1
|
Gadwal A, Panigrahi P, Khokhar M, Sharma V, Setia P, Vishnoi JR, Elhence P, Purohit P. A critical appraisal of the role of metabolomics in breast cancer research and diagnostics. Clin Chim Acta 2024; 561:119836. [PMID: 38944408 DOI: 10.1016/j.cca.2024.119836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Breast cancer (BC) remains the most prevalent cancer among women worldwide, despite significant advancements in its prevention and treatment. The escalating incidence of BC globally necessitates continued research into novel diagnostic and therapeutic strategies. Metabolomics, a burgeoning field, offers a comprehensive analysis of all metabolites within a cell, tissue, system, or organism, providing crucial insights into the dynamic changes occurring during cancer development and progression. This review focuses on the metabolic alterations associated with BC, highlighting the potential of metabolomics in identifying biomarkers for early detection, diagnosis, treatment and prognosis. Metabolomics studies have revealed distinct metabolic signatures in BC, including alterations in lipid metabolism, amino acid metabolism, and energy metabolism. These metabolic changes not only support the rapid proliferation of cancer cells but also influence the tumour microenvironment and therapeutic response. Furthermore, metabolomics holds great promise in personalized medicine, facilitating the development of tailored treatment strategies based on an individual's metabolic profile. By providing a holistic view of the metabolic changes in BC, metabolomics has the potential to revolutionize our understanding of the disease and improve patient outcomes.
Collapse
Affiliation(s)
- Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Pragyan Panigrahi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Vaishali Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Puneet Setia
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Jeewan Ram Vishnoi
- Department of Oncosurgery, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur Rajasthan, 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
| |
Collapse
|
2
|
Tressler CM, Ayyappan V, Nakuchima S, Yang E, Sonkar K, Tan Z, Glunde K. A multimodal pipeline using NMR spectroscopy and MALDI-TOF mass spectrometry imaging from the same tissue sample. NMR IN BIOMEDICINE 2023; 36:e4770. [PMID: 35538020 PMCID: PMC9867920 DOI: 10.1002/nbm.4770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/14/2023]
Abstract
NMR spectroscopy and matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) are both commonly used to detect large numbers of metabolites and lipids in metabolomic and lipidomic studies. We have demonstrated a new workflow, highlighting the benefits of both techniques to obtain metabolomic and lipidomic data, which has realized for the first time the combination of these two complementary and powerful technologies. NMR spectroscopy is frequently used to obtain quantitative metabolite information from cells and tissues. Lipid detection is also possible with NMR spectroscopy, with changes being visible across entire classes of molecules. Meanwhile, MALDI MSI provides relative measures of metabolite and lipid concentrations, mapping spatial information of many specific metabolite and lipid molecules across cells or tissues. We have used these two complementary techniques in combination to obtain metabolomic and lipidomic measurements from triple-negative human breast cancer cells and tumor xenograft models. We have emphasized critical experimental procedures that ensured the success of achieving NMR spectroscopy and MALDI MSI in a combined workflow from the same sample. Our data show that several phospholipid metabolite species were differentially distributed in viable and necrotic regions of breast tumor xenografts. This study emphasizes the power of combined NMR spectroscopy-MALDI imaging to advance metabolomic and lipidomic studies.
Collapse
Affiliation(s)
- Caitlin M. Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vinay Ayyappan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sofia Nakuchima
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ethan Yang
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kanchan Sonkar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zheqiong Tan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cancer Imaging Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Saito RDF, Andrade LNDS, Bustos SO, Chammas R. Phosphatidylcholine-Derived Lipid Mediators: The Crosstalk Between Cancer Cells and Immune Cells. Front Immunol 2022; 13:768606. [PMID: 35250970 PMCID: PMC8889569 DOI: 10.3389/fimmu.2022.768606] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/13/2022] [Indexed: 01/16/2023] Open
Abstract
To become resistant, cancer cells need to activate and maintain molecular defense mechanisms that depend on an energy trade-off between resistance and essential functions. Metabolic reprogramming has been shown to fuel cell growth and contribute to cancer drug resistance. Recently, changes in lipid metabolism have emerged as an important driver of resistance to anticancer agents. In this review, we highlight the role of choline metabolism with a focus on the phosphatidylcholine cycle in the regulation of resistance to therapy. We analyze the contribution of phosphatidylcholine and its metabolites to intracellular processes of cancer cells, both as the major cell membrane constituents and source of energy. We further extended our discussion about the role of phosphatidylcholine-derived lipid mediators in cellular communication between cancer and immune cells within the tumor microenvironment, as well as their pivotal role in the immune regulation of therapeutic failure. Changes in phosphatidylcholine metabolism are part of an adaptive program activated in response to stress conditions that contribute to cancer therapy resistance and open therapeutic opportunities for treating drug-resistant cancers.
Collapse
Affiliation(s)
- Renata de Freitas Saito
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Luciana Nogueira de Sousa Andrade
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Silvina Odete Bustos
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Ebosin Attenuates the Inflammatory Responses Induced by TNF-α through Inhibiting NF-κB and MAPK Pathways in Rat Fibroblast-Like Synoviocytes. J Immunol Res 2022; 2022:9166370. [PMID: 35340587 PMCID: PMC8947919 DOI: 10.1155/2022/9166370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/04/2021] [Accepted: 01/22/2022] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) lies at the apex of signal transduction cascades that results in induced destruction of joints in rheumatoid arthritis. It is therefore of great medicinal interest to modulate the cellular responses to TNF-α. Ebosin, a novel exopolysaccharide derived from Streptomyces sp, has been demonstrated to have remarkable therapeutic actions on collagen-induced arthritis in rats, while it also suppressed the production of IL-1β, TNF-α, and IL-6 at both mRNA and protein levels in cultured fibroblast-like synoviocytes. In order to further understand the potential mechanisms involved in the anti-inflammatory effects of ebosin at molecular level, we investigated the impact of it on the activation of MAPK and NF-κB pathways following TNF-α induced in fibroblast-like synoviocytes (FLS). The results showed that the phosphorylation levels of TNF-α-induced p38, JNK1, JNK2, IKKα, IKKβ, and IκB, as well as NF-κB nuclear translocation, were reduced significantly in FLS cells in response to ebosin. Furthermore, we proved that ebosin decreased the level of NF-κB in the nucleus and blocked the DNA-binding ability of NF-κB using electrophoresis mobility gel shift assay. Besides, low levels of matrix metalloproteinases (MMP-1 and MMP-3) and chemokines (interleukin-8 and RANTES) were found in TNF-α-stimulated fibroblast-like synoviocytes treated with ebosin. These results indicate that ebosin can suppress a range of activities in both MAPK and NF-κB pathways induced by TNF-α in rat fibroblast-like synoviocytes, which provides a rationale for examining the use of ebosin as a potential therapeutic candidate for rheumatic arthritis.
Collapse
|
5
|
Zhu K, Bai H, Mu M, Xue Y, Duan Z. Knockdown of RNF6 inhibits HeLa cervical cancer cell growth via suppression of MAPK/ERK signaling. FEBS Open Bio 2021; 11:2041-2049. [PMID: 34081837 PMCID: PMC8255836 DOI: 10.1002/2211-5463.13216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Ring finger protein 6 (RNF6) is implicated in various human malignancies, but its function in cervical cancer (CC) is incompletely understood. Here, we explored the biological significance of RNF6 in HeLa CC cells and the underlying regulatory mechanisms. The expression of RNF6 was observed to be high in both primary tissues and CC cells. RNF6 promoted HeLa CC cell growth. Knockdown of RNF6 in CC cells resulted in suppression of proliferation and promotion of apoptosis. Moreover, elevation of RNF6 had an adverse effect on the prognosis of CC. Subsequent analyses showed that these effects may be mediated via activation of ERK signaling. These findings provide evidence that the knockdown of RNF6 suppresses the MAPK/ERK pathway to regulate the growth of CC cells, which suggests that RNF6 may have potential as a target for diagnosis and treatment for CC.
Collapse
Affiliation(s)
- Kang Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Xi'an Jiaotong University, China
| | - He Bai
- Department of General Surgery Department, The First Affiliated Hospital of Xi'an Medical University, China
| | - Mingzhu Mu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Xi'an Jiaotong University, China
| | - Yuanyuan Xue
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Xi'an Jiaotong University, China
| | - Zhao Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Xi'an Jiaotong University, China
| |
Collapse
|
6
|
Brex D, Barbagallo C, Mirabella F, Caponnetto A, Battaglia R, Barbagallo D, Caltabiano R, Broggi G, Memeo L, Di Pietro C, Purrello M, Ragusa M. LINC00483 Has a Potential Tumor-Suppressor Role in Colorectal Cancer Through Multiple Molecular Axes. Front Oncol 2021; 10:614455. [PMID: 33552987 PMCID: PMC7855711 DOI: 10.3389/fonc.2020.614455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the most heterogeneous class of non-protein-coding RNAs involved in a broad spectrum of molecular mechanisms controlling genome function, including the generation of complex networks of RNA-RNA competitive interactions. Accordingly, their dysregulation contributes to the onset of many tumors, including colorectal cancer (CRC). Through a combination of in silico approaches (statistical screening of expression datasets) and in vitro analyses (enforced expression, artificial inhibition, or activation of pathways), we identified LINC00483 as a potential tumor suppressor lncRNA in CRC. LINC00483 was downregulated in CRC biopsies and metastases and its decreased levels were associated with severe clinical features. Inhibition of the MAPK pathway and cell cycle arrest by starvation induced an upregulation of LINC00483, while the epithelial to mesenchymal transition activation by TGFβ-1 and IL-6 caused its down-modulation. Moreover, enforced expression of LINC00483 provoked a slowing down of cell migration rate without affecting cell proliferation. Since LINC00483 was predominantly cytoplasmic, we hypothesized a “miRNA sponge” role for it. Accordingly, we computationally reconstructed the LINC00483/miRNA/mRNA axes and evaluated the expression of mRNAs in different experimental conditions inducing LINC00483 alteration. By this approach, we identified a set of mRNAs sharing the miRNA response elements with LINC00483 and modulated in accordance with it. Moreover, we found that LINC00483 is potentially under negative control of transcription factor HNF4α. In conclusion, we propose that LINC00483 is a tumor suppressor in CRC that, through an RNA-RNA network, may control cell migration and participate in proliferation signaling.
Collapse
Affiliation(s)
- Duilia Brex
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Federica Mirabella
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics "Giovanni Sichel," University of Catania, Catania, Italy
| |
Collapse
|
7
|
Delgado-Goñi T, Galobart TC, Wantuch S, Normantaite D, Leach MO, Whittaker SR, Beloueche-Babari M. Increased inflammatory lipid metabolism and anaplerotic mitochondrial activation follow acquired resistance to vemurafenib in BRAF-mutant melanoma cells. Br J Cancer 2019; 122:72-81. [PMID: 31819183 PMCID: PMC6964672 DOI: 10.1038/s41416-019-0628-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/05/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023] Open
Abstract
Background BRAF inhibitors, such as vemurafenib, have shown efficacy in BRAF-mutant melanoma treatment but acquired-resistance invariably develops. Unveiling the potential vulnerabilities associated with vemurafenib resistance could provide rational strategies for combinatorial treatment. Methods This work investigates the metabolic characteristics and vulnerabilities of acquired resistance to vemurafenib in three generated BRAF-mutant human melanoma cell clones, analysing metabolic profiles, gene and protein expression in baseline and nutrient withdrawal conditions. Preclinical findings are correlated with gene expression analysis from publicly available clinical datasets. Results Two vemurafenib-resistant clones showed dependency on lipid metabolism and increased prostaglandin E2 synthesis and were more responsive to vemurafenib under EGFR inhibition, potentially implicating inflammatory lipid and EGFR signalling in ERK reactivation and vemurafenib resistance. The third resistant clone showed higher pyruvate-carboxylase (PC) activity indicating increased anaplerotic mitochondrial metabolism, concomitant with reduced GLUT-1, increased PC protein expression and survival advantage under nutrient-depleted conditions. Prostaglandin synthase (PTGES) expression was inversely correlated with melanoma patient survival. Increases in PC and PTGES gene expression were observed in some patients following progression on BRAF inhibitors. Conclusions Altogether, our data highlight heterogeneity in metabolic adaptations during acquired resistance to vemurafenib in BRAF-mutant melanoma, potentially uncovering key clinically-relevant mechanisms for combinatorial therapeutic targeting.
Collapse
Affiliation(s)
- Teresa Delgado-Goñi
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, SM2 5PT, UK. .,Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.
| | - Teresa Casals Galobart
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, SM2 5PT, UK
| | - Slawomir Wantuch
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, SM2 5PT, UK
| | - Deimante Normantaite
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, SM2 5PT, UK
| | - Martin O Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, SM2 5PT, UK.
| | - Steven R Whittaker
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Mounia Beloueche-Babari
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, SM2 5PT, UK.
| |
Collapse
|
8
|
Acciardo S, Mignion L, Joudiou N, Bouzin C, Baurain JF, Gallez B, Jordan BF. Imaging markers of response to combined BRAF and MEK inhibition in BRAF mutated vemurafenib-sensitive and resistant melanomas. Oncotarget 2018; 9:16832-16846. [PMID: 29682188 PMCID: PMC5908289 DOI: 10.18632/oncotarget.24709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/25/2018] [Indexed: 02/07/2023] Open
Abstract
A majority of patients with a V600x melanoma respond quickly to BRAF/MEK inhibition (BRAFi/MEKi) and have an obvious clinical benefit. Nearly all the patients after this initial phase will develop resistance. Therefore, non-invasive early markers of response/non-response are needed in order to identify those patients who, due to intrinsic or acquired resistance, do not respond to treatment and would be eligible for alternative treatments. The aim of this study was to investigate the value of magnetic resonance spectroscopy (1H-MRS) of choline and diffusion-weighted magnetic resonance imaging (DW-MRI) as early markers of response to BRAF inhibition (BRAFi) with vemurafenib alone or in combination with MEK inhibition (MEKi) with trametinib, in BRAFi-sensitive and BRAFi-resistant melanoma xenografts. Tumor response was significantly improved by the combination of BRAFi and MEKi, compared to BRAFi alone, only in sensitive xenografts; thus indicating that vemurafenib-resistant A375R xenografts were cross-resistant to the inhibition of MEK, as confirmed by immunohistochemistry analysis for phosphorylated ERK. In vivo1H-MRS showed that in sensitive melanoma xenografts, a significant blockage of ERK phosphorylation, but not a decrease in cell proliferation, was required to affect total choline (tCho) levels, thus suggesting that tCho could serve as a pharmacodynamic (PD) marker for agents targeting the MAPK cascade. In addition, early effects of the combination therapy on tumor cellularity could be detected via DW-MRI. In particular, skewness and kurtosis of the apparent diffusion coefficient (ADC) distribution may be useful to detect changes in the diffusional heterogeneity that might not affect the global ADC value.
Collapse
Affiliation(s)
- Stefania Acciardo
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Brussels, Belgium
| | - Lionel Mignion
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Brussels, Belgium
| | - Nicolas Joudiou
- Université Catholique de Louvain, Louvain Drug Research Institute, NEST Nuclear and Electron Spin Technologies Platform, Brussels, Belgium
| | - Caroline Bouzin
- Université Catholique de Louvain, Institute de Recherche Expérimentale et Clinique, IREC Imaging Platform, Brussels, Belgium
| | - Jean-François Baurain
- Université Catholique de Louvain, Institute de Recherche Expérimentale et Clinique, Molecular Imaging and Radiation Oncology Group, Brussels, Belgium
| | - Bernard Gallez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Brussels, Belgium
| | - Bénédicte F Jordan
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Brussels, Belgium
| |
Collapse
|
9
|
Bertini S, Chicca A, Gado F, Arena C, Nieri D, Digiacomo M, Saccomanni G, Zhao P, Abood ME, Macchia M, Gertsch J, Manera C. Novel analogs of PSNCBAM-1 as allosteric modulators of cannabinoid CB1 receptor. Bioorg Med Chem 2017; 25:6427-6434. [PMID: 29079014 DOI: 10.1016/j.bmc.2017.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 01/31/2023]
Abstract
In this work, we explored the molecular framework of the known CB1R allosteric modulator PSNCBAM-1 with the aim to generate new bioactive analogs and to deepen the structure-activity relationships of this type of compounds. In particular, the introduction of a NH group between the pyridine ring and the phenyl nucleus generated the amino-phenyl-urea derivative SN15b that behaved as a positive allosteric modulator (PAM), increasing the CB1R binding affinity of the orthosteric ligand CP55,940. The functional activity was evaluated using serum response element (SRE) assay, which assesses the CB1R-dependent activation of the MAPK/ERK signaling pathway. SN15b and the biphenyl-urea analog SC4a significantly inhibited the response produced by CP55,940 in the low µM range, thus behaving as negative allosteric modulators (NAMs). The new derivatives presented here provide further insights about the modulation of CB1R binding and functional activity by allosteric ligands.
Collapse
Affiliation(s)
- Simone Bertini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Francesca Gado
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Chiara Arena
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Daniela Nieri
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Pingwei Zhao
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | | |
Collapse
|
10
|
Cheng M, Rizwan A, Jiang L, Bhujwalla ZM, Glunde K. Molecular Effects of Doxorubicin on Choline Metabolism in Breast Cancer. Neoplasia 2017; 19:617-627. [PMID: 28654865 PMCID: PMC5487306 DOI: 10.1016/j.neo.2017.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 12/16/2022]
Abstract
Abnormal choline phospholipid metabolism is a hallmark of cancer. The magnetic resonance spectroscopy (MRS) detected total choline (tCho) signal can serve as an early noninvasive imaging biomarker of chemotherapy response in breast cancer. We have quantified the individual components of the tCho signal, glycerophosphocholine (GPC), phosphocholine (PC) and free choline (Cho), before and after treatment with the commonly used chemotherapeutic drug doxorubicin in weakly metastatic human MCF7 and triple-negative human MDA-MB-231 breast cancer cells. While the tCho concentration did not change following doxorubicin treatment, GPC significantly increased and PC decreased. Of the two phosphatidylcholine-specific PLD enzymes, only PLD1, but not PLD2, mRNA was down-regulated by doxorubicin treatment. For the two reported genes encoding GPC phosphodiesterase, the mRNA of GDPD6, but not GDPD5, decreased following doxorubicin treatment. mRNA levels of choline kinase α (ChKα), which converts Cho to PC, were reduced following doxorubicin treatment. PLD1 and ChKα protein levels decreased following doxorubicin treatment in a concentration dependent manner. Treatment with the PLD1 specific inhibitor VU0155069 sensitized MCF7 and MDA-MB-231 breast cancer cells to doxorubicin-induced cytotoxicity. Low concentrations of 100 nM of doxorubicin increased MDA-MB-231 cell migration. GDPD6, but not PLD1 or ChKα, silencing by siRNA abolished doxorubicin-induced breast cancer cell migration. Doxorubicin induced GPC increase and PC decrease are caused by reductions in PLD1, GDPD6, and ChKα mRNA and protein expression. We have shown that silencing or inhibiting these genes/proteins can promote drug effectiveness and reduce adverse drug effects. Our findings emphasize the importance of detecting PC and GPC individually.
Collapse
Affiliation(s)
- Menglin Cheng
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asif Rizwan
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lu Jiang
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Delgado-Goni T, Miniotis MF, Wantuch S, Parkes HG, Marais R, Workman P, Leach MO, Beloueche-Babari M. The BRAF Inhibitor Vemurafenib Activates Mitochondrial Metabolism and Inhibits Hyperpolarized Pyruvate-Lactate Exchange in BRAF-Mutant Human Melanoma Cells. Mol Cancer Ther 2016; 15:2987-2999. [PMID: 27765851 PMCID: PMC5136471 DOI: 10.1158/1535-7163.mct-16-0068] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 11/16/2022]
Abstract
Understanding the impact of BRAF signaling inhibition in human melanoma on key disease mechanisms is important for developing biomarkers of therapeutic response and combination strategies to improve long-term disease control. This work investigates the downstream metabolic consequences of BRAF inhibition with vemurafenib, the molecular and biochemical processes that underpin them, their significance for antineoplastic activity, and potential as noninvasive imaging response biomarkers. 1H NMR spectroscopy showed that vemurafenib decreases the glycolytic activity of BRAF-mutant (WM266.4 and SKMEL28) but not BRAFWT (CHL-1 and D04) human melanoma cells. In WM266.4 cells, this was associated with increased acetate, glycine, and myo-inositol levels and decreased fatty acyl signals, while the bioenergetic status was maintained. 13C NMR metabolic flux analysis of treated WM266.4 cells revealed inhibition of de novo lactate synthesis and glucose utilization, associated with increased oxidative and anaplerotic pyruvate carboxylase mitochondrial metabolism and decreased lipid synthesis. This metabolic shift was associated with depletion of hexokinase 2, acyl-CoA dehydrogenase 9, 3-phosphoglycerate dehydrogenase, and monocarboxylate transporters (MCT) 1 and 4 in BRAF-mutant but not BRAFWT cells and, interestingly, decreased BRAF-mutant cell dependency on glucose and glutamine for growth. Further, the reduction in MCT1 expression observed led to inhibition of hyperpolarized 13C-pyruvate-lactate exchange, a parameter that is translatable to in vivo imaging studies, in live WM266.4 cells. In conclusion, our data provide new insights into the molecular and metabolic consequences of BRAF inhibition in BRAF-driven human melanoma cells that may have potential for combinatorial therapeutic targeting as well as noninvasive imaging of response. Mol Cancer Ther; 15(12); 2987-99. ©2016 AACR.
Collapse
Affiliation(s)
- Teresa Delgado-Goni
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London, United Kingdom
| | - Maria Falck Miniotis
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London, United Kingdom
| | - Slawomir Wantuch
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London, United Kingdom
| | - Harold G Parkes
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London, United Kingdom
| | - Richard Marais
- Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Martin O Leach
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London, United Kingdom.
| | - Mounia Beloueche-Babari
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
12
|
Serkova NJ, Eckhardt SG. Metabolic Imaging to Assess Treatment Response to Cytotoxic and Cytostatic Agents. Front Oncol 2016; 6:152. [PMID: 27471678 PMCID: PMC4946377 DOI: 10.3389/fonc.2016.00152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/24/2022] Open
Abstract
For several decades, cytotoxic chemotherapeutic agents were considered the basis of anticancer treatment for patients with metastatic tumors. A decrease in tumor burden, assessed by volumetric computed tomography and magnetic resonance imaging, according to the response evaluation criteria in solid tumors (RECIST), was considered as a radiological response to cytotoxic chemotherapies. In addition to RECIST-based dimensional measurements, a metabolic response to cytotoxic drugs can be assessed by positron emission tomography (PET) using (18)F-fluoro-thymidine (FLT) as a radioactive tracer for drug-disrupted DNA synthesis. The decreased (18)FLT-PET uptake is often seen concurrently with increased apparent diffusion coefficients by diffusion-weighted imaging due to chemotherapy-induced changes in tumor cellularity. Recently, the discovery of molecular origins of tumorogenesis led to the introduction of novel signal transduction inhibitors (STIs). STIs are targeted cytostatic agents; their effect is based on a specific biological inhibition with no immediate cell death. As such, tumor size is not anymore a sensitive end point for a treatment response to STIs; novel physiological imaging end points are desirable. For receptor tyrosine kinase inhibitors as well as modulators of the downstream signaling pathways, an almost immediate inhibition in glycolytic activity (the Warburg effect) and phospholipid turnover (the Kennedy pathway) has been seen by metabolic imaging in the first 24 h of treatment. The quantitative imaging end points by magnetic resonance spectroscopy and metabolic PET (including 18F-fluoro-deoxy-glucose, FDG, and total choline) provide an early treatment response to targeted STIs, before a reduction in tumor burden can be seen.
Collapse
Affiliation(s)
- Natalie J. Serkova
- Department of Anesthesiology, University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
- Developmental Therapeutics Program, University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | - S. Gail Eckhardt
- Developmental Therapeutics Program, University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
13
|
Mignion L, Danhier P, Magat J, Porporato PE, Masquelier J, Gregoire V, Muccioli GG, Sonveaux P, Gallez B, Jordan BF. Non-invasive in vivo imaging of early metabolic tumor response to therapies targeting choline metabolism. Int J Cancer 2015; 138:2043-9. [PMID: 26595604 DOI: 10.1002/ijc.29932] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 01/17/2023]
Abstract
The cholinic phenotype, characterized by elevated phosphocholine and a high production of total-choline (tCho)-containing metabolites, is a metabolic hallmark of cancer. It can be exploited for targeted therapy. Non-invasive imaging biomarkers are required to evaluate an individual's response to targeted anticancer agents that usually do not rapidly cause tumor shrinkage. Because metabolic changes can manifest at earlier stages of therapy than changes in tumor size, the aim of the current study was to evaluate (1)H-MRS and diffusion-weighted MRI (DW-MRI) as markers of tumor response to the modulation of the choline pathway in mammary tumor xenografts. Inhibition of choline kinase activity was achieved with the direct pharmacological inhibitor H-89, indirect inhibitor sorafenib and down-regulation of choline-kinase α (ChKA) expression using specific short-hairpin RNA (shRNA). While all three strategies significantly decreased tCho tumor content in vivo, only sorafenib and anti-ChKA shRNA significantly repressed tumor growth. The increase of apparent-diffusion-coefficient of water (ADCw) measured by DW-MRI, was predictive of the induced necrosis and inhibition of the tumor growth in sorafenib treated mice, while the absence of change in ADC values in H89 treated mice predicted the absence of effect in terms of tumor necrosis and tumor growth. In conclusion, (1)H-choline spectroscopy can be useful as a pharmacodynamic biomarker for choline targeted agents, while DW-MRI can be used as an early marker of effective tumor response to choline targeted therapies. DW-MRI combined to choline spectroscopy may provide a useful non-invasive marker for the early clinical assessment of tumor response to therapies targeting choline signaling.
Collapse
Affiliation(s)
- Lionel Mignion
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique De Louvain (UCL), Avenue Mounier, 73 Box B1.73.08, Brussels, Belgium
| | - Pierre Danhier
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique De Louvain (UCL), Avenue Mounier, 73 Box B1.73.08, Brussels, Belgium
| | - Julie Magat
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique De Louvain (UCL), Avenue Mounier, 73 Box B1.73.08, Brussels, Belgium
| | - Paolo E Porporato
- Pole of Pharmacology, Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain (UCL), Avenue Mounier, 52 Box B1.53.09, Brussels, Belgium
| | - Julien Masquelier
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique De Louvain (UCL), Avenue Mounier, 72 Box B1.72.01, Brussels, Belgium
| | - Vincent Gregoire
- Center for Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Hippocrate, 55 Box B1.55.02, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université Catholique De Louvain (UCL), Avenue Mounier, 72 Box B1.72.01, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain (UCL), Avenue Mounier, 52 Box B1.53.09, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique De Louvain (UCL), Avenue Mounier, 73 Box B1.73.08, Brussels, Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique De Louvain (UCL), Avenue Mounier, 73 Box B1.73.08, Brussels, Belgium
| |
Collapse
|
14
|
Zhang Y, Wang L, Bai L, Jiang R, Guo L, Wu J, Cheng G, Zhang R, Li Y. Effect of ebosin on modulating interleukin-1β-induced inflammatory responses in rat fibroblast-like synoviocytes. Cell Mol Immunol 2015. [DOI: 10.1038/cmi20150.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
15
|
Zhang Y, Wang L, Bai L, Jiang R, Guo L, Wu J, Cheng G, Zhang R, Li Y. Effect of ebosin on modulating interleukin-1β-induced inflammatory responses in rat fibroblast-like synoviocytes. Cell Mol Immunol 2015; 13:584-592. [PMID: 25938977 DOI: 10.1038/cmi.2015.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 01/07/2023] Open
Abstract
The interleukin-1β-mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways are involved in the pathogenesis of rheumatoid arthritis. Ebosin, a novel exopolysaccharide (EPS), exhibits anti-inflammatory activity in rat collagen-induced arthritis by suppressing the production of tumor necrosis factor-α, interleukin-6 and interleukin-1β. The aim of the present study was to assess the effects of ebosin on NF-κB and MAPK signaling pathways mediated through interleukin-1β in rat fibroblast-like synoviocytes (FLSs). Western blotting showed decreased production of phosphorylated p38, JNK1, JNK2, IKKα, IKKβ and IκB in the cytoplasm and NF-κB in the nucleus upon ebosin treatment. The DNA-binding activity of NF-κB in the cell nucleus was also inhibited by ebosin treatment, as demonstrated using an electrophoresis mobility gel shift assay. Analysis of the results of the immunofluorescence assay also showed a reduced amount of NF-κB in the nucleus of cells affected by ebosin. These results provided evidence for the effects of ebosin on both interleukin-1β-mediated MAPK and NF-κB signaling pathways in rat FLSs. In addition, enzyme-linked immunosorbent assay demonstrated that ebosin reduces the levels of matrix metalloproteinases MMP-1 and MMP-3 and the chemokines, interleukin-8 and RANTES. Thus, the results of the present study provide further evidence for understanding the medicinal activity of ebosin at a molecular level, therefore nominating this EPS as a potential therapeutic candidate for the treatment of rheumatic arthritis.Cellular & Molecular Immunology advance online publication, 4 May 2015; doi:10.1038/cmi.2015.36.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lifei Wang
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liping Bai
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rong Jiang
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lianhong Guo
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jianbo Wu
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guifang Cheng
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ren Zhang
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yuan Li
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
16
|
Zhang Y, Wang L, Bai L, Jiang R, Guo L, Wu J, Cheng G, Zhang R, Li Y. Effect of ebosin on modulating interleukin-1β-induced inflammatory responses in rat fibroblast-like synoviocytes. Cell Mol Immunol 2015. [DOI: 10.1038/cmi2015.36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
17
|
Spiga L, Atzori L, Noto A, Moretti C, Mussap M, Masile A, Lussu M, Fanos V. Metabolomics in paediatric oncology: a potential still to be exploited. J Matern Fetal Neonatal Med 2014; 26 Suppl 2:20-3. [PMID: 24059547 DOI: 10.3109/14767058.2013.832062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Oncology is a branch of medicine in rapid evolution in the attempt to find innovative methods for early diagnosis and a better understanding of tumoral processes leading to the development of new therapies. Metabolomics is the emerging discipline among the "omics" sciences which makes it possible to further expand our knowledge concerning cancer biology. Different studies have revealed the potential role of metabolomics in gaining an understanding of pathophysiological processes in cancer, improving tumor staging, characterizing tumors and searching for biomarkers predictive of therapeutic responses. However, to date there are few works aimed at gaining deeper insights into infantile oncology through metabolomics.
Collapse
Affiliation(s)
- Laura Spiga
- Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, University of Cagliari , Cagliari , Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wijnen JP, Jiang L, Greenwood TR, Cheng M, Döpkens M, Cao MD, Bhujwalla ZM, Krishnamachary B, Klomp DWJ, Glunde K. Silencing of the glycerophosphocholine phosphodiesterase GDPD5 alters the phospholipid metabolite profile in a breast cancer model in vivo as monitored by (31) P MRS. NMR IN BIOMEDICINE 2014; 27:692-9. [PMID: 24764256 PMCID: PMC4162314 DOI: 10.1002/nbm.3106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 05/18/2023]
Abstract
Abnormal choline phospholipid metabolism is an emerging hallmark of cancer, which is implicated in carcinogenesis and tumor progression. The malignant metabolic phenotype is characterized by high levels of phosphocholine (PC) and relatively low levels of glycerophosphocholine (GPC) in aggressive breast cancer cells. Phosphorus ((31) P) MRS is able to non-invasively detect these water-soluble metabolites of choline as well as ethanolamine phospholipid metabolism. Here we have investigated the effects of stably silencing glycerophosphoester diesterase domain containing 5 (GDPD5), which is an enzyme with glycerophosphocholine phosphodiesterase activity, in MDA-MB-231 breast cancer cells and orthotopic tumor xenografts. Tumors in which GDPD5 was stably silenced with GDPD5-specific shRNA contained increased levels of GPC and phosphoethanolamine (PE) compared with control tumors.
Collapse
Affiliation(s)
- J P Wijnen
- The Johns Hopkins University In vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lodi A, Woods SM, Ronen SM. MR-detectable metabolic consequences of mitogen-activated protein kinase kinase (MEK) inhibition. NMR IN BIOMEDICINE 2014; 27:700-708. [PMID: 24706368 PMCID: PMC4154568 DOI: 10.1002/nbm.3109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/08/2014] [Accepted: 03/09/2014] [Indexed: 06/03/2023]
Abstract
Metabolic reprogramming is increasingly being viewed as a hallmark of cancer. Accordingly, metabolic readouts can serve as biomarkers of response to therapy. The goal of this study was to investigate some of the MRS-detectable metabolic consequences of mitogen-activated protein kinase kinase (MEK) inhibition. We investigated PC3 prostate cancer, MCF-7 breast cancer and A375 melanoma cells, and determined that, consistent with previous studies, MRS-detectable levels of phosphocholine decreased significantly in all cell lines (to 63%, 50% and 18% of the control, respectively) following MEK inhibition with U0126. This effect was mediated by a decrease in the expression of choline kinase α, the enzyme that catalyzes the phosphorylation of choline. In contrast, the impact of MEK inhibition on glycolysis was cell line dependent. A375 cells, which express mutant BRAF, demonstrated significant decreases in glucose uptake (to 36% of control) and lactate production (to 42% of control) in line with positron emission tomography data. In contrast, in PC3 and MCF-7 cells, increases in glucose uptake (to 198% and 192% of control, respectively) and lactate production (to 177% and 212% of control, respectively) were observed, in line with a previous hyperpolarized (13) C MRS study. This effect is probably mediated by the activation of the phosphoinositide 3-kinase pathway and AMP-activated protein kinase. Our findings demonstrate the value of translatable non-invasive MRS methods for the provision of information on cellular metabolism as an indication of the activation of potential feedback loops following MEK inhibition.
Collapse
Affiliation(s)
- Alessia Lodi
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
20
|
Lin G, Chung YL. Current opportunities and challenges of magnetic resonance spectroscopy, positron emission tomography, and mass spectrometry imaging for mapping cancer metabolism in vivo. BIOMED RESEARCH INTERNATIONAL 2014; 2014:625095. [PMID: 24724090 PMCID: PMC3958648 DOI: 10.1155/2014/625095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/06/2014] [Accepted: 01/19/2014] [Indexed: 12/18/2022]
Abstract
Cancer is known to have unique metabolic features such as Warburg effect. Current cancer therapy has moved forward from cytotoxic treatment to personalized, targeted therapies, with some that could lead to specific metabolic changes, potentially monitored by imaging methods. In this paper we addressed the important aspects to study cancer metabolism by using image techniques, focusing on opportunities and challenges of magnetic resonance spectroscopy (MRS), dynamic nuclear polarization (DNP)-MRS, positron emission tomography (PET), and mass spectrometry imaging (MSI) for mapping cancer metabolism. Finally, we highlighted the future possibilities of an integrated in vivo PET/MR imaging systems, together with an in situ MSI tissue analytical platform, may become the ultimate technologies for unraveling and understanding the molecular complexities in some aspects of cancer metabolism. Such comprehensive imaging investigations might provide information on pharmacometabolomics, biomarker discovery, and disease diagnosis, prognosis, and treatment response monitoring for clinical medicine.
Collapse
Affiliation(s)
- Gigin Lin
- Department of Radiology, Chang Gung Memorial Hospital at Linkou, Chang Gung University, 5 Fuhsing Street, Guishan, Taoyuan 333, Taiwan
- Molecular Imaging Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, 5 Fuhsing Street, Guishan, Taoyuan 333, Taiwan
- Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Chang Gung University, 5 Fuhsing Street, Guishan, Taoyuan 333, Taiwan
| | - Yuen-Li Chung
- The Institute of Cancer Research and Royal Marsden Hospital, CRUK Cancer Imaging Centre, Downs Road, Sutton, Surrey SM2 5PT, UK
| |
Collapse
|
21
|
Karroum O, Mignion L, Kengen J, Karmani L, Levêque P, Danhier P, Magat J, Bol A, Labar D, Grégoire V, Bouzin C, Feron O, Gallez B, Jordan BF. Multimodal imaging of tumor response to sorafenib combined with radiation therapy: comparison between diffusion-weighted MRI, choline spectroscopy and 18F-FLT PET imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 8:274-80. [PMID: 23606431 DOI: 10.1002/cmmi.1525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/08/2012] [Accepted: 11/29/2012] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to determine the value of different imaging modalities, that is, magnetic resonance imaging/spectroscopy (MRI/MRS) and positron emission tomography (PET), to assess early tumor response to sorafenib with or without radiotherapy. Diffusion-weighted (DW)-MRI, choline (1)H MRS at 11.7 T, and (18)F-FLT PET imaging were used to image fibrosarcoma (FSaII) tumor-bearing mice over time. The imaging markers were compared with apoptosis cell death and cell proliferation measurements assessed by histology. Anti-proliferative effects of sorafenib were evidenced by (1)H MRS and (18)F-FLT PET after 2 days of treatment with sorafenib, with no additional effect of the combination with radiation therapy, results that are in agreement with Ki67 staining. Apparent diffusion coefficient calculated using DW-MRI was not modified after 2 days of treatment with sorafenib, but showed significant increase 24 h after 2 days of sorafenib treatment combined with consecutive irradiation. The three imaging markers were able to show early tumor response as soon as 24 h after treatment initiation, with choline MRS and (18)F-FLT being sensitive to sorafenib in monotherapy as well as in combined therapy with irradiation, whereas DW-MRI was only sensitive to the combination of sorafenib with radiotherapy.
Collapse
Affiliation(s)
- Oussama Karroum
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain, Belgium, Avenue Mounier 73, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Teng FF, Meng X, Sun XD, Yu JM. New strategy for monitoring targeted therapy: molecular imaging. Int J Nanomedicine 2013; 8:3703-13. [PMID: 24124361 PMCID: PMC3794840 DOI: 10.2147/ijn.s51264] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Targeted therapy is becoming an increasingly important component in the treatment of cancer. How to accurately monitor targeted therapy has been crucial in clinical practice. The traditional approach to monitor treatment through imaging has relied on assessing the change of tumor size by refined World Health Organization criteria, or more recently, by the Response Evaluation Criteria in Solid Tumors. However, these criteria, which are based on the change of tumor size, show some limitations for evaluating targeted therapy. Currently, genetic alterations are identified with prognostic as well as predictive potential concerning the use of molecularly targeted drugs. Conversely, considering the limitations of invasiveness and the issue of expression heterogeneity, molecular imaging is better able to assay in vivo biologic processes noninvasively and quantitatively, and has been a particularly attractive tool for monitoring treatment in clinical cancer practice. This review focuses on the applications of different kinds of molecular imaging including positron emission tomography-, magnetic resonance imaging-, ultrasonography-, and computed tomography-based imaging strategies on monitoring targeted therapy. In addition, the key challenges of molecular imaging are addressed to successfully translate these promising techniques in the future.
Collapse
Affiliation(s)
- Fei-Fei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, People's Republic of China
| | | | | | | |
Collapse
|
23
|
Liu T, Liu Y, Bao X, Tian J, Liu Y, Yang X. Overexpression of TROP2 predicts poor prognosis of patients with cervical cancer and promotes the proliferation and invasion of cervical cancer cells by regulating ERK signaling pathway. PLoS One 2013; 8:e75864. [PMID: 24086649 PMCID: PMC3785439 DOI: 10.1371/journal.pone.0075864] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/22/2013] [Indexed: 11/30/2022] Open
Abstract
Overwhelming evidence has demonstrated that the aberrant expression of the human trophoblast cell-surface antigen (TROP2) was associated with tumor aggressiveness and poor prognosis in a variety of human cancers, however the roles of TROP2 in cervical cancer have not been investigated. The purpose of our study was to elucidate the prognostic significance of TROP2 expression in patients with cervical cancer and determine its effect on tumor progression. Immunohistochemistry assay showed that 88.7% (94/106 cases) of cervical cancer specimens were positively stained with TROP2, and the overexpression of TROP2 was closely related with FIGO stage, histological grades, lymphatic metastasis, invasive interstitial depth and high expression of Ki-67. Patients with TROP2-positive staining exhibited a significantly decreased overall survival and progression free survival; it was also an independent predictor for prognosis according to multivariate analysis. Moreover, down-regulation of TROP2 mediated by siRNA in Siha and CaSki cells resulted in a strong inhibition of proliferation and invasion, TROP2 abrogation also elevated the apoptotic ratio and caused G1 arrest. Conversely, enforced expression of TROP2 in HeLa and C33A cells remarkably promoted cell growth, migration and invasion. In addition, the tumorigenic function of TROP2 was associated with the increased expressions of cyclin D1, cyclin E, CDK2 and CDK4 but reduced expression of p27 and E-cadherin via the activation of Erk1/2 signaling pathway. Furthermore, the inhibition of TROP2 expression in cervical cancer cell lines enhances sensitivity to cisplatin. The present study suggest that overexpression of TROP2 may play crucial roles in the development and pathogenesis of human cervical cancer, therefore, TROP2 may represent a prospective prognostic indicator and a potential therapeutic target of cervical cancer.
Collapse
Affiliation(s)
- Ting Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yueyang Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiangxiang Bao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiguang Tian
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
24
|
Falck Miniotis M, Arunan V, Eykyn TR, Marais R, Workman P, Leach MO, Beloueche-Babari M. MEK1/2 inhibition decreases lactate in BRAF-driven human cancer cells. Cancer Res 2013; 73:4039-49. [PMID: 23639941 DOI: 10.1158/0008-5472.can-12-1969] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The RAS/BRAF/MEK/ERK signaling pathway is a central driver in cancer with many BRAF and MEK inhibitors being evaluated in clinical trials. Identifying noninvasive biomarkers of early pharmacodynamic responses is important for development of these targeted drugs. As increased aerobic glycolysis is often observed in cancer, we hypothesized that MEK1/2 (MAP2K1/MAP2K2) inhibitors may reduce lactate levels as detected by magnetic resonance spectroscopy (MRS), as a metabolic biomarker for the pharmacodynamic response. MRS was used to monitor intracellular and extracellular levels of lactate in human cancer cells in vitro and in melanoma tumors ex vivo. In addition, we used (1)H MRS and a fluorescent glucose analog to evaluate the effect of MEK inhibition on glucose uptake. MEK1/2 signaling inhibition reduced extracellular lactate levels in BRAF-dependent cells but not BRAF-independent cells. The reduction in extracellular lactate in BRAF-driven melanoma cells was time-dependent and associated with reduced expression of hexokinase-II driven by c-Myc depletion. Taken together, these results reveal how MEK1/2 inhibition affects cancer cell metabolism in the context of BRAF oncogene addiction. Furthermore, they offer a preclinical proof-of-concept for the use of MRS to measure lactate as a noninvasive metabolic biomarker for pharmacodynamic response to MEK1/2 inhibition in BRAF-driven cancers.
Collapse
Affiliation(s)
- Maria Falck Miniotis
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
25
|
Ward CS, Eriksson P, Izquierdo-Garcia JL, Brandes AH, Ronen SM. HDAC inhibition induces increased choline uptake and elevated phosphocholine levels in MCF7 breast cancer cells. PLoS One 2013; 8:e62610. [PMID: 23626839 PMCID: PMC3633900 DOI: 10.1371/journal.pone.0062610] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors have emerged as effective antineoplastic agents in the clinic. Studies from our lab and others have reported that magnetic resonance spectroscopy (MRS)-detectable phosphocholine (PC) is elevated following SAHA treatment, providing a potential noninvasive biomarker of response. Typically, elevated PC is associated with cancer while a decrease in PC accompanies response to antineoplastic treatment. The goal of this study was therefore to elucidate the underlying biochemical mechanism by which HDAC inhibition leads to elevated PC. We investigated the effect of SAHA on MCF-7 breast cancer cells using 13C MRS to monitor [1,2-13C] choline uptake and phosphorylation to PC. We found that PC synthesis was significantly higher in treated cells, representing 154±19% of control. This was within standard deviation of the increase in total PC levels detected by 31P MRS (129±7% of control). Furthermore, cellular choline kinase activity was elevated (177±31%), while cytidylyltransferase activity was unchanged. Expression of the intermediate-affinity choline transporter SLC44A1 and choline kinase α increased (144% and 161%, respectively) relative to control, as determined by mRNA microarray analysis with protein-level confirmation by Western blotting. Taken together, our findings indicate that the increase in PC levels following SAHA treatment results from its elevated synthesis. Additionally, the concentration of glycerophosphocholine (GPC) increased significantly with treatment to 210±45%. This is likely due to the upregulated expression of several phospholipase A2 (PLA2) isoforms, resulting in increased PLA2 activity (162±18%) in SAHA-treated cells. Importantly, the levels of total choline (tCho)-containing metabolites, comprised of choline, PC and GPC, are readily detectable clinically using 1H MRS. Our findings thus provide an important step in validating clinically translatable non-invasive imaging methods for follow-up diagnostics of HDAC inhibitor treatment.
Collapse
Affiliation(s)
- Christopher S. Ward
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Pia Eriksson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Jose L. Izquierdo-Garcia
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Alissa H. Brandes
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Lodi A, Woods SM, Ronen SM. Treatment with the MEK inhibitor U0126 induces decreased hyperpolarized pyruvate to lactate conversion in breast, but not prostate, cancer cells. NMR IN BIOMEDICINE 2013; 26:299-306. [PMID: 22945392 PMCID: PMC3529990 DOI: 10.1002/nbm.2848] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 05/04/2023]
Abstract
Alterations in cell metabolism are increasingly being recognized as a hallmark of cancer and are being exploited for the development of diagnostic tools and targeted therapeutics. Recently, ¹³C MRS-detectable hyperpolarized pyruvate to lactate conversion has been validated in models as a noninvasive imaging method for the detection of tumors and treatment response, and has successfully passed phase I clinical trials. To date, response to treatment has been associated with a decrease in hyperpolarized lactate production. In this study, we monitored the effect of treatment with the mitogen-activated protein kinase (MEK) inhibitor U0126 in prostate and breast cancer cells. Following treatment, we observed a 31% decrease in the flux of hyperpolarized ¹³C label in treated MCF-7 breast cancer cells relative to controls. In contrast, and unexpectedly, the flux increased to 167% in treated PC3 prostate cancer cells. To mechanistically explain these observations, we investigated treatment-induced changes in the different factors known to affect the pyruvate to lactate conversion. NADH (nicotinamide adenine dinucleotide, reduced form) levels remained unchanged, whereas lactate dehydrogenase expression and activity, as well as intracellular lactate, increased in both cell lines, providing an explanation for the elevated hyperpolarized lactate observed in PC3 cells. The expression of MCT1, which mediates pyruvate transport, decreased in treated MCF-7, but not PC3, cells. This identifies pyruvate transport as rate limiting in U0126-treated MCF-7 cells and explains the decrease in hyperpolarized lactate observed in these cells following treatment. Our findings highlight the complexity of interactions between MEK and metabolism, and the need for mechanistic validation before hyperpolarized ¹³C MRS can be used to monitor treatment-induced molecular responses.
Collapse
Affiliation(s)
- Alessia Lodi
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158-2512, USA
| | | | | |
Collapse
|
27
|
Ripple MO, Kim N, Springett R. Acute mitochondrial inhibition by mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) 1/2 inhibitors regulates proliferation. J Biol Chem 2012; 288:2933-40. [PMID: 23235157 DOI: 10.1074/jbc.m112.430082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ras-MEK1/2-ERK1/2 kinase signaling pathway regulates proliferation, survival, and differentiation and, because it is often aberrant in tumors, is a popular target for small molecule inhibition. A novel metabolic analysis that measures the real-time oxidation state of NAD(H) and the hemes of the electron transport chain and oxygen consumption within intact, living cells found that structurally distinct MEK1/2 inhibitors had an immediate, dose-dependent effect on mitochondrial metabolism. The inhibitors U0126, MIIC and PD98059 caused NAD(H) reduction, heme oxidation, and decreased oxygen consumption, characteristic of complex I inhibition. PD198306, an orally active MEK1/2 inhibitor, acted as an uncoupler. Each MEK1/2 inhibitor depleted phosphorylated ERK1/2 and inhibited proliferation, but the most robust antiproliferative effects always correlated with the metabolic failure which followed mitochondrial inhibition rather than inhibition of MEK1/2. This warrants rethinking the role of ERK1/2 in proliferation and emphasizes the importance of mitochondrial function in this process.
Collapse
Affiliation(s)
- Maureen O Ripple
- Department of Radiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA.
| | | | | |
Collapse
|
28
|
Response to trastuzumab by HER2 expressing breast tumour xenografts is accompanied by decreased Hexokinase II, glut1 and [18F]-FDG incorporation and changes in 31P-NMR-detectable phosphomonoesters. Cancer Chemother Pharmacol 2012. [DOI: 10.1007/s00280-012-2032-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Waerzeggers Y, Ullrich RT, Monfared P, Viel T, Weckesser M, Stummer W, Schober O, Winkeler A, Jacobs AH. Specific biomarkers of receptors, pathways of inhibition and targeted therapies: clinical applications. Br J Radiol 2012; 84 Spec No 2:S179-95. [PMID: 22433828 DOI: 10.1259/bjr/76389842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A deeper understanding of the role of specific genes, proteins, pathways and networks in health and disease, coupled with the development of technologies to assay these molecules and pathways in patients, promises to revolutionise the practice of clinical medicine. In particular, the discovery and development of novel drugs targeted to disease-specific alterations could benefit significantly from non-invasive imaging techniques assessing the dynamics of specific disease-related parameters. Here we review the application of imaging biomarkers in the management of patients with brain tumours, especially malignant glioma. This first part of the review focuses on imaging biomarkers of general biochemical and physiological processes related to tumour growth such as energy, protein, DNA and membrane metabolism, vascular function, hypoxia and cell death. These imaging biomarkers are an integral part of current clinical practice in the management of primary brain tumours. The second article of the review discusses the use of imaging biomarkers of specific disease-related molecular genetic alterations such as apoptosis, angiogenesis, cell membrane receptors and signalling pathways. Current applications of these biomarkers are mostly confined to experimental small animal research to develop and validate these novel imaging strategies with future extrapolation in the clinical setting as the primary objective.
Collapse
Affiliation(s)
- Y Waerzeggers
- European Institute for Molecular Imaging, Westfaelische Wilhelms-University, Muenster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sarker D, Pacey S, Workman P. Use of pharmacokinetic/pharmacodynamic biomarkers to support rational cancer drug development. Biomark Med 2012; 1:399-417. [PMID: 20477383 DOI: 10.2217/17520363.1.3.399] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The process of drug development in oncology has struggled to alter at a pace in keeping with the rapid discovery and testing of agents that act on a wide variety of molecular targets. The rational development of such agents requires an understanding of drug effect(s) on their purported target. It is likely that testing these drugs in a framework designed to examine cytotoxic agents will fail to establish their full potential. We discuss how data gained from biomarker investigation might impact on drug development and provide examples that highlight the development, validation and use of pharmacokinetic, and especially pharmacodynamic biomarkers as drug development moves from the laboratory into clinical testing. The challenges of performing assays to satisfy regulatory requirements have been the subject of much debate. We recommend the implementation of appropriate, fit-for-purpose biomarkers in clinical trials of all new cancer drugs.
Collapse
Affiliation(s)
- Debashis Sarker
- Signal Transduction & Molecular Pharmacology Team, Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, SM2 5NG, UK
| | | | | |
Collapse
|
31
|
Wu B, Zhang F, Yu M, Zhao P, Ji W, Zhang H, Han J, Niu R. Up-regulation of Anxa2 gene promotes proliferation and invasion of breast cancer MCF-7 cells. Cell Prolif 2012; 45:189-98. [PMID: 22452352 DOI: 10.1111/j.1365-2184.2012.00820.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 02/22/2012] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The metastatic ability of breast cancer cells with chemoresistant properties is higher when compared to that of their parental wild-type cells. Expression of AnnexinA2 (Anxa2), a 36-kDa calcium-dependent phospholipid binding protein, is increased in metastatic tumours and has been found to be associated with the phenotype of drug resistance and metastasis. MATERIALS AND METHODS AND RESULTS In the present study, we found that up-regulation of Anxa2 correlates with enhanced migration and invasion ability of MCF-7 breast cancer cells both in vitro and in vivo. Western blot analysis revealed that exposure to chemotherapeutic drugs may induce elevated expression of Anxa2. In addition, our data have shown that Anxa2 might influence proliferation, migration and invasion of MCF-7 cells by increasing expression of c-myc and cyclin D1 via activation of Erk1/2 signalling pathways. CONCLUSION Our findings suggest that up-regulation of Anxa2 may play an important role in modulating proliferation and invasion of breast cancer MCF-7 cells through regulation of many relevant downstream target genes.
Collapse
Affiliation(s)
- B Wu
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Claudino WM, Goncalves PH, di Leo A, Philip PA, Sarkar FH. Metabolomics in cancer: a bench-to-bedside intersection. Crit Rev Oncol Hematol 2012; 84:1-7. [PMID: 22429650 DOI: 10.1016/j.critrevonc.2012.02.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 12/15/2022] Open
Abstract
The field of oncology is a rapidly evolving science mostly due to extensive basic, translational and clinical research which have provided more insights into the tumor biology and set grounds for the development of new therapies. Metabolomics is the upcoming new science in the omics field with the potential to further increment our knowledge of cancer biology. In this review we intend to explore the potential role of metabolomics in understanding cancer process, improving cancer staging, refining tumor characterization and in the search for predictive biomarkers of response and toxicity.
Collapse
Affiliation(s)
- Wederson M Claudino
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
33
|
Beloueche-Babari M, Arunan V, Troy H, te Poele RH, Fong ACWT, Jackson LE, Payne GS, Griffiths JR, Judson IR, Workman P, Leach MO, Chung YL. Histone deacetylase inhibition increases levels of choline kinase α and phosphocholine facilitating noninvasive imaging in human cancers. Cancer Res 2012; 72:990-1000. [PMID: 22194463 PMCID: PMC3378496 DOI: 10.1158/0008-5472.can-11-2688] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are currently approved for cutaneous T-cell lymphoma and are in mid-late stage trials for other cancers. The HDAC inhibitors LAQ824 and SAHA increase phosphocholine (PC) levels in human colon cancer cells and tumor xenografts as observed by magnetic resonance spectroscopy (MRS). In this study, we show that belinostat, an HDAC inhibitor with an alternative chemical scaffold, also caused a rise in cellular PC content that was detectable by (1)H and (31)P MRS in prostate and colon carcinoma cells. In addition, (1)H MRS showed an increase in branched chain amino acid and alanine concentrations. (13)C-choline labeling indicated that the rise in PC resulted from increased de novo synthesis and correlated with an induction of choline kinase α expression. Furthermore, metabolic labeling experiments with (13)C-glucose showed that differential glucose routing favored alanine formation at the expense of lactate production. Additional analysis revealed increases in the choline/water and phosphomonoester (including PC)/total phosphate ratios in vivo. Together, our findings provide mechanistic insights into the impact of HDAC inhibition on cancer cell metabolism and highlight PC as a candidate noninvasive imaging biomarker for monitoring the action of HDAC inhibitors.
Collapse
Affiliation(s)
- Mounia Beloueche-Babari
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - Vaitha Arunan
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - Helen Troy
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - Robert H te Poele
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Anne-Christine Wong Te Fong
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - L Elizabeth Jackson
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - Geoffrey S Payne
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - John R Griffiths
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 ORE, UK
| | - Ian R Judson
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Martin O Leach
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - Yuen-Li Chung
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| |
Collapse
|
34
|
Tiziani S, Kang Y, Choi JS, Roberts W, Paternostro G. Metabolomic high-content nuclear magnetic resonance-based drug screening of a kinase inhibitor library. Nat Commun 2011; 2:545. [PMID: 22109519 DOI: 10.1038/ncomms1562] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/21/2011] [Indexed: 01/13/2023] Open
Abstract
Metabolism is altered in many highly prevalent diseases and is controlled by a complex network of intracellular regulators. Monitoring cell metabolism during treatment is extremely valuable to investigate cellular response and treatment efficacy. Here we describe a nuclear magnetic resonance-based method for screening of the metabolomic response of drug-treated mammalian cells in a 96-well format. We validate the method using drugs having well-characterized targets and report the results of a screen of a kinase inhibitor library. Four hits are validated from their action on an important clinical parameter, the lactate to pyruvate ratio. An eEF-2 kinase inhibitor and an NF-kB activation inhibitor increased lactate/pyruvate ratio, whereas an MK2 inhibitor and an inhibitor of PKA, PKC and PKG induced a decrease. The method is validated in cell lines and in primary cancer cells, and may have potential applications in both drug development and personalized therapy.
Collapse
Affiliation(s)
- Stefano Tiziani
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Abnormal choline metabolism is emerging as a metabolic hallmark that is associated with oncogenesis and tumour progression. Following transformation, the modulation of enzymes that control anabolic and catabolic pathways causes increased levels of choline-containing precursors and breakdown products of membrane phospholipids. These increased levels are associated with proliferation, and recent studies emphasize the complex reciprocal interactions between oncogenic signalling and choline metabolism. Because choline-containing compounds are detected by non-invasive magnetic resonance spectroscopy (MRS), increased levels of these compounds provide a non-invasive biomarker of transformation, staging and response to therapy. Furthermore, enzymes of choline metabolism, such as choline kinase, present novel targets for image-guided cancer therapy.
Collapse
Affiliation(s)
- Kristine Glunde
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, 720 Rutland Avenue, 212 Traylor Building, Baltimore, Maryland 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Zaver M. Bhujwalla
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, 720 Rutland Avenue, 212 Traylor Building, Baltimore, Maryland 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Sabrina M. Ronen
- Department of Radiology, University of California San Francisco School of Medicine, UCSF Mission Bay Campus, Byers Hall, San Francisco, California CA94158-2330, USA
| |
Collapse
|
36
|
Glunde K, Jiang L, Moestue SA, Gribbestad IS. MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR IN BIOMEDICINE 2011; 24:673-90. [PMID: 21793073 PMCID: PMC3146026 DOI: 10.1002/nbm.1751] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
MRS and MRSI are valuable tools for the detection of metabolic changes in tumors. The currently emerging era of molecular medicine, which is shaped by molecularly targeted anticancer therapies combined with molecular imaging of the effects of such therapies, requires powerful imaging technologies that are able to detect molecular information. MRS and MRSI are such technologies that are able to detect metabolites arising from glucose and choline metabolism in noninvasive in vivo settings and at higher resolution in tissue samples. The roles played by MRS and MRSI in the diagnosis of different types of cancer, as well as in the early monitoring of the tumor response to traditional chemotherapies, are reviewed. The emerging roles of MRS and MRSI in the development and detection of novel targeted anticancer therapies that target oncogenic signaling pathways or markers in choline or glucose metabolism are discussed.
Collapse
Affiliation(s)
- Kristine Glunde
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lu Jiang
- Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Russell H. Morgan, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Siver A. Moestue
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Ingrid S. Gribbestad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
37
|
Podo F, Canevari S, Canese R, Pisanu ME, Ricci A, Iorio E. MR evaluation of response to targeted treatment in cancer cells. NMR IN BIOMEDICINE 2011; 24:648-672. [PMID: 21387442 DOI: 10.1002/nbm.1658] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 11/22/2010] [Accepted: 11/29/2010] [Indexed: 05/30/2023]
Abstract
The development of molecular technologies, together with progressive sophistication of molecular imaging methods, has allowed the further elucidation of the multiple mutations and dysregulatory effects of pathways leading to oncogenesis. Acting against these pathways by specifically targeted agents represents a major challenge for current research efforts in oncology. As conventional anatomically based pharmacological endpoints may be inadequate to monitor the tumor response to these targeted treatments, the identification and use of more appropriate, noninvasive pharmacodynamic biomarkers appear to be crucial to optimize the design, dosage and schedule of these novel therapeutic approaches. An aberrant choline phospholipid metabolism and enhanced flux of glucose derivatives through glycolysis, which sustain the redirection of mitochondrial ATP to glucose phosphorylation, are two major hallmarks of cancer cells. This review focuses on the changes detected in these pathways by MRS in response to targeted treatments. The progress and limitations of our present understanding of the mechanisms underlying MRS-detected phosphocholine accumulation in cancer cells are discussed in the light of gene and protein expression and the activation of different enzymes involved in phosphatidylcholine biosynthesis and catabolism. Examples of alterations induced in the MRS choline profile of cells exposed to different agents or to tumor environmental factors are presented. Current studies aimed at the identification in cancer cells of MRS-detected pharmacodynamic markers of therapies targeted against specific conditional or constitutive cell receptor stimulation are then reviewed. Finally, the perspectives of present efforts addressed to identify enzymes of the phosphatidylcholine cycle as possible novel targets for anticancer therapy are summarized.
Collapse
Affiliation(s)
- Franca Podo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The adaptability and the genomic plasticity of cancer cells, and the interaction between the tumor microenvironment and co-opted stromal cells, coupled with the ability of cancer cells to colonize distant organs, contribute to the frequent intractability of cancer. It is becoming increasingly evident that personalized molecular targeting is necessary for the successful treatment of this multifaceted and complex disease. Noninvasive imaging modalities such as magnetic resonance (MR), positron emission tomography (PET), and single-photon emission computed tomography (SPECT) are filling several important niches in this era of targeted molecular medicine, in applications that span from bench to bedside. In this review we focus on noninvasive magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) and their roles in future personalized medicine in cancer. Diagnosis, the identification of the most effective treatment, monitoring treatment delivery, and response to treatment are some of the broad areas into which MRS techniques can be integrated to improve treatment outcomes. The development of novel probes for molecular imaging--in combination with a slew of functional imaging capabilities--makes MRS techniques, especially in combination with other imaging modalities, valuable in cancer drug discovery and basic cancer research.
Collapse
Affiliation(s)
- Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
39
|
Moestue SA, Engebraaten O, Gribbestad IS. Metabolic effects of signal transduction inhibition in cancer assessed by magnetic resonance spectroscopy. Mol Oncol 2011; 5:224-41. [PMID: 21536506 DOI: 10.1016/j.molonc.2011.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 12/31/2022] Open
Abstract
Despite huge efforts in development of drugs targeting oncogenic signalling, the number of such drugs entering clinical practice to date remains limited. Rational use of biomarkers for drug candidate selection and early monitoring of response to therapy may accelerate this process. Magnetic resonance spectroscopy (MRS) can be used to assess metabolic effects of drug treatment both in vivo and in vitro, and technological advances are continuously increasing the utility of this non-invasive method. In this review, we summarise the use of MRS for monitoring the effect of targeted anticancer drugs, and discuss the potential role of MRS in the context of personalised cancer treatment.
Collapse
Affiliation(s)
- Siver Andreas Moestue
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | |
Collapse
|
40
|
Allouche-Arnon H, Gamliel A, Barzilay CM, Nalbandian R, Gomori JM, Karlsson M, Lerche MH, Katz-Brull R. A hyperpolarized choline molecular probe for monitoring acetylcholine synthesis. CONTRAST MEDIA & MOLECULAR IMAGING 2010; 6:139-47. [PMID: 21698772 DOI: 10.1002/cmmi.418] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/14/2010] [Accepted: 08/18/2010] [Indexed: 01/18/2023]
Abstract
Choline as a reporter molecule has been investigated by in vivo magnetic resonance for almost three decades. Accumulation of choline metabolites (mainly the phosphorylated forms) had been observed in malignancy in preclinical models, ex-vivo, in vivo and in patients. The combined choline metabolite signal appears in (1) H-MRS of the brain and its relative intensity had been used as a diagnostic factor in various conditions. The advent of spin hyperpolarization methods for in vivo use has raised interest in the ability to follow the physiological metabolism of choline into acetylcholine in the brain. Here we present a stable-isotope labeled choline analog, [1,1,2,2-D(4) ,2-(13) C]choline chloride, that is suitable for this purpose. In this analog, the (13) C position showed 24% polarization in the liquid state, following DNP hyperpolarization. This nucleus also showed a long T(1) (35 s) at 11.8 T and 25 °C, which is a prerequisite for hyperpolarized studies. The chemical shift of this (13) C position differentiates choline and acetylcholine from each other and from the other water-soluble choline metabolites, namely phosphocholine and betaine. Enzymatic studies using an acetyltransferase enzyme showed the synthesis of the deuterated-acetylcholine form at thermal equilibrium conditions and in a hyperpolarized state. Analysis using a comprehensive model showed that the T(1) of the formed hyperpolarized [1,1,2,2-D(4) ,2-(13) C]acetylcholine was 34 s at 14.1 T and 37 °C. We conclude that [1,1,2,2-D(4) ,2-(13) C]choline chloride is a promising new molecular probe for hyperpolarized metabolic studies and discuss the factors related to its possible use in vivo.
Collapse
Affiliation(s)
- Hyla Allouche-Arnon
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Brandes AH, Ward CS, Ronen SM. 17-allyamino-17-demethoxygeldanamycin treatment results in a magnetic resonance spectroscopy-detectable elevation in choline-containing metabolites associated with increased expression of choline transporter SLC44A1 and phospholipase A2. Breast Cancer Res 2010; 12:R84. [PMID: 20946630 PMCID: PMC3096977 DOI: 10.1186/bcr2729] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 10/14/2010] [Indexed: 01/18/2023] Open
Abstract
Introduction 17-allyamino-17-demethoxygeldanamycin (17-AAG), a small molecule inhibitor of Hsp90, is currently in clinical trials in breast cancer. However, 17-AAG treatment often results in inhibition of tumor growth rather than shrinkage, making detection of response a challenge. Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) are noninvasive imaging methods than can be used to monitor metabolic biomarkers of drug-target modulation. This study set out to examine the MRS-detectable metabolic consequences of Hsp90 inhibition in a breast cancer model. Methods MCF-7 breast cancer cells were investigated, and MRS studies were performed both on live cells and on cell extracts. 31P and 1H MRS were used to determine total cellular metabolite concentrations and 13C MRS was used to probe the metabolism of [1,2-13C]-choline. To explain the MRS metabolic findings, microarray and RT-PCR were used to analyze gene expression, and in vitro activity assays were performed to determine changes in enzymatic activity following 17-AAG treatment. Results Treatment of MCF-7 cells with 17-AAG for 48 hours caused a significant increase in intracellular levels of choline (to 266 ± 18% of control, P = 0.05) and phosphocholine (PC; to 181 ± 10% of control, P = 0.001) associated with an increase in expression of choline transporter SLC44A1 and an elevation in the de novo synthesis of PC. We also detected an increase in intracellular levels of glycerophosphocholine (GPC; to 176 ± 38% of control, P = 0.03) associated with an increase in PLA2 expression and activity. Conclusions This study determined that in the MCF-7 breast cancer model inhibition of Hsp90 by 17-AAG results in a significant MRS-detectable increase in choline, PC and GPC, which is likely due to an increase in choline transport into the cell and phospholipase activation. 1H MRSI can be used in the clinical setting to detect levels of total choline-containing metabolite (t-Cho, composed of intracellular choline, PC and GPC). As Hsp90 inhibitors enter routine clinical use, t-Cho could thus provide an easily detectable, noninvasive metabolic biomarker of Hsp90 inhibition in breast cancer patients.
Collapse
Affiliation(s)
- Alissa H Brandes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 94158, USA
| | | | | |
Collapse
|
42
|
Glunde K, Artemov D, Penet MF, Jacobs MA, Bhujwalla ZM. Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer. Chem Rev 2010; 110:3043-59. [PMID: 20384323 DOI: 10.1021/cr9004007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kristine Glunde
- JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
43
|
Al-Saffar NMS, Jackson LE, Raynaud FI, Clarke PA, Ramírez de Molina A, Lacal JC, Workman P, Leach MO. The phosphoinositide 3-kinase inhibitor PI-103 downregulates choline kinase alpha leading to phosphocholine and total choline decrease detected by magnetic resonance spectroscopy. Cancer Res 2010; 70:5507-17. [PMID: 20551061 DOI: 10.1158/0008-5472.can-09-4476] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a major target for cancer drug development. PI-103 is an isoform-selective class I PI3K and mammalian target of rapamycin inhibitor. The aims of this work were as follows: first, to use magnetic resonance spectroscopy (MRS) to identify and develop a robust pharmacodynamic (PD) biomarker for target inhibition and potentially tumor response following PI3K inhibition; second, to evaluate mechanisms underlying the MRS-detected changes. Treatment of human PTEN null PC3 prostate and PIK3CA mutant HCT116 colon carcinoma cells with PI-103 resulted in a concentration- and time-dependent decrease in phosphocholine (PC) and total choline (tCho) levels (P < 0.05) detected by phosphorus ((31)P)- and proton ((1)H)-MRS. In contrast, the cytotoxic microtubule inhibitor docetaxel increased glycerophosphocholine and tCho levels in PC3 cells. PI-103-induced MRS changes were associated with alterations in the protein expression levels of regulatory enzymes involved in lipid metabolism, including choline kinase alpha (ChoK(alpha)), fatty acid synthase (FAS), and phosphorylated ATP-citrate lyase (pACL). However, a strong correlation (r(2) = 0.9, P = 0.009) was found only between PC concentrations and ChoK(alpha) expression but not with FAS or pACL. This study identified inhibition of ChoK(alpha) as a major cause of the observed change in PC levels following PI-103 treatment. We also showed the capacity of (1)H-MRS, a clinically well-established technique with higher sensitivity and wider applicability compared with (31)P-MRS, to assess response to PI-103. Our results show that monitoring the effects of PI3K inhibitors by MRS may provide a noninvasive PD biomarker for PI3K inhibition and potentially of tumor response during early-stage clinical trials with PI3K inhibitors.
Collapse
Affiliation(s)
- Nada M S Al-Saffar
- Cancer Research UK and EPSRC Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Oakman C, Tenori L, Biganzoli L, Santarpia L, Cappadona S, Luchinat C, Di Leo A. Uncovering the metabolomic fingerprint of breast cancer. Int J Biochem Cell Biol 2010; 43:1010-20. [PMID: 20460168 DOI: 10.1016/j.biocel.2010.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 02/08/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
Abstract
Metabolomics, the study of metabolites and small intermediate molecules, may play a key role in further elucidation of breast cancer. This dynamic, simultaneous assessment of thousands of metabolites allows identification of the presence, concentration and fluxes of specific metabolites, and recognition of the critical metabolic pathways recruited in carcinogenesis. Studies of tumour cell and tissue allow focused analysis on the tumour, whilst studies of biofluids have the appeal of concurrent assessment of tumour and host. Elucidation of these metabolites and pathways may provide essential insights into both the intercellular environment and host/tumour interaction, allowing recognition of new biomarkers for diagnosis and prediction of outcome, new therapy targets and novel approaches for monitoring response and toxicity. Certainly, the field of metabolomics may evolve as a valuable, complementary clinical tool. In this review, current metabolomic data in breast cancer will be presented. The dominant metabolic pathways and metabolite disturbances associated with malignant transformation of breast cells will be outlined, leading to an overview of potential clinical implications for individuals with breast cancer.
Collapse
Affiliation(s)
- Catherine Oakman
- Department of Oncology, Hospital of Prato, Istituto Toscano Tumori, Prato, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta Mol Basis Dis 2010; 1802:396-405. [DOI: 10.1016/j.bbadis.2009.12.009] [Citation(s) in RCA: 1521] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 12/13/2022]
|
46
|
Ward CS, Venkatesh HS, Chaumeil MM, Brandes AH, Vancriekinge M, Dafni H, Sukumar S, Nelson SJ, Vigneron DB, Kurhanewicz J, James CD, Haas-Kogan DA, Ronen SM. Noninvasive detection of target modulation following phosphatidylinositol 3-kinase inhibition using hyperpolarized 13C magnetic resonance spectroscopy. Cancer Res 2010; 70:1296-305. [PMID: 20145128 PMCID: PMC2822895 DOI: 10.1158/0008-5472.can-09-2251] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Numerous mechanism-based anticancer drugs that target the phosphatidylinositol 3-kinase (PI3K) pathway are in clinical trials. However, it remains challenging to assess responses by traditional imaging methods. Here, we show for the first time the efficacy of hyperpolarized (13)C magnetic resonance spectroscopy (MRS) in detecting the effect of PI3K inhibition by monitoring hyperpolarized [1-(13)C]lactate levels produced from hyperpolarized [1-(13)C]pyruvate through lactate dehydrogenase (LDH) activity. In GS-2 glioblastoma cells, PI3K inhibition by LY294002 or everolimus caused hyperpolarized lactate to drop to 42 +/- 12% and to 76 +/- 5%, respectively. In MDA-MB-231 breast cancer cells, hyperpolarized lactate dropped to 71 +/- 15% after treatment with LY294002. These reductions were correlated with reductions in LDH activity to 48 +/- 4%, 63 +/- 4%, and 69 +/- 12%, respectively, and were associated with a drop in levels of LDHA mRNA and LDHA and hypoxia-inducible factor-1alpha proteins. Supporting these findings, tumor growth inhibition achieved by everolimus in murine GS-2 xenografts was associated with a drop in the hyperpolarized lactate-to-pyruvate ratio detected by in vivo MRS imaging, whereas an increase in this ratio occurred with tumor growth in control animals. Taken together, our findings illustrate the application of hyperpolarized (13)C MRS of pyruvate to monitor alterations in LDHA activity and expression caused by PI3K pathway inhibition, showing the potential of this method for noninvasive imaging of drug target modulation.
Collapse
Affiliation(s)
- Christopher S Ward
- Department of Radiology and Biomedical Imaging , University of California at San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Metabolic assessment of the action of targeted cancer therapeutics using magnetic resonance spectroscopy. Br J Cancer 2009; 102:1-7. [PMID: 19935796 PMCID: PMC2813738 DOI: 10.1038/sj.bjc.6605457] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Developing rational targeted cancer drugs requires the implementation of pharmacodynamic (PD), preferably non-invasive, biomarkers to aid response assessment and patient follow-up. Magnetic resonance spectroscopy (MRS) allows the non-invasive study of tumour metabolism. We describe the MRS-detectable PD biomarkers resulting from the action of targeted therapeutics, and discuss their biological significance and future translation into clinical use.
Collapse
|
48
|
Merz AL, Serkova NJ. Use of nuclear magnetic resonance-based metabolomics in detecting drug resistance in cancer. Biomark Med 2009; 3:289-306. [PMID: 20160999 DOI: 10.2217/bmm.09.15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cancer cells possess a highly unique metabolic phenotype, which is characterized by high glucose uptake, increased glycolytic activity, decreased mitochondrial activity, low bioenergetic and increased phospholipid turnover. These metabolic hallmarks can be readily assessed by metabolic technologies - either in vitro or in vivo - to monitor responsiveness and resistance to novel targeted drugs, where specific inhibition of cell proliferation (cytostatic effect) occurs rather than direct induction of cell death (cytotoxicity). Using modern analytical technologies in combination with statistical approaches, 'metabolomics', a global metabolic profile on patient samples can be established and validated for responders and nonresponders, providing additional metabolic end points. Discovered metabolic end points should be translated into noninvasive metabolic imaging protocols.
Collapse
Affiliation(s)
- Andrea L Merz
- Cancer Center Metabolomics NMR Core, University of Colorado, CO, USA
| | | |
Collapse
|
49
|
Beloueche-Babari M, Peak JC, Jackson LE, Tiet MY, Leach MO, Eccles SA. Changes in choline metabolism as potential biomarkers of phospholipase C{gamma}1 inhibition in human prostate cancer cells. Mol Cancer Ther 2009; 8:1305-11. [PMID: 19417158 DOI: 10.1158/1535-7163.mct-09-0039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphoinositide-specific phospholipase Cγ1 (PLCγ1) is activated downstream of many receptor tyrosine kinases to promote cell motility. Inhibition of this protein is being explored as a therapeutic strategy for blocking cancer cell invasion and metastasis. The clinical development of such cytostatic therapies requires the implementation of pharmacodynamic biomarkers of target modulation. In this study, we use magnetic resonance spectroscopy to explore metabolic biomarkers of PLCγ1 down-regulation in PC3LN3 prostate cancer cells. We show that inhibition of PLCγ1 via an inducible short hairpin RNA system causes a reduction in phosphocholine levels by up to 50% relative to the control as detected by (1)H and (31)P magnetic resonance spectroscopy analyses. This correlated with a rounded-up morphology and reduced cell migration. Interestingly, the fall in phosphocholine levels was not recorded in cells with constitutive PLCγ1 knockdown where the rounded-up phenotype was no longer apparent. This study reveals alterations in metabolism that accompany the cellular effects of PLCγ1 knockdown and highlights phosphocholine as a potential pharmacodynamic biomarker for monitoring the action of inhibitors targeting PLCγ1 signaling.
Collapse
Affiliation(s)
- Mounia Beloueche-Babari
- Cancer Research UK Clinical Magnetic Resonance Research Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom.
| | | | | | | | | | | |
Collapse
|
50
|
Sachdev D. Regulation of breast cancer metastasis by IGF signaling. J Mammary Gland Biol Neoplasia 2008; 13:431-41. [PMID: 19030970 DOI: 10.1007/s10911-008-9105-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 11/06/2008] [Indexed: 02/06/2023] Open
Abstract
The insulin-like growth factors (IGFs) signaling via the type I insulin-like growth factor receptor (IGF-1R) regulate multiple aspects of malignancy. The importance of IGF-1R in regulating the malignant phenotype is currently being validated in numerous clinical trials for cancer including breast cancer. This review discusses the regulation of breast cancer metastasis by IGF-1R. IGF-1R stimulates invasion and survival in anchorage independent conditions. The regulation of metastasis independently of tumor growth by IGF-1R is also discussed. Finally, the impact of this on clinical trial design and outcomes, and the need for biomarkers, other than reduction in tumor size, are discussed in light of the fact that inhibition of metastasis is not measured in conventional clinical trial design.
Collapse
Affiliation(s)
- Deepali Sachdev
- Department of Medicine and Masonic Cancer Center, University of Minnesota, MMC 806, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|