1
|
Galli-Vareia I, Szturz P, Voutsadakis IA, Villard N, Tsoumakidou G, Fleury M, Herrera G, Fasquelle F, Godat S, Digklia A. Efficacy of 2 different fibroblast growth factor receptor-inhibitors in a patient with extrahepatic cholangiocarcinoma harboring an FGFR2 mutation: a case report. Oncologist 2025; 30:oyae294. [PMID: 40338217 PMCID: PMC12060712 DOI: 10.1093/oncolo/oyae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/28/2024] [Indexed: 05/09/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a type of cancer with few effective systemic therapies. Elucidation of the molecular landscape of the disease from genomic studies based on next-generation sequencing (NGS) has contributed to the introduction of new targeted therapies. One of these treatments consists of a class of small molecules that target members of the fibroblast growth factor receptors (FGFRs) family of receptor tyrosine kinases. We report here on a patient with a cholangiocarcinoma bearing an FGFR2 mutation. The patient was treated with 2 different FGFR inhibitors, as the first caused ocular toxicity. She obtained clinical benefits from both. This case illustrates the efficacy of FGFR inhibitors on cholangiocarcinoma with specific point mutations.
Collapse
Affiliation(s)
- Ilianna Galli-Vareia
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Petr Szturz
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste Marie, ON P3E 2C6, Canada
- Division of Clinical Sciences, Section of Internal Medicine, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
| | - Nicolas Villard
- Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Georgia Tsoumakidou
- Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Mapi Fleury
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Gabriela Herrera
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Francois Fasquelle
- Department of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Sebastien Godat
- Department of Gastroenterology, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Antonia Digklia
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| |
Collapse
|
2
|
Bellapukonda SM, Bandela R, Singampalli A, Srikanth D, Kumar P, Nanduri S, Yaddanapudi VM. A systematic review on the anti-microbial activities and structure-activity relationship (SAR) of quinoxaline derivatives. Eur J Med Chem 2025; 289:117472. [PMID: 40048800 DOI: 10.1016/j.ejmech.2025.117472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Anti-microbial resistance has become a serious global health issue affecting millions of people worldwide. Despite extensive drug discovery efforts aimed at identifying potent molecules for effective anti-microbial treatments, the emergence of superbugs remains a significant challenge. Thus, developing novel therapeutic agents is required to combat these evolving threats. The quinoxaline scaffold emerges as a promising heterocyclic framework for developing novel anti-microbial agents. It's simple, flexible structure, coupled with its bioisosteric relationship to extensively explored quinoline and naphthalene scaffolds, offers a potential avenue for circumventing bacterial resistance developed against these established classes. Hence it has sparked interest in researchers to develop novel antibiotics based on the quinoxaline core. This review focuses on the recent advances of quinoxaline derivatives as anti-microbial agents and their structure-activity relationship studies based on the literature published from 2015 to 2024. The systematic presentation of this information will assist researchers in identifying key substitution patterns around the quinoxaline nucleus, facilitating the development of structure-activity relationship (SAR), and guiding the design of novel anti-microbial drugs to combat the growing threat of anti-microbial resistance.
Collapse
Affiliation(s)
- Sri Mounika Bellapukonda
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Rani Bandela
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Anuradha Singampalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Danaboina Srikanth
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Pardeep Kumar
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| |
Collapse
|
3
|
Grochot R, Joshi K, Cammarota A, Woodford R, Sathanantham G, Williams A, Arkenau T, Subbiah V, Swanton C, Fontana E. Safety and Activity of Fibroblast Growth Factor Receptor Inhibitors in Advanced Malignancies: A Pooled Analysis of Early-Phase Clinical Trials. JCO Precis Oncol 2025; 9:e2400896. [PMID: 40239140 DOI: 10.1200/po-24-00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/28/2025] [Accepted: 02/19/2025] [Indexed: 04/18/2025] Open
Abstract
PURPOSE Aberrant signaling through the fibroblast growth factor receptor (FGFR) due to activating somatic alterations has been associated with multiple malignancies. FGFR inhibitors (FGFRi) with distinct profiles recently entered standard of care. This work summarizes the experience of a dedicated clinical trial unit with FGFRi developed in the last decade within the context of clinical trials. METHODS Demographic and clinical data were collected for patients enrolled in FGFR-targeting phase I to II trials conducted at Sarah Cannon Research Institute, United Kingdom between January 2012 and August 2023. RESULTS Fifty-four patients across seven trials were identified: 50% male; median age 55 years. An FGFR alteration was present in 81% of cases; rearrangements, amplifications, and mutations were present in 59%, 43%, and 9.1% of the cases, respectively, with coexisting alterations in 27%. The most frequent primary tumors were cholangiocarcinomas (31%), urothelial (15%), and colorectal (15%); 85% of the patients were FGFRi-naïve. The most common adverse events (AEs) were hyperphosphatemia (42%), dry mouth (35%), fatigue (24%), mucositis (24%), nail changes (22%), and palmar-plantar erythrodysesthesia (20%), with significant differences between pan-FGFRi and FGFR-2i. The rate of G3 AEs was 22%; no G4-5 events were observed. The median time on treatment was 3.5 months (0.2-72.8). Higher disease control rate was observed in the presence of any FGFR alteration, compared with all-comers (odds ratio [OR], 7; P = .0226). The objective response rate was 38%, 25%, and 25% in patients with gene rearrangements, amplification, and mutations, respectively. The median duration of response was 2.3 months (1.6-7.7). After a median follow-up time of 20 months (95% CI, 12.9 to 71.8), median progression-free survival (mPFS) was 3.2 months (95% CI, 1.9 to 4.6) and median overall survival was 13 months (95% CI, 6.4 to 19.6). PFS was significantly different by response, FGFR status, and tumor type. Patients who experienced a G2-3 AE were more likely to achieve a response (OR, 5.24; P = .0256). CONCLUSION FGFRi are effective treatment strategies for patients with advanced solid tumors harboring FGFR alterations, with manageable toxicities in most patients.
Collapse
Affiliation(s)
- Rafael Grochot
- Sarah Cannon Research Institute (SCRI), London, United Kingdom
| | - Kroopa Joshi
- Sarah Cannon Research Institute (SCRI), London, United Kingdom
| | - Antonella Cammarota
- Sarah Cannon Research Institute (SCRI), London, United Kingdom
- Humanitas University, Milan, Italy
| | - Rachel Woodford
- Sarah Cannon Research Institute (SCRI), London, United Kingdom
| | | | - Anja Williams
- Sarah Cannon Research Institute (SCRI), London, United Kingdom
| | | | | | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Elisa Fontana
- Sarah Cannon Research Institute (SCRI), London, United Kingdom
| |
Collapse
|
4
|
Cui X, Huang T, Jiang T, Wang H. Current status and prospects of targeted therapy for cholangiocarcinoma based on molecular characteristics. Cancer Lett 2025; 614:217540. [PMID: 39924074 DOI: 10.1016/j.canlet.2025.217540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Cholangiocarcinoma (CCA) is a serious public health issue due to its insidious onset and dismal prognosis. The past few years have witnessed and highlighted the development of understanding and management of CCA. The combination of gemcitabine and cisplatin (GP) chemotherapy regimen with immunotherapy using immune checkpoint inhibitors has been considered the new standard first-line treatment alternative for advanced CCA. Notably, the proportion of patients with advanced CCA with targetable genetic mutations is approximately 40 %, and these patients may be considered for molecularly targeted therapy in the second-line treatment. In this review, we highlight the advances and progress in targeted therapies for advanced CCA, with special attention to data from Asian populations, including Chinese. In addition, we present in detail the phosphatase tension homolog (PTEN), a novel biomarker for both of first-line chemotherapy and second-line targeted therapy in advanced CCA, and its ability to forecast prognosis in patients with CCA. The mechanisms of rapid resistance to targeted agents warrant further investigation and address in light of the development of new targeted therapies. Precision medicine is gradually playing an increasing role in achieving optimal therapeutic outcomes.
Collapse
Affiliation(s)
- Xiaowen Cui
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China
| | - Teng Huang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, The Naval Medical University, Shanghai, China; Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Tianyi Jiang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, The Naval Medical University, Shanghai, China.
| | - Hongyang Wang
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China; International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, The Naval Medical University, Shanghai, China; Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Yang C, Wang W, Gao Y, Yin L, Pan K, Chen D, Yang F, Xing N. Sonodynamic Therapy by Reactive Oxygen Species Generation-Responsive Pseudo-Semiconducting Polymer Nanoparticles Combined with a Fibroblast Growth Factor Receptor Inhibitor for Enhancing Immunotherapy in Bladder Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9125-9139. [PMID: 39883874 DOI: 10.1021/acsami.4c20545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Sonodynamic therapy, a treatment modality recently widely used, is capable of disrupting the tumor microenvironment by inducing immunogenic cell death (ICD) and enhancing antitumor immunity during immunotherapy. Erdafitinib, an inhibitor of the fibroblast growth factor receptor, has demonstrated potential benefits for treating bladder cancer. However, Erdafitinib shows effectiveness in only a small number of patients, and the majority of patients responding positively to the medication have "immune-cold" tumors. To increase the therapeutic efficacy of Erdafitinib, we have herein developed a biodegradable pseudoconjugate polymer (PSP) with sonodynamic capabilities. Erdafitinib could be efficiently encapsulated in nanoparticles (NP-PE) prepared through the self-assembly of PSP with an oxidation-sensitive polymer (P1). Under ultrasound conditions, NP-PE effectively induced cytotoxicity by producing reactive oxygen species and further triggering ICD. Compared with Erdafitinib, NP-PE inhibited the expression of FGFR3 to a higher extent. In animal models with bladder cancer, NP-PE inhibited tumor growth, stimulated antitumor immunity, and synergized with antiprogrammed cell death-ligand 1 (aPD-L1), offering a novel approach for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Chao Yang
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenkuan Wang
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yunhao Gao
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lu Yin
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kehao Pan
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dong Chen
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Feiya Yang
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Nianzeng Xing
- Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
6
|
Groß S, Bitzer M, Albert J, Blödt S, Boda-Heggemann J, Borucki K, Brunner T, Caspari R, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Gebert J, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, Fougère CL, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Ott J, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ringe K, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schütte K, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Trojan J, van Thiel I, Utzig M, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wenzel G, Wildner D, Wörns MA, Galle P, Malek N. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2025; 63:e82-e158. [PMID: 39919781 DOI: 10.1055/a-2460-6347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Affiliation(s)
- Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | | | - Katrin Borucki
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Klinische Chemie und Pathobiochemie
| | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e.V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Jamila Gebert
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e.V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Julia Ott
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Digestive Diseases and Nutrition, Gastroenterology, University of Kentucky
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | - Kristina Ringe
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | | | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Kerstin Schütte
- Klinik für Innere Medizin und Gastroenterologie, Niels-Stensen-Kliniken, Marienhospital Osnabrück
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Martin Utzig
- Abteilung Zertifizierung, Deutsche Krebsgesellschaft e.V., Berlin
| | - Arndt Vogel
- Institute of Medical Science, University of Toronto
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie, Infektiologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Gregor Wenzel
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e.V., Berlin
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
7
|
Benjamin DJ, Mita AC. FGFR-Altered Urothelial Carcinoma: Resistance Mechanisms and Therapeutic Strategies. Target Oncol 2025; 20:1-11. [PMID: 39690380 DOI: 10.1007/s11523-024-01119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
Fibroblast growth factor receptor (FGFR) 2/3 alterations have been implicated in tumorigenesis in several malignancies, including urothelial carcinoma. Several FGFR inhibitors have been studied or are in development, and erdafitinib is the sole inhibitor to achieve regulatory approval. Given the rapidly evolving treatment landscape for advanced urothelial carcinoma, including regulatory approvals and withdrawals, determining the most appropriate treatment strategies and sequencing for FGFR-altered urothelial carcinoma is becoming increasing critical. However, the clinical efficacy of FGFR inhibitors is limited by acquired resistance similar to that seen with other tyrosine kinase inhibitors. Additional challenges to the clinical use of FGFR inhibitors include treatment-related adverse events and the financial costs associated with treatment. In this review, we describe known mechanisms of FGFR inhibitor resistance, including gatekeeper mutations, domain mutations, and the development of new mutations. In addition, we discuss management strategies, including ongoing clinical trials evaluating FGFR inhibitors, antibody-drug conjugates, and combination therapies with immune checkpoint inhibitors that may provide additional treatment options for localized and metastatic urothelial carcinoma.
Collapse
Affiliation(s)
- David J Benjamin
- Hoag Family Cancer Institute, 1 Hoag Drive, Building 41, Newport Beach, CA, 92663, USA.
| | - Alain C Mita
- Hoag Family Cancer Institute, 1 Hoag Drive, Building 41, Newport Beach, CA, 92663, USA
| |
Collapse
|
8
|
Lixi F, Giannaccare G, Salerno G, Gagliardi V, Pellegrino A, Vitiello L. Side Effects of Novel Anticancer Drugs on the Posterior Segment of the Eye: A Review of the Literature. J Pers Med 2024; 14:1160. [PMID: 39728071 DOI: 10.3390/jpm14121160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Currently, common treatment approaches for neoplastic diseases include surgery, radiation, and/or anticancer drugs (chemotherapy, hormone medications, and targeted therapies). In particular, anticancer medicines destroy cancerous cells by blocking certain pathways that aid in the disease's initiation and progression. These pharmaceutical drugs' capacity to inhibit malignant cells has made them indispensable in the treatment of neoplastic disorders. Nonetheless, considering their cyto- and neurotoxicity, as well as their inflammatory responses, these medications may also have unfavorable systemic and ocular side effects. In fact, it is well known that ocular posterior segment side effects, including retinal and vascular complications, have a negative influence on the patient's eyesight and quality of life. However, the underlying mechanisms contributing to the development of these side effects remain incompletely recognized, especially in the case of newly available anticancer drugs. The purpose of this literature review is to analyze the possible side effects of new anticancer drugs on the posterior segment of the eye, trying to better understand the involved pharmacological mechanisms and offer helpful guidance on their appropriate management.
Collapse
Affiliation(s)
- Filippo Lixi
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, CA, Italy
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, CA, Italy
| | - Giulio Salerno
- Eye Unit, "Luigi Curto" Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy
| | - Vincenzo Gagliardi
- Eye Unit, "Luigi Curto" Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy
| | - Alfonso Pellegrino
- Eye Unit, "Luigi Curto" Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy
| | - Livio Vitiello
- Eye Unit, "Luigi Curto" Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy
| |
Collapse
|
9
|
Kwon WA. FGFR Inhibitors in Urothelial Cancer: From Scientific Rationale to Clinical Development. J Korean Med Sci 2024; 39:e320. [PMID: 39536791 PMCID: PMC11557252 DOI: 10.3346/jkms.2024.39.e320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
In the past decade, the treatment of metastatic urothelial cancer (mUC), including bladder cancer (BC), has transformed significantly with the introduction of diverse therapies, such as immune checkpoint inhibitors, targeted therapies, and antibody-drug conjugates. This change is partly due to advancements in genomic understanding, particularly next-generation sequencing, which has identified numerous mutations in UC. Among these therapies, erdafitinib, a pan-fibroblast growth factor receptor (FGFR) inhibitor for specific FGFR2 and FGFR3 alterations, is the only targeted therapy approved till now. In 2019, erdafitinib became pivotal for the treatment of mUC, particularly in patients with specific FGFR alterations. Recent studies have highlighted the benefits of combining erdafitinib with immunotherapy, thereby broadening the treatment options. Ongoing investigations exist on its use in non-muscle-invasive BC and in combination with drugs such as enfortumab vedotin in mUC. Other FGFR-targeted agents are under development; however, overcoming FGFR resistance and ensuring the safety of combination therapies remain major hurdles. FGFR3 mutations are particularly prevalent in BC, a heterogeneous form of UC, and account for a considerable proportion of new cancer diagnoses annually. Approximately half of these cancers have FGFR3 mutations, with gene rearrangements being a common feature. These FGFR3 genomic alterations often occur independently of mutations in other BC oncogenes, such as TP53 and RB1. This review emphasizes the importance of FGFR inhibition in UC and the optimization of its use in clinical practice. Moreover, it underscores the ongoing efforts to evaluate combination strategies and early treatment testing to enhance the effectiveness of targeted therapies for UC.
Collapse
MESH Headings
- Humans
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/pathology
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Pyrazoles/therapeutic use
- Mutation
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Quinoxalines/therapeutic use
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Immunotherapy
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Fibroblast Growth Factor/genetics
Collapse
Affiliation(s)
- Whi-An Kwon
- Department of Urology, Myongji Hospital, Hanyang University College of Medicine, Goyang, Korea.
| |
Collapse
|
10
|
Bhamidipati D, Schram AM. Emerging Tumor-Agnostic Molecular Targets. Mol Cancer Ther 2024; 23:1544-1554. [PMID: 39279103 PMCID: PMC11908425 DOI: 10.1158/1535-7163.mct-23-0725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/30/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Advances in tumor molecular profiling have uncovered shared genomic and proteomic alterations across tumor types that can be exploited therapeutically. A biomarker-driven, disease-agnostic approach to oncology drug development can maximize the reach of novel therapeutics. To date, eight drug-biomarker pairs have been approved for the treatment of patients with advanced solid tumors with specific molecular profiles. Emerging biomarkers with the potential for clinical actionability across tumor types include gene fusions involving NRG1, FGFR1/2/3, BRAF, and ALK and mutations in TP53 Y220C, KRAS G12C, FGFR2/3, and BRAF non-V600 (class II). We explore the growing evidence for clinical actionability of these biomarkers in patients with advanced solid tumors.
Collapse
Affiliation(s)
| | - Alison M. Schram
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
11
|
Lordick F, Rha SY, Muro K, Yong WP, Lordick Obermannová R. Systemic Therapy of Gastric Cancer-State of the Art and Future Perspectives. Cancers (Basel) 2024; 16:3337. [PMID: 39409957 PMCID: PMC11475804 DOI: 10.3390/cancers16193337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: The prognosis of patients diagnosed with locally advanced and metastatic gastric and esophago-gastric junction cancer is critical. The optimal choice of systemic therapy is essential to optimize survival outcomes. Methods: A comprehensive literature review via PubMed and analysis of major oncology congresses (European Society for Medical Oncology and American Society of Clinical Oncology websites) were conducted to ascertain the current status and latest developments in the systemic treatment of patients with localized or advanced gastric and esophago-gastric junction adenocarcinoma. Results: While neoadjuvant and perioperative chemotherapy for localized tumor stages is the preferred approach in the Western Hemisphere, adjuvant chemotherapy remains the preferred course of action in East Asia. The administration of chemotherapy, typically in the form of combinations comprising platinum and fluoropyrimidine compounds in combination with docetaxel, represents a standard of care. Investigations are underway into the potential of immunotherapy and other biologically targeted agents in the perioperative setting. To select the most appropriate therapy for advanced gastric cancer, including adenocarcinoma of the esophago-gastric junction, it is essential to determine biomarkers such as HER2 expression, PD-L1 combined positive score (CPS) (combined positive score), Claudin 18.2, and microsatellite instability (MSI). In the present clinical context, the standard first-line therapy is a combination of fluoropyrimidine and a platinum derivative. The selection of chemotherapy in combination with antibodies is contingent upon the specific biomarker under consideration. Conclusions: This article reviews the current state of the art based on recent clinical trial results and provides an outlook on the future of systemic therapy.
Collapse
Affiliation(s)
- Florian Lordick
- Department of Medicine (Oncology, Gastroenterology, Hepatology, Pulmonology), University of Leipzig Medical Center, Cancer Center Central Germany, 04103 Leipzig, Germany
| | - Sun Young Rha
- Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119074, Singapore
| | - Radka Lordick Obermannová
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, 656 53 Brno, Czech Republic
| |
Collapse
|
12
|
Nafie MS, Kahwash SH, Youssef MM, Dawood KM. Recent advances on quinoxalines as target-oriented chemotherapeutic anticancer agents through apoptosis. Arch Pharm (Weinheim) 2024; 357:e2400225. [PMID: 38822393 DOI: 10.1002/ardp.202400225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The current review outlines all possible recent synthetic platforms to quinoxaline derivatives and the potent stimulated apoptosis mechanisms targeted by anticancer therapies. The currently reported results disclosed that quinoxaline derivatives had promising anticancer potencies against a wide array of cancer cell lines, better than the reference drugs, through target inhibition. This review summarizes some potent quinoxaline derivatives with their synthesis strategies and their potential activities against various molecular targets. Quinoxalines can be considered an important scaffold for apoptosis inducers in cancer cells through inhibiting some molecular targets, so they can be further developed as target-oriented chemotherapeutics.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Shaima H Kahwash
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Magdy M Youssef
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Kamal M Dawood
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Bell SD, Quinn AE, Spitzer TD, Voss BB, Wakefield MR, Fang Y. Emerging molecular therapies in the treatment of bladder cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1135-1154. [PMID: 39351439 PMCID: PMC11438598 DOI: 10.37349/etat.2024.00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Bladder cancer is a leading cancer type in men. The complexity of treatment in late-stage bladder cancer after systemic spread through the lymphatic system highlights the importance of modulating disease-free progression as early as possible in cancer staging. With current therapies relying on previous standards, such as platinum-based chemotherapeutics and immunomodulation with Bacillus Calmette-Guerin, researchers, and clinicians are looking for targeted therapies to stop bladder cancer at its source early in progression. A new era of molecular therapies that target specific features upregulated in bladder cancer cell lines is surfacing, which may be able to provide clinicians and patients with better control of disease progression. Here, we discuss multiple emerging therapies including immune checkpoint inhibitors of the programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway, antibody-drug conjugates, modulation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) cell proliferation pathway, chimeric antigen receptor T-cell therapy, and fibroblast growth factor receptor targeting. Together, these modern treatments provide potentially promising results for bladder cancer patients with the possibility of increasing remission and survival rates.
Collapse
Affiliation(s)
- Scott D Bell
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Anthony E Quinn
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Tom D Spitzer
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Brady B Voss
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
14
|
Fu X, Jiao Y, Feng Y, Lin F, Zhang B, Mao Q, Wang J, Jiang W, Mou Y, Wang H, Wang S. Scaffold Hopping of Pristimerin Provides Derivatives Containing a Privileged Quinoxaline Substructure as Potent Autophagy Inducers in Breast Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2024; 87:1952-1964. [PMID: 39106494 DOI: 10.1021/acs.jnatprod.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Pristimerin is a natural triterpenoid that has received much attention from medicinal chemists for its multiple biological activities. However, structural modifications of pristimerin, especially those aimed at discovering antitumor agents, are relatively limited. In this study, two series of pristimerin derivatives containing phenyloxazole and quinoxaline moieties, respectively, were designed via the scaffold hopping strategy. The target compounds were synthesized and analyzed for their cytotoxic activities in vitro using the MTT assay. The most potent cytotoxic compound (21o) significantly inhibited the proliferation of MCF-7 cells with an IC50 value of 2.0 μM, 1.5-fold more potent than pristimerin (IC50 = 3.0 μM). Compared with pristimerin, compound 21o displayed the greatest improvement in selectivity (25.7-fold) against the MCF-7 and MCF-10A cell lines. Transmission electron microscopy, monodansylcadaverine and DCFH-DA staining, Western blotting, and different inhibitor assays were performed to elucidate the mechanism of action of compound 21o. Compound 21o induced autophagy-mediated cell death in MCF-7 cells by activating the ROS/JNK signaling pathway. Therefore, incorporating a quinoxaline substructure into pristimerin could be advantageous for enhancing its cytotoxic activity. Compound 21o may serve as a lead compound for developing new therapies to treat breast cancer.
Collapse
Affiliation(s)
- Xuefeng Fu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Yang Jiao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Yao Feng
- Ningxia Kangya Pharmaceutical Co., Ltd., Yinchuan 750000, China
| | - Fengwei Lin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Bing Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Qing Mao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Jiahui Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Wen Jiang
- Department of Orthopedics, The First Affiliated Hospital, China Medical University, Shenyang 110000, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Han Wang
- Department of Orthopedics, The First Affiliated Hospital, China Medical University, Shenyang 110000, China
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| |
Collapse
|
15
|
Mechahougui H, Gutmans J, Colarusso G, Gouasmi R, Friedlaender A. Advances in Personalized Oncology. Cancers (Basel) 2024; 16:2862. [PMID: 39199633 PMCID: PMC11352922 DOI: 10.3390/cancers16162862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Advances in next-generation sequencing (NGS) have catalyzed a paradigm shift in cancer treatment, steering the focus from conventional, organ-specific protocols to precision medicine. Emerging targeted therapies offer a cutting-edge approach to cancer treatment, while companion diagnostics play an essential role in aligning therapeutic choices with specific molecular changes identified through NGS. Despite these advances, interpreting the clinical implications of a rapidly expanding catalog of genetic mutations remains a challenge. The selection of therapies in the presence of multiple mutations requires careful clinical judgment, supported by quality-centric genomic testing that emphasizes actionable mutations. Molecular tumor boards can play an increasing role in assimilating genomic data into clinical trials, thereby refining personalized treatment approaches and improving patient outcomes.
Collapse
Affiliation(s)
- Hiba Mechahougui
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (H.M.)
| | - James Gutmans
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (H.M.)
| | - Gina Colarusso
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (H.M.)
| | - Roumaïssa Gouasmi
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, 69100 Lyon, France
| | | |
Collapse
|
16
|
Park JO, Feng YH, Su WC, Oh DY, Keam B, Shen L, Kim SW, Liu X, Liao H, Qing M, Zhang C, Qian J, Tang X, Li P, Triantos S, Sweiti H. Erdafitinib in Asian patients with advanced solid tumors: an open-label, single-arm, phase IIa trial. BMC Cancer 2024; 24:1006. [PMID: 39138436 PMCID: PMC11323360 DOI: 10.1186/s12885-024-12584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND FGFR genomic aberrations occur in approximately 5-10% of human cancers. Erdafitinib has previously demonstrated efficacy and safety in FGFR-altered advanced solid tumors, such as gliomas, thoracic, gastrointestinal, gynecological, and other rare cancers. However, its efficacy and safety in Asian patients remain largely unknown. We conducted a multicenter, open-label, single-arm phase IIa study of erdafitinib to evaluate its efficacy in Asian patients with FGFR-altered advanced cholangiocarcinoma, non-small cell lung cancer (NSCLC), and esophageal cancer. METHODS Patients with pathologically/cytologically confirmed, advanced, or refractory tumors who met molecular and study eligibility criteria received oral erdafitinib 8 mg once daily with an option for pharmacodynamically guided up-titration to 9 mg on a 28-day cycle, except for four NSCLC patients who received erdafitinib 10 mg (7 days on/7 days off) as they were recruited before the protocol amendment. The primary endpoint was investigator-assessed objective response rate per RECIST v1.1. Secondary endpoints included progression-free survival, duration of response, disease control rate, overall survival, safety, and pharmacokinetics. RESULTS Thirty-five patients (cholangiocarcinoma: 22; NSCLC: 12; esophageal cancer: 1) were enrolled. At data cutoff (November 19, 2021), the objective response rate for patients with cholangiocarcinoma was 40.9% (95% CI, 20.7-63.6); the median progression-free survival was 5.6 months (95% CI, 3.6-12.7) and median overall survival was 40.2 months (95% CI, 12.4-not estimable). No patient with RET/FGFR-altered NSCLC achieved objective response and the disease control rate was 25.0% (95% CI, 5.5-57.2%), with three patients with stable disease. The single patient with esophageal cancer achieved partial response. All patients experienced treatment-emergent adverse events, and grade ≥ 3 treatment-emergent adverse events were reported in 22 (62.9%) patients. Hyperphosphatemia was the most frequently reported treatment-emergent adverse event (all-grade, 85.7%). CONCLUSIONS Erdafitinib demonstrated efficacy in a population of Asian patients in selected advanced solid tumors, particularly in those with advanced FGFR-altered cholangiocarcinoma. Treatment was tolerable with no new safety signals. TRIAL REGISTRATION This trial is registered with ClinicalTrials.gov (NCT02699606); study registration (first posted): 04/03/2016.
Collapse
Affiliation(s)
- Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Yin-Hsun Feng
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Wu-Chou Su
- Department of Oncology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Bhumsuk Keam
- Department of Internal Medicine, Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Lin Shen
- Department of GI Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Sang-We Kim
- Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Xiufeng Liu
- Qinhuai Medical Zone, Eastern Theater General Hospital of the Chinese PLA, Nanjing, China
| | | | - Min Qing
- Janssen China R&D Center, Shanghai, China
| | | | - Jiaqi Qian
- Janssen China R&D Center, Shanghai, China
| | | | - Peng Li
- Janssen China R&D Center, Shanghai, China
| | | | | |
Collapse
|
17
|
Yamamoto N, Kuboki Y, Harano K, Koyama T, Kondo S, Hagiwara A, Suzuki N, Fujikawa E, Toyoizumi K, Mukai M, Doi T. A phase 1/1b, open-label, dose-escalation study of PD-1 inhibitor, cetrelimab alone and in combination with FGFR inhibitor, erdafitinib in Japanese patients with advanced solid tumors. Invest New Drugs 2024; 42:376-385. [PMID: 38833067 PMCID: PMC11327176 DOI: 10.1007/s10637-024-01433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/12/2024] [Indexed: 06/06/2024]
Abstract
Immune checkpoint inhibitors are the leading approaches in tumor immunotherapy. The aim of the study was to establish recommended phase 2 doses (RP2Ds) of intravenous cetrelimab, a checkpoint inhibitor, alone and with oral erdafitinib in Japanese patients with advanced solid tumors. This open-label, non-randomized, dose-escalation phase 1/1b study enrolled adults with advanced solid tumors who were ineligible for standard therapy. Study was conducted in two parts: phase 1a assessed cetrelimab at three dosing levels (80 mg every 2 weeks [Q2W], 240 mg Q2W, and 480 mg Q4W); phase 1b assessed cetrelimab+erdafitinib at two dosing levels (240 mg Q2W + 6 mg once daily [QD] and 240 mg Q2W + 8 mg QD). Primary endpoint was frequency and severity of dose-limiting toxicities (DLTs) of cetrelimab ± erdafitinib. In total 22 patients (phase 1a, n = 9; phase 1b, n = 13) were enrolled. Median duration of follow-up was 8.64 months in phase 1a and 2.33 months in phase 1b. In phase 1a, DLTs weren't reported while in phase 1b, 1 patient who received 240 mg cetrelimab + 6 mg erdafitinib reported Stevens-Johnson syndrome (grade 3, immune-related). Overall, 88.9% patients in phase 1a (grade ≥ 3: 44.4%) and 100.0% in phase 1b (grade ≥ 3: 53.8%) experienced ≥ 1 treatment-related adverse events (TEAEs); 33.3% in phase 1a and 38.5% in phase 1b reported serious TEAEs, of which 11.1% patients in phase 1a and 15.4% in phase 1b had TEAEs which led to treatment discontinuation. Cetrelimab alone and in combination with erdafitinib showed manageable safety in Japanese patients with advanced solid tumors. RP2Ds were determined as 480 mg cetrelimab Q4W for monotherapy, and cetrelimab 240 mg Q2W + erdafitinib 8 mg QD for combination therapy.
Collapse
Affiliation(s)
- Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Yasutoshi Kuboki
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Chiba, Japan
| | - Kenichi Harano
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Chiba, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Shunsuke Kondo
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Akiko Hagiwara
- Research and Development Division, Janssen Pharmaceutical K.K., Tokyo, Japan
| | - Noriko Suzuki
- Research and Development Division, Janssen Pharmaceutical K.K., Tokyo, Japan
| | - Ei Fujikawa
- Research and Development Division, Janssen Pharmaceutical K.K., Tokyo, Japan
| | - Kiichiro Toyoizumi
- Research and Development Division, Janssen Pharmaceutical K.K., Tokyo, Japan
| | - Mayumi Mukai
- Research and Development Division, Janssen Pharmaceutical K.K., Tokyo, Japan
| | - Toshihiko Doi
- Department of Experimental Therapeutics, National Cancer Center Hospital East, Chiba, Japan.
| |
Collapse
|
18
|
Esmail A, Badheeb M, Alnahar BW, Almiqlash B, Sakr Y, Al-Najjar E, Awas A, Alsayed M, Khasawneh B, Alkhulaifawi M, Alsaleh A, Abudayyeh A, Rayyan Y, Abdelrahim M. The Recent Trends of Systemic Treatments and Locoregional Therapies for Cholangiocarcinoma. Pharmaceuticals (Basel) 2024; 17:910. [PMID: 39065760 PMCID: PMC11279608 DOI: 10.3390/ph17070910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a hepatic malignancy that has a rapidly increasing incidence. CCA is anatomically classified into intrahepatic (iCCA) and extrahepatic (eCCA), which is further divided into perihilar (pCCA) and distal (dCCA) subtypes, with higher incidence rates in Asia. Despite its rarity, CCA has a low 5-year survival rate and remains the leading cause of primary liver tumor-related death over the past 10-20 years. The systemic therapy section discusses gemcitabine-based regimens as primary treatments, along with oxaliplatin-based options. Second-line therapy is limited but may include short-term infusional fluorouracil (FU) plus leucovorin (LV) and oxaliplatin. The adjuvant therapy section discusses approaches to improve overall survival (OS) post-surgery. However, only a minority of CCA patients qualify for surgical resection. In comparison to adjuvant therapies, neoadjuvant therapy for unresectable cases shows promise. Gemcitabine and cisplatin indicate potential benefits for patients awaiting liver transplantation. The addition of immunotherapies to chemotherapy in combination is discussed. Nivolumab and innovative approaches like CAR-T cells, TRBAs, and oncolytic viruses are explored. We aim in this review to provide a comprehensive report on the systemic and locoregional therapies for CCA.
Collapse
Affiliation(s)
- Abdullah Esmail
- Section of GI Oncology, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Mohamed Badheeb
- Department of Internal Medicine, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT 06610, USA
| | | | - Bushray Almiqlash
- Zuckerman College of Public Health, Arizona State University, Tempe, AZ 85287, USA;
| | - Yara Sakr
- Department of GI Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ebtesam Al-Najjar
- Section of GI Oncology, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ali Awas
- Faculty of Medicine and Health Sciences, University of Science and Technology, Sanaa P.O. Box 15201-13064, Yemen
| | | | - Bayan Khasawneh
- Section of GI Oncology, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
| | | | - Amneh Alsaleh
- Department of Medicine, Desert Regional Medical Center, Palm Springs, CA 92262, USA
| | - Ala Abudayyeh
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yaser Rayyan
- Department of Gastroenterology & Hepatology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Maen Abdelrahim
- Section of GI Oncology, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
19
|
Gibson N, Larroquette M, Domblides C, Lefort F, Daste A. FGF amplification an important targeted for head and neck cancer patient? A case report of a patient with FGF amplification treated with erdafitinib. Eur J Cancer 2024; 202:113986. [PMID: 38484691 DOI: 10.1016/j.ejca.2024.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 04/21/2024]
Affiliation(s)
- Nyere Gibson
- Department of Medical Oncology, Hôpital Saint-André, CHU Bordeaux, France; Bordeaux university, Bordeaux, France
| | - Mathieu Larroquette
- Department of Medical Oncology, Hôpital Saint-André, CHU Bordeaux, France; Bordeaux university, Bordeaux, France; IBGC, CNRS, UMR5095, University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | - Charlotte Domblides
- Department of Medical Oncology, Hôpital Saint-André, CHU Bordeaux, France; Bordeaux university, Bordeaux, France; ImmunoConcEpt, CNRS UMR 5164, Bordeaux University, Bordeaux 33076, France
| | - Felix Lefort
- Department of Medical Oncology, Hôpital Saint-André, CHU Bordeaux, France
| | - Amaury Daste
- Department of Medical Oncology, Hôpital Saint-André, CHU Bordeaux, France.
| |
Collapse
|
20
|
Lucke-Wold B, Rangwala BS, Shafique MA, Siddiq MA, Mustafa MS, Danish F, Nasrullah RMU, Zainab N, Haseeb A. Focus on current and emerging treatment options for glioma: A comprehensive review. World J Clin Oncol 2024; 15:482-495. [PMID: 38689623 PMCID: PMC11056857 DOI: 10.5306/wjco.v15.i4.482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 04/22/2024] Open
Abstract
This comprehensive review delves into the current updates and challenges associated with the management of low-grade gliomas (LGG), the predominant primary tumors in the central nervous system. With a general incidence rate of 5.81 per 100000, gliomas pose a significant global concern, necessitating advancements in treatment techniques to reduce mortality and morbidity. This review places a particular focus on immunotherapies, discussing promising agents such as Zotiraciclib and Lerapolturev. Zotiraciclib, a CDK9 inhibitor, has demonstrated efficacy in glioblastoma treatment in preclinical and clinical studies, showing its potential as a therapeutic breakthrough. Lerapolturev, a viral immunotherapy, induces inflammation in glioblastoma and displays positive outcomes in both adult and pediatric patients. Exploration of immunotherapy extends to Pembrolizumab, Nivolumab, and Entrectinib, revealing the challenges and variabilities in patient responses. Despite promising preclinical data, the monoclonal antibody Depatuxizumab has proven ineffective in glioblastoma treatment, emphasizing the critical need to understand resistance mechanisms. The review also covers the success of radiation therapy in pediatric LGG, with evolving techniques, such as proton therapy, showing potential improvements in patient quality of life. Surgical treatment is discussed in the context of achieving a balance between preserving the patient's quality of life and attaining gross total resection, with the extent of surgical resection significantly influencing the survival outcomes. In addition to advancements in cancer vaccine development, this review highlights the evolving landscape of LGG treatment, emphasizing a shift toward personalized and targeted therapies. Ongoing research is essential for refining strategies and enhancing outcomes in the management of LGG.
Collapse
Affiliation(s)
- Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, United States
| | | | | | - Mohammad Arham Siddiq
- Department of Neurosurgery, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| | | | - Fnu Danish
- Department of Neurosurgery, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| | | | - Noor Zainab
- Department of Neurosurgery, Army Medical College, Rawalpindi 46000, Pakistan
| | - Abdul Haseeb
- Department of Neurosurgery, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| |
Collapse
|
21
|
Meric-Bernstam F, Hollebecque A, Furuse J, Oh DY, Bridgewater JA, Shimura M, Anderson B, Hangai N, Wacheck V, Goyal L. Safety Profile and Adverse Event Management for Futibatinib, An Irreversible FGFR1-4 Inhibitor: Pooled Safety Analysis of 469 Patients. Clin Cancer Res 2024; 30:1466-1477. [PMID: 38329716 PMCID: PMC11016890 DOI: 10.1158/1078-0432.ccr-23-2646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
PURPOSE Futibatinib, a covalently-binding inhibitor of fibroblast growth factor receptor (FGFR)1-4 gained approval for the treatment of refractory, advanced intrahepatic cholangiocarcinoma (iCCA) harboring an FGFR2 fusion/other rearrangement. An integrated analysis was performed to evaluate safety and provide guidance on the management of futibatinib-associated adverse events (AEs) in patients with unresectable/metastatic tumors, including iCCA. PATIENTS AND METHODS Data from three global phase I or II studies of futibatinib (NCT02052778; JapicCTI-142552) were pooled. AEs were graded per NCI CTCAE v4.03, where applicable. Safety was analyzed for patients receiving any futibatinib starting dose (overall population) and in those receiving the approved starting dose of 20 mg once every day. RESULTS In total, 469 patients with one of 33 known tumor types were analyzed, including 318 patients who received futibatinib 20 mg every day. AEs of clinical interest (AECI; any grade/grade ≥3) in the overall population included hyperphosphatemia (82%/19%), nail disorders (27%/1%), hepatic AEs (27%/11%), stomatitis (19%/3%), palmar-plantar erythrodysesthesia syndrome (PPES; 13%/3%), rash (9%/0%), retinal disorders (8%/0%), and cataract (4%/1%). Median time to onset of grade ≥3 AECIs ranged from 9 days (hyperphosphatemia) to 125 days (cataract). Grade ≥3 hyperphosphatemia, hepatic AEs, PPES, and nail disorders resolved to grade ≤2 within a median of 7, 7, 8, and 28 days, respectively. Discontinuations due to treatment-related AEs were rare (2%), and no treatment-related deaths occurred. AE management included phosphate-lowering medication and dose adjustments. CONCLUSIONS Futibatinib showed a consistent and manageable safety profile across patients with various tumor types. AECIs were mostly reversible with appropriate clinical management.
Collapse
Affiliation(s)
- Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Cancer Research Institute, Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
| | - John A. Bridgewater
- Department of Medical Oncology, University College London Cancer Institute, London, United Kingdom
| | | | | | | | | | - Lipika Goyal
- Division of Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Division of Oncology, Department of Medicine, Stanford Cancer Center, Palo Alto, California
| |
Collapse
|
22
|
Gong J, Mita AC, Wei Z, Cheng HH, Mitchell EP, Wright JJ, Ivy SP, Wang V, Gray RC, McShane LM, Rubinstein LV, Patton DR, Williams PM, Hamilton SR, Tricoli JV, Conley BA, Arteaga CL, Harris LN, O’Dwyer PJ, Chen AP, Flaherty KT. Phase II Study of Erdafitinib in Patients With Tumors With Fibroblast Growth Factor Receptor Mutations or Fusions: Results From the NCI-MATCH ECOG-ACRIN Trial (EAY131) Subprotocol K2. JCO Precis Oncol 2024; 8:e2300407. [PMID: 38603650 PMCID: PMC11623915 DOI: 10.1200/po.23.00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 04/13/2024] Open
Abstract
PURPOSE Subprotocol K2 (EAY131-K2) of the NCI-MATCH platform trial was an open-label, single-arm, phase II study designed to evaluate the antitumor efficacy of the oral FGFR1-4 inhibitor, erdafitinib, in patients with tumors harboring FGFR1-4 mutations or fusions. METHODS Central confirmation of tumor FGFR1-4 mutations or fusions was required for outcome analysis. Patients with urothelial carcinoma were excluded. Enrolled subjects received oral erdafitinib at a starting dose of 8 mg daily continuously until intolerable toxicity or disease progression. The primary end point was objective response rate (ORR) with key secondary end points of safety, progression-free survival (PFS), and overall survival (OS). RESULTS Thirty-five patients were enrolled, and 25 patients were included in the primary efficacy analysis as prespecified in the protocol. The median age was 61 years, and 52% of subjects had received ≥3 previous lines of therapy. The confirmed ORR was 16% (4 of 25 [90% CI, 5.7 to 33.0], P = .034 against the null rate of 5%). An additional seven patients experienced stable disease as best-confirmed response. Four patients had a prolonged PFS including two with recurrent WHO grade IV, IDH1-/2-wildtype glioblastoma. The median PFS and OS were 3.6 months and 11.0 months, respectively. Erdafitinib was manageable with no new safety signals. CONCLUSION This study met its primary end point in patients with several pretreated solid tumor types harboring FGFR1-3 mutations or fusions. These findings support advancement of erdafitinib for patients with fibroblast growth factor receptor-altered tumors outside of currently approved indications in a potentially tumor-agnostic manner.
Collapse
Affiliation(s)
- Jun Gong
- Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Zihan Wei
- Dana Farber Cancer Institute – ECOG-ACRIN Biostatistics Center, Boston, MA
| | | | - Edith P. Mitchell
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA
| | - John J. Wright
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - S. Percy Ivy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Victoria Wang
- Dana Farber Cancer Institute – ECOG-ACRIN Biostatistics Center, Boston, MA
| | - Robert C. Gray
- Dana Farber Cancer Institute – ECOG-ACRIN Biostatistics Center, Boston, MA
| | - Lisa M. McShane
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Larry V. Rubinstein
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - David R. Patton
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | | | - James V. Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Barbara A. Conley
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Lyndsay N. Harris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Alice P. Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | |
Collapse
|
23
|
De Carlo A, Tosca EM, Fantozzi M, Magni P. Reinforcement Learning and PK-PD Models Integration to Personalize the Adaptive Dosing Protocol of Erdafitinib in Patients with Metastatic Urothelial Carcinoma. Clin Pharmacol Ther 2024; 115:825-838. [PMID: 38339803 DOI: 10.1002/cpt.3176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/15/2023] [Indexed: 02/12/2024]
Abstract
The integration of pharmacokinetic-pharmacodynamic (PK-PD) modeling and simulations with artificial intelligence/machine learning algorithms is one of the most attractive areas of the pharmacometric research. These hybrid techniques are currently under investigation to perform several tasks, among which precision dosing. In this scenario, this paper presents and evaluates a new framework embedding PK-PD models into a reinforcement learning (RL) algorithm, Q-learning (QL), to personalize pharmacological treatment. Each patient is represented with a set of PK-PD parameters and has a personal QL agent which optimizes the individual treatment. In the training phase, leveraging PK-PD simulations, the QL agent assesses different actions, defined consistently with the clinical knowledge to consider only plausible dose-adjustments, in order to find the optimal rules. The proposed framework was evaluated to optimize the erdafitinib treatment in patients with metastatic urothelial carcinoma. This drug was approved by the US Food and Drug Administration (FDA) with a dose-adaptive protocol based on monitoring the levels of serum phosphate, which represent a biomarker of both treatment efficacy and toxicity. To evaluate the flexibility of the methodology, a heterogeneous virtual population of 141 patients was generated using an erdafitinib population PK (PopPK)-PD literature model. For each patient, treatment response was simulated by using both QL-optimized protocol and the clinical one. QL agents outperform the approved dose-adaptive rules, increasing more than 10% the efficacy and the safety of treatment at each end point. Results confirm the great potentialities of the integration of PopPK-PD models and RL algorithms to optimize precision dosing tasks.
Collapse
Affiliation(s)
- Alessandro De Carlo
- Electrical, Computer, and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Elena Maria Tosca
- Electrical, Computer, and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Martina Fantozzi
- Electrical, Computer, and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Paolo Magni
- Electrical, Computer, and Biomedical Engineering, University of Pavia, Pavia, Italy
| |
Collapse
|
24
|
Gong J, Mita AC, Wei Z, Cheng HH, Mitchell EP, Wright JJ, Ivy SP, Wang V, Gray RC, McShane LM, Rubinstein LV, Patton DR, Williams PM, Hamilton SR, Alva AS, Tricoli JV, Conley BA, Arteaga CL, Harris LN, O’Dwyer PJ, Chen AP, Flaherty KT. Phase II Study of Erdafitinib in Patients With Tumors With FGFR Amplifications: Results From the NCI-MATCH ECOG-ACRIN Trial (EAY131) Subprotocol K1. JCO Precis Oncol 2024; 8:e2300406. [PMID: 38603651 PMCID: PMC11623914 DOI: 10.1200/po.23.00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 02/08/2024] [Indexed: 04/13/2024] Open
Abstract
PURPOSE Despite fibroblast growth factor receptor (FGFR) inhibitors being approved in tumor types with select FGFR rearrangements or gene mutations, amplifications of FGFR represent the most common FGFR alteration across malignancies. Subprotocol K1 (EAY131-K1) of the National Cancer Institute-MATCH platform trial was designed to evaluate the antitumor efficacy of the oral FGFR1-4 inhibitor, erdafitinib, in patients with tumors harboring FGFR1-4 amplification. METHODS EAY131-K1 was an open-label, single-arm, phase II study with central confirmation of presence of FGFR1-4 amplification in tumors. Patients with urothelial carcinoma were excluded. Enrolled patients received oral erdafitinib at a starting dose of 8 mg once daily continuously with escalation to 9 mg once daily continuously, on the basis of predefined time point assessments of phosphate levels, until disease progression or intolerable toxicity. The primary end point was centrally assessed objective response rate (ORR), with key secondary end points being 6-month progression-free survival (PFS6), PFS, overall survival (OS), and safety. RESULTS Thirty-five patients were enrolled into this study with 18 included in the prespecified primary efficacy analysis. The median age of the 18 patients was 60 years, and 78% had received ≥3 previous lines of therapy. There were no confirmed responses to erdafitinib; however, five patients experienced stable disease (SD) as best response. One patient with an FGFR1-amplified breast cancer had a prolonged PFS >168 days (5.5 months). The median PFS was 1.7 months (90% CI, 1.1 to 1.8 months) and the median OS was 4.2 months (90% CI, 2.3 to 9.3 months). The estimated PFS6 rate was 13.8% (90% CI, 3.3 to 31.6). The majority of toxicities were grade 1 to 2 in nature, although there was one grade 5 treatment-related adverse event. CONCLUSION Erdafitinib did not meet its primary end point of efficacy as determined by ORR in treatment-refractory solid tumors harboring FGFR1-4 amplifications. Our findings support that rearrangements and gene mutations, but not amplifications, of FGFR remain the established FGFR alterations with approved indications for FGFR inhibition.
Collapse
Affiliation(s)
- Jun Gong
- Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Zihan Wei
- Dana Farber Cancer Institute – ECOG-ACRIN Biostatistics Center, Boston, MA
| | | | - Edith P. Mitchell
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA
| | - John J. Wright
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - S. Percy Ivy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Victoria Wang
- Dana Farber Cancer Institute – ECOG-ACRIN Biostatistics Center, Boston, MA
| | - Robert C. Gray
- Dana Farber Cancer Institute – ECOG-ACRIN Biostatistics Center, Boston, MA
| | - Lisa M. McShane
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Larry V. Rubinstein
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - David R. Patton
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | | | | | - James V. Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Barbara A. Conley
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Lyndsay N. Harris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Alice P. Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | |
Collapse
|
25
|
Katoh M, Loriot Y, Brandi G, Tavolari S, Wainberg ZA, Katoh M. FGFR-targeted therapeutics: clinical activity, mechanisms of resistance and new directions. Nat Rev Clin Oncol 2024; 21:312-329. [PMID: 38424198 DOI: 10.1038/s41571-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Fibroblast growth factor (FGF) signalling via FGF receptors (FGFR1-4) orchestrates fetal development and contributes to tissue and whole-body homeostasis, but can also promote tumorigenesis. Various agents, including pan-FGFR inhibitors (erdafitinib and futibatinib), FGFR1/2/3 inhibitors (infigratinib and pemigatinib), as well as a range of more-specific agents, have been developed and several have entered clinical use. Erdafitinib is approved for patients with urothelial carcinoma harbouring FGFR2/3 alterations, and futibatinib and pemigatinib are approved for patients with cholangiocarcinoma harbouring FGFR2 fusions and/or rearrangements. Clinical benefit from these agents is in part limited by hyperphosphataemia owing to off-target inhibition of FGFR1 as well as the emergence of resistance mutations in FGFR genes, activation of bypass signalling pathways, concurrent TP53 alterations and possibly epithelial-mesenchymal transition-related isoform switching. The next generation of small-molecule inhibitors, such as lirafugratinib and LOXO-435, and the FGFR2-specific antibody bemarituzumab are expected to have a reduced risk of hyperphosphataemia and the ability to overcome certain resistance mutations. In this Review, we describe the development and current clinical role of FGFR inhibitors and provide perspective on future research directions including expansion of the therapeutic indications for use of FGFR inhibitors, combination of these agents with immune-checkpoint inhibitors and the application of novel technologies, such as artificial intelligence.
Collapse
Affiliation(s)
| | - Yohann Loriot
- Drug Development Department (DITEP), Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
- INSERM U981, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zev A Wainberg
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Masaru Katoh
- M & M Precision Medicine, Tokyo, Japan.
- Department of Omics Network, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
26
|
Pezzicoli G, Ciciriello F, Musci V, Minei S, Biasi A, Ragno A, Cafforio P, Rizzo M. Genomic Profiling and Molecular Characterisation of Metastatic Urothelial Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:585. [PMID: 38674231 PMCID: PMC11052409 DOI: 10.3390/medicina60040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The clinical management of metastatic urothelial carcinoma (mUC) is undergoing a major paradigm shift; the integration of immune checkpoint inhibitors (ICIs) and antibody-drug conjugates (ADCs) into the mUC therapeutic strategy has succeeded in improving platinum-based chemotherapy outcomes. Given the expanding therapeutic armamentarium, it is crucial to identify efficacy-predictive biomarkers that can guide an individual patient's therapeutic strategy. We reviewed the literature data on mUC genomic alterations of clinical interest, discussing their prognostic and predictive role. In particular, we explored the role of the fibroblast growth factor receptor (FGFR) family, epidermal growth factor receptor 2 (HER2), mechanistic target of rapamycin (mTOR) axis, DNA repair genes, and microsatellite instability. Currently, based on the available clinical data, FGFR inhibitors and HER2-directed ADCs are effective therapeutic options for later lines of biomarker-driven mUC. However, emerging genomic data highlight the opportunity for earlier use and/or combination with other drugs of both FGFR inhibitors and HER2-directed ADCs and also reveal additional potential drug targets that could change mUC management.
Collapse
Affiliation(s)
- Gaetano Pezzicoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Federica Ciciriello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Vittoria Musci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Silvia Minei
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Antonello Biasi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Anna Ragno
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| | - Paola Cafforio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Mimma Rizzo
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| |
Collapse
|
27
|
Jain NK, Tailang M, Thangavel N, Makeen HA, Albratty M, Najmi A, Alhazmi HA, Zoghebi K, Alagusundaram M, Jain HK, Chandrasekaran B. A comprehensive overview of selective and novel fibroblast growth factor receptor inhibitors as a potential anticancer modality. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:1-36. [PMID: 38554385 DOI: 10.2478/acph-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 04/01/2024]
Abstract
The arrival of comprehensive genome sequencing has accelerated the understanding of genetically aberrant advanced cancers and target identification for possible cancer treatment. Fibroblast growth factor receptor (FGFR) gene alterations are frequent findings in various rare and advanced cancers refractive to mainstay chemo-therapy or surgical interventions. Several FGFR inhibitors have been developed for addressing these genetically altered FGFR-harboring malignancies, and some have performed well in clinical trials. In contrast, others are still being investigated in different phases of clinical trials. FDA has approved four anticancer agents such as erdafitinib, pemigatinib, infigratinib, and futibatinib, for clinical use in oncogenic FGFR-driven malignancies. These include cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid malignancies. Pemigatinib is the only FGFR inhibitor globally approved (USA, EU, and Japan) and available as a targeted therapy for two types of cancer, including FGFR2 fusion or other rearrangements harboring cholangiocarcinoma and relapsed/refractory myeloid/lymphoid neoplasms with FGFR1 rearrangements. Myeloid/lymphoid neoplasm is the latest area of application added to the therapeutic armamentarium of FGFR inhibitors. Furthermore, futibatinib is the first-in-class covalent or irreversible pan-FGFR inhibitor that has received FDA approval for locally advanced or metastatic intrahepatic cholangiocarcinoma harboring FGFR2 gene aberrations. This review highlights the current clinical progress concerning the safety and efficacy of all the approved FGFR-TKIs (tyrosine kinase inhibitors) and their ongoing investigations in clinical trials for other oncogenic FGFR-driven malignancies.
Collapse
Affiliation(s)
- Nem Kumar Jain
- School of Pharmacy, ITM University Gwalior 474001, Madhya Pradesh, India
- School of Studies in Pharmaceutical Sciences, Jiwaji University Gwalior 474001, Madhya Pradesh, India
| | - Mukul Tailang
- School of Studies in Pharmaceutical Sciences, Jiwaji University Gwalior 474001, Madhya Pradesh, India
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Hassan Ahmad Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 82912, Saudi Arabia
| | | | - Hemant Kumar Jain
- Department of General Medicine Government Medical College Datia 475661, Madhya Pradesh, India
| | | |
Collapse
|
28
|
Mie T, Sasaki T, Okamoto T, Furukawa T, Takeda T, Kasuga A, Ozaka M, Sasahira N. Current Status of Targeted Therapy for Biliary Tract Cancer in the Era of Precision Medicine. Cancers (Basel) 2024; 16:879. [PMID: 38473240 PMCID: PMC10931393 DOI: 10.3390/cancers16050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
First-line chemotherapy has been established for advanced biliary tract cancer (BTC). However, few treatment options are available as second-line treatment. Advances in comprehensive genomic analysis revealed that nearly half of patients with BTC harbor targetable genetic alterations such as fibroblast growth factor receptor (FGFR), isocitrate dehydrogenase (IDH), BRAF, human epidermal growth factor receptor 2 (HER2), microsatellite instability (MSI)-high, neurotrophic tropomyosin receptor kinase (NTRK), rearranged during transfection (RET), and poly (adenosine diphosphate-ribose) polymerase (PARP). This review summarizes currently available options in precision medicine and clinical trials for patients with advanced BTC.
Collapse
Affiliation(s)
| | - Takashi Sasaki
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.M.); (T.O.)
| | | | | | | | | | | | | |
Collapse
|
29
|
Ding W, Yan L, Sheng L, Chen S, Li Y, Cheng S, Luo L, Huang H, Shao H, Zhang D. Identification of Piperazinyl-Difluoro-indene Derivatives Containing Pyridyl Groups as Potent FGFR Inhibitors against FGFR Mutant Tumor: Design, Synthesis, and Biological Evaluation. J Med Chem 2024; 67:2941-2962. [PMID: 38294952 DOI: 10.1021/acs.jmedchem.3c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The fibroblast growth factor receptor (FGFR) signaling pathway plays important roles in cellular processes such as proliferation, differentiation, and migration. In this study, we highlighted the potential of FGFR inhibitors bearing the (S)-3,3-difluoro-1-(4-methylpiperazin-1-yl)-2,3-dihydro-1H-indene scaffold containing a crucial 3-pyridyl group for the treatment of FGFR mutant cancers. The representative compound (S)-23, which was identified through comprehensive evaluation, exhibited potent antiproliferative activity with GI50 in the range of 6.4-10.4 nM against FGFR1 fusion protein-carrying, FGFR2-amplified, and FGFR2 mutant cancer cell lines and good antiproliferative activity against FGFR3 translocation and mutant FGFR4 cancer cell lines, as well as potency assessment against FGFR1-4 kinases. Moreover, compound (S)-23 exhibited favorable pharmacokinetic properties, low potential for drug-drug interactions, and very potent antitumor activity in MFE-296 xenograft mouse models with a TGI of 99.1% at the dose of 10 mg/kg. These findings demonstrate that compound (S)-23 is a potential therapeutic agent for FGFR mutant tumors.
Collapse
Affiliation(s)
- Wei Ding
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| | - Liting Yan
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Li Sheng
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| | - Shuting Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ying Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Shihao Cheng
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| | - Lijun Luo
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| | - Haihong Huang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| | - Huanjie Shao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Dongfeng Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| |
Collapse
|
30
|
Spahn S, Kleinhenz F, Shevchenko E, Stahl A, Rasen Y, Geisler C, Ruhm K, Klaumuenzer M, Kronenberger T, Laufer SA, Sundberg-Malek H, Bui KC, Horger M, Biskup S, Schulze-Osthoff K, Templin M, Malek NP, Poso A, Bitzer M. The molecular interaction pattern of lenvatinib enables inhibition of wild-type or kinase-mutated FGFR2-driven cholangiocarcinoma. Nat Commun 2024; 15:1287. [PMID: 38346946 PMCID: PMC10861557 DOI: 10.1038/s41467-024-45247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Fibroblast growth factor receptor (FGFR)-2 can be inhibited by FGFR-selective or non-selective tyrosine kinase inhibitors (TKIs). Selective TKIs are approved for cholangiocarcinoma (CCA) with FGFR2 fusions; however, their application is limited by a characteristic pattern of adverse events or evocation of kinase domain mutations. A comprehensive characterization of a patient cohort treated with the non-selective TKI lenvatinib reveals promising efficacy in FGFR2-driven CCA. In a bed-to-bench approach, we investigate FGFR2 fusion proteins bearing critical tumor-relevant point mutations. These mutations confer growth advantage of tumor cells and increased resistance to selective TKIs but remain intriguingly sensitive to lenvatinib. In line with clinical observations, in-silico analyses reveal a more favorable interaction pattern of lenvatinib with FGFR2, including an increased flexibility and ligand efficacy, compared to FGFR-selective TKIs. Finally, the treatment of a patient with progressive disease and a newly developed kinase mutation during therapy with a selective inhibitor results in a striking response to lenvatinib. Our in vitro, in silico, and clinical data suggest that lenvatinib is a promising treatment option for FGFR2-driven CCA, especially when insurmountable adverse reactions of selective TKIs or acquired kinase mutations occur.
Collapse
Affiliation(s)
- Stephan Spahn
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany.
| | - Fabian Kleinhenz
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Ekaterina Shevchenko
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-University, 72076, Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tuebingen, Germany
| | - Aaron Stahl
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| | - Yvonne Rasen
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Christine Geisler
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Kristina Ruhm
- Center for Personalized Medicine, Eberhard-Karls University, 72076, Tuebingen, Germany
| | | | - Thales Kronenberger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-University, 72076, Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tuebingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-University, 72076, Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tuebingen, Germany
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076, Tuebingen, Germany
| | - Holly Sundberg-Malek
- Center for Personalized Medicine, Eberhard-Karls University, 72076, Tuebingen, Germany
| | - Khac Cuong Bui
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Marius Horger
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, 72076, Tuebingen, Germany
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik, 72076, Tuebingen, Germany
| | - Klaus Schulze-Osthoff
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076, Tuebingen, Germany
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard-Karls University, 72076, Tuebingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany
- Center for Personalized Medicine, Eberhard-Karls University, 72076, Tuebingen, Germany
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076, Tuebingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, 72076, Tuebingen, Germany
| | - Antti Poso
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-University, 72076, Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tuebingen, Germany
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076, Tuebingen, Germany
- School of Pharmacy, University of Eastern Finland, 70210, Kuopio, Finland
| | - Michael Bitzer
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany.
- Center for Personalized Medicine, Eberhard-Karls University, 72076, Tuebingen, Germany.
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076, Tuebingen, Germany.
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, 72076, Tuebingen, Germany.
| |
Collapse
|
31
|
Groß S, Bitzer M, Albert J, Blödt S, Boda-Heggemann J, Brunner T, Caspari R, De Toni E, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, La Fougère C, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ritterbusch U, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Tholen R, Trojan J, van Thiel I, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wildner D, Wörns MA, Galle P, Malek N. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:e213-e282. [PMID: 38364849 DOI: 10.1055/a-2189-8567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Affiliation(s)
- Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein, Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Klinik für Innere Medizin, Gesundheit Nord, Klinikverbund Bremen
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | | | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | - Hans J Schlitt
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg
| | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Reina Tholen
- Deutscher Bundesverband für Physiotherapie (ZVK) e. V
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
32
|
Lee YY, Ryu JY, Cho YJ, Choi JY, Choi JJ, Choi CH, Sa JK, Hwang JR, Lee JW. The anti-tumor effects of AZD4547 on ovarian cancer cells: differential responses based on c-Met and FGF19/FGFR4 expression. Cancer Cell Int 2024; 24:43. [PMID: 38273381 PMCID: PMC10811874 DOI: 10.1186/s12935-024-03235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The FGF/FGFR signaling pathway plays a critical role in human cancers. We analyzed the anti-tumor effect of AZD4547, an inhibitor targeting the FGF/FGFR pathway, in epithelial ovarian cancer (EOC) and strategies on overcoming AZD4547 resistance. METHODS The effect of AZD4547 on cell viability/migration was evaluated and in vivo experiments in intraperitoneal xenografts using EOC cells and a patient-derived xenograft (PDX) model were performed. The effect of the combination of AZD4547 with SU11274, a c-Met-specific inhibitor, FGF19-specific siRNA, or an FGFR4 inhibitor was evaluated by MTT assay. RESULTS AZD4547 significantly decreased cell survival and migration in drug-sensitive EOC cells but not drug-resistant cells. AZD4547 significantly decreased tumor weight in xenograft models of drug-sensitive A2780 and SKOV3ip1 cells and in a PDX with drug sensitivity but not in models with drug-resistant A2780-CP20 and SKOV3-TR cells. Furthermore, c-Met expression was high in SKOV3-TR and HeyA8-MDR cells, and co-administration of SU11274 and AZD4547 synergistically induced cell death. In addition, expressions of FGF19 and FGFR4 were high in A2780-CP20 cells. Combining AZD4547 with FGF19 siRNA or with a selective FGFR4 inhibitor led to significantly reduced cell proliferation in A2780-CP20 cells. CONCLUSIONS This study showed that AZD4547 has significant anti-cancer effects in drug-sensitive cells and PDX models but not in drug-resistant EOC cells. In drug-resistant cells, the expression level of c-Met or FGF19/FGFR4 may be a predictive biomarker for AZD4547 treatment response, and a combination strategy of drugs targeting c-Met or FGF19/FGFR4 together with AZD4547 may be an effective therapeutic strategy for EOC.
Collapse
Affiliation(s)
- Yoo-Young Lee
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Ji-Yoon Ryu
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Young-Jae Cho
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Jung-Joo Choi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Chel Hun Choi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Jason K Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jae Ryoung Hwang
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
| | - Jeong-Won Lee
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
33
|
Vitiello L, Lixi F, Coco G, Giannaccare G. Ocular Surface Side Effects of Novel Anticancer Drugs. Cancers (Basel) 2024; 16:344. [PMID: 38254833 PMCID: PMC10814578 DOI: 10.3390/cancers16020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Surgery, anticancer drugs (chemotherapy, hormonal medicines, and targeted treatments), and/or radiation are common treatment strategies for neoplastic diseases. Anticancer drugs eliminate malignant cells through the inhibition of specific pathways that contribute to the formation and development of cancer. Given the ability of such pharmacological medications to combat cancerous cells, their role in the management of neoplastic diseases has become essential. However, these drugs may also lead to undesirable systemic and ocular adverse effects due to cyto/neuro-toxicity and inflammatory reactions. Ocular surface side effects are recognized to significantly impact patient's quality of life and quality of vision. Blepharoconjunctivitis is known to be a common side effect caused by oxaliplatin, cyclophosphamide, cytarabine, and docetaxel, while anastrozole, methotrexate, and 5-fluorouracil can all determine dry eye disease. However, the potential processes involved in the development of these alterations are yet not fully understood, especially for novel drugs currently available for cancer treatment. This review aims at analyzing the potential ocular surface and adnexal side effects of novel anticancer medications, trying to provide a better understanding of the underlying pharmacological processes and useful insights on the choice of proper management.
Collapse
Affiliation(s)
- Livio Vitiello
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, SA, Italy;
| | - Filippo Lixi
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, CA, Italy;
| | - Giulia Coco
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy;
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, CA, Italy;
| |
Collapse
|
34
|
Wu Q, Ellis H, Siravegna G, Michel AG, Norden BL, Fece de la Cruz F, Balasooriya ER, Zhen Y, Silveira VS, Che J, Corcoran RB, Bardeesy N. Landscape of Clinical Resistance Mechanisms to FGFR Inhibitors in FGFR2-Altered Cholangiocarcinoma. Clin Cancer Res 2024; 30:198-208. [PMID: 37843855 PMCID: PMC10767308 DOI: 10.1158/1078-0432.ccr-23-1317] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE FGFR inhibitors are effective in FGFR2-altered cholangiocarcinoma, leading to approval of reversible FGFR inhibitors, pemigatinib and infigratinib, and an irreversible inhibitor, futibatinib. However, acquired resistance develops, limiting clinical benefit. Some mechanisms of resistance have been reported, including secondary FGFR2 kinase domain mutations. Here, we sought to establish the landscape of acquired resistance to FGFR inhibition and to validate findings in model systems. EXPERIMENTAL DESIGN We examined the spectrum of acquired resistance mechanisms detected in circulating tumor DNA or tumor tissue upon disease progression following FGFR inhibitor therapy in 82 FGFR2-altered cholangiocarcinoma patients from 12 published reports. Functional studies of candidate resistance alterations were performed. RESULTS Overall, 49 of 82 patients (60%) had one or more detectable secondary FGFR2 kinase domain mutations upon acquired resistance. N550 molecular brake and V565 gatekeeper mutations were most common, representing 63% and 47% of all FGFR2 kinase domain mutations, respectively. Functional studies showed different inhibitors displayed unique activity profiles against FGFR2 mutations. Interestingly, disruption of the cysteine residue covalently bound by futibatinib (FGFR2 C492) was rare, observed in 1 of 42 patients treated with this drug. FGFR2 C492 mutations were insensitive to inhibition by futibatinib but showed reduced signaling activity, potentially explaining their low frequency. CONCLUSIONS These data support secondary FGFR2 kinase domain mutations as the primary mode of acquired resistance to FGFR inhibitors, most commonly N550 and V565 mutations. Thus, development of combination strategies and next-generation FGFR inhibitors targeting the full spectrum of FGFR2 resistance mutations will be critical.
Collapse
Affiliation(s)
- Qibiao Wu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
- The Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Haley Ellis
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
- The Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Giulia Siravegna
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Alexa G. Michel
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Bryanna L. Norden
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Ferran Fece de la Cruz
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Eranga Roshan Balasooriya
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
- The Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Yuanli Zhen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
- The Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Vanessa S. Silveira
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
- The Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Jianwe Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ryan B. Corcoran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
- The Cancer Program, Broad Institute, Cambridge, Massachusetts
| |
Collapse
|
35
|
Farghaly TA, Alqurashi RM, Masaret GS, Abdulwahab HG. Recent Methods for the Synthesis of Quinoxaline Derivatives and their Biological Activities. Mini Rev Med Chem 2024; 24:920-982. [PMID: 37885112 DOI: 10.2174/0113895575264375231012115026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 10/28/2023]
Abstract
Quinoxaline derivatives have been incorporated into numerous marketed drugs used for the treatment of various diseases. Examples include glecaprevir (Mavyret), voxilaprevir (Vosevi), Balversa (L01EX16) (erdafitinib), carbadox, XK469R (NSC698215), and becampanel (AMP397). These quinoxaline derivatives exhibit a diverse range of pharmacological activities, including antibacterial, antitubercular, antiviral, anti-HIV, anti-inflammatory, antifungal, anticancer, antiproliferative, antitumor, kinase inhibition, antimicrobial, antioxidant, and analgesic effects. Recognizing the significance of these bioactive quinoxaline derivatives, researchers have dedicated their efforts to developing various synthetic methods for their production. This review aimed to compile the most recent findings on the synthesis and biological properties of quinoxaline derivatives from 2015 to 2023.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Raghad M Alqurashi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
36
|
Hsu J, Francis JH, Ahmad S. Ocular toxicities of fibroblast growth factor receptor inhibitors: A review. Surv Ophthalmol 2024; 69:34-41. [PMID: 37777119 DOI: 10.1016/j.survophthal.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Fibroblast growth factor receptor (FGFR) inhibitors are an emerging class of small molecule targeted cancer drugs with promising therapeutic possibilities for a wide variety of malignancies. While ocular adverse events from FGFR inhibitors are reported in clinical trials, subsequent case studies continue to reveal new toxicities. Disease pathology affecting multiple parts of the eye has been reported, but the ocular surface and the retina are the most commonly encountered areas affected by FGFR inhibitors, manifesting as dry eye and FGFR inhibitor-associated retinopathy, respectively. Corneal thinning and melt is a rare but serious and potentially vision-threatening complication of FGFR inhibitor toxicity. Similarities between toxicities observed from other targeted cancer therapy drugs and FGFR inhibitors may help us understand underlying pathophysiological changes. The management of these adverse events requires close ophthalmologic follow-up and may require discontinuation of the offending agents in some cases.
Collapse
Affiliation(s)
- Jerry Hsu
- New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jasmine H Francis
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Ophthalmology, Weill-Cornell Medical Center, New York, NY, USA
| | - Sumayya Ahmad
- New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
37
|
Bitzer M, Groß S, Albert J, Blödt S, Boda-Heggemann J, Brunner T, Caspari R, De Toni E, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, Fougère CL, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ritterbusch U, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Tholen R, Trojan J, van Thiel I, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wildner D, Wörns MA, Galle P, Malek N. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:e67-e161. [PMID: 38195102 DOI: 10.1055/a-2189-6353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Affiliation(s)
- Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.(AWMF), Berlin
| | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.(AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Klinik für Innere Medizin, Gesundheit Nord, Klinikverbund Bremen
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | | | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | | | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Reina Tholen
- Deutscher Bundesverband für Physiotherapie (ZVK) e. V
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
38
|
Imaoka H, Ikeda M, Nomura S, Morizane C, Okusaka T, Ozaka M, Shimizu S, Yamazaki K, Okano N, Sugimori K, Shirakawa H, Mizuno N, Satoi S, Yamaguchi H, Sugimoto R, Gotoh K, Sano K, Asagi A, Nakamura K, Ueno M. Development of a nomogram to predict survival in advanced biliary tract cancer. Sci Rep 2023; 13:21548. [PMID: 38057434 PMCID: PMC10700490 DOI: 10.1038/s41598-023-48889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The prognosis of advanced biliary tract cancer (BTC) patients remains poor due to limited efficacy of chemotherapy and difficulties in management. Thus, prediction of survival is crucial for the clinical management of advanced BTC. The aim was to develop and validate a nomogram to predict 6-month and 12-month survival in advanced BTC patients treated with chemotherapy. A multivariable Cox regression model was used to construct a nomogram in a training set (JCOG1113, a phase III trial comparing gemcitabine plus S-1 [GS] and gemcitabine plus cisplatin, n = 351). External validity of the nomogram was assessed using a test set (JCOG0805, a randomized, phase II trial comparing GS and S-1 alone, n = 100). Predictive performance was assessed in terms of discrimination and calibration. The constructed nomogram included lymph node metastasis, liver metastasis, carbohydrate antigen 19-9, carcinoembryonic antigen, albumin, and C-reactive protein. Uno's concordance index was 0.661 (95% confidence interval [CI] 0.629-0.696) in the training set and 0.640 (95% CI 0.566-0.715) in the test set. The calibration plots for 6-month and 12-month survival showed good agreement in the two analysis sets. The present nomogram can facilitate prediction of the prognosis of advanced BTC patients treated with chemotherapy and help clinicians' prognosis-based decision-making.
Collapse
Affiliation(s)
- Hiroshi Imaoka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Shogo Nomura
- Japan Clinical Oncology Group Data Center, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Chigusa Morizane
- Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takuji Okusaka
- Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Masato Ozaka
- Hepato-Biliary-Pancreatic Medicine Department, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Shimizu
- Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Naohiro Okano
- Department of Medical Oncology, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Kazuya Sugimori
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Hirofumi Shirakawa
- Department of Medical Oncology, Tochigi Cancer Center, Utsunomiya, Japan
| | - Nobumasa Mizuno
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Sohei Satoi
- Division of Pancreatobiliary Surgery, Department of Surgery, Kansai Medical University, Hirakata, Japan
| | - Hironori Yamaguchi
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Japan
| | - Rie Sugimoto
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Kunihito Gotoh
- Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Keji Sano
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Akinori Asagi
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | | | - Makoto Ueno
- Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology Division, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
39
|
Deng T, Zhang L, Shi Y, Bai G, Pan Y, Shen A, Han X, Yang Z, Chen M, Zhou H, Luo Y, Zheng S, Ba Y. Pharmacokinetics, pharmacodynamics and efficacy of pemigatinib (a selective inhibitor of fibroblast growth factor receptor 1-3) monotherapy in Chinese patients with advanced solid tumors: a phase i clinical trial. Invest New Drugs 2023; 41:808-815. [PMID: 37889382 PMCID: PMC10663244 DOI: 10.1007/s10637-023-01396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Pemigatinib is a selective fibroblast growth factor receptor (FGFR)1-3 inhibitor and has demonstrated acceptable tolerability and clinical activity in advanced solid tumors in Western population. This phase I trial evaluated pharmacokinetics/pharmacodynamics (PK/PD) characteristics, preliminary safety and efficacy of pemigatinib in Chinese patients with advanced, solid tumors. Patients with unresectable advanced or metastatic solid tumors bearing FGF/FGFR1-3 alterations received oral pemigatinib at 13.5 mg once daily (QD) on a 2-weeks-on/1-week-off schedule. The primary endpoint was PK/PD characteristics; secondary endpoints were safety and efficacy. Twelve patients were enrolled (median age: 61 years, 58.3% males). PK data demonstrated pemigatinib (13.5 mg QD) was rapidly absorbed with a geometric mean elimination half-life of 11.3 h. The geometric mean values of maximum serum concentration and area under the plasma concentration-time curve from 0 to 24 h at steady state were 215.1 nmol/L and 2636.9 h·nmol/L, respectively. The mean clearance adjusted by bioavailability at steady state was low (11.8 L/h), and the apparent oral volume of distribution was moderate (170.5 L). The PD marker, serum phosphate level, increased on days 8 and 15 of cycle 1 (mean: 2.25 mg/dL, CV% [percent coefficient of variation]: 31.3%) and decreased to baseline post 1 week off. Three (25.0%) patients experienced grade ≥ 3 treatment-emergent adverse events. Partial response was confirmed in one patient with FGFR1-mutant esophageal carcinoma and one with FGFR2-mutant cholagiocarcinoma. Pemigatinib had similar PK/PD characteristics to Western population and demonstrated an acceptable safety profile and potential anti-cancer benefit in Chinese patients with FGF/FGFR1-3 altered, advanced, solid tumor. (ClinicalTrials.gov: NCT04258527 [prospectively registered February 6, 2020]).
Collapse
Affiliation(s)
- Ting Deng
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, and Tianjin's Clinical Research Center for Cancer, and Tianjin's Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Le Zhang
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, and Tianjin's Clinical Research Center for Cancer, and Tianjin's Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yehui Shi
- Phase I Clinical Trial Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, & Tianjin's Clinical Research Center for Cancer, & Tianjin's Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Guiying Bai
- Phase I Clinical Trial Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, & Tianjin's Clinical Research Center for Cancer, & Tianjin's Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yueyin Pan
- Oncology Department, Anhui Provincial Hospital, Hefei, China
| | - Aizong Shen
- Pharmacy Department, Anhui Provincial Hospital, Hefei, China
| | - Xinghua Han
- Oncology Department, Anhui Provincial Hospital, Hefei, China
| | - Zhaoyi Yang
- Pharmacy Department, Anhui Provincial Hospital, Hefei, China
| | - Mingxia Chen
- Department of Biostatistics and Information, Innovent Biologics, Inc, Suzhou, China
| | - Hui Zhou
- Department of Medical Science and Oncology, Innovent Biologics, Inc, Suzhou, China
| | - Yang Luo
- Department of Medical Science and Oncology, Innovent Biologics, Inc, Suzhou, China
| | - Shirui Zheng
- Department of Clinical Pharmacology, Innovent Biologics, Inc, Suzhou, China
| | - Yi Ba
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, and Tianjin's Clinical Research Center for Cancer, and Tianjin's Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Department of Cancer Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
40
|
Yuan T, Li F, Hou Y, Guo H. Adverse events in patients with advanced urothelial carcinoma treated with erdafitinib: a retrospective pharmacovigilance study. Front Pharmacol 2023; 14:1266890. [PMID: 38074150 PMCID: PMC10702547 DOI: 10.3389/fphar.2023.1266890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2024] Open
Abstract
Purpose: On 12 April 2019, erdafitinib gained the first FDA approval as the second-line treatment for adult patients with locally advanced or metastatic urothelial cancer following progression during or after at least one previous line of platinum-based chemotherapy. However, the long-term safety profile of erdafitinib in a large patient population remains unexplored. The current study aimed to assess the adverse events (AEs) associated with erdafitinib through data mining of the US Food and Drug Administration Adverse Event Reporting System (FAERS). Method: The reporting odds ratio (ROR), the proportional reporting ratio (PRR), the Bayesian confidence propagation neural network (BCPNN), and the multi-item gamma Poisson shrinker (MGPS) algorithms based on disproportionality were employed to quantify the signals of erdafitinib-associated AEs. Results: A total of 6,322,279 reports of AEs were retrieved from the FAERS database spanning 2019 to 2022, out of which, 700 reports of erdafitinib as the "primary suspected" were identified. These erdafitinib-induced AEs were observed across 24 targeted system organ classes (SOCs). After conforming to the four algorithms at the same time, a total of 441 signals of erdafitinib-induced AEs were detected across 23 SOCs. Notably, signals associated with metabolism and nutrition disorders, eye disorders, and skin and subcutaneous tissue disorders were among the most prevalent. The median onset time for AEs was found to be 54 days [interquartile range (IQR) 17-112 days], with a majority of AEs occurring within the initial 6 months after initiating erdafitinib (37.23% within the first month, 15.53% within the second month, and 16.79% within the third month). Conclusion: The findings of this study align with existing clinical observations, offering a comprehensive long-term post-marketing safety evaluation of erdafitinib. The results provide valuable evidence to enhance the understanding of erdafitinib's safety profile, aiding further research and guiding clinical practice.
Collapse
Affiliation(s)
| | | | - Yuchuan Hou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Hui Guo
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Golub D, Lynch DG, Pan PC, Liechty B, Slocum C, Bale T, Pisapia DJ, Juthani R. Polymorphous low-grade neuroepithelial tumor of the young with FGFR3-TACC3 fusion mimicking high-grade glioma: case report and series of high-grade correlates. Front Oncol 2023; 13:1307591. [PMID: 38074682 PMCID: PMC10698862 DOI: 10.3389/fonc.2023.1307591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024] Open
Abstract
Background Polymorphous low-grade neuroepithelial tumor of the young (PLNTY) is a recently described entity that can mimic high-grade glioma (HGG) in histologic and molecular features; however, factors predicting aggressive behavior in these tumors are unclear. Methods We present an indolent neuroepithelial neoplasm in a 59-year-old female with imaging initially suggestive of HGG, and a series of adult patients with HGG harboring FGFR3-TACC3 fusions are also presented for comparison. Results Pathology in the case patient revealed low-grade cytomorphology, microcalcifications, unusual neovascularization, and a low proliferation index. The lesion was diffusely CD34+ and harbored an FGFR3-TACC3 fusion and TERT promoter mutation. A diagnosis of PLNTY was therefore favored and the patient was observed with no progression at 15-month follow-up. In patients with HGG with FGFR3-TACC3 fusions, molecular findings included IDH-wildtype status, absence of 1p19q codeletion, CDKN2A loss, TERT promoter mutations and lack of MGMT promoter methylation. These patients demonstrated a median 15-month overall survival and a 6-month progression-free survival. Conclusion PLNTY is a rare low-grade entity that can display characteristics of HGG, particularly in adults. Presence of FGFR3-TACC3 fusions and other high-grade features should raise concern for a more malignant precursor lesion when a diagnosis of PLNTY is considered.
Collapse
Affiliation(s)
- Danielle Golub
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY, United States
- Department of Neurosurgery, Northwell Health, Manhasset, NY, United States
| | - Daniel G. Lynch
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, United States
| | - Peter C. Pan
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Neurology, Columbia University, New York, NY, United States
| | - Benjamin Liechty
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Cheyanne Slocum
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Tejus Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David J. Pisapia
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Rupa Juthani
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
42
|
van der Kleij MBA, Guchelaar NAD, Mathijssen RHJ, Versluis J, Huitema ADR, Koolen SLW, Steeghs N. Therapeutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin Pharmacokinet 2023; 62:1333-1364. [PMID: 37584840 PMCID: PMC10519871 DOI: 10.1007/s40262-023-01293-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
Although kinase inhibitors (KI) frequently portray large interpatient variability, a 'one size fits all' regimen is still often used. In the meantime, relationships between exposure-response and exposure-toxicity have been established for several KIs, so this regimen could lead to unnecessary toxicity and suboptimal efficacy. Dose adjustments based on measured systemic pharmacokinetic levels-i.e., therapeutic drug monitoring (TDM)-could therefore improve treatment efficacy and reduce the incidence of toxicities. Therefore, the aim of this comprehensive review is to give an overview of the available evidence for TDM for the 77 FDA/EMA kinase inhibitors currently approved (as of July 1st, 2023) used in hematology and oncology. We elaborate on exposure-response and exposure-toxicity relationships for these kinase inhibitors and provide practical recommendations for TDM and discuss corresponding pharmacokinetic targets when possible.
Collapse
Affiliation(s)
- Maud B A van der Kleij
- Division of Medical Oncology, Department of Clinical Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands.
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Niels A D Guchelaar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jurjen Versluis
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Neeltje Steeghs
- Division of Medical Oncology, Department of Clinical Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Weiser A, Sanchez Bergman A, Machaalani C, Bennett J, Roth P, Reimann RR, Nazarian J, Guerreiro Stucklin AS. Bridging the age gap: a review of molecularly informed treatments for glioma in adolescents and young adults. Front Oncol 2023; 13:1254645. [PMID: 37781183 PMCID: PMC10533987 DOI: 10.3389/fonc.2023.1254645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
Gliomas are the most common primary central nervous system (CNS) tumors and a major cause of cancer-related mortality in children (age <15 years), adolescents and young adults (AYA, ages 15-39 years), and adults (age >39 years). Molecular pathology has helped enhance the characterization of these tumors, revealing a heterogeneous and ever more complex group of malignancies. Recent molecular analyses have led to an increased appreciation of common genomic alterations prevalent across all ages. The 2021 World Health Organization (WHO) CNS tumor classification, 5th edition (WHO CNS5) brings forward a nomenclature distinguishing "pediatric-type" and "adult-type" gliomas. The spectrum of gliomas in AYA comprises both "pediatric-like" and "adult-like" tumor entities but remains ill-defined. With fragmentation of clinical management between pediatric and adult centers, AYAs face challenges related to gaps in medical care, lower rates of enrollment in clinical trials and additional psychosocial and economic challenges. This calls for a rethinking of diagnostic and therapeutic approaches, to improve access to appropriate testing and potentially beneficial treatments to patients of all ages.
Collapse
Affiliation(s)
- Annette Weiser
- Translational Brain Tumor Research Group, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Division of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Astrid Sanchez Bergman
- Translational Brain Tumor Research Group, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Charbel Machaalani
- Translational Brain Tumor Research Group, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Julie Bennett
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Patrick Roth
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Regina R. Reimann
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Javad Nazarian
- Department of Pediatrics, Diffuse Midline Glioma (DMG) / Diffuse Intrinsic Pontine Glioma (DIPG) Center, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Research Center for Genetic Medicine, Children's National Hospital, Washington, DC, United States
| | - Ana S. Guerreiro Stucklin
- Translational Brain Tumor Research Group, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Division of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Wekking D, Pretta A, Martella S, D'Agata AP, Joeun Choe J, Denaro N, Solinas C, Scartozzi M. Fibroblast growth factor receptors as targets for anticancer therapy in cholangiocarcinomas and urothelial carcinomas. Heliyon 2023; 9:e19541. [PMID: 37681152 PMCID: PMC10481293 DOI: 10.1016/j.heliyon.2023.e19541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Cholangiocarcinomas and urothelial carcinomas are lethal tumors worldwide and only a minority of patients are eligible for surgery at diagnosis. Moreover, patients are poorly responsive to current therapeutic strategies, including chemotherapy, radiotherapy, immunotherapy, and multimodality treatments. Recently, several advances have been made in precision medicine and these results are modifying the treatment paradigm for patients diagnosed with cholangiocarcinomas and urothelial carcinoma. These histotypes exhibit a high rate of multiple fibroblast growth factor receptor (FGFR) genetic alterations and numerous preclinical and clinical studies support FGFR as a highly attractive novel therapeutic target. Moreover, identifying specific genetic alterations may predict the tumor's response to conventional and novel FGFR-targeted drugs. Recent clinical studies showed promising data for FGFR-targeted therapy in reducing tumor volume and led to the United States Food and Drug Administration (FDA) approval of, e.g., pemigatinib, infigratinib, futibatinib, and erdafitinib. Moreover, FGFR inhibitors show promising results in the first-line setting of cholangiocarcinomas and urothelial carcinomas. Pemigatinib (FIGHT-302) and futibatinib (FOENIX-CAA3) are being evaluated in phase III trials that compare these agents to current first-line gemcitabine and cisplatin in FGFR2-rearranged cholangiocarcinoma. However, complexity in targeting the FGFR signaling pathway is observed. Herein, we describe the characteristics of the FDA-approved and other investigational FGFR-targeted therapeutics, evaluate the most recent preclinical and clinical studies focusing on targeting FGFR genomic alterations in the treatment of cholangiocarcinomas and urothelial cancer, and provide insight into factors involved in response and (acquired) resistance to FGFR inhibition.
Collapse
Affiliation(s)
- Demi Wekking
- Amsterdam UMC, Location Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, Italy
| | - Serafina Martella
- Medical Oncology, University Hospital Policlinico G.Rodolico-San Marco, 95123, Catania, Italy
| | | | - Joanna Joeun Choe
- Cancer Outcomes Research and Education, Massachusetts General Hospital, Boston, MA, USA
| | | | - Cinzia Solinas
- Medical Oncology AOU Cagliari Policlinico Duilio Casula, Monserrato, CA, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Italy
- Medical Oncology AOU Cagliari Policlinico Duilio Casula, Monserrato, CA, Italy
| |
Collapse
|
45
|
Benjamin DJ, Hsu R. Treatment approaches for FGFR-altered urothelial carcinoma: targeted therapies and immunotherapy. Front Immunol 2023; 14:1258388. [PMID: 37675102 PMCID: PMC10477976 DOI: 10.3389/fimmu.2023.1258388] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
The treatment of metastatic urothelial carcinoma has dramatically changed over the past decade with the approval of several therapies from multiple drug classes including immune checkpoint inhibitors, targeted therapies, and antibody drug conjugates. Although next generation sequencing of urothelial carcinoma has revealed multiple recurring mutations, only one targeted therapy has been developed and approved to date. Erdafitinib, a pan-fibroblast growth factor receptor (FGFR) inhibitor, has been approved for treating patients with select FGFR2 and FGFR3 alterations and fusions since 2019. Since then, emerging data has demonstrated efficacy of combining erdafitinib with immunotherapy in treating FGFR-altered urothelial carcinoma. Ongoing trials are evaluating the use of erdafitinib in non-muscle invasive urothelial carcinoma as well as in combination with enfortumab vedotin in the metastatic setting, while other FGFR targeted agents such as infigratinib, AZD4547, rogaratinib and pemigatinib continue to be in development. Future challenges will include strategies to overcome FGFR acquired resistance and efficacy and safety of combination therapies with erdafitinib and other FGFR targeted agents.
Collapse
Affiliation(s)
| | - Robert Hsu
- Department of Internal Medicine, Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
46
|
Pant S, Schuler M, Iyer G, Witt O, Doi T, Qin S, Tabernero J, Reardon DA, Massard C, Minchom A, Lugowska I, Carranza O, Arnold D, Gutierrez M, Winter H, Stuyckens K, Crow L, Najmi S, Hammond C, Thomas S, Santiago-Walker A, Triantos S, Sweiti H, Loriot Y. Erdafitinib in patients with advanced solid tumours with FGFR alterations (RAGNAR): an international, single-arm, phase 2 study. Lancet Oncol 2023; 24:925-935. [PMID: 37541273 PMCID: PMC11224843 DOI: 10.1016/s1470-2045(23)00275-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND FGFR alterations are reported across various malignancies and might act as oncogenic drivers in multiple histologies. Erdafitinib is an oral, selective pan-FGFR tyrosine kinase inhibitor with activity in FGFR-altered advanced urothelial carcinoma. We aimed to evaluate the safety and activity of erdafitinib in previously treated patients with FGFR-altered advanced solid tumours. METHODS The single-arm, phase 2 RAGNAR study was conducted at 156 investigative centres (hospitals or oncology practices that are qualified oncology study centres) across 15 countries. The study consisted of four cohorts based on tumour histology and patient age; the results reported in this Article are for the primary cohort of the study, defined as the Broad Panel Cohort, which was histology-agnostic. We recruited patients aged 12 years or older with advanced or metastatic tumours of any histology (except urothelial cancer) with predefined FGFR1-4 alterations (mutations or fusions according to local or central testing). Eligible patients had disease progression on at least one previous line of systemic therapy and no alternative standard therapy available to them, and an Eastern Cooperative Oncology Group performance status of 0-1 (or equivalent for adolescents aged 12-17 years). Patients received once-daily oral erdafitinib (8 mg/day with provision for pharmacodynamically guided up-titration to 9 mg/day) on a continuous 21-day cycle until disease progression or intolerable toxicity. The primary endpoint was objective response rate by independent review committee according to Response Evaluation Criteria In Solid Tumors (RECIST), version 1.1, or Response Assessment In Neuro-Oncology (RANO). The primary analysis was conducted on the treated population of the Broad Panel Cohort. This ongoing study is registered with ClinicalTrials.gov, number NCT04083976. FINDINGS Patients were recruited between Dec 5, 2019, and Feb 15, 2022. Of 217 patients treated with erdafitinib, 97 (45%) patients were female and 120 (55%) were male. The data cutoff was Aug 15, 2022. At a median follow-up of 17·9 months (IQR 13·6-23·9), an objective response was observed in 64 (30% [95% CI 24-36]) of 217 patients across 16 distinct tumour types. The most common grade 3 or higher treatment-emergent adverse events related to erdafitinib were stomatitis (25 [12%]), palmar-plantar erythrodysaesthesia syndrome (12 [6%]), and hyperphosphataemia (11 [5%]). The most commonly occurring serious treatment-related adverse events (grade 3 or higher) were stomatitis in four (2%) patients and diarrhoea in two (1%). There were no treatment-related deaths. INTERPRETATION RAGNAR results show clinical benefit for erdafitinib in the tumour-agnostic setting in patients with advanced solid tumours with susceptible FGFR alterations who have exhausted other treatment options. These results support the continued development of FGFR inhibitors in patients with advanced solid tumours. FUNDING Janssen Research & Development.
Collapse
Affiliation(s)
- Shubham Pant
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gopa Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Olaf Witt
- Hopp Children's Cancer Center (KiTZ), Heidelberg University Hospital, German Cancer Research Center and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Toshihiko Doi
- National Cancer Center Hospital East, Kashiwa, Japan
| | - Shukui Qin
- Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Josep Tabernero
- Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), IOB-Quiron, Barcelona, Spain
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Christophe Massard
- Le Kremlin Bicêtre-France INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Paris, France
| | - Anna Minchom
- The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Iwona Lugowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Narodowy Instytut Onkologii im. Marii Sklodowskiej-Curie-Panstwowy Instytut Badawczy, Warsaw, Poland
| | - Omar Carranza
- Hospital Privado de Comunidad de Mar del Plata, Mar del Plata, Argentina
| | - Dirk Arnold
- Department of Oncology, AK Altona, Asklepios Tumourzentrum Hamburg, Hamburg, Germany
| | - Martin Gutierrez
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Helen Winter
- Bristol Haematology and Oncology Centre, Bristol, UK
| | | | - Lauren Crow
- Janssen Research & Development, Spring House, PA, USA
| | | | | | - Shibu Thomas
- Janssen Research & Development, Spring House, PA, USA
| | | | | | | | - Yohann Loriot
- Department of Cancer Medicine, INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
47
|
Amadeo E, Rossari F, Vitiello F, Burgio V, Persano M, Cascinu S, Casadei-Gardini A, Rimini M. Past, present, and future of FGFR inhibitors in cholangiocarcinoma: from biological mechanisms to clinical applications. Expert Rev Clin Pharmacol 2023; 16:631-642. [PMID: 37387533 DOI: 10.1080/17512433.2023.2232302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Biliary tract carcinoma (BTC) is a heterogenous group of aggressive hepatic malignancies, second to hepatocellular carcinoma per prevalence. Despite clinical research advancement, the overall 5-year survival rate is just above 2%. With the identification of somatic core mutations in half of cholangiocarcinomas. In the intrahepatic subtype (iCCA), it is possible to target mutational pathways of pharmacological interest. AREAS COVERED Major attention has been drawn to fibroblast growth factor receptor (FGFR), especially the type 2 (FGFR2), found mutated in 10-15% of iCCAs. FGFR2 fusions became the target of novel tyrosine-kinase inhibitors investigated in clinical studies, showing promising results so as to gain regulatory approval by American and European committees in recent years. Such drugs demonstrated a better impact on the quality of life compared to standard chemotherapy; however, side effects including hyperphosphatemia, gastrointestinal, eye, and nail disorders are common although mostly manageable. EXPERT OPINION As FGFR inhibitors may soon become the new alternative to standard chemotherapy in FGFR-mutated cholangiocarcinoma, accurate molecular testing and monitoring of acquired resistance mechanisms will be essential. The possible application of FGFR inhibitors in first-line treatment, as well as in combination with current standard treatments, remains the next step to be taken.
Collapse
Affiliation(s)
- Elisabeth Amadeo
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Francesco Vitiello
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Valentina Burgio
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Stefano Cascinu
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
48
|
Nicolò E, Munoz-Arcos L, Vagia E, D'Amico P, Reduzzi C, Donahue J, Lorico-Rappa M, Manai M, Behdad A, Zhang Y, Curigliano G, Shah A, Cristofanilli M. Circulating Tumor DNA and Unique Actionable Genomic Alterations in the Longitudinal Monitoring of Metastatic Breast Cancer: A Case of FGFR2-KIAA1598 Gene Fusion. JCO Precis Oncol 2023; 7:e2200702. [PMID: 37437229 DOI: 10.1200/po.22.00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/08/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023] Open
Affiliation(s)
- Eleonora Nicolò
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY
| | - Laura Munoz-Arcos
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY
| | - Elena Vagia
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Paolo D'Amico
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jeannine Donahue
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Marco Lorico-Rappa
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Royal College of Surgeons School of Medicine, Dublin, Ireland
| | - Maroua Manai
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Amir Behdad
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Youbin Zhang
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Ami Shah
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY
- Department of Medicine-Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
49
|
Leowattana W, Leowattana T, Leowattana P. Paradigm shift of chemotherapy and systemic treatment for biliary tract cancer. World J Gastrointest Oncol 2023; 15:959-972. [PMID: 37389105 PMCID: PMC10302992 DOI: 10.4251/wjgo.v15.i6.959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 06/14/2023] Open
Abstract
Biliary tract cancers (BTC) are frequently identified at late stages and have a poor prognosis due to limited systemic treatment regimens. For more than a decade, the combination of gemcitabine and cis-platin has served as the first-line standard treatment. There are few choices for second-line chemo-therapy. Targeted treatment with fibroblast growth factor receptor 2 inhibitors, neurotrophic tyrosine receptor kinase inhibitors, and isocitrate dehydrogenase 1 inhibitors has had important results. Immune checkpoint inhibitors (ICI) such as pembrolizumab are only used in first-line treatment for microsatellite instability high patients. The TOPAZ-1 trial's outcome is encouraging, and there are several trials underway that might soon put targeted treatment and ICI combos into first-line options. Newer targets and agents for existing goals are being studied, which may represent a paradigm shift in BTC management. Due to a scarcity of targetable mutations and the higher toxicity profile of the current medications, the new category of drugs may occupy a significant role in BTC therapies.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| | - Tawithep Leowattana
- Department of Medicine, Faculty of Medicine, Srinakharinwirot University, Wattana 10110, Bangkok, Thailand
| | - Pathomthep Leowattana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachatawee 10400, Bangkok, Thailand
| |
Collapse
|
50
|
Darabi S, Xiu J, Samec T, Kesari S, Carrillo J, Aulakh S, Walsh KM, Sengupta S, Sumrall A, Spetzler D, Glantz M, Demeure MJ. Capicua (CIC) mutations in gliomas in association with MAPK activation for exposing a potential therapeutic target. Med Oncol 2023; 40:197. [PMID: 37291277 DOI: 10.1007/s12032-023-02071-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Gliomas are the most prevalent neurological cancer in the USA and care modalities are not able to effectively combat these aggressive malignancies. Identifying new, more effective treatments require a deep understanding of the complex genetic variations and relevant pathway associations behind these cancers. Drawing connections between gene mutations with a responsive genetic target can help drive therapy selections to enhance patient survival. We have performed extensive molecular profiling of the Capicua gene (CIC), a tumor and transcriptional suppressor gene, and its mutation prevalence in reference to MAPK activation within clinical glioma tissue. CIC mutations occur far more frequently in oligodendroglioma (52.1%) than in low-grade astrocytoma or glioblastoma. CIC-associated mutations were observed across all glioma subtypes, and MAPK-associated mutations were most prevalent in CIC wild-type tissue regardless of the glioma subtype. MAPK activation, however, was enhanced in CIC-mutated oligodendroglioma. The totality of our observations reported supports the use of CIC as a relevant genetic marker for MAPK activation. Identification of CIC mutations, or lack thereof, can assist in selecting, implementing, and developing MEK/MAPK-inhibitory trials to improve patient outcomes potentially.
Collapse
Affiliation(s)
- Sourat Darabi
- Hoag Family Cancer Institute, Newport Beach, CA, USA
| | | | | | - Santosh Kesari
- Hoag Family Cancer Institute, Newport Beach, CA, USA
- Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Jose Carrillo
- Hoag Family Cancer Institute, Newport Beach, CA, USA
- Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | | | - Kyle M Walsh
- Duke University School of Medicine, Durham, NC, USA
| | - Soma Sengupta
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | - Michael J Demeure
- Hoag Family Cancer Institute, Newport Beach, CA, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|