1
|
Fukui-Morimoto A, Serizawa K, Fujimoto K, Hanamoto A, Iwata Y, Kakutani H, Kumode T, Hirase C, Morita Y, Tatsumi Y, Hanamoto H, Tanaka H, Matsumura I. CD34 + and CD34 - MM cells show different immune-checkpoint molecule expression profiles: high expression of CD112 and CD137 ligand on CD34 + MM cells. Int J Hematol 2025; 121:89-99. [PMID: 39531203 PMCID: PMC11742359 DOI: 10.1007/s12185-024-03867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Despite the introduction of new drugs, multiple myeloma (MM) still remains incurable. We previously reported that CD34+ MM cells, which are clonogenic and self-renewing, are therapy-resistant and persist as a major component of minimal residual disease, expanding during relapse. To investigate the effects of immunotherapies such as immune-checkpoint inhibitors, CAR-T therapy, and bispecific antibodies on CD34+ MM cells, we analyzed immune profiles of both MM cells and T cells from MM patients using microarrays and flow cytometry. Ingenuity pathway analysis revealed 14 out of 289 canonical pathways were more active in CD34+ MM cells compared to CD34- cells, many of which were involved in inflammation and immune responses. Notably, PD-1 signaling-related genes were highly expressed in CD34+ MM cells. Among 10 immune-checkpoint molecules, CD34+ cells more frequently expressed CD112, CD137L, CD270, CD275, and GAL9 than CD34- cells in both newly diagnosed and relapsed/resistant patients. In addition, CD4+ and CD8+ T cells more frequently expressed TIGIT and CD137, suggesting that CD112/TIGIT and CD137L/CD137 interactions may suppress T-cell activity against CD34+ MM cells. Furthermore, our finding of higher FcRH5 expression on CD34+ MM cells is encouraging for future research into the efficacy of FcRH5-targeted therapy in MM.
Collapse
Affiliation(s)
- Ayano Fukui-Morimoto
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 5898511, Japan
| | - Kentaro Serizawa
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 5898511, Japan.
| | - Ko Fujimoto
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 5898511, Japan
| | - Aki Hanamoto
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 5898511, Japan
| | - Yoshio Iwata
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 5898511, Japan
| | - Hiroaki Kakutani
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 5898511, Japan
| | - Takahiro Kumode
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 5898511, Japan
| | - Chikara Hirase
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 5898511, Japan
| | - Yasuyoshi Morita
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 5898511, Japan
| | - Yoichi Tatsumi
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 5898511, Japan
| | - Hitoshi Hanamoto
- Department of Hematology, Kindai University Nara Hospital, Ikoma, Nara, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 5898511, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 5898511, Japan
| |
Collapse
|
2
|
Malyshkina A, Bayer W, Podschwadt P, Otto L, Karakoese Z, Sutter K, Bruderek K, Wang B, Lavender KJ, Santiago ML, Leipe PM, Elsner C, Esser S, Brandau S, Gunzer M, Dittmer U. Immunotherapy-induced cytotoxic T follicular helper cells reduce numbers of retrovirus-infected reservoir cells in B cell follicles. PLoS Pathog 2023; 19:e1011725. [PMID: 37883584 PMCID: PMC10602292 DOI: 10.1371/journal.ppat.1011725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Antiretroviral therapy (ART) transformed HIV from a life-threatening disease to a chronic condition. However, eliminating the virus remains an elusive therapy goal. For several decades, Friend virus (FV) infection serves as a murine model to study retrovirus immunity. Similar to HIV, FV persists at low levels in lymph nodes B cell follicles avoiding elimination by immune cells. Such immune-privileged reservoirs exclude cytotoxic T cells from entry. However, CXCR5+ T cells are permitted to traffic through germinal centers. This marker is predominantly expressed by CD4+ follicular helper T cells (Tfh). Therefore, we explored immunotherapy to induce cytotoxic Tfh, which are rarely found under physiological conditions. The TNF receptor family member CD137 was first identified as a promising target for cancer immunotherapy. We demonstrated that FV-infected mice treatment with αCD137 antibody resulted in an induction of the cytotoxic program in Tfh. The therapy significantly increased numbers of cytotoxic Tfh within B cell follicles and contributed to viral load reduction. Moreover, αCD137 antibody combined with ART delayed virus rebound upon treatment termination without disturbing the lymph node architecture or antibody responses. Thus, αCD137 antibody therapy might be a novel strategy to target the retroviral reservoir and an interesting approach for HIV cure research.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philip Podschwadt
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lucas Otto
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zehra Karakoese
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Kirsten Bruderek
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Baoxiao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kerry J. Lavender
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Pia Madeleine Leipe
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Esser
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Translational HIV Research, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Li Y, Xie S, Chen M, Li H, Wang Y, Fan Y, An K, Wu Y, Xiao W. Development of an antibody-ligand fusion protein scFvCD16A -sc4-1BBL in Komagataella phaffii with stimulatory activity for Natural Killer cells. Microb Cell Fact 2023; 22:67. [PMID: 37041591 PMCID: PMC10091686 DOI: 10.1186/s12934-023-02082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Natural killer (NK) cell-based immunotherapies have demonstrated substantial potential for the treatment of hematologic malignancies. However, its application is limited due to the difficulty in the production of a large number of NK cells in vitro and the insufficient therapeutic efficacy against solid tumors in vivo. Engineered antibodies or fusion proteins targeting activating receptors and costimulatory molecules of NK cells have been developed to encounter these problems. They are mostly produced in mammalian cells with high cost and long processing times. Yeast systems, such as Komagataella phaffii, present a convenient manipulation of microbial systems with the key advantages of improved folding machinery and low cost. RESULTS In this study, we designed an antibody fusion protein scFvCD16A-sc4-1BBL, composed of the single chain variant fragment (scFv) of anti-CD16A antibody and the three extracellular domains (ECDs) of human 4-1BBL in a single-chain format (sc) with the GS linker, aiming to boost NK cell proliferation and activation. This protein complex was produced in the K. phaffii X33 system and purified by affinity chromatography and size exclusion chromatography. The scFvCD16A-sc4-1BBL complex showed comparable binding abilities to its two targets human CD16A and 4-1BB as its two parental moieties (scFvCD16A and monomer ECD (mn)4-1BBL). scFvCD16A-sc4-1BBL specifically stimulated the expansion of peripheral blood mononuclear cell (PBMC)-derived NK cells in vitro. Furthermore, in the ovarian cancer xenograft mouse model, adoptive NK cell infusion combined with intraperitoneal (i.p) injection of scFvCD16A-sc4-1BBL further reduced the tumor burden and prolonged the survival time of mice. CONCLUSION Our studies demonstrate the feasibility of the expression of the antibody fusion protein scFvCD16A-sc4-1BBL in K. phaffii with favourable properties. scFvCD16A-sc4-1BBL stimulates PBMC-derived NK cell expansion in vitro and improves the antitumor activity of adoptively transferred NK cells in a murine model of ovarian cancer and may serve as a synergistic drug for NK immunotherapy in future research and applications.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Siqi Xie
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Minhua Chen
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Hao Li
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yehai Wang
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yan Fan
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Kang An
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yu Wu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Weihua Xiao
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
4
|
Larrayoz M, Garcia-Barchino MJ, Celay J, Etxebeste A, Jimenez M, Perez C, Ordoñez R, Cobaleda C, Botta C, Fresquet V, Roa S, Goicoechea I, Maia C, Lasaga M, Chesi M, Bergsagel PL, Larrayoz MJ, Calasanz MJ, Campos-Sanchez E, Martinez-Cano J, Panizo C, Rodriguez-Otero P, Vicent S, Roncador G, Gonzalez P, Takahashi S, Katz SG, Walensky LD, Ruppert SM, Lasater EA, Amann M, Lozano T, Llopiz D, Sarobe P, Lasarte JJ, Planell N, Gomez-Cabrero D, Kudryashova O, Kurilovich A, Revuelta MV, Cerchietti L, Agirre X, San Miguel J, Paiva B, Prosper F, Martinez-Climent JA. Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma. Nat Med 2023; 29:632-645. [PMID: 36928817 PMCID: PMC10033443 DOI: 10.1038/s41591-022-02178-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 12/09/2022] [Indexed: 03/17/2023]
Abstract
The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of ∼500 mice and ∼1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials.
Collapse
Affiliation(s)
- Marta Larrayoz
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Maria J Garcia-Barchino
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Jon Celay
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Amaia Etxebeste
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Maddalen Jimenez
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Cristina Perez
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Raquel Ordoñez
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Cesar Cobaleda
- Immune System Development and Function Unit, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas/Universidad Autonoma, Madrid, Spain
| | - Cirino Botta
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Vicente Fresquet
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Sergio Roa
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Ibai Goicoechea
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Catarina Maia
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Miren Lasaga
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Marta Chesi
- Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - P Leif Bergsagel
- Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Maria J Larrayoz
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Maria J Calasanz
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Elena Campos-Sanchez
- Immune System Development and Function Unit, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas/Universidad Autonoma, Madrid, Spain
| | - Jorge Martinez-Cano
- Immune System Development and Function Unit, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas/Universidad Autonoma, Madrid, Spain
| | - Carlos Panizo
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Paula Rodriguez-Otero
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Silvestre Vicent
- Program in Solid Tumors, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBERONC, Pamplona, Spain
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Biotechnology Program, Spanish National Cancer Research Centre CNIO, Madrid, Spain
| | - Patricia Gonzalez
- Monoclonal Antibodies Unit, Biotechnology Program, Spanish National Cancer Research Centre CNIO, Madrid, Spain
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shannon M Ruppert
- Oncology Biomarker Development, Genentech, South San Francisco, CA, USA
| | - Elisabeth A Lasater
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Diana Llopiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Juan J Lasarte
- Program of Immunology and Immunotherapy, Center for Applied Medical Research CIMA, University of Navarra, IDISNA, CIBEREHD, Pamplona, Spain
| | - Nuria Planell
- Translational Bioinformatics Unit, Navarra-Biomed, Public University of Navarra, IDISNA, Pamplona, Spain
| | - David Gomez-Cabrero
- Translational Bioinformatics Unit, Navarra-Biomed, Public University of Navarra, IDISNA, Pamplona, Spain
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science & Technology, Thuwal, Kingdom of Saudi Arabia
| | | | | | - Maria V Revuelta
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Leandro Cerchietti
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Xabier Agirre
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
| | - Jesus San Miguel
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Bruno Paiva
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Felipe Prosper
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain
- Department of Hematology, Clinica Universidad de Navarra, CCUN, IDISNA, CIBERONC, Pamplona, Spain
| | - Jose A Martinez-Climent
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, Cancer Center University of Navarra (CCUN), Navarra Institute for Health Research (IDISNA), CIBERONC, Pamplona, Spain.
| |
Collapse
|
5
|
Bulaon CJI, Sun H, Malla A, Phoolcharoen W. Therapeutic efficacy of plant-produced Nivolumab in transgenic C57BL/6-hPD-1 mouse implanted with MC38 colon cancer. BIOTECHNOLOGY REPORTS 2023; 38:e00794. [PMID: 37064962 PMCID: PMC10090705 DOI: 10.1016/j.btre.2023.e00794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/05/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
The therapeutic blockade of inhibitory PD-1 signaling has emerged as an effective approach for cancer immunotherapy. Nivolumab (Opdivo®), a monoclonal antibody (mAb) targeting the PD-1 immune checkpoint, is approved for treatment of several cancer indications. It functions by blocking the PD-1-mediated T-cell inhibition thus reinstating anticancer immune responses. Tremendous advances in plant biotechnology offer an alternative and economical strategy to produce therapeutic mAbs for immune-based therapies. In this study, recombinant anti-PD-1 Nivolumab was produced in Nicotiana benthamiana and the plant-produced anti-PD-1 mAb was exploited for cancer treatment in syngeneic mice model C57BL/6 mice that were used to test the antitumor efficacy of plant produced Nivolumab, along with commercial Opdivo®. C57BL/6 syngeneic mice treated with plant produced anti-PD-1 mAb exhibited reduction in the growth of established MC38 tumors. The plant produced Nivolumab treatment showed 82.9% antitumor effect in decreasing the tumor volume along with 50% tumor-free mice, whereas Opdivo® showed 90.26% reduction in volume without any tumor-free mice. Finally, plant-derived anti-PD-1 therapy was also well tolerated in tumor-bearing mice that correlated with no significant body weight changes. Overall, our plant-produced Nivolumab elicits significant inhibition of tumor growth in vivo and provides a proof-of-concept for the production of immunotherapy targeting PD-1.
Collapse
|
6
|
Balakrishnan PB, Ledezma DK, Cano-Mejia J, Andricovich J, Palmer E, Patel VA, Latham PS, Yvon ES, Villagra A, Fernandes R, Sweeney EE. CD137 agonist potentiates the abscopal efficacy of nanoparticle-based photothermal therapy for melanoma. NANO RESEARCH 2022; 15:2300-2314. [PMID: 36089987 PMCID: PMC9455608 DOI: 10.1007/s12274-021-3813-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite the promise of immunotherapy such as the immune checkpoint inhibitors (ICIs) anti-PD-1 and anti-CTLA-4 for advanced melanoma, only 26%-52% of patients respond, and many experience grade III/IV immune-related adverse events. Motivated by the need for an effective therapy for patients non-responsive to clinically approved ICIs, we have developed a novel nanoimmunotherapy that combines locally administered Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) with systemically administered agonistic anti-CD137 monoclonal antibody therapy (aCD137). PBNP-PTT was administered at various thermal doses to melanoma cells in vitro, and was combined with aCD137 in vivo to test treatment effects on melanoma tumor progression, animal survival, immunological protection against tumor rechallenge, and hepatotoxicity. When administered at a melanoma-specific thermal dose, PBNP-PTT elicits immunogenic cell death (ICD) in melanoma cells and upregulates markers associated with antigen presentation and immune cell co-stimulation in vitro. Consequently, PBNP-PTT eliminates primary melanoma tumors in vivo, yielding long-term tumor-free survival. However, the antitumor immune effects generated by PBNP-PTT cannot eliminate secondary tumors, despite significantly slowing their growth. The addition of aCD137 enables significant abscopal efficacy and improvement of survival, functioning through activated dendritic cells and tumor-infiltrating CD8+ T cells, and generates CD4+ and CD8+ T cell memory that manifests in the rejection of tumor rechallenge, with no long-term hepatotoxicity. This study describes for the first time a novel and effective nanoimmunotherapy combination of PBNP-PTT with aCD137 mAb therapy for melanoma.
Collapse
Affiliation(s)
- Preethi Bala Balakrishnan
- GW Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Debbie K. Ledezma
- The Institute for Biomedical Sciences, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Juliana Cano-Mejia
- GW Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Jaclyn Andricovich
- The Institute for Biomedical Sciences, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Erica Palmer
- GW Cancer Center, Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Vishal A. Patel
- Department of Dermatology & Oncology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Patricia S. Latham
- Department of Pathology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Eric S. Yvon
- GW Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Alejandro Villagra
- GW Cancer Center, Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Rohan Fernandes
- GW Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
- The Institute for Biomedical Sciences, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
- ImmunoBlue, Bethesda, MD 20817, USA
| | - Elizabeth E. Sweeney
- GW Cancer Center, Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
- ImmunoBlue, Bethesda, MD 20817, USA
| |
Collapse
|
7
|
Otano I, Azpilikueta A, Glez-Vaz J, Alvarez M, Medina-Echeverz J, Cortés-Domínguez I, Ortiz-de-Solorzano C, Ellmark P, Fritzell S, Hernandez-Hoyos G, Nelson MH, Ochoa MC, Bolaños E, Cuculescu D, Jaúregui P, Sanchez-Gregorio S, Etxeberria I, Rodriguez-Ruiz ME, Sanmamed MF, Teijeira Á, Berraondo P, Melero I. CD137 (4-1BB) costimulation of CD8 + T cells is more potent when provided in cis than in trans with respect to CD3-TCR stimulation. Nat Commun 2021; 12:7296. [PMID: 34911975 PMCID: PMC8674279 DOI: 10.1038/s41467-021-27613-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
CD137 (4-1BB; TNFSR9) is an activation-induced surface receptor that through costimulation effects provide antigen-primed T cells with augmented survival, proliferation and effector functions as well as metabolic advantages. These immunobiological mechanisms are being utilised for cancer immunotherapy with agonist CD137-binding and crosslinking-inducing agents that elicit CD137 intracellular signaling. In this study, side-by-side comparisons show that provision of CD137 costimulation in-cis with regard to the TCR-CD3-ligating cell is superior to that provided in-trans in terms of T cell activation, proliferation, survival, cytokine secretion and mitochondrial fitness in mouse and human. Cis ligation of CD137 relative to the TCR-CD3 complex results in more intense canonical and non-canonical NF-κB signaling and provides a more robust induction of cell cycle and DNA damage repair gene expression programs. Here we report that the superiority of cis versus trans CD137-costimulation is readily observed in vivo and is relevant for understanding the immunotherapeutic effects of CAR T cells and CD137 agonistic therapies currently undergoing clinical trials, which may provide costimulation either in cis or in trans.
Collapse
Affiliation(s)
- Itziar Otano
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre/ Spanish National Cancer Research Center (CNIO), Madrid, Spain.
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain.
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | | | - Ivan Cortés-Domínguez
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Program of Solid Tumours, Cima Universidad de Navarra, Pamplona, Spain
| | - Carlos Ortiz-de-Solorzano
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Program of Solid Tumours, Cima Universidad de Navarra, Pamplona, Spain
| | - Peter Ellmark
- Alligator Bioscience, Lund, Sweden
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | | | | | - María Carmen Ochoa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Elixabet Bolaños
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Doina Cuculescu
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Patricia Jaúregui
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sandra Sanchez-Gregorio
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - María E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Radiation Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- H12O-CNIO Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre/ Spanish National Cancer Research Center (CNIO), Madrid, Spain.
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain.
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
8
|
Grosicki S, Bednarczyk M, Barchnicka A, Grosicka O. Elotuzumab in the treatment of relapsed and refractory multiple myeloma. Future Oncol 2021; 17:1581-1591. [PMID: 33478270 DOI: 10.2217/fon-2020-1088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Multiple myeloma (MM) is still considered an incurable disease. However, drugs with different mechanisms of action that can improve the efficiency of treatment offer hope. Still, there are concerns about an unacceptable increase in toxicity with such regimens. The results of recently published clinical studies of elotuzumab in combination with lenalidomide/dexamethasone or pomalidomide/dexamethasone confirm previous hopes to improve the effect of that treatment. Humanized monoclonal antibodies aimed at SLAMF7 stimulate natural killer cells to fight against MM cells. Elotuzumab used in combination with lenalidomide/dexamethasone or with pomalidomide/dexamethasone is approved by the US FDA to treat patients with relapsed and/or refractory MM. The article is a summary of the recent knowledge about the possibility of using elotuzumab in the treatment of relapsed and/or refractory MM and shows its potential uses in the future.
Collapse
Affiliation(s)
- Sebastian Grosicki
- Department of Hematology & Cancer Prevention, Chorzow, Faculty of Health Sciences, Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Martyna Bednarczyk
- Department of Hematology & Cancer Prevention, Chorzow, Faculty of Health Sciences, Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Agnieszka Barchnicka
- Clinical Department of Hematology & Cancer Prevention, Municipal Hospital, 41-500 Chorzow, Poland
| | - Olga Grosicka
- Institute of Economics, Finance & Management, Faculty of Management & Social Communication, Jagiellonian University, 31-007 Cracow, Poland
| |
Collapse
|
9
|
Modi C, Berim L, Isserow L, Malhotra J, Patel M, Langenfeld J, Aisner J, Almeldin D, Jabbour SK. Combining radiation therapy and immunotherapy for lung cancers: a narrative review. ACTA ACUST UNITED AC 2021; 5. [PMID: 33521559 PMCID: PMC7842553 DOI: 10.21037/shc-20-66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lung cancer remains the leading cause of cancer morbidity and mortality worldwide among both men and women. While surgical resection remains the standard of care for early stage NSCLC, chemoradiation has been a mainstay of treatment for locally advanced non-small-cell lung cancer (LA-NSCLC) patients for decades. Consolidation immunotherapy has improved survival in this subset of patients after conventional chemoradiation, and has emerged as the new standard. The synergy between immunotherapy and radiation, as well as ongoing research on the effects of radiation on the immune system, allows for the exploration of new avenues in the treatment of LA-NSCLC. In addition to the use of durvalumab as consolidative systemic therapy after concurrent chemoradiotherapy for Stage III NSCLC, other combination regimens have been shown to be effective in various disease stages in preclinical and clinical studies. These regimens include CTLA-4 and PD/PDL-1 checkpoint inhibitors combined with radiation treatment. While these combined regimens have demonstrated efficacy, they are not without toxicity, and require additional evaluation when combined with radiation. In this review, we have summarized the immunostimulatory and immunosuppressive effects of radiation therapy. We also evaluate the current evidence and ongoing research supporting the combination of radiotherapy and immunotherapy across early to LA-NSCLC.
Collapse
Affiliation(s)
- Chirag Modi
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Lyudmyla Berim
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Lauren Isserow
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Jyoti Malhotra
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Malini Patel
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - John Langenfeld
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Joseph Aisner
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Doaa Almeldin
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
10
|
Abstract
Multiple myeloma (MM), a bone marrow-resident hematological malignancy of plasma cells, has remained largely incurable despite dramatic improvements in patient outcomes in the era of myeloma-targeted and immunomodulatory agents. It has recently become clear that T cells from MM patients are able to recognize and eliminate myeloma, although this is subverted in the majority of patients who eventually succumb to progressive disease. T cell exhaustion and a suppressive bone marrow microenvironment have been implicated in disease progression, and once these are established, immunotherapy appears largely ineffective. Autologous stem cell transplantation (ASCT) is a standard of care in eligible patients and results in immune effects beyond cytoreduction, including lymphodepletion, T cell priming via immunogenic cell death, and inflammation; all occur within the context of a disrupted bone marrow microenvironment. Recent studies suggest that ASCT reestablishes immune equilibrium and thus represents a logical platform in which to intervene to prevent immune escape. New immunotherapies based on checkpoint inhibition targeting the immune receptor TIGIT and the deletion of suppressive myeloid populations appear attractive, particularly after ASCT. Finally, the immunologically favorable environment created after ASCT may also represent an opportunity for approaches utilizing bispecific antibodies or chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Simone A. Minnie
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Ho SK, Xu Z, Thakur A, Fox M, Tan SS, DiGiammarino E, Zhou L, Sho M, Cairns B, Zhao V, Xiong M, Samayoa J, Forsyth CM, Powers DB, Chao DT, Hollenbaugh D, Alvarez HM, Akamatsu Y. Epitope and Fc-Mediated Cross-linking, but Not High Affinity, Are Critical for Antitumor Activity of CD137 Agonist Antibody with Reduced Liver Toxicity. Mol Cancer Ther 2020; 19:1040-1051. [PMID: 31974274 DOI: 10.1158/1535-7163.mct-19-0608] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/15/2019] [Accepted: 01/17/2020] [Indexed: 11/16/2022]
Abstract
CD137 (TNFRSF9, 4-1BB) agonist antibodies (mAb) have demonstrated potent antitumor activity with memory response while causing hepatotoxicity in mouse models. In clinical trials, the degrees of liver toxicity of anti-CD137 vary from grade 4 transaminitis (urelumab) to nonexistent (utomilumab). To exploit the antitumor potential of CD137 signaling, we identified a new class of CD137 agonist mAbs with strong antitumor potency without significant transaminitis in vivo compared with CD137 agonists previously reported. These mAbs are cross-reactive to mouse and cynomolgus monkey and showed cross-linking-dependent T-cell costimulation activity in vitro Antitumor efficacy was maintained in Fc gamma receptor (FcγR) III-deficient mice but diminished in FcγRIIB-deficient mice, suggesting the critical role for FcγRIIB to provide cross-linking in vivo Interestingly, a single dose of an affinity-reduced variant was sufficient to control tumor growth, but a higher affinity variant did not improve efficacy. These observations suggest that binding epitope and FcγR interaction, but not necessarily high affinity, are important for antitumor efficacy and reduced liver toxicity of CD137 mAb. Our study suggests the possibility of CD137 agonist therapy with improved safety profile in humans.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Apoptosis
- Cell Proliferation
- Chemical and Drug Induced Liver Injury/prevention & control
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Cross-Linking Reagents/chemistry
- Cross-Linking Reagents/metabolism
- Epitopes/immunology
- Female
- Humans
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, IgG/physiology
- Tumor Cells, Cultured
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
Collapse
Affiliation(s)
- Sun K Ho
- AbbVie Biotherapeutics Inc., Redwood City, California
| | - Zhenghai Xu
- AbbVie Biotherapeutics Inc., Redwood City, California
| | | | - Melvin Fox
- AbbVie Biotherapeutics Inc., Redwood City, California
| | - Siu Sze Tan
- AbbVie Biotherapeutics Inc., Redwood City, California
| | | | - Li Zhou
- AbbVie Bioresearch Center, Worcester, Massachusetts
| | - Mien Sho
- AbbVie Biotherapeutics Inc., Redwood City, California
| | | | - Vivian Zhao
- AbbVie Biotherapeutics Inc., Redwood City, California
| | - Mengli Xiong
- AbbVie Biotherapeutics Inc., Redwood City, California
| | - Josue Samayoa
- AbbVie Biotherapeutics Inc., Redwood City, California
| | | | | | - Debra T Chao
- AbbVie Biotherapeutics Inc., Redwood City, California
| | | | | | | |
Collapse
|
12
|
Barsoumian HB, Batra L, Shrestha P, Bowen WS, Zhao H, Egilmez NK, Gomez-Gutierrez JG, Yolcu ES, Shirwan H. A Novel Form of 4-1BBL Prevents Cancer Development via Nonspecific Activation of CD4 + T and Natural Killer Cells. Cancer Res 2019; 79:783-794. [PMID: 30770367 DOI: 10.1158/0008-5472.can-18-2401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/13/2018] [Accepted: 12/28/2018] [Indexed: 01/11/2023]
Abstract
Costimulation through 4-1BB (CD137) receptor generates robust CD8+ T-effector and memory responses. The only known ligand, 4-1BBL, is a trimeric transmembrane protein that has no costimulatory activity as a soluble molecule. Thus, agonistic antibodies to the receptor have been used for cancer immunotherapy in preclinical models and are currently being evaluated in the clinic. Here, we report that treatment with an oligomeric form of the ligand, SA-4-1BBL, as a single agent is able to protect mice against subsequent tumor challenge irrespective of the tumor type. Protection was long-lasting (>8 weeks) and a bona fide property of SA-4-1BBL, as treatment with an agonistic antibody to the 4-1BB receptor was ineffective in generating immune protection against tumor challenge. Mechanistically, SA-4-1BBL significantly expanded IFNγ-expressing, preexisting memory-like CD44+CD4+ T cells and NK cells in naïve mice as compared with the agonistic antibody. In vivo blockade of IFNγ or depletion of CD4+ T or NK cells, but not CD8+ T or B cells, abrogated the immunopreventive effects of SA-4-1BBL against cancer. SA-4-1BBL as a single agent also exhibited robust efficacy in controlling postsurgical recurrences. This work highlights unexpected features of SA-4-1BBL as a novel immunomodulator with implications for cancer immunoprevention and therapy. SIGNIFICANCE: This study demonstrates the unique and unexpected immunomodulatory features of SA-4-1BBL that bridge innate and adaptive immune responses with both preventive and therapeutic efficacy against cancer.
Collapse
Affiliation(s)
- Hampartsoum B Barsoumian
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky.,Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Lalit Batra
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky.,Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Pradeep Shrestha
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky.,Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | | | - Hong Zhao
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky.,Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | | | - Esma S Yolcu
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky. .,Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky.,FasCure Therapeutics, LLC, Louisville, Kentucky
| | - Haval Shirwan
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky. .,Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
13
|
Guillerey C, Nakamura K, Pichler AC, Barkauskas D, Krumeich S, Stannard K, Miles K, Harjunpää H, Yu Y, Casey M, Doban AI, Lazar M, Hartel G, Smith D, Vuckovic S, Teng MW, Bergsagel PL, Chesi M, Hill GR, Martinet L, Smyth MJ. Chemotherapy followed by anti-CD137 mAb immunotherapy improves disease control in a mouse myeloma model. JCI Insight 2019; 5:125932. [PMID: 31194697 DOI: 10.1172/jci.insight.125932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy holds promise for multiple myeloma (MM) patients but little is known about how MM-induced immunosuppression influences response to therapy. Here, we investigated the impact of disease progression on immunotherapy efficacy in the Vk*MYC mouse model. Treatment with agonistic anti-CD137 (4-1BB) mAbs efficiently protected mice when administered early but failed to contain MM growth when delayed more than three weeks after Vk*MYC tumor cell challenge. The quality of CD8+ T cell response to CD137 stimulation was not altered by the presence of MM, but CD8+ T cell numbers were profoundly reduced at the time of treatment. Our data suggest that an insufficient ratio of CD8+ T cells over MM cells (CD8/MM) accounts for the loss of anti-CD137 mAb efficacy. We established serum M-protein levels prior to therapy as a predictive factor of response. Moreover, we developed an in silico model to capture the dynamic interactions between CD8+ T cells and MM cells. Finally, we explored two methods to improve the CD8/MM ratio: anti-CD137 mAb immunotherapy combined with Treg-depletion or administered after chemotherapy treatment with cyclophosphamide or melphalan efficiently reduced MM burden and prolonged survival. Altogether, our data indicate that consolidation treatment with anti-CD137 mAbs might prevent MM relapse.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, The University of Queensland, Herston, Queensland, Australia.,Cancer Immunotherapies Laboratory, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Kyohei Nakamura
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andrea C Pichler
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | - Deborah Barkauskas
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sophie Krumeich
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kimberley Stannard
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kim Miles
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Heidi Harjunpää
- School of Medicine, The University of Queensland, Herston, Queensland, Australia.,Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Yuan Yu
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mika Casey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Mircea Lazar
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | | | | | - Slavica Vuckovic
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Multiple Myeloma Research Group, Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Michele Wl Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - P Leif Bergsagel
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ludovic Martinet
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
14
|
Ochoa MC, Perez-Ruiz E, Minute L, Oñate C, Perez G, Rodriguez I, Zabaleta A, Alignani D, Fernandez-Sendin M, Lopez A, Muntasell A, Sanmamed MF, Paiva B, Lopez-Botet M, Berraondo P, Melero I. Daratumumab in combination with urelumab to potentiate anti-myeloma activity in lymphocyte-deficient mice reconstituted with human NK cells. Oncoimmunology 2019; 8:1599636. [PMID: 31143521 DOI: 10.1080/2162402x.2019.1599636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022] Open
Abstract
Daratumumab is an anti-CD38 fully human IgG1 mAb approved for multiple myeloma treatment. One of the proposed mechanisms of action is the induction of antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells. NK cells acquire surface CD137 expression in the presence of solid-phase-attached daratumumab and when encountering a daratumumab-coated CD38+ tumor cell line. In this setting, addition of the agonist anti-CD137 mAb urelumab enhances NK-cell activation increasing CD25 expression and IFNɣ production. However, in vitro ADCC is not increased by the addition of urelumab both in 4h or 24h lasting experiments. To study urelumab-increased daratumumab-mediated ADCC activity in vivo, we set up a mouse model based on the intravenous administration of a luciferase-transfected multiple myeloma cell line of human origin, human NK cells and daratumumab to immuno-deficient NSG mice. In this model, intravenous administration of urelumab 24h after daratumumab delayed tumor growth and prolonged mice survival.
Collapse
Affiliation(s)
- Maria C Ochoa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Luna Minute
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carmen Oñate
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain
| | - Guiomar Perez
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain
| | - Inmaculada Rodriguez
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain
| | - Aintzane Zabaleta
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Cytometry Unit, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Diego Alignani
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Cytometry Unit, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ascension Lopez
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain.,Cell Therapy Area, University Hospital of Navarra, Pamplona, Spain
| | - Aura Muntasell
- Immunity and Infection Lab, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain
| | - Bruno Paiva
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Cytometry Unit, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Miguel Lopez-Botet
- Immunity and Infection Lab, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut. Immunology Unit, University Pompeu Fabra, Barcelona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, University Hospital of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
15
|
Chu DT, Bac ND, Nguyen KH, Tien NLB, Thanh VV, Nga VT, Ngoc VTN, Anh Dao DT, Hoan LN, Hung NP, Trung Thu NT, Pham VH, Vu LN, Pham TAV, Thimiri Govinda Raj DB. An Update on Anti-CD137 Antibodies in Immunotherapies for Cancer. Int J Mol Sci 2019; 20:ijms20081822. [PMID: 31013788 PMCID: PMC6515339 DOI: 10.3390/ijms20081822] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/16/2022] Open
Abstract
The selective expression of CD137 on cells of the immune system (e.g., T and DC cells) and oncogenic cells in several types of cancer leads this molecule to be an attractive target to discover cancer immunotherapy. Therefore, specific antibodies against CD137 are being studied and developed aiming to activate and enhance anti-cancer immune responses as well as suppress oncogenic cells. Accumulating evidence suggests that anti-CD137 antibodies can be used separately to prevent tumor in some cases, while in other cases, these antibodies need to be co-administered with other antibodies or drugs/vaccines/regents for a better performance. Thus, in this work, we aim to update and discuss current knowledge about anti-cancer effects of anti-CD137 antibodies as mono- and combined-immunotherapies.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
- Institute of Cancer Research, Oslo University Hospital, 0372 Oslo, Norway.
| | - Nguyen Duy Bac
- Department of Education and Training, Vietnam Military Medical University, Hanoi 100000, Vietnam.
| | - Khanh-Hoang Nguyen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam.
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam.
| | - Vu Thi Nga
- Institute for Research and Development, Duy Tan University, 03 Quang Trung, Danang 550000, Vietnam.
| | - Vo Truong Nhu Ngoc
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam.
| | - Duong Thi Anh Dao
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
| | - Le Ngoc Hoan
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
| | - Nguyen Phuc Hung
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
| | - Nguyen Thi Trung Thu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam.
| | - Van-Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Le Nguyen Vu
- Organ Transplantation Center, Viet Duc Hospital, Hanoi 100000, Vietnam.
| | - Thuy Anh Vu Pham
- Faculty of Odonto-Stomatology, University of Medicine and Pharmacy, Ho Chi Minh City 700000, Vietnam.
| | | |
Collapse
|
16
|
Immunotherapeutics in Multiple Myeloma: How Can Translational Mouse Models Help? JOURNAL OF ONCOLOGY 2019; 2019:2186494. [PMID: 31093282 PMCID: PMC6481018 DOI: 10.1155/2019/2186494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/04/2019] [Indexed: 12/30/2022]
Abstract
Multiple myeloma (MM) is usually diagnosed in older adults at the time of immunosenescence, a collection of age-related changes in the immune system that contribute to increased susceptibility to infection and cancer. The MM tumor microenvironment and cumulative chemotherapies also add to defects in immunity over the course of disease. In this review we discuss how mouse models have furthered our understanding of the immune defects caused by MM and enabled immunotherapeutics to progress to clinical trials, but also question the validity of using immunodeficient models for these purposes. Immunocompetent models, in particular the 5T series and Vk⁎MYC models, are increasingly being utilized in preclinical studies and are adding to our knowledge of not only the adaptive immune system but also how the innate system might be enhanced in anti-MM activity. Finally we discuss the concept of immune profiling to target patients who might benefit the most from immunotherapeutics, and the use of humanized mice and 3D culture systems for personalized medicine.
Collapse
|
17
|
Vuckovic S, Minnie SA, Smith D, Gartlan KH, Watkins TS, Markey KA, Mukhopadhyay P, Guillerey C, Kuns RD, Locke KR, Pritchard AL, Johansson PA, Varelias A, Zhang P, Huntington ND, Waddell N, Chesi M, Miles JJ, Smyth MJ, Hill GR. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest 2018; 129:106-121. [PMID: 30300141 DOI: 10.1172/jci98888] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
Transplantation with autologous hematopoietic progenitors remains an important consolidation treatment for patients with multiple myeloma (MM) and is thought to prolong the disease plateau phase by providing intensive cytoreduction. However, transplantation induces inflammation in the context of profound lymphodepletion that may cause hitherto unexpected immunological effects. We developed preclinical models of bone marrow transplantation (BMT) for MM using Vk*MYC myeloma-bearing recipient mice and donor mice that were myeloma naive or myeloma experienced to simulate autologous transplantation. Surprisingly, we demonstrated broad induction of T cell-dependent myeloma control, most efficiently from memory T cells within myeloma-experienced grafts, but also through priming of naive T cells after BMT. CD8+ T cells from mice with controlled myeloma had a distinct T cell receptor (TCR) repertoire and higher clonotype overlap relative to myeloma-free BMT recipients. Furthermore, T cell-dependent myeloma control could be adoptively transferred to secondary recipients and was myeloma cell clone specific. Interestingly, donor-derived IL-17A acted directly on myeloma cells expressing the IL-17 receptor to induce a transcriptional landscape that promoted tumor growth and immune escape. Conversely, donor IFN-γ secretion and signaling were critical to protective immunity and were profoundly augmented by CD137 agonists. These data provide new insights into the mechanisms of action of transplantation in myeloma and provide rational approaches to improving clinical outcomes.
Collapse
Affiliation(s)
- Slavica Vuckovic
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia.,Multiple Myeloma Research Group, Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Simone A Minnie
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia
| | - David Smith
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kate H Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Kate A Markey
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia.,Division of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Camille Guillerey
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kelly R Locke
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Antonia L Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Genetics and Immunology, University of the Highlands and Islands, Inverness, United Kingdom
| | | | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia
| | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nicholas D Huntington
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology and.,Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - John J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Haematology, The Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Stimulation of natural killer cells with rhCD137 ligand enhances tumor-targeting antibody efficacy in gastric cancer. PLoS One 2018; 13:e0204880. [PMID: 30321186 PMCID: PMC6188629 DOI: 10.1371/journal.pone.0204880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/14/2018] [Indexed: 01/23/2023] Open
Abstract
Although many anticancer agents for gastric cancer have been developed, the prognosis for many patients remains poor. Recently, costimulatory immune molecules that reactivate antitumor immune responses by utilizing the host immune system have attracted attention as new therapeutic strategies. CD137 is a costimulatory molecule that reportedly potentiates the antitumor activity of tumor-targeting monoclonal antibodies (mAbs) by enhancing antibody-dependent cellular cytotoxicity. However, it remains unclear whether CD137 stimulates tumor-regulatory activity in gastric cancer. In this study, we investigated the antitumor effects of CD137 stimulation on gastric cancer cells administered tumor-targeting mAbs. Our results showed that human natural killer (NK) cells were activated by expressing CD137 after encountering trastuzumab-coated gastric cancer cells, and that stimulation of activated NK cells in the presence of trastuzumab and recombinant human CD137 ligand (rhCD137L) enhanced cytotoxicity and release of cytokines (IFN-γ, TNF, granzyme A, or granzyme B) as compared with activated NK cells with trastuzumab alone (p < 0.05). By combination treatment with rhCD137L, similar effects were obtained regarding cancer cell cytotoxicity in the presence of cetuximab (p < 0.01). Moreover, we revealed that CD137 expression was dependent upon the affinity between the Fc portion of the antibodies and FcγRIIIa of NK cells based on results indicating that human IgG1 and IgG3 subclasses enhanced CD137 expression (p < 0.001). These results confirmed that FcγRIIIA polymorphisms (158 V/V) enhanced CD137 expression to a greater degree than 158 F polymorphisms (p = 0.014). Our results suggested that CD137 stimulation could promote the effects of tumor-targeting mAbs in gastric cancer, and that further investigation of antibody binding affinity and in vivo activities might improve therapeutic strategies related to the treatment of gastric cancer patients.
Collapse
|
19
|
Costa F, Das R, Kini Bailur J, Dhodapkar K, Dhodapkar MV. Checkpoint Inhibition in Myeloma: Opportunities and Challenges. Front Immunol 2018; 9:2204. [PMID: 30319648 PMCID: PMC6168958 DOI: 10.3389/fimmu.2018.02204] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Despite major improvements in the treatment landscape, most multiple myeloma (MM) patients eventually succumb to the underlying malignancy. Immunotherapy represents an attractive strategy to achieve durable remissions due to its specificity and capacity for long term memory. Activation of immune cells is controlled by a balance of agonistic and inhibitory signals via surface and intracellular receptors. Blockade of such inhibitory immune receptors (termed as "immune checkpoints") including PD-1/PD-L1 has led to impressive tumor regressions in several cancers. Preclinical studies suggest that these immune checkpoints may also play a role in regulating tumor immunity in MM. Indeed, myeloma was among the first tumors wherein therapeutic efficacy of blockade of PD-1 axis was demonstrated in preclinical models. Expression of PD-L1 on tumor and immune cells also correlates with the risk of malignant transformation. However, early clinical studies of single agent PD-1 blockade have not led to meaningful tumor regressions. Immune modulatory drugs (IMiDs) are now the mainstay of most MM therapies. Interestingly, the mechanism of immune activation by IMiDs also involves release of inhibitory checkpoints, such as Ikaros-mediated suppression of IL-2. Combination of PD-1 targeted agents with IMiDs led to promising clinical activity, including objective responses in some patients refractory to IMiD therapy. However, some of these studies were transiently halted in 2017 due to concern for a possible safety signal with IMiD-PD1 combination. The capacity of the immune system to control MM has been further reinforced by recent success of adoptive cell therapies, such as T cells redirected by chimeric-antigen receptors (CAR-Ts). There remains an unmet need to better understand the immunologic effects of checkpoint blockade, delineate mechanisms of resistance to these therapies and identify optimal combination of agonistic signaling, checkpoint inhibitors as well as other therapies including CAR-Ts, to realize the potential of the immune system to control and prevent MM.
Collapse
Affiliation(s)
- Federica Costa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Rituparna Das
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | | | - Kavita Dhodapkar
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | | |
Collapse
|
20
|
Zhang D, Whitaker B, Derebe MG, Chiu ML. FcγRII-binding Centyrins mediate agonism and antibody-dependent cellular phagocytosis when fused to an anti-OX40 antibody. MAbs 2018; 10:463-475. [PMID: 29359992 PMCID: PMC5916553 DOI: 10.1080/19420862.2018.1424611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Immunostimulatory antibodies against the tumor necrosis factor receptors (TNFR) are emerging as promising cancer immunotherapies. The agonism activity of such antibodies depends on crosslinking to Fc gamma RIIB receptor (FcγRIIB) to enable the antibody multimerization that drives TNFR activation. Previously, Fc engineering was used to enhance the binding of such antibodies to Fcγ receptors. Here, we report the identification of Centyrins as alternative scaffold proteins with binding affinities to homologous FcγRIIB and FcγRIIA, but not to other types of Fcγ receptors. One Centyrin, S29, was engineered at distinct positions of an anti-OX40 SF2 antibody to generate bispecific and tetravalent molecules named as mAbtyrins. Regardless of the position of S29 on the SF2 antibody, SF2-S29 mAbtyrins could bind FcγRIIB and FcγRIIA specifically while maintaining binding to OX40 receptors. In a NFκB reporter assay, attachment of S29 Centyrin molecules at the C-termini, but not the N-termini, resulted in SF2 antibodies with increased agonism owing to FcγRIIB crosslinking. The mAbtyrins also showed agonism in T-cell activation assays with immobilized FcγRIIB and FcγRIIA, but this activity was confined to mAbtyrins with S29 specifically at the C-termini of antibody heavy chains. Furthermore, regardless of the position of the molecule, S29 Centyrin could equip an otherwise Fc-silent antibody with antibody-dependent cellular phagocytosis activity without affecting the antibody's intrinsic antibody-dependent cell-meditated cytotoxicity and complement-dependent cytotoxicity. In summary, the appropriate adoption FcγRII-binding Centyrins as functional modules represents a novel strategy to engineer therapeutic antibodies with improved functionalities.
Collapse
Affiliation(s)
- Di Zhang
- a Department of Biologics Research , Janssen R&D, LLC, Spring House , PA , USA
| | - Brian Whitaker
- a Department of Biologics Research , Janssen R&D, LLC, Spring House , PA , USA
| | - Mehabaw G Derebe
- a Department of Biologics Research , Janssen R&D, LLC, Spring House , PA , USA
| | - Mark L Chiu
- a Department of Biologics Research , Janssen R&D, LLC, Spring House , PA , USA
| |
Collapse
|
21
|
Ma J, Li Q, Yu Z, Cao Z, Liu S, Chen L, Li H, Gao S, Yan T, Wang Y, Liu Q. Immunotherapy Strategies Against Multiple Myeloma. Technol Cancer Res Treat 2017. [PMCID: PMC5762093 DOI: 10.1177/1533034617743155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Multiple myeloma is a monoclonal B-cell malignancy characterized by an accumulation of malignant plasma cells in the bone marrow, the presence of a monoclonal protein in the serum and/or urine, decreased normal immunoglobulin levels, and lytic bone disease. Patients with multiple myeloma benefit from combination therapy including novel therapeutic agents followed by autologous stem cell transplantation prolonged maintenance therapy. However, multiple myeloma remains incurable; most patients with multiple myeloma will eventually become resistant to chemotherapy, and progression or relapse of the disease is inevitable. Immunotherapy represents a novel therapeutic approach with few adverse effects and good targeting capability that might be a powerful pool to allow long-term control of minimal residual disease. This article reviews the literature evaluating 4 major immunotherapeutic approaches for multiple myeloma including cellular immunotherapy, humoral immunotherapy, radio immunotherapy, and immunomodulation.
Collapse
Affiliation(s)
- Jing Ma
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Qian Li
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People’s Republic of China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People’s Republic of China
| | - Zeng Cao
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Su Liu
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Lin Chen
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Han Li
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Shuang Gao
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Tinghui Yan
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Yafei Wang
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, People’s Republic of China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People’s Republic of China
| |
Collapse
|
22
|
Muntasell A, Ochoa MC, Cordeiro L, Berraondo P, López-Díaz de Cerio A, Cabo M, López-Botet M, Melero I. Targeting NK-cell checkpoints for cancer immunotherapy. Curr Opin Immunol 2017; 45:73-81. [PMID: 28236750 DOI: 10.1016/j.coi.2017.01.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
Natural Killer (NK) cells are cytotoxic lymphocytes specialized in early defense against virus-infected and transformed cells. NK-cell function is regulated by activating and inhibitory surface receptors recognizing their ligands on transformed cells. Modulation of NK numbers and/or function by a variety of agents such as cytokines and monoclonal antibodies may result in enhanced anti-tumor activity. Recombinant cytokines (i.e., IL-15 and IL-2), antibodies blocking inhibitory receptors (i.e., KIR, NKG2A and TIGIT) and agonists delivering signals via CD137, NKG2D and CD16 stand out as the most suitable opportunities. These agents can be used to potentiate NKcell- mediated antibody-dependent cellular cytotoxicity (ADCC) against antibody-coated tumor cells, offering potential for multiple combinatorial immunotherapy strategies against cancer.
Collapse
Affiliation(s)
- Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Maria C Ochoa
- Centro de Investigacion Medica Aplicada (CIMA), Pamplona, Spain
| | - Luna Cordeiro
- Centro de Investigacion Medica Aplicada (CIMA), Pamplona, Spain
| | - Pedro Berraondo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | | - Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | | - Ignacio Melero
- Centro de Investigacion Medica Aplicada (CIMA), Pamplona, Spain; Departamento de Inmunologia e Inmunoterapia, Clinica Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| |
Collapse
|
23
|
Monoclonal antibody therapy in multiple myeloma. Leukemia 2017; 31:1039-1047. [PMID: 28210004 DOI: 10.1038/leu.2017.60] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/14/2017] [Accepted: 02/06/2017] [Indexed: 02/07/2023]
Abstract
The therapeutic landscape of multiple myeloma (MM) has evolved spectacularly over the past decade with the discovery and validation of proteasome inhibitors and immunomodulatory agents as highly active agents, both in front-line therapy as well as in the relapse and maintenance settings. Although previous attempts to apply available monoclonal antibodies (Mabs) to the treatment of patients with MM has until recently been disappointing, novel targets specifically explored in the context of MM have recently lead to the first approvals of Mabs for the treatment of patients with MM. We have performed a literature search to identify preclinical targeting of MM, including in vitro and in vivo models using monoclonal antibodies, as well as clinical trials of monoclonal antibodies in patients with MM. Sources used were peer-reviewed publications, congress abstracts and on-line clinical trials data (such as clinicaltrials.gov). Several targets have been evaluated in preclinical models and a growing number of agents are being evaluated in clinical trials, as single agents or in combination and under various antibody formats. Two agents, targeting for the first time CD38 and SLAMF7, respectively, have recently been approved for the treatment of patients with MM. The recent approval of these two antibodies is expected to have a strong impact on treatment modalities and outcome in patients with MM, including both transplant eligible and elderly patients.
Collapse
|
24
|
Shi YF, Gao ZF, Liu CL, Huang X, Song YQ, Zhang C, Lin DM, Zhou LX, Zhao M, Lai YM, Li M. [Expression of CD137 in tumor cells of Hodgkin lymphoma from Northern China and its application in pathological differential diagnosis]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 37:484-90. [PMID: 27431073 PMCID: PMC7348333 DOI: 10.3760/cma.j.issn.0253-2727.2016.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
目的 明确CD137在北方地区经典型霍奇金淋巴瘤(cHL)中的表达,探讨其作为cHL辅助病理鉴别诊断新指标的可能应用价值。 方法 收集54例cHL患者资料,以55例伴有“HRS样细胞”的非cHL患者为对照。在病理组织标本中选取“HRS细胞”或“HRS样细胞”丰富的区域制作组织芯片;以“HRS细胞”或“HRS样细胞”为观察对象,cHL组应用CD30、CD15、CD20、PAX5、CD3免疫组织化学染色;同时对两组患者标本进行CD137(BBK-2)抗体免疫组织化学染色及采用EBV编码的小RNA(EBER)原位杂交法检测EBV感染状态。 结果 54例cHL患者均为淋巴结内原发,中位年龄45.5(22.0~68.0)岁;男女比例1.7∶1;对照组患者结内54例,结外(皮肤)1例,中位年龄50.0(12.0~81.0)岁;男女比例1.9∶1。54例cHL患者均表达CD30,HRS细胞主要诊断相关免疫标志物CD30、CD15、CD20、CD3阳性表达率依次为100.0%、70.4%、18.5%和0,可见PAX5弱至中等强度表达,阳性率70.4%;EBV感染阳性率25.9%(对照组阳性率21.8%)。cHL组CD137阳性率57.4%,对照组阳性率14.5%,差异有统计学意义(P<0.001)。将cHL组及对照组按照患者年龄(≥60/<60岁)、性别、有无EBV感染、组织学亚型以及主要诊断相关标志物的表达与否进行分组,CD137阳性率差异均无统计学意义(P值均> 0.05)。以2013年为界进行分组,2013年前后两组cHL患者的CD137阳性率差异有统计学意义(39.4%对85.7%,P=0.001),对照组差异无统计学意义(12.5%对16.1%,P=0.705);2013以后存档的标本中cHL组与对照组患者CD137阳性率差异有统计学意义(85.7%对16.1%,P<0.001)。 结论 通过研究初步证实北方地区大多数cHL患者的HRS细胞表达CD137,而对照组患者“HRS样细胞”CD137阳性率较低。保存期3年以内较保存期3年以上的cHL患者标本CD137阳性率高,更适于进行CD137免疫组织化学染色检测。CD137有望作为辅助cHL病理鉴别诊断的新指标。
Collapse
Affiliation(s)
- Y F Shi
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | | - M Li
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
25
|
Waight JD, Gombos RB, Wilson NS. Harnessing co-stimulatory TNF receptors for cancer immunotherapy: Current approaches and future opportunities. Hum Antibodies 2017; 25:87-109. [PMID: 28085016 DOI: 10.3233/hab-160308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Co-stimulatory tumor necrosis factor receptors (TNFRs) can sculpt the responsiveness of T cells recognizing tumor-associated antigens. For this reason, agonist antibodies targeting CD137, CD357, CD134 and CD27 have received considerable attention for their therapeutic utility in enhancing anti-tumor immune responses, particularly in combination with other immuno-modulatory antibodies targeting co-inhibitory pathways in T cells. The design of therapeutic antibodies that optimally engage and activate co-stimulatory TNFRs presents an important challenge of how to promote effective anti-tumor immunity while avoiding serious immune-related adverse events. Here we review our current understanding of the expression, signaling and structural features of CD137, CD357, CD134 and CD27, and how this may inform the design of pharmacologically active immuno-modulatory antibodies targeting these receptors. This includes the integration of our emerging knowledge of the role of Fcγ receptors (FcγRs) in facilitating antibody-mediated receptor clustering and forward signaling, as well as promoting immune effector cell-mediated activities. Finally, we bring our current preclinical and clinical knowledge of co-stimulatory TNFR antibodies into the context of opportunities for next generation molecules with improved pharmacologic properties.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Gene Expression Regulation
- Humans
- Immunity, Cellular/drug effects
- Immunotherapy/methods
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- Receptors, IgG/agonists
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Receptors, Tumor Necrosis Factor/agonists
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/immunology
- Signal Transduction
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
|
26
|
Boyiadzis M, Bishop MR, Abonour R, Anderson KC, Ansell SM, Avigan D, Barbarotta L, Barrett AJ, Van Besien K, Bergsagel PL, Borrello I, Brody J, Brufsky J, Cairo M, Chari A, Cohen A, Cortes J, Forman SJ, Friedberg JW, Fuchs EJ, Gore SD, Jagannath S, Kahl BS, Kline J, Kochenderfer JN, Kwak LW, Levy R, de Lima M, Litzow MR, Mahindra A, Miller J, Munshi NC, Orlowski RZ, Pagel JM, Porter DL, Russell SJ, Schwartz K, Shipp MA, Siegel D, Stone RM, Tallman MS, Timmerman JM, Van Rhee F, Waller EK, Welsh A, Werner M, Wiernik PH, Dhodapkar MV. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia. J Immunother Cancer 2016; 4:90. [PMID: 28018601 PMCID: PMC5168808 DOI: 10.1186/s40425-016-0188-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Increasing knowledge concerning the biology of hematologic malignancies as well as the role of the immune system in the control of these diseases has led to the development and approval of immunotherapies that are resulting in impressive clinical responses. Therefore, the Society for Immunotherapy of Cancer (SITC) convened a hematologic malignancy Cancer Immunotherapy Guidelines panel consisting of physicians, nurses, patient advocates, and patients to develop consensus recommendations for the clinical application of immunotherapy for patients with multiple myeloma, lymphoma, and acute leukemia. These recommendations were developed following the previously established process based on the Institute of Medicine's clinical practice guidelines. In doing so, a systematic literature search was performed for high-impact studies from 2004 to 2014 and was supplemented with further literature as identified by the panel. The consensus panel met in December of 2014 with the goal to generate consensus recommendations for the clinical use of immunotherapy in patients with hematologic malignancies. During this meeting, consensus panel voting along with discussion were used to rate and review the strength of the supporting evidence from the literature search. These consensus recommendations focus on issues related to patient selection, toxicity management, clinical endpoints, and the sequencing or combination of therapies. Overall, immunotherapy is rapidly emerging as an effective therapeutic strategy for the management of hematologic malignances. Evidence-based consensus recommendations for its clinical application are provided and will be updated as the field evolves.
Collapse
Affiliation(s)
- Michael Boyiadzis
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh Medical Center, 5150 Centre Avenue, Suite 564, Pittsburg, PA 15232 USA
| | - Michael R. Bishop
- Hematopoietic Cellular Therapy Program, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
| | - Rafat Abonour
- Indiana University School of Medicine, 980 W. Walnut St., Walther Hall-R3, C400, Indianapolis, IN 46202 USA
| | | | | | - David Avigan
- Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215 USA
| | - Lisa Barbarotta
- Smilow Cancer Hospital at Yale New Haven, 35 Park Street, New Haven, CT 06519 USA
| | - Austin John Barrett
- National Institutes of Health, Building 10-CRC Room 3-5330, Bethesda, MD 20814 USA
| | - Koen Van Besien
- Weill Cornell Medical College, 407 E 71st St, New York, NY 10065 USA
| | | | - Ivan Borrello
- Johns Hopkins School of Medicine, 1650 Orleans St, Baltimore, MD 21231 USA
| | - Joshua Brody
- Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Jill Brufsky
- University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Pittsburgh, PA 15232 USA
| | - Mitchell Cairo
- New York Medical College at Maria Fareri Children’s Hospital, 100 Woods Road, Valhalla, New York 10595 USA
| | - Ajai Chari
- Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Adam Cohen
- Abramson Cancer Center at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Jorge Cortes
- MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Stephen J. Forman
- City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010 USA
| | - Jonathan W. Friedberg
- Wilmot Cancer Institute, University of Rochester, 601 Elmwood Avenue, Box 704, Rochester, NY 14642 USA
| | - Ephraim J. Fuchs
- Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, MD 21231 USA
| | - Steven D. Gore
- Yale Cancer Center, 333 Cedar Street, New Haven, CT 06511 USA
| | - Sundar Jagannath
- Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Brad S. Kahl
- Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Justin Kline
- The University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637 USA
| | - James N. Kochenderfer
- National Institutes of Health, National Cancer Institute, 8500 Roseweood Drive, Bethesda, MD 20814 USA
| | - Larry W. Kwak
- City of Hope National Medical Center, 1500 E. Duarte Road, Beckman Bldg., Room 4117, Duarte, CA 91010 USA
| | - Ronald Levy
- Division of Medical Oncology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305 USA
| | - Marcos de Lima
- Department of Medicine-Hematology and Oncology, Case Western Reserve University, 11100 Euclid Ave., Cleveland, OH 44106 USA
| | - Mark R. Litzow
- Department of Hematology, Mayo Clinic Cancer Center, 200 First Street SW, Rochester, MN 55905 USA
| | - Anuj Mahindra
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0324, San Francisco, CA 94143 USA
| | - Jeffrey Miller
- Division of Hematology/Oncology, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455 USA
| | - Nikhil C. Munshi
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana B106, Boston, MA 02215 USA
| | - Robert Z. Orlowski
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 429, Houston, TX 77030 USA
| | - John M. Pagel
- Swedish Cancer Institute, 1221 Madison Street, Suite 1020, Seattle, WA 98104 USA
| | - David L. Porter
- University of Pennsylvania, 3400 Civic Center Blvd, PCAM 12 South Pavilion, Philadelphia, PA 19104 USA
| | | | - Karl Schwartz
- Patients Against Lymphoma, 3774 Buckwampum Road, Riegelsville, PA 18077 USA
| | - Margaret A. Shipp
- Dana-Farber Cancer Institute, 450 Brookline Ave, Mayer 513, Boston, MA 02215 USA
| | - David Siegel
- Hackensack University Medical Center, 92 2nd St., Hackensack, NJ 07601 USA
| | - Richard M. Stone
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 USA
| | - Martin S. Tallman
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - John M. Timmerman
- University of California, Los Angeles, 10833 LeConte Ave., Los Angeles, CA 90095 USA
| | - Frits Van Rhee
- University of Arkansas for Medical Sciences, Myeloma Institute, 4301 W Markham #816, Little Rock, AR 72205 USA
| | - Edmund K. Waller
- Winship Cancer Institute, Emory University, 1365B Clifton Road NE, Atlanta, GA 30322 USA
| | - Ann Welsh
- University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 USA
| | - Michael Werner
- Patient Advocate, 33 East Bellevue Place, Chicago, IL 60611 USA
| | - Peter H. Wiernik
- Cancer Research Foundation of New York, 43 Longview Lane, Chappaqua, NY 10514 USA
| | - Madhav V. Dhodapkar
- Department of Hematology & Immunobiology, Yale University, 333 Cedar Street, Box 208021, New Haven, CT 06510 USA
| |
Collapse
|
27
|
Grosicki S, Barchnicka A. Elotuzumab: a novel immune-stimulating therapy to treat multiple myeloma. Expert Rev Hematol 2016; 9:621-8. [PMID: 27322214 DOI: 10.1080/17474086.2016.1199947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Multiple myeloma (MM), constantly remains debilitating disease, consequently leading to death. Clinical trials involving drugs with different mechanisms of action, carry the expectancy for improvement of treatment outcomes. The results of the currently published studies on the monoclonal antibodies, in particular elotuzumab confirm previous expectations of improving treatment outcomes of such therapy in MM patients. AREAS COVERED This humanized monoclonal antibody targeting surface glycoprotein CS1, expressed commonly on plasma cells and certain cells of the immune system, stimulates the immune system to fight against MM cells. Elotuzumab in the combination with len/dex has been approved by the FDA for treatment of relapsed/refractory MM patients who have received one to three prior therapies. Expert commentary: This review summarizes the chemistry, mechanism of action and preclinical and clinical studies, pharmacodynamics, pharmacokinetics, safety and toxicity of elotuzumab in terms of MM treatment and its potential application in the future.
Collapse
Affiliation(s)
- Sebastian Grosicki
- a Department of Cancer Prevention, School of Public Health , Silesian Medical University , Katowice , Poland
| | - Agnieszka Barchnicka
- b Department of Doctoral Studies, School of Public Health in Bytom , Medical University of Silesia , Katowice , Poland
| |
Collapse
|
28
|
Guillerey C, Nakamura K, Vuckovic S, Hill GR, Smyth MJ. Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies. Cell Mol Life Sci 2016; 73:1569-89. [PMID: 26801219 PMCID: PMC11108512 DOI: 10.1007/s00018-016-2135-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) is a tumor of terminally differentiated B cells that arises in the bone marrow. Immune interactions appear as key determinants of MM progression. While myeloid cells foster myeloma-promoting inflammation, Natural Killer cells and T lymphocytes mediate protective anti-myeloma responses. The profound immune deregulation occurring in MM patients may be involved in the transition from a premalignant to a malignant stage of the disease. In the last decades, the advent of stem cell transplantation and new therapeutic agents including proteasome inhibitors and immunoregulatory drugs has dramatically improved patient outcomes, suggesting potentially key roles for innate and adaptive immunity in disease control. Nevertheless, MM remains largely incurable for the vast majority of patients. A better understanding of the complex interplay between myeloma cells and their immune environment should pave the way for designing better immunotherapies with the potential of very long term disease control. Here, we review the immunological microenvironment in myeloma. We discuss the role of naturally arising anti-myeloma immune responses and their potential corruption in MM patients. Finally, we detail the numerous promising immune-targeting strategies approved or in clinical trials for the treatment of MM.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
- School of Medicine, The University of Queensland, Herston Road, Herston, QLD, 4072, Australia
| | - Kyohei Nakamura
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Slavica Vuckovic
- School of Medicine, The University of Queensland, Herston Road, Herston, QLD, 4072, Australia
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia.
- School of Medicine, The University of Queensland, Herston Road, Herston, QLD, 4072, Australia.
| |
Collapse
|
29
|
Abstract
In vivo depletion of T lymphocytes is a means of studying the role of specific T cell populations during defined phases of in vivo immune responses. In this unit, a protocol is provided for injecting monoclonal antibodies (mAbs) into wild-type adult mice. Depletion of the appropriate subset of cells is verified by flow cytometry analysis of lymph node and spleen cell suspensions in pilot experiments. Once conditions have been established, depleted mice can be used to study the impact of T cell subsets on a variety of in vivo immune responses. The depleted condition may be maintained by repeated injections of the monoclonal antibody, or reversed by normal thymopoiesis following discontinuation of antibody administration.
Collapse
Affiliation(s)
- Karen Laky
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | | |
Collapse
|
30
|
Palumbo A, Sonneveld P. Preclinical and clinical evaluation of elotuzumab, a SLAMF7-targeted humanized monoclonal antibody in development for multiple myeloma. Expert Rev Hematol 2015; 8:481-91. [DOI: 10.1586/17474086.2015.1053866] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Guillerey C, Ferrari de Andrade L, Vuckovic S, Miles K, Ngiow SF, Yong MCR, Teng MWL, Colonna M, Ritchie DS, Chesi M, Bergsagel PL, Hill GR, Smyth MJ, Martinet L. Immunosurveillance and therapy of multiple myeloma are CD226 dependent. J Clin Invest 2015; 125:2077-89. [PMID: 25893601 DOI: 10.1172/jci77181] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 03/12/2015] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) is an age-dependent hematological malignancy. Evaluation of immune interactions that drive MM relies on in vitro experiments that do not reflect the complex cellular stroma involved in MM pathogenesis. Here we used Vk*MYC transgenic mice, which spontaneously develop MM, and demonstrated that the immune system plays a critical role in the control of MM progression and the response to treatment. We monitored Vk*MYC mice that had been crossed with Cd226 mutant mice over a period of 3 years and found that CD226 limits spontaneous MM development. The CD226-dependent anti-myeloma immune response against transplanted Vk*MYC MM cells was mediated both by NK and CD8+ T cells through perforin and IFN-γ pathways. Moreover, CD226 expression was required for optimal antimyeloma efficacy of cyclophosphamide (CTX) and bortezomib (Btz), which are both standardly used to manage MM in patients. Activation of costimulatory receptor CD137 with mAb (4-1BB) exerted strong antimyeloma activity, while inhibition of coinhibitory receptors PD-1 and CTLA-4 had no effect. Taken together, the results of this study provide in vivo evidence that CD226 is important for MM immunosurveillance and indicate that specific immune components should be targeted for optimal MM treatment efficacy. As progressive immunosuppression associates with MM development, strategies aimed to increase immune functions may have important therapeutic implications in MM.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/physiology
- Antineoplastic Agents/therapeutic use
- Boronic Acids/therapeutic use
- Bortezomib
- CD8-Positive T-Lymphocytes/immunology
- CTLA-4 Antigen/antagonists & inhibitors
- Crosses, Genetic
- Cyclophosphamide/therapeutic use
- Disease Progression
- Genes, myc
- Genetic Predisposition to Disease
- Immunologic Surveillance/immunology
- Immunotherapy
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interferon-gamma/physiology
- Killer Cells, Natural/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Multiple Myeloma/drug therapy
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Neoplasm Proteins/deficiency
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Proteins/physiology
- Neoplasm Transplantation
- Pore Forming Cytotoxic Proteins/deficiency
- Pore Forming Cytotoxic Proteins/genetics
- Pore Forming Cytotoxic Proteins/physiology
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Pyrazines/therapeutic use
- Receptors, Virus/deficiency
- Receptors, Virus/genetics
- Receptors, Virus/physiology
- Tumor Burden
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
Collapse
|
32
|
Dosani T, Carlsten M, Maric I, Landgren O. The cellular immune system in myelomagenesis: NK cells and T cells in the development of myeloma [corrected] and their uses in immunotherapies. Blood Cancer J 2015; 5:e306. [PMID: 25885426 PMCID: PMC4450330 DOI: 10.1038/bcj.2015.32] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/01/2014] [Indexed: 12/28/2022] Open
Abstract
As vast strides are being made in the management and treatment of multiple myeloma (MM), recent interests are increasingly focusing on understanding the development of the disease. The knowledge that MM develops exclusively from a protracted phase of monoclonal gammopathy of undetermined significance provides an opportunity to study tumor evolution in this process. Although the immune system has been implicated in the development of MM, the scientific literature on the role and status of various immune components in this process is broad and sometimes contradictory. Accordingly, we present a review of cellular immune subsets in myelomagenesis. We summarize the current literature on the quantitative and functional profiles of natural killer cells and T-cells, including conventional T-cells, natural killer T-cells, γδ T-cells and regulatory T-cells, in myelomagenesis. Our goal is to provide an overview of the status and function of these immune cells in both the peripheral blood and the bone marrow during myelomagenesis. This provides a better understanding of the nature of the immune system in tumor evolution, the knowledge of which is especially significant considering that immunotherapies are increasingly being explored in the treatment of both MM and its precursor conditions.
Collapse
Affiliation(s)
- T Dosani
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Carlsten
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - I Maric
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - O Landgren
- Myeloma Service, Division of Hematology Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
33
|
PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma. Leukemia 2015; 29:2110-3. [DOI: 10.1038/leu.2015.79] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
Lendvai N, Cohen AD, Cho HJ. Beyond consolidation: auto-SCT and immunotherapy for plasma cell myeloma. Bone Marrow Transplant 2015; 50:770-80. [PMID: 25751647 DOI: 10.1038/bmt.2015.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 12/15/2022]
Abstract
Autologous hematopoietic cell transplantation (auto-HCT) is the standard consolidation therapy for plasma cell myeloma patients following induction therapy. Auto-HCT improves disease-free survival (DFS), but is generally not curative. The allogeneic HCT experience demonstrated that T-cell immunotherapy can confer long-term DFS. Preclinical and clinical data indicate that myeloma-associated Ags elicit humoral and cellular immune responses (IRs) in myeloma patients. These findings strongly suggest that the immunotherapeutic strategies, including immune checkpoint inhibitors, therapeutic cancer vaccines and adoptive cellular therapies, are promising avenues of clinical research that may be most applicable in the minimal residual disease state following auto-HCT. These strategies are designed to prime or augment antimyeloma IRs and promote a 'host-vs-myeloma' effect that may result in durable DFS. Innovative clinical trials investigating immune checkpoint inhibitors and cancer vaccines have demonstrated that robust immunity against myeloma-associated Ags can be elicited in the setting of auto-HCT. A diverse array of immunotherapeutic strategies have entered clinical trials in myeloma, including PD-1/PD-L1 inhibitors, DC/myeloma cell fusion vaccines and adoptive chimeric Ag receptor T-cell therapy, and further investigation of combinations of immunologic and pharmaceutical agents are expected in the near future. In this review, we will discuss the preclinical data supporting immunotherapy in auto-HCT for myeloma, clinical investigation of these strategies and the future prospects of immunotherapy in pursuit of the goal of curative therapy.
Collapse
Affiliation(s)
- N Lendvai
- 1] Myeloma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA [2] Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - A D Cohen
- Division of Hematology/Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - H J Cho
- Multiple Myeloma Service, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
35
|
Kobayashi T, Doff BL, Rearden RC, Leggatt GR, Mattarollo SR. NKT cell-targeted vaccination plus anti-4-1BB antibody generates persistent CD8 T cell immunity against B cell lymphoma. Oncoimmunology 2015; 4:e990793. [PMID: 25949907 PMCID: PMC4404843 DOI: 10.4161/2162402x.2014.990793] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/18/2014] [Indexed: 12/28/2022] Open
Abstract
Harnessing the immune adjuvant properties of natural killer T (NKT) cells is an effective strategy to generate anticancer immunity. The objective of this study was to increase the potency and durability of vaccine-induced immunity against B cell lymphoma by combining α-galactosylceramide (α-GalCer)-loaded tumor cell vaccination with an agonistic antibody targeting the immune checkpoint molecule 4–1BB (CD137). We observed potent synergy when combining vaccination and anti-4–1BB antibody treatment resulting in significantly enhanced survival of mice harboring Eμ-myc tumors, including complete eradication of lymphoma in over 50% of mice. Tumor-free survival required interferon γ (IFNγ)-dependent expansion of CD8+ T cells and was associated with 4–1BB-mediated differentiation of KLRG1+ effector CD8+ T cells. 'Cured' mice were also resistant to lymphoma re-challenge 80 days later indicating successful generation of immunological memory. Overall, our results demonstrate that therapeutic anticancer vaccination against B cell lymphoma using an NKT cell ligand can be boosted by subsequent co-stimulation through 4–1BB leading to a sustainable immune response that may enhance outcomes to conventional treatment.
Collapse
Affiliation(s)
- Takumi Kobayashi
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute, Brisbane ; Queensland, Australia
| | - Brianna L Doff
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute, Brisbane ; Queensland, Australia
| | - Rory C Rearden
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute, Brisbane ; Queensland, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute, Brisbane ; Queensland, Australia
| | - Stephen R Mattarollo
- The University of Queensland Diamantina Institute; The University of Queensland; Translational Research Institute, Brisbane ; Queensland, Australia
| |
Collapse
|
36
|
Sallin MA, Zhang X, So EC, Burch E, Cai L, Lin W, Chapoval AI, Strome SE. The anti-lymphoma activities of anti-CD137 monoclonal antibodies are enhanced in FcγRIII(-/-) mice. Cancer Immunol Immunother 2014; 63:947-58. [PMID: 24927849 PMCID: PMC11029484 DOI: 10.1007/s00262-014-1567-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 05/30/2014] [Indexed: 11/25/2022]
Abstract
Agonistic monoclonal antibodies (mAbs) directed against the co-signaling molecule CD137 (4-1BB) elicit potent anti-tumor immunity in mice. This anti-tumor immunity has traditionally been thought to result from the ability of the Fab portion of anti-CD137 to function as an analog for CD137L. Although binding of CD137 by anti-CD137 mAbs has the potential to cross-link the Fc fragments, enabling Fc engagement of low to moderate affinity Fc gamma receptors (FcγR), the relative import of such Fc-FcγR interactions in mediating anti-CD137 associated anti-tumor immunity is unknown. We studied the ability of a rat anti-mouse CD137 mAb (2A) to mediate the anti-tumor response against the EL4E7 lymphoma in WT and FcγR(-/-) strains. 2A-treated FcRγ(-/-) mice had improved anti-tumor immunity against EL4E7, which could be completely recapitulated in FcγRIII(-/-) animals. These improved anti-tumor responses were associated with increased splenic CD8β T cell and dendritic cell (DC) populations. Furthermore, there was an increase in the number of DCs expressing high levels of the CD40, CD80, and CD86 molecules that are associated with more effective antigen presentation. Our results demonstrate an unexpected inhibitory role for FcγRIII in the anti-tumor function of anti-CD137 and underscore the need to consider antibody isotype when engineering therapeutic mAbs.
Collapse
MESH Headings
- Animals
- Antibodies, Immobilized/immunology
- Antibodies, Immobilized/metabolism
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Female
- HEK293 Cells
- Humans
- Lymphoma/immunology
- Lymphoma/therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Random Allocation
- Rats
- Receptors, IgG/deficiency
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Transfection
- Tumor Necrosis Factor Receptor Superfamily, Member 9/biosynthesis
- Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
Collapse
Affiliation(s)
- Michelle A. Sallin
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, 16 South Eutaw St. Suite 500, Baltimore, MD 21201-168 USA
| | - Xiaoyu Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, 16 South Eutaw St. Suite 500, Baltimore, MD 21201-168 USA
| | - Edward C. So
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 855 West Baltimore Street, Suite 380, HSF-I, Baltimore, MD 21201 USA
| | - Erin Burch
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, 16 South Eutaw St. Suite 500, Baltimore, MD 21201-168 USA
| | - Ling Cai
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, 4000 Reservoir Road, NW, Building D-103, Washington, DC 20057 USA
| | - Wei Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350003 Fujian China
| | - Andrei I. Chapoval
- Russian-American Anti-Cancer Center, Department of Physico-Chemical Biology and Biotechnology, Altai State University, 61 Lenin Street, 656049 Barnaul, Altai Territory Russia
| | - Scott E. Strome
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, 16 South Eutaw St. Suite 500, Baltimore, MD 21201-168 USA
| |
Collapse
|
37
|
Westwood JA, Matthews GM, Shortt J, Faulkner D, Pegram HJ, Duong CPM, Chesi M, Bergsagel PL, Sharp LL, Huhn RD, Darcy PK, Johnstone RW, Kershaw MH. Combination anti-CD137 and anti-CD40 antibody therapy in murine myc-driven hematological cancers. Leuk Res 2014; 38:948-54. [PMID: 24934848 DOI: 10.1016/j.leukres.2014.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023]
Abstract
In order to stimulate antigen presentation and T cell activity against cancer, we treated three different tumor models in mice with the monoclonal antibodies anti-CD40 plus anti-CD137 (BiMab). In a subcutaneous transplantable MC38 colon cancer model, there was significant enhancement in the survival of mice following BiMab treatment. Anti-CD40 has shown considerable success against lymphoma in previous studies by other investigators, and we also showed in this study that, in a model of Eμ-Myc lymphoma, there was a statistically significant enhancement of survival of mice following BiMab treatment. Following the success of the BiMab treatment in the previous two models, we wished to determine if it would be successful in a mouse model of multiple myeloma. Firstly, we tested a transplantable model of disease in which multiple myeloma cells derived from Vk*MYC mice were injected intravenously. A minor proportion of anti-CD137 and BiMab treated mice experienced prolongation of life beyond 250 days. Then we tested the therapy in a spontaneously occurring multiple myeloma model, in Vk*MYC transgenic mice. The majority of mice treated survived longer than control mice, although statistical significance was not demonstrated.
Collapse
Affiliation(s)
- Jennifer A Westwood
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia
| | - Geoffrey M Matthews
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia; Cancer Therapeutics Program, Gene Regulation Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia
| | - Jake Shortt
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia; Cancer Therapeutics Program, Gene Regulation Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia
| | - David Faulkner
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia
| | - Hollie J Pegram
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia
| | - Connie P M Duong
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - P Leif Bergsagel
- Comprehensive Cancer Center, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Leslie L Sharp
- Oncology Research Unit, Pfizer Inc., San Diego, CA 92121, USA
| | | | - Phillip K Darcy
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, Australia; Department of Immunology, Monash University, Prahran 3181, Australia
| | - Ricky W Johnstone
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia; Cancer Therapeutics Program, Gene Regulation Laboratory, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia
| | - Michael H Kershaw
- Division of Cancer Research, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, Australia; Department of Immunology, Monash University, Prahran 3181, Australia.
| |
Collapse
|
38
|
Fraser CK, Brown MP, Diener KR, Hayball JD. Unravelling the complexity of cancer–immune system interplay. Expert Rev Anticancer Ther 2014; 10:917-34. [DOI: 10.1586/era.10.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
39
|
Mentlik James A, Cohen AD, Campbell KS. Combination immune therapies to enhance anti-tumor responses by NK cells. Front Immunol 2013; 4:481. [PMID: 24391651 PMCID: PMC3870292 DOI: 10.3389/fimmu.2013.00481] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/09/2013] [Indexed: 01/22/2023] Open
Abstract
Natural killer (NK) cells are critical innate immune lymphocytes capable of destroying virally infected or cancerous cells through targeted cytotoxicity and further assisting in the immune response by releasing inflammatory cytokines. NK cells are thought to contribute to the process of tumor killing by certain therapeutic monoclonal antibodies (mAb) by directing antibody-dependent cellular cytotoxicity (ADCC) through FcγRIIIA (CD16). Numerous therapeutic mAb have been developed that target distinct cancer-specific cell markers and may direct NK cell-mediated ADCC. Recent therapeutic approaches have combined some of these cancer-specific mAb with additional strategies to optimize NK cell cytotoxicity. These include agonistic mAb targeting NK cell activating receptors and mAbs blocking NK cell inhibitory receptors to enhance NK cell functions. Furthermore, several drugs that can potentiate NK cell cytotoxicity through other mechanisms are being used in combination with therapeutic mAb. In this review, we examine the mechanisms employed by several promising agents used in combination therapies that enhance natural or Ab-dependent cytotoxicity of cancer cells by NK cells, with a focus on treatments for leukemia and multiple myeloma.
Collapse
Affiliation(s)
- Ashley Mentlik James
- Immune Cell Development and Host Defense Program, The Research Institute at Fox Chase Cancer Center , Philadelphia, PA , USA
| | - Adam D Cohen
- Abramson Cancer Center at the University of Pennsylvania , Philadelphia, PA , USA
| | - Kerry S Campbell
- Immune Cell Development and Host Defense Program, The Research Institute at Fox Chase Cancer Center , Philadelphia, PA , USA
| |
Collapse
|
40
|
Muthumani K, Flingai S, Wise M, Tingey C, Ugen KE, Weiner DB. Optimized and enhanced DNA plasmid vector based in vivo construction of a neutralizing anti-HIV-1 envelope glycoprotein Fab. Hum Vaccin Immunother 2013; 9:2253-62. [PMID: 24045230 DOI: 10.4161/hv.26498] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Monoclonal antibody preparations have demonstrated considerable clinical utility in the treatment of specific malignancies, as well as inflammatory and infectious diseases. Antibodies are conventionally delivered by passive administration, typically requiring costly large-scale laboratory development and production. Additional limitations include the necessity for repeat administrations, and the length of in vivo potency. Therefore, the development of methods to generate therapeutic antibodies and antibody like molecules in vivo, distinct from an active antigen-based immunization strategy, would have considerable clinical utility. In fact, adeno-associated viral (AAV) vector mediated delivery of immunoglobulin genes with subsequent generation of functional antibodies has recently been developed. As well, anon-viral vector mediated nucleic acid based delivery technology could permit the generation of therapeutic/prophylactic antibodies in vivo, obviating potential safety issues associated with viral vector based gene delivery. This delivery strategy has limitations as well, mainly due to very low in vivo production and expression of protein from the delivered gene. In the study reported here we have constructed an "enhanced and optimized" DNA plasmid technology to generate immunoglobulin heavy and light chains (i.e., Fab fragments) from an established neutralizing anti-HIV envelope glycoprotein monoclonal antibody (VRC01). This "enhanced" DNA (E-DNA) plasmid technology includes codon/RNA optimization, leader sequence utilization, as well as targeted potentiation of delivery and expression of the Fab immunoglobulin genes through use of "adaptive" in vivo electroporation. The results demonstrate that delivery by this method of a single administration of the optimized Fab expressing constructs resulted in generation of Fab molecules in mouse sera possessing high antigen specific binding and HIV neutralization activity for at least 7 d after injection, against diverse HIV isolates. Importantly, this delivery strategy resulted in a rapid increase (i.e., in as little as 48 h) in Fab levels when compared with protein-based immunization. The active generation of functional Fab molecules in vivo has important conceptual and practical advantages over conventional ex vivo generation, purification and passive delivery of biologically active antibodies. Further study of this technique for the rapid generation and delivery of immunoglobulin and immunoglobulin like molecules is highly relevant and timely.
Collapse
Affiliation(s)
- Kar Muthumani
- Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| | - Seleeke Flingai
- Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| | - Megan Wise
- Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| | - Colleen Tingey
- Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| | - Kenneth E Ugen
- Department of Molecular Medicine; University of South Florida Morsani College of Medicine; Tampa, FL USA; Center for Molecular Delivery; University of South Florida; Tampa, FL USA
| | - David B Weiner
- Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| |
Collapse
|
41
|
Locke FL, Nishihori T, Alsina M, Kharfan-Dabaja MA. Immunotherapy strategies for multiple myeloma: the present and the future. Immunotherapy 2013; 5:1005-20. [PMID: 23998734 PMCID: PMC4905571 DOI: 10.2217/imt.13.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Growing knowledge of the complexities of the immune system have led to a better understanding of how it can be harnessed for the purpose of anticancer therapy. Moreover, recent success with immunotherapies for solid tumors, combined with novel therapeutic strategies against myeloma, heighten excitement at the prospect of improving clinical outcomes for myeloma by improving antitumor immunity. Increased understanding of myeloma tumor-associated antigens, availability of more potent vaccines, expanded immune-modulating therapies, development of agents that block immune-suppressive pathways, increased sophistication of adoptive cell therapy techniques and capitalization upon standard autologous transplant are all important standalone or combination strategies that might ultimately improve prognosis of patients with multiple myeloma.
Collapse
Affiliation(s)
- Frederick L Locke
- Department of Blood & Marrow Transplantation, H Lee Moffitt Cancer, Center & Research Institute, 12902 Magnolia Drive, FOB-3, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Taiga Nishihori
- Department of Blood & Marrow Transplantation, H Lee Moffitt Cancer, Center & Research Institute, 12902 Magnolia Drive, FOB-3, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Melissa Alsina
- Department of Blood & Marrow Transplantation, H Lee Moffitt Cancer, Center & Research Institute, 12902 Magnolia Drive, FOB-3, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Mohamed A Kharfan-Dabaja
- Department of Blood & Marrow Transplantation, H Lee Moffitt Cancer, Center & Research Institute, 12902 Magnolia Drive, FOB-3, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
42
|
Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy. ISRN ONCOLOGY 2013; 2013:371854. [PMID: 23840967 PMCID: PMC3693168 DOI: 10.1155/2013/371854] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/11/2013] [Indexed: 12/17/2022]
Abstract
The tumor necrosis factor (TNF) ligand and cognate TNF receptor superfamilies constitute an important regulatory axis that is pivotal for immune homeostasis and correct execution of immune responses. TNF ligands and receptors are involved in diverse biological processes ranging from the selective induction of cell death in potentially dangerous and superfluous cells to providing costimulatory signals that help mount an effective immune response. This diverse and important regulatory role in immunity has sparked great interest in the development of TNFL/TNFR-targeted cancer immunotherapeutics. In this review, I will discuss the biology of the most prominent proapoptotic and co-stimulatory TNF ligands and review their current status in cancer immunotherapy.
Collapse
|
43
|
Morales-Kastresana A, Catalán E, Hervás-Stubbs S, Palazón A, Azpilikueta A, Bolaños E, Anel A, Pardo J, Melero I. Essential complicity of perforin-granzyme and FAS-L mechanisms to achieve tumor rejection following treatment with anti-CD137 mAb. J Immunother Cancer 2013; 1:3. [PMID: 24764534 PMCID: PMC3987045 DOI: 10.1186/2051-1426-1-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Treatment with agonist anti-CD137 (4-1BB) immunostimulatory monoclonal antibodies elicits complete tumor regressions in a number of transplanted hematological and solid malignancies in mice. Rejection is mainly dependent on cytotoxic T lymphocytes (CTL) and IFNγ, although a role for NK cells and dendritic cells has been observed in some tumor models. Rejection of EG7-derived thymomas has been shown to be CTL-dependent but not NK-dependent. FINDINGS In this therapeutic setting, we show that both the perforin-granzyme and FasL effector systems are readily expressed by CD8(+) T lymphocytes infiltrating the EG7 lymphomas which are undergoing rejection. Using knock-out mice, we demonstrate that both effector cytolytic systems are involved in the execution of complete immune rejections against EG7 established tumors. In accordance, EG7 tumor cells were susceptible in vitro to both killing mechanisms acting in a synergistic fashion. CONCLUSIONS CD137-elicited rejection of EG7-derived tumors involves the interplay of at least two final effector cytolytic mechanisms that act in cooperation.
Collapse
Affiliation(s)
| | - Elena Catalán
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Sandra Hervás-Stubbs
- CIMA, Gene therapy and Hepatology Unit, University of Navarra, Pamplona, Navarra, Spain
| | - Asis Palazón
- CIMA, Gene therapy and Hepatology Unit, University of Navarra, Pamplona, Navarra, Spain
| | - Arantza Azpilikueta
- CIMA, Gene therapy and Hepatology Unit, University of Navarra, Pamplona, Navarra, Spain
| | - Elixabet Bolaños
- CIMA, Gene therapy and Hepatology Unit, University of Navarra, Pamplona, Navarra, Spain
| | - Alberto Anel
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Julián Pardo
- Instituto de Investigaciones Sanitarias de Aragón. Departamento de Bioquímica y Biología Molecular y Celular, Fac. Ciencias, Instituto de Nanociencia de Aragón (INA). Fundación Aragón I+D (ARAID) Universidad de Zaragoza, Zaragoza, Spain
| | - Ignacio Melero
- CIMA, Gene therapy and Hepatology Unit, University of Navarra, Pamplona, Navarra, Spain
| |
Collapse
|
44
|
Anderson MW, Zhao S, Freud AG, Czerwinski DK, Kohrt H, Alizadeh AA, Houot R, Azambuja D, Biasoli I, Morais JC, Spector N, Molina-Kirsch HF, Warnke RA, Levy R, Natkunam Y. CD137 is expressed in follicular dendritic cell tumors and in classical Hodgkin and T-cell lymphomas: diagnostic and therapeutic implications. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:795-803. [PMID: 22901750 DOI: 10.1016/j.ajpath.2012.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/30/2012] [Accepted: 05/16/2012] [Indexed: 11/18/2022]
Abstract
CD137 (also known as 4-1BB and TNFRSF9) is a member of the tumor necrosis factor receptor superfamily. Originally identified as a costimulatory molecule expressed by activated T cells and NK cells, CD137 is also expressed by follicular dendritic cells, monocytes, mast cells, granulocytes, and endothelial cells. Anti-CD137 immunotherapy has recently shown promise as a treatment for solid tumors and lymphoid malignancies in preclinical models. We defined the expression of CD137 protein in both normal and neoplastic hematolymphoid tissue. CD137 protein is expressed by follicular dendritic cells in the germinal center and scattered paracortical T cells, but not by normal germinal-center B cells, bone marrow progenitor cells, or maturing thymocytes. CD137 protein is expressed by a select group of hematolymphoid tumors, including classical Hodgkin lymphoma, T-cell and NK/T-cell lymphomas, and follicular dendritic cells neoplasms. CD137 is a novel diagnostic marker of these tumors and suggests a possible target for tumor-directed antibody therapy.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Dendritic Cells, Follicular/metabolism
- Dendritic Cells, Follicular/pathology
- Flow Cytometry
- Histiocytic Disorders, Malignant/diagnosis
- Histiocytic Disorders, Malignant/metabolism
- Histiocytic Disorders, Malignant/pathology
- Histiocytic Disorders, Malignant/therapy
- Hodgkin Disease/diagnosis
- Hodgkin Disease/metabolism
- Hodgkin Disease/pathology
- Hodgkin Disease/therapy
- Humans
- Immunohistochemistry
- Lymphocyte Subsets/metabolism
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/pathology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/therapy
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
Collapse
Affiliation(s)
- Matthew W Anderson
- Department of Pathology, Stanford University School of Medicine, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dairaghi DJ, Oyajobi BO, Gupta A, McCluskey B, Miao S, Powers JP, Seitz LC, Wang Y, Zeng Y, Zhang P, Schall TJ, Jaen JC. CCR1 blockade reduces tumor burden and osteolysis in vivo in a mouse model of myeloma bone disease. Blood 2012; 120:1449-57. [PMID: 22618707 PMCID: PMC3423783 DOI: 10.1182/blood-2011-10-384784] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/12/2012] [Indexed: 01/02/2023] Open
Abstract
The chemokine CCL3/MIP-1α is a risk factor in the outcome of multiple myeloma (MM), particularly in the development of osteolytic bone disease. This chemokine, highly overexpressed by MM cells, can signal mainly through 2 receptors, CCR1 and CCR5, only 1 of which (CCR1) is responsive to CCL3 in human and mouse osteoclast precursors. CCR1 activation leads to the formation of osteolytic lesions and facilitates tumor growth. Here we show that formation of mature osteoclasts is blocked by the highly potent and selective CCR1 antagonist CCX721, an analog of the clinical compound CCX354. We also show that doses of CCX721 selected to completely inhibit CCR1 produce a profound decrease in tumor burden and osteolytic damage in the murine 5TGM1 model of MM bone disease. Similar effects were observed when the antagonist was used prophylactically or therapeutically, with comparable efficacy to that of zoledronic acid. 5TGM1 cells were shown to express minimal levels of CCR1 while secreting high levels of CCL3, suggesting that the therapeutic effects of CCX721 result from CCR1 inhibition on non-MM cells, most likely osteoclasts and osteoclast precursors. These results provide a strong rationale for further development of CCR1 antagonists for the treatment of MM and associated osteolytic bone disease.
Collapse
|
46
|
Ji RR, Chasalow SD, Wang L, Hamid O, Schmidt H, Cogswell J, Alaparthy S, Berman D, Jure-Kunkel M, Siemers NO, Jackson JR, Shahabi V. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 2012; 61:1019-31. [PMID: 22146893 PMCID: PMC11028506 DOI: 10.1007/s00262-011-1172-6] [Citation(s) in RCA: 624] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 11/18/2011] [Indexed: 02/06/2023]
Abstract
PURPOSE Ipilimumab, a fully human monoclonal antibody specific to CTLA-4, has been shown to improve overall survival in metastatic melanoma patients. As a consequence of CTLA-4 blockade, ipilimumab treatment is associated with proliferation and activation of peripheral T cells. To better understand various tumor-associated components that may influence the clinical outcome of ipilimumab treatment, gene expression profiles of tumors from patients treated with ipilimumab were characterized. EXPERIMENTAL DESIGN Gene expression profiling was performed on tumor biopsies collected from 45 melanoma patients before and 3 weeks after the start of treatment in a phase II clinical trial. RESULTS Analysis of pre-treatment tumors indicated that patients with high baseline expression levels of immune-related genes were more likely to respond favorably to ipilimumab. Furthermore, ipilimumab appeared to induce two major changes in tumors from patients who exhibited clinical activity: genes involved in immune response showed increased expression, whereas expression of genes for melanoma-specific antigens and genes involved in cell proliferation decreased. These changes were associated with the total lymphocyte infiltrate in tumors, and there was a suggestion of association with prolonged overall survival in these patients. Many IFN-γ-inducible genes and Th1-associated markers showed increased expression after ipilimumab treatment, suggesting an accumulation of this particular type of T cell at the tumor sites, which might play an important role in mediating the antitumor activity of ipilimumab. CONCLUSIONS These results support the proposed mechanism of action of ipilimumab, suggesting that cell-mediated immune responses play an important role in the antitumor activity of ipilimumab.
Collapse
Affiliation(s)
- Rui-Ru Ji
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Scott D. Chasalow
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Lisu Wang
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Omid Hamid
- The Angeles Clinic and Research Institute, Santa Monica, CA USA
| | | | - John Cogswell
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Suresh Alaparthy
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - David Berman
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Maria Jure-Kunkel
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Nathan O. Siemers
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Jeffrey R. Jackson
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| | - Vafa Shahabi
- Bristol-Myers Squibb Company, P.O. box 4000, Princeton, NJ 08543-4000 USA
| |
Collapse
|
47
|
Quetglas JI, Dubrot J, Bezunartea J, Sanmamed MF, Hervas-Stubbs S, Smerdou C, Melero I. Immunotherapeutic synergy between anti-CD137 mAb and intratumoral administration of a cytopathic Semliki Forest virus encoding IL-12. Mol Ther 2012; 20:1664-75. [PMID: 22735380 DOI: 10.1038/mt.2012.56] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intratumoral injection of Semliki Forest virus encoding interleukin-12 (SFV-IL-12) combines acute expression of IL-12 and stressful apoptosis of infected malignant cells. Agonist antibodies directed to costimulatory receptor CD137 (4-1BB) strongly amplify pre-existing cellular immune responses toward weak tumor antigens. In this study, we provide evidence for powerful synergistic effects of a combined strategy consisting of intratumoral injection of SFV-IL-12 and systemic delivery of agonist anti-CD137 monoclonal antibodies (mAbs), which was substantiated against poorly immunogenic B16 melanomas (B16-OVA and B16.F10) and TC-1 lung carcinomas. Effector CD8(β)(+) T cells were sufficient to mediate complete tumor eradications. Accordingly, there was an intensely synergistic in vivo enhancement of cytotoxic T lymphocytes (CTL)-mediated immunity against the tumor antigens OVA and tyrosine-related protein-2 (TRP-2). This train of phenomena led to long-lasting tumor-specific immunity against rechallenge, attained transient control of the progression of concomitant tumor lesions that were not directly treated with SFV-IL-12 and caused autoimmune vitiligo. Importantly, we found that SFV-IL-12 intratumoral injection induces bright expression of CD137 on most tumor-infiltrating CD8(+) T lymphocytes, thereby providing more abundant targets for the action of the agonist antibody. This efficacious combinatorial immunotherapy strategy offers feasibility for clinical translation since anti-CD137 mAbs are already undergoing clinical trials and development of clinical-grade SFV-IL-12 vectors is in progress.
Collapse
Affiliation(s)
- José I Quetglas
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Navarra, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Kohrt HE, Houot R, Weiskopf K, Goldstein MJ, Scheeren F, Czerwinski D, Colevas AD, Weng WK, Clarke MF, Carlson RW, Stockdale FE, Mollick JA, Chen L, Levy R. Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer. J Clin Invest 2012; 122:1066-75. [PMID: 22326955 PMCID: PMC3287235 DOI: 10.1172/jci61226] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/04/2012] [Indexed: 02/06/2023] Open
Abstract
Trastuzumab, a monoclonal antibody targeting human epidermal growth factor receptor 2 (HER2; also known as HER-2/neu), is indicated for the treatment of women with either early stage or metastatic HER2(+) breast cancer. It kills tumor cells by several mechanisms, including antibody-dependent cellular cytotoxicity (ADCC). Strategies that enhance the activity of ADCC effectors, including NK cells, may improve the efficacy of trastuzumab. Here, we have shown that upon encountering trastuzumab-coated, HER2-overexpressing breast cancer cells, human NK cells become activated and express the costimulatory receptor CD137. CD137 activation, which was dependent on NK cell expression of the FcγRIII receptor, occurred both in vitro and in the peripheral blood of women with HER2-expressing breast cancer after trastuzumab treatment. Stimulation of trastuzumab-activated human NK cells with an agonistic mAb specific for CD137 killed breast cancer cells (including an intrinsically trastuzumab-resistant cell line) more efficiently both in vitro and in vivo in xenotransplant models of human breast cancer, including one using a human primary breast tumor. The enhanced cytotoxicity was restricted to antibody-coated tumor cells. This sequential antibody strategy, combining a tumor-targeting antibody with a second antibody that activates the host innate immune system, may improve the therapeutic effects of antibodies against breast cancer and other HER2-expressing tumors.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antineoplastic Agents/administration & dosage
- Breast Neoplasms/drug therapy
- Drug Synergism
- Female
- Humans
- Killer Cells, Natural/cytology
- Mammary Neoplasms, Animal/drug therapy
- Mice
- Mice, Nude
- Mice, SCID
- Neoplasm Transplantation
- Transplantation, Heterologous
- Trastuzumab
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
Collapse
Affiliation(s)
- Holbrook E. Kohrt
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA.
Service d’Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.
INSERM U917, Université de Rennes 1, Rennes, France.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.
Department of Immunobiology, Yale Cancer Center, New Haven, Connecticut, USA
| | - Roch Houot
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA.
Service d’Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.
INSERM U917, Université de Rennes 1, Rennes, France.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.
Department of Immunobiology, Yale Cancer Center, New Haven, Connecticut, USA
| | - Kipp Weiskopf
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA.
Service d’Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.
INSERM U917, Université de Rennes 1, Rennes, France.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.
Department of Immunobiology, Yale Cancer Center, New Haven, Connecticut, USA
| | - Matthew J. Goldstein
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA.
Service d’Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.
INSERM U917, Université de Rennes 1, Rennes, France.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.
Department of Immunobiology, Yale Cancer Center, New Haven, Connecticut, USA
| | - Ferenc Scheeren
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA.
Service d’Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.
INSERM U917, Université de Rennes 1, Rennes, France.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.
Department of Immunobiology, Yale Cancer Center, New Haven, Connecticut, USA
| | - Debra Czerwinski
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA.
Service d’Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.
INSERM U917, Université de Rennes 1, Rennes, France.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.
Department of Immunobiology, Yale Cancer Center, New Haven, Connecticut, USA
| | - A. Dimitrios Colevas
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA.
Service d’Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.
INSERM U917, Université de Rennes 1, Rennes, France.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.
Department of Immunobiology, Yale Cancer Center, New Haven, Connecticut, USA
| | - Wen-Kai Weng
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA.
Service d’Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.
INSERM U917, Université de Rennes 1, Rennes, France.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.
Department of Immunobiology, Yale Cancer Center, New Haven, Connecticut, USA
| | - Michael F. Clarke
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA.
Service d’Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.
INSERM U917, Université de Rennes 1, Rennes, France.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.
Department of Immunobiology, Yale Cancer Center, New Haven, Connecticut, USA
| | - Robert W. Carlson
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA.
Service d’Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.
INSERM U917, Université de Rennes 1, Rennes, France.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.
Department of Immunobiology, Yale Cancer Center, New Haven, Connecticut, USA
| | - Frank E. Stockdale
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA.
Service d’Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.
INSERM U917, Université de Rennes 1, Rennes, France.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.
Department of Immunobiology, Yale Cancer Center, New Haven, Connecticut, USA
| | - Joseph A. Mollick
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA.
Service d’Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.
INSERM U917, Université de Rennes 1, Rennes, France.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.
Department of Immunobiology, Yale Cancer Center, New Haven, Connecticut, USA
| | - Lieping Chen
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA.
Service d’Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.
INSERM U917, Université de Rennes 1, Rennes, France.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.
Department of Immunobiology, Yale Cancer Center, New Haven, Connecticut, USA
| | - Ronald Levy
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA.
Service d’Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.
INSERM U917, Université de Rennes 1, Rennes, France.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.
Department of Immunobiology, Yale Cancer Center, New Haven, Connecticut, USA
| |
Collapse
|
49
|
Goldstein MJ, Kohrt HE, Houot R, Varghese B, Lin JT, Swanson E, Levy R. Adoptive cell therapy for lymphoma with CD4 T cells depleted of CD137-expressing regulatory T cells. Cancer Res 2012; 72:1239-47. [PMID: 22232735 DOI: 10.1158/0008-5472.can-11-3375] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adoptive immunotherapy with antitumor T cells is a promising novel approach for the treatment of cancer. However, T-cell therapy may be limited by the cotransfer of regulatory T cells (T(reg)). Here, we explored this hypothesis by using 2 cell surface markers, CD44 and CD137, to isolate antitumor CD4 T cells while excluding T(regs). In a murine model of B-cell lymphoma, only CD137(neg)CD44(hi) CD4 T cells infiltrated tumor sites and provided protection. Conversely, the population of CD137(pos)CD44hi CD4 T cells consisted primarily of activated T(regs). Notably, this CD137(pos) T(reg) population persisted following adoptive transfer and maintained expression of FoxP3 as well as CD137. Moreover, in vitro these CD137(pos) cells suppressed the proliferation of effector cells in a contact-dependent manner, and in vivo adding the CD137(pos)CD44(hi) CD4 cells to CD137(neg)CD44(hi) CD4 cells suppressed the antitumor immune response. Thus, CD137 expression on CD4 T cells defined a population of activated T(regs) that greatly limited antitumor immune responses. Consistent with observations in the murine model, human lymphoma biopsies also contained a population of CD137(pos) CD4 T cells that were predominantly CD25(pos)FoxP3(pos) T(regs). In conclusion, our findings identify 2 surface markers that can be used to facilitate the enrichment of antitumor CD4 T cells while depleting an inhibitory T(reg) population.
Collapse
Affiliation(s)
- Matthew J Goldstein
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Houot R, Kohrt H, Goldstein MJ, Levy R. Immunomodulating antibodies and drugs for the treatment of hematological malignancies. Cancer Metastasis Rev 2011; 30:97-109. [PMID: 21271352 DOI: 10.1007/s10555-011-9274-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of cancer immunotherapy is to induce immune cells to kill tumor and promote immunological memory that protects against tumor recurrence. Most current immunotherapies, such as monoclonal antibodies (mAb), target the tumor cells directly. Advances in our understanding of the immune system such as the role of co-stimulatory and co-inhibitory receptors, and the advent of new immunomodulatory agents provide new opportunities to target the immune system and enhance anti-tumor immune responses. These promising agents include immunomodulating mAbs, Toll-like receptor agonists, IMiDs, and cytokines. In this review, we discuss the current results of immunomodulating agents in the treatment of hematological malignancies and propose applications that include targeting of the innate and adaptive immune systems as well as combinations with tumor-specific mAbs.
Collapse
Affiliation(s)
- Roch Houot
- Service d'Hématologie Clinique & INSERM U917, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | | | | | | |
Collapse
|