1
|
Tong J, Dong X, Martin TA, Yang Y, Dong B, Jiang WG. DRIM modulates Src activation and regulates angiogenic functions in vascular endothelial cells. Cell Biol Int 2025; 49:277-287. [PMID: 39648301 PMCID: PMC11811745 DOI: 10.1002/cbin.12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
Downregulated in Metastasis Protein (DRIM) was discovered in malignant epithelial cells and was thought to be mainly a nucleus protein affecting cancer cells. Recent single-cell sequencing analysis suggests that DRIM is abundantly expressed in vascular endothelial cells. There has been no knowledge of the role of DRIM in the endothelium. In the present study, using protein fraction method and cell imaging, we identified that the DRIM protein was abundantly present in both nucleus and the cytoskeletal fractions of human vascular endothelial cells. Knockdown of DRIM in the endothelial cells significantly affected growth, migration, and angiogenic tubule formation. Proteomics analyses revealed that Src was an important direct target protein of DRIM, a finding further confirmed by protein interaction assay. Silencing DRIM activated the tyrosine 419 site phosphorylation of Src kinase in endothelial cells, thereby affecting the downstream proteins of Src including p-FAK and p-STAT3, and exerting biological effects. To conclude, our results provide evidence of DRIM being a nuclear and cytoskeletal-associated protein, having a novel key role of the protein in vascular endothelial cells.
Collapse
Affiliation(s)
- Jia Tong
- Department of Geriatric Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityShandong First Medical UniversityJinanChina
- Cardiff China Medical Research CollaborativeDivision of Cancer and Genetics, Cardiff University School of MedicineCardiffUK
| | - Xuefei Dong
- Cardiff China Medical Research CollaborativeDivision of Cancer and Genetics, Cardiff University School of MedicineCardiffUK
| | - Tracey A. Martin
- Cardiff China Medical Research CollaborativeDivision of Cancer and Genetics, Cardiff University School of MedicineCardiffUK
| | - Yiming Yang
- Cardiff China Medical Research CollaborativeDivision of Cancer and Genetics, Cardiff University School of MedicineCardiffUK
| | - Bo Dong
- Department of Geriatric Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityShandong First Medical UniversityJinanChina
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Wen G. Jiang
- Cardiff China Medical Research CollaborativeDivision of Cancer and Genetics, Cardiff University School of MedicineCardiffUK
| |
Collapse
|
2
|
Wang L, Sheng G, Cui J, Yao Y, Bai X, Chen F, Yu W. Electroacupuncture attenuates ischemic injury after stroke and promotes angiogenesis via activation of EPO mediated Src and VEGF signaling pathways. PLoS One 2022; 17:e0274620. [PMID: 36108080 PMCID: PMC9477374 DOI: 10.1371/journal.pone.0274620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Although electroacupuncture (EA) has been shown to be effective in the treatment of stroke, its mechanisms of action remain undefined. This study explored the therapeutic effects of EA in rats with cerebral ischemia-reperfusion injury (CIRI) and evaluated its possible mechanisms in promoting angiogenesis. To evaluate the effect of EA, we used 2, 3, 5-Triphenyl-2H-Tetrazolium Chloride (TTC) staining and behavior score to calculate the cerebral infarct volume and neurological deficit score after CIRI. Western blot (WB) analysis was employed to evaluate the expression of cluster of differentiation 34 (CD34), erythropoietin (EPO), vascular endothelial growth factor (VEGF) and phospho-Src (p-Src) in the brain of the rats with CIRI. On the other hand, we established an oxygen-glucose deprivation/reoxygenation (OGD/R) injury model using brain microvascular endothelial cells (BMECs), and analyzed cell viability and expression of VEGF or p-Src using cell counting kit-8 (CCK-8) and WB, respectively. Our data showed that EA at the GV26 acupoint could significantly promote the expression of CD34, EPO, VEGF and p-Src in CIRI rats. Our CCK-8 results demonstrated that intervention with recombinant EPO and VEGF proteins remarkably improved the viability of BMECs after OGD/R, while a Src inhibitor, PP1, reversed this phenotype. The WB results showed that the recombinant EPO protein increased the expression of VEGF and p-Src, which was significantly inhibited by PP1. Taken together, our findings showed that EA at the GV26 acupoint can significantly attenuate ischemic injury after stroke and promote angiogenesis via activation of EPO-mediated Src and VEGF signaling pathways. Besides, the upregulation of VEGF may also be associated with the activation of Src by EPO.
Collapse
Affiliation(s)
- Lifen Wang
- Shaanxi Academy of Traditional Chinese Medicine, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, China
| | - Gang Sheng
- Shaanxi Academy of Traditional Chinese Medicine, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, China
| | - Jinjun Cui
- Department of Neurology, Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, China
| | - Yanling Yao
- Shaanxi Academy of Traditional Chinese Medicine, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, China
| | - Xue Bai
- College of Acupuncture-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Xian yang, China
| | - Fan Chen
- College of Acupuncture-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Xian yang, China
| | - Wei Yu
- Department of Physiology, Xi’an Medical University, Xi’an, China
| |
Collapse
|
3
|
Shu M, Gao F, Yu C, Zeng M, He G, Wu Y, Su Y, Hu N, Zhou Z, Yang Z, Xu L. Dual-targeted therapy in HER2-positive breast cancer cells with the combination of carbon dots/HER3 siRNA and trastuzumab. NANOTECHNOLOGY 2020; 31:335102. [PMID: 32303014 DOI: 10.1088/1361-6528/ab8a8a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dual-targeted therapy in HER2-positive breast cancer cells with the combination of carbon dots/HER3 siRNA and trastuzumab resulted in enhanced antitumor activity, which overcomes the resistance to trastuzumab monotherapy. Herein, we have developed branched polyethylenimine-functionalized carbon dot (BP-CD) nanocarriers, which exhibited efficient green fluorescent protein gene delivery and expression. The positively charged BP-CDs allowed for effective nucleic acid binding and displayed a highly efficient small interfering RNA (siRNA)-mediated delivery targeting of cancer cells. The transfection of BP-CDs and HER3 siRNA complexes down-regulated HER3 protein expression and induced significant cell growth inhibition in BT-474 cells. BP-CDs/HER3 siRNA complexes induced cell death of BT-474 cells through G0/G1 cell cycle arrest and apoptosis. The combined treatment of BP-CDs/HER3 siRNA complexes and trastuzumab caused greater cell growth suppression in BT-474 cells when compared to either agent alone. The findings suggest that this dual-targeted therapy with the combination of BP-CDs/HER3 siRNA and trastuzumab represents a promising approach in breast cancer.
Collapse
Affiliation(s)
- Mengjun Shu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Pausch TM, Aue E, Wirsik NM, Freire Valls A, Shen Y, Radhakrishnan P, Hackert T, Schneider M, Schmidt T. Metastasis-associated fibroblasts promote angiogenesis in metastasized pancreatic cancer via the CXCL8 and the CCL2 axes. Sci Rep 2020; 10:5420. [PMID: 32214219 PMCID: PMC7096431 DOI: 10.1038/s41598-020-62416-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
The characteristic desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) is a key contributor to its lethality. This stromal microenvironment is populated by cancer-associated fibroblasts (CAFs) that interact with cancer cells to drive progression and chemo-resistance. Research has focused on CAFs in the primary tumour but not in metastases, calling into question the role of analogous metastasis-associated fibroblasts (MAFs). We infer a role of MAFs in murine hepatic metastases following untargeted treatment with the anti-angiogenic drug sunitinib in vivo. Treated metastases were smaller and had fewer stromal cells, but were able to maintain angiogenesis and metastasis formation in the liver. Furthermore, sunitinib was ineffective at reducing MAFs alongside other stromal cells. We speculate that cancer cells interact with MAFs to maintain angiogenesis and tumour progression. Thus, we tested interactions between metastatic pancreatic cancer cells and fibroblasts using in vitro co-culture systems. Co-cultures enhanced fibroblast proliferation and induced angiogenesis. We identify carcinoma-educated fibroblasts as the source of angiogenesis via secretions of CXCL8 (aka IL-8) and CCL2 (aka MCP-1). Overall, we demonstrate that metastasis-associated fibroblasts have potential as a therapeutic target and highlight the CXCL8 and CCL2 axes for further investigation.
Collapse
Affiliation(s)
- Thomas M Pausch
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Elisa Aue
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Naita M Wirsik
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Aida Freire Valls
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Ying Shen
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
5
|
Gwon Y, Kim SH, Kim HT, Kam TI, Park J, Lim B, Cha H, Chang HJ, Hong YR, Jung YK. Amelioration of amyloid β-FcγRIIb neurotoxicity and tau pathologies by targeting LYN. FASEB J 2018; 33:4300-4313. [PMID: 30540497 DOI: 10.1096/fj.201800926r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SRC-family kinases (SFKs) have been implicated in Alzheimer's disease (AD), but their mode of action was scarcely understood. Here, we show that LYN plays an essential role in amyloid β (Aβ)-triggered neurotoxicity and tau hyperphosphorylation by phosphorylating Fcγ receptor IIb2 (FcγRIIb2). We found that enzyme activity of LYN was increased in the brain of AD patients and was promoted in neuronal cells exposed to Aβ 1-42 (Aβ1-42). Knockdown of LYN expression inhibited Aβ1-42-induced neuronal cell death. Of note, LYN interacted with FcγRIIb2 upon exposure to Aβ1-42 and phosphorylated FcγRIIb2 at Tyr273 within immunoreceptor tyrosine-based inhibitory motif in neuronal cells. With the use of the structure-based drug design, we isolated KICG2576, an ATP-competitive inhibitor of LYN. Determination of cocrystal structure illustrated that KICG2576 bound to the cleft in the LYN kinase domain and inhibited LYN with a half-maximal inhibitory concentration value of 0.15 μM. KICG2576 inhibited Aβ- or FcγRIIb2-induced cell death, and this effect was better than pyrazolopyrimidine 1, a widely used inhibitor of SFK. Upon exposure to Aβ, KICG2576 blocked the phosphorylation of FcγRIIb2 and translocation of phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 2, a binding protein to the phosphorylated FcγRIIb2, to the plasma membrane, resulting in the inhibition of tau hyperphosphorylation, the downstream event of Aβ1-42-FcγRIIb2 binding. Furthermore, intracerebroventricular injection of KICG2576 into mice ameliorated Aβ-induced memory impairment. These results suggest that LYN plays a crucial role in Aβ1-42-mediated neurotoxicity and tau pathology, providing a therapeutic potential of LYN in AD.-Gwon, Y., Kim, S.-H., Kim, H. T., Kam, T.-I., Park, J., Lim, B., Cha, H., Chang, H.-J., Hong, Y. R., Jung, Y.-K. Amelioration of amyloid β-FcγRIIb neurotoxicity and tau pathologies by targeting LYN.
Collapse
Affiliation(s)
- Youngdae Gwon
- School of Biological Sciences, Seoul National University, Seoul, South Korea; and
| | - Seo-Hyun Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea; and
| | - Hyun Tae Kim
- Crystalgenomics Incorporated, Gyeonggi-do, South Korea
| | - Tae-In Kam
- School of Biological Sciences, Seoul National University, Seoul, South Korea; and
| | - Jisu Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea; and
| | - Bitna Lim
- School of Biological Sciences, Seoul National University, Seoul, South Korea; and
| | - Hyunju Cha
- Crystalgenomics Incorporated, Gyeonggi-do, South Korea
| | - Ho-Jin Chang
- Crystalgenomics Incorporated, Gyeonggi-do, South Korea
| | - Yong Rae Hong
- Crystalgenomics Incorporated, Gyeonggi-do, South Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Seoul, South Korea; and
| |
Collapse
|
6
|
Shim HJ, Kim HI, Lee ST. The associated pyrazolopyrimidines PP1 and PP2 inhibit protein tyrosine kinase 6 activity and suppress breast cancer cell proliferation. Oncol Lett 2017; 13:1463-1469. [PMID: 28454278 DOI: 10.3892/ol.2017.5564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/17/2016] [Indexed: 01/01/2023] Open
Abstract
Protein tyrosine kinase (PTK)6, also known as breast tumor kinase, is a non-receptor tyrosine kinase. It is closely associated with, but evolutionarily distinct from, the Src family members. PTK6 has a role in proliferation, migration and invasion in various cancers, and therefore has been suggested as a potentially valuable therapeutic target. In an attempt to develop PTK6 inhibitors, chemicals known to inhibit various kinases were screened for their ability to inhibit PTK6. Pyrazolopyrimidine (PP)1, PP2 and a lymphocyte-specific protein tyrosine kinase inhibitor strongly inhibited the catalytic activity of PTK6 in vitro. These chemicals suppressed the phosphorylation of PTK6 substrate proteins, including signal transducer and activator of transcription 3, in human embryonic kidney (HEK) 293 cells expressing hyperactive PTK6. They also expressed selectivity towards PTK6 over other PTK members in HEK 293 cells. PP1 and PP2 specifically inhibited the PTK6-dependent proliferation of human breast carcinoma T-47D cells. PP1 and PP2 were more selective for PTK6 than for Src family kinases, and may be useful for the treatment of PTK6-positive malignant diseases such as breast cancer.
Collapse
Affiliation(s)
- Hyun Jae Shim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Han Ie Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Patel A, Sabbineni H, Clarke A, Somanath PR. Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life Sci 2016; 157:52-61. [PMID: 27245276 DOI: 10.1016/j.lfs.2016.05.036] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022]
Abstract
The Src-family kinases (SFKs), an intracellularly located group of non-receptor tyrosine kinases are involved in oncogenesis. The importance of SFKs has been implicated in the promotion of tumor cell motility, proliferation, inhibition of apoptosis, invasion and metastasis. Recent evidences indicate that specific effects of SFKs on epithelial-to-mesenchymal transition (EMT) as well as on endothelial and stromal cells in the tumor microenvironment can have profound effects on tumor microinvasion and metastasis. Although, having been studied extensively, these novel features of SFKs may contribute to greater understanding of benefits from Src inhibition in various types of cancers. Here we review the novel role of SFKs, particularly c-Src in mediating EMT, modulation of tumor endothelial-barrier, transendothelial migration (microinvasion) and metastasis of cancer cells, and discuss the utility of Src inhibitors in vascular normalization and cancer therapy.
Collapse
Affiliation(s)
- Ami Patel
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States
| | - Harika Sabbineni
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Andrea Clarke
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States; Department of Medicine, Vascular Biology Center and Cancer Center, Augusta University, Augusta, GA, United States.
| |
Collapse
|
8
|
Hepatocyte Growth Factor from a Clinical Perspective: A Pancreatic Cancer Challenge. Cancers (Basel) 2015; 7:1785-805. [PMID: 26404380 PMCID: PMC4586794 DOI: 10.3390/cancers7030861] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/07/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and incidence rates are rising. Both detection and treatment options for pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The need for new biomarkers for early detection and treatment of pancreatic cancer demands the efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia and hypoxia making it less conducive to current therapies. A major factor regulating desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte growth factor (HGF), the sole ligand for c-MET (mesenchymal-epithelial transition), an epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization and autophosphorylation resulting in the activation of multiple cellular processes that support cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other approaches for reducing desmoplasia in the tumor microenvironment, might significantly improve the success of chemotherapy. Therefore, HGF makes a potent novel target for developing therapeutic strategies in combination with existing drugs for treating pancreatic adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising potential as a chemotherapeutic target for pancreatic cancer.
Collapse
|
9
|
Wang J, Shi Y, Zhang L, Zhang F, Hu X, Zhang W, Leak RK, Gao Y, Chen L, Chen J. Omega-3 polyunsaturated fatty acids enhance cerebral angiogenesis and provide long-term protection after stroke. Neurobiol Dis 2014; 68:91-103. [PMID: 24794156 DOI: 10.1016/j.nbd.2014.04.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/11/2014] [Accepted: 04/21/2014] [Indexed: 11/29/2022] Open
Abstract
Stroke is a devastating neurological disorder and one of the leading causes of death and serious disability. After cerebral ischemia, revascularization in the ischemic boundary zone provides nutritive blood flow as well as various growth factors to promote the survival and activity of neurons and neural progenitor cells. Enhancement of angiogenesis and the resulting improvement of cerebral microcirculation are key restorative mechanisms and represent an important therapeutic strategy for ischemic stroke. In the present study, we tested the hypothesis that post-stroke angiogenesis would be enhanced by omega-3 polyunsaturated fatty acids (n-3 PUFAs), a major component of dietary fish oil. To this end, we found that transgenic fat-1 mice that overproduce n-3 PUFAs exhibited long-term behavioral and histological protection against transient focal cerebral ischemia (tFCI). Importantly, fat-1 transgenic mice also exhibited robust improvements in revascularization and angiogenesis compared to wild type littermates, suggesting a potential role for n-3 fatty acids in post-stroke cerebrovascular remodeling. Mechanistically, n-3 PUFAs induced upregulation of angiopoietin 2 (Ang 2) in astrocytes after tFCI and stimulated extracellular Ang 2 release from cultured astrocytes after oxygen and glucose deprivation. Ang 2 facilitated endothelial proliferation and barrier formation in vitro by potentiating the effects of VEGF on phospholipase Cγ1 and Src signaling. Consistent with these findings, blockade of Src activity in post-stroke fat-1 mice impaired n-3 PUFA-induced angiogenesis and exacerbated long-term neurological outcomes. Taken together, our findings strongly suggest that n-3 PUFA supplementation is a potential angiogenic treatment capable of augmenting brain repair and improving long-term functional recovery after cerebral ischemia.
Collapse
Affiliation(s)
- Jiayin Wang
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yejie Shi
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lili Zhang
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Zhang
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiaoming Hu
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Wenting Zhang
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ling Chen
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Department of Neurosurgery and PLA Institute of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China.
| | - Jun Chen
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA; Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
10
|
Chen J, Elfiky A, Han M, Chen C, Saif MW. The Role of Src in Colon Cancer and Its Therapeutic Implications. Clin Colorectal Cancer 2014; 13:5-13. [DOI: 10.1016/j.clcc.2013.10.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/02/2013] [Indexed: 12/13/2022]
|
11
|
Klempner SJ, Myers AP, Mills GB, Westin SN. Clinical investigation of receptor and non-receptor tyrosine kinase inhibitors for the treatment of epithelial ovarian cancer. Expert Opin Pharmacother 2013; 14:2171-82. [PMID: 23937415 PMCID: PMC4103698 DOI: 10.1517/14656566.2013.826650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) is the second most common gynecologic malignancy and the leading cause of death from gynecologic cancer in the USA. EOC is an exquisitely chemo-sensitive disease with response rates of over 75% in the upfront setting. Despite this, due to high rates of recurrence and development of chemo-resistance, the overall survival of EOC remains about 25%. Thus, there is a great need for new therapeutic approaches to render more durable responses. Based on preclinical and early phase clinical studies, key targeted pathways include targets that drive angiogenesis and chemo-resistance. Receptor tyrosine kinases and non-receptor tyrosine kinases play important roles in these processes and several small molecule tyrosine kinase inhibitors (TKIs) are in clinical development. AREAS COVERED This review summarizes clinical rationale, mechanisms of action and clinical data for the TKIs under evaluation in the Phase III setting for EOC. EXPERT OPINION Despite reasonable preclinical activity, small molecule TKIs are unlikely to improve patient survival as single agent therapies in an unselected EOC population. Incorporation of tissue evaluation during ongoing clinical trials is required to identify molecularly defined groups that respond to single agents and direct rational combination strategies based on mechanisms of resistance to improve outcomes in EOC.
Collapse
Affiliation(s)
- Samuel J. Klempner
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Andrea P. Myers
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215
- Department of Gynecologic Oncology, Dana Farber Cancer Institute, Boston, MA, 02215
| | - Gordon B. Mills
- Department of Systems Biology, University of Texas M. D. Anderson Cancer Center, Houston TX, 77030
| | - Shannon N. Westin
- Departments of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| |
Collapse
|
12
|
El-Kenawi AE, El-Remessy AB. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br J Pharmacol 2013; 170:712-29. [PMID: 23962094 PMCID: PMC3799588 DOI: 10.1111/bph.12344] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/25/2013] [Accepted: 07/30/2013] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis, a process of new blood vessel formation, is a prerequisite for tumour growth to supply the proliferating tumour with oxygen and nutrients. The angiogenic process may contribute to tumour progression, invasion and metastasis, and is generally accepted as an indicator of tumour prognosis. Therefore, targeting tumour angiogenesis has become of high clinical relevance. The current review aimed to highlight mechanistic details of anti-angiogenic therapies and how they relate to classification and treatment rationales. Angiogenesis inhibitors are classified into either direct inhibitors that target endothelial cells in the growing vasculature or indirect inhibitors that prevent the expression or block the activity of angiogenesis inducers. The latter class extends to include targeted therapy against oncogenes, conventional chemotherapeutic agents and drugs targeting other cells of the tumour micro-environment. Angiogenesis inhibitors may be used as either monotherapy or in combination with other anticancer drugs. In this context, many preclinical and clinical studies revealed higher therapeutic effectiveness of the combined treatments compared with individual treatments. The proper understanding of synergistic treatment modalities of angiogenesis inhibitors as well as their wide range of cellular targets could provide effective tools for future therapies of many types of cancer.
Collapse
Affiliation(s)
- Asmaa E El-Kenawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura UniversityMansoura, Egypt
| | - Azza B El-Remessy
- Center for Pharmacy and Experimental Therapeutics, University of GeorgiaAugusta, GA, USA
- Department of Pharmacology and Toxicology, Georgia Regents UniversityAugusta, GA, USA
- Charlie Norwood VA Medical CenterAugusta, GA, USA
| |
Collapse
|
13
|
Poli G, Tuccinardi T, Rizzolio F, Caligiuri I, Botta L, Granchi C, Ortore G, Minutolo F, Schenone S, Martinelli A. Identification of New Fyn Kinase Inhibitors Using a FLAP-Based Approach. J Chem Inf Model 2013; 53:2538-47. [DOI: 10.1021/ci4002553] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Giulio Poli
- Department
of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Flavio Rizzolio
- Division of Experimental
and Clinical Pharmacology, Department of Molecular Biology
and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, CRO, Aviano, 33081 Pordenone, Italy
| | - Isabella Caligiuri
- Division of Experimental
and Clinical Pharmacology, Department of Molecular Biology
and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, CRO, Aviano, 33081 Pordenone, Italy
| | - Lorenzo Botta
- Dipartimento
Farmaco Chimico Tecnologico, Università di Siena, Via Alcide de Gasperi 2, I-53100 Siena, Italy
| | | | | | | | - Silvia Schenone
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Genova, Viale Benedetto
XV 3, 16132 Genova, Italy
| | | |
Collapse
|
14
|
Nicotine induces inhibitor of differentiation-1 in a Src-dependent pathway promoting metastasis and chemoresistance in pancreatic adenocarcinoma. Neoplasia 2013; 14:1102-14. [PMID: 23308043 DOI: 10.1593/neo.121044] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 12/14/2022] Open
Abstract
Smoking is a significant risk factor for pancreatic cancer, but the molecular mechanisms by which tobacco smoke components promote the growth and progression of these cancers are not fully understood. While nicotine, the addictive component of tobacco smoke, is not a carcinogen, it has been shown to promote the growth of non-small cell lung and pancreatic cancers in a receptor-dependent fashion. Here, we show that stimulation of pancreatic cancer cells with nicotine concentrations that are within the range of human exposure results in activation of Src kinase, which facilitated the induction of the inhibitor of differentiation-1 (Id1) transcription factor. Depletion of Id1 prevented nicotine-mediated induction of proliferation and invasion of pancreatic cancer cells, indicating that it is a major mediator of nicotine function. Nicotine could promote the growth and metastasis of pancreatic cancers orthotopically implanted into SCID mice; in addition, cells stably expressing a short hairpin RNA for Id1 did not grow or metastasize in response to nicotine. Nicotine could also confer resistance to apoptosis induced by gemcitabine in pancreatic cancer cells in vitro and depletion of Src or Id1 rendered the cells sensitive to gemcitabine. Further, nicotine could effectively inhibit the chemotherapeutic effects of gemcitabine on pancreatic tumors xenografted into mice. Clinical analyses of resected pancreatic cancer specimens demonstrated a statistically significant correlation between Id1 expression and phospho-Src, tumor grade/differentiation, and worsening overall patient survival. These results demonstrate that exposure to tobacco smoke components might promote pancreatic cancer progression, metastasis, and chemoresistance and highlight the role of Id1 in these processes.
Collapse
|
15
|
Nourazarian AR, Najar AG, Farajnia S, Khosroushahi AY, Pashaei-Asl R, Omidi Y. Combined EGFR and c-Src antisense oligodeoxynucleotides encapsulated with PAMAM Denderimers inhibit HT-29 colon cancer cell proliferation. Asian Pac J Cancer Prev 2013; 13:4751-6. [PMID: 23167414 DOI: 10.7314/apjcp.2012.13.9.4751] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Colon cancer continues to be one of the most common cancers, and the importance and necessity of new therapies needs to be stressed. The most important proto-oncogen factors for colon cancer appear to be epidermal growth factor receptor, EGFR, and c-Src with high expression and activity leading to tumor growth and ultimately to colon cancer progression. Application of c-Src and EGFR antisense agents simultaneously should theoretically therefore have major benefit. In the present study, anti-EGFR and c-Src specific antisense oligodeoxynucleotides were combined in a formulation using PAMAM dendrimers as a carrier. Nano drug entry into cells was confirmed by flow cytometry and fluorescence microscopy imaging and real time PCR showed gene expression of c-Src and EGFR, as well as downstream STAT5 and MAPK-1 with the tumor suppressor gene P53 to all be downregulated. EGFR and c-Src protein expression was also reduced when assessed by western blotting techniques. The effect of the antisense oligonucleotide on HT29 cell proliferation was determined by MTT assay, reduction beijng observed after 48 hours. In summary, nano-drug, anti-EGFR and c-Src specific antisense oligodeoxynucleotides were effectively transferred into HT-29 cells and inhibited gene expression in target cells. Based on the results of this study it appears that the use of antisense EGFR and c-Src simultaneously might have a significant effect on colon cancer growth by down regulation of EGFR and its downstream genes.
Collapse
Affiliation(s)
- Ali Reza Nourazarian
- Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Tabriz, Iran
| | | | | | | | | | | |
Collapse
|
16
|
Nourazarian AR, Pashaei-Asl R, Omidi Y, Najar AG. c-Src antisense complexed with PAMAM denderimes decreases of c-Src expression and EGFR-dependent downstream genes in the human HT-29 colon cancer cell line. Asian Pac J Cancer Prev 2013; 13:2235-40. [PMID: 22901200 DOI: 10.7314/apjcp.2012.13.5.2235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
c-Src is one member of non-receptor tyrosine kinase protein family that has over expression and activation in many human cancer cells. It has been shown that c-Src is implicated in various downstream signaling pathways associated with EGFR-dependent signaling such as MAPK and STAT5 pathways. Transactivation of EGFR by c-Src is more effective than EGFR ligands. To inhibit the c-Src expression, we used c-Src antisense oligonucleotide complexed with PAMAM Denderimes. The effect of c-Src antisense oligonucleotide on HT29 cell proliferation was determined by MTT assay. Then, the expression of c-Src, EGFR and the genes related to EGFR-depended signaling with P53 was applied by real time PCR. We used western blot analysis to elucidate the effect of antisense on the level of c-Src protein expression. The results showed, c-Src antisense complexed with PAMAM denderimers has an effective role in decrease of c-Src expression and EGFR-dependent downstream genes.
Collapse
Affiliation(s)
- Ali Reza Nourazarian
- Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | |
Collapse
|
17
|
Tau protein kinases: involvement in Alzheimer's disease. Ageing Res Rev 2013; 12:289-309. [PMID: 22742992 DOI: 10.1016/j.arr.2012.06.003] [Citation(s) in RCA: 471] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby might contribute to tau aggregation. Thus, understanding the regulation modes of tau phosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates in order to elaborate protection strategies to cope with these lesions in Alzheimer's disease. Among the possible and specific interventions that reverse tau phosphorylation is the inhibition of certain tau kinases. Here, we extensively reviewed tau protein kinases, their physiological roles and regulation, their involvement in tau phosphorylation and their relevance to AD. We also reviewed the most common inhibitory compounds acting on each tau kinase.
Collapse
|
18
|
Abstract
Androgen receptor (AR)-mediated signaling is critical to the growth and survival of prostate cancer. Although medical castration and antiandrogen therapy can decrease AR activity and lower PSA, castration resistance eventually develops. Recent work exploring the molecular structure and evolution of AR in response to hormonal therapies has revealed novel mechanisms of progression of castration-resistant prostate cancer and yielded new targets for drug development. This review focuses on understanding the mechanisms of persistent AR signaling in the castrate environment, and highlights new therapies either currently available or in clinical trials, including androgen synthesis inhibitors and novel direct AR inhibitors.
Collapse
Affiliation(s)
- Terence W Friedlander
- Division of Genitourinary Medical Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
19
|
Uitdehaag JCM, Verkaar F, Alwan H, de Man J, Buijsman RC, Zaman GJR. A guide to picking the most selective kinase inhibitor tool compounds for pharmacological validation of drug targets. Br J Pharmacol 2012; 166:858-76. [PMID: 22250956 DOI: 10.1111/j.1476-5381.2012.01859.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To establish the druggability of a target, genetic validation needs to be supplemented with pharmacological validation. Pharmacological studies, especially in the kinase field, are hampered by the fact that many reference inhibitors are not fully selective for one target. Fortunately, the initial trickle of selective inhibitors released in the public domain has steadily swelled into a stream. However, rationally picking the most selective tool compound out of the increasing amounts of available inhibitors has become progressively difficult due to the lack of accurate quantitative descriptors of drug selectivity. A recently published approach, termed 'selectivity entropy', is an improved way of expressing selectivity as a single-value parameter and enables rank ordering of inhibitors. We provide a guide to select the best tool compounds for pharmacological validation experiments of candidate drug targets using selectivity entropy. In addition, we recommend which inhibitors to use for studying the biology of the 20 most investigated kinases that are clinically relevant: Abl (ABL1), AKT1, ALK, Aurora A/B, CDKs, MET, CSF1R (FMS), EGFR, FLT3, ERBB2 (HER2), IKBKB (IKK2), JAK2/3, JNK1/2/3 (MAPK8/9/10), MEK1/2, PLK1, PI3Ks, p38α (MAPK14), BRAF, SRC and VEGFR2 (KDR).
Collapse
|
20
|
Radi M, Evensen L, Dreassi E, Zamperini C, Caporicci M, Falchi F, Musumeci F, Schenone S, Lorens JB, Botta M. A combined targeted/phenotypic approach for the identification of new antiangiogenics agents active on a zebrafish model: from in silico screening to cyclodextrin formulation. Bioorg Med Chem Lett 2012; 22:5579-83. [PMID: 22853993 DOI: 10.1016/j.bmcl.2012.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/29/2012] [Accepted: 07/04/2012] [Indexed: 12/24/2022]
Abstract
A combined targeted/phenotypic approach for the rapid identification of novel antiangiogenics with in vivo efficacy is herein reported. Considering the important role played by the tyrosine kinase c-Src in the regulation of tumour angiogenesis, we submitted our in-house library of c-Src inhibitors to a sequential screening approach: in silico screening on VEGFR2, in vitro screening on HUVEC cells, ADME profiling, formulation and in vivo testing on a zebrafish model. A promising antiangiogenic candidate able to interfere with the vascular growth of a zebrafish model at low micromolar concentration was thus identified.
Collapse
Affiliation(s)
- Marco Radi
- Dipartimento Farmaco Chimico Tecnologico, University of Siena,Via Alcide de Gasperi 2, I-53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis 2011; 15:33-45. [PMID: 22203239 DOI: 10.1007/s10456-011-9241-1] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 11/04/2011] [Indexed: 12/11/2022]
Abstract
Exosomes, microvesicles of endocytic origin released by normal and tumor cells, play an important role in cell-to-cell communication. Angiogenesis has been shown to regulate progression of chronic myeloid leukemia (CML). The mechanism through which this happens has not been elucidated. We isolated and characterized exosomes from K562 CML cells and evaluated their effects on human umbilical endothelial cells (HUVECs). Fluorescent-labeled exosomes were internalized by HUVECs during tubular differentiation on Matrigel. Exosome localization was perinuclear early in differentiation, moving peripherally in cells undergoing elongation and connection. Exosomes move within and between nanotubular structures connecting the remodeling endothelial cells. They stimulated angiotube formation over a serum/growth factor-limited medium control, doubling total cumulative tube length (P = 0.003). Treatment of K562 cells with two clinically active tyrosine kinase inhibitors, imatinib and dasatinib, reduced their total exosome release (P < 0.009); equivalent concentrations of drug-treated exosomes induced a similar extent of tubular differentiation. However, dasatinib treatment of HUVECs markedly inhibited HUVEC response to drug control CML exosomes (P < 0.002). In an in vivo mouse Matrigel plug model angiogenesis was induced by K562 exosomes and abrogated by oral dasatinib treatment (P < 0.01). K562 exosomes induced dasatinib-sensitive Src phosphorylation and activation of downstream Src pathway proteins in HUVECs. Imatinib was minimally active against exosome stimulation of HUVEC cell differentiation and signaling. Thus, CML cell-derived exosomes induce angiogenic activity in HUVEC cells. The inhibitory effect of dasatinib on exosome production and vascular differentiation and signaling reveals a key role for Src in both the leukemia and its microenvironment.
Collapse
|
22
|
Ma JG, Huang H, Chen SM, Chen Y, Xin XL, Lin LP, Ding J, Liu H, Meng LH. PH006, a novel and selective Src kinase inhibitor, suppresses human breast cancer growth and metastasis in vitro and in vivo. Breast Cancer Res Treat 2010; 130:85-96. [PMID: 21181437 DOI: 10.1007/s10549-010-1302-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/08/2010] [Indexed: 12/13/2022]
Abstract
The central role of Src in tumor progression and metastasis has validated it as an attractive therapeutic target for the treatment of human breast cancer. The aim of this study was to identify potential Src kinase inhibitor, explore its activity, and mechanism of action in human breast cancer. A strategy integrating focused combinatorial library design, virtual screening, chemical synthesis, and high-throughput screening was adopted and a novel 6-hydrazinopurine-based inhibitor of c-Src kinase PH006 was obtained. The kinase enzymatic activities were measured by enzyme-linked immunosorbent assay. The binding mode between PH006 and Src was profiled by surface plasmon resonance approach and molecular simulation. The anti-proliferative activity was evaluated by Sulforhodamin B (SRB) and Colony formation. The anti-invasion and anti-migration activities were assessed by trans-well and wound healing assay. Results indicated that PH006 was an ATP-competitive Src inhibitor, which selectively inhibited c-Src with an IC₅₀ of 0.38 μM among a panel of 14 diverse tyrosine kinases. PH006 potently inhibited c-Src phosphorylation and c-Src-dependent signal transduction, resulting in inhibition of cell proliferation, migration, and invasion in human breast cancer MDA-MB-231 cells. Further study demonstrated that the anti-proliferative activity of PH006 was ascribed to its capability to arrest cells in G1 phase, while its anti-motility activity was related to suppression of MMP2/9 and HGF secretion. Moreover, PH006 exhibited potent activity against tumor growth as well as metastasis of human breast cancer MDA-MB-435 xenograft beard in nude mice, which was accompanied with reduced Src/FAK signaling in tumor tissue. Taken together, PH006 is a novel selective inhibitor of c-Src and possesses potent activity against breast cancer growth and metastasis, which could be potentially developed as a lead candidate against breast cancers with elevated Src tyrosine kinase activity.
Collapse
Affiliation(s)
- Jin-gui Ma
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Culig Z. Cytokine disbalance in common human cancers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:308-14. [PMID: 21167870 DOI: 10.1016/j.bbamcr.2010.12.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/04/2010] [Accepted: 12/09/2010] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-6, -4, and -8 levels have been elevated in most patients suffering from prostate, breast, or colon cancer. There is a large body of evidence suggesting that chronic inflammation is one of the etiologic factors in these tumors. IL-6 is a multifunctional cytokine which is known to influence proliferation, apoptosis, and angiogenesis in cancer. Its transcription factor STAT3 is known as an oncogene that is constitutively phosphorylated in these malignancies. However, IL-6-induced STAT3 phosphorylation may result in growth arrest. IL-6 activation of androgen receptor in prostate cancer may yield either tumor cell proliferation or differentiation. Prolonged treatment with IL-6 results in generation of sublines which express a more malignant phenotype. Therapy options against IL-6 have been established and the antibody siltuximab has been applied in preclinical and clinical studies. Recently, investigations of the role of suppressors of cytokine signaling have been carried out. IL-4 and -8 are implicated in regulation of apoptosis, migration, and angiogenesis in cancers associated with chronic inflammation. All cytokines mentioned above regulate cellular events in stem cells. These cells could not be targeted by most conventional cancer therapies.
Collapse
Affiliation(s)
- Zoran Culig
- Department of Urology, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Australia.
| |
Collapse
|
24
|
Ahluwalia M, de Groot J, Liu W(M, Gladson CL. Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies. Cancer Lett 2010; 298:139-49. [PMID: 20947248 PMCID: PMC3212431 DOI: 10.1016/j.canlet.2010.08.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 08/22/2010] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is an extremely aggressive, infiltrative tumor with a poor prognosis. The regulatory approval of bevacizumab for recurrent GBM has confirmed that molecularly targeted agents have potential for GBM treatment. Preclinical data showing that SRC and SRC-family kinases (SFKs) mediate intracellular signaling pathways controlling key biologic/oncogenic processes provide a strong rationale for investigating SRC/SFK inhibitors, e.g., dasatinib, in GBM and clinical studies are underway. The activity of these agents against solid tumors suggests that they may also be useful in treating brain metastases. This article reviews the potential for using SRC/SFK inhibitors to treat GBM and brain metastases.
Collapse
Affiliation(s)
- Manmeet Ahluwalia
- Cleveland Clinic Main Campus, Mail Code ND40, 9500 Euclid Avenue, Cleveland, OH 44195, Phone: 216-444-6145
| | - John de Groot
- The Brain Tumor Center, The University of Texas, M.D. Anderson Cancer Center, 1515, Holcombe Blvd., Unit 431, Houston, TX 77030, Phone: 713-792-7255
| | - Wei (Michael) Liu
- Lerner Research Institute, Department of Cancer Biology, Cleveland Clinic Mail Code NB40, 9500 Euclid Avenue, Cleveland, OH 44195, Phone: 216-636-9494
| | - Candece L Gladson
- Lerner Research Institute, Department of Cancer Biology, Cleveland Clinic Mail Code NB40, 9500 Euclid Avenue, Cleveland, OH 44195, Phone: 216-636-9493, Fax: 216-445-6269
| |
Collapse
|
25
|
Connelly SF, Isley BA, Baker CH, Gallick GE, Summy JM. Loss of tyrosine phosphatase-dependent inhibition promotes activation of tyrosine kinase c-Src in detached pancreatic cells. Mol Carcinog 2010; 49:1007-21. [PMID: 20945416 PMCID: PMC2991619 DOI: 10.1002/mc.20684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite an intense focus on novel therapeutic strategies, pancreatic adenocarcinoma remains one of the deadliest human malignancies. The frequent and rapid mortality associated with pancreatic cancer may be attributed to several factors, including late diagnosis, rapid tumor invasion into surrounding tissues, and formation of distant metastases. Both local invasion and metastasis require disruption of tumor cell contacts with the extracellular matrix. Detachment of normal cells from the extracellular matrix leads to a form of programmed cell death termed anoikis. Pancreatic cancer cells avert anoikis by activation of signaling pathways that allow for adhesion-independent survival. In the present studies, cellular signaling pathways activated in detached pancreatic cancer cells were examined. We demonstrate a rapid and robust activation of Src kinase in detached pancreatic cancer cells, relative to adherent. Src autophosphorylation rapidly returned to baseline levels upon reattachment to tissue culture plastic, in the presence or absence of specific extracellular matrix proteins. Treatment of pancreatic cancer cells with tyrosine phosphatase inhibitors increased steady-state Src autophosphorylation in adherent cells and abrogated the detachment-induced increase in Src autophosphorylation. Src was found to co-immunoprecipitate with the Src homology 2 (SH2) domain containing protein tyrosine phosphatase (SHP-2) in pancreatic cancer cells, suggesting that SHP-2 may participate in regulation of Src autophosphorylation in adherent cells. Src family kinase (SFK) dependent increases in Akt and Jun N-terminal kinase (JNK) phosphorylation were observed in detached cells, indicating the potential for Src-dependent activation of survival and stress pathways in pancreatic cancer cells that have detached from the extracellular matrix.
Collapse
Affiliation(s)
| | - Beth A. Isley
- Cancer Research Institute, M. D. Anderson Cancer Center Orlando
| | - Cheryl H. Baker
- Cancer Research Institute, M. D. Anderson Cancer Center Orlando
| | - Gary E. Gallick
- Department of Genitourinary Medical Oncology, University of Texas M. D. Anderson Cancer Center
| | - Justin M. Summy
- Cancer Research Institute, M. D. Anderson Cancer Center Orlando
| |
Collapse
|
26
|
Sen B, Peng S, Saigal B, Williams MD, Johnson FM. Distinct interactions between c-Src and c-Met in mediating resistance to c-Src inhibition in head and neck cancer. Clin Cancer Res 2010; 17:514-24. [PMID: 21106725 DOI: 10.1158/1078-0432.ccr-10-1617] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE c-Src inhibition in cancer cells leads to an abrogation of invasion but a variable effect on apoptosis. The pathways downstream of c-Src promoting survival are not well characterized. Because cancer therapy that both decreases invasion and induces significant apoptosis would be ideal, we sought to characterize the mechanisms of resistance to c-Src inhibition. EXPERIMENTAL DESIGN c-Src was inhibited in a panel of oral cancer cell lines and subsequent survival and signaling measured. The interactions between c-Src and c-Met were evaluated using immunoprecitation and an in vitro kinase assay. Cytotoxicity was measured and the Chou-Talalay combination index calculated. An orthotopic model of oral cancer was used to assess the effects of c-Met and c-Src inhibitors. RESULTS Inhibition of c-Src resulted in c-Met inhibition in sensitive cells lines, but not in resistant cell lines. Isolated c-Met was a c-Src substrate in both sensitive and resistant cells, but there was no interaction of c-Src and c-Met in intact resistant cells. To examine the biological consequences of this mechanism, we demonstrated synergistic cytotoxicity, enhanced apoptosis, and decreased tumor size with the combination of c-Src and c-Met inhibitors. CONCLUSIONS Sustained c-Met activation can mediate resistance to c-Src inhibition. These data suggest that the differences between c-Met and c-Src signaling in sensitive and resistant cells are due to distinct factors promoting or inhibiting interactions, respectively, rather than to intrinsic structural changes in c-Src or c-Met. The synergistic cytotoxic effects of c-Src and c-Met inhibition may be important for the treatment of head and neck cancers.
Collapse
Affiliation(s)
- Banibrata Sen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | | | | | |
Collapse
|
27
|
Choi HG, Ren P, Adrian F, Sun F, Lee HS, Wang X, Ding Q, Zhang G, Xie Y, Zhang J, Liu Y, Tuntland T, Warmuth M, Manley PW, Mestan J, Gray NS, Sim T. A type-II kinase inhibitor capable of inhibiting the T315I "gatekeeper" mutant of Bcr-Abl. J Med Chem 2010; 53:5439-48. [PMID: 20604564 DOI: 10.1021/jm901808w] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The second generation of Bcr-Abl inhibitors nilotinib, dasatinib, and bosutinib developed to override imatinib resistance are not active against the T315I "gatekeeper" mutation. Here we describe a type-II T315I inhibitor 2 (GNF-7), based upon a 3,4-dihydropyrimido[4,5-d]pyrimidin-2(1H)-one scaffold which is capable of potently inhibiting wild-type and T315I Bcr-Abl as well as other clinically relevant Bcr-Abl mutants such as G250E, Q252H, Y253H, E255K, E255V, F317L, and M351T in biochemical and cellular assays. In addition, compound 2 displayed significant in vivo efficacy against T315I-Bcr-Abl without appreciable toxicity in a bioluminescent xenograft mouse model using a transformed T315I-Bcr-Abl-Ba/F3 cell line that has a stable luciferase expression. Compound 2 is among the first type-II inhibitors capable of inhibiting T315I to be described and will serve as a valuable lead to design the third generation Bcr-Abl kinase inhibitors.
Collapse
Affiliation(s)
- Hwan Geun Choi
- Dana Farber Cancer Institute, Harvard Medical School, Department of Cancer Biology and Department of Biological Chemistry and Molecular Pharmacology, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Williams SP, Karnezis T, Achen MG, Stacker SA. Targeting lymphatic vessel functions through tyrosine kinases. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:13. [PMID: 20698997 PMCID: PMC2925338 DOI: 10.1186/2040-2384-2-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/11/2010] [Indexed: 01/24/2023]
Abstract
The lymphatic vascular system is actively involved in tissue fluid homeostasis, immune surveillance and fatty acid transport. Pathological conditions can arise from injury to the lymphatics, or they can be recruited in the context of cancer to facilitate metastasis. Protein tyrosine kinases are central players in signal transduction networks and regulation of cell behavior. In the lymphatic endothelium, tyrosine kinases are involved in processes such as the maintenance of existing lymphatic vessels, growth and maturation of new vessels and modulation of their identity and function. As such, they are attractive targets for both existing inhibitors and the development of new inhibitors which affect lymphangiogenesis in pathological states such as cancer. RNAi screening provides an opportunity to identify the functional role of tyrosine kinases in the lymphatics. This review will discuss the role of tyrosine kinases in lymphatic biology and the potential use of inhibitors for anti-lymphangiogenic therapy.
Collapse
Affiliation(s)
- Steven P Williams
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| | | | | | | |
Collapse
|
29
|
Abstract
Fyn is 59-kDa member of the Src family of kinases that is historically associated with T-cell and neuronal signaling in development and normal cellular physiology. Whereas Src has been heavily studied in cancer, less attention has been traditionally awarded to the other Src kinases such as Fyn. Our group has shown that Fyn is particularly upregulated in prostate cancer in contrast to the alternative members of the Src family. This suggests that it may mediate several important processes attributed to Src kinases in prostate cancer and other malignancies. These functions include not only cellular growth and proliferation but also morphogenesis and cellular motility. Together, these suggest a role for Fyn in both progression and metastasis. As several agents in clinical development affect Fyn activation, understanding the role that Fyn plays in cancer is of great importance in oncology. Cancer 2010. (c) 2010 American Cancer Society.
Collapse
Affiliation(s)
- Yoshihito D Saito
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
30
|
Abstract
In order to stop malignant tumor growth, >90% of a critical biochemical pathway needs to be blocked. Due to extraordinary advances in molecular biology, there is an increased understanding of rationale and relevant molecular targets in cancer. However, due to the heterogeneity of the molecular abnormalities in multiple tumor types, strategies designed to interfere with multiple molecular abnormalities will be necessary to impact survival. Nanoparticles have the potential to provide therapies not possible with other drug modalities. Researchers and clinicians must take advantage of these opportunities in order for nanotechnology to make an impact in the diagnosis and treatment of malignancy. A discussion of relevant targets either on the cell surface or the cytoplasm and strategies to achieve optimal drug targeting are the focus of this chapter.
Collapse
|
31
|
Antivascular therapy for epithelial ovarian cancer. JOURNAL OF ONCOLOGY 2009; 2010:372547. [PMID: 20072701 PMCID: PMC2804796 DOI: 10.1155/2010/372547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 09/28/2009] [Indexed: 12/19/2022]
Abstract
Ovarian cancer is the fifth largest cancer killer in women. Improved understanding of the molecular pathways implicated in the pathogenesis of ovarian cancer has led to the investigation of novel targeted therapies. Ovarian cancer is characterized by an imbalance between pro- and antiangiogenic factors in favor of angiogenesis activation. Various antivascular strategies are currently under investigation in ovarian cancer. They can schematically be divided into antiangiogenic and vascular-disrupting therapies. This paper provides a comprehensive review of these new treatments targeting the tumor vasculature in this disease. Promising activities have been detected in phase II trials, and results of phase III clinical trials are awaited eagerly.
Collapse
|
32
|
Sheikpranbabu S, Kalishwaralal K, Venkataraman D, Eom SH, Park J, Gurunathan S. Silver nanoparticles inhibit VEGF-and IL-1beta-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells. J Nanobiotechnology 2009; 7:8. [PMID: 19878566 PMCID: PMC2776000 DOI: 10.1186/1477-3155-7-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 10/30/2009] [Indexed: 01/09/2023] Open
Abstract
The aim of this study is to determine the effects of silver nanoparticles (Ag-NP) on vascular endothelial growth factor (VEGF)-and interleukin-1 beta (IL-1β)-induced vascular permeability, and to detect the underlying signaling mechanisms involved in endothelial cells. Porcine retinal endothelial cells (PRECs) were exposed to VEGF, IL-1β and Ag-NP at different combinations and endothelial cell permeability was analyzed by measuring the flux of RITC-dextran across the PRECs monolayer. We found that VEGF and IL-1β increase flux of dextran across a PRECs monolayer, and Ag-NP block solute flux induced by both VEGF and IL-1β. To explore the signalling pathway involved VEGF- and IL-1β-induced endothelial alteration, PRECs were treated with Src inhibitor PP2 prior to VEGF and IL-1β treatment, and the effects were recorded. Further, to clarify the possible involvement of the Src pathways in endothelial cell permeability, plasmid encoding dominant negative(DN) and constitutively active(CA) form of Src kinases were transfected into PRECs, 24 h prior to VEGF and IL-1β exposure and the effects were recorded. Overexpression of DN Src blocked both VEGF-and IL-1β-induced permeability, while overexpression of CA Src rescues the inhibitory action of Ag-NP in the presence or absence of VEGF and IL-1β. Further, an in vitro kinase assay was performed to identify the presence of the Src phosphorylation at Y419. We report that VEGF and IL-1β-stimulate endothelial permeability via Src dependent pathway by increasing the Src phosphorylation and Ag-NP block the VEGF-and IL-1β-induced Src phosphorylation at Y419. These results demonstrate that Ag-NP may inhibit the VEGF-and IL-1β-induced permeability through inactivation of Src kinase pathway and this pathway may represent a potential therapeutic target to inhibit the ocular diseases such as diabetic retinopathy.
Collapse
Affiliation(s)
- Sardarpasha Sheikpranbabu
- Department of Biotechnology, Division of Molecular and Cellular Biology, Kalasalingam University (Kalasalingam Academy of Research and Education), Anand Nagar, Krishnankoil-626190, Tamilnadu, India.
| | | | | | | | | | | |
Collapse
|
33
|
Matsuo Y, Raimondo M, Woodward TA, Wallace MB, Gill KR, Tong Z, Burdick MD, Yang Z, Strieter RM, Hoffman RM, Guha S. CXC-chemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer. Int J Cancer 2009; 125:1027-1037. [PMID: 19431209 DOI: 10.1002/ijc.24383] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Angiogenesis is essential for tumor growth and metastasis. Although ELR(+)-CXC-chemokines and their corresponding receptor, CXC-receptor 2 (CXCR2), are known mediators of angiogenesis, little is known about their role in pancreatic cancer (PaCa). The aim of our study was to determine the role of ELR(+)-CXC-chemokine/CXCR2 biological axis in promoting PaCa angiogenesis. We prospectively collected secretin-stimulated exocrine pancreatic secretions (SSEPS) from normal individuals (NP) and PaCa patients. We showed that summed concentrations of ELR(+)-CXC-chemokines in SSEPS from PaCa patients were significantly higher than in those from NP (p = 0.002). We measured ELR(+)-CXC-chemokine levels in supernatants from multiple PaCa cell lines and confirmed that BxPC-3, Colo-357 and Panc-28 had significantly higher expression compared with an immortalized human pancreatic ductal epithelial (HPDE) cell line. After confirming lack of autocrine effects of ELR(+)-CXC-chemokines on PaCa cells (due to absence of CXCR2 expression), we investigated paracrine effects of these chemokines on human umbilical vein endothelial cells (HUVEC). Both recombinant ELR(+)-CXC-chemokines and co-culturing with BxPC-3 significantly enhanced proliferation, invasion, and tube formation of HUVEC (p < 0.05). These biological effects were significantly inhibited by treatment with a neutralizing antibody against CXCR2 (anti-CXCR2 Ab) (p < 0.05). Finally, anti-CXCR2 Ab significantly reduced tumor volume (p < 0.05), Ki-67 proliferation index (p = 0.043) and Factor VIII(+) microvessel density (p = 0.004) in an orthotopic nude mouse PaCa model. Our results show that ELR(+)-CXC-chemokines promote PaCa tumor-associated angiogenesis through CXCR2, suggesting that CXCR2 is an anti-angiogenic target in PaCa.
Collapse
MESH Headings
- Adolescent
- Animals
- Blotting, Western
- Cell Proliferation
- Cells, Cultured
- Chemokines, CXC/physiology
- Endothelium, Vascular/metabolism
- Humans
- In Vitro Techniques
- Intercellular Signaling Peptides and Proteins/metabolism
- Male
- Mice
- Mice, Nude
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Pancreatic Neoplasms/blood supply
- Pancreatic Neoplasms/pathology
- Pilot Projects
- Prospective Studies
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Interleukin-8B/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Secretin/metabolism
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- Yoichi Matsuo
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas M. D. Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cross talk between receptor guanylyl cyclase C and c-src tyrosine kinase regulates colon cancer cell cytostasis. Mol Cell Biol 2009; 29:5277-89. [PMID: 19620276 DOI: 10.1128/mcb.00001-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increased activation of c-src seen in colorectal cancer is an indicator of a poor clinical prognosis, suggesting that identification of downstream effectors of c-src may lead to new avenues of therapy. Guanylyl cyclase C (GC-C) is a receptor for the gastrointestinal hormones guanylin and uroguanylin and the bacterial heat-stable enterotoxin. Though activation of GC-C by its ligands elevates intracellular cyclic GMP (cGMP) levels and inhibits cell proliferation, its persistent expression in colorectal carcinomas and occult metastases makes it a marker for malignancy. We show here that GC-C is a substrate for inhibitory phosphorylation by c-src, resulting in reduced ligand-mediated cGMP production. Consequently, active c-src in colonic cells can overcome GC-C-mediated control of the cell cycle. Furthermore, docking of the c-src SH2 domain to phosphorylated GC-C results in colocalization and further activation of c-src. We therefore propose a novel feed-forward mechanism of activation of c-src that is induced by cross talk between a receptor GC and a tyrosine kinase. Our findings have important implications in understanding the molecular mechanisms involved in the progression and treatment of colorectal cancer.
Collapse
|
35
|
Kim WY, Chang DJ, Hennessy B, Kang HJ, Yoo J, Han SH, Kim YS, Park HJ, Geo SY, Mills G, Kim KW, Hong WK, Suh YG, Lee HY. A novel derivative of the natural agent deguelin for cancer chemoprevention and therapy. Cancer Prev Res (Phila) 2008; 1:577-87. [PMID: 19139008 PMCID: PMC2738643 DOI: 10.1158/1940-6207.capr-08-0184] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The natural compound deguelin has promising preventive and therapeutic activity against diverse cancers by directly binding to heat shock protein-90 and thus suppressing its function. Potential side effects of deguelin over a certain dose, however, could be a substantial obstacle to its clinical use. To develop a derivative(s) of deguelin with reduced potential side effects, we synthesized five deguelin analogues (SH-02, SH-03, SH-09, SH-14, and SH-15) and compared them with the parent compound and each other for structural and biochemical features; solubility; and antiproliferative effects on normal, premalignant, and malignant human bronchial epithelial (HBE) and non-small-cell lung cancer (NSCLC) cell lines. Four derivatives destabilized hypoxia-inducible factor-1alpha as potently as did deguelin. Reverse-phase protein array (RPPA) analysis in H460 NSCLC cells revealed that deguelin and the derivatives suppressed expression of a number of proteins including heat shock protein-90 clients and proteins involved in the phosphoinositide 3-kinase/Akt pathway. One derivative, SH-14, showed several features of potential superiority for clinical use: the highest apoptotic activity; no detectable influence on Src/signal transducer and activator of transcription signaling, which can promote cancer progression and is closely related to pathogenesis of Parkinson's disease (deguelin, SH-02 and SH-03 strongly activated this signaling); better aqueous solubility; and less cytotoxicity to immortalized HBE cells (versus deguelin) at a dose (1 micromol/L) that induced apoptotic activity in most premalignant and malignant HBE and NSCLC cell lines. These collective results suggest that the novel derivative SH-14 has strong potential for cancer chemoprevention and therapy, with equivalent efficacy and lesser toxicity (versus deguelin).
Collapse
Affiliation(s)
- Woo-Young Kim
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Dong Jo Chang
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Bryan Hennessy
- Departments of System Biology and Gynecologic Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Hae-Jin Kang
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jakyung Yoo
- College of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Seung-Ho Han
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Yoo-Shin Kim
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Hyun-Ju Park
- College of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | | | - Gordon Mills
- Departments of System Biology and Gynecologic Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Kyu-Won Kim
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Waun Ki Hong
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Young-Ger Suh
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Ho-Young Lee
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
36
|
Koppikar P, Choi SH, Egloff AM, Cai Q, Suzuki S, Freilino M, Nozawa H, Thomas SM, Gooding WE, Siegfried JM, Grandis JR. Combined inhibition of c-Src and epidermal growth factor receptor abrogates growth and invasion of head and neck squamous cell carcinoma. Clin Cancer Res 2008; 14:4284-91. [PMID: 18594011 DOI: 10.1158/1078-0432.ccr-07-5226] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Increased expression and/or activation of epidermal growth factor receptor (EGFR) is associated with tumor progression and poor prognosis in many cancers, including head and neck squamous cell carcinoma (HNSCC). Src family kinases, including c-Src, mediate a variety of intracellular or extracellular signals that contribute to tumor formation and progression. This study was undertaken to elucidate the role of c-Src in the growth and invasion of HNSCC and to determine the effects of combined targeting of EGFR and Src kinases in HNSCC cell lines. EXPERIMENTAL DESIGN HNSCC cells were engineered to stably express a dominant-active form of c-Src and investigated in cell growth and invasion assays. The biochemical effects of combined treatment with the Src inhibitor AZD0530, a potent, orally active Src inhibitor with Bcr/Abl activity, and the EGFR kinase inhibitor gefitinib were examined, as well as the consequences of dual Src/EGFR targeting on the growth and invasion of a panel of HNSCC cell lines. RESULTS HNSCC cells expressing dominant-active c-Src showed increased growth and invasion compared with vector-transfected controls. Combined treatment with AZD0530 and gefitinib resulted in greater inhibition of HNSCC cell growth and invasion compared with either agent alone. CONCLUSIONS These results suggest that increased expression and activation of c-Src promotes HNSCC progression where combined targeting of EGFR and c-Src may be an efficacious treatment approach.
Collapse
Affiliation(s)
- Priya Koppikar
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Asada M, Ebihara S, Numachi Y, Okazaki T, Yamanda S, Ikeda K, Yasuda H, Sora I, Arai H. Reduced tumor growth in a mouse model of schizophrenia, lacking the dopamine transporter. Int J Cancer 2008; 123:511-8. [PMID: 18470912 DOI: 10.1002/ijc.23562] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The incidence of cancer in patients with schizophrenia has been reported to be lower that in the general population. On the other hand, it is well established that patients with schizophrenia have a hyper-dopaminergic system and dopamine has the ability to inhibit tumor angiogenesis. Therefore, in order to investigate the molecular mechanisms responsible for the lower cancer risk in schizophrenic patients, we used a mouse model of schizophrenia, which shows hyper-dopaminergic transmission in the nerve terminals of dopaminergic neurons. Here, we hypothesized that tumor growth was reduced in a mouse model of schizophrenia, lacking the dopamine transporter (DAT), and investigated tumor growth and angiogenesis in DAT knockout mice. The subcutaneous tumor in mice inoculated with cancer cells was smaller in DAT-/- mice than in the wild type (p < 0.05); however, the level of plasma dopamine in DAT-/- mice was lower than that of control littermates. Using human umbilical vascular endothelial cells (HUVEC), we examined dopamine signaling through dopamine D(1) receptor (D(1)R) and D(2)R. Dopamine stimulation slightly decreased the surface expression of vascular endothelial growth factor receptor-2 (VEGF-R2) but induced the phosphorylation of VEGF-R2 through Src in HUVEC. In addition, DAT-/- mice had less D(1)R. Both pharmacological and genetic interruption of D(1)R showed inhibited tumor growth. These results suggest that modulation of the dopaminergic system may contribute to cancer therapy.
Collapse
Affiliation(s)
- Masanori Asada
- Department of Geriatrics and Gerontology, Tohoku University School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Epidermal growth factor receptor (EGFR), a member of the ErbB family of receptor tyrosine kinases (RTKs), is highly expressed in head and neck squamous cell carcinoma (HNSCC) where increased EGFR expression levels in tumors are associated with decreased survival. HNSCC patient responses to EGFR-targeted monotherapies in clinical trials, though significant, have been limited. Tumor signaling pathway components that work in cooperation with EGFR or provide compensation for the loss of EGFR-initiated signaling will be ideal targets for therapies to be used in combination with EGFR-targeted agents. Based on the current understanding of molecular signaling pathways and available agents, ErbB family-targeted and Src family-targeted agents represent strategies for further exploration. Here, we discuss agents targeting ErbB and Src family kinases in clinical development, provide an overview of completed and ongoing clinical trials, and outline a molecular rationale for combining ErbB- and Src-targeted therapeutics.
Collapse
Affiliation(s)
- Ann Marie Egloff
- Department of Otolaryngology, University of Pittsburgh School of Medicine
| | - Jennifer R. Grandis
- Department of Otolaryngology, University of Pittsburgh School of Medicine
- Department of Pharmacology, University of Pittsburgh School of Medicine
| |
Collapse
|
39
|
Park SI, Zhang J, Phillips KA, Araujo JC, Najjar AM, Volgin AY, Gelovani JG, Kim SJ, Wang Z, Gallick GE. Targeting SRC family kinases inhibits growth and lymph node metastases of prostate cancer in an orthotopic nude mouse model. Cancer Res 2008; 68:3323-33. [PMID: 18451159 DOI: 10.1158/0008-5472.can-07-2997] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aberrant expression and/or activity of members of the Src family of nonreceptor protein tyrosine kinases (SFK) are commonly observed in progressive stages of human tumors. In prostate cancer, two SFKs (Src and Lyn) have been specifically implicated in tumor growth and progression. However, there are no data in preclinical models demonstrating potential efficacy of Src inhibitors against prostate cancer growth and/or metastasis. In this study, we used the small molecule SFK/Abl kinase inhibitor dasatinib, currently in clinical trials for solid tumors, to examine in vitro and in vivo effects of inhibiting SFKs in prostate tumor cells. In vitro, dasatinib inhibits both Src and Lyn activity, resulting in decreased cellular proliferation, migration, and invasion. In orthotopic nude mouse models, dasatinib treatment effectively inhibits expression of activated SFKs, resulting in inhibition of both tumor growth and development of lymph node metastases in both androgen-sensitive and androgen-resistant tumors. In primary tumors, SFK inhibition leads to decreased cellular proliferation (determined by immunohistochemistry for proliferating cell nuclear antigen). In vitro, small interfering RNA (siRNA)-mediated inhibition of Lyn affects cellular proliferation; siRNA inhibition of Src affects primarily cellular migration. Therefore, we conclude that SFKs are promising therapeutic targets for treatment of human prostate cancer and that Src and Lyn activities affect different cellular functions required for prostate tumor growth and progression.
Collapse
Affiliation(s)
- Serk In Park
- The Program in Cancer Biology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kopetz S, Shah AN, Gallick GE. Src continues aging: current and future clinical directions. Clin Cancer Res 2008; 13:7232-6. [PMID: 18094400 DOI: 10.1158/1078-0432.ccr-07-1902] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant activation of members of the Src family of nonreceptor protein tyrosine kinases is common in solid tumor malignancies and may contribute to the development and/or progression of these tumors. As a result, four Src inhibitors are now in more than 50 clinical trials for at least 14 different types of solid tumors. In this review, we briefly discuss the preclinical rationale for Src inhibitors, the development strategies most likely to be successful in the clinic, and the rationale for Src inhibitors in combination with other agents as part of a more comprehensive therapeutic strategy. As the use of Src family inhibitors in clinical trials on solid tumors is in its infancy, further studies on the roles of Src family kinases in tumor progression, chemoresistance, epidermal-to-mesenchymal transition, and other properties of tumor progression will be important in designing the most effective clinical trials using these inhibitors.
Collapse
Affiliation(s)
- Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | |
Collapse
|
41
|
Pyun BJ, Choi S, Lee Y, Kim TW, Min JK, Kim Y, Kim BD, Kim JH, Kim TY, Kim YM, Kwon YG. Capsiate, a nonpungent capsaicin-like compound, inhibits angiogenesis and vascular permeability via a direct inhibition of Src kinase activity. Cancer Res 2008; 68:227-35. [PMID: 18172315 DOI: 10.1158/0008-5472.can-07-2799] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Capsiate, a nonpungent capsaicin analogue, and its dihydroderivative dihydrocapsiate are the major capsaicinoids of the nonpungent red pepper cultivar CH-19 Sweet. In this study, we report the biological actions and underlying molecular mechanisms of capsiate on angiogenesis and vascular permeability. In vitro, capsiate and dihydrocapsiate inhibited vascular endothelial growth factor (VEGF)-induced proliferation, chemotactic motility, and capillary-like tube formation of primary cultured human endothelial cells. They also inhibited sprouting of endothelial cells in the rat aorta and formation of new blood vessels in the mouse Matrigel plug assay in response to VEGF. Moreover, both compounds blocked VEGF-induced endothelial permeability and loss of vascular endothelial (VE)-cadherin-facilitated endothelial cell-cell junctions. Importantly, capsiate suppressed VEGF-induced activation of Src kinase and phosphorylation of its downstream substrates, such as p125(FAK) and VE-cadherin, without affecting autophosphorylation of the VEGF receptor KDR/Flk-1. In vitro kinase assay and molecular modeling studies revealed that capsiate inhibits Src kinase activity via its preferential docking to the ATP-binding site of Src kinase. Taken together, these results suggest that capsiate could be useful for blocking pathologic angiogenesis and vascular permeability caused by VEGF.
Collapse
Affiliation(s)
- Bo-Jeong Pyun
- Department of Biochemistry, College of Sciences, Yonsei University, Seoul, 120-749, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
In silico screening and biological evaluation of inhibitors of Src-SH3 domain interaction with a proline-rich ligand. Bioorg Med Chem Lett 2008; 18:1217-22. [DOI: 10.1016/j.bmcl.2007.11.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 11/22/2022]
|
43
|
Boschelli DH, Wu B, Ye F, Durutlic H, Golas JM, Lucas J, Boschelli F. Facile preparation of new 4-phenylamino-3-quinolinecarbonitrile Src kinase inhibitors via 7-fluoro intermediates: Identification of potent 7-amino analogs. Bioorg Med Chem 2008; 16:405-12. [PMID: 17905586 DOI: 10.1016/j.bmc.2007.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/11/2007] [Accepted: 09/13/2007] [Indexed: 11/29/2022]
Abstract
A more efficient preparation of 4-[(2,4-dichloro-5-methoxyphenyl)amino]-7-fluoro-6-methoxy-3-quinolinecarbonitrile (2), the penultimate intermediate in the synthesis of bosutinib (1a), was developed. New 7-alkoxy-4-phenylamino-3-quinolinecarbonitrile Src inhibitors were prepared from 5 and 9, the 6-ethoxy and 6-hydrogen analogs of 2. In addition, the fluoro group of 2 was readily displaced by primary and secondary amines to give 7-amino analogs. Two of these 7-amino analogs, 15 and 18, were potent Src inhibitors with in vivo activity.
Collapse
Affiliation(s)
- Diane H Boschelli
- Chemical and Screening Sciences, Wyeth Research, 401 N. Middletown Road, Pearl River, NY 10965, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The c-Src non-receptor tyrosine kinase is overexpressed in a large number of human malignancies. It is linked to tumour development and progression to distant metastases by promoting cell proliferation, invasion, and motility. Recently, promising anticancer therapeutics targeting c-Src have been developed that are under clinical investigation.
Collapse
Affiliation(s)
- A Hilbig
- Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Medizinische Klinik mit Schwerpunkt Hämatologie und Onkologie, Germany
| |
Collapse
|
45
|
Han LY, Landen CN, Trevino JG, Halder J, Lin YG, Kamat AA, Kim TJ, Merritt WM, Coleman RL, Gershenson DM, Shakespeare WC, Wang Y, Sundaramoorth R, Metcalf CA, Dalgarno DC, Sawyer TK, Gallick GE, Sood AK. Antiangiogenic and antitumor effects of SRC inhibition in ovarian carcinoma. Cancer Res 2007; 66:8633-9. [PMID: 16951177 PMCID: PMC3202609 DOI: 10.1158/0008-5472.can-06-1410] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Src, a nonreceptor tyrosine kinase, is a key mediator for multiple signaling pathways that regulate critical cellular functions and is often aberrantly activated in a number of solid tumors, including ovarian carcinoma. The purpose of this study was to determine the role of activated Src inhibition on tumor growth in an orthotopic murine model of ovarian carcinoma. In vitro studies on HeyA8 and SKOV3ip1 cell lines revealed that Src inhibition by the Src-selective inhibitor, AP23846, occurred within 1 hour and responded in a dose-dependent manner. Furthermore, Src inhibition enhanced the cytotoxicity of docetaxel in both chemosensitive and chemoresistant ovarian cancer cell lines, HeyA8 and HeyA8-MDR, respectively. In vivo, Src inhibition by AP23994, an orally bioavailable analogue of AP23846, significantly decreased tumor burden in HeyA8 (P = 0.02), SKOV3ip1 (P = 0.01), as well as HeyA8-MDR (P < 0.03) relative to the untreated controls. However, the greatest effect on tumor reduction was observed in combination therapy with docetaxel (P < 0.001, P = 0.002, and P = 0.01, for the above models, respectively). Proliferating cell nuclear antigen staining showed that Src inhibition alone (P = 0.02) and in combination with docetaxel (P = 0.007) significantly reduced tumor proliferation. In addition, Src inhibition alone and in combination with docetaxel significantly down-regulated tumoral production of vascular endothelial growth factor and interleukin 8, whereas combination therapy decreased the microvessel density (P = 0.02) and significantly affected vascular permeability (P < 0.05). In summary, Src inhibition with AP23994 has potent antiangiogenic effects and significantly reduces tumor burden in preclinical ovarian cancer models. Thus, Src inhibition may be an attractive therapeutic approach for patients with ovarian carcinoma.
Collapse
Affiliation(s)
- Liz Y. Han
- Department of Gynecologic Oncology University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Charles N. Landen
- Department of Gynecologic Oncology University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jose G. Trevino
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jyotsnabaran Halder
- Department of Gynecologic Oncology University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Yvonne G. Lin
- Department of Gynecologic Oncology University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Aparna A. Kamat
- Department of Gynecologic Oncology University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Tae-Jin Kim
- Department of Gynecologic Oncology University of Texas M.D. Anderson Cancer Center, Houston, Texas
- Department of Gynecologic Oncology at Cheil General Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - William M. Merritt
- Department of Gynecologic Oncology University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Robert L. Coleman
- Department of Gynecologic Oncology University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - David M. Gershenson
- Department of Gynecologic Oncology University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Yihan Wang
- ARIAD Pharmaceuticals, Cambridge, Massachusetts
| | | | | | | | | | - Gary E. Gallick
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Anil K. Sood
- Department of Gynecologic Oncology University of Texas M.D. Anderson Cancer Center, Houston, Texas
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
46
|
Quintás-Cardama A, Kantarjian H, Cortes J. Flying under the radar: the new wave of BCR-ABL inhibitors. Nat Rev Drug Discov 2007; 6:834-48. [PMID: 17853901 DOI: 10.1038/nrd2324] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The introduction of the BCR-ABL kinase inhibitor imatinib mesylate (Gleevec; Novartis) revolutionized the treatment of chronic myeloid leukaemia (CML). However, most patients with CML receiving imatinib still harbour molecular residual disease and some develop resistance associated with ABL kinase domain mutations. The second-generation BCR-ABL inhibitors nilotinib (Tasigna; Novartis) and dasatinib (Sprycel; Bristol-Myers Squibb) have shown significant activity after imatinib failure in clinical trials, but still face similar obstacles to imatinib, including negligible activity against the frequent BCR-ABL T315I mutation and modest effects in advanced phases of CML. Various medicinal chemistry efforts, in part aided by structural studies of the ABL kinase-imatinib complex have resulted in the synthesis of a new generation of BCR-ABL inhibitors, some of which have shown encouraging preliminary activity in clinical trials, including against T315I mutants. Here, we discuss these emerging therapies, which have the potential to improve the outcome of patients with CML.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Clinical Trials as Topic
- Drug Design
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Models, Molecular
- Point Mutation
- Protein Binding
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
Collapse
Affiliation(s)
- Alfonso Quintás-Cardama
- Department of Leukemia, Unit 428, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
47
|
Park SI, Shah AN, Zhang J, Gallick GE. Regulation of angiogenesis and vascular permeability by Src family kinases: opportunities for therapeutic treatment of solid tumors. Expert Opin Ther Targets 2007; 11:1207-17. [PMID: 17845146 DOI: 10.1517/14728222.11.9.1207] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aberrant expression or activation of protein tyrosine kinases, including Src and related Src family kinases, is a common occurrence in many human cancers, resulting in deregulation of expression of numerous mediators of cellular functions, including pro-angiogenic molecules. In addition, Src activation regulates vascular permeability of endothelial cells. How these processes contribute to tumor progression and metastasis are the subjects of this review. As Src-selective inhibitors have entered clinical trials for a number of solid tumors, further understanding of the roles of Src kinases in mediating tumor angiogenesis as well as modulating tumor/microenvironment interactions will provide insights into the best use of these inhibitors in treating patients afflicted with tumors in which Src is activated.
Collapse
Affiliation(s)
- Serk In Park
- The University of Texas M. D. Anderson Cancer Center, Department of Cancer Biology, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
48
|
Nilsson MB, Armaiz-Pena G, Takahashi R, Lin YG, Trevino J, Li Y, Jennings N, Arevalo J, Lutgendorf SK, Gallick GE, Sanguino AM, Lopez-Berestein G, Cole SW, Sood AK. Stress hormones regulate interleukin-6 expression by human ovarian carcinoma cells through a Src-dependent mechanism. J Biol Chem 2007; 282:29919-26. [PMID: 17716980 DOI: 10.1074/jbc.m611539200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recent studies have demonstrated that chronic stress promotes tumor growth, angiogenesis, and metastasis. In ovarian cancer, levels of the pro-angiogenic cytokine, interleukin 6 (IL-6), are known to be elevated in individuals experiencing chronic stress, but the mechanism(s) by which this cytokine is regulated and its role in tumor growth remain under investigation. Here we show that stress hormones such as norepinephrine lead to increased expression of IL-6 mRNA and protein levels in ovarian carcinoma cells. Furthermore, we demonstrate that norepinephrine stimulation activates Src tyrosine kinase and this activation is required for increased IL-6 expression. These results demonstrate that stress hormones activate signaling pathways known to be critical in ovarian tumor progression.
Collapse
Affiliation(s)
- Monique B Nilsson
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Colorectal carcinoma is a leading cause of cancer mortality worldwide. Survival for patients with metastatic disease is approximately 2 years on average and there is an ongoing need for the identification of new therapeutic agents. As the cancer research community has appreciated, newly discovered pathways governing cancer cell growth, survival, apoptosis, invasion and angiogenesis--all a host of potential therapeutic targets--have come into view. Basic research, preclinical data and observations arising from early stage trials have pointed towards possible roles for many of these agents in the future treatment of colorectal cancer. In this review, the authors summarize agents in development, modulating several of the most promising molecules and pathways that are thought to be relevant to colorectal cancer.
Collapse
Affiliation(s)
- Aram F Hezel
- Tucker Gosnell Center for Gastrointestinal Cancers, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
50
|
Tsao AS, He D, Saigal B, Liu S, Lee JJ, Bakkannagari S, Ordonez NG, Hong WK, Wistuba I, Johnson FM. Inhibition of c-Src expression and activation in malignant pleural mesothelioma tissues leads to apoptosis, cell cycle arrest, and decreased migration and invasion. Mol Cancer Ther 2007; 6:1962-72. [PMID: 17620427 DOI: 10.1158/1535-7163.mct-07-0052] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a deadly disease with few systemic treatment options. One potential therapeutic target, the non-receptor tyrosine kinase c-Src, causes changes in proliferation, motility, invasion, survival, and angiogenesis in cancer cells and may be a valid therapeutic target in MPM. To test this hypothesis, we determined the effects of c-Src inhibition in MPM cell lines and examined c-Src expression and activation in tissue samples. We analyzed four MPM cell lines and found that all expressed total and activated c-Src. Three of the four cell lines were sensitive by in vitro cytotoxicity assays to the c-Src inhibitor dasatinib, which led to cell cycle arrest and increased apoptosis. Dasatinib also inhibited migration and invasion independent of the cytotoxic effects, and led to the rapid and durable inhibition of c-Src and its downstream pathways. We used immunohistochemical analysis to determine the levels of c-Src expression and activation in 46 archived MPM tumor specimens. The Src protein was highly expressed in tumor cells, but expression did not correlate with survival. However, expression of activated Src (p-Src Y419) on the tumor cell membrane was higher in patients with advanced-stage disease; the presence of metastasis correlated with higher membrane (P = 0.03) and cytoplasmic (P = 0.04) expression of p-Src Y419. Lower levels of membrane expression of inactive c-Src (p-Src Y530) correlated with advanced N stage (P = 0.02). Activated c-Src may play a role in survival, metastasis, and invasion of MPM, and targeting c-Src may be an important therapeutic strategy.
Collapse
Affiliation(s)
- Anne S Tsao
- Department of Thoracic/Head and Neck Medical Oncology, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 432, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|