1
|
Desai O, Rathore M, Boutros CS, Wright M, Bryson E, Curry K, Wang R. HER3: Unmasking a twist in the tale of a previously unsuccessful therapeutic pursuit targeting a key cancer survival pathway. Genes Dis 2025; 12:101354. [PMID: 40290122 PMCID: PMC12022662 DOI: 10.1016/j.gendis.2024.101354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 04/30/2025] Open
Abstract
HER3, formally referred to as ERB-B2 receptor tyrosine kinase 3, is a member of the ErbB receptor tyrosine kinases (also known as EGFR) family. HER3 plays a significant pro-cancer role in various types of cancer due to its overexpression and abnormal activation, which initiates downstream signaling pathways crucial in cancer cell survival and progression. As a result, numerous monoclonal antibodies have been developed to block HER3 activation and subsequent signaling pathways. While pre-clinical investigations have effectively showcased significant anti-cancer effects of HER3-targeted therapies, these therapies have had little impact on cancer patient outcomes in the clinic, except for patients with rare NRG1 fusion mutations. This review offers a comprehensive description of the oncogenic functions of HER3, encompassing its structure and mediating signaling pathways. More importantly, it provides an in-depth exploration of past and ongoing clinical trials investigating HER3-targeted therapies for distinct types of cancer and discusses the tumor microenvironment and other critical determinants that may contribute to the observed suboptimal outcomes in most clinical studies using HER3-targeted therapies. Lastly, we suggest alternative approaches and the exploration of novel strategies to potentially improve the efficacy of targeting the pivotal oncogenic HER3 signaling pathway in future translational investigations.
Collapse
Affiliation(s)
- Omkar Desai
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Moeez Rathore
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christina S. Boutros
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Michel'le Wright
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elizabeth Bryson
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kimberly Curry
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rui Wang
- Department of Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Garrett JT, Tendler S, Feroz W, Kilroy MK, Yu H. Emerging importance of HER3 in tumorigenesis and cancer therapy. Nat Rev Clin Oncol 2025; 22:348-370. [PMID: 40087402 DOI: 10.1038/s41571-025-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
HER3 is a member of the HER/ErbB family of receptor tyrosine kinases, together with EGFR (HER1), HER2 and HER4. Despite having only weak intrinsic kinase activity, HER3 can contribute to oncogenic signalling via ligand-induced heterodimerization with other HER family members. Evidence indicates that HER3 is altered or aberrantly expressed across a variety of tumour types and can be associated with poor clinical outcomes. Whereas anticancer agents targeting EGFR and HER2 have been approved for decades, no drug targeting HER3 had been approved until very recently. Initial targeting of HER3 with monoclonal antibodies as single agents or in combination with other therapeutics produced disappointing clinical results. Subsequently, efforts have been made to target HER3 with novel agents such as antibody-drug conjugates and bispecific antibodies, with promising efficacy observed in several trials encompassing various tumour types. In December 2024, the HER3 × HER2 bispecific antibody zenocutuzumab was granted FDA Accelerated Approval for the treatment of non-small-cell lung cancers or pancreatic cancers harbouring fusions involving NRG1, the gene encoding the high-affinity HER3 ligand neuregulin 1. In this Review, we provide an essential guide to HER3 signalling and oncogenesis, HER3 expression in cancer and its prognostic implications, oncogenic HER3 somatic mutations as well as rare NRG1 fusions that might depend on HER3 signalling, and the roles of HER3 in resistance to cancer therapies. We also highlight efforts to target HER3 with diverse therapeutic strategies and the potential interplay between HER3 and the antitumour immune response.
Collapse
Affiliation(s)
- Joan T Garrett
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA.
| | - Salomon Tendler
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wasim Feroz
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Mary Kate Kilroy
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Helena Yu
- Department of Medicine, Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Hao JL, Li XY, Liu YT, Lang JX, Liu DJ, Zhang CD. Antibody-drug conjugates in gastric cancer: from molecular landscape to clinical strategies. Gastric Cancer 2024; 27:887-906. [PMID: 38963593 DOI: 10.1007/s10120-024-01529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a crucial component of targeted therapies in gastric cancer, potentially altering traditional treatment paradigms. Many ADCs have entered rigorous clinical trials based on biological theories and preclinical experiments. Modality trials have also been conducted in combination with monoclonal antibody therapies, chemotherapies, immunotherapies, and other treatments to enhance the efficacy of drug coordination effects. However, ADCs exhibit limitations in treating gastric cancer, including resistance triggered by their structure or other factors. Ongoing intensive researches and preclinical experiments are yielding improvements, while enhancements in drug development processes and concomitant diagnostics during the therapeutic period actively boost ADC efficacy. The optimal treatment strategy for gastric cancer patients is continually evolving. This review summarizes the clinical progress of ADCs in treating gastric cancer, analyzes the mechanisms of ADC combination therapies, discusses resistance patterns, and offers a promising outlook for future applications in ADC drug development and companion diagnostics.
Collapse
Affiliation(s)
- Jia-Lin Hao
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Yu-Tong Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Ji-Xuan Lang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Di-Jie Liu
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Chun-Dong Zhang
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| |
Collapse
|
4
|
Chen Y, Lu A, Hu Z, Li J, Lu J. ERBB3 targeting: A promising approach to overcoming cancer therapeutic resistance. Cancer Lett 2024; 599:217146. [PMID: 39098760 DOI: 10.1016/j.canlet.2024.217146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Human epidermal growth factor receptor-3 (ERBB3) is a member of the ERBB receptor tyrosine kinases (RTKs) and is expressed in many malignancies. Along with other ERBB receptors, ERBB3 is associated with regulating normal cell proliferation, apoptosis, differentiation, and survival, and has received increased research attention for its involvement in cancer therapies. ERBB3 expression or co-expression levels have been investigated as predictive factors for cancer prognosis and drug sensitivity. Additionally, the association between the elevated expression of ERBB3 and treatment failure in cancer therapy further established ERBB3-targeting therapy as a crucial therapeutic approach. This review delves into the molecular mechanisms of ERBB3-driven resistance to targeted therapeutics against ERBB2 and EGFR and other signal transduction inhibitors, endocrine therapy, chemotherapy, and radiotherapy. Using preclinical and clinical evidence, we synthesise and explicate how various aspects of aberrant ERBB3 activities-such as compensatory activation, signal crosstalk interactions, dysregulation in the endocytic pathway, mutations, ligand-independent activation, intrinsic kinase activity, and homodimerisation-can lead to resistance development and/or treatment failures. Several ERBB3-directed monoclonal antibodies, bispecific antibodies, and the emerging antibody-drug conjugate demonstrate encouraging clinical outcomes for improving therapeutic efficacy and overcoming resistance, especially when combined with other anti-cancer approaches. More research efforts are needed to identify appropriate biomarkers tailored for ERBB3-targeted therapies.
Collapse
Affiliation(s)
- Yutao Chen
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1142, New Zealand
| | - Anni Lu
- Pinehurst School, Albany, Auckland, New Zealand
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinyao Li
- College of Life Sciences, Xijiang University, Urumqi, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1142, New Zealand; College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China; College of Food Science and Technology, Nanchang University, Nanchang, 330031, Jiangxi Province, China; Department of Food and Agriculture Technology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China.
| |
Collapse
|
5
|
High P, Guernsey C, Subramanian S, Jacob J, Carmon KS. The Evolving Paradigm of Antibody-Drug Conjugates Targeting the ErbB/HER Family of Receptor Tyrosine Kinases. Pharmaceutics 2024; 16:890. [PMID: 39065587 PMCID: PMC11279420 DOI: 10.3390/pharmaceutics16070890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Current therapies targeting the human epidermal growth factor receptor (HER) family, including monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs), are limited by drug resistance and systemic toxicities. Antibody-drug conjugates (ADCs) are one of the most rapidly expanding classes of anti-cancer therapeutics with 13 presently approved by the FDA. Importantly, ADCs represent a promising therapeutic option with the potential to overcome traditional HER-targeted therapy resistance by delivering highly potent cytotoxins specifically to HER-overexpressing cancer cells and exerting both mAb- and payload-mediated antitumor efficacy. The clinical utility of HER-targeted ADCs is exemplified by the immense success of HER2-targeted ADCs including trastuzumab emtansine and trastuzumab deruxtecan. Still, strategies to improve upon existing HER2-targeted ADCs as well as the development of ADCs against other HER family members, particularly EGFR and HER3, are of great interest. To date, no HER4-targeting ADCs have been reported. In this review, we extensively detail clinical-stage EGFR-, HER2-, and HER3-targeting monospecific ADCs as well as novel clinical and pre-clinical bispecific ADCs (bsADCs) directed against this receptor family. We close by discussing nascent trends in the development of HER-targeting ADCs, including novel ADC payloads and HER ligand-targeted ADCs.
Collapse
Affiliation(s)
- Peyton High
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (P.H.); (C.G.); (S.S.); (J.J.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
| | - Cara Guernsey
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (P.H.); (C.G.); (S.S.); (J.J.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
| | - Shraddha Subramanian
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (P.H.); (C.G.); (S.S.); (J.J.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
| | - Joan Jacob
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (P.H.); (C.G.); (S.S.); (J.J.)
| | - Kendra S. Carmon
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (P.H.); (C.G.); (S.S.); (J.J.)
| |
Collapse
|
6
|
Li F, Yu J, Pan T, Feng H, Li J, Yu B, Fan Z, Sang Q, Chen M, Zang M, Hou J, Wu X, Yu Y, Li Y, Yan C, Zhu Z, Su L, Liu B. BPTF Drives Gastric Cancer Resistance to EGFR Inhibitor by Epigenetically Regulating the C-MYC/PLCG1/Perk Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303091. [PMID: 37863665 PMCID: PMC10700682 DOI: 10.1002/advs.202303091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/06/2023] [Indexed: 10/22/2023]
Abstract
Erlotinib, an EGFR tyrosine kinase inhibitor, is used for treating patients with cancer exhibiting EGFR overexpression or mutation. However, the response rate of erlotinib is low among patients with gastric cancer (GC). The findings of this study illustrated that the overexpression of bromodomain PHD finger transcription factor (BPTF) is partially responsible for erlotinib resistance in GC, and the combination of the BPTF inhibitor AU-1 with erlotinib synergistically inhibited tumor growth both in vivo and in vitro. AU-1 inhibited the epigenetic function of BPTF and decreased the transcriptional activity of c-MYC on PLCG1 by attenuating chromosome accessibility of the PLCG1 promoter region, thus decreasing the expression of p-PLCG1 and p-Erk and eventually improving the sensitivity of GC cells to erlotinib. In patient-derived xenograft (PDX) models, AU-1 monotherapy exhibited remarkable tumor-inhibiting activity and is synergistic anti-tumor effects when combined with erlotinib. Altogether, the findings illustrate that BPTF affects the responsiveness of GC to erlotinib by epigenetically regulating the c-MYC/PLCG1/pErk axis, and the combination of BPTF inhibitors and erlotinib is a viable therapeutic approach for GC.
Collapse
Affiliation(s)
- Fangyuan Li
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Junxian Yu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Tao Pan
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Haoran Feng
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Jianfang Li
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Beiqin Yu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Zhiyuan Fan
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Qingqing Sang
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Mengdi Chen
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Mingde Zang
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- Department of Gastric Cancer SurgeryFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Junyi Hou
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Xiongyan Wu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yingyan Yu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yuan‐Yuan Li
- Shanghai Center for Bioinformation TechnologyShanghai Engineering Research Center of Pharmaceutical Translation & Shanghai Industrial Technology InstituteShanghai202163P. R. China
| | - Chao Yan
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Zhenggang Zhu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Liping Su
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Bingya Liu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| |
Collapse
|
7
|
Majumder A. HER3: Toward the Prognostic Significance, Therapeutic Potential, Current Challenges, and Future Therapeutics in Different Types of Cancer. Cells 2023; 12:2517. [PMID: 37947595 PMCID: PMC10648638 DOI: 10.3390/cells12212517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is the only family member of the EGRF/HER family of receptor tyrosine kinases that lacks an active kinase domain (KD), which makes it an obligate binding partner with other receptors for its oncogenic role. When HER3 is activated in a ligand-dependent (NRG1/HRG) or independent manner, it can bind to other receptors (the most potent binding partner is HER2) to regulate many biological functions (growth, survival, nutrient sensing, metabolic regulation, etc.) through the PI3K-AKT-mTOR pathway. HER3 has been found to promote tumorigenesis, tumor growth, and drug resistance in different cancer types, especially breast and non-small cell lung cancer. Given its ubiquitous expression across different solid tumors and role in oncogenesis and drug resistance, there has been a long effort to target HER3. As HER3 cannot be targeted through its KD with small-molecule kinase inhibitors via the conventional method, pharmaceutical companies have used various other approaches, including blocking either the ligand-binding domain or extracellular domain for dimerization with other receptors. The development of treatment options with anti-HER3 monoclonal antibodies, bispecific antibodies, and different combination therapies showed limited clinical efficiency for various reasons. Recent reports showed that the extracellular domain of HER3 is not required for its binding with other receptors, which raises doubt about the efforts and applicability of the development of the HER3-antibodies for treatment. Whereas HER3-directed antibody-drug conjugates showed potentiality for treatment, these drugs are still under clinical trial. The currently understood model for dimerization-induced signaling remains incomplete due to the absence of the crystal structure of HER3 signaling complexes, and many lines of evidence suggest that HER family signaling involves more than the interaction of two members. This review article will significantly expand our knowledge of HER3 signaling and shed light on developing a new generation of drugs that have fewer side effects than the current treatment regimen for these patients.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
8
|
Ducharme M, Mansur A, Sligh L, Ulaner GA, Lapi SE, Sorace AG. Human Epidermal Growth Factor Receptor 2/Human Epidermal Growth Factor Receptor 3 PET Imaging: Challenges and Opportunities. PET Clin 2023; 18:543-555. [PMID: 37339919 DOI: 10.1016/j.cpet.2023.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) and HER3 provide actionable targets for both therapy and imaging in breast cancer. Further, clinical trials have shown the prognostic impact of receptor status discordance in breast cancer. Intra- and intertumoral heterogeneity of both HER and hormone receptor expression contributes to inherent errors in tissue sampling, and single biopsies are incapable of identifying discordance in biomarker expression. Numerous PET radiopharmaceuticals have been developed to evaluate (or target for therapy) HER2 and HER3 expression. This review seeks to inform on challenges and opportunities in HER2 and HER3 PET imaging in both clinical and preclinical settings.
Collapse
Affiliation(s)
- Maxwell Ducharme
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ameer Mansur
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luke Sligh
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Irvine, CA, USA; Department of Radiology and Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Tomasich E, Steindl A, Paiato C, Hatziioannou T, Kleinberger M, Berchtold L, Puhr R, Hainfellner JA, Müllauer L, Widhalm G, Eckert F, Bartsch R, Heller G, Preusser M, Berghoff AS. Frequent Overexpression of HER3 in Brain Metastases from Breast and Lung Cancer. Clin Cancer Res 2023; 29:3225-3236. [PMID: 37036472 DOI: 10.1158/1078-0432.ccr-23-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE HER3 belongs to a family of receptor tyrosine kinases with oncogenic properties and is targeted by a variety of novel anticancer agents. There is a huge unmet medical need for systemic treatment options in patients with brain metastases (BM). Therefore, we aimed to investigate HER3 expression in BM of breast (BCa) and non-small cell lung cancer (NSCLC) as the basis for future clinical trial design. EXPERIMENTAL DESIGN We analyzed 180 BM samples of breast cancer or NSCLC and 47 corresponding NSCLC extracranial tissue. IHC was performed to evaluate protein expression of HER3, and immune cells based on CD3, CD8, and CD68. To identify dysregulated pathways based on differential DNA methylation patterns, we used Infinium MethylationEPIC microarrays. RESULTS A total of 99/132 (75.0%) of BCa-BM and 35/48 (72.9%) of NSCLC-BM presented with HER3 expression. Among breast cancer, HER2-positive and HER2-low BM showed significantly higher rates of HER3 coexpression than HER2-negative BM (87.1%/85.7% vs. 61.0%, P = 0.004). Among NSCLC, HER3 was more abundantly expressed in BM than in matched extracranial samples (72.9% vs. 41.3%, P = 0.003). No correlation of HER3 expression and intratumoral immune cell density was observed. HER3 expression did not correlate with overall survival from BM diagnosis. Methylation signatures differed according to HER3 status in BCa-BM samples. Pathway analysis revealed subtype-specific differences, such as TrkB and Wnt signaling pathways dysregulated in HER2-positive and triple-negative breast cancer BM, respectively. CONCLUSIONS HER3 is highly abundant in BM of breast cancer and NSCLC. Given the promising results of antibody-drug conjugates in extracranial disease, BM-specific trials that target HER3 are warranted. See related commentary by Kabraji and Lin, p. 2961.
Collapse
Affiliation(s)
- Erwin Tomasich
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ariane Steindl
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Christina Paiato
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Teresa Hatziioannou
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Markus Kleinberger
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Luzia Berchtold
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Rainer Puhr
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Franziska Eckert
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna Sophie Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Shteinman ER, Vergara IA, Rawson RV, Lo SN, Maeda N, Koyama K, da Silva IP, Long GV, Scolyer RA, Wilmott JS, Menzies AM. Molecular and clinical correlates of HER3 expression highlights its potential role as a therapeutic target in melanoma. Pathology 2023:S0031-3025(23)00121-6. [PMID: 37286471 DOI: 10.1016/j.pathol.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/14/2022] [Accepted: 03/13/2023] [Indexed: 06/09/2023]
Abstract
Overexpression of the epidermal growth factor receptor family member HER3 (erbB3) has been implicated in several types of cancer and recently drugs targeting HER3 have shown promising clinical activity. In melanoma, HER3 overexpression has been linked to both metastasis formation and resistance to drug therapy in cell culture models. Here, we sought to characterise the expression of HER3 in 187 melanoma biopsies (149 cutaneous, 38 mucosal) using immunohistochemistry, as well as to analyse the association between HER3 expression and molecular, clinical and pathological variables. A subset of the cutaneous melanoma specimens was taken prior to treatment with immune checkpoint blockade therapy (pre-ICB) (n=79). HER3 expression (≥1+) was observed in 136 of 187 samples (∼73%). HER3 expression was found to be markedly lower in the mucosal melanomas, with 17 of the 38 tumours (∼45%) demonstrating no HER3 expression. In cutaneous melanomas, there was a negative association between HER3 expression and mutational load, a positive association with NRAS mutational status, and a trend of negative association with PD-L1 expression. In the pre-ICB cohort, an association was found between high HER3 expression (≥2+) and overall survival after anti-PD-1-based immunotherapy. Overall, our results indicate that HER3 is a promising therapeutic avenue in cutaneous melanoma worthy of further clinical evaluation.
Collapse
Affiliation(s)
- Eva R Shteinman
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ismael A Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Robert V Rawson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Serigne N Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | | | - Inês Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Blacktown Hospital, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Royal North Shore and Mater Hospitals, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Kojima Y, Sudo K, Yoshida H, Yazaki S, Tokura M, Mizoguchi C, Okuma HS, Kita S, Yamamoto K, Nishikawa T, Noguchi E, Shimoi T, Tanase Y, Uno M, Ishikawa M, Kato T, Koyama K, Kobayashi M, Kakegawa T, Fujiwara Y, Yonemori K. Changes in HER3 expression profiles between primary and recurrent gynecological cancers. Cancer Cell Int 2023; 23:18. [PMID: 36737733 PMCID: PMC9898949 DOI: 10.1186/s12935-022-02844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Human epidermal growth factor receptor-3 (HER3) is a member of the epidermal growth factor receptor family of receptor tyrosine kinases, and its overexpression is associated with inferior prognosis in several cancers. However, it is unclear whether HER3 expression status changes in tumor tissue at recurrence. Therefore, this study aimed to evaluate the changes in HER3 expression between primary and recurrent status in gynecological cancers. METHODS This retrospective study used matched-pair tissues of gynecological cancer patients at initial diagnosis and at recurrence. Immunohistochemical (IHC) scores of 3 + or 2 + were termed "HER3-high", while IHC scores of 1 + or 0 were designated as "HER3-low/zero". RESULTS A total of 86 patients (40 with ovarian cancers, 32 with endometrial cancers, and 14 with cervical cancers) were included in this study. In ovarian cancer, 67.5% and 80.0% of the patients received a HER3-high at initial and recurrent diagnosis, respectively. The H-score was significantly increased at recurrence (p = 0.004). The proportion of HER3-high endometrial cancer patients increased from 46.9% at initial diagnosis to 68.8% at recurrence, and the H-score tended to increase at recurrence (p = 0.08). The fraction of HER3-high-rated cervical cancer patients remained unchanged at 85.7% both at initial and recurrent diagnosis. The discordance rate of HER3 expression detection in initial and recurrent diagnosis samples was 27.5%, 53.1%, and 14.3% for ovarian, endometrial, and cervical cancers, respectively. Ovarian and endometrial cancers with a HER3-high recurrent score tended to show shorter median survival time than those with a HER3-low/zero recurrent rating. CONCLUSION Our findings suggest that, in main types of gynecological cancers, the proportion of patients having a HER3-high score increased from initial to recurrent diagnosis.
Collapse
Affiliation(s)
- Yuki Kojima
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Kazuki Sudo
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Hiroshi Yoshida
- grid.272242.30000 0001 2168 5385Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Shu Yazaki
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Momoko Tokura
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Chiharu Mizoguchi
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Hitomi S. Okuma
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Shosuke Kita
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Kasumi Yamamoto
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Tadaaki Nishikawa
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Emi Noguchi
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Tatsunori Shimoi
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Yasuhito Tanase
- grid.272242.30000 0001 2168 5385Department of Gynecology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Masaya Uno
- grid.272242.30000 0001 2168 5385Department of Gynecology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Mitsuya Ishikawa
- grid.272242.30000 0001 2168 5385Department of Gynecology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Tomoyasu Kato
- grid.272242.30000 0001 2168 5385Department of Gynecology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Kumiko Koyama
- grid.410844.d0000 0004 4911 4738Translational Science Department I, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-Ku, Tokyo, 140-8710 Japan
| | - Maki Kobayashi
- grid.410844.d0000 0004 4911 4738Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-Ku, Tokyo, 134-8630 Japan
| | - Tomoya Kakegawa
- grid.410844.d0000 0004 4911 4738Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-Ku, Tokyo, 134-8630 Japan
| | - Yasuhiro Fujiwara
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| | - Kan Yonemori
- grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-Ku, Tokyo, 104-0045 Japan
| |
Collapse
|
12
|
Liu ZX, Zhang XL, Zhao Q, Chen Y, Sheng H, He CY, Sun YT, Lai MY, Wu MQ, Zuo ZX, Wang W, Zhou ZW, Wang FH, Li YH, Xu RH, Qiu MZ. Whole-Exome Sequencing Among Chinese Patients With Hereditary Diffuse Gastric Cancer. JAMA Netw Open 2022; 5:e2245836. [PMID: 36484990 PMCID: PMC9856492 DOI: 10.1001/jamanetworkopen.2022.45836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE The E-cadherin gene, CDH1, and the α-E-catenin gene, CTNNA1, were previously identified as hereditary diffuse gastric cancer (HDGC) susceptibility genes, explaining 25% to 50% of HDGC cases. The genetic basis underlying disease susceptibility in the remaining 50% to 75% of patients with HDGC is still unknown. OBJECTIVE To assess the incidence rate of CDH1 germline alterations in HDGC, identify new susceptibility genes that can be used for screening of HDGC, and provide a genetic landscape for HDGC. DESIGN, SETTING, AND PARTICIPANTS This cohort study conducted retrospective whole-exome and targeted sequencing of 284 leukocyte samples and 186 paired tumor samples from Chinese patients with HDGC over a long follow-up period (median, 21.7 [range, 0.6-185.9] months). Among 10 431 patients diagnosed with gastric cancer between January 1, 2002, and August 31, 2018, 284 patients who met the criteria for HDGC were included. Data were analyzed from August 1 to 30, 2020. MAIN OUTCOMES AND MEASURES Incidence rate of CDH1 germline alterations, identification of new HDGC susceptibility genes, and genetic landscape of HDGC. RESULTS Among 284 Chinese patients, 161 (56.7%) were female, and the median age was 35 (range, 20-75) years. The frequency of CDH1 germline alterations was 2.8%, whereas the frequency of CDH1 somatic alterations was 25.3%. The genes with the highest incidence (>10%) of private germline alterations (including insertions and deletions) in the HDGC cohort were MUC4, ABCA13, ZNF469, FCGBP, IGFN1, RNF213, and SSPO, whereas previously reported germline alterations of CTNNA1, BRCA2, STK11, PRSS1, ATM, MSR1, PALB2, BRCA1, and RAD51C were observed at low frequencies (median, 4 [range, 1-12] cases). Furthermore, enrichment of the somatic variant signature of exposure to aflatoxin suggested potential interaction between genetics and environment in HDGC. Double-hit events in genes such as CACNA1D were observed, which suggested that these events might serve as important mechanisms for HDGC tumorigenesis. In addition, germline variants of FSIP2, HSPG2, and NCKAP5 and somatic alterations of FGFR3, ASPSCR1, CIC, DGCR8, and LZTR1 were associated with poor overall survival among patients with HDGC. CONCLUSIONS AND RELEVANCE This study provided a genetic landscape for HDGC. The study's findings challenged the previously reported high germline alteration rate of CDH1 in HDGC and identified new potential susceptibility genes. Analyses of variant signatures and double-hit events revealed potentially important mechanisms for HDGC tumorigenesis. Findings from the present study may provide helpful information for further investigations of HDGC.
Collapse
Affiliation(s)
- Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Xiao-Long Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Yungchang Chen
- Department of Medical Oncology, The First People’s Hospital of Foshan, Chancheng District, Foshan, People’s Republic of China
| | - Hui Sheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Cai-Yun He
- Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Yu-Ting Sun
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Ming-Yu Lai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Min-Qing Wu
- Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Zhi-Xiang Zuo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Wei Wang
- Department of Medical Oncology, The First People’s Hospital of Foshan, Chancheng District, Foshan, People’s Republic of China
| | - Zhi-Wei Zhou
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Feng-Hua Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Yu-Hong Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Miao-Zhen Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
13
|
Abstract
ABSTRACT Work over the past several decades has identified that aberrations in the ErbB signaling pathways are key drivers of oncogenesis, and concurrent efforts to discover targetable vulnerabilities to counter this aberrant oncogenic signaling offer tremendous promise in treating a host of human cancers. These efforts have been centered primarily on EGFR (also known as HER1), leading to the discovery of the first targeted therapies approved for head and neck cancer. More recently, HER2 and HER3 signaling pathways have been identified as highly dysregulated in head and neck cancer. This review highlights the HER2 and HER3 signaling pathways and clinical efforts to target these receptors and their aberrant signaling to treat head and neck squamous cell carcinomas and other head and neck malignancies, including salivary gland carcinomas. This includes the use of small molecule inhibitors and blocking antibodies, both as single agents or as part of multimodal precision targeted and immunotherapies.
Collapse
Affiliation(s)
- Robert Saddawi-Konefka
- Department of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine; San Diego, CA, United States
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Gleiberman Head and Neck Cancer Center, UC San Diego; La Jolla, CA, United States
| | - Shiruyeh Schokrpur
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Gleiberman Head and Neck Cancer Center, UC San Diego; La Jolla, CA, United States
- Department of Medicine, Division of Hematology-Oncology, UC San Diego School of Medicine; San Diego, CA, United States
| | - Asona J. Lui
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine; San Diego, CA, United States
| | - J. Silvio Gutkind
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Gleiberman Head and Neck Cancer Center, UC San Diego; La Jolla, CA, United States
- Department of Pharmacology, UC San Diego; La Jolla, CA, United States
| |
Collapse
|
14
|
Ooki A, Yamaguchi K. The dawn of precision medicine in diffuse-type gastric cancer. Ther Adv Med Oncol 2022; 14:17588359221083049. [PMID: 35281349 PMCID: PMC8908406 DOI: 10.1177/17588359221083049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. The histology- and morphology-based Lauren classification of GC has been widely used for over 50 years in clinical practice. The Lauren classification divides GC into intestinal and diffuse types, which have distinct etiology, molecular profiles, and clinicopathological features. Diffuse-type GC (DGC) accounts for approximately 30% of GCs. Tumor cells lack adhesion and infiltrate the stroma as single cells or small subgroups, leading to easy dissemination in the abdominal cavity. Clinically, DGC has aggressive traits with a high risk of recurrence and metastasis, which results in unfavorable prognosis. Although systemic chemotherapy is the main therapeutic approach for recurrent or metastatic GC patients, clinical benefits are limited for patients with DGC. Therefore, it is urgent to develop effective therapeutic strategies for DGC patients. Considerable research studies have characterized the molecular and genomic landscape of DGC, of which tight junction protein claudin-18 isoform 2 (CLDN18.2) and fibroblast growing factors receptor-2 isoform IIIb (FGFR2-IIIb) are the most attractive targets because of their close association with DGC. Recently, the impressive results of two phase II FAST and FIGHT trials demonstrate proof-of-concept, suggesting that anti-CLDN18.2 antibody (zolbetuximab) and FGFR2-IIIb antibody (bemarituzumab) are promising approaches for patients with CLDN18.2-positive and FGFR2-IIIb-positive GC, respectively. In this review, we summarize the clinicopathological features and molecular profiles of DGC and highlight a potential therapeutic target based on the findings of pivotal clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
15
|
Tagliaferro M, Rosa P, Bellenchi GC, Bastianelli D, Trotta R, Tito C, Fazi F, Calogero A, Ponti D. Nucleolar localization of the ErbB3 receptor as a new target in glioblastoma. BMC Mol Cell Biol 2022; 23:13. [PMID: 35255831 PMCID: PMC8900349 DOI: 10.1186/s12860-022-00411-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background The nucleolus is a subnuclear, non-membrane bound domain that is the hub of ribosome biogenesis and a critical regulator of cell homeostasis. Rapid growth and division of cells in tumors are correlated with intensive nucleolar metabolism as a response to oncogenic factors overexpression. Several members of the Epidermal Growth Factor Receptor (EGFR) family, have been identified in the nucleus and nucleolus of many cancer cells, but their function in these compartments remains unexplored. Results We focused our research on the nucleolar function that a specific member of EGFR family, the ErbB3 receptor, plays in glioblastoma, a tumor without effective therapies. Here, Neuregulin 1 mediated proliferative stimuli, promotes ErbB3 relocalization from the nucleolus to the cytoplasm and increases pre-rRNA synthesis. Instead ErbB3 silencing or nucleolar stress reduce cell proliferation and affect cell cycle progression. Conclusions These data point to the existence of an ErbB3-mediated non canonical pathway that glioblastoma cells use to control ribosomes synthesis and cell proliferation. These results highlight the potential role for the nucleolar ErbB3 receptor, as a new target in glioblastoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00411-y.
Collapse
Affiliation(s)
- Marzia Tagliaferro
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Corso della Repubblica 79, 04100, Latina, Italy
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Corso della Repubblica 79, 04100, Latina, Italy
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, 80131, Naples, Italy.,Fondazione Santa Lucia IRCCS, 00143, Rome, Italy.,Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| | | | - Rosa Trotta
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology, KU Leuven, Leuven, Belgium
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Corso della Repubblica 79, 04100, Latina, Italy.,Istituto Chirurgico Ortopedico Traumatologico, 04100, Latina, Italy
| | - Donatella Ponti
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Corso della Repubblica 79, 04100, Latina, Italy. .,Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium.
| |
Collapse
|
16
|
Liu H, Liu M, He B, Li Q. Inhibition of USP11 sensitizes gastric cancer to chemotherapy via suppressing RhoA and Ras-mediated signaling pathways. Clin Res Hepatol Gastroenterol 2022; 46:101779. [PMID: 34332125 DOI: 10.1016/j.clinre.2021.101779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND The poor outcomes in advanced gastric cancer (GC) necessitate alternative therapeutic strategy. Ubiquitin-specific protease 11 (USP11) has recently garnered attention as a therapeutic target in cancer because of its important regulatory role in cancer cell functions. Here, we revealed the expression, function and underlying molecular interactions of USP11 in gastric cancer. METHODS The expression of USP11 was analyzed using immunohistochemistry and ELISA. The loss-of function and gain-of function analysis of USP11 was performed using siRNA knockdown and plasmid overexpression approaches. The downstream molecules regulated by USP11 were determined using immunoblotting analysis. RESULTS USP11 was upregulated in ∼80% of gastric cancer patients, and the upregulation was associated with HER3 overexpression. In addition, USP11 level was not regulated by HER3 and vice versa. Functional studies demonstrated that USP11 overexpression promoted gastric cancer growth and migration, and alleviated toxicity-induced by chemotherapeutic drug. In contrast, USP11 depletion significantly inhibited gastric cancer growth, migration and survival, and augmented chemotherapeutic drug's efficacy. Gastric cancer cells with higher USP11 levels were more sensitive to USP11 inhibitions than cells with lower USP11 levels. Mechanism studies showed that USP11 depletion suppressed migration via RhoA-mediated pathway and inhibited growth and survival likely via Ras-mediated pathway. CONCLUSIONS Our work highlights the important role of USP11 in gastric cancer and therapeutic value of inhibiting USP11 to sensitize gastric cancer to chemotherapy.
Collapse
Affiliation(s)
- Hongfang Liu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
| | - Mei Liu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
| | - Bin He
- Department of Cardiothoracic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China.
| | - Qinghuan Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China.
| |
Collapse
|
17
|
Kawahara R, Simizu S. ErbB4-mediated regulation of vasculogenic mimicry capability in breast cancer cells. Cancer Sci 2021; 113:950-959. [PMID: 34971015 PMCID: PMC8898724 DOI: 10.1111/cas.15258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
ErbB4 is a member of the ErbB receptor tyrosine kinase family. It has both pro- and anti-oncogenic activities in tumors. Vasculogenic mimicry (VM), a phenomenon in which cancer cells form capillary-like structures without endothelial cells, has been recognized to be a cause of malignant phenotypes in some solid tumors. Here, we used an in vitro VM formation assay, and demonstrated that ErbB4 negatively regulated VM formation in human breast cancer cells. By using CRISPR/Cas9-mediated gene knockout, we verified that the depletion of endogenous ErbB4 improved the VM formation capability. Although treatment with neuregulin 1 (NRG1), a ligand of ErbB4, induced the phosphorylation of ErbB4 and promoted VM formation in a dose-dependent manner, it did not induce such activities in kinase-dead K751M ErbB4-expressing breast cancer cells. Moreover, we examined the effect of the missense mutation E872K of ErbB4, which has been reported in multiple tumors, on VM formation, and found that the mutation enhanced the basal phosphorylation level and ErbB4-mediated VM formation in the absence of NRG1 stimulation. While NRG1 stimulated VM formation, excessive activation of ErbB4 induced a negative effect. In E872K ErbB4-overexpressing cells, but not in wild-type ErbB4-overexpressing cells, the number of VM tubes was significantly decreased by low-dose treatment with the ErbB inhibitor afatinib. Taken together, our findings demonstrated the significance of ErbB4-mediated VM formation, and suggested the possibility of ErbB4 mutations as effective targets in breast cancer.
Collapse
Affiliation(s)
- Ryota Kawahara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
18
|
Almadori G, Coli A, De Corso E, Mele DA, Settimi S, Di Cintio G, Brigato F, Scannone D, Carey TE, Paludetti G, Lauriola L, Ranelletti FO. Nuclear HER3 expression improves the prognostic stratification of patients with HER1 positive advanced laryngeal squamous cell carcinoma. J Transl Med 2021; 19:408. [PMID: 34579737 PMCID: PMC8477517 DOI: 10.1186/s12967-021-03081-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Background Compared to the other members of human epidermal growth factor family receptors (HER), the role of HER3 has not been well defined in laryngeal cancer. The predictive and prognostic role of HER3 has been the focus of clinical attention but the research findings are contradictory, especially in laryngeal squamous cell carcinoma (LSCC). The variable localization of HER3 within cancer cells and the role of HER3 in primary and acquired resistance to HER1-targeted therapies remain unclear. Methods We performed a retrospective analysis of two cohorts of 66 homogeneous consecutive untreated primary advanced LSCC patients, in which co-expression of HER1, HER2 and HER3 receptors was investigated by semi-quantitative immunohistochemistry. The association of their pattern of expression with survival was evaluated by Kaplan–Meier and Cox’s proportional hazard analyses. Multivariable Cox proportional hazards models were developed to predict median 2- and 3-year RFS and 2.5- and 5-year OS. The Akaike information criterion technique and backwards stepwise procedure were used for model selections. The performance of the final Cox models was assessed with respect to calibration and discrimination. Results Immunohistochemical labeling for HER1 and HER2 was localized both in the cell membrane and in the cytoplasm, while HER3 labeling was observed both in the cell cytoplasm and in the nucleus. HER3 expression was inversely correlated with HER1 positivity. The expression patterns of HERs were associated with tumor differentiation. In both cohorts of patients, HER1 expression was associated with reduced relapse-free (RFS) and overall survival (OS). In HER1 positive tumors, the co-expression with nuclear HER3 was associated with better RFS and OS, compared with HER3 negative tumors or tumors expressing HER3 at cytoplasmic level. HER3 expressing tumors had a higher Geminin/MCM7 ratio than HER3 negative ones, regardless of HER1 co-expression. Multivariable analyses identified age at diagnosis, tumor site, HER1, HER3 and age at diagnosis, tumor stage, HER1, HER3, as covariates significantly associated with RFS and OS, respectively. Bootstrapping verified the good fitness of these models for predicting survivals and the optimism-corrected C-indices were 0.76 and 0.77 for RFS and OS, respectively. Conclusions Nuclear HER3 expression was strongly associated with favourable prognosis and allows to improve the prognostic stratification of patients with HER1 positive advanced LSCC carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03081-0.
Collapse
Affiliation(s)
- Giovanni Almadori
- Unit of Head and Neck Oncology, "A. Gemelli" University Hospital Foundation IRCCS-Catholic University of the Sacred Heart, Largo A. Gemelli 8, 00168, Rome, Italy. .,Unit of Otorhinolaryngology, "A. Gemelli" University Hospital Foundation IRCCS, Roma, Italy. .,Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Antonella Coli
- Università Cattolica del Sacro Cuore, Roma, Italy.,Unit of Anatomic Pathology, "A. Gemelli" University Hospital Foundation IRCCS, Roma, Italy
| | - Eugenio De Corso
- Unit of Otorhinolaryngology, "A. Gemelli" University Hospital Foundation IRCCS, Roma, Italy
| | - Dario Antonio Mele
- Unit of Otorhinolaryngology, "A. Gemelli" University Hospital Foundation IRCCS, Roma, Italy
| | - Stefano Settimi
- Unit of Otorhinolaryngology, "A. Gemelli" University Hospital Foundation IRCCS, Roma, Italy
| | - Giovanni Di Cintio
- Unit of Otorhinolaryngology, "A. Gemelli" University Hospital Foundation IRCCS, Roma, Italy
| | - Francesca Brigato
- Unit of Otorhinolaryngology, "A. Gemelli" University Hospital Foundation IRCCS, Roma, Italy
| | - Domenico Scannone
- Unit of Anatomic Pathology, "A. Gemelli" University Hospital Foundation IRCCS, Roma, Italy
| | - Thomas E Carey
- Department of Otolaryngology/Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Gaetano Paludetti
- Unit of Otorhinolaryngology, "A. Gemelli" University Hospital Foundation IRCCS, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy
| | - Libero Lauriola
- Università Cattolica del Sacro Cuore, Roma, Italy.,Unit of Anatomic Pathology, "A. Gemelli" University Hospital Foundation IRCCS, Roma, Italy
| | | |
Collapse
|
19
|
Radom F, Vonrhein C, Mittl PRE, Plückthun A. Crystal structures of HER3 extracellular domain 4 in complex with the designed ankyrin-repeat protein D5. Acta Crystallogr F Struct Biol Commun 2021; 77:192-201. [PMID: 34196609 PMCID: PMC8248824 DOI: 10.1107/s2053230x21006002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
The members of the human epidermal growth factor receptor (HER) family are among the most intensely studied oncological targets. HER3 (ErbB3), which had long been neglected, has emerged as a key oncogene, regulating the activity of other receptors and being involved in progression and tumor escape in multiple types of cancer. Designed ankyrin-repeat proteins (DARPins) serve as antibody mimetics that have proven to be useful in the clinic, in diagnostics and in research. DARPins have previously been selected against EGFR (HER1), HER2 and HER4. In particular, their combination into bivalent binders that separate or lock receptors in their inactive conformation has proved to be a promising strategy for the design of potent anticancer therapeutics. Here, the selection of DARPins targeting extracellular domain 4 of HER3 (HER3d4) is described. One of the selected DARPins, D5, in complex with HER3d4 crystallized in two closely related crystal forms that diffracted to 2.3 and 2.0 Å resolution, respectively. The DARPin D5 epitope comprises HER3d4 residues 568-577. These residues also contribute to interactions within the tethered (inactive) and extended (active) conformations of the extracellular domain of HER3.
Collapse
Affiliation(s)
- Filip Radom
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Clemens Vonrhein
- Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
20
|
Gan HK, Millward M, Jalving M, Garrido-Laguna I, Lickliter JD, Schellens JHM, Lolkema MP, Van Herpen CLM, Hug B, Tang L, O'Connor-Semmes R, Gagnon R, Ellis C, Ganji G, Matheny C, Drilon A. A Phase I, First-in-Human Study of GSK2849330, an Anti-HER3 Monoclonal Antibody, in HER3-Expressing Solid Tumors. Oncologist 2021; 26:e1844-e1853. [PMID: 34132450 PMCID: PMC8488777 DOI: 10.1002/onco.13860] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND GSK2849330, an anti-HER3 monoclonal antibody that blocks HER3/Neuregulin 1 (NRG1) signaling in cancer cells, is engineered for enhanced antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. This phase I, first-in-human, open-label study assessed the safety, pharmacokinetics (PK), pharmacodynamics, and preliminary activity of GSK2849330 in patients with HER3-expressing advanced solid tumors. PATIENTS AND METHODS Patients with various tumor types were prospectively selected for HER3 expression by immunohistochemistry; a subset was also screened for NRG1 mRNA expression. In the dose-escalation phase, patients received GSK2849330 1.4-30 mg/kg every 2 weeks, or 3 mg/kg or 30 mg/kg weekly, intravenously (IV). In the dose-expansion phase, patients received 30 mg/kg GSK2849330 IV weekly. RESULTS Twenty-nine patients with HER3-expressing cancers, of whom two expressed NRG1, received GSK2849330 (dose escalation: n = 18, dose expansion: n = 11). GSK2849330 was well tolerated. No dose-limiting toxicities were observed. The highest dose, of 30 mg/kg weekly, expected to provide full target engagement, was selected for dose expansion. Treatment-emergent adverse events (AEs) were mostly grade 1 or 2. The most common AEs were diarrhea (66%), fatigue (62%), and decreased appetite (31%). Dose-proportional plasma exposures were achieved, with evidence of HER3 inhibition in paired tissue biopsies. Of 29 patients, only 1 confirmed partial response, lasting 19 months, was noted in a patient with CD74-NRG1-rearranged non-small cell lung cancer (NSCLC). CONCLUSION GSK2849330 demonstrated a favorable safety profile, dose-proportional PK, and evidence of target engagement, but limited antitumor activity in HER3-expressing cancers. The exceptional response seen in a patient with CD74-NRG1-rearranged NSCLC suggests further exploration in NRG1-fusion-positive cancers. IMPLICATIONS FOR PRACTICE This first-in-human study confirms that GSK2849330 is well tolerated. Importantly, across a variety of HER3-expressing advanced tumors, prospective selection by HER3/NRG1 expression alone was insufficient to identify patients who could benefit from treatment with this antibody-dependent cell-mediated cytotoxicity- and complement-dependent cytotoxicity-enhanced anti-HER3 antibody. The only confirmed durable response achieved was in a patient with CD74-NRG1-rearranged lung cancer. This highlights the potential utility of screening for NRG1 fusions prospectively across tumor types to enrich potential responders to anti-HER3 agents in ongoing trials.
Collapse
Affiliation(s)
- Hui K Gan
- Department of Medical Oncology, Austin Health and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Medicine, Latrobe University School of Cancer Medicine, Melbourne, Victoria, Australia.,Department of Medicine, Melbourne University, Melbourne, Victoria, Australia
| | - Michael Millward
- Linear Clinical Research and University of Western Australia, Perth, Western Australia, Australia
| | - Mathilde Jalving
- Department of Medical Oncology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ignacio Garrido-Laguna
- Department of Internal Medicine, Oncology Division, University of Utah School of Medicine, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | | | - Jan H M Schellens
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Carla L M Van Herpen
- Radboud University Medical Center, Radboud University, Nijmegen, The Netherlands
| | - Bruce Hug
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Lihua Tang
- Independent Consultant, North Carolina, USA
| | - Robin O'Connor-Semmes
- Clinical Pharmacology, Modeling and Simulation, Parexel International, Durham, North Carolina, USA
| | | | | | | | | | - Alexander Drilon
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
21
|
Abstract
Neuregulins, members of the largest subclass of growth factors of the epidermal growth factor family, mediate a myriad of cellular functions including survival, proliferation, and differentiation in normal tissues through binding to receptor tyrosine kinases of the ErbB family. However, aberrant neuregulin signaling in the tumor microenvironment is increasingly recognized as a key player in initiation and malignant progression of human cancers. In this chapter, we focus on the role of neuregulin signaling in the hallmarks of cancer, including cancer initiation and development, metastasis, as well as therapeutic resistance. Moreover, role of neuregulin signaling in the regulation of tumor microenvironment and targeting of neuregulin signaling in cancer from the therapeutic perspective are also briefly discussed.
Collapse
|
22
|
Rinne SS, Xu T, Dahlsson Leitao C, Ståhl S, Löfblom J, Orlova A, Tolmachev V, Vorobyeva A. Influence of Residualizing Properties of the Radiolabel on Radionuclide Molecular Imaging of HER3 Using Affibody Molecules. Int J Mol Sci 2020; 21:ijms21041312. [PMID: 32075258 PMCID: PMC7072899 DOI: 10.3390/ijms21041312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Human epidermal growth factor receptor type 3 (HER3) is an emerging therapeutic target in several malignancies. To select potential responders to HER3-targeted therapy, radionuclide molecular imaging of HER3 expression using affibody molecules could be performed. Due to physiological expression of HER3 in normal organs, high imaging contrast remains challenging. Due to slow internalization of affibody molecules by cancer cells, we hypothesized that labeling (HE)3-ZHER3:08698-DOTAGA affibody molecule with non-residualizing [125I]-N-succinimidyl-4-iodobenzoate (PIB) label would improve the tumor-to-normal organs ratios compared to previously reported residualizing radiometal labels. The [125I]I-PIB-(HE)3-ZHER3:08698-DOTAGA was compared side-by-side with [111In]In-(HE)3-ZHER3:08698-DOTAGA. Both conjugates demonstrated specific high-affinity binding to HER3-expressing BxPC-3 and DU145 cancer cells. Biodistribution in mice bearing BxPC-3 xenografts at 4 and 24 h pi showed faster clearance of the [125I]I-PIB label compared to the indium-111 label from most tissues, except blood. This resulted in higher tumor-to-organ ratios in HER3-expressing organs for [125I]I-PIB-(HE)3-ZHER3:08698-DOTAGA at 4 h, providing the tumor-to-liver ratio of 2.4 ± 0.3. The tumor uptake of both conjugates was specific, however, it was lower for the [125I]I-PIB label. In conclusion, the use of non-residualizing [125I]I-PIB label for HER3-targeting affibody molecule provided higher tumor-to-liver ratio than the indium-111 label, however, further improvement in tumor uptake and retention is needed.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (V.T.)
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; (C.D.L.); (S.S.); (J.L.)
| | - Stefan Ståhl
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; (C.D.L.); (S.S.); (J.L.)
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; (C.D.L.); (S.S.); (J.L.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
- Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (V.T.)
- Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (V.T.)
- Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence: ; Tel.: +46-18-471-3868
| |
Collapse
|
23
|
Increase in negative charge of 68Ga/chelator complex reduces unspecific hepatic uptake but does not improve imaging properties of HER3-targeting affibody molecules. Sci Rep 2019; 9:17710. [PMID: 31776413 PMCID: PMC6881397 DOI: 10.1038/s41598-019-54149-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Upregulation of the human epidermal growth factor receptor type 3 (HER3) is a common mechanism to bypass HER-targeted cancer therapy. Affibody-based molecular imaging has the potential for detecting and monitoring HER3 expression during treatment. In this study, we compared the imaging properties of newly generated 68Ga-labeled anti-HER3 affibody molecules (HE)3-ZHER3-DOTA and (HE)3-ZHER3-DOTAGA with previously reported [68Ga]Ga-(HE)3-ZHER3-NODAGA. We hypothesized that increasing the negative charge of the gallium-68/chelator complex would reduce hepatic uptake, which could lead to improved contrast of anti-HER3 affibody-based PET-imaging of HER3 expression. (HE)3-ZHER3-X (X = DOTA, DOTAGA) were produced and labeled with gallium-68. Binding of the new conjugates was specific in HER3 expressing BxPC-3 and DU145 human cancer cells. Biodistribution and in vivo specificity was studied in BxPC-3 xenograft bearing Balb/c nu/nu mice 3 h pi. DOTA- and DOTAGA-containing conjugates had significantly higher concentration in blood than [68Ga]Ga-(HE)3-ZHER3-NODAGA. Presence of the negatively charged 68Ga-DOTAGA complex reduced the unspecific hepatic uptake, but did not improve overall biodistribution of the conjugate. [68Ga]Ga-(HE)3-ZHER3-DOTAGA and [68Ga]Ga-(HE)3-ZHER3-NODAGA had similar tumor-to-liver ratios, but [68Ga]Ga-(HE)3-ZHER3-NODAGA had the highest tumor uptake and tumor-to-blood ratio among the tested conjugates. In conclusion, [68Ga]Ga-(HE)3-ZHER3-NODAGA remains the favorable variant for PET imaging of HER3 expression.
Collapse
|
24
|
Arienti C, Pignatta S, Tesei A. Epidermal Growth Factor Receptor Family and its Role in Gastric Cancer. Front Oncol 2019; 9:1308. [PMID: 31850207 PMCID: PMC6901979 DOI: 10.3389/fonc.2019.01308] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022] Open
Abstract
Despite the gradual decrease in incidence, gastric cancer is still the third leading cause of cancer death worldwide. Although chemotherapy enhances overall survival and quality of life in advanced disease, the median overall survival is < 12 months. In recent years, the human epidermal growth factor receptor (ErbB) family has been extensively investigated in gastric cancer. The ErbB family is composed of four closely-related members: ErbB-1 (HER1 or epidermal growth factor receptor, EGFR), ErbB-2 (HER2), ErbB-3 (HER3), and ErbB-4 (HER4), all of which play a critical role in regulating cell growth, proliferation and migration of tumors. It is well known that gastric cancer overexpresses HER in a heterogeneous pattern, especially EGFR, and HER2. HER3 is another important member of the ErbB family that preferentially activates the phosphatidylinositol 3-kinase (PI3K) pathway. Furthermore, its heterodimerization with HER2 seems fundamental for steering HER2-overexpressing breast cancer tumor growth. Less is known about the impact of HER4 on gastric cancer. Improved survival from the use of trastuzumab has paved the way for ErbB receptor family-targeted treatments in gastric cancer. However, unlike trastuzumab, ErbB receptor-targeted drugs have not consistently maintained the encouraging results obtained in preclinical and early clinical trials. This may be attributable to the intrinsic heterogeneity of gastric cancer and/or to the lack of standardized test quality for established biomarkers used to evaluate these biological targets. This review presents an overview of the most recent clinical studies on agents targeting the ErbB family in gastric cancer.
Collapse
Affiliation(s)
| | | | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
25
|
Identification of different gene expressions between diffuse- and intestinal-type spheroid-forming gastric cancer cells. Gastric Cancer 2019; 22:967-979. [PMID: 30726523 DOI: 10.1007/s10120-019-00935-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Three-dimensional in vitro spheroid models are unique because they are considered for enrichment of specific cell populations with self-renewal ability. In this study, we explored the different mechanisms of gastric cancer spheroid-forming cells according to the Lauren classification. METHODS We isolated and enriched cells with self-renewal ability using spheroid-forming methods from gastric cancer cell lines. The expression of candidate target genes was investigated using western blot and qRT-PCR analysis. Lentiviral shRNA knockdown of target gene expression was performed and the effects on spheroid, colony forming, and tumorigenic ability were analyzed. RESULTS The SNU-638, SNU-484, MKN-28, and NCI-N87 successfully formed spheroid from single cell and enriched for self-renewal ability from 11 gastric cancer cell lines, including diffuse and intestinal types. The expression of SOX2 and E-cadherin increased in spheroid-forming cells in a diffuse-type cell line (SNU-638 and SNU-484), but not in the intestinal type (MKN-28 and NCI-N87). In contrast, ERBB3 expression was only increased in intestinal-type spheroid cells. The depletion of each candidate target gene expression suppressed self-renewal ability to grow as spheroids and colonies in a soft agar assay. In particular, down-regulated ERBB3 in the intestinal-type cell lines inhibited tumor growth in a mouse xenograft model. We found that high ERBB3 gene expression correlates with decreased survival in the intestinal type of gastric cancer. CONCLUSIONS Our results suggest that diffuse- and intestinal-type spheroid-forming cells express genes differently. Our data suggest that these candidate genes from spheroid-forming cells can be used in applications in targeted therapy.
Collapse
|
26
|
Ahmed A. Prevalence of Her3 in gastric cancer and its association with molecular prognostic markers: a Saudi cohort based study. Libyan J Med 2019; 14:1574532. [PMID: 30915908 PMCID: PMC6442113 DOI: 10.1080/19932820.2019.1574532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Her 3 is a member of epidermal growth factor receptors. Mutated, oncogenic Her3 is reported in gastric and colonic cancers with emerging evidence that Her3 can be a potential target for molecular therapies. There is a paucity of studies regarding Her3 and its prognostic implications in gastric cancer in our region. In this study, we evaluated prevalence of Her3 in gastric cancer, in a Saudi cohort of cases, along with its association with prognostic markers p53 and Ki-67. The study was conducted in Department of Pathology of King Fahd Hospital of Imam Abdulrahman Bin Faisal University, Dammam, KSA. Fifty cases of gastric carcinoma were selected from the pathology files that fulfilled the inclusion criteria. Clinico-pathological parameters, Laurens histological classification, and immunohistochemical staining for Her3, p53, and Ki-67 were done. Her 3 positive cases were also evaluated for Her-2neu co-expression. Her3 positivity was seen in 16% (n = 8) out of a total of 50 cases. The median age of presentation was 44 years. Within Her3 positive cases, a female preponderance of 63% (n = 5), presence of high grade tumors in 75% (n = 6), diffuse gastric carcinoma in 63% (n = 5), diffuse to focal p53 positivity in 63% (n = 5), and a high to moderate Ki-67 proliferation index in 75% (n = 6) of cases was seen. Her3 expression was independent of Her-2neu status. Her3 prevalence of 16% with a median age of 44 years at presentation was less than in other reported studies, highlighting the concept of ethnic and regional variation in tumor characteristics. Her3 association with diffuse gastric carcinoma, high grade tumors, diffuse to focal p53 positivity and high to moderate Ki-67 proliferation index points towards a more aggressive clinical behavior.
Collapse
Affiliation(s)
- Ayesha Ahmed
- a Department of Pathology, College of Medicine , Imam Abdulrahman Bin Faisal University and King Fahd Hospital of the University , Al-Khobar , Kingdom of Saudi Arabia
| |
Collapse
|
27
|
Oono Y, Kuwata T, Takashima K, Shinmura K, Hori K, Yoda Y, Ikematsu H, Shitara K, Kinoshita T, Yano T. Human epidermal growth factor receptor 2-, epidermal growth factor receptor-, and mesenchymal epithelial transition factor-positive sites of gastric cancer using surgical samples. Gastric Cancer 2019; 22:335-343. [PMID: 29951752 DOI: 10.1007/s10120-018-0853-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/24/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Receptor tyrosine kinases (RTKs) play critical roles in gastric cancer (GC) progression and are potential targets for novel molecular-targeted agents or photo-immunotherapies. During patient selection, targeted biopsy is the first step. However, heterogeneous expression of RTKs based on the macroscopic appearance in GC has not been extensively addressed. Accordingly, in this study, we evaluated differences in RTK expression associated with macroscopic appearance in GC. METHODS In total, 375 consecutive patients who had undergone gastrectomy at the National Cancer Center Hospital East and who had histologically proven adenocarcinoma, available archived tumor sample, and no history of chemotherapy were enrolled in this study. For these cases, tissue microarray (TMA) samples were examined using immunohistochemistry (IHC). Based on the results of IHC, cases were selected for detailed examination. We re-evaluated IHC scores in more than three tumor blocks per case and comparatively evaluated differences in IHC expression in RTKs between the mucosal portion (MuP) and invasive portion (InP). RESULTS Human epidermal growth factor receptor 2 (HER2)-, epidermal growth factor receptor (EGFR)-, and mesenchymal epithelial transition factor (c-MET)-positive rates were 6, 9, and 20%, respectively. Twenty-two cases were then analyzed to assess differences in IHC expression levels in the same lesion. Concordance rates of positive staining of HER2, EGFR, and MET between MuP and whole tumor were 100, 40, and 56% and those with InP were 46, 100, and 56%. CONCLUSIONS To avoid underestimating expression status, biopsies must be taken from MuP for HER2, InP for EGFR, and both proportions for c-MET.
Collapse
Affiliation(s)
- Yasuhiro Oono
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kenji Takashima
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Kensuke Shinmura
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Keisuke Hori
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yusuke Yoda
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Hiroaki Ikematsu
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takahiro Kinoshita
- Gastric Surgery Division, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| |
Collapse
|
28
|
Menke-van der Houven van Oordt CW, McGeoch A, Bergstrom M, McSherry I, Smith DA, Cleveland M, Al-Azzam W, Chen L, Verheul H, Hoekstra OS, Vugts DJ, Freedman I, Huisman M, Matheny C, van Dongen G, Zhang S. Immuno-PET Imaging to Assess Target Engagement: Experience from 89Zr-Anti-HER3 mAb (GSK2849330) in Patients with Solid Tumors. J Nucl Med 2019; 60:902-909. [PMID: 30733323 PMCID: PMC6604691 DOI: 10.2967/jnumed.118.214726] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
PET imaging with radiolabeled drugs provides information on tumor uptake and dose-dependent target interaction to support selection of an optimal dose for future efficacy testing. In this immuno-PET study of the anti-human epidermal growth factor receptor (HER3) mAb GSK2849330, we investigated the biodistribution and tumor uptake of 89Zr-labeled GSK2849330 and evaluated target engagement as a function of antibody mass dose. Methods: 89Zr-GSK2849330 distribution was monitored in 6 patients with HER3-positive tumors not amenable to standard treatment. Patients received 2 administrations of 89Zr-GSK2849330. Imaging after tracer only was performed at baseline; dose-dependent inhibition of 89Zr-GSK2849330 uptake in tumor tissues was evaluated 2 wk later using increasing doses of unlabeled GSK2849330 in combination with the tracer. Up to 3 PET scans (2 hours post infusion [p.i.] and days 2 and 5 p.i.) were performed after tracer administration. Biodistribution and tumor targeting were assessed visually and quantitatively using SUV. The 50% and 90% inhibitory mass doses (ID50 and ID90) of target-mediated antibody uptake were calculated using a Patlak transformation. Results: At baseline, imaging with tracer showed good tumor uptake in all evaluable patients. Predosing with unlabeled mAb reduced the tumor uptake rate in a dose-dependent manner. Saturation of 89Zr-mAb uptake by tumors was seen at the highest dose (30 mg/kg). Despite the limited number of patients, an exploratory ID50 of 2 mg/kg and ID90 of 18 mg/kg have been determined. Conclusion: In this immuno-PET study, dose-dependent inhibition of tumor uptake of 89Zr-GSK2849330 by unlabeled mAb confirmed target engagement of mAb to the HER3 receptor. This study further validates the use of immuno-PET to directly visualize tissue drug disposition in patients with a noninvasive approach and to measure target engagement at the site of action, offering the potential for dose selection.
Collapse
Affiliation(s)
| | - Adam McGeoch
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Iain McSherry
- Clinical Pharmacology, Science, and Study Operations, GlaxoSmithKline, Uxbridge, United Kingdom
| | | | - Matthew Cleveland
- Bioimaging, Platform Technology and Science, GlaxoSmithKline, Stevenage, United Kingdom
| | - Wasfi Al-Azzam
- Biopharm Product Development and Supply, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Liangfu Chen
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Henk Verheul
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Otto S Hoekstra
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle J Vugts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Marc Huisman
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chris Matheny
- Oncology R&D, GlaxoSmithKline, King of Prussia, Pennsylvania; and
| | - Guus van Dongen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sean Zhang
- Hengrui Therapeutics, Inc., Princeton, New Jersey
| |
Collapse
|
29
|
Moghbeli M, Makhdoumi Y, Soltani Delgosha M, Aarabi A, Dadkhah E, Memar B, Abdollahi A, Abbaszadegan MR. ErbB1 and ErbB3 co-over expression as a prognostic factor in gastric cancer. Biol Res 2019; 52:2. [PMID: 30621788 PMCID: PMC6323733 DOI: 10.1186/s40659-018-0208-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptor family members such as ErbB1 and ErbB3 are involved in tumor progression and metastasis. Although, there are various reports about the prognostic value of EGFR members separately in gastric cancer, there is not any report about the probable correlation between ErbB1 and ErbB3 co-expression and gastric cancer prognosis. In present study, we assessed the correlation between ErbB1 and ErbB3 co-overexpression (in the level of mRNA and protein expression) and gastric cancer prognosis for the first time. METHODS ErbB1 and ErbB3 expressions were analyzed by immunohistochemistry and real-time PCR in 50 patients with gastric cancer. Parametric correlations were done between the ErbB1 and ErbB3 expression and clinicopathological features. Multivariate and logistic regression analyses were also done to assess the roles of ErbB1 and ErbB3 in tumor prognosis and survival. RESULTS There were significant correlations between ErbB1/ErbB3 co-overexpression and tumor size (p = 0.026), macroscopic features (p < 0.05), tumor differentiation (p < 0.05), stage of tumor (p < 0.05), and recurrence (p < 0.05). Moreover, ErbB1/ErbB3 co-overexpression may predict the survival status of patients (p < 0.05). CONCLUSION ErbB1 and ErbB3 co-overexpression is accompanied with the poor prognosis and can be used efficiently in targeted therapy of gastric cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasha Makhdoumi
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azadeh Aarabi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ezzat Dadkhah
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Memar
- Surgical oncology research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Abdollahi
- Surgical oncology research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Suga J, Izumiyama K, Tanaka N, Saji S. Estradiol promotes rapid degradation of HER3 in ER-positive breast cancer cell line MCF-7. Biochem Biophys Rep 2018; 16:103-109. [PMID: 30417127 PMCID: PMC6205365 DOI: 10.1016/j.bbrep.2018.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023] Open
Abstract
HER3, a member of the receptor tyrosine kinase super family, is overexpressed in a number of cancers, and is associated with malignant phenotypes. Control of the protein stability of the membrane, as well as nuclear receptors, has been known to be an important process affecting tumor cells; however, their relationships have yet to be elucidated. In this study, we demonstrate that estradiol promotes rapid degradation of HER3 via the proteasome pathway in ER-positive breast cancer, MCF-7. ER prevented HER3 degradation, and knockdown of ER expression by si-RNA promoted rapid degradation of HER3. Breakdown of HER3 and ER were regulated by a ubiquitin ligase Nedd4-1 in the presence of estradiol stimulation. We speculate that estradiol quickly degrades ER, making HER3 accessible by Nedd4-1, and leads to the rapid degradation of HER3. In addition, knockdown of ubiquitin ligase Nedd4-1 enhances estradiol induced cell proliferation. These results indicate that HER3 and Nedd4-1 in ER-positive breast cancers might be an important therapeutic target.
Collapse
Affiliation(s)
- Junko Suga
- Department of Medical Oncology, Fukushima Medical University, 1 Hikariga-oka, Fukushima-shi, Fukushima 960-1295, Japan
| | - Keiko Izumiyama
- Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori, Miyagi 981-1293, Japan
| | - Nobuyuki Tanaka
- Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori, Miyagi 981-1293, Japan.,Division of Cancer Immunobiology, Department of Cancer Medical Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo Aobaku, Sendai 980-0875, Japan
| | - Shigehira Saji
- Department of Medical Oncology, Fukushima Medical University, 1 Hikariga-oka, Fukushima-shi, Fukushima 960-1295, Japan
| |
Collapse
|
31
|
El-Sayed A, Bernhard W, Barreto K, Gonzalez C, Hill W, Pastushok L, Fonge H, Geyer CR. Evaluation of antibody fragment properties for near-infrared fluorescence imaging of HER3-positive cancer xenografts. Am J Cancer Res 2018; 8:4856-4869. [PMID: 30279742 PMCID: PMC6160764 DOI: 10.7150/thno.24252] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/10/2018] [Indexed: 11/24/2022] Open
Abstract
In vivo imaging is influenced by the half-life, tissue penetration, biodistribution, and affinity of the imaging probe. Immunoglobulin G (IgG) is composed of discrete domains with known functions, providing a template for engineering antibody fragments with desired imaging properties. Here, we engineered antibody-based imaging probes, consisting of different combinations of antibody domains, labeled them with the near-infrared fluorescent dye IRDye800CW, and evaluated their in vivo imaging properties. Antibody-based imaging probes were based on an anti-HER3 antigen binding fragment (Fab) isolated using phage display. Methods: We constructed six anti-HER3 antibody-based imaging probes: a single chain variable fragment (scFv), Fab, diabody, scFv-CH3, scFv-Fc, and IgG. IRDye800CW-labeled, antibody-based probes were injected into nude mice bearing FaDu xenografts and their distribution to the xenograft, liver, and kidneys was evaluated. Results: These imaging probes bound to recombinant HER3 and to the HER3-positive cell line, FaDu. Small antibody fragments with molecular weight <60 kDa (scFv, diabody, and Fab) accumulated rapidly in the xenograft (maximum accumulation between 2-4 h post injection (hpi)) and cleared primarily through the kidneys. scFv-CH3 (80 kDa) had fast clearance and peaked in the xenograft between 2-3 hpi and cleared from xenograft in a rate comparable to Fab and diabody. IgG and scFv-Fc persisted in the xenografts for up to 72 hpi and distributed mainly to the xenograft and liver. The highest xenograft fluorescence signals were observed with IgG and scFv-Fc imaging probes and persisted for 2-3 days. Conclusion: These results highlight the utility of using antibody fragments to optimize clearance, tumor labeling, and biodistribution properties for developing anti-HER3 probes for image-guided surgery or PET imaging.
Collapse
|
32
|
Roles of human epidermal growth factor receptor family in pulmonary lymphangioleiomyomatosis. Hum Pathol 2018; 81:121-130. [PMID: 30030119 DOI: 10.1016/j.humpath.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare and refractory disease that affects women of reproductive age. Several target therapies are used to manage LAM, but no curative modes of treatment have been reported yet. Therefore, in this study, we focused on targeting human epidermal growth factor receptor (HER) family proteins as a treatment strategy for LAM. In antibody array analysis, HER signaling was detected in the proteins extracted from LAM tissues. We then evaluated the expression of HER family members in 34 pulmonary LAM specimens using both immunohistochemistry and quantitative reverse-transcription polymerase chain reaction. Hierarchical clustering analysis was performed to classify the cases based on the immunohistochemistry results. Both epidermal growth factor receptor (EGFR) and HER4 were expressed in all 34 cases. HER3 was expressed in 25 of 34 cases, but HER2 was not expressed in any case. In addition, results of quantitative reverse-transcription polymerase chain reaction analysis confirmed the expression of EGFR and HER4 expression in LAM cells. Patients with HER3- or HER4-positive tissues were younger and had a history of pneumothorax. The cases were classified into 4 different clusters based on the results of hierarchical cluster analysis. One of these clusters was associated with EGFR, HER3, and HER4; the patients in this cluster were significantly younger and had a history of pneumothorax. These results indicated that HER family could contribute to the progression of pulmonary LAM, and treatments targeted against HER family might be effective for treating pulmonary LAM.
Collapse
|
33
|
Mishra R, Patel H, Alanazi S, Yuan L, Garrett JT. HER3 signaling and targeted therapy in cancer. Oncol Rev 2018; 12:355. [PMID: 30057690 PMCID: PMC6047885 DOI: 10.4081/oncol.2018.355] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022] Open
Abstract
ERBB family members including epidermal growth factor receptor (EGFR) also known as HER1, ERBB2/HER2/Neu, ERBB3/HER3 and ERBB4/HER4 are aberrantly activated in multiple cancers and hence serve as drug targets and biomarkers in modern precision therapy. The therapeutic potential of HER3 has long been underappreciated, due to impaired kinase activity and relatively low expression in tumors. However, HER3 has received attention in recent years as it is a crucial heterodimeric partner for other EGFR family members and has the potential to regulate EGFR/HER2-mediated resistance. Upregulation of HER3 is associated with several malignancies where it fosters tumor progression via interaction with different receptor tyrosine kinases (RTKs). Studies also implicate HER3 contributing significantly to treatment failure, mostly through the activation of PI3K/AKT, MAPK/ERK and JAK/STAT pathways. Moreover, activating mutations in HER3 have highlighted the role of HER3 as a direct therapeutic target. Therapeutic targeting of HER3 includes abrogating its dimerization partners’ kinase activity using small molecule inhibitors (lapatinib, erlotinib, gefitinib, afatinib, neratinib) or direct targeting of its extracellular domain. In this review, we focus on HER3-mediated signaling, its role in drug resistance and discuss the latest advances to overcome resistance by targeting HER3 using mono- and bispecific antibodies and small molecule inhibitors.
Collapse
Affiliation(s)
- Rosalin Mishra
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Hima Patel
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Samar Alanazi
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Long Yuan
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Joan T Garrett
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
34
|
Yun S, Koh J, Nam SK, Park JO, Lee SM, Lee K, Lee KS, Ahn SH, Park DJ, Kim HH, Choe G, Kim WH, Lee HS. Clinical significance of overexpression of NRG1 and its receptors, HER3 and HER4, in gastric cancer patients. Gastric Cancer 2018; 21:225-236. [PMID: 28573357 DOI: 10.1007/s10120-017-0732-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuregulin 1 (NRG1), a ligand for human epidermal growth factor (HER) 3 and HER4, can activates cell signaling pathways to promote carcinogenesis and metastasis. METHODS To investigate the clinicopathologic significance of NRG1 and its receptors, immunohistochemistry was performed for NRG1, HER3, and HER4 in 502 consecutive gastric cancers (GCs). Furthermore, HER2, microsatellite instability (MSI), and Epstein-Barr virus (EBV) status were investigated. NRG1 gene copy number (GCN) was determined by dual-color fluorescence in situ hybridization (FISH) in 388 available GCs. RESULTS NRG1 overexpression was observed in 141 (28.1%) GCs and closely correlated with HER3 (P = 0.034) and HER4 (P < 0.001) expression. NRG1 overexpression was significantly associated with aggressive features, including infiltrative tumor growth, lymphovascular, and neural invasion, high pathologic stage, and poor prognosis (all P < 0.05), but not associated with EBV, MSI, or HER2 status. Multivariate analysis identified NRG1 overexpression as an independent prognostic factor for survival (P = 0.040). HER3 and HER4 expressions were observed in 157 (31.3%) and 277 (55.2%), respectively. In contrast to NRG1, expression of these proteins was not associated with survival. NRG1 GCN gain (GCN ≥ 2.5) was detected in 14.7% patients, including two cases of amplification, and was moderately correlated with NRG1 overexpression (κ, 0.459; P < 0.001). CONCLUSIONS Although our results indicate a lack of prognostic significance of HER3 and HER4 overexpression in GC, overexpression of their ligand, NRG1, was associated with aggressive clinical features and represented an independent unfavorable prognostic factor. Therefore, NRG1 is a potential prognostic and therapeutic biomarker in GC patients.
Collapse
Affiliation(s)
- Sumi Yun
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Diagnostic Pathology, Samkwang Medical Laboratories, Seoul, South Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Soo Kyung Nam
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Jung Ok Park
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Sung Mi Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Kyoungyul Lee
- Department of Pathology, Kangwon National University Hospital, Chuncheon, Kangwon, South Korea
| | - Kyu Sang Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea.
| |
Collapse
|
35
|
Petrini I, Lencioni M, Vasile E, Fornaro L, Belluomini L, Pasquini G, Ginocchi L, Caparello C, Musettini G, Vivaldi C, Caponi S, Ricci S, Proietti A, Fontanini G, Naccarato AG, Nardini V, Santi S, Falcone A. EGFR and AKT1 overexpression are mutually exclusive and associated with a poor survival in resected gastric adenocarcinomas. Cancer Biomark 2018; 21:731-741. [DOI: 10.3233/cbm-170865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Iacopo Petrini
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Monica Lencioni
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Enrico Vasile
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Lorenzo Fornaro
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | | | - Giulia Pasquini
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Laura Ginocchi
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Chiara Caparello
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Gianna Musettini
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Caterina Vivaldi
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Sara Caponi
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Sergio Ricci
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Agenese Proietti
- Surgical Pathology, Unit 3, University Hospital of Pisa, 56126 Pisa, Italy
| | | | | | - Vincenzo Nardini
- Surgical Pathology, Unit 2, University Hospital of Pisa, 56126 Pisa, Italy
| | - Stefano Santi
- Esophageal Surgery, University Hospital of Pisa, 56126 Pisa, Italy
| | - Alfredo Falcone
- Medical Oncology, University Hospital of Pisa, 56126 Pisa, Italy
| |
Collapse
|
36
|
Shabbir A, Qureshi MA, Khalid AB, Mirza T, Shaikh A, Hasan SM. Gastric adenocarcinoma expressing human epidermal growth factor receptor in South Asian population. Saudi J Gastroenterol 2018; 24:289-293. [PMID: 29806596 PMCID: PMC6151997 DOI: 10.4103/sjg.sjg_23_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Gastric cancer is the third leading cause of cancer mortality worldwide. Human epidermal growth factor (Her-2/neu) has shown strong therapeutic implication in breast cancer. Although the prevalence of Her-2/neu over-expression in gastric cancer has been reported across the world, it is still unknown from South Asia. The aim of this study is to evaluate Her-2/neu expression in gastric adenocarcinomas and to correlate with various clinicopathological variables. PATIENTS AND METHODS A total of 95 consecutive patients undergoing endoscopic biopsy or gastrectomy were recruited in this study. Clinicopathological parameters of all patients were recorded and hematoxylin and eosin (H and E) staining was performed. Over-expression of Her-2/neu was investigated by immunohistochemistry using α-Her-2 antibody. To quantify Her-2/neu over-expression, the Hofmann validation scoring system was used and further its association was seen with age, gender, histopathological type, grade, and stage of the tumor. Data were entered and analyzed using SPSS version 21. A P value of <0.05 was considered as significant. RESULTS Overall, 21 (22.1%) cases were positive for Her-2/neu overexpression from the total of 95 gastric adenocarcinomas. Her-2/neu was significantly expressed in low-grade gastric cancer (grade I = 50%, grade II = 34.5%, grade III = 14.5%; P = 0.030). Although there was insignificant difference between Her-2/neu over expression and other variables, Her-2/neu score 3+ was predominantly seen in females, age >60 years, Laurens intestinal type, and IIIC stage tumors. CONCLUSION Her-2/neu is over-expressed in a limited group of gastric cancer patients in our population and indicates a significant strong association with low grades of gastric cancer.
Collapse
Affiliation(s)
- Asma Shabbir
- Department of Pathology, Sindh Medical College, Jinnah Sindh Medical University, Karachi, Pakistan,Address for correspondence: Dr. Asma Shabbir, Department of Pathology, Sindh Medical College, Jinnah Sindh Medical University, Karachi, Pakistan. E-mail:
| | - Muhammad Asif Qureshi
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Abdullah Bin Khalid
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Talat Mirza
- Department of Pathology, Doctor. Ziauddin Hospital and University, Karachi, Pakistan
| | - Asma Shaikh
- Department of Pathology, Sindh Medical College, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Syed Mehmood Hasan
- Department of Pathology, Sindh Medical College, Jinnah Sindh Medical University, Karachi, Pakistan
| |
Collapse
|
37
|
Khanna P, Chua PJ, Wong BSE, Yin C, Thike AA, Wan WK, Tan PH, Baeg GH. GRAM domain-containing protein 1B (GRAMD1B), a novel component of the JAK/STAT signaling pathway, functions in gastric carcinogenesis. Oncotarget 2017; 8:115370-115383. [PMID: 29383166 PMCID: PMC5777778 DOI: 10.18632/oncotarget.23265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/03/2017] [Indexed: 12/31/2022] Open
Abstract
Dysregulated JAK/STAT signaling has been implicated in the molecular pathogenesis of gastric cancer. However, downstream effectors of STAT signaling that facilitate gastric carcinogenesis remain to be explored. We previously identified the Drosophila ortholog of human GRAMD1B in our genome-wide RNAi screen to identify novel components of the JAK/STAT signaling pathway in Drosophila. Here, we examined the involvement of GRAMD1B in JAK/STAT-associated gastric carcinogenesis. We found that GRAMD1B expression is positively regulated by JAK/STAT signaling and GRAMD1B inhibition decreases STAT3 levels, suggesting the existence of a positive feedback loop. Consistently, GRAMD1B and JAK/STAT signaling acted synergistically to promote gastric cancer cell survival by upregulating the expression of the anti-apoptotic molecule Bcl-xL. Interestingly, our immunohistochemical analysis for GRAMD1B revealed a gradual loss of cytoplasmic staining but an increase in the nuclear accumulation of GRAMD1B, as gastric tissue becomes malignant. GRAMD1B expression levels were also found to be significantly associated with clinicopathological features of the gastric cancer patients, particularly the tumor grades and lymph node status. Moreover, GRAMD1B and pSTAT3 (Tyr705) showed a positive correlation in gastric tissues, thereby confirming the existence of a close link between these two signaling molecules in vivo. This new knowledge about JAK/STAT-GRAMD1B regulation deepens our understanding of JAK/STAT signaling in gastric carcinogenesis and provides a foundation for the development of novel biomarkers in gastric cancer.
Collapse
Affiliation(s)
- Puja Khanna
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Pei Jou Chua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Belinda Shu Ee Wong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Changhong Yin
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Aye Aye Thike
- Division of Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Wei Keat Wan
- Division of Pathology, Singapore General Hospital, Singapore 169856, Singapore.,Academic Clinical Program for Pathology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| |
Collapse
|
38
|
Cao GD, Chen K, Chen B, Xiong MM. Positive prognostic value of HER2-HER3 co-expression and p-mTOR in gastric cancer patients. BMC Cancer 2017; 17:841. [PMID: 29233126 PMCID: PMC5727869 DOI: 10.1186/s12885-017-3851-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
Background The HER2-HER3 heterodimer significantly decreases survival in breast cancer patients. However, the prognostic value of HER2-HER3 overexpression remains unknown in gastric cancer (GC). Methods The expression levels of HER2, HER3, Akt, p-Akt, mTOR and p-mTOR were examined in specimens from 120 GC patients by immunohistochemistry and quantitative reverse transcription-PCR. The associations of HER proteins, PI3K/Akt/mTOR pathway-related proteins, clinicopathological features of GC, and overall survival (OS) were assessed. To comprehensively evaluate the prognostic values of pathway-related proteins, meta-analyses were conducted with STATA 11.0. Results HER2 overexpression was significantly associated with HER3 levels (P = 0.02). HER3 was highly expressed in gastric cancer tissues. High HER2 and HER3 levels were associated with elevated p-Akt and p-mTOR amounts (P < 0.05). Furthermore, HER2-HER3 co-expression was associated with high p-Akt and p-mTOR (P < 0.05) levels. Meanwhile, p-mTOR overexpression was tightly associated with differentiation, depth of invasion, lymph node metastasis, TNM stage and OS (P < 0.05). By meta-analyses, Akt, p-Akt, and mTOR levels were unrelated to clinicopathological characters. HER3 overexpression was associated with depth of invasion (OR = 2.39, 95%CI 1.62–3.54, P < 0.001) and lymph node metastasis (OR = 2.35, 95%CI 1.34–4.11, P = 0.003). Further, p-mTOR overexpression was associated with patient age, tumor location, depth of invasion (OR = 1.63, 95%CI 1.08–2.45, P = 0.02) and TNM stage (OR = 1.73, 95%CI 1.29–2.32, P < 0.001). In addition, HER2-HER3 overexpression corresponded to gradually shortened 5-year OS (P < 0.05), and significant relationships were shown among HER3, p-mTOR overexpression, and 1-, 3-, 5-year OS (P < 0.05). Conclusions HER2-HER3 co-expression may potentially enhance mTOR phosphorylation. HER2-HER3 co-expression and p-mTOR are both related to the prognosis of GC patients. Electronic supplementary material The online version of this article (10.1186/s12885-017-3851-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guo-Dong Cao
- Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ke Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Bo Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| | - Mao-Ming Xiong
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
39
|
Bensch F, Lamberts LE, Smeenk MM, Jorritsma-Smit A, Lub-de Hooge MN, Terwisscha van Scheltinga AGT, de Jong JR, Gietema JA, Schröder CP, Thomas M, Jacob W, Abiraj K, Adessi C, Meneses-Lorente G, James I, Weisser M, Brouwers AH, de Vries EGE. 89Zr-Lumretuzumab PET Imaging before and during HER3 Antibody Lumretuzumab Treatment in Patients with Solid Tumors. Clin Cancer Res 2017; 23:6128-6137. [PMID: 28733442 DOI: 10.1158/1078-0432.ccr-17-0311] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/30/2017] [Accepted: 07/18/2017] [Indexed: 01/24/2023]
Abstract
Purpose: We evaluated biodistribution and tumor targeting of 89Zr-lumretuzumab before and during treatment with lumretuzumab, a human epidermal growth factor receptor 3 (HER3)-targeting monoclonal antibody.Experimental Design: Twenty patients with histologically confirmed HER3-expressing tumors received 89Zr-lumretuzumab and underwent positron emission tomography (PET). In part A, 89Zr-lumretuzumab was given with additional, escalating doses of unlabeled lumretuzumab, and scans were performed 2, 4, and 7 days after injection to determine optimal imaging conditions. In part B, patients were scanned following tracer injection before (baseline) and after a pharmacodynamic (PD)-active lumretuzumab dose for saturation analysis. HER3 expression was determined immunohistochemically in skin biopsies. Tracer uptake was calculated as standardized uptake value (SUV).Results: Optimal PET conditions were found to be 4 and 7 days after administration of 89Zr-lumretuzumab with 100-mg unlabeled lumretuzumab. At baseline using 100-mg unlabeled lumretuzumab, the tumor SUVmax was 3.4 (±1.9) at 4 days after injection. SUVmean values for normal blood, liver, lung, and brain tissues were 4.9, 6.4, 0.9 and 0.2, respectively. Saturation analysis (n = 7) showed that 4 days after lumretuzumab administration, tumor uptake decreased by 11.9% (±8.2), 10.0% (±16.5), and 24.6% (±20.9) at PD-active doses of 400, 800, and 1,600 mg, respectively, when compared with baseline. Membranous HER3 was completely downregulated in paired skin biopsies already at and above 400-mg lumretuzumab.Conclusions: PET imaging showed biodistribution and tumor-specific 89Zr-lumretuzumab uptake. Although, PD-active lumretuzumab doses decreased 89Zr-lumretuzumab uptake, there was no clear evidence of tumor saturation by PET imaging as the tumor SUV did not plateau with increasing doses. Clin Cancer Res; 23(20); 6128-37. ©2017 AACR.
Collapse
Affiliation(s)
- Frederike Bensch
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Laetitia E Lamberts
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Michaël M Smeenk
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Annelies Jorritsma-Smit
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, the Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands
| | | | - Johan R de Jong
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Carolien P Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Marlene Thomas
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Wolfgang Jacob
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Keelara Abiraj
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Celine Adessi
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Ian James
- A4P Consulting Ltd, Sandwich, United Kingdom
| | - Martin Weisser
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
40
|
Zhao L, Lei H, Shen L, Tang J, Wang Z, Bai W, Zhang F, Wang S, Li W. Prognosis genes in gastric adenocarcinoma identified by cross talk genes in disease‑related pathways. Mol Med Rep 2017; 16:1232-1240. [PMID: 28586067 PMCID: PMC5562048 DOI: 10.3892/mmr.2017.6699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 03/14/2017] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to investigate the prognostic value of genes that participate in the development of gastric adenocarcinoma, via exploring gene cross talk in disease-related pathways. Differentially expressed genes (DEGs) in the gastric samples were identified by analyzing the expression data downloaded from the GEO database. The DEGs were subjected to the human protein-protein interaction (PPI) network to construct the PPI network of DEGs, which was then used for the identification of key genes in cancer samples via the expression deviation score and degree in the network. A total of 635 DEGs, including 432 downregulated and 203 upregulated ones were screened in the gastric adenocarcinomas samples. The PPI network of DEGs comprised 590 DEGs and 4,299 interaction pairs. A total of 200 key genes were obtained, which were significantly enriched in six downregulated and six upregulated pathways. Cross talk genes in the connected pathways were analyzed, and the Kyoto Encyclopedia of Genes and Genomes pathways hsa00980 (Metabolism of xenobiotics by cytochrome P450) and hsa00982 (Drug metabolism) were reported to share 8 cross talk genes: ADH7, ALDH3A1, GSTA1, GSTA2, UGT2B17, UGT2B10, ADH1B and CYP2C18. Among all cross talk genes, ADH7, ALDH3A1 and CLDN3 were the most specific genes. The high- and low-risk samples identified by the prognosis model presented a remarkable difference in total survival time, indicating its robustness and sensitivity as the prognosis genes for gastric adenocarcinoma. ADH7, ALDH3A1, GSTA1, GSTA2, UGT2B17, UGT2B10, ADH1B, CYP2C18ADH7, ALDH3A1 and CLDN3 may be used as the prognosis markers and target biomarkers for chemotherapies in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Lizhi Zhao
- Department of Digestive Surgery, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Haichun Lei
- Department of Digestive Surgery, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Li Shen
- Department of Digestive Surgery, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Jiquan Tang
- Department of Digestive Surgery, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Zhiwei Wang
- Department of Digestive Surgery, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Weisong Bai
- Department of Digestive Surgery, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Feng Zhang
- Department of Digestive Surgery, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Shouli Wang
- Department of Digestive Surgery, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Weihua Li
- Center Lab, The People's Hospital of Gansu, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
41
|
Li Q, Zhang R, Yan H, Zhao P, Wu L, Wang H, Li T, Cao B. Prognostic significance of HER3 in patients with malignant solid tumors. Oncotarget 2017; 8:67140-67151. [PMID: 28978022 PMCID: PMC5620162 DOI: 10.18632/oncotarget.18007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/21/2017] [Indexed: 02/02/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is closely involved in tumor progression and is an important target of therapy. To evaluate the prognostic significance of HER3 in malignant solid tumors, we searched the PUBMED, EMBASE and CNKI databases for relevant studies written in English or Chinese up to December 2015. Fifteen studies comprising 2964 patients were identified. The HER3+ rate ranged from 9.0-75.1 % in malignant solid tumors: 30.3-75.1 % in breast cancers, 51.1-74.5 % in colorectal cancers, 13.7-59.0 % in gastric cancers, and 54.5-74.4 % in cervical cancers. For patients with a malignant solid tumor, the death risk was higher for those with a HER3+ tumor than for those with a HER3− tumor (HR 1.60, 95% CI: 1.27 - 2.02, P < 0.001). Subgroup analysis revealed this was also the case for patients with digestive or gastric cancer (HR 1.78, P < 0.001; HR 2.18, P < 0.001). By contrast, HER3 had no prognostic significance in colorectal or breast cancer (HR 1.52, P = 0.296; HR 1.23, P = 0.108). HER3+ is thus associated with poor survival in overall and in gastric cancer. The prognostic significance of HER3+ in other tumors is uncertain and deserves further study.
Collapse
Affiliation(s)
- Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - RuiXue Zhang
- Department of Internal Medicine, The First Hospital, Tsinghua University, Beijing 100016, China
| | - Han Yan
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - PengFei Zhao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Li Wu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Hui Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Teng Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.,Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.,Beijing Digestive Diseases Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
42
|
Osada T, Morse MA, Hobeika A, Diniz MA, Gwin WR, Hartman Z, Wei J, Guo H, Yang XY, Liu CX, Kaneko K, Broadwater G, Lyerly HK. Vaccination targeting human HER3 alters the phenotype of infiltrating T cells and responses to immune checkpoint inhibition. Oncoimmunology 2017; 6:e1315495. [PMID: 28680745 DOI: 10.1080/2162402x.2017.1315495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Expression of human epidermal growth factor family member 3 (HER3), a critical heterodimerization partner with EGFR and HER2, promotes more aggressive biology in breast and other epithelial malignancies. As such, inhibiting HER3 could have broad applicability to the treatment of EGFR- and HER2-driven tumors. Although lack of a functional kinase domain limits the use of receptor tyrosine kinase inhibitors, HER3 contains antigenic targets for T cells and antibodies. Using novel human HER3 transgenic mouse models of breast cancer, we demonstrate that immunization with recombinant adenoviral vectors encoding full length human HER3 (Ad-HER3-FL) induces HER3-specific T cells and antibodies, alters the T cell infiltrate in tumors, and influences responses to immune checkpoint inhibitions. Both preventative and therapeutic Ad-HER3-FL immunization delayed tumor growth but were associated with both intratumoral PD-1 expressing CD8+ T cells and regulatory CD4+ T cell infiltrates. Immune checkpoint inhibition with either anti-PD-1 or anti-PD-L1 antibodies increased intratumoral CD8+ T cell infiltration and eliminated tumor following preventive vaccination with Ad-HER3-FL vaccine. The combination of dual PD-1/PD-L1 and CTLA4 blockade slowed the growth of tumor in response to Ad-HER3-FL in the therapeutic model. We conclude that HER3-targeting vaccines activate HER3-specific T cells and induce anti-HER3 specific antibodies, which alters the intratumoral T cell infiltrate and responses to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Michael A Morse
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Marcio A Diniz
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - William R Gwin
- Tumor Vaccine Group, Center for Translational Medicine in Women's Health, University of Washington, Seattle, WA, USA
| | - Zachary Hartman
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Junping Wei
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Hongtao Guo
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Xiao-Yi Yang
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Cong-Xiao Liu
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Kensuke Kaneko
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Gloria Broadwater
- Duke University, Division of Biostatistics Duke Cancer Institute, Durham, NC, USA
| | - H Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
43
|
Qi L, Zhou L, Lu M, Yuan K, Li Z, Wu G, Huang X, Shen Y, Zhao M, Fu W, Chu B, Wang G, Ren F, Ma D, Chen J. Development of a highly specific HER2 monoclonal antibody for immunohistochemistry using protein microarray chips. Biochem Biophys Res Commun 2017; 484:248-254. [PMID: 28111342 DOI: 10.1016/j.bbrc.2017.01.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 01/13/2023]
Abstract
HER2 is an orphan receptor tyrosine kinase of the EGFR families and is considered to be a key tumor driver gene [1]. Breast cancer and gastric cancer with HER2 amplification can be effectively treated by its neutralizing antibody, Herceptin. In clinic, Immunohistochemistry (IHC) was used as the primary screening method to diagnose HER2 amplification [2]. However, recent evidence suggested that the frequently used rabbit HER2 antibody 4B5 cross reacted with another family member HER4 [3]. IHC staining with 4B5 also indicated that there was strong non-specific cytoplasmic and nuclear signals in normal gastric mucosal cells and some gastric cancer samples. Using a protein lysate array which covers 85% of the human proteome, we have confirmed that the 4B5 bound to HER4 and a nuclear protein ZSCAN18 besides HER2. The non-specific binding accounts for the unexpected cytoplasmic and nuclear staining of 4B5 of normal gastric epithelium. Finally, we have developed a novel mouse HER2 monoclonal antibody UMAB36 with similar sensitivity to 4B5 but only reacted to HER2 across the 17,000 proteins on the protein chip. In 129 breast cancer and 158 gastric cancer samples, UMAB36 showed 100% sensitivity and specificity comparing to the HER2 FISH reference results with no unspecific staining in the gastric mucosa layer. Therefore, UMAB36 could provide as an alternative highly specific IHC reagent for testing HER2 amplification in gastric cancer populations.
Collapse
Affiliation(s)
- Lili Qi
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA
| | - Lixin Zhou
- Department of Pathology, Beijing Cancer Hospital, No. 52 Fu-Cheng Road, Haidian District, Beijing, 100142, PR China
| | - Mingmin Lu
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, PR China
| | - Kehu Yuan
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA
| | - Zhongwu Li
- Department of Pathology, Beijing Cancer Hospital, No. 52 Fu-Cheng Road, Haidian District, Beijing, 100142, PR China
| | - Guiyin Wu
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA
| | - Xiaozheng Huang
- Department of Pathology, Beijing Cancer Hospital, No. 52 Fu-Cheng Road, Haidian District, Beijing, 100142, PR China
| | - Yi Shen
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA
| | - Min Zhao
- Department of Pathology, Beijing Cancer Hospital, No. 52 Fu-Cheng Road, Haidian District, Beijing, 100142, PR China
| | - Wei Fu
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA
| | - Boyang Chu
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA
| | - Guangli Wang
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA
| | - Fangfang Ren
- Department of Biochemistry and Molecular Biology, Medical College of Soochow University, Suzhou, 215123, PR China.
| | - Donghui Ma
- OriGene Technologies, 9620 Medical Center Dr., Suite 200, Rockville, MD, 20850, USA.
| | - Jian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
44
|
Petrelli F, Berenato R, Turati L, Mennitto A, Steccanella F, Caporale M, Dallera P, de Braud F, Pezzica E, Di Bartolomeo M, Sgroi G, Mazzaferro V, Pietrantonio F, Barni S. Prognostic value of diffuse versus intestinal histotype in patients with gastric cancer: a systematic review and meta-analysis. J Gastrointest Oncol 2017; 8:148-163. [PMID: 28280619 DOI: 10.21037/jgo.2017.01.10] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There are two distinct types of gastric carcinoma (GC), intestinal, more frequently sporadic and linked to environmental factors, and diffuse (undifferentiated) that is highly metastatic and characterized by rapid disease progression and a poor prognosis. However, there are many conflicting data in the literature concerning the association between histology and prognosis in GC. This meta-analysis was performed to provide demonstration if histology according to Lauren classification is associated with different prognosis in patients with GC. METHODS We searched PubMed, the Cochrane Library, SCOPUS, Web of Science, CINAHL, and EMBASE for all eligible studies. The combined hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) in terms of overall survival (OS) were evaluated. RESULTS A total of 73 published studies including 61,468 patients with GC were included in this meta-analysis. Our analysis indicates that GC patients with diffuse-type histology have a worst prognosis than those with intestinal subgroup in all studies (HR 1.23; 95% CI, 1.17-1.29; P<0.0001), in both loco-regional confined (HR 1.21; 95% CI, 1.12-1.30; P<0.0001) and advanced disease (HR 1.25; 95% CI, 1.046-1.50; P=0.014), in Asiatic (HR 1.2; 95% CI, 1.14-1.27; P<0.0001) and Western patients (HR 1.3; 95% CI, 1.19-1.41; P<0.0001), and in those not exposed (HR 1.15; 95% CI, 1.07-1.24; P<0.0001) or exposed (HR 1.27; 95% CI, 1.17-1.37; P<0.0001) to (neo)adjuvant therapy. CONCLUSIONS Our results indicated that histology might be a useful prognostic marker for both early and advanced GC patients, with intestinal-type associated with a better outcome. This information could be used for stratification purpose in future clinical trials.
Collapse
Affiliation(s)
- Fausto Petrelli
- Medical Oncology Unit, Oncology Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Rosa Berenato
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Turati
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Alessia Mennitto
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Steccanella
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Marta Caporale
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Pierpaolo Dallera
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ezio Pezzica
- Pathology Unit, Oncology Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Sgroi
- Surgical Oncology Unit, Surgery Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| | - Vincenzo Mazzaferro
- Hepatobiliopancreatic Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Barni
- Medical Oncology Unit, Oncology Department, ASST Bergamo Ovest, Treviglio (BG), Italy
| |
Collapse
|
45
|
Prognostic impact of HER3 based on protein and mRNA expression in high-grade serous ovarian carcinoma. Virchows Arch 2016; 470:143-151. [PMID: 27913862 DOI: 10.1007/s00428-016-2050-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/01/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023]
Abstract
HER3 is a member of the epidermal growth factor family and was predominantly described as a negative prognostic factor in various solid tumors as well as in ovarian cancer. In this study, we investigated HER3 on protein and mRNA expression in histologically defined subtypes of ovarian cancer looking for an influence on patient's survival. Altogether, we examined HER3 in ovarian high-grade serous (HGSC, n = 320), low-grade serous (LGSC, n = 55), endometrioid (EC, n = 33), and clear cell (CCC, n = 48) carcinomas using immunohistochemistry (IHC) and quantitative real-time reverse transcription PCR (qRT-PCR). Univariate and multivariate analyses were performed to explore the association between HER3 and overall survival (OS) as well as progression-free survival (PFS). In HGSC, high HER3 mRNA expression was a favorable prognostic factor for PFS (P = 0.008) and OS (P = 0.052), while for high HER3 protein expression, a trend towards better survival was seen (OS P = 0.064; PFS P = 0.099). A subgroup of HGSC with negative HER3 staining and negative HER3 mRNA levels showed most unfavorable OS and PFS (P = 0.002 and P = 0.004, respectively). Using the multivariate Cox regression model, HER3 was predictive for prolonged PFS (HR, 0.48; 95% CI, 0.26-0.88; P = 0.018). All in all, we cannot confirm the reported negative prognostic impact of HER3 expression in high-grade serous ovarian carcinoma and moreover find a rather positive prognostic implication of HER3 in this major ovarian cancer histological subtype.
Collapse
|
46
|
Chan E, Alkhasawneh A, Duckworth LV, Aijaz T, Toro TZ, Lu X, Hughes SJ, Collinsworth A, George TJ. EGFR family and cMet expression profiles and prognostic significance in esophagogastric adenocarcinoma. J Gastrointest Oncol 2016; 7:838-847. [PMID: 28078108 DOI: 10.21037/jgo.2016.06.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Targeted therapy with anti-human epidermal growth factor receptor-2 (HER2) monoclonal antibody in patients with HER2 overexpressed esophagogastric adenocarcinoma (EGA) improves survival; however, the effect is transient due to the development of resistance. Some studies suggest that cMet overexpression provides cross talk for epidermal growth factor receptor (EGFR) and HER2 inhibition. We sought to characterize the expression profile of the EGFR family and cMet receptors in untreated, resected EGA. METHODS This retrospective analysis included all sequential patients with esophageal or gastroesophageal junction (GEJ) adenocarcinoma who underwent primary resection, without neoadjuvant therapy or HER2 inhibition, with adequate tissue, at the University of Florida from 2001 to 2011. Central blinded immunohistochemistry (IHC) was performed on tumor specimens with EGFR, HER2, HER3, HER4 and cMet expression scored as low (0, 1+) or high (2+, 3+). Demographic and tumor characteristics were compared using Fisher exact test. Kaplan-Meier curves and univariate analysis compared survival among different receptors. RESULTS Total 52 patients were included in the study with median age 66 years. High expression of EGFR (73%), HER2 (40%), HER3 (75%), HER4 (35%) and cMet (69%) was detected among the study group. HER3 and HER4 co-expression was found in 18 (35%) cases. Pan expression of all four EGFR family members with cMet was noted in only 17% of cases. On univariate analysis, tumor stage and depth correlated with survival, while cMet + HER3 +/- EGFR receptor co-expression trended towards a worse survival. CONCLUSIONS EGFR family and cMet are frequently co-expressed in treatment naïve resected EGA or GEJ tumors. Although our data do not significantly show receptor status as a prognostic factor, the co-expression profiles support for further investigation to improve targeting of this signal transduction axis.
Collapse
Affiliation(s)
- Ellie Chan
- Division of Hematology & Oncology, Department of Medicine, College of Medicine, Gainesville, FL, USA
| | - Ahmad Alkhasawneh
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Gainesville, FL, USA
| | - Lizette Vila Duckworth
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Gainesville, FL, USA
| | - Tabish Aijaz
- Division of Hematology & Oncology, Department of Medicine, College of Medicine, Gainesville, FL, USA
| | - Tania Zuluaga Toro
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Gainesville, FL, USA
| | - Xiaomin Lu
- Department of Biostatistics, College of Medicine, Gainesville, FL, USA
| | - Steven J Hughes
- Department of Surgery University of Florida, College of Medicine, Gainesville, FL, USA
| | - Amy Collinsworth
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Gainesville, FL, USA
| | - Thomas J George
- Division of Hematology & Oncology, Department of Medicine, College of Medicine, Gainesville, FL, USA
| |
Collapse
|
47
|
Babu TMC, Rammohan A, Baki VB, Devi S, Gunasekar D, Rajendra W. Development of novel HER2 inhibitors against gastric cancer derived from flavonoid source of Syzygium alternifolium through molecular dynamics and pharmacophore-based screening. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3611-3632. [PMID: 27853354 PMCID: PMC5104305 DOI: 10.2147/dddt.s111914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Continuous usage of synthetic chemotherapeutic drugs causes adverse effects, which prompted for the development of alternative therapeutics for gastric cancer from natural source. This study was carried out with a specific aim to screen gastroprotective compounds from the fruits of Syzygium alternifolium (Myrtaceae). Three flavonoids, namely, 1) 5-hydroxy-7,4′-dimethoxy-6,8-di-C-methylflavone, 2) kaempferol-3-O-β-d-glucopyranoside, and 3) kaempferol-3-O-α-l-rhamnopyranoside were isolated from the above medicinal plant by employing silica gel column chromatography and are characterized by NMR techniques. Antigastric cancer activity of these flavonoids was examined on AGS cell lines followed by cell cycle progression assay. In addition, pharmacophore-based screening and molecular dynamics of protein–ligand complex were carried out to identify potent scaffolds. The results showed that compounds 2 and 3 exhibited significant cytotoxic effect, whereas compound 1 showed moderate effect on AGS cells by inhibiting G2/M phase of cell cycle. Molecular docking analysis revealed that compound 2 has higher binding energies on human growth factor receptor-2 (HER2). The constructed pharmacophore models reveal that the compounds have more number of H-bond Acc/Don features which contribute to the inhibition of HER2 activity. By selecting these features, 34 hits were retrieved using the query compound 2. Molecular dynamic simulations (MDS) of protein–ligand complexes demonstrated conspicuous inhibition of HER2 as evidenced by dynamic trajectory analysis. Based on these results, the compound ZINC67903192 was identified as promising HER2 inhibitor against gastric cancer. The present work provides a basis for the discovery a new class of scaffolds from natural products for gastric carcinoma.
Collapse
Affiliation(s)
| | - Aluru Rammohan
- Natural Products Division, Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh
| | | | - Savita Devi
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Duvvuru Gunasekar
- Natural Products Division, Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh
| | | |
Collapse
|
48
|
Wang Y, Yang H, Duan G. HER3 over-expression and overall survival in gastrointestinal cancers. Oncotarget 2016; 6:42868-78. [PMID: 26517355 PMCID: PMC4767477 DOI: 10.18632/oncotarget.5998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
Published studies on the association between human epidermal factor receptor 3 (HER3) expression and overall survival (OS) in gastrointestinal cancers have yielded conflicting results. The aim of this study was to explore the association of HER3 over-expression with OS in gastrointestinal cancers. A systematic search was performed through Medline/PubMed, Embase, Science Direct and Elsevier. The summary odds ratio (OR) with 95% confidence interval (CI) was calculated to estimate the strength of the association. Overall, we observed that HER3 over-expression was associated with worse OS at five years (OR = 1.38, 95% CI: 1.04-1.82); however, HER3 over-expression was not associated with worse OS at three years (OR = 1.33, 95% CI: 0.97-1.84). The cumulative meta-analysis showed similar results. In subgroup analyses by tumor type, HER3 over-expression in gastric cancers was associated with worse OS at both three years (OR = 1.69, 95% CI: 1.28-2.25) and five years (OR = 1.74, 95% CI: 1.26-2.41). In conclusion, our results suggest that HER3 over-expression may be associated with worse overall survival in gastric cancers. Well-designed studies with a large sample size are required to further confirm our findings.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
49
|
Ecker BL, Taylor L, Zhang PJ, Furth EE, Ginsberg GG, McMillan MT, Datta J, Czerniecki BJ, Roses RE. HER3 Expression Is a Marker of Tumor Progression in Premalignant Lesions of the Gastroesophageal Junction. PLoS One 2016; 11:e0161781. [PMID: 27559738 PMCID: PMC4999185 DOI: 10.1371/journal.pone.0161781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/11/2016] [Indexed: 01/03/2023] Open
Abstract
Overexpression of receptor tyrosine kinases (RTK), including members of the HER family, has prognostic and therapeutic significance in invasive esophagogastric carcinoma. RTK expression in premalignant gastroesophageal lesions has not been extensively explored. Formalin-fixed paraffin-embedded tissue samples of esophageal biopsy specimens from 73 patients with Barrett’s esophagus with either low-grade dysplasia (LGD) (n = 32) or high-grade dysplasia (HGD) (n = 59) were analyzed for HER1, HER2, HER3 and CMET expression by immunohistochemistry (IHC). Immunophenotype was correlated with histologic and clinical features. High-grade dysplasia (HGD) was associated with overexpression of HER1 (20.7% vs. 3.1%, p = 0.023), HER2 (5.3% vs. 0.0%, p = 0.187) and HER3 (47.4% vs. 9.4%, p<0.001) compared to low-grade dysplasia (LGD). There was a significant association of HER2 (20.0% vs. 2.1%, p = 0.022) and HER3 (80.0% vs. 40.4%, p = 0.023) overexpression in HGD lesions associated with foci of invasive carcinoma compared to those without invasive foci. Overexpression of CMET was observed in 42.9% of specimens, was increasingly observed with HGD compared to LGD (58.3% vs. 36.7%, p = 0.200), and was most often co-expressed with HER3 (62.5% of HER3-positive specimens vs. 38.2% of HER3-negative specimens, p = 0.212). In summary, HER3 is frequently overexpressed in high-grade dysplastic lesions of the gastroesophageal junction and may be a marker of invasive progression. These data provide rationale for targeting HER2 and HER3 pathways in an early disease setting to prevent disease progression.
Collapse
Affiliation(s)
- Brett L. Ecker
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Laura Taylor
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Paul J. Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Gregory G. Ginsberg
- Department of Gastroenterology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Matthew T. McMillan
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jashodeep Datta
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Brian J. Czerniecki
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert E. Roses
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
50
|
Cao GD, Chen K, Xiong MM, Chen B. HER3, but Not HER4, Plays an Essential Role in the Clinicopathology and Prognosis of Gastric Cancer: A Meta-Analysis. PLoS One 2016; 11:e0161219. [PMID: 27536774 PMCID: PMC4990181 DOI: 10.1371/journal.pone.0161219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022] Open
Abstract
Background and Aim Human epidermal growth factor receptor (HER) family plays an important role in gastric cancer (GC), especially HER2. Too much attention has been paid to HER2; however, the functions of HER3 and HER4 overexpression in GC are always ignored. The clinicopathological and prognostic roles of HER3 and HER4 in GC are controversial. In this study, a systematic review and meta-analysis was conducted to evaluate the use of HER3 or HER4 as a predictor of clinicopathology and survival time in GC patients. Methods Eligible studies were searched on PubMed, Ovid, Web of Science, and Cochrane databases through multiple search strategies. Data collection and statistical analysis were carried out by the Revman 5.3 software. The Newcastle-Ottawa scale was used to assess the quality of included studies. Results A total of 448 studies about HER3 overexpression and GC, and 398 studies about HER4 overexpression and GC were searched. Of these, 5 eligible studies about HER3 including 1016 GC patients and 3 eligible studies about HER4 including 793 GC patients met the inclusion criteria. The results showed that HER3 and HER4 overexpression were significantly associated with depth of tumor invasion (OR = 0.44, 95%CI 0.29–0.67, P = 0.0002 and OR = 0.50, 95%CI 0.38–0.86, P = 0.007) and lymph node metastasis (OR = 0.40, 95%CI 0.20–0.77, P = 0.007 and OR = 0.57, 95%CI 0.38–0.86, P = 0.007), and HER3 overexpression reveals a tendency of later tumor node metastases (TNM) stage (OR = 0.50, 95%CI 0.22–1.15, P = 0.10) and predicts a worse survival time (RR = 0.71, 95%CI 0.61–0.84, P<0.00001), while HER4 overexpression had no correlation with TNM stage (OR = 0.60, 95%CI 0.20–1.78) and survival time (RR = 1.09, 95%CI 0.91–1.30). Conclusions This meta-analysis indicated that HER3 plays an essential role in the clinicopathology and prognosis of GC. However, HER4 may not be an ideal prognostic factor for GC.
Collapse
Affiliation(s)
- Guo-dong Cao
- Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ke Chen
- Anhui Medical University, Hefei, Anhui, 230022, China
| | - Mao-ming Xiong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- * E-mail: (MMX); (BC)
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- * E-mail: (MMX); (BC)
| |
Collapse
|