell types and combination strategies translated into clinical trials, offering insights into the next generation of cell-based cancer treatments.
Collapse
Affiliation(s)
- Claudia D'Avanzo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Blaeschke
- German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Heidelberg University Hospital, Heidelberg, Germany
| | - Memnon Lysandrou
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Ingelfinger
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
47
|
Zeng YY, Gu Q, Li D, Li AX, Liu RM, Liang JY, Liu JY. Immunocyte membrane-derived biomimetic nano-drug delivery system: a pioneering platform for tumour immunotherapy. Acta Pharmacol Sin 2024; 45:2455-2473. [PMID: 39085407 PMCID: PMC11579519 DOI: 10.1038/s41401-024-01355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Tumor immunotherapy characterized by its high specificity and minimal side effects has achieved revolutionary progress in the field of cancer treatment. However, the complex mechanisms of tumor immune microenvironment (TIME) and the individual variability of patients' immune system still present significant challenges to its clinical application. Immunocyte membrane-coated nanocarrier systems, as an innovative biomimetic drug delivery platform, exhibit remarkable advantages in tumor immunotherapy due to their high targeting capability, good biocompatibility and low immunogenicity. In this review we summarize the latest research advances in biomimetic delivery systems based on immune cells for tumor immunotherapy. We outline the existing methods of tumor immunotherapy including immune checkpoint therapy, adoptive cell transfer therapy and cancer vaccines etc. with a focus on the application of various immunocyte membranes in tumor immunotherapy and their prospects and challenges in drug delivery and immune modulation. We look forward to further exploring the application of biomimetic delivery systems based on immunocyte membrane-coated nanoparticles, aiming to provide a new framework for the clinical treatment of tumor immunity.
Collapse
Affiliation(s)
- Yuan-Ye Zeng
- School of Pharmacy, Fudan University, Shanghai, 201203, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qing Gu
- Department of Pharmacy, Jingan District Zhabei Central Hospital, Shanghai, 200070, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ai-Xue Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rong-Mei Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jian-Ying Liang
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Ji-Yong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
48
|
Yao D, Yu W, Ma X, Tian J. A novel necroptosis-related genes signature to predict prognosis and treatment response in bladder cancer. Front Mol Biosci 2024; 11:1493411. [PMID: 39655212 PMCID: PMC11625674 DOI: 10.3389/fmolb.2024.1493411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Background Necroptosis, a form of programmed inflammatory cell death, plays a crucial role in tumor development, necrosis, metastasis, and immune response. This study aimed to explore the role of necroptosis in BLCA and construct a new prognostic model to guide clinical treatment and predict individualized treatment response. Methods The transcriptome profiling and the corresponding clinical data of BLCA patients were obtained from the Cancer Genome Atlas database (TCGA) and GEO databases. Univariate, multivariate and LASSO Cox regression analyses were used to identify and construct prognostic features associated with necroptosis. We constructed and validated a prognostic model associated with the patient's overall survival (OS). A nomogram was established to predict the survival rates of BLCA patients. Finally, the correlation between risk scores and tumor immune microenvironment, somatic mutations, immunotherapy, and chemotherapy was comprehensively analyzed. Results The study found two distinct NRG clusters and three gene subtypes, with significant differences in pathway enrichment and immune cell infiltration associated with different NRG clusters in the TME. In addition, we screened out six necroptosis prognosis-related genes (including PPP2R3A; CERCAM; PIK3IP1; CNTN1; CES1 and CD96) to construct a risk score prognostic model. Significant differences in overall survival rate, immune cell infiltration status, and somatic mutations existed between the high and low-risk scores in BLCA patients. Finally, drug sensitivity analysis showed that high-risk patients benefited more from immunotherapy and chemotherapy drugs. Conclusion This study explores the importance of necroptosis in the prognosis of patients with BLCA, and the prognostic features associated with necroptosis that we identified can serve as new biomarkers to help develop more precise treatment strategies.
Collapse
Affiliation(s)
- Dongnuan Yao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, China
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Weitao Yu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, China
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xueming Ma
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, China
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Junqiang Tian
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, China
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
49
|
Kuźnicki J, Janicka N, Białynicka-Birula B, Kuźnicki W, Chorążyczewska H, Deszcz I, Kulbacka J. How to Use Macrophages Against Cancer. Cells 2024; 13:1948. [PMID: 39682696 PMCID: PMC11639767 DOI: 10.3390/cells13231948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Numerous studies have demonstrated the significant influence of immune cells on cancer development and treatment. This study specifically examines tumor-associated macrophages (TAMs), detailing their characteristics and roles in tumorigenesis and analyzing the impact of the ratio of TAM subtypes on patient survival and prognosis. It is established that TAMs interact with immunotherapy, radiotherapy, and chemotherapy, thereby influencing the efficacy of these treatments. Emerging therapies are explored, such as the use of nanoparticles (NPs) for drug delivery to target TAMs and modify the tumor microenvironment (TME). Additionally, novel anticancer strategies like the use of chimeric antigen receptor macrophages (CAR-Ms) show promising results. Investigations into the training of macrophages using magnetic fields, plasma stimulation, and electroporation are also discussed. Finally, this study presents prospects for the combination of TAM-based therapies for enhanced cancer treatment outcomes.
Collapse
Affiliation(s)
- Jacek Kuźnicki
- Students Scientific Group No.148, Faculty of Medicine, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (B.B.-B.); (H.C.)
| | - Natalia Janicka
- Students Scientific Group No.148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Barbara Białynicka-Birula
- Students Scientific Group No.148, Faculty of Medicine, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (B.B.-B.); (H.C.)
| | - Wojciech Kuźnicki
- Department of External Beam Radiotherapy, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, Pabianicka 62, 93-513 Łódź, Poland;
| | - Hanna Chorążyczewska
- Students Scientific Group No.148, Faculty of Medicine, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (B.B.-B.); (H.C.)
| | - Iwona Deszcz
- Department of Immunopathology and Molecular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
50
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|