1
|
Al-Hamaly MA, Winter E, Blackburn JS. The mitochondria as an emerging target of self-renewal in T-cell acute lymphoblastic leukemia. Cancer Biol Ther 2025; 26:2460252. [PMID: 39905687 PMCID: PMC11801350 DOI: 10.1080/15384047.2025.2460252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/22/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Acute lymphocytic leukemia (ALL) is the most common leukemia in children, with the T-cell subtype (T-ALL) accounting for 15% of those cases. Despite advancements in the treatment of T-ALL, patients still face a dismal prognosis following their first relapse. Relapse can be attributed to the inability of chemotherapy agents to eradicate leukemia stem cells (LSC), which possess self-renewal capabilities and are responsible for the long-term maintenance of the disease. Mitochondria have been recognized as a therapeutic vulnerability for cancer stem cells, including LSCs. Mitocans have shown promise in T-ALL both in vitro and in vivo, with some currently in early-phase clinical trials. However, due to challenges in studying LSCs in T-ALL, our understanding of how mitochondrial function influences self-renewal remains limited. This review highlights the emerging literature on targeting mitochondria in diverse T-ALL models, emphasizing specific mitochondrial vulnerabilities linked to LSC self-renewal and their potential to significantly improve T-ALL treatment.
Collapse
Affiliation(s)
- Majd A. Al-Hamaly
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Evelyn Winter
- Department of Agriculture, Biodiversity and Forestry, Federal University of Santa Catarina, Curitibanos, Brazil
| | - Jessica S. Blackburn
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Mandleywala K, Herranz D. CApSiZing T-cell acute lymphoblastic leukemia. Haematologica 2024; 109:1634-1636. [PMID: 38235506 PMCID: PMC11141670 DOI: 10.3324/haematol.2023.284714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Komal Mandleywala
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901.
| |
Collapse
|
3
|
Hu AJ, Li W, Pathak A, Hu GF, Hou X, Farmer SR, Hu MG. CDK6 is essential for mesenchymal stem cell proliferation and adipocyte differentiation. Front Mol Biosci 2023; 10:1146047. [PMID: 37664186 PMCID: PMC10469316 DOI: 10.3389/fmolb.2023.1146047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Background: Overweight or obesity poses a significant risk of many obesity-related metabolic diseases. Among all the potential new therapies, stem cell-based treatments hold great promise for treating many obesity-related metabolic diseases. However, the mechanisms regulating adipocyte stem cells/progenitors (precursors) are unknown. The aim of this study is to investigate if CDK6 is required for mesenchymal stem cell proliferation and adipocyte differentiation. Methods: Cyclin-dependent kinase 6 (Cdk6) mouse models together with stem cells derived from stromal vascular fraction (SVF) or mouse embryonic fibroblasts (MEFs) of Cdk6 mutant mice were used to determine if CDK6 is required for mesenchymal stem cell proliferation and adipocyte differentiation. Results: We found that mice with a kinase inactive CDK6 mutants (K43M) had fewer precursor residents in the SVF of adult white adipose tissue (WAT). Stem cells from the SVF or MEFs of K43M mice had defects in proliferation and differentiation into the functional fat cells. In contrast, mice with a constitutively active kinase CDK6 mutant (R31C) had the opposite traits. Ablation of RUNX1 in both mature and precursor K43M cells, reversed the phenotypes. Conclusion: These results represent a novel role of CDK6 in regulating precursor numbers, proliferation, and differentiation, suggesting a potential pharmacological intervention for using CDK6 inhibitors in the treatment of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Alexander J. Hu
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Wei Li
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
- National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Apana Pathak
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
- Assay Research and Development Department, GRAIL LLC, Menlo Park, CA, United States
| | - Guo-Fu Hu
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
| | - Xiaoli Hou
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
- Center for Analysis and Testing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Stephen R. Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Miaofen G. Hu
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Zou Y, Tang H, Miao Y, Zhu H, Wang L, Fan L, Fu J, Xu W, Li J, Xia Y. Overexpression of c-Myc-dependent heterogeneous nuclear ribonucleoprotein A1 promotes proliferation and inhibits apoptosis in NOTCH1-mutated chronic lymphocytic leukemia cells. Chin Med J (Engl) 2022; 135:920-929. [PMID: 35730371 PMCID: PMC9276458 DOI: 10.1097/cm9.0000000000002037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND NOTCH1 mutation is an essential molecular biologic aberration in chronic lymphocytic leukemia (CLL). CLL patients with NOTCH1 mutation have shown an unfavorable survival and a poor response to chemoimmunotherapy. This study aims to present the mechanisms of adverse prognosis caused by NOTCH1 mutation from the perspective of the splicing factor heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1). METHODS The microarray data in Gene Expression Omnibus datasets were analyzed by bioinformatics and the function of hnRNPA1 was checked by testing the proliferation and apoptosis of CLL-like cell lines. Afterward, quantitative reverse transcription-polymerase chain reaction and Western blotting were applied to explore the relationship among NOTCH1, c-Myc, and hnRNPA1. RESULTS RNA splicing was found to play a vital part in NOTCH1-mutated CLL cells; hence, hnRNPA1 was selected as the focus of this study. Higher expression of hnRNPA1 validated in primary NOTCH1-mutated CLL samples could promote proliferation and inhibit apoptosis in CLL. The expression of hnRNPA1 increased when NOTCH1 signaling was activated by transfection with NOTCH1 intracellular domain (NICD)-overexpressed adenovirus vector and declined after NOTCH1 signaling was inhibited by NOTCH1-shRNA. Higher expression of c-Myc was observed in NICD-overexpressed cells and hnRNPA1 expression was downregulated after applying c-Myc inhibitor 10058-F4. Moreover, in NICD-overexpressed cells, hnRNPA1 expression decreased through c-Myc inhibition. CONCLUSION Overexpression of c-Myc-dependent hnRNPA1 could promote proliferation and inhibit apoptosis in NOTCH1-mutated CLL cells, which might partly account for the poor prognosis of patients with NOTCH1 mutation.
Collapse
Affiliation(s)
- Yixin Zou
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Hanning Tang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Yi Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Huayuan Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Lei Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Jianxin Fu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| | - Yi Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu 210029, China
- Pukou CLL Center, Nanjing, Jiangsu 210000, China
| |
Collapse
|
5
|
Ge Y, Wang J, Zhang H, Li J, Ye M, Jin X. Fate of hematopoietic stem cells determined by Notch1 signaling (Review). Exp Ther Med 2022; 23:170. [PMID: 35069851 PMCID: PMC8764575 DOI: 10.3892/etm.2021.11093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/17/2021] [Indexed: 11/05/2022] Open
Abstract
Regulation of the fate of hematopoietic stem cells (HSCs), including silencing, self-renewal or differentiation into blood line cells, is crucial to maintain the homeostasis of the human blood system and prevent leukemia. Notch1, a key receptor in the Notch signaling pathway, plays an important regulatory role in these properties of HSCs, particularly in the maintenance of the stemness of HSCs. In recent decades, the ubiquitination modification of Notch1 has been gradually revealed, and also demonstrated to affect the proliferation and differentiation of HSCs. Therefore, a detailed elucidation of Notch1 and its ubiquitination modification may help to improve understanding of the maintenance of HSC properties and the pathogenesis of leukemia. In addition, it may aid in identifying potential therapeutic targets for specific leukemias and provide potential prognostic indicators for HSC transplantation (HSCT). In the present review, the association between Notch1 and HSCs and the link between the ubiquitination modification of Notch1 and HSCs were described. In addition, the association between abnormal HSCs mediated by Notch1 or ubiquitinated Notch1and T-cell acute lymphoblastic leukemia (T-ALL) was also examined, which provides a promising direction for clinical application.
Collapse
Affiliation(s)
- Yidong Ge
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hui Zhang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
6
|
Li P, Chen Y, Peng Y, Zhang Y, Zhou H, Chen X, Li T, Li S, Yang H, Wu C, Zheng C, Zhu J, You F, Li L, Qin X, Liu Y. Notch-1 signaling promotes reattachment of suspended cancer cells by cdc42-dependent microtentacles formation. Cancer Sci 2021; 112:4894-4908. [PMID: 34582616 PMCID: PMC8645759 DOI: 10.1111/cas.15146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 01/14/2023] Open
Abstract
Circulating tumor cells (CTCs) are associated with a higher risk of metastasis in tumor patients. The adhesion and arrest of CTCs at a secondary site is an essential prerequisite for the occurrence of tumor metastasis. CTC reattachment has shown to be dependent on microtentacle (McTN) formation in vivo. However, the specific molecular mechanism of McTN formation in suspended cancer cells remains largely unclear. Here, we demonstrated that the activation of Notch-1 signaling triggers McTN formation to facilitate cell reattachment in suspended cell culture conditions. Moreover, molecular mechanistic studies revealed that McTN formation is governed by the balance between microtubule-driven outgrowth and actomyosin-driven cell contractility. The activation of Notch-1 downregulates the acetylation level of microtubules via the Cdc42/HDAC6 pathway, which contributes to microtubule polymerization. Simultaneously, Notch-1 signaling-induced Cdc42 activation also reduced phosphorylation of myosin regulatory light chain, leading to cell contractility attenuation. Altogether, these results defined a novel mechanism by which Notch-1 signaling disturbs the balance between the expansion of microtubules and contraction of the cortical actin, which promotes McTN formation and cell reattachment. Our findings provide a new perspective on the effective therapeutic target to prevent CTC reattachment.
Collapse
Affiliation(s)
- Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yueting Peng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yixi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hanying Zhou
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiangyan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Fang N, Li P. O-linked N-acetylglucosaminyltransferase OGT inhibits diabetic nephropathy by stabilizing histone methyltransferases EZH2 via the HES1/PTEN axis. Life Sci 2021; 274:119226. [PMID: 33609540 DOI: 10.1016/j.lfs.2021.119226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 02/07/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND O-linked N-acetylglucosaminyltransferase (OGT) is involved in diabetes-related diseases including diabetic nephropathy (DN), and responsible for O-GlcNAcylation. Moreover, O-GlcNAcylation and OGT could be induced by high glucose. Thus, we sought to explore the molecular mechanism of OGT in DN. METHODS Loss- and gain-functions were conducted to determine the roles of OGT, enhancer of zeste homolog 2 (EZH2), hairy and enhancer of split 1 (HES1) and phosphatase and tensin homolog (PTEN) in the viability, cell cycle and fibrosis of mesangial cells (MCs), followed by the assessment using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, and Western blot assay (fibrosis-related proteins). The interaction between OGT and EZH2 and the effect on EZH2 glycosylation were verified by chromatin immunoprecipitation (ChIP) and glutathione S-transferase (GST) pull-down assays. EZH2 stability was checked by treatment with cycloheximide. RESULTS Expression of OGT was repressed in the DN mice and high glucose-treated MCs. Elevated OGT suppressed viability of high glucose-treated MCs, blocked proliferation characterized by repressed cyclin D1, but enhanced p21 levels, and inhibited fibrosis evidenced by reduced levels of fibronectin (FN) and collagen-4 (col-4). OGT interacted with EZH2 and promoted its glycosylation thus stabilizing the EZH2. EZH2 overexpression enhanced the enrichment of EZH2 and histone H3 Lys27 trimethylation (H3K27me3) in the HES1 promoter. HES1 was upregulated and PTEN was downregulated in DN mice. Transduction of lentivirus vector containing overexpression (oe)-OGT alleviated renal injury in DN mice. CONCLUSIONS Collectively, OGT stabilizes histone methyltransferases EZH2 to regulate HES1/PTEN thus inhibiting DN.
Collapse
Affiliation(s)
- Na Fang
- Department of Nephrology, The Fifth People's Hospital of Jinan, Jinan 250022, PR China.
| | - Ping Li
- Special Inspection Section, The Fifth People's Hospital of Jinan, Jinan 250022, PR China
| |
Collapse
|
8
|
López-Nieva P, González-Sánchez L, Cobos-Fernández MÁ, Córdoba R, Santos J, Fernández-Piqueras J. More Insights on the Use of γ-Secretase Inhibitors in Cancer Treatment. Oncologist 2020; 26:e298-e305. [PMID: 33191568 PMCID: PMC7873333 DOI: 10.1002/onco.13595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 10/12/2020] [Indexed: 01/16/2023] Open
Abstract
The NOTCH1 gene encodes a transmembrane receptor protein with activating mutations observed in many T‐cell acute lymphoblastic leukemias (T‐ALLs) and lymphomas, as well as in other tumor types, which has led to interest in inhibiting NOTCH1 signaling as a therapeutic target in cancer. Several classes of Notch inhibitors have been developed, including monoclonal antibodies against NOTCH receptors or ligands, decoys, blocking peptides, and γ‐secretase inhibitors (GSIs). GSIs block a critical proteolytic step in NOTCH activation and are the most widely studied. Current treatments with GSIs have not successfully passed clinical trials because of side effects that limit the maximum tolerable dose. Multiple γ‐secretase–cleavage substrates may be involved in carcinogenesis, indicating that there may be other targets for GSIs. Resistance mechanisms may include PTEN inactivation, mutations involving FBXW7, or constitutive MYC expression conferring independence from NOTCH1 inactivation. Recent studies have suggested that selective targeting γ‐secretase may offer an improved efficacy and toxicity profile over the effects caused by broad‐spectrum GSIs. Understanding the mechanism of GSI‐induced cell death and the ability to accurately identify patients based on the activity of the pathway will improve the response to GSI and support further investigation of such compounds for the rational design of anti‐NOTCH1 therapies for the treatment of T‐ALL. Implications for Practice γ‐secretase has been proposed as a therapeutic target in numerous human conditions, including cancer. A better understanding of the structure and function of the γ‐secretase inhibitor (GSI) would help to develop safe and effective γ‐secretase–based therapies. The ability to accurately identify patients based on the activity of the pathway could improve the response to GSI therapy for the treatment of cancer. Toward these ends, this study focused on γ‐secretase inhibitors as a potential therapeutic target for the design of anti‐NOTCH1 therapies for the treatment of T‐cell acute lymphoblastic leukemias and lymphomas. Understanding the mechanism of γ‐secretase inhibitor (GSI)–induced cell death and the ability to accurately identify patients based on the activity of the pathway could improve the response to GSI therapy for the treatment of cancer. This article focuses on γ‐secretase inhibitors as a potential therapeutic target to treat T‐cell acute lymphoblastic leukemias and lymphomas.
Collapse
Affiliation(s)
- Pilar López-Nieva
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Laura González-Sánchez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| | - María Ángeles Cobos-Fernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain
| | | | - Javier Santos
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José Fernández-Piqueras
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
9
|
Philipovskiy A, Dwivedi AK, Gamez R, McCallum R, Mukherjee D, Nahleh Z, Aguilera RJ, Gaur S. Association between tumor mutation profile and clinical outcomes among Hispanic Latina women with triple-negative breast cancer. PLoS One 2020; 15:e0238262. [PMID: 32886682 PMCID: PMC7473586 DOI: 10.1371/journal.pone.0238262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) represents 15%-20% of all breast cancer types. It is more common among African American (AA) and Hispanic-Latina (HL) women. The biology of TNBC in HL women has been poorly characterized, but some data suggest that the molecular drivers of breast cancer might differ. There are no clinical tools to aid medical oncologists with decisions regarding appropriate individualized therapy, and no way to predict long-term outcomes. The aim of this study was to characterize individual patient gene mutation profiles and to identify the relationship with clinical outcomes. We collected formalin-fixed paraffin-embedded tumors (FFPE) from women with TNBC. We analyzed the gene mutation profiles of the collected tumors and compared the results with individual patient's clinical histories and outcomes. Of 25 patients with TNBC, 24 (96%) identified as HL. Twenty-one (84%) had stage III-IV disease. The most commonly mutated genes were TP53, NOTCH1, NOTCH2, NOTCH3, AKT, MEP3K, PIK3CA, and EGFR. Compared with other international cancer databases, our study demonstrated statistically significant higher frequencies of these genes among HL women. Additionally, a worse clinical course was observed among patients whose tumors had mutations in NOTCH genes and PIK3CA. This study is the first to identify the most common genetic alterations among HL women with TNBC. Our data strongly support the notion that molecular drivers of breast cancer could differ in HL women compared with other ethnic backgrounds. Therefore, a deeper understanding of the biological mechanisms behind NOTCH gene and PIK3CA mutations may lead to a new treatment approach.
Collapse
Affiliation(s)
- Alexander Philipovskiy
- Division of Hematology-Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Alok K. Dwivedi
- Division of Biostatistics & Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Roberto Gamez
- Department of Pathology, University Medical Center, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Richard McCallum
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Debabrata Mukherjee
- Division of Cardiology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| | - Zeina Nahleh
- Department of Hematology-Oncology, Maroone Cancer Center, Cleveland Clinic, Florida, Weston, Florida, United States of America
| | - Renato J. Aguilera
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, United States of America
| | - Sumit Gaur
- Division of Hematology-Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, United States of America
| |
Collapse
|
10
|
Dang Q, Chen L, Xu M, You X, Zhou H, Zhang Y, Shi W. The γ-secretase inhibitor GSI-I interacts synergistically with the proteasome inhibitor bortezomib to induce ALK+ anaplastic large cell lymphoma cell apoptosis. Cell Signal 2019; 59:76-84. [PMID: 30878517 DOI: 10.1016/j.cellsig.2019.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
Single agent treatment of the γ-secretase inhibitor (GSI-I) or proteasome inhibitor in anaplastic lymphoma kinase positive anaplastic large cell lymphoma (ALK+ ALCL) shows limited response and considerable toxicity. Here, we examined the effects of the combination of low dose GSI-I and the proteasome inhibitor bortezomib (BTZ) in ALK+ ALCL cells in vivo and in vitro. We found that ALK+ ALCL cells treated with the BTZ and GSI-I combination treatment showed elevated apoptosis, consistent with increased caspase activation, compared with BTZ or GSI-I alone. The combination treatment also inhibited AKT and extracellular signal-related kinase pathways, as well as stress-related cascades, including the c-jun N-terminal kinase and stress-activated kinases. Moreover, combined treatment in a murine xenograft model resulted in increased apoptosis in tumor tissues and reduced tumor growth. Our results reveal the synergistic anti-tumor effects of low dose inhibitors against γ-secretase and the proteasome and suggest the potential application of the tolerable BTZ/GSI-I combined agents in treating ALK+ ALCL in future clinical treatment.
Collapse
Affiliation(s)
- Qingxiu Dang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Lili Chen
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Mengqi Xu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xuefen You
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Hong Zhou
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yaping Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | - Wenyu Shi
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
11
|
Habets RA, de Bock CE, Serneels L, Lodewijckx I, Verbeke D, Nittner D, Narlawar R, Demeyer S, Dooley J, Liston A, Taghon T, Cools J, de Strooper B. Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci Transl Med 2019; 11:11/494/eaau6246. [DOI: 10.1126/scitranslmed.aau6246] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Given the high frequency of activating NOTCH1 mutations in T cell acute lymphoblastic leukemia (T-ALL), inhibition of the γ-secretase complex remains an attractive target to prevent ligand-independent release of the cytoplasmic tail and oncogenic NOTCH1 signaling. However, four different γ-secretase complexes exist, and available inhibitors block all complexes equally. As a result, these cause severe “on-target” gastrointestinal tract, skin, and thymus toxicity, limiting their therapeutic application. Here, we demonstrate that genetic deletion or pharmacologic inhibition of the presenilin-1 (PSEN1) subclass of γ-secretase complexes is highly effective in decreasing leukemia while avoiding dose-limiting toxicities. Clinically, T-ALL samples were found to selectively express only PSEN1-containing γ-secretase complexes. The conditional knockout of Psen1 in developing T cells attenuated the development of a mutant NOTCH1-driven leukemia in mice in vivo but did not abrogate normal T cell development. Treatment of T-ALL cell lines with the selective PSEN1 inhibitor MRK-560 effectively decreased mutant NOTCH1 processing and led to cell cycle arrest. These observations were extended to T-ALL patient-derived xenografts in vivo, demonstrating that MRK-560 treatment decreases leukemia burden and increased overall survival without any associated gut toxicity. Therefore, PSEN1-selective compounds provide a potential therapeutic strategy for safe and effective targeting of T-ALL and possibly also for other diseases in which NOTCH signaling plays a role.
Collapse
|
12
|
Nemkov T, D'Alessandro A, Reisz JA. Metabolic underpinnings of leukemia pathology and treatment. Cancer Rep (Hoboken) 2019; 2:e1139. [PMID: 32721091 DOI: 10.1002/cnr2.1139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Carcinogenic transformation of white blood cells during hematopoiesis leads to the development of leukemia, a cancer characterized by incompetent immune cells and a disruption of normal bone marrow function. Leukemias are diverse in type, affected population, prognosis, and treatment regimen, yet a common theme in leukemia is the dysregulated metabolism of leukemic cells and leukemic stem cells with respect to their noncancerous counterparts. RECENT FINDINGS In this review, we highlight current findings that elucidate metabolic traits unique to the four major types of leukemia, which confer carcinogenic survival but can be potentially exploited for therapeutic intervention. These metabolic features can work in conjunction with or be independent of unique aspects of the bone marrow microenvironment that can also influence cell survival and proliferation, thus sustaining carcinogenesis. CONCLUSION Deepening our understanding of the interactions of leukemias with their niche environments in vivo will inform future treatments for leukemia, particularly for those that are refractive to tyrosine kinase inhibitors and other therapeutic mainstays.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
13
|
Hossain F, Sorrentino C, Ucar DA, Peng Y, Matossian M, Wyczechowska D, Crabtree J, Zabaleta J, Morello S, Del Valle L, Burow M, Collins-Burow B, Pannuti A, Minter LM, Golde TE, Osborne BA, Miele L. Notch Signaling Regulates Mitochondrial Metabolism and NF-κB Activity in Triple-Negative Breast Cancer Cells via IKKα-Dependent Non-canonical Pathways. Front Oncol 2018; 8:575. [PMID: 30564555 PMCID: PMC6289043 DOI: 10.3389/fonc.2018.00575] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022] Open
Abstract
Triple negative breast cancer (TNBC) patients have high risk of recurrence and metastasis, and current treatment options remain limited. Cancer stem-like cells (CSCs) have been linked to cancer initiation, progression and chemotherapy resistance. Notch signaling is a key pathway regulating TNBC CSC survival. Treatment of TNBC with PI3K or mTORC1/2 inhibitors results in drug-resistant, Notch-dependent CSC. However, downstream mechanisms and potentially druggable Notch effectors in TNBC CSCs are largely unknown. We studied the role of the AKT pathway and mitochondrial metabolism downstream of Notch signaling in TNBC CSC from cell lines representative of different TNBC molecular subtypes as well as a novel patient-derived model. We demonstrate that exposure of TNBC cells to recombinant Notch ligand Jagged1 leads to rapid AKT phosphorylation in a Notch1-dependent but RBP-Jκ independent fashion. This requires mTOR and IKKα. Jagged1 also stimulates mitochondrial respiration and fermentation in an AKT- and IKK-dependent fashion. Notch1 co-localizes with mitochondria in TNBC cells. Pharmacological inhibition of Notch cleavage by gamma secretase inhibitor PF-03084014 in combination with AKT inhibitor MK-2206 or IKK-targeted NF-κB inhibitor Bay11-7082 blocks secondary mammosphere formation from sorted CD90hi or CD44+CD24low (CSCs) cells. A TNBC patient-derived model gave comparable results. Besides mitochondrial oxidative metabolism, Jagged1 also triggers nuclear, NF-κB-dependent transcription of anti-apoptotic gene cIAP-2. This requires recruitment of Notch1, IKKα and NF-κB to the cIAP-2 promoter. Our observations support a model where Jagged1 triggers IKKα-dependent, mitochondrial and nuclear Notch1 signals that stimulate AKT phosphorylation, oxidative metabolism and transcription of survival genes in PTEN wild-type TNBC cells. These data suggest that combination treatments targeting the intersection of the Notch, AKT and NF-κB pathways have potential therapeutic applications against CSCs in TNBC cases with Notch1 and wild-type PTEN expression.
Collapse
Affiliation(s)
- Fokhrul Hossain
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Claudia Sorrentino
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States.,Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Deniz A Ucar
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, China
| | - Margarite Matossian
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Dorota Wyczechowska
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Judy Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jovanny Zabaleta
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Luis Del Valle
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Matthew Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Bridgette Collins-Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Antonio Pannuti
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, Amherst, MA, United States
| | - Todd E Golde
- Department of Neuroscience, McKnight Brain Institute, University of Florida at Gainesville, Gainesville, FL, United States
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, Amherst, MA, United States
| | - Lucio Miele
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
14
|
Total flavonoids from Semen Cuscutae target MMP9 and promote invasion of EVT cells via Notch/AKT/MAPK signaling pathways. Sci Rep 2018; 8:17342. [PMID: 30478366 PMCID: PMC6255888 DOI: 10.1038/s41598-018-35732-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/31/2018] [Indexed: 01/04/2023] Open
Abstract
Miscarriage is a common condition during pregnancy and its mechanisms remain largely unknown. Extravillous trophoblast (EVT) cell invasion is required to maintain normal pregnancy and its malfunction has been proposed as a major cause for miscarriage. Homeostasis of matrix metalloproteinase 9 (MMP9) is a key to regulate EVT cell invasion. Total flavonoids from Semen Cuscutae (TFSC) have been applied clinically used for preventing or treating miscarriage in the past. Given its potential clinical benefit on preventing miscarriage, this study aims at examining the therapeutic effect of TFSC in the prevention of premature birth by upregulating MMP9 and promote EVT cell invasion. HTR-8 cells migration and invasion functions were analyzed using wound healing and transwell assays. The regulatory effect of TFSC on MMP9 expression and relevant signaling pathways were analyzed by Western Blot. The results show compared to control group, TFSC significantly promoted the migration of EVT cells in a dose and time-dependent manner. The migration and invasion of EVT cells were maximized at the highest dosage of 5 μg/ml of TFSC. The expression of MMP9 in EVT cells was significantly increased after TFSC treatment. Furthermore, cells treated with TFSC significantly upregulated protein expressions in Notch, AKT and p38/MAPK signaling pathways. We believe TFSC can promote the migration and invasion of EVT cells by increasing MMP9 expression, and prevent miscarriage by activating Notch, AKT, and MAPK signaling pathways.
Collapse
|
15
|
Kim DH, Yoon HJ, Cha YN, Surh YJ. Role of heme oxygenase-1 and its reaction product, carbon monoxide, in manifestation of breast cancer stem cell-like properties: Notch-1 as a putative target. Free Radic Res 2018; 52:1336-1347. [DOI: 10.1080/10715762.2018.1473571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Do-Hee Kim
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Hyo-Jin Yoon
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Young-Nam Cha
- Department of Pharmacology and Toxicology, College of Medicine, Inha University, Incheon, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
16
|
Tang X, Wu S, Shen L, Wei Y, Cao X, Wang Y, Long C, Zhou Y, Li D, Huang F, Liu B, Wei G. Di-(2-ethylhexyl) phthalate (DEHP)-induced testicular toxicity through Nrf2-mediated Notch1 signaling pathway in Sprague-Dawley rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:720-728. [PMID: 29663635 DOI: 10.1002/tox.22559] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/14/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an environmental endocrine disruptor widely used in China that is harmful to the male reproductive system. Many studies have shown that DEHP causes testicular toxicity through oxidative stress, but the specific mechanism is unknown. Because the Notch pathway is a key mechanism for regulating cell growth and proliferation, we investigated whether Notch is involved in DEHP-induced testicular toxicity and whether vitamins E and C could rescue testicular impairment in Sprague-Dawley (SD) rats. Compared with the control group, we found that DEHP exposure induced testicular toxicity through oxidative stress injury, and it decreased the testosterone level (P < .01) and upregulated nuclear factor-erythroid 2 related factor (Nrf2) expression (P < .01). Therefore, because oxidative stress might be the initiating factor of DEHP-induced testicular toxicity, treatment with the antioxidant vitamins E and C activated the Notch1 signaling pathway in the testis and in Leydig cells. Treatment with vitamins E and C normalized the oxidative stress state after DEHP exposure and restored testicular development to be similar to the control group. In summary, antioxidant vitamins E and C may be used to treat DEHP-induced testicular toxicity.
Collapse
Affiliation(s)
- Xiangliang Tang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Shengde Wu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lianju Shen
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yi Wei
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xining Cao
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yangcai Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chunlan Long
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yue Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Dian Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Fangyuan Huang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Bo Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Guanghui Wei
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| |
Collapse
|
17
|
VENTURI V, MASEK T, POSPISEK M. A Blood Pact: the Significance and Implications of eIF4E on Lymphocytic Leukemia. Physiol Res 2018. [DOI: 10.33549/physiolres.933696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Elevated levels of eukaryotic initiation factor 4E (eIF4E) are implicated in neoplasia, with cumulative evidence pointing to its role in the etiopathogenesis of hematological diseases. As a node of convergence for several oncogenic signaling pathways, eIF4E has attracted a great deal of interest from biologists and clinicians whose efforts have been targeting this translation factor and its biological circuits in the battle against leukemia. The role of eIF4E in myeloid leukemia has been ascertained and drugs targeting its functions have found their place in clinical trials. Little is known, however, about the pertinence of eIF4E to the biology of lymphocytic leukemia and a paucity of literature is available in this regard that prospectively evaluates the topic to guide practice in hematological cancer. A comprehensive analysis on the significance of eIF4E translation factor in the clinical picture of leukemia arises, therefore, as a compelling need. This review presents aspects of eIF4E involvement in the realm of the lymphoblastic leukemia status; translational control of immunological function via eIF4E and the state-of-the-art in drugs will also be outlined.
Collapse
Affiliation(s)
| | | | - M. POSPISEK
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Nemeth Z, Csizmadia E, Vikstrom L, Li M, Bisht K, Feizi A, Otterbein S, Zuckerbraun B, Costa DB, Pandolfi PP, Fillinger J, Döme B, Otterbein LE, Wegiel B. Alterations of tumor microenvironment by carbon monoxide impedes lung cancer growth. Oncotarget 2018; 7:23919-32. [PMID: 26993595 PMCID: PMC5029674 DOI: 10.18632/oncotarget.8081] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/29/2016] [Indexed: 12/26/2022] Open
Abstract
We hypothesized that tumor-associated macrophages (TAMs) are controlled by the diffusible gas carbon monoxide (CO). We demonstrate that induction of apoptosis in lung tumors treated with low doses of CO is associated with increased CD86 expression and activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (Erk) 1/2 pathway in tumor microenvironment. Presence of CD86-positive cells was required for the anti-tumoral effects of CO in established A549 xenografts. We show that the effects of CO on tumor stroma and reprogramming of macrophages towards the anti-tumoral phenotype is mediated by reactive oxygen species (ROS)-dependent activation of MAPK/Erk1/2-c-myc pathway as well as Notch 1-dependent negative feedback on the metabolic enzyme heme oxygenase-1 (HO-1). We find a similar negative correlation between HO-1 and active MAPK-Erk1/2 levels in human lung cancer specimens. In summary, we describe novel non-cell autonomous mechanisms by which the diffusible gas CO dictates changes in the tumor microenvironment through the modulation of macrophages.
Collapse
Affiliation(s)
- Zsuzsanna Nemeth
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Tumor Biology, National Koranyi Institute of TB and Pulmonology, Budapest, Hungary
| | - Eva Csizmadia
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lisa Vikstrom
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mailin Li
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kavita Bisht
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Heart Foundation Research Center, Griffith Health Institute, Griffith University, Gold Coast, Australia
| | - Alborz Feizi
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sherrie Otterbein
- Department of Surgery, Section of Trauma and Acute Care Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Brian Zuckerbraun
- Department of Surgery, Section of Trauma and Acute Care Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Daniel B Costa
- Cancer Center Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pier Paolo Pandolfi
- Cancer Center Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Janos Fillinger
- Department of Pathology, National Koranyi Institute of TB and Pulmonology, Budapest, Hungary
| | - Balazs Döme
- Department of Tumor Biology, National Koranyi Institute of TB and Pulmonology, Budapest, Hungary.,Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Austria.,Department of Thoracic Surgery, National Institute of Oncology, Budapest, Hungary
| | - Leo E Otterbein
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Barbara Wegiel
- Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Cancer Center Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Liu T, Zhang Z, Yu C, Zeng C, Xu X, Wu G, Huang Z, Li W. Tetrandrine antagonizes acute megakaryoblastic leukaemia growth by forcing autophagy-mediated differentiation. Br J Pharmacol 2017; 174:4308-4328. [PMID: 28901537 DOI: 10.1111/bph.14031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The poor prognosis of acute megakaryoblastic leukaemia (AMKL) means there is a need to develop novel therapeutic methods to treat this condition. It was recently shown that inducing megakaryoblasts to undergo terminal differentiation is effective as a treatment for AMKL. This encouraged us to identify a compound that induces megakaryocyte differentiation, which could then act as a potent anti-leukaemia agent. EXPERIMENTAL APPROACH The effects of tetrandrine on the expression of CD41 and cell morphology were investigated in AMKL cells. We used CRISPR/Cas9 knockout system to knock out ATG7 and verify the role of autophagy in tetrandrine-induced megakaryocyte differentiation. shNotch1 and CA-Akt were transfected into K562 cells to examine the downstream pathways of ROS signalling and the mechanistic basis of the tetrandrine-induced megakaryocyte differentiation. The anti-leukaemia effects of tetrandrine were analysed both in vitro and in vivo. KEY RESULTS A low dose of tetrandrine induced cell cycle arrest and megakaryocyte differentiation in AMKL cells via activation of autophagy. Molecularly, we demonstrated that this effect is mediated by activation of Notch1 and Akt and subsequent accumulation of ROS. In contrast, in normal mouse fetal liver cells, although tetrandrine induced autophagy, it did not affect cell proliferation or promote megakaryocyte differentiation, suggesting a specific effect of tetrandrine in malignant megakaryoblasts. Finally, tetrandrine also showed in vivo efficacy in an AMKL xenograft mouse model. CONCLUSIONS AND IMPLICATIONS Modulating autophagy-mediated differentiation may be a novel strategy for treating AMKL, and tetrandrine has the potential to be developed as a differentiation-inducing agent for AMKL chemotherapy.
Collapse
Affiliation(s)
- Ting Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhenxing Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chunjie Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chang Zeng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoqing Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guixian Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zan Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenhua Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Mendes RD, Canté-Barrett K, Pieters R, Meijerink JPP. The relevance of PTEN-AKT in relation to NOTCH1-directed treatment strategies in T-cell acute lymphoblastic leukemia. Haematologica 2017; 101:1010-7. [PMID: 27582570 DOI: 10.3324/haematol.2016.146381] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/01/2016] [Indexed: 11/09/2022] Open
Abstract
The tumor suppressor phosphatase and tensin homolog (PTEN) negatively regulates phosphatidylinositol 3-kinase (PI3K)-AKT signaling and is often inactivated by mutations (including deletions) in a variety of cancer types, including T-cell acute lymphoblastic leukemia. Here we review mutation-associated mechanisms that inactivate PTEN together with other molecular mechanisms that activate AKT and contribute to T-cell leukemogenesis. In addition, we discuss how Pten mutations in mouse models affect the efficacy of gamma-secretase inhibitors to block NOTCH1 signaling through activation of AKT. Based on these models and on observations in primary diagnostic samples from patients with T-cell acute lymphoblastic leukemia, we speculate that PTEN-deficient cells employ an intrinsic homeostatic mechanism in which PI3K-AKT signaling is dampened over time. As a result of this reduced PI3K-AKT signaling, the level of AKT activation may be insufficient to compensate for NOTCH1 inhibition, resulting in responsiveness to gamma-secretase inhibitors. On the other hand, de novo acquired PTEN-inactivating events in NOTCH1-dependent leukemia could result in temporary, strong activation of PI3K-AKT signaling, increased glycolysis and glutaminolysis, and consequently gamma-secretase inhibitor resistance. Due to the central role of PTEN-AKT signaling and in the resistance to NOTCH1 inhibition, AKT inhibitors may be a promising addition to current treatment protocols for T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Rui D Mendes
- Department of Pediatric Oncology/Hematology, Erasmus MC Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Kirsten Canté-Barrett
- Department of Pediatric Oncology/Hematology, Erasmus MC Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Rob Pieters
- Department of Pediatric Oncology/Hematology, Erasmus MC Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jules P P Meijerink
- Department of Pediatric Oncology/Hematology, Erasmus MC Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
21
|
Lian H, Li D, Zhou Y, Landesman-Bollag E, Zhang G, Anderson NM, Tang KC, Roderick JE, Kelliher MA, Seldin DC, Fu H, Feng H. CK2 inhibitor CX-4945 destabilizes NOTCH1 and synergizes with JQ1 against human T-acute lymphoblastic leukemic cells. Haematologica 2016; 102:e17-e21. [PMID: 27758824 DOI: 10.3324/haematol.2016.154013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Haiwei Lian
- Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, P.R. China.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, MA, USA.,Department of Neurosurgery, Wuhan University Renmin Hospital, Wuhan, Hubei, P.R. China
| | - Dun Li
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, MA, USA.,Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, MA, USA
| | - Yun Zhou
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, MA, USA.,Department of Gynaecology, Wuhan University Renmin Hospital, Wuhan, Hubei, P.R. China
| | - Esther Landesman-Bollag
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, MA, USA
| | - Guanglan Zhang
- Department of Computer Science, Metropolitan College, Boston University, MA, USA
| | - Nicole M Anderson
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, MA, USA
| | - Kevin Charles Tang
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, MA, USA
| | - Justine E Roderick
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Michelle A Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - David C Seldin
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, MA, USA
| | - Hui Fu
- Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, P.R. China
| | - Hui Feng
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, MA, USA .,Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, MA, USA
| |
Collapse
|
22
|
DEPTOR is a direct NOTCH1 target that promotes cell proliferation and survival in T-cell leukemia. Oncogene 2016; 36:1038-1047. [PMID: 27593934 DOI: 10.1038/onc.2016.275] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022]
Abstract
Aberrant activation of NOTCH1 signaling plays a vital role in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL). Yet the molecular events downstream of NOTCH1 that drive T-cell leukemogenesis remain incompletely understood. Starting from genome-wide gene-expression profiling to seek important NOTCH1 transcriptional targets, we identified DEP-domain containing mTOR-interacting protein (DEPTOR), which was previously shown to be important in multiple myeloma but remains functionally unclear in other hematological malignancies. Mechanistically, we demonstrated NOTCH1 directly bound to and activated the human DEPTOR promoter in T-ALL cells. DEPTOR depletion abolished cellular proliferation, attenuated glycolytic metabolism and enhanced cell death, while ectopically expressed DEPTOR significantly promoted cell growth and glycolysis. We further showed that DEPTOR depletion inhibited while its overexpression enhanced AKT activation in T-ALL cells. Importantly, AKT inhibition completely abrogated DEPTOR-mediated cell growth advantages. Moreover, DEPTOR depletion in a human T-ALL xenograft model significantly delayed T-ALL onset and caused a substantial decrease of AKT activation in leukemic blasts. We thus reveal a novel mechanism involved in NOTCH1-driven leukemogenesis, identifying the transcriptional control of DEPTOR and its regulation of AKT as additional key elements of the leukemogenic program activated by NOTCH1.
Collapse
|
23
|
Raimo M, Orso F, Grassi E, Cimino D, Penna E, De Pittà C, Stadler MB, Primo L, Calautti E, Quaglino P, Provero P, Taverna D. miR-146a Exerts Differential Effects on Melanoma Growth and Metastatization. Mol Cancer Res 2016; 14:548-62. [DOI: 10.1158/1541-7786.mcr-15-0425-t] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/26/2016] [Indexed: 11/16/2022]
|
24
|
Liu T, Men Q, Wu G, Yu C, Huang Z, Liu X, Li W. Tetrandrine induces autophagy and differentiation by activating ROS and Notch1 signaling in leukemia cells. Oncotarget 2016; 6:7992-8006. [PMID: 25797266 PMCID: PMC4480730 DOI: 10.18632/oncotarget.3505] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/01/2015] [Indexed: 12/19/2022] Open
Abstract
All-trans retinoic acid (ATRA) is a differentiating agent for the treatment of acute promyelocytic leukemia (APL). However, the therapeutic efficacy of ATRA has limitations. Tetrandrine is a traditional Chinese medicinal herb extract with antitumor effects. In this study, we investigated the effects of tetrandrine on human PML-RARα-positive acute promyelocytic leukemia cells. Tetrandrine inhibited tumors in vivo. It induced autophagy and differentiation by triggering ROS generation and activating Notch1 signaling. Tetrandrine induced autophagy and differentiation in M5 type patient primary leukemia cells. The in vivo results indicated that low concentrations of tetrandrine inhibited leukemia cells proliferation and induced autophagy and then facilitated their differentiation, by activating ROS and Notch1 signaling. We suggest that tetrandrine is a potential agent for the treatment of APL by inducing differentiation of leukemia cells.
Collapse
Affiliation(s)
- Ting Liu
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Qiuxu Men
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, P. R. China
| | - Guixian Wu
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Chunrong Yu
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Zan Huang
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Xin Liu
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, P. R. China
| | - Wenhua Li
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
25
|
Yang L, Zhang S, George SK, Teng R, You X, Xu M, Liu H, Sun X, Amin HM, Shi W. Targeting Notch1 and proteasome as an effective strategy to suppress T-cell lymphoproliferative neoplasms. Oncotarget 2016; 6:14953-69. [PMID: 25879451 PMCID: PMC4558128 DOI: 10.18632/oncotarget.3621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/14/2015] [Indexed: 12/13/2022] Open
Abstract
The T-cell lymphoproliferative neoplasms (T-LPN) are characterized by a poor clinical outcome. Current therapeutics are mostly non-selective and may induce harmful side effects. It has been reported that NOTCH1 activation mutations frequently associate T-LPN. Because anti-Notch1 based therapies such as γ-secretase inhibitors (GSI) are less efficient and induce considerable side effects, we hypothesized that combining low concentrations of GSI and the proteasome inhibitor bortezomib (BTZ) may provide an effective and tolerable approach to treat T-LPN. Hence, we analyzed the in vitro and in vivo effects of GSI-I and BTZ, alone or in combination, against T-LPN. GSI-I and BTZ synergistically decreased cell viability, proliferation, and colony formation, and induced apoptosis in T-LPN cell lines. Furthermore, combining GSI-I and BTZ decreased the viability of primary T-LPN cells from patients. These effects were accompanied by deregulation of Notch1, AKT, ERK, JNK, p38 MAPK, and NF-κB survival pathways. Moreover, combination treatment inhibited T-LPN tumor growth in nude mice. In all experiments, combining low concentrations of GSI-I and BTZ was superior to using a single agent. Our data support that a synergistic antitumor activity exists between GSI-I and BTZ, and provide a rationale for successful utilization of dual Notch1 and proteasome inhibition to treat T-LPN.
Collapse
Affiliation(s)
- Lujun Yang
- Department of Hematology, Affiliated Hospital of The University of Nantong, Jiangsu 226001, China
| | - Shuangfeng Zhang
- Department of Hematology, Affiliated Hospital of The University of Nantong, Jiangsu 226001, China
| | - Suraj Konnath George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rong Teng
- Department of Hematology, Affiliated Hospital of The University of Nantong, Jiangsu 226001, China
| | - Xuefen You
- Department of Hematology, Affiliated Hospital of The University of Nantong, Jiangsu 226001, China
| | - Mengqi Xu
- Department of Hematology, Affiliated Hospital of The University of Nantong, Jiangsu 226001, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of The University of Nantong, Jiangsu 226001, China
| | - Xiaoping Sun
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, 77030, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, 77030, USA
| | - Wenyu Shi
- Department of Hematology, Affiliated Hospital of The University of Nantong, Jiangsu 226001, China.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
26
|
Anderson NM, Li D, Peng HL, Laroche FJF, Mansour MR, Gjini E, Aioub M, Helman DJ, Roderick JE, Cheng T, Harrold I, Samaha Y, Meng L, Amsterdam A, Neuberg DS, Denton TT, Sanda T, Kelliher MA, Singh A, Look AT, Feng H. The TCA cycle transferase DLST is important for MYC-mediated leukemogenesis. Leukemia 2016; 30:1365-74. [PMID: 26876595 DOI: 10.1038/leu.2016.26] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/21/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Despite the pivotal role of MYC in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) and many other cancers, the mechanisms underlying MYC-mediated tumorigenesis remain inadequately understood. Here we utilized a well-characterized zebrafish model of Myc-induced T-ALL for genetic studies to identify novel genes contributing to disease onset. We found that heterozygous inactivation of a tricarboxylic acid (TCA) cycle enzyme, dihydrolipoamide S-succinyltransferase (Dlst), significantly delayed tumor onset in zebrafish without detectable effects on fish development. DLST is the E2 transferase of the α-ketoglutarate (α-KG) dehydrogenase complex (KGDHC), which converts α-KG to succinyl-CoA in the TCA cycle. RNAi knockdown of DLST led to decreased cell viability and induction of apoptosis in human T-ALL cell lines. Polar metabolomics profiling revealed that the TCA cycle was disrupted by DLST knockdown in human T-ALL cells, as demonstrated by an accumulation of α-KG and a decrease of succinyl-CoA. Addition of succinate, the downstream TCA cycle intermediate, to human T-ALL cells was sufficient to rescue defects in cell viability caused by DLST inactivation. Together, our studies uncovered an important role for DLST in MYC-mediated leukemogenesis and demonstrated the metabolic dependence of T-lymphoblasts on the TCA cycle, thus providing implications for targeted therapy.
Collapse
Affiliation(s)
- N M Anderson
- Departments of Pharmacology and Medicine, The Center for Cancer Research, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - D Li
- Departments of Pharmacology and Medicine, The Center for Cancer Research, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - H L Peng
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Division of Hematology/Institute of Molecular Hematology, Second Xiang-Ya Hospital, Central South University, Changsha, China
| | - F J F Laroche
- Departments of Pharmacology and Medicine, The Center for Cancer Research, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - M R Mansour
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - E Gjini
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - M Aioub
- Departments of Pharmacology and Medicine, The Center for Cancer Research, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - D J Helman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - J E Roderick
- Department of Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - T Cheng
- Departments of Pharmacology and Medicine, The Center for Cancer Research, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - I Harrold
- Departments of Pharmacology and Medicine, The Center for Cancer Research, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Y Samaha
- Departments of Pharmacology and Medicine, The Center for Cancer Research, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - L Meng
- Departments of Pharmacology and Medicine, The Center for Cancer Research, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - A Amsterdam
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - D S Neuberg
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - T T Denton
- Department of Pharmaceutical Sciences, Washington State University, College of Pharmacy, Spokane, WA, USA
| | - T Sanda
- Department of Medicine, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - M A Kelliher
- Department of Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - A Singh
- Departments of Pharmacology and Medicine, The Center for Cancer Research, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| | - A T Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - H Feng
- Departments of Pharmacology and Medicine, The Center for Cancer Research, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
27
|
Lee HW, Kim SJ, Choi IJ, Song J, Chun KH. Targeting Notch signaling by γ-secretase inhibitor I enhances the cytotoxic effect of 5-FU in gastric cancer. Clin Exp Metastasis 2015; 32:593-603. [PMID: 26134677 DOI: 10.1007/s10585-015-9730-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
Current medication for gastric cancer patients has a low success rate and the patients develop rapid tolerance to these drugs. Therefore, the development of new regimens is desired. In this study, we determined that Notch-signaling-related genes were overexpressed and activated in gastric cancer patients and gastric cancer cell lines. According to recent studies, γ-secretase inhibitors (GSIs), which function as Notch signaling inhibitors, could be used as therapeutic drugs in cancer. We demonstrated that GSI I (cbz-IL-CHO) is the most effective GSI in gastric cancer cells. We also determined the cell survival signaling-related proteins that were affected by GSI I. The levels of phosphorylated AKT were significantly decreased upon GSI I treatment, and constitutively activated myristoylated AKT completely blocked GSI I-induced apoptosis and cell survival, suggesting that inhibition of AKT signaling is critical for GSI I-mediated effects in gastric cancer cells. In order to maximize the effects and safety of GSI I, a combination treatment with GSI I and 5-FU was performed. Inhibition of gastric cancer cell proliferation with the combination treatment was significantly better than that with the single treatment. All phosphorylated forms of AKT, p44/42, JNK, and p38 were drastically changed by the combination treatment. Orthotopically transplanted gastric tumor burdens in mice were reduced using the combined treatment. The outcomes of this study clearly demonstrated the therapeutic potential of GSI I in gastric cancer, as well as the greater efficacy of the combined treatment of GSI I with 5-FU. Therefore, we suggest that further clinical trials examining the potential of combined GSI I and 5-FU treatment in gastric cancer patients be undertaken.
Collapse
Affiliation(s)
- Hyun-Woo Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
Tan Y, Sementino E, Pei J, Kadariya Y, Ito TK, Testa JR. Co-targeting of Akt and Myc inhibits viability of lymphoma cells from Lck-Dlx5 mice. Cancer Biol Ther 2015; 16:580-8. [PMID: 25793663 DOI: 10.1080/15384047.2015.1018495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Constitutive activation of AKT is a frequent occurrence in the development of human T-cell acute lymphocytic leukemia/lymphomas (T-ALLs), due largely to inactivation of PTEN. Up regulation of MYC is also commonly observed in human T-ALLs. We previously demonstrated that expression of a constitutively active form of Lck-Akt2 alone is sufficient to initiate T-cell lymphoma in mice, and that tumor formation typically requires up regulation of Myc or Dlx5 caused by specific chromosomal rearrangements. Furthermore, Lck-Dlx5 mice develop T-ALLs that consistently acquire overexpression of Myc and activation of Akt, the latter due to loss of Pten expression. Proliferation of T-ALL cells from Lck-Dlx5 mice was found to be highly sensitive to the Akt pathway inhibitors BEZ235 and RAD001, as well as to JQ1, an inhibitor of bromodomain proteins, one of which (BRD4) regulates Myc transcription. Additionally, low concentrations of BEZ235 were found to cooperate with JQ1 to enhance cell cycle arrest. Higher concentrations of BEZ235 (≥0.5 µM) promoted cell death, although the addition of JQ1 did not result in a further increase in apoptosis. In contrast, the specific Myc inhibitor 10058-F4 caused apoptosis, and when combined with BEZ235 (≥0.5 µM), an enhanced effect on apoptosis was consistently observed. In addition, BEZ235 and RAD001 potentiated vincristine-induced apoptosis when the cells were treated with both drugs simultaneously, whereas pretreatment with BEZ235 antagonized the cell-killing effect of vincristine. Collectively, these experimental findings provide rationale for the design of novel combination therapies for T-ALL that includes targeting of AKT and MYC.
Collapse
Affiliation(s)
- Yinfei Tan
- a Cancer Biology Program; Fox Chase Cancer Center ; Philadelphia , PA USA
| | | | | | | | | | | |
Collapse
|
29
|
Matsushita K, Kitamura K, Rahmutulla B, Tanaka N, Ishige T, Satoh M, Hoshino T, Miyagi S, Mori T, Itoga S, Shimada H, Tomonaga T, Kito M, Nakajima-Takagi Y, Kubo S, Nakaseko C, Hatano M, Miki T, Matsuo M, Fukuyo M, Kaneda A, Iwama A, Nomura F. Haploinsufficiency of the c-myc transcriptional repressor FIR, as a dominant negative-alternative splicing model, promoted p53-dependent T-cell acute lymphoblastic leukemia progression by activating Notch1. Oncotarget 2015; 6:5102-17. [PMID: 25671302 PMCID: PMC4467136 DOI: 10.18632/oncotarget.3244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/27/2014] [Indexed: 12/22/2022] Open
Abstract
FUSE-binding protein (FBP)-interacting repressor (FIR) is a c-myc transcriptional suppressor. A splice variant of FIR that lacks exon 2 in the transcriptional repressor domain (FIRΔexon2) upregulates c-myc transcription by inactivating wild-type FIR. The ratio of FIRΔexon2/FIR mRNA was increased in human colorectal cancer and hepatocellular carcinoma tissues. Because FIRΔexon2 is considered to be a dominant negative regulator of FIR, FIR heterozygous knockout (FIR⁺/⁻) C57BL6 mice were generated. FIR complete knockout (FIR⁻/⁻) was embryonic lethal before E9.5; therefore, it is essential for embryogenesis. This strongly suggests that insufficiency of FIR is crucial for carcinogenesis. FIR⁺/⁻ mice exhibited prominent c-myc mRNA upregulation, particularly in the peripheral blood (PB), without any significant pathogenic phenotype. Furthermore, elevated FIRΔexon2/FIR mRNA expression was detected in human leukemia samples and cell lines. Because the single knockout of TP53 generates thymic lymphoma, FIR⁺/⁻TP53⁻/⁻ generated T-cell type acute lymphocytic/lymphoblastic leukemia (T-ALL) with increased organ or bone marrow invasion with poor prognosis. RNA-sequencing analysis of sorted thymic lymphoma cells revealed that the Notch signaling pathway was activated significantly in FIR⁺/⁻TP53⁻/⁻ compared with that in FIR⁺/⁺TP53⁻/⁻ mice. Notch1 mRNA expression in sorted thymic lymphoma cells was confirmed using qRT-PCR. In addition, flow cytometry revealed that c-myc mRNA was negatively correlated with FIR but positively correlated with Notch1 in sorted T-ALL/thymic lymphoma cells. Moreover, the knockdown of TP53 or c-myc using siRNA decreased Notch1 expression in cancer cells. In addition, an adenovirus vector encoding FIRΔexon2 cDNA increased bleomycin-induced DNA damage. Taken together, these data suggest that the altered expression of FIRΔexon2 increased Notch1 at least partially by activating c-Myc via a TP53-independent pathway. In conclusion, the alternative splicing of FIR, which generates FIRΔexon2, may contribute to both colorectal carcinogenesis and leukemogenesis.
Collapse
Affiliation(s)
- Kazuyuki Matsushita
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Kouichi Kitamura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Nobuko Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Takayuki Ishige
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Mamoru Satoh
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana, Chiba, Japan
| | - Satoru Miyagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Takeshi Mori
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Kusunoki-cho, Kobe, Japan
| | - Sakae Itoga
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Omori-nishi, Ota-ku, Tokyo, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Saito-Asagi, Ibaraki, Osaka, Japan
| | - Minoru Kito
- Oriental Yeast Co., Ltd. Azusawa, Itabashi-ku, Tokyo, Japan
| | - Yaeko Nakajima-Takagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Shuji Kubo
- Department of Genetics, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo Prefecture, Japan
| | - Chiaki Nakaseko
- Department of Haematology, Chiba University Hospital, Inohana, Chiba, Japan
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Takashi Miki
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Masafumi Matsuo
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Kusunoki-cho, Kobe, Japan
- Department of Medical Rehabilitation, Faculty of Rehabilitation, Kobegakuin University, Arise, Ikawadani, Nishi, Kobe, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Fumio Nomura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| |
Collapse
|
30
|
Wang H, Cheng H, Shao Q, Dong Z, Xie Q, Zhao L, Wang Q, Kong B, Qu X. Leptin-Promoted Human Extravillous Trophoblast Invasion Is MMP14 Dependent and Requires the Cross Talk Between Notch1 and PI3K/Akt Signaling1. Biol Reprod 2014; 90:78. [DOI: 10.1095/biolreprod.113.114876] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
31
|
Gutierrez A, Pan L, Groen RWJ, Baleydier F, Kentsis A, Marineau J, Grebliunaite R, Kozakewich E, Reed C, Pflumio F, Poglio S, Uzan B, Clemons P, VerPlank L, An F, Burbank J, Norton S, Tolliday N, Steen H, Weng AP, Yuan H, Bradner JE, Mitsiades C, Look AT, Aster JC. Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. J Clin Invest 2014; 124:644-55. [PMID: 24401270 DOI: 10.1172/jci65093] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/30/2013] [Indexed: 12/15/2022] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer that is frequently associated with activating mutations in NOTCH1 and dysregulation of MYC. Here, we performed 2 complementary screens to identify FDA-approved drugs and drug-like small molecules with activity against T-ALL. We developed a zebrafish system to screen small molecules for toxic activity toward MYC-overexpressing thymocytes and used a human T-ALL cell line to screen for small molecules that synergize with Notch inhibitors. We identified the antipsychotic drug perphenazine in both screens due to its ability to induce apoptosis in fish, mouse, and human T-ALL cells. Using ligand-affinity chromatography coupled with mass spectrometry, we identified protein phosphatase 2A (PP2A) as a perphenazine target. T-ALL cell lines treated with perphenazine exhibited rapid dephosphorylation of multiple PP2A substrates and subsequent apoptosis. Moreover, shRNA knockdown of specific PP2A subunits attenuated perphenazine activity, indicating that PP2A mediates the drug's antileukemic activity. Finally, human T-ALLs treated with perphenazine exhibited suppressed cell growth and dephosphorylation of PP2A targets in vitro and in vivo. Our findings provide a mechanistic explanation for the recurring identification of phenothiazines as a class of drugs with anticancer effects. Furthermore, these data suggest that pharmacologic PP2A activation in T-ALL and other cancers driven by hyperphosphorylated PP2A substrates has therapeutic potential.
Collapse
|
32
|
Zhou S, Wang F, Zhang Y, Johnson MR, Qian S, Wu M, Wu E. Salinomycin Suppresses PDGFRβ, MYC, and Notch Signaling in Human Medulloblastoma. AUSTIN JOURNAL OF PHARMACOLOGY AND THERAPEUTICS 2014; 2:1020. [PMID: 25478603 PMCID: PMC4251667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Medulloblastoma (MB) is the most common childhood brain tumor. Despite improved therapy and management, approximately 30% of patients die of the disease. To search for a more effective therapeutic strategy, the effects of salinomycin were tested on cell proliferation, cell death, and cell cycle progression in human MB cell lines. The results demonstrated that salinomycin inhibits cell proliferation, induces cell death , and disrupts cell cycle progression in MB cells. Salinomycin was also tested on the expression levels of key genes involved in proliferation and survival signaling and revealed that salinomycin down-regulates the expression of PDGFRβ, MYC, p21 and Bcl-2 as well as up-regulates the expression of cyclin A. In addition, the results reveal that salinomycin suppresses the expression of Hes1 and Hes5 in MB cells. Our data shed light on the potential of using salinomycin as a novel therapeutic agent for patients with MB.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Pharmaceutical Sciences, North Dakota State University, USA
| | - Fengfei Wang
- Department of Pharmaceutical Sciences, North Dakota State University, USA
| | - Ying Zhang
- Department of Pharmaceutical Sciences, North Dakota State University, USA
| | - Max R Johnson
- Retina Consultants Ltd and University of North Dakota, USA
| | - Steven Qian
- Department of Pharmaceutical Sciences, North Dakota State University, USA
| | - Min Wu
- Department of Basic Sciences, University of North Dakota, USA
| | - Erxi Wu
- Department of Pharmaceutical Sciences, North Dakota State University, USA
| |
Collapse
|
33
|
Hales EC, Taub JW, Matherly LH. New insights into Notch1 regulation of the PI3K–AKT–mTOR1 signaling axis: Targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal 2014; 26:149-61. [DOI: 10.1016/j.cellsig.2013.09.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 02/01/2023]
|
34
|
Carofino BL, Ayanga B, Justice MJ. A mouse model for inducible overexpression of Prdm14 results in rapid-onset and highly penetrant T-cell acute lymphoblastic leukemia (T-ALL). Dis Model Mech 2013; 6:1494-506. [PMID: 24046360 PMCID: PMC3820272 DOI: 10.1242/dmm.012575] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/30/2013] [Indexed: 01/02/2023] Open
Abstract
PRDM14 functions in embryonic stem cell (ESC) maintenance to promote the expression of pluripotency-associated genes while suppressing differentiation genes. Expression of PRDM14 is tightly regulated and typically limited to ESCs and primordial germ cells; however, aberrant expression is associated with tumor initiation in a wide variety of human cancers, including breast cancer and leukemia. Here, we describe the generation of a Cre-recombinase-inducible mouse model for the spatial and temporal control of Prdm14 misexpression [ROSA26 floxed-stop Prdm14 (R26PR)]. When R26PR is mated to either of two Cre lines, Mx1-cre or MMTV-cre, mice develop early-onset T-cell acute lymphoblastic leukemia (T-ALL) with median overall survival of 41 and 64 days for R26PR;Mx1-cre and R26PR;MMTV-cre, respectively. T-ALL is characterized by the accumulation of immature single-positive CD8 cells and their widespread infiltration. Leukemia is preceded by a dramatic expansion of cells resembling hematopoietic stem cells and lymphoid-committed progenitors prior to disease onset, accompanied by a blockage in B-cell differentiation at the early pro-B stage. Rapid-onset PRDM14-induced T-ALL requires factors that are present in stem and progenitor cells: R26PR;dLck-cre animals, which express Prdm14 starting at the double-positive stage of thymocyte development, do not develop disease. PRDM14-induced leukemic cells contain high levels of activated NOTCH1 and downstream NOTCH1 targets, including MYC and HES1, and are sensitive to pharmacological inhibition of NOTCH1 with the γ-secretase inhibitor DAPT. Greater than 50% of human T-ALLs harbor activating mutations in NOTCH1; thus, our model carries clinically relevant molecular aberrations. The penetrance, short latency and involvement of the NOTCH1 pathway will make this hematopoietic R26PR mouse model ideal for future studies on disease initiation, relapse and novel therapeutic drug combinations. Furthermore, breeding R26PR to additional Cre lines will allow for the continued development of novel cancer models.
Collapse
Affiliation(s)
- Brandi L. Carofino
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bernard Ayanga
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
35
|
El Hindy N, Keyvani K, Pagenstecher A, Dammann P, Sandalcioglu IE, Sure U, Zhu Y. Implications of Dll4-Notch signaling activation in primary glioblastoma multiforme. Neuro Oncol 2013; 15:1366-78. [PMID: 23787764 DOI: 10.1093/neuonc/not071] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive brain tumor characterized by massive neovascularization, necrosis, and intense resistance to therapy. Deregulated Notch signaling has been implicated in the formation and progression of different malignancies. The present study attempted to investigate the activation status of Dll4-Notch signaling in primary human GBM and its association with vascular and clinical parameters in patients. METHODS Major components of Dll4-Notch signaling were examined by real-time reverse-transcription polymerase chain reaction (PCR), Western blotting, and immunohistochemistry in GBM (n = 26) and control (n = 11) brain tissue. The vascular pattern (VP) and microvascular density (MVD) were analyzed after laminin immunostaining. O6-Methylguanine-methyltransferase (MGMT) promoter methylation in GBM samples was detected by methylation-specific PCR. RESULTS The mRNA levels of Dll4, Jagged1, Notch1, Notch4, Hey1, Hey2, Hes1, and VEGF were 3.12-, 3.58-, 3.37-, 5.77-, 4.89-, 3.13-, 6.62-, and 32.57-fold elevated, respectively, in GBM samples, compared with the controls. Western blotting revealed a 4-, 3.7-, and 45.6-fold upregulation of Dll4, Notch1, and Hey1, respectively, accompanied by a downregulation of PTEN expression and an increase in the expression of p-Akt and VEGF. Immunostaining located the immunoreactivity of Dll4 and Notch1 in endothelial cells, microglia/macrophages, tumor cells, and astrocytes. Furthermore, the upregulation of Dll4-Notch signaling components was correlated to a low MVD and was potentially related to a classic VP, tumor edema, and MGMT promoter methylation. CONCLUSIONS The upregulation of Dll4-Notch signaling components was found in a subset of GBM samples and was associated with some angiogenic and clinical parameters. These findings highlight this signaling pathway as a potential therapeutic target for patients with GBM who show an activation of Dll4-Notch signaling.
Collapse
Affiliation(s)
- Nicolai El Hindy
- Corresponding Author: Dr. Yuan Zhu, PhD, Department of Neurosurgery, University of Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN HEMATOLOGY 2013; 2013:348212. [PMID: 23431463 PMCID: PMC3569899 DOI: 10.1155/2013/348212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
The initial response of lymphoid malignancies to glucocorticoids (GCs) is a critical parameter predicting successful treatment. Although being known as a strong inducer of apoptosis in lymphoid cells for almost a century, the signaling pathways regulating the susceptibility of the cells to GCs are only partly revealed. There is still a need to develop clinical tests that can predict the outcome of GC therapy. In this paper, I discuss important parameters modulating the pro-apoptotic effects of GCs, with a specific emphasis on the microRNA world comprised of small players with big impacts. The journey through the multifaceted complexity of GC-induced apoptosis brings forth explanations for the differential treatment response and raises potential strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Ein-Kerem, 91120 Jerusalem, Israel
| |
Collapse
|
37
|
Villamor N, Conde L, Martínez-Trillos A, Cazorla M, Navarro A, Beà S, López C, Colomer D, Pinyol M, Aymerich M, Rozman M, Abrisqueta P, Baumann T, Delgado J, Giné E, González-Díaz M, Hernández JM, Colado E, Payer AR, Rayon C, Navarro B, José Terol M, Bosch F, Quesada V, Puente XS, López-Otín C, Jares P, Pereira A, Campo E, López-Guillermo A. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia 2012; 27:1100-6. [DOI: 10.1038/leu.2012.357] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Martelli AM, Chiarini F, Evangelisti C, Cappellini A, Buontempo F, Bressanin D, Fini M, McCubrey JA. Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment. Oncotarget 2012; 3:371-94. [PMID: 22564882 PMCID: PMC3380573 DOI: 10.18632/oncotarget.477] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) are two key components of the PI3K/Akt/mTOR signaling pathway. This signal transduction cascade regulates a wide range of physiological cell processes, that include differentiation, proliferation, apoptosis, autophagy, metabolism, motility, and exocytosis. However, constitutively active PI3K/Akt/mTOR signaling characterizes many types of tumors where it negatively influences response to therapeutic treatments. Hence, targeting PI3K/Akt/mTOR signaling with small molecule inhibitors may improve cancer patient outcome. The PI3K/Akt/mTOR signaling cascade is overactive in acute leukemias, where it correlates with enhanced drug-resistance and poor prognosis. The catalytic sites of PI3K and mTOR share a high degree of sequence homology. This feature has allowed the synthesis of ATP-competitive compounds targeting the catalytic site of both kinases. In preclinical models, dual PI3K/mTOR inhibitors displayed a much stronger cytotoxicity against acute leukemia cells than either PI3K inhibitors or allosteric mTOR inhibitors, such as rapamycin. At variance with rapamycin, dual PI3K/mTOR inhibitors targeted both mTOR complex 1 and mTOR complex 2, and inhibited the rapamycin-resistant phosphorylation of eukaryotic initiation factor 4E-binding protein 1, resulting in a marked inhibition of oncogenic protein translation. Therefore, they strongly reduced cell proliferation and induced an important apoptotic response. Here, we reviewed the evidence documenting that dual PI3K/mTOR inhibitors may represent a promising option for future targeted therapies of acute leukemia patients.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Human Anatomy, University of Bologna, Cellular Signalling Laboratory, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yamamoto-Sugitani M, Kuroda J, Shimura Y, Nagoshi H, Chinen Y, Ohshiro M, Mizutani S, Kiyota M, Nakayama R, Kobayashi T, Uchiyama H, Matsumoto Y, Horiike S, Taniwaki M. Comprehensive cytogenetic study of primary cutaneous gamma-delta T-cell lymphoma by means of spectral karyotyping and genome-wide single nucleotide polymorphism array. Cancer Genet 2012; 205:459-64. [DOI: 10.1016/j.cancergen.2012.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/13/2012] [Accepted: 05/14/2012] [Indexed: 01/14/2023]
|
40
|
Letouzé E, Rosati R, Komechen H, Doghman M, Marisa L, Flück C, de Krijger RR, van Noesel MM, Mas JC, Pianovski MAD, Zambetti GP, Figueiredo BC, Lalli E. SNP array profiling of childhood adrenocortical tumors reveals distinct pathways of tumorigenesis and highlights candidate driver genes. J Clin Endocrinol Metab 2012; 97:E1284-E1293. [PMID: 22539591 DOI: 10.1210/jc.2012-1184] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Childhood adrenocortical tumors (ACT) are rare malignancies, except in southern Brazil, where a higher incidence rate is associated to a high frequency of the founder R337H TP53 mutation. To date, copy number alterations in these tumors have only been analyzed by low-resolution comparative genomic hybridization. OBJECTIVE We analyzed an international series of 25 childhood ACT using high-resolution single nucleotide polymorphism arrays to: 1) detect focal copy number alterations highlighting candidate driver genes; and 2) compare genetic alterations between Brazilian patients carrying the R337H TP53 mutation and non-Brazilian patients. RESULTS We identified 16 significantly recurrent chromosomal alterations (q-value < 0.05), the most frequent being -4q34, +9q33-q34, +19p, loss of heterozygosity (LOH) of chromosome 17 and 11p15. Focal amplifications and homozygous deletions comprising well-known oncogenes (MYC, MDM2, PDGFRA, KIT, MCL1, BCL2L1) and tumor suppressors (TP53, RB1, RPH3AL) were identified. In addition, eight focal deletions were detected at 4q34, defining a sharp peak region around the noncoding RNA LINC00290 gene. Although non-Brazilian tumors with a mutated TP53 were similar to Brazilian tumors, those with a wild-type TP53 displayed distinct genomic profiles, with significantly fewer rearrangements (P = 0.019). In particular, three alterations (LOH of chromosome 17, +9q33-q34, and -4q34) were significantly more frequent in TP53-mutated samples. Finally, two of four TP53 wild-type tumors displayed as sole rearrangement a copy-neutral LOH of the imprinted region at 11p15, supporting a major role for this region in ACT development. CONCLUSIONS Our findings highlight potential driver genes and cellular pathways implicated in childhood ACT and demonstrate the existence of different oncogenic routes in this pathology.
Collapse
Affiliation(s)
- Eric Letouzé
- Program Cartes d'Identité des Tumeurs, Ligue Nationale Contre Le Cancer, 14 rue Corvisart, 75013 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Mirandola L, Chiriva-Internati M, Montagna D, Locatelli F, Zecca M, Ranzani M, Basile A, Locati M, Cobos E, Kast WM, Asselta R, Paraboschi EM, Comi P, Chiaramonte R. Notch1 regulates chemotaxis and proliferation by controlling the CC-chemokine receptors 5 and 9 in T cell acute lymphoblastic leukaemia. J Pathol 2011; 226:713-22. [PMID: 21984373 DOI: 10.1002/path.3015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 09/04/2011] [Accepted: 09/26/2011] [Indexed: 12/24/2022]
Abstract
Tumour cells often express deregulated profiles of chemokine receptors that regulate cancer cell migration and proliferation. Notch1 pathway activation is seen in T cell acute lymphoblastic leukaemia (T-ALL) due to the high frequency of Notch1 mutations affecting approximately 60% of patients, causing ligand-independent signalling and/or prolonging Notch1 half-life. We have investigated the possible regulative role of Notch1 on the expression and function of chemokine receptors CCR5, CCR9 and CXCR4 that play a role in determining blast malignant properties and localization of extramedullary infiltrations in leukaemia. We inhibited the pathway through γ-Secretase inhibitor and Notch1 RNA interference and analysed the effect on the expression and function of chemokine receptors. Our results indicate that γ-Secretase inhibitor negatively regulates the transcription level of the CC chemokine receptors 5 and 9 in T-ALL cell lines and patients' primary leukaemia cells, leaving CXCR4 expression unaltered. The Notch pathway also controls CCR5- and CCR9-mediated biological effects, ie chemotaxis and proliferation. Furthermore, engaging CCR9 through CCL25 administration rescues proliferation inhibition associated with abrogation of Notch activity. Finally, through RNA interference we demonstrated that the oncogenic isoform in T-ALL, Notch1, plays a role in controlling CCR5 and CCR9 expression and functions. These findings suggest that Notch1, acting in concert with chemokine receptors pathways, may provide leukaemia cells with proliferative advantage and specific chemotactic abilities, therefore influencing tumour cell progression and localization.
Collapse
Affiliation(s)
- Leonardo Mirandola
- Department of Medicine, Surgery and Dentistry, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Hematopoiesis is a process capable of generating millions of cells every second, as distributed in many cell types. The process is regulated by a number of transcription factors that regulate the differentiation along the distinct lineages and dictate the genetic program that defines each mature phenotype. Myc was first discovered as the oncogene of avian leukemogenic retroviruses; it was later found translocated in human lymphoma. From then on, evidence accumulated showing that c-Myc is one of the transcription factors playing a major role in hematopoiesis. The study of genetically modified mice with overexpression or deletion of Myc has shown that c-Myc is required for the correct balance between self-renewal and differentiation of hematopoietic stem cells (HSCs). Enforced Myc expression in mice leads to reduced HSC pools owing to loss of self-renewal activity at the expense of increased proliferation of progenitor cells and differentiation. c-Myc deficiency consistently results in the accumulation of HSCs. Other models with conditional Myc deletion have demonstrated that different lineages of hematopoietic cells differ in their requirement for c-Myc to regulate their proliferation and differentiation. When transgenic mice overexpress c-Myc or N-Myc in mature cells from the lymphoid or myeloid lineages, the result is lymphoma or leukemia. In agreement, enforced expression of c-Myc blocks the differentiation in several leukemia-derived cell lines capable of differentiating in culture. Not surprising, MYC deregulation is recurrently found in many types of human lymphoma and leukemia. Whereas MYC is deregulated by translocation in Burkitt lymphoma and, less frequently, other types of lymphoma, MYC is frequently overexpressed in acute lymphoblastic and myeloid leukemia, through mechanisms unrelated to chromosomal translocation, and is often associated with disease progression.
Collapse
Affiliation(s)
- M Dolores Delgado
- Departamento de Biología Molecular, Facultad de Medicina and Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | | |
Collapse
|
44
|
Sulis ML, Saftig P, Ferrando AA. Redundancy and specificity of the metalloprotease system mediating oncogenic NOTCH1 activation in T-ALL. Leukemia 2011; 25:1564-9. [PMID: 21625236 PMCID: PMC3165074 DOI: 10.1038/leu.2011.130] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 04/15/2011] [Accepted: 05/02/2011] [Indexed: 02/04/2023]
Abstract
Oncogenic mutations in NOTCH1 are present in over 50% of T-cell lymphoblastic leukemias (T-ALLs). Activation of NOTCH1 requires a double proteolytic processing in the extracellular region of the receptor (S2) and in the transmembrane domain (S3). Currently, anti-NOTCH1 therapies based on the inhibition of S3 processing via small molecule γ-secretase inhibitors are in development. Here we report on the characterization of the protease system responsible for S2 processing of NOTCH1 in T-ALL. Analysis of NOTCH1 heterodimerization (HD) class I, NOTCH1 HD class II and NOTCH1 JME alleles characterized by increased and aberrant S2 processing shows that both ADAM10 (a disintegrin and metalloprotease 10), a metalloprotease previously implicated in activation of wild-type NOTCH1 in mammalian cells, and ADAM17, a closely related protease capable of processing NOTCH1 in vitro, contribute to the activation of oncogenic forms of NOTCH1. However, and despite this apparent functional redundancy, inhibition of ADAM10 is sufficient to blunt NOTCH1 signaling in T-ALL lymphoblasts. These results provide further insight on the mechanisms that control the activation of oncogenic NOTCH1 mutants and identify ADAM10 as potential therapeutic target for the inhibition of oncogenic NOTCH1 in T-ALL.
Collapse
Affiliation(s)
- M L Sulis
- Division of Pediatric Oncology, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
45
|
De Weer A, Van der Meulen J, Rondou P, Taghon T, Konrad TA, De Preter K, Mestdagh P, Van Maerken T, Van Roy N, Jeison M, Yaniv I, Cauwelier B, Noens L, Poirel HA, Vandenberghe P, Lambert F, De Paepe A, Sánchez MG, Odero M, Verhasselt B, Philippé J, Vandesompele J, Wieser R, Dastugue N, Van Vlierberghe P, Poppe B, Speleman F. EVI1-mediated down regulation of MIR449A is essential for the survival of EVI1 positive leukaemic cells. Br J Haematol 2011; 154:337-48. [PMID: 21569010 DOI: 10.1111/j.1365-2141.2011.08737.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chromosomal rearrangements involving the MECOM (MDS1 and EVI1 complex) locus are recurrent genetic events in myeloid leukaemia and are associated with poor prognosis. In this study, we assessed the role of MECOM locus protein EVI1 in the transcriptional regulation of microRNAs (miRNAs) involved in the leukaemic phenotype. For this, we profiled expression of 366 miRNAs in 38 MECOM-rearranged patient samples, normal bone marrow controls and MECOM (EVI1) knock down/re-expression models. Cross-comparison of these miRNA expression profiling data showed that MECOM rearranged leukaemias are characterized by down regulation of MIR449A. Reconstitution of MIR449A expression in MECOM-rearranged cell line models induced apoptosis resulting in a strong decrease in cell viability. These effects might be mediated in part by MIR449A regulation of NOTCH1 and BCL2, which are shown here to be bona fide MIR449A targets. Finally, we confirmed that MIR449A repression is mediated through direct promoter occupation of the EVI1 transcriptional repressor. In conclusion, this study reveals MIR449A as a crucial direct target of the MECOM locus protein EVI1 involved in the pathogenesis of MECOM-rearranged leukaemias and unravels NOTCH1 and BCL2 as important novel targets of MIR449A. This EVI1-MIR449A-NOTCH1/BCL2 regulatory axis might open new possibilities for the development of therapeutic strategies in this poor prognostic leukaemia subgroup.
Collapse
Affiliation(s)
- An De Weer
- Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Crosstalk between NOTCH and AKT signaling during murine megakaryocyte lineage specification. Blood 2011; 118:1264-73. [PMID: 21653327 DOI: 10.1182/blood-2011-01-328567] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The NOTCH signaling pathway is implicated in a broad range of developmental processes, including cell fate decisions. However, the molecular basis for its role at the different steps of stem cell lineage commitment is unclear. We recently identified the NOTCH signaling pathway as a positive regulator of megakaryocyte lineage specification during hematopoiesis, but the developmental pathways that allow hematopoietic stem cell differentiation into the erythro-megakaryocytic lineages remain controversial. Here, we investigated the role of downstream mediators of NOTCH during megakaryopoiesis and report crosstalk between the NOTCH and PI3K/AKT pathways. We demonstrate the inhibitory role of phosphatase with tensin homolog and Forkhead Box class O factors on megakaryopoiesis in vivo. Finally, our data annotate developmental mechanisms in the hematopoietic system that enable a decision to be made either at the hematopoietic stem cell or the committed progenitor level to commit to the megakaryocyte lineage, supporting the existence of 2 distinct developmental pathways.
Collapse
|
47
|
Therapy-related T-cell lymphoblastic lymphoma and inv(11)(q21q23) following acute promyelocytic leukemia chemotherapy. J Hematop 2011. [DOI: 10.1007/s12308-011-0100-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
48
|
Posttranscriptional deregulation of MYC via PTEN constitutes a major alternative pathway of MYC activation in T-cell acute lymphoblastic leukemia. Blood 2011; 117:6650-9. [PMID: 21527520 DOI: 10.1182/blood-2011-02-336842] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cumulative evidence indicates that MYC, one of the major downstream effectors of NOTCH1, is a critical component of T-cell acute lymphoblastic leukemia (T-ALL) oncogenesis and a potential candidate for targeted therapy. However, MYC is a complex oncogene, involving both fine protein dosage and cell-context dependency, and detailed understanding of MYC-mediated oncogenesis in T-ALL is still lacking. To better understand how MYC is interspersed in the complex T-ALL oncogenic networks, we performed a thorough molecular and biochemical analysis of MYC activation in a comprehensive collection of primary adult and pediatric patient samples. We find that MYC expression is highly variable, and that high MYC expression levels can be generated in a large number of cases in absence of NOTCH1/FBXW7 mutations, suggesting the occurrence of multiple activation pathways in addition to NOTCH1. Furthermore, we show that posttranscriptional deregulation of MYC constitutes a major alternative pathway of MYC activation in T-ALL, operating partly via the PI3K/AKT axis through down-regulation of PTEN, and that NOTCH1(m) might play a dual transcriptional and posttranscriptional role in this process. Altogether, our data lend further support to the significance of therapeutic targeting of MYC and/or the PTEN/AKT pathways, both in GSI-resistant and identified NOTCH1-independent/MYC-mediated T-ALL patients.
Collapse
|
49
|
Kannan S, Fang W, Song G, Mullighan CG, Hammitt R, McMurray J, Zweidler-McKay PA. Notch/HES1-mediated PARP1 activation: a cell type-specific mechanism for tumor suppression. Blood 2011; 117:2891-900. [PMID: 21224467 PMCID: PMC3062299 DOI: 10.1182/blood-2009-12-253419] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Notch signaling plays both oncogenic and tumor suppressor roles, depending on cell type. In contrast to T-cell acute lymphoblastic leukemia (ALL), where Notch activation promotes leukemogenesis, induction of Notch signaling in B-cell ALL (B-ALL) leads to growth arrest and apoptosis. The Notch target Hairy/Enhancer of Split1 (HES1) is sufficient to reproduce this tumor suppressor phenotype in B-ALL; however, the mechanism is not yet known. We report that HES1 regulates proapoptotic signals by the novel interacting protein Poly ADP-Ribose Polymerase1 (PARP1) in a cell type-specific manner. Interaction of HES1 with PARP1 inhibits HES1 function, induces PARP1 activation, and results in PARP1 cleavage in B-ALL. HES1-induced PARP1 activation leads to self-ADP ribosylation of PARP1, consumption of nicotinamide adenine dinucleotide(+), diminished adenosine triphosphate levels, and translocation of apoptosis-inducing factor from mitochondria to the nucleus, resulting in apoptosis in B-ALL but not T-cell ALL. Importantly, induction of Notch signaling by the Notch agonist peptide Delta/Serrate/Lag-2 can reproduce these events and leads to B-ALL apoptosis. The novel interaction of HES1 and PARP1 in B-ALL modulates the function of the HES1 transcriptional complex and signals through PARP1 to induce apoptosis. This mechanism shows a cell type-specific proapoptotic pathway that may lead to Notch agonist-based cancer therapeutics.
Collapse
Affiliation(s)
- Sankaranarayanan Kannan
- Division of Pediatrics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Graux C. Biology of acute lymphoblastic leukemia (ALL): clinical and therapeutic relevance. Transfus Apher Sci 2011; 44:183-9. [PMID: 21354375 DOI: 10.1016/j.transci.2011.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute lymphoblastic leukemia is a heterogeneous disease comprising several clinico-biological entities. Karyotyping of leukemic cells identifies recurrent chromosome rearrangements. These are usually translocations that activate genes encoding transcription factor regulating B- or T-cell differentiation. Gene expression-array confirms the prognostic relevance of ALL subgroups identified by specific chromosomal rearrangements and isolates new subgroups. Analysis of genomic copy number changes and high throughput sequencing reveal new cryptic deletions. The challenge is now to understand how these cooperative genetic lesions interact in order to have the molecular rationales needed to select new therapeutic targets and to develop and combine inhibitors with high levels of anti-leukemic specificity. The aim of this paper is to provide some data on the biology of acute lymphoblastic leukemia which are relevant in clinical practice.
Collapse
Affiliation(s)
- Carlos Graux
- Department of Hematology, University Hospital UCL, Mont-Godinne, Yvoir, Belgium.
| |
Collapse
|