1
|
Krishnan S, Kanthaje S, Rekha PD, Mujeeburahiman M, Ratnacaram CK. Expanding frontiers in liquid biopsy-discovery and validation of circulating biomarkers in renal cell carcinoma and bladder cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 391:135-197. [PMID: 39939075 DOI: 10.1016/bs.ircmb.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Renal cell carcinoma (RCC) and Bladder cancer (BC) are two lethal urological cancers that require diagnosis at their earliest stage causing decreasing survival rates in case of aggressive disease. However, there is no reliable circulating marker in blood or urine for their less or non-invasive diagnosis. Our objective was to review the potential circulating biomarkers, namely proteins, micro-RNA (miRNA), long non-coding RNA (lncRNA), and circulating tumour cells (CTCs) for which we performed a PubMed-based literature search of biomolecules (protein, miRNA, lncRNA and CTCs) found as circulating biomarkers in blood and urine for the early detection of RCC and BC. Among the numerous studies, certain biomolecules represent promising early-stage biomarkers such as proteins (NNMT, LCP1, and NM23A; KIM1), mi-RNAs (5-panel: miR-193a-3p, miR-362, miR-572, miR-378, and miR-28-5p; miR-200a) and lncRNAs (5-panel: LET, PVT1, PANDAR, PTENP1 and linc00963; GIHCG) for RCC. Similarly, proteins (APOA1), miRNAs (7-panel: miR-7-5p, miR-22-3p, miR-29a-3p, miR-126-5p, miR- 200a-3p, miR-375, and miR-423-5p; miRNA 181a, miRNA 30c, and miRNA 570) and lncRNAs (3-panel: MALAT1, MEG3, and SNHG16; exosomal derived 3-panel: PCAT-1, UBC1 and SNHG16; H19) were reported in BC subjects. Notably, the majority of the biomarkers presented for early detection in RCC cases were found in blood, while in urine for BC. Our results reveal that though a plethora of circulating biomarkers show early diagnostic ability, all of them are still bench-only biomarkers and require further validation. Adequate clinical trials/studies testing which of these potential markers individually or in combination, will become clinically applicable still remain elusive.
Collapse
Affiliation(s)
- Sabareeswaran Krishnan
- Division of Cancer Research and Therapeutics, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, India; Department of Urology, Yenepoya Medical College Hospital, Deralakatte, Mangaluru, Karnataka, India
| | - Shruthi Kanthaje
- Division of Cancer Research and Therapeutics, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, India
| | - M Mujeeburahiman
- Department of Urology, Yenepoya Medical College Hospital, Deralakatte, Mangaluru, Karnataka, India.
| | - Chandrahas Koumar Ratnacaram
- Division of Cancer Research and Therapeutics, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, Karnataka, India.
| |
Collapse
|
2
|
Alberca-del Arco F, Prieto-Cuadra D, Santos-Perez de la Blanca R, Sáez-Barranquero F, Matas-Rico E, Herrera-Imbroda B. New Perspectives on the Role of Liquid Biopsy in Bladder Cancer: Applicability to Precision Medicine. Cancers (Basel) 2024; 16:803. [PMID: 38398192 PMCID: PMC10886494 DOI: 10.3390/cancers16040803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Bladder cancer (BC) is one of the most common tumors in the world. Cystoscopy and tissue biopsy are the standard methods in screening and early diagnosis of suspicious bladder lesions. However, they are invasive procedures that may cause pain and infectious complications. Considering the limitations of both procedures, and the recurrence and resistance to BC treatment, it is necessary to develop a new non-invasive methodology for early diagnosis and multiple evaluations in patients under follow-up for bladder cancer. In recent years, liquid biopsy has proven to be a very useful diagnostic tool for the detection of tumor biomarkers. This non-invasive technique makes it possible to analyze single tumor components released into the peripheral circulation and to monitor tumor progression. Numerous biomarkers are being studied and interesting clinical applications for these in BC are being presented, with promising results in early diagnosis, detection of microscopic disease, and prediction of recurrence and response to treatment.
Collapse
Affiliation(s)
- Fernardo Alberca-del Arco
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
| | - Daniel Prieto-Cuadra
- Departamento de Anatomía Patológica, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain;
- Unidad de Gestion Clinica de Anatomia Patologica, IBIMA, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- SYNLAB Pathology, 29007 Málaga, Spain
| | - Rocio Santos-Perez de la Blanca
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
| | - Felipe Sáez-Barranquero
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
| | - Elisa Matas-Rico
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga (UMA), 29071 Málaga, Spain
| | - Bernardo Herrera-Imbroda
- Departamento de Urología, Hospital Universitario Virgen de la Victoria (HUVV), 29010 Málaga, Spain; (F.A.-d.A.); (R.S.-P.d.l.B.); (F.S.-B.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), 29590 Málaga, Spain
- Genitourinary Alliance for Research and Development (GUARD Consortium), 29071 Málaga, Spain
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Universidad de Málaga (UMA), 29071 Málaga, Spain
| |
Collapse
|
3
|
Demir R, Koc S, Ozturk DG, Bilir S, Ozata Hİ, Williams R, Christy J, Akkoc Y, Tinay İ, Gunduz-Demir C, Gozuacik D. Artificial intelligence assisted patient blood and urine droplet pattern analysis for non-invasive and accurate diagnosis of bladder cancer. Sci Rep 2024; 14:2488. [PMID: 38291121 PMCID: PMC10827787 DOI: 10.1038/s41598-024-52728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Bladder cancer is one of the most common cancer types in the urinary system. Yet, current bladder cancer diagnosis and follow-up techniques are time-consuming, expensive, and invasive. In the clinical practice, the gold standard for diagnosis remains invasive biopsy followed by histopathological analysis. In recent years, costly diagnostic tests involving the use of bladder cancer biomarkers have been developed, however these tests have high false-positive and false-negative rates limiting their reliability. Hence, there is an urgent need for the development of cost-effective, and non-invasive novel diagnosis methods. To address this gap, here we propose a quick, cheap, and reliable diagnostic method. Our approach relies on an artificial intelligence (AI) model to analyze droplet patterns of blood and urine samples obtained from patients and comparing them to cancer-free control subjects. The AI-assisted model in this study uses a deep neural network, a ResNet network, pre-trained on ImageNet datasets. Recognition and classification of complex patterns formed by dried urine or blood droplets under different conditions resulted in cancer diagnosis with a high specificity and sensitivity. Our approach can be systematically applied across droplets, enabling comparisons to reveal shared spatial behaviors and underlying morphological patterns. Our results support the fact that AI-based models have a great potential for non-invasive and accurate diagnosis of malignancies, including bladder cancer.
Collapse
Affiliation(s)
- Ramiz Demir
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Soner Koc
- Department of Computer Engineering, Koç University, Istanbul, Turkey
- KUIS AI Center, Koç University, Istanbul, Turkey
| | - Deniz Gulfem Ozturk
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Sukriye Bilir
- SUNUM Nanotechnology Research and Application Center, Istanbul, Turkey
| | | | - Rhodri Williams
- School of Engineering, University of Edinburgh, Edinburgh, UK
| | - John Christy
- School of Engineering, University of Edinburgh, Edinburgh, UK
| | - Yunus Akkoc
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - İlker Tinay
- Anadolu Medical Center, Gebze, Kocaeli, Turkey
| | - Cigdem Gunduz-Demir
- Department of Computer Engineering, Koç University, Istanbul, Turkey.
- KUIS AI Center, Koç University, Istanbul, Turkey.
- School of Medicine, Koç University, Istanbul, Turkey.
| | - Devrim Gozuacik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
- SUNUM Nanotechnology Research and Application Center, Istanbul, Turkey.
- School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
4
|
Wu S, Li R, Jiang Y, Yu J, Zheng J, Li Z, Li M, Xin K, Wang Y, Xu Z, Li S, Chen X. Liquid biopsy in urothelial carcinoma: Detection techniques and clinical applications. Biomed Pharmacother 2023; 165:115027. [PMID: 37354812 DOI: 10.1016/j.biopha.2023.115027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
The types of urothelial carcinoma (UC) include urothelial bladder cancer and upper tract urothelial carcinoma. Current diagnostic techniques cannot meet the needs of patients. Liquid biopsy is an accurate method of determining the molecular profile of UC and is a cutting-edge and popular technique that is expected to complement existing detection techniques and benefit patients with UC. Circulating tumor cells, cell-free DNA, cell-free RNA, extracellular vesicles, proteins, and metabolites can be found in the blood, urine, or other bodily fluids and are examined during liquid biopsies. This article focuses on the components of liquid biopsies and their clinical applications in UC. Liquid biopsies have tremendous potential in multiple aspects of precision oncology, from early diagnosis and treatment monitoring to predicting prognoses. They may therefore play an important role in the management of UC and precision medicine.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rong Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuanhong Jiang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jiazheng Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
5
|
Mengual L, Frantzi M, Mokou M, Ingelmo-Torres M, Vlaming M, Merseburger AS, Roesch MC, Culig Z, Alcaraz A, Vlahou A, Mischak H, Van der Heijden AG. Multicentric validation of diagnostic tests based on BC-116 and BC-106 urine peptide biomarkers for bladder cancer in two prospective cohorts of patients. Br J Cancer 2022; 127:2043-2051. [PMID: 36192490 PMCID: PMC9681771 DOI: 10.1038/s41416-022-01992-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Non-invasive urine-based biomarkers can potentially improve current diagnostic and monitoring protocols for bladder cancer (BC). Here we assess the performance of earlier published biomarker panels for BC detection (BC-116) and monitoring of recurrence (BC-106) in combination with cytology, in two prospectively collected patient cohorts. METHODS Of the 602 patients screened for BC, 551 were found eligible. For the primary setting, 73 patients diagnosed with primary BC (n = 27) and benign urological disorders, including patients with macroscopic haematuria, cystitis and/or nephrolithiasis (n = 46) were included. In total, 478 patients under surveillance were additionally considered (83 BC recurrences; 395 negative for recurrence). Urine samples were analysed with capillary electrophoresis-mass spectrometry. The biomarker score was estimated via support vector machine-based software. RESULTS Validation of BC-116 biomarker panel resulted in 89% sensitivity and 67% specificity (AUCBC-116 = 0.82). A diagnostic score based on cytology and BC-116 resulted in good (AUCNom116 = 0.85) but not significantly better performance (P = 0.5672). A diagnostic score including BC-106 and cytology was evaluated (AUCNom106 = 0.82), significantly outperforming both cytology (AUCcyt = 0.72; P = 0.0022) and BC-106 (AUCBC-106 = 0.67; P = 0.0012). CONCLUSIONS BC-116 biomarker panel is a useful test for detecting primary BC. BC-106 classifier integrated with cytology showing >95% negative predictive value, might be useful for decreasing the number of cystoscopies during surveillance.
Collapse
Affiliation(s)
- Lourdes Mengual
- Laboratory and Department of Urology, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Maria Frantzi
- Department of Biomarker Research, Mosaiques Diagnostics, Hannover, Germany.
| | - Marika Mokou
- Department of Biomarker Research, Mosaiques Diagnostics, Hannover, Germany
| | - Mercedes Ingelmo-Torres
- Laboratory and Department of Urology, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Michiel Vlaming
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Axel S Merseburger
- University Hospital Schleswig-Holstein, Campus Lübeck, Department of Urology, Lübeck, Germany
| | - Marie C Roesch
- University Hospital Schleswig-Holstein, Campus Lübeck, Department of Urology, Lübeck, Germany
| | - Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonio Alcaraz
- Laboratory and Department of Urology, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonia Vlahou
- Systems Biology Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Harald Mischak
- Department of Biomarker Research, Mosaiques Diagnostics, Hannover, Germany
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
6
|
Ahn JH, Kang CK, Kim EM, Kim AR, Kim A. Proteomics for Early Detection of Non-Muscle-Invasive Bladder Cancer: Clinically Useful Urine Protein Biomarkers. Life (Basel) 2022; 12:395. [PMID: 35330146 PMCID: PMC8950253 DOI: 10.3390/life12030395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Bladder cancer is the fourth most common cancer in men, and most cases are non-muscle-invasive. A high recurrence rate is a critical problem in non-muscle-invasive bladder cancer. The availability of few urine tests hinders the effective detection of superficial and small bladder tumors. Cystoscopy is the gold standard for diagnosis; however, it is associated with urinary tract infections, hematuria, and pain. Early detection is imperative, as intervention influences recurrence. Therefore, urinary biomarkers need to be developed to detect these bladder cancers. Recently, several protein candidates in the urine have been identified as biomarkers. In the present narrative review, the current status of the development of urinary protein biomarkers, including FDA-approved biomarkers, is summarized. Additionally, contemporary proteomic technologies, such as antibody-based methods, mass-spectrometry-based methods, and machine-learning-based diagnosis, are reported. Furthermore, new strategies for the rapid and correct profiling of potential biomarkers of bladder cancer in urine are introduced, along with their limitations. The advantages of urinary protein biomarkers and the development of several related technologies are highlighted in this review. Moreover, an in-depth understanding of the scientific background and available protocols in research and clinical applications of the surveillance of non-muscle bladder cancer is provided.
Collapse
Affiliation(s)
- Jae-Hak Ahn
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea;
| | - Chan-Koo Kang
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, Korea;
- School of Life Science, Handong Global University, Pohang 37554, Gyungbuk, Korea
| | - Eun-Mee Kim
- Department of Emergency Medical Technology, Korea Nazarene University, Cheonan 31172, Chungcheongnam-do, Korea;
| | - Ah-Ram Kim
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, Korea;
- School of Life Science, Handong Global University, Pohang 37554, Gyungbuk, Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea;
| |
Collapse
|
7
|
Bratu O, Marcu D, Anghel R, Spinu D, Iorga L, Balescu I, Bacalbasa N, Diaconu C, Savu C, Savu C, Cherciu A. Tumoral markers in bladder cancer (Review). Exp Ther Med 2021; 22:773. [PMID: 34055072 DOI: 10.3892/etm.2021.10205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/12/2021] [Indexed: 01/15/2023] Open
Abstract
Bladder tumors are frequently diagnosed urologic malignant diseases with an extremely high recurrence rate compared to other neoplastic tumors. Urothelial bladder carcinomas are mostly identified in their incipient form, as non-muscle invasive, but despite that, a third of them develop into aggressive recurrent disease. The diagnosis of bladder carcinoma at this moment is established using cytology and cystoscopy and is a great challenge for clinicians due to the lack of sensitivity. Urinary biomarkers could improve and enhance the diagnosis and screening techniques and determine a more accurate recurrence rate. However, bladder cancer is a heterogeneous disease and the existence of a single marker test with reduced cost is unlikely; thus, until then, the use of a panel of markers to obtain valuable information is inevitable even though suboptimal for use. To improve this deadlock, new biomarker panels should be identified and prepared to equalize the cost-efficiency balance. The present paper is a literature review concerning the most commonly used tumor markers in urinary bladder cancer as well as the most commonly encountered genetic modifications in such patients.
Collapse
Affiliation(s)
- Ovidiu Bratu
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania.,Department of Urology, Academy of Romanian Scientists, 020021 Bucharest, Romania
| | - Dragos Marcu
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania
| | - Radu Anghel
- Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania
| | - Dan Spinu
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania
| | - Lucian Iorga
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania
| | - Irina Balescu
- Department of Visceral Surgery, 'Ponderas' Academic Hospital, 021188 Bucharest, Romania
| | - Nicolae Bacalbasa
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 023991 Bucharest, Romania.,Department of Visceral Surgery, Center of Excellence in Translational Medicine, 'Fundeni' Clinical Institute, 022328 Bucharest, Romania.,Department of Obstetrics and Gynecology, 'I. Cantacuzino' Clinical Hospital, 030167 Bucharest, Romania
| | - Camelia Diaconu
- Department of Internal Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Cornel Savu
- Department of Thoracic Surgery, 'Marius Nasta' National Institute of Pneumophtisiology, 050159 Bucharest, Romania.,Department of Thoracic Surgery, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Carmen Savu
- Department of Anesthesiology, 'Fundeni' Clinical Institute, 022328 Bucharest, Romania
| | - Alexandru Cherciu
- Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania
| |
Collapse
|
8
|
Research Progress of Urine Biomarkers in the Diagnosis, Treatment, and Prognosis of Bladder Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33959906 DOI: 10.1007/978-3-030-63908-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bladder cancer (BC) is one of the most common tumor with high incidence. Relative to other cancers, BC has a high rate of recurrence, which results in increased mortality. As a result, early diagnosis and life-long monitoring are clinically significant for improving the long-term survival rate of BC patients. At present, the main methods of BC detection are cystoscopy and biopsy; however, these procedures can be invasive and expensive. This can lead to patient refusal and reluctance for monitoring. There are several BC biomarkers that have been approved by the FDA, but their sensitivity, specificity, and diagnostic accuracy are not ideal. More research is needed to identify suitable biomarkers that can be used for early detection, evaluation, and observation. There has been heavy research in the proteomics and genomics of BC and many potential biomarkers have been found. Although the advent of metabonomics came late, with the recent development of advanced analytical technology and bioinformatics, metabonomics has become a widely used diagnostic tool in clinical and biomedical research. It should be emphasized that despite progress in new biomarkers for BC diagnosis, there remains challenges and limitations in metabonomics research that affects its translation into clinical practice. In this chapter, the latest literature on BC biomarkers was reviewed.
Collapse
|
9
|
Chen H, Liu Y, Cao C, Xi H, Chen W, Zheng W, Dong X, Zheng S, Li L, Ma J, Gao Y, Shou J. CYR61 as a potential biomarker for the preoperative identification of muscle-invasive bladder cancers. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:761. [PMID: 34268374 PMCID: PMC8246191 DOI: 10.21037/atm-19-4511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/28/2021] [Indexed: 12/28/2022]
Abstract
Background The biological behaviors, clinical treatment, prognosis of non-muscle-invasive bladder cancers (NMIBCs) and muscle-invasive bladder cancers (MIBCs) are distinct. Accurate staging is pivotal in optimal therapy planning for bladder cancers (BCs). However, it is insufficient for urologists in preoperative determining whether the tumor has invaded within the muscularis propria through cystoscope and imaging methods (CT or MRI). Therefore, searching for ideal biomarkers from the tumor tissues and urine is important for identifying the MIBCs preoperatively. Methods Differentially expressed genes between NMIBCs and MIBCs were identified by microarray analysis and validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemical analysis. The correlation between cysteine-rich angiogenic inducer 61 (CYR61) expression and Kaplan-Meier test evaluated patients’ overall survival (OS). CYR61 protein levels were measured using enzyme-linked immunosorbent assay (ELISA) in preoperatively collected urine samples from BC patients. The receiver-operating characteristic (ROC) curve analyzed the diagnostic accuracy of uric CYR61. The siRNA mediated silencing of CYR61 in bladder carcinoma cells was performed using Lipofectamine 2000. Cell migration and invasion were assessed using wound healing and transwell assay, respectively. Results Differential gene expression analysis using microarray between 14 MIBCs and 16 NMIBCs human tumor samples revealed a significant increase (P<0.001) in the expression of CYR61 in MIBCs compared with NMIBCs. Higher expression of CYR61 in MIBCs was found in additional 54 tumor samples using qRT-PCR. Therefore, the overexpression of CYR61 in MIBCs could be used as a potential biomarker to distinguish between MIBCs and NMIBCs. ELISA detected elevated levels of CYR61 in the urine samples of MIBC patients (average 2.5-fold) compared with NMIBCs, with 72.7% sensitivity and 86.0% specificity to distinguish MIBCs from NMIBCs. Wound healing and transwell assays using CYR61-silenced carcinoma cells indicated the role of CYR61 in cell migration and invasion. Conclusions CYR61 expression is higher in MIBCs compared with NMIBCs and can serve as a promising biomarker for the preoperative diagnosis of MIBCs with prognostic value; however, multicentric prospective validation is essential for the further evaluation of CYR61.
Collapse
Affiliation(s)
- Huang Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuanzhen Cao
- Department of Urology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Xi
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenting Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zheng
- Department of Urology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Dong
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Zheng
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Li
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhui Ma
- Department of Urology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanning Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianzhong Shou
- Department of Urology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Chen CJ, Chou CY, Shu KH, Chen HC, Wang MC, Chang CC, Hsu BG, Wu MS, Yang YL, Liao WL, Yang C, Hsiao YT, Huang CC. Discovery of Novel Protein Biomarkers in Urine for Diagnosis of Urothelial Cancer Using iTRAQ Proteomics. J Proteome Res 2021; 20:2953-2963. [PMID: 33780252 DOI: 10.1021/acs.jproteome.1c00164] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Urothelial carcinoma (UC) is the ninth most prevalent malignancy worldwide. Noninvasive and efficient biomarkers with high accuracy are imperative for the surveillance and diagnosis of UC. CKD patients were enrolled as a control group in this study for the discovery of highly specific urinary protein markers of UC. An iTRAQ-labeled quantitative proteomic approach was used to discover novel potential markers. These markers were further validated with 501 samples by ELISA assay, and their diagnostic accuracies were compared to those of other reported UC markers. BRDT, CYBP, GARS, and HDGF were identified as novel urinary UC biomarkers with a high discrimination ability in a population comprising CKD and healthy subjects. The diagnostic values of the four novel UC markers were better than that of a panel of well-known or FDA-approved urinary protein markers CYFR21.1, Midkine, and NUMA1. Three of our discovered markers (BRDT, HDGF, GARS) and one well-known marker (CYFR21.1) were finally selected and combined as a marker panel having AUC values of 0.962 (95% CI, 0.94-0.98) and 0.860 (95% CI, 0.83-0.89) for the discrimination between UC and normal groups and UC and control (healthy + CKD) groups, respectively.
Collapse
Affiliation(s)
- Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404333, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Che-Yi Chou
- Department of Internal Medicine, Asia University Hospital, Taichung 41354, Taiwan.,Department of Post-baccalaureate Veterinary Medicine, Asia University, Taichung, Taiwan.,Division of Nephrology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Kuo-Hsiung Shu
- Division of Nephrology, Lin Shin Hospital, Taichung 40867, Taiwan
| | - Hung-Chun Chen
- Division of Nephrology, Kaohsiung Medical University and Hospitals, Kaohsiung 80708, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Cheng Kung University Hospital, Tainan 70403, Taiwan
| | - Chia-Chu Chang
- Department of Internal Medicine, Kuang Tien General Hospital, Taichung 43303, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien 43303, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Taipei Medical University and Hospitals, Taipei 110, Taiwan
| | - Yuan-Lung Yang
- Division of Urology, St. Mary's Hospital, Yilan 26546, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404333, Taiwan.,Center for Personalized Medicine, China Medical University Hospital, Taichung 404332, Taiwan
| | - Chieh Yang
- Division of Nephrology and the Kidney Institute, Department of Internal Medicine, China Medical University and Hospitals, Taichung 404332, Taiwan
| | - Yu-Tien Hsiao
- Division of Nephrology and the Kidney Institute, Department of Internal Medicine, China Medical University and Hospitals, Taichung 404332, Taiwan
| | - Chiu-Ching Huang
- Division of Nephrology and the Kidney Institute, Department of Internal Medicine, China Medical University and Hospitals, Taichung 404332, Taiwan
| |
Collapse
|
11
|
Kim J, Jin P, Yang W, Kim WJ. Proteomic profiling of bladder cancer for precision medicine in the clinical setting: A review for the busy urologist. Investig Clin Urol 2020; 61:539-554. [PMID: 33135400 PMCID: PMC7606121 DOI: 10.4111/icu.20200317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 01/03/2023] Open
Abstract
At present, proteomic methods have successfully identified potential biomarkers of urological malignancies, such as prostate cancer (PC), bladder cancer (BC), and renal cell carcinoma (RCC), reflecting different numbers of key cellular processes, including extracellular environment modification, invasion and metastasis, chemotaxis, differentiation, metabolite transport, and apoptosis. The potential application of proteomics in the detection of clinical markers of urological malignancies can help improve patient assessment through early cancer detection, prognosis, and treatment response prediction. A variety of proteomic studies have already been carried out to find prognostic BC biomarkers, and a large number of potential biomarkers have been reported. It is worth noting that proteomics research has not been applied to the study of predictive markers; this may be due to the incompatibility between the number of measured variables and the available sample size, which has become particularly evident in the study of therapeutic response. On the contrary, prognostic correlation is more common, which is also reflected in existing research. We are now entering an era of clinical proteomics. Driven by proteomic-based workflows, computing tools, and the applicability of cross-correlation of proteomic data, it is now feasible to use proteomic analysis to support personalized medicine. In this paper, we will summarize the current emerging technologies for advanced discovery, targeted proteomics, and proteomic applications in BC, particularly in discovery of human-based biomarkers.
Collapse
Affiliation(s)
- Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Peng Jin
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Shengjing Hospital of China Medical University , Shenyang, China
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Wun Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
- Institute of UroTech, Cheongju, Korea.
| |
Collapse
|
12
|
Wilson JL, Antoniassi MP, Lopes PI, Azevedo H. Proteomic research and diagnosis in bladder cancer: state of the art review. Int Braz J Urol 2020; 47:503-514. [PMID: 32459456 PMCID: PMC7993960 DOI: 10.1590/s1677-5538.ibju.2021.99.02] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose: Proteomic biomarkers have been emerging as alternative methods to the gold standard procedures of cystoscopy and urine cytology in the diagnosis and surveillance of bladder cancer (BC). This review aims to update the state of the art of proteomics research and diagnosis in BC. Materials and Methods: We reviewed the current literature related to BC research on urinary, tissue, blood and cell line proteomics, using the Pubmed database. Findings: Two urinary protein biomarkers are FDA-approved (NMP22® and BTA® tests), only if performed along with cystoscopy for surveillance after initial diagnosis, but not in the primary diagnostic setting due to high false-positive rates in case of infections, stones and hematuria. There are a great number of non-FDA approved proteins being studied, with good preliminary results; panels of proteins seem valuable tools to be refined in ongoing trials. Blood proteins are a bigger challenge, because of the complexity of the serum protein profile and the scarcity of blood proteomic studies in BC. Previous studies with the BC tissue proteome do not correlate well with the urinary proteome, likely due to the tumor heterogeneity. Cell line proteomic research helps in the understanding of basic mechanisms that drive BC development and progression; the main difficulty is culturing low-grade tumors in vitro, which represents the majority of BC tumors in clinical practice. Conclusion: Protein biomarkers have promising value in the diagnosis, surveillance and prognostic of BC. Urine is the most appropriate body fluid for biomarker research in BC due to its easiness of sampling, stability and enrichment of shed and secreted tumor-specific proteins. Panels of biomarkers may exhibit higher sensitivity than single proteins in the diagnosis of BC at larger populations due to clinical and tumor heterogeneity. Prospective clinical trials are warranted to validate the relevance of proteomic data in the clinical management of BC.
Collapse
Affiliation(s)
- Jorge Luis Wilson
- Departamento de Cirurgia, Divisão de Urologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brasil
| | - Mariana Pereira Antoniassi
- Departamento de Cirurgia, Divisão de Urologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brasil
| | - Paula Intasqui Lopes
- Departamento de Cirurgia, Divisão de Urologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brasil
| | - Hatylas Azevedo
- Departamento de Cirurgia, Divisão de Urologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP, Brasil
| |
Collapse
|
13
|
Voigtländer T, Metzger J, Husi H, Kirstein MM, Pejchinovski M, Latosinska A, Frantzi M, Mullen W, Book T, Mischak H, Manns MP. Bile and urine peptide marker profiles: access keys to molecular pathways and biological processes in cholangiocarcinoma. J Biomed Sci 2020; 27:13. [PMID: 31900160 PMCID: PMC6941325 DOI: 10.1186/s12929-019-0599-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Background Detection of cholangiocarcinoma (CCA) remains a diagnostic challenge. We established diagnostic peptide biomarkers in bile and urine based on capillary electrophoresis coupled to mass spectrometry (CE-MS) to detect both local and systemic changes during CCA progression. In a prospective cohort study we recently demonstrated that combined bile and urine proteome analysis could further improve diagnostic accuracy of CCA diagnosis in patients with unknown biliary strictures. As a continuation of these investigations, the aim of the present study was to investigate the pathophysiological mechanisms behind the molecular determinants reflected by bile and urine peptide biomarkers. Methods Protease mapping and gene ontology cluster analysis were performed for the previously defined CE-MS based biomarkers in bile and urine. For that purpose, bile and urine peptide profiles (from samples both collected at the date of endoscopy) were investigated from a representative cohort of patients with benign (n = 76) or CCA-associated (n = 52) biliary strictures (verified during clinical follow-up). This was supplemented with a literature search for the association of the individual biomarkers included in the proteomic patterns with CCA or cancer progression. Results For most of the peptide markers, association to CCA has been described in literature. Protease mapping revealed ADAMTS4 activity in cleavage of both bile and urine CCA peptide biomarkers. Furthermore, increased chymase activity in bile points to mast cell activation at the tumor site. Gene ontology cluster analysis indicates cellular response to chemical stimuli and stress response as local and extracellular matrix reorganization by tissue destruction and repair as systemic events. The analysis further supports that the mapped proteases are drivers of local and systemic events. Conclusions The study supports connection of the CCA-associated peptide biomarkers to the molecular pathophysiology and indicates an involvement in epithelial-to-mesenchymal transition, generation of cancer-associated fibroblasts and activation of residual immune cells. Proteases, extracellular matrix components, inflammatory cytokines, proangiogenic, growth and vasoactive factors released from the tumor microenvironment are drivers of systemic early events during CCA progression.
Collapse
Affiliation(s)
- Torsten Voigtländer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jochen Metzger
- Mosaiques diagnostics GmbH, Rotenburger Straße 20, 30659, Hannover, Germany.
| | - Holger Husi
- Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Inverness, UK
| | - Martha M Kirstein
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | - Maria Frantzi
- Mosaiques diagnostics GmbH, Rotenburger Straße 20, 30659, Hannover, Germany
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, Glasgow, UK
| | - Thorsten Book
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Harald Mischak
- Mosaiques diagnostics GmbH, Rotenburger Straße 20, 30659, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Lopez-Beltran A, Cheng L, Gevaert T, Blanca A, Cimadamore A, Santoni M, Massari F, Scarpelli M, Raspollini MR, Montironi R. Current and emerging bladder cancer biomarkers with an emphasis on urine biomarkers. Expert Rev Mol Diagn 2019; 20:231-243. [DOI: 10.1080/14737159.2020.1699791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, Cordoba University, Cordoba, Spain
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas Gevaert
- Laboratory of Experimental Urology, Organ Systems, KU Leuven, Leuven, Belgium
- Department of Pathology, AZ Klina, Brasschaat, Belgium
| | - Ana Blanca
- Unit of Experimental Urology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Alessia Cimadamore
- Section of Pathological Anatomy, United Hospital, School of Medicine, Polytechnic University of the Marche Region, Ancona, Italy
| | | | | | - Marina Scarpelli
- Section of Pathological Anatomy, United Hospital, School of Medicine, Polytechnic University of the Marche Region, Ancona, Italy
| | - Maria R. Raspollini
- Histopathology and Molecular Diagnostics, University Hospital Careggi, Florence, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, United Hospital, School of Medicine, Polytechnic University of the Marche Region, Ancona, Italy
| |
Collapse
|
15
|
Zhu CZ, Ting HN, Ng KH, Ong TA. A review on the accuracy of bladder cancer detection methods. J Cancer 2019; 10:4038-4044. [PMID: 31417648 PMCID: PMC6692607 DOI: 10.7150/jca.28989] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 04/28/2019] [Indexed: 01/01/2023] Open
Abstract
Background and purpose: Bladder cancer is the most common malignant tumour in the urinary system, with a high incidence and recurrence rate. While the incidence of bladder cancer has been rising in recent years, the prevalence of bladder carcinoma is showing an increasing tendency in the younger age group. There are several methods to detect bladder cancer, but different methods have varying degrees of accuracy which intrinsically depends on the method's sensitivity and specificity. Our aim was to comprehensively summarize the current detection methods for bladder cancer based on the available literature, and at the same time, to find the best combination of different effective methods which can produce a high degree of accuracy in detecting the presence of cancerous cells in the bladder. Materials and Methods: We used key word retrieval method for searching related references in English that had been indexed in PubMed and Medline. Results and Discussion: This paper discussed the different detection methods and their sensitivities/specificities as well as the advantages and disadvantages. We summarized the best identified cancer cell detection methods with higher sensitivity/specificity. Conclusion: The results of this review can positively help to identify accurate methods for detecting bladder cancer and highlight areas to be further improved for future research work.
Collapse
Affiliation(s)
- Chao-Zhe Zhu
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Hua-Nong Ting
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwan-Hoong Ng
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Teng-Aik Ong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Krochmal M, van Kessel KEM, Zwarthoff EC, Belczacka I, Pejchinovski M, Vlahou A, Mischak H, Frantzi M. Urinary peptide panel for prognostic assessment of bladder cancer relapse. Sci Rep 2019; 9:7635. [PMID: 31114012 PMCID: PMC6529475 DOI: 10.1038/s41598-019-44129-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
Non-invasive tools stratifying bladder cancer (BC) patients according to the risk of relapse are urgently needed to guide clinical intervention. As a follow-up to the previously published study on CE-MS-based urinary biomarkers for BC detection and recurrence monitoring, we expanded the investigation towards BC patients with longitudinal data. Profiling datasets of BC patients with follow-up information regarding the relapse status were investigated. The peptidomics dataset (n = 98) was split into training and test set. Cox regression was utilized for feature selection in the training set. Investigation of the entire training set at the single peptide level revealed 36 peptides being strong independent prognostic markers of disease relapse. Those features were further integrated into a Random Forest-based model evaluating the risk of relapse for BC patients. Performance of the model was assessed in the test cohort, showing high significance in BC relapse prognosis [HR = 5.76, p-value = 0.0001, c-index = 0.64]. Urinary peptide profiles integrated into a prognostic model allow for quantitative risk assessment of BC relapse highlighting the need for its incorporation in prospective studies to establish its value in the clinical management of BC.
Collapse
Affiliation(s)
| | - Kim E M van Kessel
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Urology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ellen C Zwarthoff
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | | | | |
Collapse
|
17
|
Latosinska A, Siwy J, Mischak H, Frantzi M. Peptidomics and proteomics based on CE‐MS as a robust tool in clinical application: The past, the present, and the future. Electrophoresis 2019; 40:2294-2308. [DOI: 10.1002/elps.201900091] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/23/2022]
|
18
|
Santoni G, Morelli MB, Amantini C, Battelli N. Urinary Markers in Bladder Cancer: An Update. Front Oncol 2018; 8:362. [PMID: 30245975 PMCID: PMC6137202 DOI: 10.3389/fonc.2018.00362] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is ones of the most common cancer worldwide. It is classified in muscle invasive (MIBC) and muscle non-invasive (NMIBC) BC. NMIBCs frequently recur and progress to MIBCs with a reduced survival rate and frequent distant metastasis. BC detection require unpleasant and expensive cystoscopy and biopsy, which are often accompanied by several adverse effects. Thus, there is an urgent need to develop novel diagnostic methods for initial detection and surveillance in both MIBCs and NMIBCs. Multiple urine-based tests approved by FDA for BC detection and surveillance are commercially available. However, at present, sensitivity, specificity and diagnostic accuracy of these urine-based assays are still suboptimal and, in the attend to improve them, novel molecular markers as well as multiple-assays must to be translated in clinic. Now there are growing evidence toward the use of minimally invasive “liquid biopsy” to identify biomarkers in urologic malignancy. DNA- and RNA-based markers in body fluids such as blood and urine are promising potential markers in diagnostic, prognostic, predictive and monitoring urological malignancies. Thus, circulating cell-free DNA, DNA methylation and mutations, circulating tumor cells, miRNA, IncRNA and mRNAs, cell-free proteins and peptides, and exosomes have been assessed in urine specimens. However, proteomic and genomic data must to be validated in well-designed multicenter clinical studies, before to be employed in clinic oncology.
Collapse
Affiliation(s)
- Giorgio Santoni
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Maria B Morelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy.,Immunopathology Laboratory, School of Biosciences, Biotechnology and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- Immunopathology Laboratory, School of Biosciences, Biotechnology and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | |
Collapse
|
19
|
Latosinska A, Frantzi M, Merseburger AS, Mischak H. Promise and Implementation of Proteomic Prostate Cancer Biomarkers. Diagnostics (Basel) 2018; 8:diagnostics8030057. [PMID: 30158500 PMCID: PMC6174350 DOI: 10.3390/diagnostics8030057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is one of the most commonly diagnosed malignancy and the fifth leading cause of cancer mortality in men. Despite the broad use of prostate-specific antigen test that resulted in an increase in number of diagnosed cases, disease management needs to be improved. Proteomic biomarkers alone and or in combination with clinical and pathological risk calculators are expected to improve on decreasing the unnecessary biopsies, stratify low risk patients, and predict response to treatment. To this end, significant efforts have been undertaken to identify novel biomarkers that can accurately discriminate between indolent and aggressive cancer forms and indicate those men at high risk for developing prostate cancer that require immediate treatment. In the era of “big data” and “personalized medicine” proteomics-based biomarkers hold great promise to provide clinically applicable tools, as proteins regulate all biological functions, and integrate genomic information with the environmental impact. In this review article, we aim to provide a critical assessment of the current proteomics-based biomarkers for prostate cancer and their actual clinical applicability. For that purpose, a systematic review of the literature published within the last 10 years was performed using the Web of Science Database. We specifically discuss the potential and prospects of use for diagnostic, prognostic and predictive proteomics-based biomarkers, including both body fluid- and tissue-based markers.
Collapse
Affiliation(s)
| | - Maria Frantzi
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany.
| | - Axel S Merseburger
- Department of Urology, University Clinic of Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany.
| | | |
Collapse
|
20
|
Lodewijk I, Dueñas M, Rubio C, Munera-Maravilla E, Segovia C, Bernardini A, Teijeira A, Paramio JM, Suárez-Cabrera C. Liquid Biopsy Biomarkers in Bladder Cancer: A Current Need for Patient Diagnosis and Monitoring. Int J Mol Sci 2018; 19:E2514. [PMID: 30149597 PMCID: PMC6163729 DOI: 10.3390/ijms19092514] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023] Open
Abstract
Bladder Cancer (BC) represents a clinical and social challenge due to its high incidence and recurrence rates, as well as the limited advances in effective disease management. Currently, a combination of cytology and cystoscopy is the routinely used methodology for diagnosis, prognosis and disease surveillance. However, both the poor sensitivity of cytology tests as well as the high invasiveness and big variation in tumour stage and grade interpretation using cystoscopy, emphasizes the urgent need for improvements in BC clinical guidance. Liquid biopsy represents a new non-invasive approach that has been extensively studied over the last decade and holds great promise. Even though its clinical use is still compromised, multiple studies have recently focused on the potential application of biomarkers in liquid biopsies for BC, including circulating tumour cells and DNA, RNAs, proteins and peptides, metabolites and extracellular vesicles. In this review, we summarize the present knowledge on the different types of biomarkers, their potential use in liquid biopsy and clinical applications in BC.
Collapse
Affiliation(s)
- Iris Lodewijk
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| | - Marta Dueñas
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Carolina Rubio
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Ester Munera-Maravilla
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| | - Cristina Segovia
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Alejandra Bernardini
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Alicia Teijeira
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
| | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Cristian Suárez-Cabrera
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain.
- Biomedical Research Institute I+12, University Hospital "12 de Octubre", Av Córdoba s/n, 28041 Madrid, Spain.
| |
Collapse
|
21
|
Masuda N, Ogawa O, Park M, Liu AY, Goodison S, Dai Y, Kozai L, Furuya H, Lotan Y, Rosser CJ, Kobayashi T. Meta-analysis of a 10-plex urine-based biomarker assay for the detection of bladder cancer. Oncotarget 2018; 9:7101-7111. [PMID: 29467953 PMCID: PMC5805539 DOI: 10.18632/oncotarget.23872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/27/2017] [Indexed: 01/11/2023] Open
Abstract
A 10-plex urine-based bladder cancer (BCa) diagnostic signature has the potential to non-invasively predict the presence of BCa in at-risk patients, as reported in various case-control studies. The present meta-analysis was performed to re-evaluate and demonstrate the robustness and consistency of the diagnostic utility of the 10-plex urine-based diagnostic assay. We re-analyzed primary data collected in five previously published case-control studies on the 10-plex diagnostic assay. Studies reported the sensitivity and specificity of ten urinary protein biomarkers for the detection of BCa, including interleukin 8, matrix metalloproteinases 9 and 10, angiogenin, apolipoprotein E, syndecan 1, alpha-1 antitrypsin, plasminogen activator inhibitor-1, carbonic anhydrase 9, and vascular endothelial growth factor A. Data were extracted and reviewed independently by two investigators. Log odds ratios (ORs) were calculated to determine how strongly the 10-plex biomarker panel and individual biomarkers are associated with the presence of BCa. Data pooled from 1,173 patients were analyzed. The log OR for each biomarker was improved by 1.5 or greater with smaller 95% CI in our meta-analysis of the overall cohort compared with each analysis of an individual cohort. The combination of the ten biomarkers showed a higher log OR (log OR: 3.46, 95% CI: 2.60–4.31) than did any single biomarker irrespective of histological grade or disease stage of tumors. We concluded that the 10-plex BCa-associated diagnostic signature demonstrated a higher potential to identify BCa when compared to any single biomarker. Our results justify further advancement of the 10-plex protein-based diagnostic signature toward clinical application.
Collapse
Affiliation(s)
- Norihiko Masuda
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Meyeon Park
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alvin Y Liu
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Steve Goodison
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA.,Nonagen Bioscience Corporation, Jacksonville, FL 32216, USA
| | - Yunfeng Dai
- Department of Biostatistics, The University of Florida, Gainesville, FL 32611, USA
| | - Landon Kozai
- Clinical & Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Hideki Furuya
- Clinical & Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Yair Lotan
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Charles J Rosser
- Clinical & Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
22
|
Jiang X, Du L, Duan W, Wang R, Yan K, Wang L, Li J, Zheng G, Zhang X, Yang Y, Wang C. Serum microRNA expression signatures as novel noninvasive biomarkers for prediction and prognosis of muscle-invasive bladder cancer. Oncotarget 2017; 7:36733-36742. [PMID: 27167342 PMCID: PMC5095035 DOI: 10.18632/oncotarget.9166] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/16/2016] [Indexed: 12/21/2022] Open
Abstract
Noninvasive biomarkers for predicting the risk of muscle-invasive bladder cancer (MIBC) may expedite appropriate therapy and reduce morbidity and cost. Genome-wide miRNA analysis by Miseq sequencing followed by two phases of reverse transcription quantitative real-time PCR (RT-qPCR) assays were performed on serum from 207 MIBC patients, 285 nonmuscle-invasive bladder cancer (NMIBC) patients and 193 controls. A four-miRNA panel (miR-422a-3p, miR-486-3p, miR-103a-3p and miR-27a-3p) was developed for MIBC prediction with an area under the receiver operating characteristic curve (AUC) of 0.894 (95% CI, 0.846-0.931) for training set. Prospective evaluation of the miRNA panel revealed an AUC of 0.880 (95% CI, 0.834 to 0.917) in validation set, which was significantly higher than those of grade and urine cytology (both p < 0.05). Moreover, Kaplan-Meier analysis showed that MIBC patients with low miR-486-3p and miR-103a-3p levels had worse overall survival (p = 0.002 and p = 0.034, respectively). Cox analysis indicated miR-486-3p and miR-103a-3p were independently associated with overall survival of MIBC (p = 0.042 and p = 0.021, respectively). In conclusion, serum miRNA signatures might have considerable clinical values in predicting and providing prognostic information for MIBC.
Collapse
Affiliation(s)
- Xiumei Jiang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Lutao Du
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Weili Duan
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Rui Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Keqiang Yan
- Department of Urology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Lili Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Juan Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Yongmei Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, 250012, Shandong Province, China
| |
Collapse
|
23
|
Latosinska A, Frantzi M, Vlahou A, Merseburger AS, Mischak H. Clinical Proteomics for Precision Medicine: The Bladder Cancer Case. Proteomics Clin Appl 2017; 12. [DOI: 10.1002/prca.201700074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/10/2017] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Antonia Vlahou
- Biotechnology Division; Biomedical Research Foundation; Academy of Athens; Athens Greece
| | - Axel S. Merseburger
- Department of Urology; Campus Lübeck; University Hospital Schleswig-Holstein; Lübeck Germany
| | - Harald Mischak
- Mosaiques Diagnostics GmbH; Hannover Germany
- BHF Glasgow Cardiovascular Research Centre; University of Glasgow; Glasgow UK
| |
Collapse
|
24
|
Heitzer E, Perakis S, Geigl JB, Speicher MR. The potential of liquid biopsies for the early detection of cancer. NPJ Precis Oncol 2017; 1:36. [PMID: 29872715 PMCID: PMC5871864 DOI: 10.1038/s41698-017-0039-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Precision medicine refers to the choosing of targeted therapies based on genetic data. Due to the increasing availability of data from large-scale tumor genome sequencing projects, genome-driven oncology may have enormous potential to change the clinical management of patients with cancer. To this end, components of tumors, which are shed into the circulation, i.e., circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), or extracellular vesicles, are increasingly being used for monitoring tumor genomes. A growing number of publications have documented that these "liquid biopsies" are informative regarding response to given therapies, are capable of detecting relapse with lead time compared to standard measures, and reveal mechanisms of resistance. However, the majority of published studies relate to advanced tumor stages and the use of liquid biopsies for detection of very early malignant disease stages is less well documented. In early disease stages, strategies for analysis are in principle relatively similar to advanced stages. However, at these early stages, several factors pose particular difficulties and challenges, including the lower frequency and volume of aberrations, potentially confounding phenomena such as clonal expansions of non-tumorous tissues or the accumulation of cancer-associated mutations with age, and the incomplete insight into driver alterations. Here we discuss biology, technical complexities and clinical significance for early cancer detection and their impact on precision oncology.
Collapse
Affiliation(s)
- Ellen Heitzer
- Institute of Human Genetics, Medical University of Graz, Neue Stiftingtalstraße 6, A-8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Samantha Perakis
- Institute of Human Genetics, Medical University of Graz, Neue Stiftingtalstraße 6, A-8010 Graz, Austria
| | - Jochen B. Geigl
- Institute of Human Genetics, Medical University of Graz, Neue Stiftingtalstraße 6, A-8010 Graz, Austria
| | - Michael R. Speicher
- Institute of Human Genetics, Medical University of Graz, Neue Stiftingtalstraße 6, A-8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
25
|
Proteomics analysis of bladder cancer invasion: Targeting EIF3D for therapeutic intervention. Oncotarget 2017; 8:69435-69455. [PMID: 29050215 PMCID: PMC5642490 DOI: 10.18632/oncotarget.17279] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023] Open
Abstract
Patients with advanced bladder cancer have poor outcomes, indicating a need for more efficient therapeutic approaches. This study characterizes proteomic changes underlying bladder cancer invasion aiming for the better understanding of disease pathophysiology and identification of drug targets. High resolution liquid chromatography coupled to tandem mass spectrometry analysis of tissue specimens from patients with non-muscle invasive (NMIBC, stage pTa) and muscle invasive bladder cancer (MIBC, stages pT2+) was conducted. Comparative analysis identified 144 differentially expressed proteins between analyzed groups. These included proteins previously associated with bladder cancer and also additional novel such as PGRMC1, FUCA1, BROX and PSMD12, which were further confirmed by immunohistochemistry. Pathway and interactome analysis predicted strong activation in muscle invasive bladder cancer of pathways associated with protein synthesis e.g. eIF2 and mTOR signaling. Knock-down of eukaryotic translation initiation factor 3 subunit D (EIF3D) (overexpressed in muscle invasive disease) in metastatic T24M bladder cancer cells inhibited cell proliferation, migration, and colony formation in vitro and decreased tumor growth in xenograft models. By contrast, knocking down GTP-binding protein Rheb (which is upstream of EIF3D) recapitulated the effects of EIF3D knockdown in vitro, but not in vivo. Collectively, this study represents a comprehensive analysis of NMIBC and MIBC providing a resource for future studies. The results highlight EIF3D as a potential therapeutic target.
Collapse
|
26
|
Di Meo A, Bartlett J, Cheng Y, Pasic MD, Yousef GM. Liquid biopsy: a step forward towards precision medicine in urologic malignancies. Mol Cancer 2017; 16:80. [PMID: 28410618 PMCID: PMC5391592 DOI: 10.1186/s12943-017-0644-5] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
There is a growing trend towards exploring the use of a minimally invasive "liquid biopsy" to identify biomarkers in a number of cancers, including urologic malignancies. Multiple aspects can be assessed in circulating cell-free DNA, including cell-free DNA levels, integrity, methylation and mutations. Other prospective liquid biopsy markers include circulating tumor cells, circulating RNAs (miRNA, lncRNAs and mRNAs), cell-free proteins, peptides and exosomes have also emerged as non-invasive cancer biomarkers. These circulating molecules can be detected in various biological fluids, including blood, urine, saliva and seminal plasma. Liquid biopsies hold great promise for personalized medicine due to their ability to provide multiple non-invasive global snapshots of the primary and metastatic tumors. Molecular profiling of circulating molecules has been a stepping-stone to the successful introduction of several non-invasive multi-marker tests into the clinic. In this review, we provide an overview of the current state of cell-free DNA-based kidney, prostate and bladder cancer biomarker research and discuss the potential utility other circulating molecules. We will also discuss the challenges and limitations facing non-invasive cancer biomarker discovery and the benefits of this growing area of translational research.
Collapse
Affiliation(s)
- Ashley Di Meo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Jenni Bartlett
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Maria D Pasic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine, St. Joseph's Health Centre, Toronto, ON, Canada
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
27
|
Zhang H, Fan Y, Xia L, Gao C, Tong X, Wang H, Sun L, Ji T, Jin M, Gu B, Fan B. The impact of advanced proteomics in the search for markers and therapeutic targets of bladder cancer. Tumour Biol 2017; 39:1010428317691183. [PMID: 28345451 DOI: 10.1177/1010428317691183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer is the most common cancer of the urinary tract and can be avoided through proper surveillance and monitoring. Several genetic factors are known to contribute to the progression of bladder cancer, many of which produce molecules that serve as cancer biomarkers. Blood, urine, and tissue are commonly analyzed for the presence of biomarkers, which can be derived from either the nucleus or the mitochondria. Recent advances in proteomics have facilitated the high-throughput profiling of data generated from bladder cancer-related proteins or peptides in parallel with high sensitivity and specificity, providing a wealth of information for biomarker discovery and validation. However, the transmission of screening results from one laboratory to another remains the main disadvantage of these methods, a fact that emphasizes the need for consistent and standardized procedures as suggested by the Human Proteome Organization. This review summarizes the latest discoveries and progress of biomarker identification for the early diagnosis, projected prognosis, and therapeutic response of bladder cancer, informs the readers of the current status of proteomic-based biomarker findings, and suggests avenues for future work.
Collapse
Affiliation(s)
- Hongshuo Zhang
- 1 Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, P.R. China
| | - Yue Fan
- 2 Department of Propaganda, Jinzhou Medical University, Jinzhou, P.R. China
| | - Lingling Xia
- 3 Graduate School, Guangzhou Medical University, Guangzhou, P.R. China.,4 Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, P.R. China
| | - Chunhui Gao
- 5 Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Xin Tong
- 6 Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, P.R. China
| | - Hanfu Wang
- 7 Medical Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, P.R. China
| | - Lili Sun
- 8 Department of Ophthalmology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, P.R. China
| | - Tuo Ji
- 9 Department of Hospital Management, Jinzhou Medical University, Jinzhou, P.R. China
| | - Mingyu Jin
- 10 Graduate School, Dalian Medical University, Dalian, P.R. China
| | - Bing Gu
- 11 Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Bo Fan
- 12 Department of Urology, Second Affiliated Hospital, Dalian Medical University, Dalian, P.R. China
| |
Collapse
|
28
|
Duriez E, Masselon CD, Mesmin C, Court M, Demeure K, Allory Y, Malats N, Matondo M, Radvanyi F, Garin J, Domon B. Large-Scale SRM Screen of Urothelial Bladder Cancer Candidate Biomarkers in Urine. J Proteome Res 2017; 16:1617-1631. [PMID: 28287737 DOI: 10.1021/acs.jproteome.6b00979] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Urothelial bladder cancer is a condition associated with high recurrence and substantial morbidity and mortality. Noninvasive urinary tests that would detect bladder cancer and tumor recurrence are required to significantly improve patient care. Over the past decade, numerous bladder cancer candidate biomarkers have been identified in the context of extensive proteomics or transcriptomics studies. To translate these findings in clinically useful biomarkers, the systematic evaluation of these candidates remains the bottleneck. Such evaluation involves large-scale quantitative LC-SRM (liquid chromatography-selected reaction monitoring) measurements, targeting hundreds of signature peptides by monitoring thousands of transitions in a single analysis. The design of highly multiplexed SRM analyses is driven by several factors: throughput, robustness, selectivity and sensitivity. Because of the complexity of the samples to be analyzed, some measurements (transitions) can be interfered by coeluting isobaric species resulting in biased or inconsistent estimated peptide/protein levels. Thus the assessment of the quality of SRM data is critical to allow flagging these inconsistent data. We describe an efficient and robust method to process large SRM data sets, including the processing of the raw data, the detection of low-quality measurements, the normalization of the signals for each protein, and the estimation of protein levels. Using this methodology, a variety of proteins previously associated with bladder cancer have been assessed through the analysis of urine samples from a large cohort of cancer patients and corresponding controls in an effort to establish a priority list of most promising candidates to guide subsequent clinical validation studies.
Collapse
Affiliation(s)
- Elodie Duriez
- Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health , 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Christophe D Masselon
- Univ. Grenoble Alpes , BIG-BGE, F-38000 Grenoble, France.,CEA , BIG-BGE, F-38000 Grenoble, France.,INSERM , BGE, F-38000 Grenoble, France
| | - Cédric Mesmin
- Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health , 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Magali Court
- Univ. Grenoble Alpes , BIG-BGE, F-38000 Grenoble, France.,CEA , BIG-BGE, F-38000 Grenoble, France.,INSERM , BGE, F-38000 Grenoble, France
| | - Kevin Demeure
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH) , Luxembourg L-1526, Luxembourg
| | | | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO) , Madrid 28029, Spain
| | - Mariette Matondo
- Department of Biology, Institute of Molecular Systems Biology, ETHZ , Zürich 8093, Switzerland
| | - François Radvanyi
- Institut Curie , Centre de Recherche, Paris 75005, France.,CNRS, UMR144, Equipe Oncologie Moléculaire , Paris 75248, France
| | - Jérôme Garin
- Univ. Grenoble Alpes , BIG-BGE, F-38000 Grenoble, France.,CEA , BIG-BGE, F-38000 Grenoble, France.,INSERM , BGE, F-38000 Grenoble, France
| | - Bruno Domon
- Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health , 1 A-B rue Thomas Edison, L-1445 Strassen, Luxembourg
| |
Collapse
|
29
|
Abstract
Research efforts targeting the identification of bladder cancer biomarkers have been extensive during the past decade. Investigations have been performed at the genome, transcriptome, proteome, and metabolome levels and outputs have started appearing including the sketching of disease molecular subtypes. Proteins are directly linked to cell phenotype hence they accumulate special interest as both biomarkers and therapeutic targets. Multiple technical challenges exist, of the main, being the protein concentration vast dynamic range and presence of proteins in modified forms. The scope of this review is to summarize the contribution of proteomics research in this quest of bladder cancer biomarkers. To obtain an unbiased and comprehensive overview, the scientific literature was searched for manuscripts describing proteomic studies on urothelial cancer from the last ten years and those including independent verification studies in urine, tissue and blood are briefly presented. General observations include: a) in most cases, suboptimal experimental design including healthy controls in biomarker discovery and frequently biomarker verification, is followed; b) variability in protein findings between studies can be observed, to some extent reflecting complexity of experimental approaches and proteome itself; c) consistently reported biomarkers include mainly plasma proteins and d) compilation of protein markers into diagnostic panels appears the most promising way forward. Two main avenues of research can now be foreseen: targeting integration of the existing disparate data with proteomic findings being placed in the context of existing knowledge on bladder cancer subtypes and in parallel, accumulation of clinical samples to support proper validation studies of promising marker combinations.
Collapse
Affiliation(s)
| | - Antonia Vlahou
- Biomedical Research Foundation Academy of Athens , Biotechnology Division, Athens, Greece
| |
Collapse
|
30
|
Proteome Profiling of Urinary Exosomes Identifies Alpha 1-Antitrypsin and H2B1K as Diagnostic and Prognostic Biomarkers for Urothelial Carcinoma. Sci Rep 2016; 6:34446. [PMID: 27686150 PMCID: PMC5043375 DOI: 10.1038/srep34446] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/14/2016] [Indexed: 11/09/2022] Open
Abstract
MALDI-TOF spectrometry has not been used for urinary exosome analysis. We used it for determining UC biomarkers. From 2012 to 2015, we enrolled 129 consecutive patients with UC and 62 participants without UC. Exosomes from their urine were isolated, and analyzed through MALDI-TOF spectrometry. Immunohistochemical (IHC) analysis of another 122 UC and 26 non-UC tissues was conducted to verify the discovered biomarkers. Two peaks at m/z 5593 (fragmented peptide of alpha-1-antitrypsin; sensitivity, 50.4%; specificity, 96.9%) and m/z 5947 (fragmented peptide of histone H2B1K sensitivity, 62.0%; specificity, 92.3%) were identified as UC diagnosis exosome biomarkers. UC patients with detectable histone H2B1K showed 2.29- and 3.11-fold increased risks of recurrence and progression, respectively, compared with those with nondetectable histone H2B1K. Verification results of IHC staining revealed significantly higher expression of alpha 1-antitrypsin (p = 0.038) and H2B1K (p = 0.005) in UC tissues than in normal tissues. The expression of alpha 1-antitrypsin and H2B1K in UC tissues was significantly correlated with UC grades (p < 0.05). Urinary exosome proteins alpha 1-antitrypsin and histone H2B1K, which are identified through MALDI-TOF analysis, could facilitate rapid diagnosis and prognosis of UC.
Collapse
|
31
|
Meo AD, Pasic MD, Yousef GM. Proteomics and peptidomics: moving toward precision medicine in urological malignancies. Oncotarget 2016; 7:52460-52474. [PMID: 27119500 PMCID: PMC5239567 DOI: 10.18632/oncotarget.8931] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/16/2016] [Indexed: 12/31/2022] Open
Abstract
Urological malignancies are a major cause of morbidity and mortality worldwide. Advances in early detection, diagnosis, prognosis and prediction of treatment response can significantly improve patient care. Proteomic and peptidomic profiling studies are at the center of kidney, prostate and bladder cancer biomarker discovery and have shown great promise for improved clinical assessment. Mass spectrometry (MS) is the most widely employed method for proteomic and peptidomic analyses. A number of MS platforms have been developed to facilitate accurate identification of clinically relevant markers in various complex biological samples including tissue, urine and blood. Furthermore, protein profiling studies have been instrumental in the successful introduction of several diagnostic multimarker tests into the clinic. In this review, we will provide a brief overview of high-throughput technologies for protein and peptide based biomarker discovery. We will also examine the current state of kidney, prostate and bladder cancer biomarker research as well as review the journey toward successful clinical implementation.
Collapse
Affiliation(s)
- Ashley Di Meo
- Department of Laboratory Medicine, and The Keenan Research Centre for Biomedical Science at The Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Maria D. Pasic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, St. Joseph's Health Centre, Toronto, Ontario, Canada
| | - George M. Yousef
- Department of Laboratory Medicine, and The Keenan Research Centre for Biomedical Science at The Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Frantzi M, van Kessel KE, Zwarthoff EC, Marquez M, Rava M, Malats N, Merseburger AS, Katafigiotis I, Stravodimos K, Mullen W, Zoidakis J, Makridakis M, Pejchinovski M, Critselis E, Lichtinghagen R, Brand K, Dakna M, Roubelakis MG, Theodorescu D, Vlahou A, Mischak H, Anagnou NP. Development and Validation of Urine-based Peptide Biomarker Panels for Detecting Bladder Cancer in a Multi-center Study. Clin Cancer Res 2016; 22:4077-86. [PMID: 27026199 DOI: 10.1158/1078-0432.ccr-15-2715] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/11/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Urothelial bladder cancer presents high recurrence rates, mandating continuous monitoring via invasive cystoscopy. The development of noninvasive tests for disease diagnosis and surveillance remains an unmet clinical need. In this study, validation of two urine-based biomarker panels for detecting primary and recurrent urothelial bladder cancer was conducted. EXPERIMENTAL DESIGN Two studies (total n = 1,357) were performed for detecting primary (n = 721) and relapsed urothelial bladder cancer (n = 636). Cystoscopy was applied for detecting urothelial bladder cancer, while patients negative for recurrence had follow-up for at least one year to exclude presence of an undetected tumor at the time of sampling. Capillary electrophoresis coupled to mass spectrometry (CE-MS) was employed for the identification of urinary peptide biomarkers. The candidate urine-based peptide biomarker panels were derived from nested cross-sectional studies in primary (n = 451) and recurrent (n = 425) urothelial bladder cancer. RESULTS Two biomarker panels were developed on the basis of 116 and 106 peptide biomarkers using support vector machine algorithms. Validation of the urine-based biomarker panels in independent validation sets, resulted in AUC values of 0.87 and 0.75 for detecting primary (n = 270) and recurrent urothelial bladder cancer (n = 211), respectively. At the optimal threshold, the classifier for detecting primary urothelial bladder cancer exhibited 91% sensitivity and 68% specificity, while the classifier for recurrence demonstrated 87% sensitivity and 51% specificity. Particularly for patients undergoing surveillance, improved performance was achieved when combining the urine-based panel with cytology (AUC = 0.87). CONCLUSIONS The developed urine-based peptide biomarker panel for detecting primary urothelial bladder cancer exhibits good performance. Combination of the urine-based panel and cytology resulted in improved performance for detecting disease recurrence. Clin Cancer Res; 22(16); 4077-86. ©2016 AACR.
Collapse
Affiliation(s)
- Maria Frantzi
- Mosaiques diagnostics GmbH, Hannover, Germany. Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece.
| | - Kim E van Kessel
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ellen C Zwarthoff
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mirari Marquez
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marta Rava
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Ioannis Katafigiotis
- Department of Urology, Laikon Hospital, Medical School of Athens, Athens, Greece
| | | | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jerome Zoidakis
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | - Elena Critselis
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Maria G Roubelakis
- Laboratory of Biology, Department of Basic Medical Sciences, University of Athens School of Medicine, Athens, Greece
| | - Dan Theodorescu
- University of Colorado, Department of Surgery and Pharmacology, Aurora, Colorado. University of Colorado Comprehensive Cancer Center, Aurora, Colorado
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Harald Mischak
- Mosaiques diagnostics GmbH, Hannover, Germany. Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nicholas P Anagnou
- Laboratory of Biology, Department of Basic Medical Sciences, University of Athens School of Medicine, Athens, Greece. Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
33
|
Implementation of CE-MS-identified proteome-based biomarker panels in drug development and patient management. Bioanalysis 2016; 8:439-55. [DOI: 10.4155/bio.16.8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The recent advancements in clinical proteomics enabled identification of biomarker panels for a large range of diseases. A number of CE-MS-identified biomarker panels were verified and implemented in clinical studies. Despite multiple challenges, accumulating evidence supports the value and the need for proteome-based biomarker panels. In this perspective, we provide an overview of clinical studies indicating the added value of CE-MS biomarker panels over traditional diagnostics and monitoring methods. We outline apparent advantages of applying novel proteomic biomarker panels for disease diagnosis, prognosis, staging, drug development and patient management. Facing the plethora of benefits associated with the use of CE-MS biomarker panels, we envision their implementation into the medical practice in the near future.
Collapse
|
34
|
Ambrose SR, Gordon NS, Goldsmith JC, Wei W, Zeegers MP, James ND, Knowles MA, Bryan RT, Ward DG. Use of Aleuria alantia Lectin Affinity Chromatography to Enrich Candidate Biomarkers from the Urine of Patients with Bladder Cancer. Proteomes 2015; 3:266-282. [PMID: 28248271 PMCID: PMC5217382 DOI: 10.3390/proteomes3030266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/22/2022] Open
Abstract
Developing a urine test to detect bladder tumours with high sensitivity and specificity is a key goal in bladder cancer research. We hypothesised that bladder cancer-specific glycoproteins might fulfill this role. Lectin-ELISAs were used to study the binding of 25 lectins to 10 bladder cell lines and serum and urine from bladder cancer patients and non-cancer controls. Selected lectins were then used to enrich glycoproteins from the urine of bladder cancer patients and control subjects for analysis by shotgun proteomics. None of the lectins showed a strong preference for bladder cancer cell lines over normal urothlelial cell lines or for urinary glycans from bladder cancer patients over those from non-cancer controls. However, several lectins showed a strong preference for bladder cell line glycans over serum glycans and are potentially useful for enriching glycoproteins originating from the urothelium in urine. Aleuria alantia lectin affinity chromatography and shotgun proteomics identified mucin-1 and golgi apparatus protein 1 as proteins warranting further investigation as urinary biomarkers for low-grade bladder cancer. Glycosylation changes in bladder cancer are not reliably detected by measuring lectin binding to unfractionated proteomes, but it is possible that more specific reagents and/or a focus on individual proteins may produce clinically useful biomarkers.
Collapse
Affiliation(s)
- Sarah R Ambrose
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Naheema S Gordon
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - James C Goldsmith
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Wenbin Wei
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Maurice P Zeegers
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
- Department of Complex Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht 6200 MD, The Netherlands.
| | - Nicholas D James
- Clinical Trials Unit, University of Warwick, Coventry CV4 7AL, UK.
| | - Margaret A Knowles
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's' University Hospital, Beckett Street, Leeds LS9 7TF, UK.
| | - Richard T Bryan
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Douglas G Ward
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
35
|
Kartsova LA, Bessonova EA. Biomedical applications of capillary electrophoresis. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Sanguedolce F, Cormio A, Bufo P, Carrieri G, Cormio L. Molecular markers in bladder cancer: Novel research frontiers. Crit Rev Clin Lab Sci 2015; 52:242-55. [PMID: 26053693 DOI: 10.3109/10408363.2015.1033610] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bladder cancer (BC) is a heterogeneous disease encompassing distinct biologic features that lead to extremely different clinical behaviors. In the last 20 years, great efforts have been made to predict disease outcome and response to treatment by developing risk assessment calculators based on multiple standard clinical-pathological factors, as well as by testing several molecular markers. Unfortunately, risk assessment calculators alone fail to accurately assess a single patient's prognosis and response to different treatment options. Several molecular markers easily assessable by routine immunohistochemical techniques hold promise for becoming widely available and cost-effective tools for a more reliable risk assessment, but none have yet entered routine clinical practice. Current research is therefore moving towards (i) identifying novel molecular markers; (ii) testing old and new markers in homogeneous patients' populations receiving homogeneous treatments; (iii) generating a multimarker panel that could be easily, and thus routinely, used in clinical practice; (iv) developing novel risk assessment tools, possibly combining standard clinical-pathological factors with molecular markers. This review analyses the emerging body of literature concerning novel biomarkers, ranging from genetic changes to altered expression of a huge variety of molecules, potentially involved in BC outcome and response to treatment. Findings suggest that some of these indicators, such as serum circulating tumor cells and tissue mitochondrial DNA, seem to be easily assessable and provide reliable information. Other markers, such as the phosphoinositide-3-kinase (PI3K)/AKT (serine-threonine kinase)/mTOR (mammalian target of rapamycin) pathway and epigenetic changes in DNA methylation seem to not only have prognostic/predictive value but also, most importantly, represent valuable therapeutic targets. Finally, there is increasing evidence that the development of novel risk assessment tools combining standard clinical-pathological factors with molecular markers represents a major quest in managing this poorly predictable disease.
Collapse
|
37
|
Frantzi M, Latosinska A, Flühe L, Hupe MC, Critselis E, Kramer MW, Merseburger AS, Mischak H, Vlahou A. Developing proteomic biomarkers for bladder cancer: towards clinical application. Nat Rev Urol 2015; 12:317-30. [PMID: 26032553 DOI: 10.1038/nrurol.2015.100] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Clinical use of proteomic biomarkers has the potential to substantially improve the outcomes of patients with bladder cancer. An unmet clinical need evidently exists for noninvasive biomarkers, which might enable improvements in both the diagnosis and prognosis of patients with bladder cancer, as well as improved monitoring of patients for the presence of recurrence. Urine is considered the optimal noninvasive source of proteomic biomarkers in patients with bladder cancer. Currently, a number of single-protein biomarkers have been detected in urine and tissue using a variety of proteomic techniques, each having specific conceptual considerations and technical implications. Promising preclinical data are available for several of these proteins; however, the combination of single urinary proteins into multimarker panels might better encompass the molecular heterogeneity of bladder cancer within this patient population, and prove more effective in clinical use.
Collapse
Affiliation(s)
- Maria Frantzi
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Agnieszka Latosinska
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Leif Flühe
- Mosaiques Diagnostics GmbH, Rotenburger Strasse 20, 30659 Hannover, Germany
| | - Marie C Hupe
- Department of Urology and Urological Oncology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Elena Critselis
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Mario W Kramer
- Department of Urology and Urological Oncology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Axel S Merseburger
- Department of Urology and Urological Oncology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Harald Mischak
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| |
Collapse
|
38
|
Gopal J, Muthu M, Chun SC, Wu HF. State-of-the-art nanoplatform-integrated MALDI-MS impacting resolutions in urinary proteomics. Proteomics Clin Appl 2015; 9:469-81. [PMID: 25736343 DOI: 10.1002/prca.201400182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/26/2014] [Accepted: 02/26/2015] [Indexed: 12/17/2022]
Abstract
Urine proteomics has become a subject of interest, since it has led to a number of breakthroughs in disease diagnostics. Urine contains information not only from the kidney and the urinary tract but also from other organs, thus urinary proteome analysis allows for identification of biomarkers for both urogenital and systemic diseases. The following review gives a brief overview of the analytical techniques that have been in practice for urinary proteomics. MALDI-MS technique and its current application status in this area of clinical research have been discussed. The review comments on the challenges facing the conventional MALDI-MS technique and the upgradation of this technique with the introduction of nanotechnology. This review projects nano-based techniques such as nano-MALDI-MS, surface-assisted laser desorption/ionization, and nanostructure-initiator MS as the platforms that have the potential in trafficking MALDI-MS from the lab to the bedside.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Molecular Biotechnology, Konkuk University, Seoul, Korea
| | - Manikandan Muthu
- Department of Molecular Biotechnology, Konkuk University, Seoul, Korea
| | - Se-Chul Chun
- Department of Molecular Biotechnology, Konkuk University, Seoul, Korea
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan.,Center for Nanosciences and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
39
|
Kageyama S, Isono T, Iwaki H, Hanada E, Tomita K, Yoshida T, Yoshiki T, Kawauchi A. Proteome research in urothelial carcinoma. Int J Urol 2015; 22:621-8. [DOI: 10.1111/iju.12793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/01/2015] [Accepted: 03/18/2015] [Indexed: 01/10/2023]
Affiliation(s)
| | - Takahiro Isono
- Central Research Laboratory; Shiga University of Medical Science; Otsu Shiga
| | - Hideaki Iwaki
- Department of Urology; Shiga University of Medical Science
| | - Eiki Hanada
- Department of Urology; Shiga University of Medical Science
| | - Keiji Tomita
- Department of Urology; Shiga University of Medical Science
| | | | - Tatsuhiro Yoshiki
- Department of Clinical Oncology; Kyoto Pharmaceutical University; Kyoto Japan
| | | |
Collapse
|
40
|
Adeola HA, Soares NC, Paccez JD, Kaestner L, Blackburn JM, Zerbini LF. Discovery of novel candidate urinary protein biomarkers for prostate cancer in a multiethnic cohort of South African patients via label-free mass spectrometry. Proteomics Clin Appl 2015; 9:597-609. [PMID: 25708745 DOI: 10.1002/prca.201400197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/29/2015] [Accepted: 02/18/2015] [Indexed: 01/10/2023]
Abstract
PURPOSE Improvement in diagnostic accuracy of prostate cancer (PCa) progression using MS-based methods to analyze biomarkers in our African, Caucasian, and Mixed Ancestry patients can advance early detection and treatment monitoring. EXPERIMENTAL DESIGN MS-based proteomic analysis of pooled (N = 36) and individual samples (N = 45) of PCa, benign prostatic hyperplasia, normal healthy controls, and patients with other uropathies was used to identify differences in proteomics profile. Samples were analyzed for potential biomarkers and proteome coverage in African, Caucasian, and Mixed Ancestry PCa patients. RESULTS A total of 1102 and 5595 protein groups and nonredundant peptides, respectively, were identified in the pooling experiments (FDR = 0.01). Twenty potential biomarkers in PCa were identified and fold differences ± 2SD were observed in 17 proteins using intensity-based absolute quantification. Analysis of 45 individual samples yielded 1545 and 9991 protein groups and nonredundant peptides, respectively. Seventy-three (73) proteins groups, including existing putative PCa biomarkers, were found to be potential biomarkers of PCa by label-free quantification and demonstrated ethnic trends within our PCa cohort. CONCLUSION AND CLINICAL RELEVANCE Urinary proteomics is a promising route to PCa biomarker discovery and may serve as source of ethnic-related biomarkers of PCa.
Collapse
Affiliation(s)
- Henry A Adeola
- International Centre for Genetic Engineering and Biotechnology, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nelson C Soares
- Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Juliano D Paccez
- International Centre for Genetic Engineering and Biotechnology, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lisa Kaestner
- Urology Department, Grootes Schuur Hospital, Cape Town, South Africa
| | - Jonathan M Blackburn
- Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Luiz F Zerbini
- International Centre for Genetic Engineering and Biotechnology, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
41
|
Mischak H, Critselis E, Hanash S, Gallagher WM, Vlahou A, Ioannidis JPA. Epidemiologic design and analysis for proteomic studies: a primer on -omic technologies. Am J Epidemiol 2015; 181:635-47. [PMID: 25792606 DOI: 10.1093/aje/kwu462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022] Open
Abstract
Proteome analysis is increasingly being used in investigations elucidating the molecular basis of disease, identifying diagnostic and prognostic markers, and ultimately improving patient care. We appraised the current status of proteomic investigations using human samples, including the state of the art in proteomic technologies, from sample preparation to data evaluation approaches, as well as key epidemiologic, statistical, and translational issues. We systematically reviewed the most highly cited clinical proteomic studies published between January 2009 and March 2014 that included a minimum of 100 samples, as well as strategies that have been successfully implemented to enhance the translational relevance of proteomic investigations. Limited comparability between studies and lack of specification of biomarker context of use are frequently observed. Nevertheless, there are initial examples of successful biomarker discovery in cross-sectional studies followed by validation in high-risk longitudinal cohorts. Translational potential is currently hindered, as limitations in proteomic investigations are not accounted for. Interdisciplinary communication between proteomics experts, basic researchers, epidemiologists, and clinicians, an orchestrated assimilation of required resources, and a more systematic translational outlook for accumulation of evidence may augment the public health impact of proteomic investigations.
Collapse
|
42
|
Pejchinovski M, Hrnjez D, Ramirez-Torres A, Bitsika V, Mermelekas G, Vlahou A, Zürbig P, Mischak H, Metzger J, Koeck T. Capillary zone electrophoresis on-line coupled to mass spectrometry: A perspective application for clinical proteomics. Proteomics Clin Appl 2015; 9:453-68. [DOI: 10.1002/prca.201400113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/21/2014] [Accepted: 01/14/2015] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Vasiliki Bitsika
- Biotechnology Division; Biomedical Research Foundation, Academy of Athens; Athens Greece
| | - George Mermelekas
- Biotechnology Division; Biomedical Research Foundation, Academy of Athens; Athens Greece
| | - Antonia Vlahou
- Biotechnology Division; Biomedical Research Foundation, Academy of Athens; Athens Greece
- School of Biomedical and Healthcare Sciences; Plymouth University, Plymouth; UK
| | | | - Harald Mischak
- Mosaiques Diagnostics GmbH; Hanover Germany
- Institute of Cardiovascular and Medical Sciences; University of Glasgow; UK
| | | | | |
Collapse
|
43
|
Rodríguez-Suárez E, Siwy J, Zürbig P, Mischak H. Urine as a source for clinical proteome analysis: From discovery to clinical application. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:884-98. [DOI: 10.1016/j.bbapap.2013.06.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/10/2013] [Accepted: 06/20/2013] [Indexed: 01/03/2023]
|
44
|
Srinivasan H, Allory Y, Sill M, Vordos D, Alhamdani MSS, Radvanyi F, Hoheisel JD, Schröder C. Prediction of recurrence of non muscle-invasive bladder cancer by means of a protein signature identified by antibody microarray analyses. Proteomics 2014; 14:1333-42. [DOI: 10.1002/pmic.201300320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 02/05/2014] [Accepted: 02/28/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Harish Srinivasan
- Division of Functional Genome Analysis; Deutsches Krebsforschungszentrum (DKFZ); Heidelberg Germany
| | - Yves Allory
- Département de Pathologie et Plateforme de Ressources Biologiques, AP-HP Hôpitaux Universitaires Henri Mondor; Créteil France
| | - Martin Sill
- Division of Biostatistics; Deutsches Krebsforschungszentrum (DKFZ); Heidelberg Germany
| | - Dimitri Vordos
- AP-HP Hôpitaux Universitaires Henri Mondor; Service d´Urologie; Créteil France
| | | | | | - Jörg D. Hoheisel
- Division of Functional Genome Analysis; Deutsches Krebsforschungszentrum (DKFZ); Heidelberg Germany
| | - Christoph Schröder
- Division of Functional Genome Analysis; Deutsches Krebsforschungszentrum (DKFZ); Heidelberg Germany
| |
Collapse
|
45
|
Kaynar M, Yıldırım ME, Badem H, Çaviş M, Tekinarslan E, İstanbulluoğlu MO, Karataş ÖF, Çimentepe E. Bladder cancer invasion predictability based on preoperative neutrophil–lymphocyte ratio. Tumour Biol 2014; 35:6601-5. [DOI: 10.1007/s13277-014-1889-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022] Open
|
46
|
Frantzi M, Bhat A, Latosinska A. Clinical proteomic biomarkers: relevant issues on study design & technical considerations in biomarker development. Clin Transl Med 2014; 3:7. [PMID: 24679154 PMCID: PMC3994249 DOI: 10.1186/2001-1326-3-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/06/2014] [Indexed: 12/11/2022] Open
Abstract
Biomarker research is continuously expanding in the field of clinical proteomics. A combination of different proteomic-based methodologies can be applied depending on the specific clinical context of use. Moreover, current advancements in proteomic analytical platforms are leading to an expansion of biomarker candidates that can be identified. Specifically, mass spectrometric techniques could provide highly valuable tools for biomarker research. Ideally, these advances could provide with biomarkers that are clinically applicable for disease diagnosis and/ or prognosis. Unfortunately, in general the biomarker candidates fail to be implemented in clinical decision making. To improve on this current situation, a well-defined study design has to be established driven by a clear clinical need, while several checkpoints between the different phases of discovery, verification and validation have to be passed in order to increase the probability of establishing valid biomarkers. In this review, we summarize the technical proteomic platforms that are available along the different stages in the biomarker discovery pipeline, exemplified by clinical applications in the field of bladder cancer biomarker research.
Collapse
Affiliation(s)
- Maria Frantzi
- Mosaiques Diagnostics GmbH, Mellendorfer Strasse 7-9, D-30625 Hannover, Germany
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 115 27 Athens, Greece
| | - Akshay Bhat
- Mosaiques Diagnostics GmbH, Mellendorfer Strasse 7-9, D-30625 Hannover, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Agnieszka Latosinska
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 115 27 Athens, Greece
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
47
|
Albalat A, Mischak H, Mullen W. Clinical application of urinary proteomics/peptidomics. Expert Rev Proteomics 2014; 8:615-29. [DOI: 10.1586/epr.11.46] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
|
49
|
Classical MALDI-MS versus CE-based ESI-MS proteomic profiling in urine for clinical applications. Bioanalysis 2014; 6:247-66. [DOI: 10.4155/bio.13.313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human urine is an attractive and informative biofluid for medical diagnosis, which has been shown to reflect the (patho)-physiology of not only the urogenital system, but also others such as the cardiovascular system. For this reason, many studies have concentrated on the study of the urine proteome, aiming to find relevant biomarkers that could be applied in a clinical setting. However, this goal can only be achieved after reliable quantitative and qualitative analysis of the urinary proteome. In the last two decades, MS-based platforms have evolved to become indispensable tools for biomarker research. In this review, we will present and compare two of the most clinically relevant analytical platforms that have been used for the study of the urinary proteome, namely CE-based ESI-MS and classical MALDI-MS. These platforms, although not directly comparable, have been extensively used in proteomic profiling and therefore their comparison is fundamentally relevant to this field.
Collapse
|
50
|
Frantzi M, Metzger J, Banks RE, Husi H, Klein J, Dakna M, Mullen W, Cartledge JJ, Schanstra JP, Brand K, Kuczyk MA, Mischak H, Vlahou A, Theodorescu D, Merseburger AS. Discovery and validation of urinary biomarkers for detection of renal cell carcinoma. J Proteomics 2013; 98:44-58. [PMID: 24374379 DOI: 10.1016/j.jprot.2013.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/27/2013] [Accepted: 12/14/2013] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is often accompanied by non-specific symptoms. The increase of incidentally discovered small renal masses also presents a diagnostic dilemma. This study investigates whether RCC-specific peptides with diagnostic potential can be detected in urine and whether a combination of such peptides could form a urinary screening tool. MATERIALS AND METHODS For the discovery of RCC-specific biomarkers, we have employed CE-MS to analyze urine samples from patients with RCC (N=40) compared to non-diseased controls (N=68). RESULTS AND DISCUSSION 86 peptides were found to be specifically associated to RCC, of which sequence could be obtained for 40. A classifier based on these peptides was evaluated in an independent set of 76 samples, resulting in 80% sensitivity and 87% specificity. The specificity of the marker panel was further validated in a historical dataset of 1077 samples including age-matched controls (N=218), patients with related cancer types and renal diseases (N=859). In silico protease prediction based on the cleavage sites of differentially excreted peptides, suggested modified activity of certain proteases including cathepsins, ADAMTS and kallikreins some of which were previously found to be associated to RCC. CONCLUSIONS RCC can be detected with high accuracy based on specific urinary peptides. BIOLOGICAL SIGNIFICANCE Clear cell renal cell carcinoma (RCC) has the highest incidence among the renal malignancies, often presenting non-specific or no symptoms at all. Moreover, with no diagnostic marker being available so far, almost 30% of the patients are diagnosed with metastatic disease and 30-40% of the patients initially diagnosed with localized tumor relapse. These facts introduce the clinical need of early diagnosis. This study is focused on the investigation of a marker model based on urinary peptides, as a tool for the detection of RCC in selected patients at risk. Upon evaluation of the marker model in an independent blinded set of 76 samples, 80% sensitivity and 87% specificity were reported. An additional dataset of 1077 samples was subsequently employed for further evaluation of the specificity of the classifier.
Collapse
Affiliation(s)
- Maria Frantzi
- Mosaiques diagnostics GmbH, Hannover, Germany; Biomedical Research Foundation, Academy of Athens, Biotechnology Division, Athens, Greece.
| | | | - Rosamonde E Banks
- St James's University Hospital, Cancer Research UK Clinical Centre, Clinical and Biomedical Proteomics Group, Leeds, United Kingdom
| | - Holger Husi
- University of Glasgow, Institute of Cardiovascular and Medical Sciences, Glasgow, United Kingdom
| | - Julie Klein
- Mosaiques diagnostics GmbH, Hannover, Germany
| | | | - William Mullen
- University of Glasgow, Institute of Cardiovascular and Medical Sciences, Glasgow, United Kingdom
| | | | - Joost P Schanstra
- Inserm, U858/I2MR, Department of Renal and Cardiac Remodeling, Team #5, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France; Université Toulouse III Paul Sabatier, Institut de Médecine Moléculaire de Rangueil, Toulouse F-31000, France
| | - Korbinian Brand
- Hannover Medical School, Institute of Clinical Chemistry, Hannover, Germany
| | - Markus A Kuczyk
- Hannover Medical School, Department of Urology and Urological Oncology, Hannover, Germany
| | - Harald Mischak
- Mosaiques diagnostics GmbH, Hannover, Germany; University of Glasgow, Institute of Cardiovascular and Medical Sciences, Glasgow, United Kingdom
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Biotechnology Division, Athens, Greece
| | - Dan Theodorescu
- University of Colorado, Department of Surgery and Pharmacology, Aurora, CO, USA; University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | - Axel S Merseburger
- Hannover Medical School, Department of Urology and Urological Oncology, Hannover, Germany
| |
Collapse
|