1
|
Agioti S, Zaravinos A. Immune Cytolytic Activity and Strategies for Therapeutic Treatment. Int J Mol Sci 2024; 25:3624. [PMID: 38612436 PMCID: PMC11011457 DOI: 10.3390/ijms25073624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Intratumoral immune cytolytic activity (CYT), calculated as the geometric mean of granzyme-A (GZMA) and perforin-1 (PRF1) expression, has emerged as a critical factor in cancer immunotherapy, with significant implications for patient prognosis and treatment outcomes. Immune checkpoint pathways, the composition of the tumor microenvironment (TME), antigen presentation, and metabolic pathways regulate CYT. Here, we describe the various methods with which we can assess CYT. The detection and analysis of tumor-infiltrating lymphocytes (TILs) using flow cytometry or immunohistochemistry provide important information about immune cell populations within the TME. Gene expression profiling and spatial analysis techniques, such as multiplex immunofluorescence and imaging mass cytometry allow the study of CYT in the context of the TME. We discuss the significant clinical implications that CYT has, as its increased levels are associated with positive clinical outcomes and a favorable prognosis. Moreover, CYT can be used as a prognostic biomarker and aid in patient stratification. Altering CYT through the different methods targeting it, offers promising paths for improving treatment responses. Overall, understanding and modulating CYT is critical for improving cancer immunotherapy. Research into CYT and the factors that influence it has the potential to transform cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Stephanie Agioti
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus;
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus;
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| |
Collapse
|
2
|
Ebrahimi N, Abdulwahid AHRR, Mansouri A, Karimi N, Bostani RJ, Beiranvand S, Adelian S, Khorram R, Vafadar R, Hamblin MR, Aref AR. Targeting the NF-κB pathway as a potential regulator of immune checkpoints in cancer immunotherapy. Cell Mol Life Sci 2024; 81:106. [PMID: 38418707 PMCID: PMC10902086 DOI: 10.1007/s00018-023-05098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 03/02/2024]
Abstract
Advances in cancer immunotherapy over the last decade have led to the development of several agents that affect immune checkpoints. Inhibitory receptors expressed on T cells that negatively regulate the immune response include cytotoxic T‑lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD1), which have been studied more than similar receptors. Inhibition of these proteins and other immune checkpoints can stimulate the immune system to attack cancer cells, and prevent the tumor from escaping the immune response. However, the administration of anti-PD1 and anti-CTLA4 antibodies has been associated with adverse inflammatory responses similar to autoimmune diseases. The current review discussed the role of the NF-κB pathway as a tumor promoter, and how it can govern inflammatory responses and affect various immune checkpoints. More precise knowledge about the communication between immune checkpoints and NF-κB pathways could increase the effectiveness of immunotherapy and reduce the adverse effects of checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Karimi
- Department of Biology, Faculty of Basic Science, Islamic Azad University Damghan Branch, Damghan, Iran
| | | | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Liu X, Cen X, Wu R, Chen Z, Xie Y, Wang F, Shan B, Zeng L, Zhou J, Xie B, Cai Y, Huang J, Liang Y, Wu Y, Zhang C, Wang D, Xia H. ARIH1 activates STING-mediated T-cell activation and sensitizes tumors to immune checkpoint blockade. Nat Commun 2023; 14:4066. [PMID: 37429863 DOI: 10.1038/s41467-023-39920-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Despite advances in cancer treatment, immune checkpoint blockade (ICB) only achieves complete response in some patients, illustrating the need to identify resistance mechanisms. Using an ICB-insensitive tumor model, here we discover cisplatin enhances the anti-tumor effect of PD-L1 blockade and upregulates the expression of Ariadne RBR E3 ubiquitin-protein ligase 1 (ARIH1) in tumors. Arih1 overexpression promotes cytotoxic T cell infiltration, inhibits tumor growth, and potentiates PD-L1 blockade. ARIH1 mediates ubiquitination and degradation of DNA-PKcs to trigger activation of the STING pathway, which is blocked by the phospho-mimetic mutant T68E/S213D of cGAS protein. Using a high-throughput drug screen, we further identify that ACY738, less cytotoxic than cisplatin, effectively upregulates ARIH1 and activates STING signaling, sensitizing tumors to PD-L1 blockade. Our findings delineate a mechanism that tumors mediate ICB resistance through the loss of ARIH1 and ARIH1-DNA-PKcs-STING signaling and indicate that activating ARIH1 is an effective strategy to improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaolan Liu
- Department of Biochemistry & Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xufeng Cen
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
| | - Ronghai Wu
- Hangzhou PhecdaMed Co.Ltd, 2626 Yuhangtang Road, Hangzhou, 311121, China
| | - Ziyan Chen
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yanqi Xie
- Department of Urology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Fengqi Wang
- Department of Biochemistry & Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, 50# Huzhou Rd., Hangzhou, Zhejiang, China
| | - Jichun Zhou
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Bojian Xie
- Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, 318000, China
| | - Yangjun Cai
- Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, 318000, China
| | - Jinyan Huang
- Biomedical big data center, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yingjiqiong Liang
- Biomedical big data center, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Youqian Wu
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Chao Zhang
- Department of Anatomy and Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Dongrui Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
| | - Hongguang Xia
- Department of Biochemistry & Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, Kumar R, Akil ASAS, Macha MA, Haris M, Uddin S, Singh M, Bhat AA. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med 2023; 21:449. [PMID: 37420216 PMCID: PMC10327392 DOI: 10.1186/s12967-023-04292-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Traditional cancer treatments use nonspecific drugs and monoclonal antibodies to target tumor cells. Chimeric antigen receptor (CAR)-T cell therapy, however, leverages the immune system's T-cells to recognize and attack tumor cells. T-cells are isolated from patients and modified to target tumor-associated antigens. CAR-T therapy has achieved FDA approval for treating blood cancers like B-cell acute lymphoblastic leukemia, large B-cell lymphoma, and multiple myeloma by targeting CD-19 and B-cell maturation antigens. Bi-specific chimeric antigen receptors may contribute to mitigating tumor antigen escape, but their efficacy could be limited in cases where certain tumor cells do not express the targeted antigens. Despite success in blood cancers, CAR-T technology faces challenges in solid tumors, including lack of reliable tumor-associated antigens, hypoxic cores, immunosuppressive tumor environments, enhanced reactive oxygen species, and decreased T-cell infiltration. To overcome these challenges, current research aims to identify reliable tumor-associated antigens and develop cost-effective, tumor microenvironment-specific CAR-T cells. This review covers the evolution of CAR-T therapy against various tumors, including hematological and solid tumors, highlights challenges faced by CAR-T cell therapy, and suggests strategies to overcome these obstacles, such as utilizing single-cell RNA sequencing and artificial intelligence to optimize clinical-grade CAR-T cells.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, 3050, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ravi Chauhan
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Manisha Dagar
- Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
5
|
Neweigy HA, Gouida MS, El Nagger MS, Salem ML. Cancer micro-environment immune modulation by Egyptian cobra (Naja haje) crud venom. EGYPTIAN PHARMACEUTICAL JOURNAL 2023; 22:237-250. [DOI: 10.4103/epj.epj_156_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2024]
Abstract
Background
Cancer can control immune system suppression mechanisms by activating regulatory T cells; myeloid-derived suppressor cells (MDSCs) and increasing the expression of co-inhibitor proteins. Snake venoms showed anticancer activity by targeting specific molecular pathways.
Objective
Here, we investigate the immunomodulatory effects of Egyptian cobra (Naja haje) venom different doses compared with cisplatin in healthy and cancer murine models.
Materials and methods
Female Balb/c mice aged 2–3 months, are separated into three general groups (control groups, solid (subcutaneous) tumors, and soft (ehrlich ascites) tumors. Mice were inoculated with ehrlich ascites carcinoma cells about 2×106 and 1.5×106 cells subcutaneously and intraperitoneal for 28 and 10 days, respectively.
Results
MDSCs decreased nonsignificantly in control groups treated with cisplatin, 1/10, 1/30 LD50 also, in ascites tumor group treated with 1/30 LD50 (P=0.055). While it increased non-significantly in healthy control treated with 1/20 LD50, all treated solid tumor groups and in ascites tumor groups treated with cisplatin and 1/20 LD50, on the other hand, Regulatory T cells in control groups decreased significantly in groups treated with cisplatin and 1/30 LD50 on the other hand it increased nonsignificantly in groups treated with 1/20 and 1/10 LD50. In solid tumor groups, T regs increased with no statistical significance in all treated solid tumor groups also, in ascites tumor groups treated with 1/20 LD50 and cisplatin.
Conclusion
Low doses of (Naja haje) crud venom reduce MDSCs and T reg in the microenvironment of tumor while higher doses increase them, further investigation will be needed.
Collapse
|
6
|
Stern E, Caruso S, Meiller C, Mishalian I, Hirsch TZ, Bayard Q, Tadmor CT, Wald H, Jean D, Wald O. Deep dive into the immune response against murine mesothelioma permits design of novel anti-mesothelioma therapeutics. Front Immunol 2023; 13:1026185. [PMID: 36685577 PMCID: PMC9846605 DOI: 10.3389/fimmu.2022.1026185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 01/06/2023] Open
Abstract
Given the need to improve the efficacy of standard-of-care immunotherapy (anti-CTLA-4 + anti-PD-1) in human malignant pleural mesothelioma (hMPM), we thoroughly characterized the immunobiology of the AB12 murine mesothelioma (MM) model, aiming to increase its accuracy in predicting the response of hMPM to immunotherapy and in designing novel anti-hMPM treatments. Specifically, we used immunologic, transcriptomic and survival analyses, to synchronize the MM tumor growth phases and immune evolution with the histo-molecular and immunological characteristics of hMPM while also determining the anti-MM efficacy of standard-of-care anti-hMPM immunotherapy as a benchmark that novel therapeutics should meet. We report that early-, intermediate- and advanced- AB12 tumors are characterized by a bell-shaped anti-tumor response that peaks in intermediate tumors and decays in advanced tumors. We further show that intermediate- and advanced- tumors match with immune active ("hot") and immune inactive ("cold") hMPM respectively, and that they respond to immunotherapy in a manner that corresponds well with its performance in real-life settings. Finally, we show that in advanced tumors, addition of cisplatin to anti CTLA-4 + anti PD-1 can extend mice survival and invigorate the decaying anti-tumor response. Therefore, we highlight this triple combination as a worthy candidate to improve clinical outcomes in hMPM.
Collapse
Affiliation(s)
- Esther Stern
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, team Functional Genomics of Solid Tumors, Paris, France
| | - Clément Meiller
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, team Functional Genomics of Solid Tumors, Paris, France
| | - Inbal Mishalian
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Theo Z. Hirsch
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, team Functional Genomics of Solid Tumors, Paris, France
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, team Functional Genomics of Solid Tumors, Paris, France
| | - Carmit T. Tadmor
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - Hanna Wald
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Didier Jean
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, team Functional Genomics of Solid Tumors, Paris, France
| | - Ori Wald
- Gene Therapy Institute, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cardiothoracic Surgery, Hadassah Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Tamanna MT, Egbune C. Traditional Treatment Approaches and Role of Immunotherapy in Lung Malignancy and Mesothelioma. Cancer Treat Res 2023; 185:79-89. [PMID: 37306905 DOI: 10.1007/978-3-031-27156-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There is no denying that many revolutions took place in the fight against cancer during the last decades. However, cancers have always managed to find new ways to challenge humankinds. Variable genomic epidemiology, socio-economic differences and limitations of widespread screening are the major concerns in cancer diagnosis and early treatment. A multidisciplinary approach is essentially to manage a cancer patient efficiently. Thoracic malignancies including lung cancers and pleural mesothelioma are accountable for little more than 11.6% of the global cancer burden [4]. Mesothelioma is one of the rare cancers, but concern is the incidences are increasing globally. However, the good news is first-line chemotherapy with the combination of immune checkpoints inhibitors (ICIs) in non-small cell lung cancer (NSCLC) and mesothelioma has showed promising respond and improved overall survival (OS) in pivotal clinical trials [10]. ICIs are commonly referred as immunotherapy are antigens on the cancer cells, and inhibitors are the antibodies produce by the T cell defence system. By inhibiting immune checkpoints, the cancer cells become visible to be identified as abnormal cells and attack by the body's defence system [17]. The programmed death receptor-1 (PD-1) and programmed death receptor ligand-1 (PD-L1) inhibitors are commonly used immune checkpoint blockers for anti-cancer treatment. PD-1/PD-L1 are proteins produced by immune cells and mimic by cancer cells that are implicated in inhibiting T cell response to regulate our immune system, which results tumour cells escaping the defence mechanism to achieve immune surveillance. Therefore, inhibiting immune checkpoints as well as monoclonal antibodies can lead to effective apoptosis of tumour cells [17]. Mesothelioma is an industrial disease caused by significant asbestos exposure. It is the cancer of the mesothelial tissue which presents in the lining of the mediastinum of pleura, pericardium and peritoneum, most commonly affected sites are pleura of the lung or chest wall lining [9] as route of asbestos exposure is inhalation. Calretinin is a calcium binding protein, typically over exposed in malignant mesotheliomas and the most useful marker even while initial changes take place [5]. On the other hand, Wilm's tumour 1 (WT-1) gene expression on the tumour cells can be related to prognosis as it can elicit immune response, thereby inhibit cell apoptosis. A systematic review and meta-analysis study conducted by Qi et al. has suggested that expression of WT-1 in a solid tumour is fatal however, it gives the tumour cell a feature of immune sensitivity which then acts positively towards the treatment with immunotherapy. Clinical significance of WT-1 oncogene in treatment is still hugely debatable and needs further attention [21]. Recently, Japan has reinstated Nivolumab in patients with chemo-refractory mesothelioma. According to NCCN guidelines, the salvage therapies include Pembrolizumab in PD-L1 positive patients and Nivolumab alone or with Ipilimumab in cancers irrespective of PD-L1 expression [9]. The checkpoint blockers have taken over the biomarker-based research and demonstrated impressive treatment options in immune sensitive and asbestos-related cancers. It can be expected that in near future the immune checkpoint inhibitors will be considered as approved first-line cancer treatment universally.
Collapse
|
8
|
Darvishi M, Tosan F, Nakhaei P, Manjili DA, Kharkouei SA, Alizadeh A, Ilkhani S, Khalafi F, Zadeh FA, Shafagh SG. Recent progress in cancer immunotherapy: Overview of current status and challenges. Pathol Res Pract 2023; 241:154241. [PMID: 36543080 DOI: 10.1016/j.prp.2022.154241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Cancer treatment is presently one of the most important challenges in medical science. Surgery, chemotherapy, radiotherapy, or combining these methods is used to eliminate the tumor. Hormone therapy, bone marrow transplantation, stem cell therapy as well as immunotherapy are other well-known therapeutic modalities. Immunotherapy, as the most important complementary method, uses the immune system for treating cancer followed by surgery, chemotherapy, and radiotherapy. This method is systematically used to prevent malignancies development mainly via potentiating antitumor immune cells activation and conversely compromising their exhaustion with the lowest negative effects on healthy cells. Active immunotherapy can be employed for cancer immunotherapy by directly using the ingredients of the immune system and activating immune responses. On the other hand, inactive immunotherapy is utilized by indirect induction and using immune cell-based products consisting of monoclonal antibodies. It has strongly been proved that combination therapy with immunotherapies and other therapeutic means, such as anti-angiogenic agents, could be a rational plan to treat cancer. Herein, we have focused on recent findings concerning the therapeutic merits of cancer therapy using immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT) and cancer vaccine alone or in combination with other approaches. Also, we offer a glimpse into the current challenges in this context.
Collapse
Affiliation(s)
- Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medicinal Sciences, Tehran, Iran.
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.
| | - Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Danial Amiri Manjili
- Department of Infectious Disease, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | | - Ali Alizadeh
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farima Khalafi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
9
|
Sun B, Dong Y, Xu J, Wang Z. Current status and progress in immunotherapy for malignant pleural mesothelioma. Chronic Dis Transl Med 2022; 8:91-99. [PMID: 35774429 PMCID: PMC9215716 DOI: 10.1002/cdt3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignant disease. Currently, the platinum doublet of pemetrexed and cisplatin is the standard first-line treatment for unresectable MPM. However, recent promising results of immunotherapy have markedly changed the landscape of MPM treatment. Further, the ongoing innovative therapeutic strategies are expected to expand the range of treatment options; however, several questions remain unanswered. First, establishing predictive biomarkers with high potency is urgently needed to optimize the patient selection process. Second, further exploration of the combination algorithm is expected to unveil more effective and safe regimens. Moreover, other dilemmas, such as the resistance mechanism of immunotherapy and the role of immunotherapy in perioperative settings, still warrant further exploration.
Collapse
Affiliation(s)
- Boyang Sun
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100021China
| | - Yiting Dong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100021China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100021China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100021China
| |
Collapse
|
10
|
Naimi A, Mohammed RN, Raji A, Chupradit S, Yumashev AV, Suksatan W, Shalaby MN, Thangavelu L, Kamrava S, Shomali N, Sohrabi AD, Adili A, Noroozi-Aghideh A, Razeghian E. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun Signal 2022; 20:44. [PMID: 35392976 PMCID: PMC8991803 DOI: 10.1186/s12964-022-00854-y] [Citation(s) in RCA: 251] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
The main breakthrough in tumor immunotherapy was the discovery of immune checkpoint (IC) proteins, which act as a potent suppressor of the immune system by a myriad of mechanisms. After that, scientists focused on the immune checkpoint molecules mainly. Thereby, much effort was spent to progress novel strategies for suppressing these inhibitory axes, resulting in the evolution of immune checkpoint inhibitors (ICIs). Then, ICIs have become a promising approach and shaped a paradigm shift in tumor immunotherapies. CTLA-4 plays an influential role in attenuation of the induction of naïve and memory T cells by engagement with its responding ligands like B7-1 (CD80) and B7-2 (CD86). Besides, PD-1 is predominantly implicated in adjusting T cell function in peripheral tissues through its interaction with programmed death-ligand 1 (PD-L1) and PD-L2. Given their suppressive effects on anti-tumor immunity, it has firmly been documented that ICIs based therapies can be practical and rational therapeutic approaches to treat cancer patients. Nonetheless, tumor inherent or acquired resistance to ICI and some treatment-related toxicities restrict their application in the clinic. The current review will deliver a comprehensive overview of the ICI application to treat human tumors alone or in combination with other modalities to support more desired outcomes and lower toxicities in cancer patients. Video Abstract.
Collapse
Affiliation(s)
- Adel Naimi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Rebar N. Mohammed
- Medical Laboratory Analysis Department, Cihan University Sulaimaniya, Sulaymaniyah, 46001 Kurdistan Region Iraq
- College of Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Ahmed Raji
- College of Medicine, University of Babylon, Department of Pathology, Babylon, Iraq
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
| | | | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | - Mohammed Nader Shalaby
- Associate Professor of Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Siavash Kamrava
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin D. Sohrabi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Noroozi-Aghideh
- Department of Hematology, Faculty of Paramedicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
11
|
Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022; 51:2544-2582. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.
Collapse
Affiliation(s)
- Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Alec Wang
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Orysia Zaremba
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Hans W Scheeren
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Roger M Pallares
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Wuttke
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
12
|
Terenziani R, Zoppi S, Fumarola C, Alfieri R, Bonelli M. Immunotherapeutic Approaches in Malignant Pleural Mesothelioma. Cancers (Basel) 2021; 13:2793. [PMID: 34199722 PMCID: PMC8200040 DOI: 10.3390/cancers13112793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignant disease affecting the mesothelium, commonly associated to asbestos exposure. The current therapeutic actions, based on cisplatin/pemetrexed treatment, are limited due to the late stage at which most patients are diagnosed and to the intrinsic chemo-resistance of the tumor. Another relevant point is the absence of approved therapies in the second line setting following progression of MPM after chemotherapy. Considering the poor prognosis of the disease and the fact that the incidence of this tumor is expected to increase in the next decade, novel therapeutic approaches are urgently needed. In the last few years, several studies have investigated the efficacy and safety of immune-checkpoint inhibitors (ICIs) in the treatment of unresectable advanced MPM, and a number of trials with immunotherapeutic agents are ongoing in both first line and second line settings. In this review, we describe the most promising emerging immunotherapy treatments for MPM (ICIs, engineered T cells to express chimeric antigen receptors (CARs), dendritic cells (DCs) vaccines), focusing on the biological and immunological features of this tumor as well as on the issues surrounding clinical trial design.
Collapse
Affiliation(s)
| | | | | | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (R.T.); (S.Z.); (C.F.)
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (R.T.); (S.Z.); (C.F.)
| |
Collapse
|
13
|
Mehdizadeh S, Bayatipoor H, Pashangzadeh S, Jafarpour R, Shojaei Z, Motallebnezhad M. Immune checkpoints and cancer development: Therapeutic implications and future directions. Pathol Res Pract 2021; 223:153485. [PMID: 34022684 DOI: 10.1016/j.prp.2021.153485] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Over the past few decades, different inhibitory receptors have been identified, which have played prominent roles in reducing anti-tumor immune responses. The role of immune checkpoint inhibitors in cancer was revealed by critical blockade of the cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1) checkpoints. Immune checkpoint inhibitors, including anti-PD-1 (nivolumab and pembrolizumab), anti-PD-L1 (Atezolizumab, avelumab, and duravulumab), and anti-CTLA-4 (ipilimumab, tremelimumab), are currently FDA-approved treatment options for a broad range of cancer types. However, regarding immunotherapy advances in recent years, most studies have been focused on finding the antibodies against other inhibitory immune checkpoints in the tumor microenvironment such as lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin, and mucin domain 3 (TIM-3), B7-homolog 3 (B7-H3), V-domain immunoglobulin-containing suppressor of T-cell activation (VISTA), diacylglycerol kinase-α (DGK-α), T cell immunoglobulin and ITIM domain (TIGIT), and B and T lymphocyte attenuator (BTLA). This immune checkpoint exerts differential inhibitory impacts on various types of lymphocytes. The suppression of immune responses demonstrates a surprising synergy with PD-1. Therefore, most antibodies against these immune checkpoints are undertaking clinical trials for cancer immunotherapy of advanced solid tumors and hematologic malignancies. In this review, we will summarize recent findings of immune checkpoint and the role of monoclonal antibodies in cancer immunotherapy targeting these receptors.
Collapse
Affiliation(s)
- Saber Mehdizadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hashem Bayatipoor
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Jafarpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Shojaei
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Farid S, Liu SV. Chemo-immunotherapy as first-line treatment for small-cell lung cancer. Ther Adv Med Oncol 2020; 12:1758835920980365. [PMID: 33414848 PMCID: PMC7750570 DOI: 10.1177/1758835920980365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Small-cell lung cancer (SCLC) is a highly lethal subtype of lung cancer. Despite concerted efforts over the past several decades, there have been limited therapeutic advances. Traditional chemotherapy offers a high response rate and rapid symptomatic improvement, but its benefit is fleeting, and relapse is quick and unforgiving. Immunotherapy has delivered improved outcomes for patients with many cancers and there was compelling rationale for development in SCLC. While initial efforts with cytotoxic T-lymphocyte protein-4 inhibitors failed to improve upon chemotherapy alone, the addition of programmed death ligand-1 (PD-L1) inhibitors to first-line chemotherapy finally provided long-awaited gains in survival. Atezolizumab, when added to carboplatin and etoposide, improved both progression-free survival and overall survival. Durvalumab, when added to platinum plus etoposide, similarly improved OS. Biomarker development has stalled as PD-L1 expression and tumor mutational burden have not been useful predictive biomarkers. However, based on the significant survival improvements, both atezolizumab and durvalumab were approved by the US Food and Drug Administration to be given with first-line chemotherapy, and these regimens represent the new standards of care for SCLC.
Collapse
Affiliation(s)
- Saira Farid
- Department of Internal Medicine, MedStar Washington Hospital Center, Washington, DC, USA
| | - Stephen V Liu
- Lombardi Comprehensive Cancer Center, Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC 20007, USA
| |
Collapse
|
15
|
Topin-Ruiz S, Mellinger A, Lepeltier E, Bourreau C, Fouillet J, Riou J, Jaouen G, Martin L, Passirani C, Clere N. p722 ferrocifen loaded lipid nanocapsules improve survival of murine xenografted-melanoma via a potentiation of apoptosis and an activation of CD8 + T lymphocytes. Int J Pharm 2020; 593:120111. [PMID: 33246045 DOI: 10.1016/j.ijpharm.2020.120111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 01/13/2023]
Abstract
Metastatic melanoma is a malignant tumor with a poor prognosis. Recent new therapeutics improved the survival of patients at a metastatic stage. However, the low response rate to immunotherapy, explained in part by resistance to apoptosis, needs to develop new strategies. The ferrocifen family represents promising bioorganometallic molecules for melanoma treatment since they show potent anticancer properties. The aim of this study is (i) to evaluate the benefits of a strategy involving encapsulated p722 in lipid nanocapsules (LNC) in B16F10 melanoma mice models and (ii) to compare the beneficial effects with an existing therapy such as anti-CTLA4 mAb. Interestingly, LNC-p722 induces a significant decrease of melanoma cell viability. In vivo data shows a significant improvement in the survival rate and a slower tumor growth with p722-loaded LNC in comparison with anti-CTLA4 mAb. Western blots confirm that LNC-p722 potentiates intrinsic apoptotic pathway. Treatment with LNC-p722 significantly activates CD8+ T lymphocytes compared to treatment with anti-CTLA4 mAb. This study uncovers a new therapeutic strategy with encapsulated p722 to prevent B16F10 melanoma growth and to improve survival of treated mice.
Collapse
Affiliation(s)
- Solène Topin-Ruiz
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France; Centre Hospitalier Universitaire, service de dermatologie, 4 rue Larrey, F-49933 Angers, France
| | - Adélie Mellinger
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Elise Lepeltier
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Clara Bourreau
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Juliette Fouillet
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Jérémie Riou
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Gérard Jaouen
- PSL, Chimie ParisTech, Paris Cedex 05, France; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM, UMR 8232), Paris Cedex 05, France
| | - Ludovic Martin
- Centre Hospitalier Universitaire, service de dermatologie, 4 rue Larrey, F-49933 Angers, France
| | - Catherine Passirani
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Nicolas Clere
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| |
Collapse
|
16
|
Kohno M, Murakami J, Wu L, Chan ML, Yun Z, Cho BCJ, de Perrot M. Foxp3 + Regulatory T Cell Depletion after Nonablative Oligofractionated Irradiation Boosts the Abscopal Effects in Murine Malignant Mesothelioma. THE JOURNAL OF IMMUNOLOGY 2020; 205:2519-2531. [PMID: 32948683 DOI: 10.4049/jimmunol.2000487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/18/2020] [Indexed: 11/19/2022]
Abstract
Increasing evidence indicates that local hypofractionated radiotherapy (LRT) can elicit both immunogenic and immunosuppressive local and systemic immune responses. We thus hypothesized that blockade of LRT-induced immunosuppressive responses could augment the antitumor effects and induce an abscopal response. In this study, we found that the upregulation of Foxp3+ regulatory T cells (Tregs) in the mesothelioma tumor microenvironment after nonablative oligofractionated irradiation significantly limited the success of irradiation. Using DEREG mice, which allow conditional and efficient depletion of Foxp3+ Tregs by diphtheria toxin injection, we observed that transient Foxp3+ Treg depletion immediately after nonablative oligofractionated irradiation provided synergistic local control and biased the T cell repertoire toward central and effector memory T cells, resulting in long-term cure. Furthermore, this combination therapy showed significant abscopal effect on the nonirradiated tumors in a concomitant model of mesothelioma through systemic activation of cytotoxic T cells and enhanced production of IFN-γ and granzyme B. Although local control was preserved with one fraction of nonablative irradiation, three fractions were required to generate the abscopal effect. PD-1 and CTLA-4 were upregulated on tumor-infiltrating CD4+ and CD8+ T cells in irradiated and nonirradiated tumors, suggesting that immune checkpoint inhibitors could be beneficial after LRT and Foxp3+ Treg depletion. Our findings are applicable to the strategy of immuno-radiotherapy for generating optimal antitumor immune responses in the clinical setting. Targeting Tregs immediately after a short course of irradiation could have a major impact on the local response to irradiation and its abscopal effect.
Collapse
Affiliation(s)
- Mikihiro Kohno
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Junichi Murakami
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Mei-Lin Chan
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Zhihong Yun
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - B C John Cho
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University of Toronto, Toronto, Ontario M5G 2C4, Canada; .,Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario M5G 2C4, Canada; and.,Department of Immunology, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
17
|
Yu C, Wang Z, Sun Z, Zhang L, Zhang W, Xu Y, Zhang JJ. Platinum-Based Combination Therapy: Molecular Rationale, Current Clinical Uses, and Future Perspectives. J Med Chem 2020; 63:13397-13412. [PMID: 32813515 DOI: 10.1021/acs.jmedchem.0c00950] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platinum drugs are common in chemotherapy, but their clinical applications have been limited due to drug resistance and severe toxic effects. The combination of platinum drugs with other drugs with different mechanisms of anticancer action, especially checkpoint inhibitors, is increasingly popular. This combination is the leading strategy to improve the therapeutic efficiency and minimize the side effects of platinum drugs. In this review, we focus on the mechanistic basis of the combinations of platinum-based drugs with other drugs to inspire the development of more promising platinum-based combination regimens in clinical trials as well as novel multitargeting platinum drugs overcoming drug resistance and toxicities resulting from current platinum drugs.
Collapse
Affiliation(s)
- Chunqiu Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhibin Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zeren Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wanwan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yungen Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Jing Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
18
|
Alimohammadi R, Alibeigi R, Nikpoor AR, Chalbatani GM, Webster TJ, Jaafari MR, Jalali SA. Encapsulated Checkpoint Blocker Before Chemotherapy: The Optimal Sequence of Anti-CTLA-4 and Doxil Combination Therapy. Int J Nanomedicine 2020; 15:5279-5288. [PMID: 32801691 PMCID: PMC7394514 DOI: 10.2147/ijn.s260760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/09/2020] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Today, a new paradigm has emerged for cancer treatment introducing combination therapies. Doxil, a liposomal doxorubicin serving as a chemotherapeutic agent, is an effective immunogenic killer of cancer cells. Anti-CTLA-4 has been approved for the treatment of some cancers, including melanoma, but side effects have limited its therapeutic potential. METHODS In this study, two approaches were utilized to increase treatment efficiency and decrease the side effects of anti-CTLA-4, combining it with chemotherapy and encapsulation in a PEGylated liposome. A different sequence of anti-CTLA-4 and Doxil was assessed in combination therapy using non-liposomal and liposomal anti-CTLA-4. RESULTS Our results showed that liposomal anti-CTLA-4 reduced the size of established tumors and increased survival in comparison with non-liposomal anti-CTLA-4 in a well-established B16 mouse melanoma model. In combination therapy with Doxil, only the administration of anti-CTLA-4 before Doxil showed synergism in both non-liposomal and liposomal form and increased the CD8+/regulatory T cell ratio. DISCUSSION In summary, our results demonstrate the potential of utilizing a nanocarrier system for the delivery of checkpoint blockers, such as anti-CTLA-4 which further showed potential in a combination therapy, especially when administered before chemotherapy.
Collapse
Affiliation(s)
- Reza Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razieh Alibeigi
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Tehran, Iran
| | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Otsuka K, Mitsuhashi A, Goto H, Hanibuchi M, Koyama K, Ogawa H, Ogino H, Saijo A, Kozai H, Yoneda H, Tobiume M, Kishuku M, Ishizawa K, Nishioka Y. Anti-PD-1 antibody combined with chemotherapy suppresses the growth of mesothelioma by reducing myeloid-derived suppressor cells. Lung Cancer 2020; 146:86-96. [PMID: 32526602 DOI: 10.1016/j.lungcan.2020.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND The combination of anti-PD-1/PD-L1 antibody with chemotherapy has been approved for the first-line therapy of lung cancer. However, the effects against malignant mesothelioma (MPM) and the immunological mechanisms by which chemotherapy enhances the effect of targeting PD-1/PD-L1 in MPM are poorly understood. MATERIALS AND METHODS We utilized syngeneic mouse models of MPM and lung cancer and assessed the therapeutic effects of anti-PD-1 antibody and its combination with cisplatin (CDDP) and pemetrexed (PEM). An immunological analysis of tumor-infiltrating cells was performed with immunohistochemistry. RESULTS We observed significant therapeutic effects of anti-PD-1 antibody against MPM. Although the effect was associated with CD8+ and CD4+ T cells in tumors, the number of Foxp3+ cells was not reduced but rather increased. Consequently, combination with CDDP/PEM significantly enhanced the antitumor effects of anti-PD-1 antibody by decreasing numbers of intratumoral myeloid-derived suppressor cells (MDSCs) and vessels probably through suppression of VEGF expression by CDDP + PEM. CONCLUSIONS The combination of anti-PD-1 antibody with CDDP + PEM may be a promising therapy for MPM via inhibiting the accumulation of MDSCs and vessels in tumors.
Collapse
Affiliation(s)
- Kenji Otsuka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Atsushi Mitsuhashi
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hisatsugu Goto
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masaki Hanibuchi
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kazuya Koyama
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Atsuro Saijo
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroyuki Kozai
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroto Yoneda
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Makoto Tobiume
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masatoshi Kishuku
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
20
|
Maryamchik E, Gallagher KME, Preffer FI, Kadauke S, Maus MV. New directions in chimeric antigen receptor T cell [CAR-T] therapy and related flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:299-327. [PMID: 32352629 DOI: 10.1002/cyto.b.21880] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Chimeric antigen receptor (CAR) T cells provide a promising approach to the treatment of hematologic malignancies and solid tumors. Flow cytometry is a powerful analytical modality, which plays an expanding role in all stages of CAR T therapy, from lymphocyte collection, to CAR T cell manufacturing, to in vivo monitoring of the infused cells and evaluation of their function in the tumor environment. Therefore, a thorough understanding of the new directions is important for designing and implementing CAR T-related flow cytometry assays in the clinical and investigational settings. However, the speed of new discoveries and the multitude of clinical and preclinical trials make it challenging to keep up to date in this complex field. In this review, we summarize the current state of CAR T therapy, highlight the areas of emergent research, discuss applications of flow cytometry in modern cell therapy, and touch upon several considerations particular to CAR detection and assessing the effectiveness of CAR T therapy.
Collapse
Affiliation(s)
- Elena Maryamchik
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Frederic I Preffer
- Clinical Cytometry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephan Kadauke
- Department of Pathology and Laboratory Medicine, Cell and Gene Therapy Laboratory, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marcela V Maus
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Cellular Immunotherapy Program, Department of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Kacew AJ, Harris EJ, Lorch JH, Schoenfeld JD, Margalit DN, Kass JI, Tishler RB, Haddad RI, Hanna GJ. Chemotherapy after immune checkpoint blockade in patients with recurrent, metastatic squamous cell carcinoma of the head and neck. Oral Oncol 2020; 105:104676. [PMID: 32251982 DOI: 10.1016/j.oraloncology.2020.104676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/04/2020] [Accepted: 03/29/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Given that immune checkpoint inhibitors (ICIs) are now preferred agents in first-line treatment of recurrent/metastatic (R/M) squamous cell carcinoma of the head and neck (SCCHN), we retrospectively studied outcomes on post-ICI therapies. MATERIALS AND METHODS We collected data from the medical records of 60 patients with R/M SCCHN who received ICIs followed by at least one further line of cytotoxic or biologic therapy at our institution from 2014 to 2019. We also compared outcomes with those of historical trials in the ICI-naïve, second-line or greater setting. RESULTS Patients who received platinum-based regimens as their post-ICI therapies experienced improved overall response (ORR) (50% versus 10%, p < 0.01) and improved overall survival (OS) (15.1 months versus 7.3 months, HR 0.46, p = 0.04) compared to the rest of the cohort. Patients receiving platinum re-challenge were more likely to respond than all other patients in the cohort (OR 8.37, p = 0.01). The ORR for patients on 5-fluorouracil (5-FU)-containing regimens (63%) was also higher than other patients in the cohort (p = 0.03). Immunotherapy-based regimens compared favorably to historical data of first exposure to ICIs (disease control rate 54% versus 36%). Singlet regimens were associated with shorter OS than other regimens (HR = 2.38, p = 0.01). CONCLUSIONS Platinum- and 5-FU-based doublet or triplet regimens may be superior options in the post-ICI setting. Immunotherapy re-challenge following ICI therapy may also be a reasonable option.
Collapse
Affiliation(s)
- Alec J Kacew
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, United States.
| | - Ethan J Harris
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, United States.
| | - Jochen H Lorch
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, United States.
| | | | - Danielle N Margalit
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, United States.
| | - Jason I Kass
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, United States.
| | - Roy B Tishler
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, United States.
| | - Robert I Haddad
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, United States.
| | - Glenn J Hanna
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, United States.
| |
Collapse
|
22
|
Rausch M, Dyson PJ, Nowak‐Sliwinska P. Recent Considerations in the Application of RAPTA‐C for Cancer Treatment and Perspectives for Its Combination with Immunotherapies. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900042] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Magdalena Rausch
- Molecular Pharmacology GroupSchool of Pharmaceutical Sciences, Faculty of SciencesUniversity of Lausanne and University of Geneva Rue Michel‐Servet 1, 1211 Geneva 4 Switzerland
| | - Paul J. Dyson
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Patrycja Nowak‐Sliwinska
- Molecular Pharmacology GroupSchool of Pharmaceutical Sciences, Faculty of SciencesUniversity of Lausanne and University of Geneva Rue Michel‐Servet 1, 1211 Geneva 4 Switzerland
- Translational Research Centre in Oncohaematology Geneva, Switzerland, 1211 Geneva 4 Switzerland
| |
Collapse
|
23
|
Martinez M, Moon EK. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Front Immunol 2019; 10:128. [PMID: 30804938 PMCID: PMC6370640 DOI: 10.3389/fimmu.2019.00128] [Citation(s) in RCA: 593] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells, T cells that have been genetically engineered to express a receptor that recognizes a specific antigen, have given rise to breakthroughs in treating hematological malignancies. However, their success in treating solid tumors has been limited. The unique challenges posed to CAR T cell therapy by solid tumors can be described in three steps: finding, entering, and surviving in the tumor. The use of dual CAR designs that recognize multiple antigens at once and local administration of CAR T cells are both strategies that have been used to overcome the hurdle of localization to the tumor. Additionally, the immunosuppressive tumor microenvironment has implications for T cell function in terms of differentiation and exhaustion, and combining CARs with checkpoint blockade or depletion of other suppressive factors in the microenvironment has shown very promising results to mitigate the phenomenon of T cell exhaustion. Finally, identifying and overcoming mechanisms associated with dysfunction in CAR T cells is of vital importance to generating CAR T cells that can proliferate and successfully eliminate tumor cells. The structure and costimulatory domains chosen for the CAR may play an important role in the overall function of CAR T cells in the TME, and “armored” CARs that secrete cytokines and third- and fourth-generation CARs with multiple costimulatory domains offer ways to enhance CAR T cell function.
Collapse
Affiliation(s)
- Marina Martinez
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Edmund Kyung Moon
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
24
|
Abstract
Glioblastoma (GBM) is a highly malignant CNS tumor with very poor survival despite intervention with conventional therapeutic strategies. Although the CNS is separated from the immune system by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier, emerging evidence of immune surveillance and the selective infiltration of GBMs by immune suppressive cells indicates that there is breakdown or compromise of these physical barriers. This in turn offers hope that immunotherapy can be applied to specifically target and reduce tumor burden. One of the major setbacks in translating immunotherapy strategies is the hostile microenvironment of the tumor that inhibits trafficking of effector immune cells such as cytotoxic T lymphocytes into the CNS. Incorporating important findings from autoimmune disorders such as multiple sclerosis to understand and thereby enhance cytotoxic lymphocyte infiltration into GBM could augment immunotherapy strategies to treat this disease. However, although these therapies are designed to evoke a potent immune response, limited space in the brain and cranial vault reduces tolerance for immune therapy-induced inflammation and resultant brain edema. Therefore, successful immunotherapy requires that a delicate balance be maintained between activating and retaining lasting antitumor immunity.
Collapse
Affiliation(s)
- Nivedita M Ratnam
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Amber J Giles
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
25
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Zhang B, Dang J, Ba D, Wang C, Han J, Zheng F. Potential function of CTLA-4 in the tumourigenic capacity of melanoma stem cells. Oncol Lett 2018; 16:6163-6170. [PMID: 30344757 DOI: 10.3892/ol.2018.9354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/10/2017] [Indexed: 12/30/2022] Open
Abstract
Extensive clinical evidence supports that cytotoxic T lymphocyte antigen-4 (CTLA-4) is expressed in a variety of human malignant tumour cells in addition to T cells. In certain types of cancer, the overexpression of CTLA-4 is associated with poor patient prognosis. However, few studies have demonstrated the effects of tumour-intrinsic CTLA-4 in cancer stem cells, including melanoma stem cells (MSCs). In the present study, it was demonstrated that melanoma cell-intrinsic CTLA-4 induced tumour cell proliferation in vitro and suppressed tumour cell apoptosis. Furthermore, CTLA-4 was expressed in aldehyde dehydrogenase (ALDH)+ MSCs. CTLA-4 inhibited MSCs proliferation in vitro by blocking antibodies and significantly downregulated ALDH1A1, ALDH1A3 and ALDH2 mRNA expression (P<0.01). Functionally, blocking CTLA-4 in melanoma cell lines suppressed the properties of stem-like cells, including ALDH activity and significantly suppressed the ability of these cells to form spheres in vitro (P<0.05). In addition, the blocking of CTLA-4 in melanoma cells suppressed the properties of stem-like cells in vivo, including the capacity for tumourigenesis. The presence of residual ALDH+ MSCs within the tumour was observed, and the blocking CTLA-4 significantly decreased the number of residual ALDH+ MSCs in vivo (P<0.01). Altogether, these results indicate the identification of a novel mechanism underlying melanoma progression in the present study and that CTLA-4-targeted therapy may benefit candidate CTLA-4-targeted therapy by improving the long-term outcome for patients with advanced stages of melanoma.
Collapse
Affiliation(s)
- Bingyu Zhang
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jianzhong Dang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Diandian Ba
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Cencen Wang
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Juan Han
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Fang Zheng
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
27
|
Fear VS, Tilsed C, Chee J, Forbes CA, Casey T, Solin JN, Lansley SM, Lesterhuis WJ, Dick IM, Nowak AK, Robinson BW, Lake RA, Fisher SA. Combination immune checkpoint blockade as an effective therapy for mesothelioma. Oncoimmunology 2018; 7:e1494111. [PMID: 30288361 DOI: 10.1080/2162402x.2018.1494111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 12/29/2022] Open
Abstract
Mesothelioma is an aggressive asbestos induced cancer with extremely poor prognosis and limited treatment options. Immune checkpoint blockade (ICPB) has demonstrated effective therapy in melanoma and is now being applied to other cancers, including mesothelioma. However, the efficacy of ICPB and which immune checkpoint combinations constitute the best therapeutic option for mesothelioma have yet to be fully elucidated. Here, we used our well characterised mesothelioma tumour model to investigate the efficacy of different ICBP treatments to generate effective therapy for mesothelioma. We show that tumour resident regulatory T cell co-express high levels of CTLA-4, OX40 and GITR relative to T effector subsets and that these receptors are co-expressed on a large proportion of cells. Targeting any of CTLA-4, OX40 or GITR individually generated effective responses against mesothelioma. Furthermore, the combination of αCTLA-4 and αOX40 was synergistic, with an increase in complete tumour regressions from 20% to 80%. Other combinations did not synergise to enhance treatment outcomes. Finally, an early pattern in T cell response was predictive of response, with activation status and ICP receptor expression profile of T effector cells harvested from tumour and dLN correlating with response to immunotherapy. Taken together, these data demonstrate that combination ICPB can work synergistically to induce strong, durable immunity against mesothelioma in an animal model.
Collapse
Affiliation(s)
- Vanessa S Fear
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Caitlin Tilsed
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Catherine A Forbes
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Thomas Casey
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Jessica N Solin
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia
| | - Sally M Lansley
- Centre for Respiratory Health, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - William Joost Lesterhuis
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Ian M Dick
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Medicine, The University of Western Australia, Perth, Australia
| | - Bruce W Robinson
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Medicine, The University of Western Australia, Perth, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Medicine, The University of Western Australia, Perth, Australia
| | - Scott A Fisher
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
28
|
Caruana I, Simula L, Locatelli F, Campello S. T lymphocytes against solid malignancies: winning ways to defeat tumours. Cell Stress 2018; 2:200-212. [PMID: 31225487 PMCID: PMC6551626 DOI: 10.15698/cst2018.07.148] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the last decades, a novel field has emerged in the cure of cancer, by boosting the ability of the patient’s immune system to recognize and kill tumour cells. Although excellent and encouraging results, exploiting the effect of genetically modified T cells, have been obtained, it is now evident that tumour malignancies can evolve several mechanisms to escape such immune responses, thus continuing their growth in the body. These mechanisms are in part due to tumour cell metabolic or genetic alterations, which can render the target invisible to the immune system or can favour the generation of an extracellular milieu preventing immune cell infiltration or cytotoxicity. Such mechanisms may also involve the accumulation inside the tumour microenvironment of different immune-suppressive cell types, which further down-regulate the activity of cytotoxic immune cells either directly by interacting with them or indirectly by releasing suppressive molecules. In this review, we will first focus on describing several mechanisms by which tumour cells may dampen or abrogate the immune response inside the tumour microenvironment and, second, on current strategies that are adopted to cope with and possibly overcome such alterations, thus ameliorating the efficacy of the current-in-use anti-cancer immuno-therapies.
Collapse
Affiliation(s)
- Ignazio Caruana
- Dept. of Pediatric Onco-Hematology and cell and gene therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Luca Simula
- Dept. of Pediatric Onco-Hematology and cell and gene therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Dept. of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Franco Locatelli
- Dept. of Pediatric Onco-Hematology and cell and gene therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Silvia Campello
- Dept. of Biology, University of Rome Tor Vergata, Rome, Italy.,IRCCS, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
29
|
Jones RG, Karthik F, Dugar A, Kanagarajan K, Desai K, Bhandari M. Nivolumab Immunotherapy in Malignant Mesothelioma: A Case Report Highlighting a New Opportunity for Exceptional Outcomes. AMERICAN JOURNAL OF CASE REPORTS 2018; 19:783-789. [PMID: 29970876 PMCID: PMC6061454 DOI: 10.12659/ajcr.909584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a highly lethal cancer with a median survival of ~12 months even with aggressive intervention. Frontline therapy relies on systemic cisplatin and pemetrexed chemotherapy and has a response rate of ~35-41%; currently, there are no US Food and Drug Administration approved second-line therapies for MPM. Herein, we present a patient with MPM who experienced rapid disease progression after standard therapy but who had an exceptional and sustained response to immune checkpoint inhibition with single agent nivolumab. CASE REPORT A 68-year-old male with a history of work-related asbestos exposure was diagnosed with MPM. He was treated with primary resection followed by systemic chemotherapy with cisplatin and pemetrexed. When chemotherapy failed, he was switched to immunotherapy with nivolumab and achieved an exceptional response. CONCLUSIONS We report the first case of a patient with MPM who experienced rapid disease progression after standard therapy but had an exceptional and sustained response to immune checkpoint inhibition with single agent nivolumab. As outcomes with traditional chemotherapy regimens remain disappointing, there is a substantial need for new approaches to MPM; our case highlights a new therapeutic opportunity even in the face of aggressive disease. Indeed, a new era of investigation utilizing immunotherapy for mesothelioma is beginning, with much anticipation.
Collapse
Affiliation(s)
- Riley G Jones
- Department of Internal Medicine, University of Florida, Gainesville, FL, USA.,Department of Internal Medicine, The Christ Hospital, Cincinnati, OH, USA
| | - Felix Karthik
- Department of Pulmonary Diseases, The Christ Hosptial, Cincinnati, OH, USA
| | - Anushree Dugar
- Department of hematology/oncology, The Christ Hosptial, Cincinnati, OH, USA
| | | | - Kalpan Desai
- Department of Internal Medicine, The Christ Hosptial, Cincinnati, OH, USA
| | - Manish Bhandari
- Department of Hematology/Oncology, The Christ Hosptial, Cincinnati, OH, USA
| |
Collapse
|
30
|
Wu L, Blum W, Zhu CQ, Yun Z, Pecze L, Kohno M, Chan ML, Zhao Y, Felley-Bosco E, Schwaller B, de Perrot M. Putative cancer stem cells may be the key target to inhibit cancer cell repopulation between the intervals of chemoradiation in murine mesothelioma. BMC Cancer 2018; 18:471. [PMID: 29699510 PMCID: PMC5921988 DOI: 10.1186/s12885-018-4354-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/09/2018] [Indexed: 12/29/2022] Open
Abstract
Background Cancer cell repopulation during chemotherapy or radiotherapy is a major factor limiting the efficacy of treatment. Cancer stem cells (CSC) may play critical roles during this process. We aim to demonstrate the role of mesothelioma stem cells (MSC) in treatment failure and eventually to design specific target therapies against MSC to improve the efficacy of treatment in malignant mesothelioma. Methods Murine mesothelioma AB12 and RN5 cells were used to compare tumorigenicity in mice. The expression of CSC-associated genes was evaluated by quantitative real-time PCR in both cell lines treated with chemo-radiation. Stemness properties of MSC-enriched RN5-EOS-Puro2 cells were characterized with flow cytometry and immunostaining. A MSC-specific gene profile was screened by microarray assay and confirmed thereafter. Gene Ontology analysis of the selected genes was performed by GOMiner. Results Tumor growth delay of murine mesothelioma AB12 cells was achieved after each cycle of cisplatin treatment, however, tumors grew back rapidly due to cancer cell repopulation between courses of chemotherapy. Strikingly, a 10-times lower number of irradiated cells in both cell lines led to a similar tumor incidence and growth rate as with untreated cells. The expression of CSC-associated genes such as CD24, CD133, CD90 and uPAR was dramatically up-regulated, while others did not change significantly after chemoradiation. Highly enriched MSC after selection with puromycin displayed an increasing GFP-positive population and showed typical properties of stemness. Comparatively, the proportion of MSC significantly increased after RN5-EOS parental cells were treated with either chemotherapy, γ-ray radiation, or a combination of the two, while MSC showed more resistance to the above treatments. A group of identified genes are most likely MSC-specific, and major pathways related to regulation of cell growth or apoptosis are involved. Upregulation of the gene transcripts Tnfsf18, Serpinb9b, Ly6a, and Nppb were confirmed. Conclusion Putative MSC possess the property of stemness showing more resistance to chemoradiation, suggesting that MSC may play critical roles in cancer cell repopulation. Further identification of selected genes may be used to design novel target therapies against MSC, so as to eliminate cancer cell repopulation in mesothelioma. Electronic supplementary material The online version of this article (10.1186/s12885-018-4354-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Licun Wu
- Division of Thoracic Surgery, Latner Thoracic Surgery Laboratories, University Health Network, Toronto, ON, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Walter Blum
- Department of Medicine, Unit of Anatomy, University of Fribourg, CH-1700, Fribourg, Switzerland.,INSERM, U1162, Génomique Fonctionnelle des Tumeurs Solides, 27 rue Juliette Dodu, 75010, Paris, France
| | - Chang-Qi Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Zhihong Yun
- Division of Thoracic Surgery, Latner Thoracic Surgery Laboratories, University Health Network, Toronto, ON, Canada
| | - Laszlo Pecze
- Department of Medicine, Unit of Anatomy, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Mikihiro Kohno
- Division of Thoracic Surgery, Latner Thoracic Surgery Laboratories, University Health Network, Toronto, ON, Canada
| | - Mei-Lin Chan
- Division of Thoracic Surgery, Latner Thoracic Surgery Laboratories, University Health Network, Toronto, ON, Canada
| | - Yidan Zhao
- Division of Thoracic Surgery, Latner Thoracic Surgery Laboratories, University Health Network, Toronto, ON, Canada
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, University Hospital Zurich, University of Zurich, 8044, Zürich, Switzerland
| | - Beat Schwaller
- Department of Medicine, Unit of Anatomy, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Marc de Perrot
- Division of Thoracic Surgery, Latner Thoracic Surgery Laboratories, University Health Network, Toronto, ON, Canada. .,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Division of Thoracic Surgery, Toronto Mesothelioma Research Program, Toronto General Hospital, 9N-961, 200 Elizabeth St, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
31
|
Rehrauer H, Wu L, Blum W, Pecze L, Henzi T, Serre-Beinier V, Aquino C, Vrugt B, de Perrot M, Schwaller B, Felley-Bosco E. How asbestos drives the tissue towards tumors: YAP activation, macrophage and mesothelial precursor recruitment, RNA editing, and somatic mutations. Oncogene 2018; 37:2645-2659. [PMID: 29507420 PMCID: PMC5955862 DOI: 10.1038/s41388-018-0153-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/11/2017] [Accepted: 12/30/2017] [Indexed: 12/11/2022]
Abstract
Chronic exposure to intraperitoneal asbestos triggered a marked response in the mesothelium well before tumor development. Macrophages, mesothelial precursor cells, cytokines, and growth factors accumulated in the peritoneal lavage. Transcriptome profiling revealed YAP/TAZ activation in inflamed mesothelium with further activation in tumors, paralleled by increased levels of cells with nuclear YAP/TAZ. Arg1 was one of the highest upregulated genes in inflamed tissue and tumor. Inflamed tissue showed increased levels of single-nucleotide variations, with an RNA-editing signature, which were even higher in the tumor samples. Subcutaneous injection of asbestos-treated, but tumor-free mice with syngeneic mesothelioma tumor cells resulted in a significantly higher incidence of tumor growth when compared to naïve mice supporting the role of the environment in tumor progression.
Collapse
Affiliation(s)
- Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057, Zurich, Switzerland
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital University Health Network, University of Toronto, Toronto, ON, Canada
| | - Walter Blum
- Department of Medicine, Unit of Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700, Fribourg, Switzerland
| | - Lazslo Pecze
- Department of Medicine, Unit of Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700, Fribourg, Switzerland
| | - Thomas Henzi
- Department of Medicine, Unit of Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700, Fribourg, Switzerland
| | | | - Catherine Aquino
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057, Zurich, Switzerland
| | - Bart Vrugt
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital University Health Network, University of Toronto, Toronto, ON, Canada
| | - Beat Schwaller
- Department of Medicine, Unit of Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700, Fribourg, Switzerland
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Lungen- und Thoraxonkologie Zentrum, University Hospital Zürich, Sternwartstrasse 14, 8091, Zurich, Switzerland.
| |
Collapse
|
32
|
Abstract
Harnessing the power of the human immune system to treat cancer is the essence of immunotherapy. Monoclonal antibodies engage the innate immune system to destroy targeted cells. For the last 30years, antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity have been the main mechanisms of anti-tumor action of unconjugated antibody drugs. Efforts to exploit the potentials of other immune cells, in particular T cells, culminated in the recent approval of two T cell engaging bispecific antibody (T-BsAb) drugs, thereby stimulating new efforts to accelerate similar platforms through preclinical and clinical trials. In this review, we have compiled the worldwide effort in exploring T cell engaging bispecific antibodies. Our special emphasis is on the lessons learned, with the hope to derive insights in this fast evolving field with tremendous clinical potential.
Collapse
Affiliation(s)
- Z Wu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - N V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| |
Collapse
|
33
|
|
34
|
de Perrot M, Wu L, Wu M, Cho BCJ. Radiotherapy for the treatment of malignant pleural mesothelioma. Lancet Oncol 2017; 18:e532-e542. [PMID: 28884702 DOI: 10.1016/s1470-2045(17)30459-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
Abstract
Malignant pleural mesothelioma is an aggressive disease that continues to be associated with poor outcomes. Although, traditionally this disease is considered to be resistant to radiotherapy, more recent evidence suggests that radiotherapy can produce positive outcomes. Over the past 15 years, the development of new, highly conformal radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), has enabled investigators to optimise the delivery of high-dose radiotherapy to the whole of the hemithorax. Prospective single-arm trials have shown that the median survival of patients who have completed high-dose hemithoracic radiotherapy after extrapleural pneumonectomy could reach 23·9-39·4 months independent of the chemotherapeutic response, suggesting that IMRT could potentially have an intrinsic benefit to this subset of patients. These observations have led to a change in practice, with the introduction of adjuvant pleural IMRT after pleurectomy-decortication and the development of induction-accelerated hemithoracic IMRT followed by extrapleural pneumonectomy. This Review focuses on recent observations on the role of radiotherapy in the treatment of malignant pleural mesothelioma, with particular emphasis on the results of clinical trials that evaluate the role of high-dose hemithoracic radiotherapy.
Collapse
Affiliation(s)
- Marc de Perrot
- Division of Thoracic Surgery, Princess Margaret Cancer Centre and Toronto General Hospital, University Health Network, University of Toronto, ON, Canada.
| | - Licun Wu
- Latner Thoracic Surgery Laboratories, Princess Margaret Cancer Centre and Toronto General Hospital, University Health Network, University of Toronto, ON, Canada
| | - Matthew Wu
- Latner Thoracic Surgery Laboratories, Princess Margaret Cancer Centre and Toronto General Hospital, University Health Network, University of Toronto, ON, Canada
| | - B C John Cho
- Department of Radiation Oncology, Princess Margaret Cancer Centre and Toronto General Hospital, University Health Network, University of Toronto, ON, Canada
| |
Collapse
|
35
|
Guazzelli A, Bakker E, Krstic-Demonacos M, Lisanti MP, Sotgia F, Mutti L. Anti-CTLA-4 therapy for malignant mesothelioma. Immunotherapy 2017; 9:273-280. [PMID: 28231719 DOI: 10.2217/imt-2016-0123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy is an emerging therapeutic strategy with a promising clinical outcome in some solid tumors, particularly metastatic melanoma. One approach to immunotherapy is immune checkpoint inhibitors, such as blockage of CTLA-4 and PD-1/PD-L1. This special report aims to describe the state of clinical trials of tremelimumab in patients with unresectable malignant mesothelioma (MM) in particular with regard to the clinical efficacy, safety and tolerability. Criticism and perspective of this treatment are also discussed. Biological and clinical considerations rule out the use of tremelimumab as single agent for MM and, more generally, the use of immune checkpoint inhibitors for MM is still largely questionable and not supported by evidences.
Collapse
Affiliation(s)
- Alice Guazzelli
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Emyr Bakker
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Marija Krstic-Demonacos
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Michael P Lisanti
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Federica Sotgia
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| | - Luciano Mutti
- Biomedical Research Centre, School of Environment & Life Sciences, University of Salford, Salford, UK
| |
Collapse
|
36
|
Mouw KW, Goldberg MS, Konstantinopoulos PA, D'Andrea AD. DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov 2017; 7:675-693. [PMID: 28630051 PMCID: PMC5659200 DOI: 10.1158/2159-8290.cd-17-0226] [Citation(s) in RCA: 505] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/05/2017] [Accepted: 05/18/2017] [Indexed: 12/16/2022]
Abstract
DNA-damaging agents are widely used in clinical oncology and exploit deficiencies in tumor DNA repair. Given the expanding role of immune checkpoint blockade as a therapeutic strategy, the interaction of tumor DNA damage with the immune system has recently come into focus, and it is now clear that the tumor DNA repair landscape has an important role in driving response to immune checkpoint blockade. Here, we summarize the mechanisms by which DNA damage and genomic instability have been found to shape the antitumor immune response and describe clinical efforts to use DNA repair biomarkers to guide use of immune-directed therapies.Significance: Only a subset of patients respond to immune checkpoint blockade, and reliable predictive biomarkers of response are needed to guide therapy decisions. DNA repair deficiency is common among tumors, and emerging experimental and clinical evidence suggests that features of genomic instability are associated with response to immune-directed therapies. Cancer Discov; 7(7); 675-93. ©2017 AACR.
Collapse
Affiliation(s)
- Kent W Mouw
- Department of Radiation Oncology, Brigham & Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Michael S Goldberg
- Harvard Medical School, Boston, Massachusetts
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Panagiotis A Konstantinopoulos
- Harvard Medical School, Boston, Massachusetts
- Medical Gynecology Oncology Program, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alan D D'Andrea
- Department of Radiation Oncology, Brigham & Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
37
|
Nikanjam M, Patel H, Kurzrock R. Dosing immunotherapy combinations: Analysis of 3,526 patients for toxicity and response patterns. Oncoimmunology 2017; 6:e1338997. [PMID: 28920006 DOI: 10.1080/2162402x.2017.1338997] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/08/2023] Open
Abstract
Immunotherapy combinations are used to improve outcomes in metastatic cancer, but evidence-based knowledge of appropriate starting doses for novel combinations is lacking. Phase I-III adult combination clinical trials (≥ 1 drug was immunotherapy; anti-PD-1, PD-L1, or CTLA-4) were reviewed (PubMed Jan 1, 2010 to Sep 1, 2016; ASCO 2014-2016, ASH/ESMO 2014-2015 abstracts). The safe dose for each drug used in each combination was divided by the single-agent recommended dose to calculate dose percentage. Additive dose percentage was the sum of each dose percentage. Overall, 84 studies (N = 3,526 patients, 59 combinations) were analyzed. In 50% of studies, all drugs could be administered at full dose; 63%, in the presence of anti-PD-1/PD-L1 and 36% with anti-CTLA-4. The lowest safe starting dose for a doublet combination including a second immunotherapy was 50% of each drug; 60%, for a targeted agent. Most doublet/triplets combining anti-PD-1/PD-L1 with cytotoxics were tolerable at full doses. Response rates (median [interquartile range]) were higher for 3-drug than 2-drug combinations (53% [33-63%] (N = 23 studies) vs. 23% [14-39%]) (N = 60 studies) (p < 0.0001) with similar rates seen for targeted, cytotoxic, biologic, or additional immunotherapy combinations (p = 0.35). In conclusion, anti-PD-1/PD-L1 checkpoint inhibitors can be safely given with a variety of other immunotherapy and targeted agents, albeit at about half dose. Doublet and triplet combinations with cytotoxics could mostly be given at full doses. Anti-CTLA-4 agents compromised dosing more than anti-PD-1/PD-L1 agents. Response rates were significantly higher for 3- versus 2-drug combinations.
Collapse
Affiliation(s)
- Mina Nikanjam
- Division of Hematology-Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Harsh Patel
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, CA, USA
| |
Collapse
|
38
|
Wu L, de Perrot M. Radio-immunotherapy and chemo-immunotherapy as a novel treatment paradigm in malignant pleural mesothelioma. Transl Lung Cancer Res 2017; 6:325-334. [PMID: 28713677 DOI: 10.21037/tlcr.2017.06.03] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive neoplasm with poor outcome. Novel radical radiation techniques using intensity modulated radiation therapy (IMRT) have become an important component of therapy in mesothelioma. Immunotherapy also provides new therapeutic options. However, how best to integrate immunotherapy with standard therapy such as radiation, chemotherapy and surgery remains unknown. A change of paradigm from adjuvant normofractionation to induction accelerated hypofractionated hemithoracic radiation could provide a platform to combine immunotherapy due to the potential benefit of short course high dose radiation on the immune system. Immunotherapy can also be combined with chemotherapy. Although chemotherapy is generally considered immunosuppressive, some chemotherapeutic agents do induce cell death that can be immunogenic and stimulate a specific immune response against the tumor. Immunotherapy could also be used in between cycles of chemotherapy to limit tumor cell repopulation and optimize the results of both treatments. The integration of immunotherapy into a multimodality approach is opening new avenue of treatment for mesothelioma.
Collapse
Affiliation(s)
- Licun Wu
- Toronto Mesothelioma Research Program, Toronto General Hospital and Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Marc de Perrot
- Toronto Mesothelioma Research Program, Toronto General Hospital and Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
39
|
Thapa B, Watkins DN, John T. Immunotherapy for malignant mesothelioma: reality check. Expert Rev Anticancer Ther 2016; 16:1167-1176. [DOI: 10.1080/14737140.2016.1241149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Bonelli MA, Fumarola C, La Monica S, Alfieri R. New therapeutic strategies for malignant pleural mesothelioma. Biochem Pharmacol 2016; 123:8-18. [PMID: 27431778 DOI: 10.1016/j.bcp.2016.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignant disease affecting the mesothelium, commonly associated to asbestos exposure. Therapeutic actions are limited due to the late stage at which most patients are diagnosed and the intrinsic chemo-resistance of the tumor. The recommended systemic therapy for MPM is cisplatin/pemetrexed regimen with a mean overall survival of about 12months and a median progression free survival of less than 6months. Considering that the incidence of this tumor is expected to increase in the next decade and that its prognosis is poor, novel therapeutic approaches are urgently needed. For some tumors, such as lung cancer and breast cancer, druggable oncogenic alterations have been identified and targeted therapy is an important option for these patients. For MPM, clinical guidelines do not recommend biological targeted therapy, mainly because of poor target definition or inappropriate trial design. Further studies are required for a full comprehension of the molecular pathogenesis of MPM and for the development of new target agents. This review updates pre-clinical and clinical data on the efficacy of targeted therapy and immune checkpoint inhibition in the treatment of mesothelioma. Finally, future perspectives in this deadly disease are also discussed.
Collapse
Affiliation(s)
- Mara A Bonelli
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| | - Claudia Fumarola
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| | - Silvia La Monica
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| | - Roberta Alfieri
- Unit of Experimental Oncology, Department of Clinical and Experimental Medicine, University of Parma, Via Volturno 39, 43126 Parma, Italy.
| |
Collapse
|
41
|
Nayama M, Collinet P, Salzet M, Vinatier D. [Immunological aspects of ovarian cancer: Therapeutic perspectives]. ACTA ACUST UNITED AC 2016; 45:1020-1036. [PMID: 27320132 DOI: 10.1016/j.jgyn.2016.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 05/07/2016] [Accepted: 05/13/2016] [Indexed: 01/09/2023]
Abstract
Ovarian cancer is recognized by the immunological system of its host. Initially, it is effective to destroy and eliminate the cancer. But gradually, resistant tumor cells more aggressive and those able to protect themselves by inducing immune tolerance will be selected. Immunotherapy to be effective should consider both components of immune response with an action on cytotoxic immune effectors and action on tolerance mechanisms. The manipulations of the immune system should be cautious, because the immune effects are not isolated. A theoretically efficient handling may simultaneously cause an adverse effect which was not envisaged and could neutralize the benefits of treatment. Knowledge of tolerance mechanisms set up by the tumor is for the clinician a prerequisite before they prescribe these treatments. For each cancer, the knowledge of its immunological status is a prerequisite to propose adapted immunological therapies.
Collapse
Affiliation(s)
- M Nayama
- Service de gynécologie obstétrique, maternité Issaka-Gazoby, BP 10975, Niamey, Niger
| | - P Collinet
- CHU de Lille, 59000 Lille, France; Département universitaire de gynécologie obstétrique, université Nord-de-France, 59045 Lille cedex, France
| | - M Salzet
- EA 4550, IFR 147, laboratoire PRISM : protéomique, réponse inflammatoire, spectrométrie de Masse, université Lille 1, bâtiment SN3, 1(er) étage, 59655 Villeneuve d'Ascq cedex, France
| | - D Vinatier
- CHU de Lille, 59000 Lille, France; EA 4550, IFR 147, laboratoire PRISM : protéomique, réponse inflammatoire, spectrométrie de Masse, université Lille 1, bâtiment SN3, 1(er) étage, 59655 Villeneuve d'Ascq cedex, France; Département universitaire de gynécologie obstétrique, université Nord-de-France, 59045 Lille cedex, France.
| |
Collapse
|
42
|
Wu L, Wu MO, De la Maza L, Yun Z, Yu J, Zhao Y, Cho J, de Perrot M. Targeting the inhibitory receptor CTLA-4 on T cells increased abscopal effects in murine mesothelioma model. Oncotarget 2016; 6:12468-80. [PMID: 25980578 PMCID: PMC4494951 DOI: 10.18632/oncotarget.3487] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/03/2015] [Indexed: 01/12/2023] Open
Abstract
We previously demonstrated that blockade of immune suppressive CTLA-4 resulted in tumor growth delay when combined with chemotherapy in murine mesothelioma. Tumor-infiltrating T cells (TIT) after local radiotherapy (LRT) play critical roles in abscopal effect against cancer. We attempt to improve the local and abscopal effect by modulating T cell immunity with systemic blockade of CTLA-4 signal. The growth of primary tumors was significantly inhibited by LRT while CTLA-4 antibody enhanced the antitumor effect. Growth delay of the second tumors was achieved when the primary tumor was radiated. LRT resulted in more T cell infiltration into both tumors, including Treg and cytotoxic T cells. Interestingly, the proportion of Treg over effector T cells in both tumors was reversed after CTLA-4 blockade, while CD8 T cells were further activated. The expression of the immune-related genes was upregulated and cytokine production was significantly increased. LRT resulted in an increase of TIT, while CTLA-4 blockade led to significant reduction of Tregs and increase of cytotoxic T cells in both tumors. The abscopal effect is enhanced by targeting the immune checkpoints through modulation of T cell immune response in murine mesothelioma.
Collapse
Affiliation(s)
- Licun Wu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Matthew Onn Wu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Luis De la Maza
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Zhihong Yun
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Julie Yu
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Yidan Zhao
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - John Cho
- Radiation Oncology, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Cook AM, Lesterhuis WJ, Nowak AK, Lake RA. Chemotherapy and immunotherapy: mapping the road ahead. Curr Opin Immunol 2015; 39:23-9. [PMID: 26724433 DOI: 10.1016/j.coi.2015.12.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022]
Abstract
Cancer immunotherapy, and in particular checkpoint blockade, is now standard clinical care for a growing number of cancers. Cytotoxic drugs have been the primary weapon against cancer for a long time and have typically been understood because of their capacity to directly kill tumour cells. It is now clear that these drugs are potential partners for checkpoint blockade and different drugs can influence the immune response to cancer through a wide variety of mechanisms. Some of these relate to immunogenic cell death, whilst others relate to changes in antigen-presentation, tumour cell targeting, or depletion of immunosuppressive cells. Here, we review some recent advances in our understanding of the immunological changes associated with chemotherapy, discuss progress in combining chemotherapy with checkpoint blockade, and comment on the difficulties encountered in translating promising preclinical data into successful treatments for cancer patients.
Collapse
Affiliation(s)
- Alistair M Cook
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - W Joost Lesterhuis
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; Department of Medical Oncology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
| |
Collapse
|
44
|
Chan KS. Molecular Pathways: Targeting Cancer Stem Cells Awakened by Chemotherapy to Abrogate Tumor Repopulation. Clin Cancer Res 2015; 22:802-6. [PMID: 26671994 DOI: 10.1158/1078-0432.ccr-15-0183] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 12/31/2022]
Abstract
Cytotoxic chemotherapy remains the first-line therapy for many advanced solid tumors; hence, understanding the underlying mechanisms to overcome chemoresistance remains a top research priority. In the clinic, chemotherapy is administered in multiple cycles that are spaced out to allow the recovery or repopulation of normal tissues and tissue stem cells between treatment cycles. However, residual surviving cancer cells and cancer stem cells can also repopulate tumors during the gap periods between chemotherapy cycles. Tumor repopulation is a phenomenon that has not been well studied; it is often overlooked due to current customized experimental study strategies. Recent findings reveal an alarming role for dying cells targeted by chemotherapy in releasing mitogens to stimulate active repopulation of quiescent cancer stem cells. Therefore, new therapeutic options to abrogate tumor repopulation will provide new avenues to improve chemotherapeutic response and clinical outcome.
Collapse
Affiliation(s)
- Keith Syson Chan
- Department of Molecular and Cellular Biology, Scott Department of Urology, Dan L. Duncan Cancer Center, Center for Cell Gene and Therapy, Center for Drug Discovery, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
45
|
Guazzelli A, Hussain M, Krstic-Demonacos M, Mutti L. Tremelimumab for the treatment of malignant mesothelioma. Expert Opin Biol Ther 2015; 15:1819-29. [DOI: 10.1517/14712598.2015.1116515] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Nowak AK, Lesterhuis-Vasbinder D, Lesterhuis WJ. New directions in mesothelioma treatment. Lung Cancer Manag 2015. [DOI: 10.2217/lmt.15.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
For most patients with mesothelioma, symptom control and palliative chemotherapy are mainstays of care. First-line cisplatin/pemetrexed chemotherapy has demonstrated survival and quality-of-life benefits. A randomized controlled trial adding bevacizumab to cisplatin and pemetrexed recently reported improved survival and time to progression, and may constitute a new standard of care where economically viable. Immunotherapy is under active investigation and positive results have been reported from single-arm studies of the anti-CTLA4 antibody tremelimumab; the anti-PD-1 antibody pembrolizumab; and mesothelin-targeting strategies. Symptom control remains critical for patient well-being, and includes management of pleural effusion, analgesia, treatment of symptomatic masses and management of systemic symptoms. There is increasing evidence that tunneled pleural catheters are preferred over talc pleurodesis for recurrent pleural effusion.
Collapse
Affiliation(s)
- Anna K Nowak
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, WA 6009, Australia
- School of Medicine & Pharmacology, University of Western Australia, M503 35 Stirling Hwy Crawley, WA 6009, Australia
- National Research Centre for Asbestos Related Diseases, M503 35 Stirling Hwy Crawley, WA 6009, Australia
| | - Dorit Lesterhuis-Vasbinder
- School of Medicine & Pharmacology, University of Western Australia, M503 35 Stirling Hwy Crawley, WA 6009, Australia
- National Research Centre for Asbestos Related Diseases, M503 35 Stirling Hwy Crawley, WA 6009, Australia
| | - Willem Joost Lesterhuis
- School of Medicine & Pharmacology, University of Western Australia, M503 35 Stirling Hwy Crawley, WA 6009, Australia
- National Research Centre for Asbestos Related Diseases, M503 35 Stirling Hwy Crawley, WA 6009, Australia
| |
Collapse
|
47
|
Kersten K, Salvagno C, de Visser KE. Exploiting the Immunomodulatory Properties of Chemotherapeutic Drugs to Improve the Success of Cancer Immunotherapy. Front Immunol 2015; 6:516. [PMID: 26500653 PMCID: PMC4595807 DOI: 10.3389/fimmu.2015.00516] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022] Open
Abstract
Cancer immunotherapy is gaining momentum in the clinic. The current challenge is to understand why a proportion of cancer patients do not respond to cancer immunotherapy, and how this can be translated into the rational design of combinatorial cancer immunotherapy strategies aimed at maximizing success of immunotherapy. Here, we discuss how tumors orchestrate an immunosuppressive microenvironment, which contributes to their escape from immune attack. Relieving the immunosuppressive networks in cancer patients is an attractive strategy to extend the clinical success of cancer immunotherapy. Since the clinical availability of drugs specifically targeting immunosuppressive cells or mediators is still limited, an alternative strategy is to use conventional chemotherapy drugs with immunomodulatory properties to improve cancer immunotherapy. We summarize the preclinical and clinical studies that illustrate how the anti-tumor T cell response can be enhanced by chemotherapy-induced relief of immunosuppressive networks. Treatment strategies aimed at combining chemotherapy-induced relief of immunosuppression and T cell-boosting checkpoint inhibitors provide an attractive and clinically feasible approach to overcome intrinsic and acquired resistance to cancer immunotherapy, and to extend the clinical success of cancer immunotherapy.
Collapse
Affiliation(s)
- Kelly Kersten
- Division of Immunology, Netherlands Cancer Institute , Amsterdam , Netherlands
| | - Camilla Salvagno
- Division of Immunology, Netherlands Cancer Institute , Amsterdam , Netherlands
| | - Karin E de Visser
- Division of Immunology, Netherlands Cancer Institute , Amsterdam , Netherlands
| |
Collapse
|
48
|
Targeting immune checkpoints: New opportunity for mesothelioma treatment? Cancer Treat Rev 2015; 41:914-24. [PMID: 26433514 DOI: 10.1016/j.ctrv.2015.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
Malignant pleural mesothelioma is an aggressive cancer linked to asbestos exposure in most patients. Due to the long latency between exposure and presentation, incidence is expected to further increase in the next decade, despite the ban on asbestos import which occurred at the end of last century in industrialized countries. Platinum-based palliative chemotherapy is the only treatment with proven benefit on outcome, resulting in selected patients in a median overall survival of about 1 year. Therefore, there is room for therapeutic improvement using a new strategy to prolong survival. Dealing with cancer cell induced immunosuppression is a promising approach. Reactivating immune responses that are silenced by immune checkpoints recently gained a lot of interest. Checkpoint blockade has already shown promising preclinical and clinical results in several cancer types and is currently also being investigated in mesothelioma. Here, we discuss the expression patterns and mechanisms of action of CTLA-4 and PD-1 as the two most studied and of TIM-3 and LAG-3 as two interesting upcoming immune checkpoints. Furthermore, we review the clinical results of molecules blocking these immune checkpoints and point out their future opportunities with a special focus on mesothelioma.
Collapse
|
49
|
Coffelt SB, de Visser KE. Immune-mediated mechanisms influencing the efficacy of anticancer therapies. Trends Immunol 2015; 36:198-216. [PMID: 25857662 DOI: 10.1016/j.it.2015.02.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 01/26/2023]
Abstract
Conventional anticancer therapies, such as chemotherapy, radiotherapy, and targeted therapy, are designed to kill cancer cells. However, the efficacy of anticancer therapies is not only determined by their direct effects on cancer cells but also by off-target effects within the host immune system. Cytotoxic treatment regimens elicit several changes in immune-related parameters including the composition, phenotype, and function of immune cells. Here we discuss the impact of innate and adaptive immune cells on the success of anticancer therapy. In this context we examine the opportunities to exploit host immune responses to boost tumor clearing, and highlight the challenges facing the treatment of advanced metastatic disease.
Collapse
Affiliation(s)
- Seth B Coffelt
- Division of Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Karin E de Visser
- Division of Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Zhang W, Wu X, Wu L, Zhang W, Zhao X. Advances in the diagnosis, treatment and prognosis of malignant pleural mesothelioma. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:182. [PMID: 26366399 DOI: 10.3978/j.issn.2305-5839.2015.07.03] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/03/2015] [Indexed: 12/18/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare cancer originated from pleural mesothelial cells. MPM has been associated with long-term exposure to asbestos. The prognosis of MPM is poor due to the difficulty of making diagnosis in the early stage, the rapid progression, the high invasiveness and the lack of effective treatment. Although the incidence of MPM is low in China to date, it has a tendency to increase in the coming years. The variety of clinical features may cause the delay of diagnosis and high rate of misdiagnosis. The diagnosis of MPM is based on biopsy of the pleura and immunohistochemistry. As China has become the largest country in the consumption of asbestos, it would give rise to a new surge of MPM in the future. The current treatment of MPM is multimodality therapy including surgery, radiotherapy, chemotherapy and immunotherapy. Two surgical procedures are commonly applied: extrapleural pneumonectomy (EPP) and pleurectomy/decortication (P/D). Three dimensional conformal radiotherapy is used to denote a spectrum of radiation planning and delivery techniques that rely on the 3D imaging to define the tumor. Cisplatin combined with pemetrexed (PEM) is the first-line chemotherapy for MPM. The principal targets in immunotherapy include T cells (Treg), CTLA-4 and PD-1. The diagnosis, treatment and prognosis still remain a major challenge for clinical research and will do so for years to come.
Collapse
Affiliation(s)
- Weiquan Zhang
- 1 Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250033, China ; 2 Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Xinshu Wu
- 1 Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250033, China ; 2 Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Licun Wu
- 1 Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250033, China ; 2 Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Weidong Zhang
- 1 Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250033, China ; 2 Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Xiaogang Zhao
- 1 Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250033, China ; 2 Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|