1
|
Boda A, Bandey IN, Chowdhury S, Aggarwal S, Venugopala M, Fowlkes NW, Roszik J, Curran MA, Morris VK, Kopetz S, Singh M. IL-1R1 Blockade Boosts CD40 Agonist Immune Responses but Fails to Improve Efficacy or Reduce Hepatotoxicity in Pancreatic Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639774. [PMID: 40060615 PMCID: PMC11888298 DOI: 10.1101/2025.02.23.639774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor survival rate and limited treatments. Agonistic CD40 antibodies are promising, but clinical trials have shown only modest efficacy and significant hepatotoxicity. We previously reported that IL-1 pathway blockade enhances agonistic CD40 antibody efficacy against melanoma by depleting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs; CD11b+Ly6C+Ly6G+). Because PMN-MDSCs also cause liver toxicity, we investigated the impact of IL-1R1 blockade on the efficacy and toxicity of agonistic CD40 antibody therapy in PDAC. Agonistic CD40 antibody therapy induced immune activation and significantly prolonged survival in orthotopic PDAC-bearing mice. IL-1R1 blockade monotherapy downregulated innate and adaptive immune response and exacerbated tumor growth. Although combination therapy upregulated several immune-related pathways and boosted innate and adaptive immune responses. IL-1R1 blockade failed to improve the overall antitumor efficacy of agonistic CD40 antibody therapy and exacerbated liver toxicity. Ly6G+ cell depletion in mice reduced the efficacy of agonistic CD40 antibody therapy, suggesting that Ly6G+ immune cells (PMN-MDSCs or neutrophils) exhibit an antitumor rather than immunosuppressive role in PDAC. Our findings underscore the complex role of IL-1 signaling in modulating immune responses in PDAC and caution against pursuing IL-1R1 blockade, either as monotherapy or combined with agonistic CD40 antibodies, in clinical trials for PDAC.
Collapse
Affiliation(s)
- Akash Boda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Irfan N. Bandey
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sadhna Aggarwal
- Department of Thoracic Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mekala Venugopala
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Natalie Wall Fowlkes
- Departments of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason Roszik
- Department of Melanoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael A. Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Van Karlyle Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Manisha Singh
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Lei S, Mao Y, Qin T, Zhou J, Mai Z, Xu J, Zhang R, Yang Q. Neutrophil-to-apolipoprotein A1 ratio predicted the efficiency of chemotherapy in advanced pancreatic cancer. Pancreatology 2025:S1424-3903(25)00057-2. [PMID: 40118770 DOI: 10.1016/j.pan.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/08/2024] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Identification of a biomarker predicting chemotherapy efficacy in patients with advanced pancreatic cancer (APC) is urgently needed. This study aimed to determine the association between the neutrophil-to-apolipoprotein A1 ratio (NEAPO) and chemotherapy efficacy in APC patients. METHODS This retrospective study involved 236 APC patients who underwent first-line chemotherapy, including FOLFIRINOX (FFX), nab-paclitaxel plus gemcitabine (AG), or SOXIRI. Receiver operating characteristic curve analysis was performed to determine the optimal cutoff value of NEAPO, and patients were divided into low and high NEAPO groups. Kaplan-Meier curves and Cox regression analyses were used to evaluate the effect of NEAPO on overall survival (OS) and progression-free survival (PFS). RESULTS The optimal cutoff of NEAPO was 4.69. High NEAPO levels were associated with shorter OS (p = 0.046) and PFS (p = 0.001). In the NEAPO low subgroup, the median PFS of SOXIRI was longer than that in AG group (7.2 months vs. 5.5 months, p = 0.029), with no significant difference of PFS between SOXIRI and FFX (p = 0.691). There is a trend but not significant difference in PFS between AG and FFX (p = 0.096). The proportion of disease control rate (DCR) was higher in SOXIRI group. In the NEAPO high subgroup, there was no significant difference in PFS among the three regimens, while the DCR was higher in AG group. CONCLUSIONS NEAPO levels were significantly associated with OS, PFS and treatment response in APC patients who underwent chemotherapy and might be a useful biomarker for predicting chemotherapy efficacy.
Collapse
Affiliation(s)
- Sen Lei
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yize Mao
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Tao Qin
- Department of Medical Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, PR China
| | - Jianyao Zhou
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Zhijun Mai
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Jiahui Xu
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Rong Zhang
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Qiuxia Yang
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| |
Collapse
|
3
|
Hansen N, Peña-Martínez P, Skoog P, Reinbach K, Hansen FC, Faria SL, Grönberg C, Abdilleh K, Magnusson S, von Wachenfeldt K, Millrud CR, Liberg D, Järås M. Blocking IL1RAP on cancer-associated fibroblasts in pancreatic ductal adenocarcinoma suppresses IL-1-induced neutrophil recruitment. J Immunother Cancer 2024; 12:e009523. [PMID: 39694705 DOI: 10.1136/jitc-2024-009523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) represents a major clinical challenge due to its tumor microenvironment, which exhibits immune-suppressive properties that facilitate cancer progression, metastasis, and therapy resistance. Interleukin 1 (IL-1) signaling has been implicated as a driver in this process. Mechanistically, both IL-1α and IL-1β bind to the IL-1 receptor type 1, forming a complex with IL-1-receptor accessory protein (IL1RAP), which triggers downstream signaling pathways. The IL1RAP blocking antibody nadunolimab is currently in clinical development, but the precise consequences of inhibiting IL-1 signaling in PDAC remains elusive. METHODS To evaluate the biological relevance of blocking IL1RAP using nadunolimab in a PDAC animal model, human PDAC cells and cancer-associated fibroblasts (CAFs) were co-transplanted into mice. To study the underlying mechanisms of IL1RAP blockade ex vivo, co-cultured PDAC cells and CAFs were treated with nadunolimab prior to RNA sequencing. Migration assays were performed to assess how nadunolimab affects interactions between CAFs and myeloid immune cells. Finally, to establish a clinical correlation between IL1RAP expression and nadunolimab treatment effects, we analyzed tumor biopsies from a clinical phase I/II study in which nadunolimab was administered to patients. RESULTS In the xenograft mouse model, nadunolimab exhibited antitumor effects only when human CAFs were co-transplanted with PDAC cells. IL-1 stimulation induced CAFs to secrete chemokines that recruited neutrophils and monocytes. The secretion of this chemokine and the migration of myeloid cells were inhibited by nadunolimab. Media conditioned by IL-1-stimulated CAFs sustained a neutrophil population with a tissue invasion phenotype, an effect that was reversed by nadunolimab. In a cohort of metastatic late-stage PDAC patients receiving nadunolimab as monotherapy, high IL1RAP expression in tumors was associated with extended progression-free survival. CONCLUSIONS Our study demonstrates that targeting IL1RAP on CAFs inhibits IL-1-induced chemokine secretion and recruitment of neutrophils and monocytes, thereby counteracting the immunosuppressive microenvironment in PDAC. These findings highlight the therapeutic potential of targeting IL1RAP in PDAC.
Collapse
Affiliation(s)
- Nils Hansen
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | | | | | | | | | | | - Kawther Abdilleh
- Pancreatic Cancer Action Network, Manhattan Beach, California, USA
| | | | | | | | | | - Marcus Järås
- Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Finan JM, Guo Y, Goodyear SM, Brody JR. Challenges and Opportunities in Targeting the Complex Pancreatic Tumor Microenvironment. JCO ONCOLOGY ADVANCES 2024; 1:e2400050. [PMID: 39735733 PMCID: PMC11670921 DOI: 10.1200/oa-24-00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 12/31/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths with a 5-year survival rate of 13%. Surgical resection remains the only curative option as systemic therapies offer limited benefit. Poor response to chemotherapy and immunotherapy is due, in part, to the dense stroma and heterogeneous tumor microenvironment (TME). Opportunities to target the PDAC stroma may increase the effectiveness of existing or novel therapies. Current strategies targeting the stromal compartment within the PDAC TME primarily focus on degrading extracellular matrix or inhibiting stromal cell activity, angiogenesis, or hypoxic responses. In addition, extensive work has attempted to use immune targeting strategies to improve clinical outcomes. Preclinically, these strategies show promise, especially with the ability to alter the tumor ecosystem; however, when translated to the clinic, most of these trials have failed to improve overall patient outcomes. In this review, we catalog the heterogenous elements of the TME and discuss the potential of combination therapies that target the heterogeneity observed in the TME between patients and how molecular stratification could improve responses to targeted and combination therapies.
Collapse
Affiliation(s)
- Jennifer M. Finan
- Department of Surgery, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Yifei Guo
- Department of Surgery, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Shaun M. Goodyear
- Division of Hematology and Oncology, School of Medicine, Oregon Health & Science University, Portland, OR
| | - Jonathan R. Brody
- Department of Surgery, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
5
|
Grahovac J, Đurić A, Tanić M, Krivokuća A. Sex-Related Differences in Pancreatic Ductal Adenocarcinoma Progression and Response to Therapy. Int J Mol Sci 2024; 25:12669. [PMID: 39684385 DOI: 10.3390/ijms252312669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly malignancies with an increasing incidence rate and limited therapeutic options. Biological sex has an impact on many aspects of PDAC development and response to therapy, yet it is highly unappreciated in both basic and translational research, and worryingly in PDAC clinical trials. In this review, we summarize how biological sex influences PDAC incidence and mortality, genetic and epigenetic landscapes, anti-tumor immunity, responses to hormones, cachexia, and the efficacy of therapy. We highlight the importance of sex as a variable and discuss how to implement it into preclinical and clinical research. These considerations should be of use to researchers aiming at improving understanding of PDAC biology and developing precision medicine therapeutic strategies.
Collapse
Affiliation(s)
- Jelena Grahovac
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Ana Đurić
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Miljana Tanić
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Ana Krivokuća
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Shah A, Ganguly K, Rauth S, Sheree SS, Khan I, Ganti AK, Ponnusamy MP, Kumar S, Jain M, Batra SK. Unveiling the resistance to therapies in pancreatic ductal adenocarcinoma. Drug Resist Updat 2024; 77:101146. [PMID: 39243602 PMCID: PMC11770815 DOI: 10.1016/j.drup.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
Despite the ongoing advances in interventional strategies (surgery, chemotherapy, radiotherapy, and immunotherapy) for managing pancreatic ductal adenocarcinoma (PDAC), the development of therapy refractory phenotypes remains a significant challenge. Resistance to various therapeutic modalities in PDAC emanates from a combination of inherent and acquired factors and is attributable to cancer cell-intrinsic and -extrinsic mechanisms. The critical determinants of therapy resistance include oncogenic signaling and epigenetic modifications that drive cancer cell stemness and metabolic adaptations, CAF-mediated stromagenesis that results in ECM deposition altered mechanotransduction, and secretome and immune evasion. We reviewed the current understanding of these multifaceted mechanisms operating in the PDAC microenvironment, influencing the response to chemotherapy, radiotherapy, and immunotherapy regimens. We then describe how the lessons learned from these studies can guide us to discover novel therapeutic regimens to prevent, delay, or revert resistance and achieve durable clinical responses.
Collapse
Affiliation(s)
- Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Shamema S Sheree
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Imran Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Apar K Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Division of Oncology-hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System and University of Nebraska Medical Center, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, USA.
| |
Collapse
|
7
|
Oli AN, Adejumo SA, Rowaiye AB, Ogidigo JO, Hampton-Marcell J, Ibeanu GC. Tumour Immunotherapy and Applications of Immunological Products: A Review of Literature. J Immunol Res 2024; 2024:8481761. [PMID: 39483536 PMCID: PMC11527548 DOI: 10.1155/2024/8481761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant tumors, characterized by uncontrolled cell proliferation, are a leading global health challenge, responsible for over 9.7 million deaths in 2022, with new cases expected to rise to 35 million annually by 2050. Immunotherapy is preferred to other cancer therapies, offering precise targeting of malignant cells while simultaneously strengthening the immune system's complex responses. Advances in this novel field of science have been closely linked to a deeper knowledge of tumor biology, particularly the intricate interplay between tumor cells, the immune system, and the tumor microenvironment (TME), which are central to cancer progression and immune evasion. This review offers a comprehensive analysis of the molecular mechanisms that govern these interactions, emphasizing their critical role in the development of effective immunotherapeutic products. We critically evaluate the current immunotherapy approaches, including cancer vaccines, adoptive T cell therapies, and cytokine-based treatments, highlighting their efficacy and safety. We also explore the latest advancements in combination therapies, which synergistically integrate multiple immunotherapeutic strategies to overcome resistance and enhance therapeutic outcomes. This review offers key insights into the future of cancer immunotherapy with a focus on advancing more effective and personalized treatment strategies.
Collapse
Affiliation(s)
- Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 420211, Nigeria
| | - Samson Adedeji Adejumo
- Department of Biological Sciences, University of Illinois, Chicago, 845 West Taylor, Chicago 60607, Illinois, USA
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria
| | - Adekunle Babajide Rowaiye
- National Biotechnology Development Agency, Abuja 900211, Nigeria
- Department of Pharmaceutical Science, North Carolina Central University, Durham 27707, North Carolina, USA
| | | | - Jarrad Hampton-Marcell
- Department of Biological Sciences, University of Illinois, Chicago, 845 West Taylor, Chicago 60607, Illinois, USA
| | - Gordon C. Ibeanu
- Department of Pharmaceutical Science, North Carolina Central University, Durham 27707, North Carolina, USA
| |
Collapse
|
8
|
Oberstein PE, Dias Costa A, Kawaler EA, Cardot-Ruffino V, Rahma OE, Beri N, Singh H, Abrams TA, Biller LH, Cleary JM, Enzinger P, Huffman BM, McCleary NJ, Perez KJ, Rubinson DA, Schlechter BL, Surana R, Yurgelun MB, Wang SJ, Remland J, Brais LK, Bollenrucher N, Chang E, Ali LR, Lenehan PJ, Dolgalev I, Werba G, Lima C, Keheler CE, Sullivan KM, Dougan M, Hajdu C, Dajee M, Pelletier MR, Nazeer S, Squires M, Bar-Sagi D, Wolpin BM, Nowak JA, Simeone DM, Dougan SK. Blockade of IL1β and PD1 with Combination Chemotherapy Reduces Systemic Myeloid Suppression in Metastatic Pancreatic Cancer with Heterogeneous Effects in the Tumor. Cancer Immunol Res 2024; 12:1221-1235. [PMID: 38990554 PMCID: PMC11369625 DOI: 10.1158/2326-6066.cir-23-1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Innate inflammation promotes tumor development, although the role of innate inflammatory cytokines in established human tumors is unclear. Herein, we report clinical and translational results from a phase Ib trial testing whether IL1β blockade in human pancreatic cancer would alleviate myeloid immunosuppression and reveal antitumor T-cell responses to PD1 blockade. Patients with treatment-naïve advanced pancreatic ductal adenocarcinoma (n = 10) were treated with canakinumab, a high-affinity monoclonal human antiinterleukin-1β (IL1β), the PD1 blocking antibody spartalizumab, and gemcitabine/n(ab)paclitaxel. Analysis of paired peripheral blood from patients in the trial versus patients receiving multiagent chemotherapy showed a modest increase in HLA-DR+CD38+ activated CD8+ T cells and a decrease in circulating monocytic myeloid-derived suppressor cells (MDSC) by flow cytometry for patients in the trial but not in controls. Similarly, we used patient serum to differentiate monocytic MDSCs in vitro and showed that functional inhibition of T-cell proliferation was reduced when using on-treatment serum samples from patients in the trial but not when using serum from patients treated with chemotherapy alone. Within the tumor, we observed few changes in suppressive myeloid-cell populations or activated T cells as assessed by single-cell transcriptional profiling or multiplex immunofluorescence, although increases in CD8+ T cells suggest that improvements in the tumor immune microenvironment might be revealed by a larger study. Overall, the data indicate that exposure to PD1 and IL1β blockade induced a modest reactivation of peripheral CD8+ T cells and decreased circulating monocytic MDSCs; however, these changes did not lead to similarly uniform alterations in the tumor microenvironment.
Collapse
Affiliation(s)
- Paul E. Oberstein
- Department of Medicine, NYU Langone Health, New York, New York.
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - Emily A. Kawaler
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
- Department of Surgery, NYU Langone Health, New York, New York.
| | - Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts.
| | - Osama E. Rahma
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Nina Beri
- Department of Medicine, NYU Langone Health, New York, New York.
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Thomas A. Abrams
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Leah H. Biller
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Peter Enzinger
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Brandon M. Huffman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Nadine J. McCleary
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Kimberly J. Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Douglas A. Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Benjamin L. Schlechter
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Rishi Surana
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Matthew B. Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - S. Jennifer Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Joshua Remland
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - Lauren K. Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - Naima Bollenrucher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Eugena Chang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Lestat R. Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Patrick J. Lenehan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts.
| | - Igor Dolgalev
- Department of Medicine, NYU Langone Health, New York, New York.
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
| | - Gregor Werba
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
- Department of Surgery, NYU Langone Health, New York, New York.
| | - Cibelle Lima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - C. Elizabeth Keheler
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Keri M. Sullivan
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Michael Dougan
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Cristina Hajdu
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
- Department of Pathology, NYU Langone Health, New York, New York.
| | - Maya Dajee
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts.
| | - Marc R. Pelletier
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts.
| | | | | | - Dafna Bar-Sagi
- Department of Medicine, NYU Langone Health, New York, New York.
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Jonathan A. Nowak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Diane M. Simeone
- Perlmutter Cancer Center, NYU Langone Health, New York, New York.
- Department of Surgery, NYU Langone Health, New York, New York.
| | - Stephanie K. Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
9
|
Abal-Sanisidro M, De Luca M, Roma S, Ceraolo MG, de la Fuente M, De Monte L, Protti MP. Anakinra-Loaded Sphingomyelin Nanosystems Modulate In Vitro IL-1-Dependent Pro-Tumor Inflammation in Pancreatic Cancer. Int J Mol Sci 2024; 25:8085. [PMID: 39125655 PMCID: PMC11312284 DOI: 10.3390/ijms25158085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Pancreatic cancer is a very aggressive disease with a dismal prognosis. The tumor microenvironment exerts immunosuppressive activities through the secretion of several cytokines, including interleukin (IL)-1. The IL-1/IL-1 receptor (IL-1R) axis is a key regulator in tumor-promoting T helper (Th)2- and Th17-type inflammation. Th2 cells are differentiated by dendritic cells endowed with Th2-polarizing capability by the thymic stromal lymphopoietin (TSLP) that is secreted by IL-1-activated cancer-associated fibroblasts (CAFs). Th17 cells are differentiated in the presence of IL-1 and other IL-1-regulated cytokines. In pancreatic cancer, the use of a recombinant IL-1R antagonist (IL1RA, anakinra, ANK) in in vitro and in vivo models has shown efficacy in targeting the IL-1/IL-1R pathway. In this study, we have developed sphingomyelin nanosystems (SNs) loaded with ANK (ANK-SNs) to compare their ability to inhibit Th2- and Th17-type inflammation with that of the free drug in vitro. We found that ANK-SNs inhibited TSLP and other pro-tumor cytokines released by CAFs at levels similar to ANK. Importantly, inhibition of IL-17 secretion by Th17 cells, but not of interferon-γ, was significantly higher, and at lower concentrations, with ANK-SNs compared to ANK. Collectively, the use of ANK-SNs might be beneficial in reducing the effective dose of the drug and its toxic effects.
Collapse
Affiliation(s)
- Marcelina Abal-Sanisidro
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain;
- University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Biomedical Research Networking Center on Oncology (CIBERONC), 28029 Madrid, Spain
| | - Michele De Luca
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefania Roma
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Grazia Ceraolo
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain;
- University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Biomedical Research Networking Center on Oncology (CIBERONC), 28029 Madrid, Spain
- DIVERSA Technologies S.L., Edificio Emprendia, Campus Sur, 15782 Santiago de Compostela, Spain
| | - Lucia De Monte
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Pia Protti
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
10
|
Gigante L, Gaudillière-Le Dain G, Bertaut A, Truntzer C, Ghiringhelli F. Interleukin-1α as a Potential Prognostic Biomarker in Pancreatic Cancer. Biomedicines 2024; 12:1216. [PMID: 38927423 PMCID: PMC11200603 DOI: 10.3390/biomedicines12061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE We assessed the prognostic role of pro-inflammatory cytokines of the IL-1 superfamily in patients with pancreatic cancer. METHODS This retrospective study was performed using two independent cohorts of patients with pancreatic cancer: the International Cancer Genome Consortium (ICGC, N = 267) cohort and The Cancer Genome Atlas (TCGA, N = 178) cohort. Univariate Cox regressions were used to identify prognosis-related pro-inflammatory cytokines of the IL-1 superfamily. Cytokines associated with outcome were included in a multivariate Cox model with relevant clinicopathological variables to identify prognostic biomarkers. RESULTS IL-1α was the only pro-inflammatory cytokine of the IL-1 superfamily that was significantly associated with prognosis in both cohorts. In the training cohort (ICGC), the decile of patients with the lowest IL1A expression had better overall survival (HR = 1.99 [1.01-3.93], p = 0.05) and better relapse-free survival (HR = 1.85 [1.02-3.34], p = 0.04) than the group with the highest IL1A expression. The validation cohort (TCGA) confirmed these results: the decile with the lowest IL1A expression had better overall survival (HR = 3.00 [1.14-7.90], p = 0.03) and a lower risk of progression (HR = 3.11 [1.24-7.80], p = 0.01). CONCLUSIONS IL1A is an independent prognostic marker and could be considered a potential therapeutic target in pancreatic cancer patients.
Collapse
Affiliation(s)
- Leonardo Gigante
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UFR of Health Sciences, University of Burgundy, 21000 Dijon, France
| | - Gwladys Gaudillière-Le Dain
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UFR of Health Sciences, University of Burgundy, 21000 Dijon, France
| | - Aurélie Bertaut
- Biostatistics and Methodology Unit, Georges-François Leclerc Cancer Center, 21000 Dijon, France;
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UMR INSERM 1231, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center-Unicancer, 1 Rue du Professeur Marion, 21000 Dijon, France (F.G.)
- UFR of Health Sciences, University of Burgundy, 21000 Dijon, France
- UMR INSERM 1231, 7 Boulevard Jeanne d’Arc, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 14 Rue Paul Gaffarel, 21000 Dijon, France
- Department of Medical Oncology, Georges-François Leclerc Cancer Center, 1 Rue du Professeur Marion, 21000 Dijon, France
| |
Collapse
|
11
|
Singh SP, Dosch AR, Mehra S, De Castro Silva I, Bianchi A, Garrido VT, Zhou Z, Adams A, Amirian H, Box EW, Sun X, Ban Y, Datta J, Nagathihalli NS, Merchant NB. Tumor Cell-Intrinsic p38 MAPK Signaling Promotes IL1α-Mediated Stromal Inflammation and Therapeutic Resistance in Pancreatic Cancer. Cancer Res 2024; 84:1320-1332. [PMID: 38285896 DOI: 10.1158/0008-5472.can-23-1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/27/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a KRAS-driven inflammatory program and a desmoplastic stroma, which contribute to the profoundly chemoresistant phenotype. The tumor stroma contains an abundance of cancer-associated fibroblasts (CAF), which engage in extensive paracrine cross-talk with tumor cells to perpetuate protumorigenic inflammation. IL1α, a pleiotropic, tumor cell-derived cytokine, plays a critical role in shaping the stromal landscape. To provide insights into the molecular mechanisms regulating IL1A expression in PDAC, we performed transcriptional profiling of The Cancer Genome Atlas datasets and pharmacologic screening in PDAC cells and identified p38α MAPK as a key positive regulator of IL1A expression. Both genetic and pharmacologic inhibition of p38 MAPK significantly diminished IL1α production in vitro. Chromatin- and coimmunoprecipitation analyses revealed that p38 MAPK coordinates the transcription factors Sp1 and the p65 subunit of NFκB to drive IL1A overexpression. Single-cell RNA sequencing of a highly desmoplastic murine PDAC model, Ptf1aCre/+; LSL-KrasG12D/+; Tgfbr2flox/flox (PKT), confirmed that p38 MAPK inhibition significantly decreases tumor cell-derived Il1a and attenuates the inflammatory CAF phenotype in a paracrine IL1α-dependent manner. Furthermore, p38 MAPK inhibition favorably modulated intratumoral immunosuppressive myeloid populations and augmented chemotherapeutic efficacy to substantially reduce tumor burden and improve overall survival in PKT mice. These findings illustrate a cellular mechanism of tumor cell-intrinsic p38-p65/Sp1-IL1α signaling that is responsible for sustaining stromal inflammation and CAF activation, offering an attractive therapeutic approach to enhance chemosensitivity in PDAC. SIGNIFICANCE Inhibition of p38 MAPK suppresses tumor cell-derived IL1α and attenuates the inflammatory stroma and immunosuppressive tumor microenvironment to overcome chemotherapeutic resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Samara P Singh
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Austin R Dosch
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Siddharth Mehra
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Iago De Castro Silva
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Anna Bianchi
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Vanessa T Garrido
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Zhiqun Zhou
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Andrew Adams
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Haleh Amirian
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Edmond W Box
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Xiaodian Sun
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Yuguang Ban
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Jashodeep Datta
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Nagaraj S Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Nipun B Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| |
Collapse
|
12
|
Huang H, Lu W, Zhang X, Pan J, Cao F, Wen L. Fibroblast subtypes in pancreatic cancer and pancreatitis: from mechanisms to therapeutic strategies. Cell Oncol (Dordr) 2024; 47:383-396. [PMID: 37721678 DOI: 10.1007/s13402-023-00874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Excessive fibrosis is a predominant feature of pancreatic stroma and plays a crucial role in the development and progression of pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP). Emerging evidence showed diversity and heterogeneity of fibroblasts play crucial and somewhat contradictory roles, the interactions between fibroblasts and pancreatic cells or infiltrating immune cells are of great importance during PDAC and CP progression, with some promising therapeutic strategies being tested. Therefore, in this review, we describe the classification of fibroblasts and their functions in PDAC and pancreatitis, the mechanisms by which fibroblasts mediate the development and progression of PDAC and CP through direct or indirect interaction between fibroblast and pancreatic parenchymal cells, or by remodeling the pancreatic immune microenvironment mediates the development and progression of PDAC and CP. Finally, we summarized the current therapeutic strategies and agents that directly target subtypes of fibroblasts or interfere with their essential functions.
Collapse
Affiliation(s)
- Huizhen Huang
- Department of Gastroenterology, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Nanjing Medical University, Shanghai, China
| | - Wanyi Lu
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiuli Zhang
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jiachun Pan
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Li Wen
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Kumar V, Sethi B, Staller DW, Shrestha P, Mahato RI. Gemcitabine elaidate and ONC201 combination therapy for inhibiting pancreatic cancer in a KRAS mutated syngeneic mouse model. Cell Death Discov 2024; 10:158. [PMID: 38553450 PMCID: PMC10980688 DOI: 10.1038/s41420-024-01920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Approximately 90% of pancreatic cancer (PC) contain KRAS mutations. Mutated KRAS activates the downstream oncogenic PI3K/AKT and MEK signaling pathways and induces drug resistance. However, targeting both pathways with different drugs can also lead to excessive toxicity. ONC201 is a dual PI3K/AKT and MEK pathway inhibitor with an excellent safety profile that targets death receptor 5 (DR5) to induce apoptosis. Gemcitabine (GEM) is a first-line chemotherapy in PC, but it is metabolically unstable and can be stabilized by a prodrug approach. In this study, phospho-Akt, phospho-mTOR, and phospho-ERK protein expressions were evaluated in patient PDAC-tissues (n = 10). We used lipid-gemcitabine (L_GEM) conjugate, which is more stable and enters the cells by passive diffusion. Further, we evaluated the efficacy of L_GEM and ONC201 in PC cells and "KrasLSL-G12D; p53LoxP; Pdx1-CreER (KPC) triple mutant xenograft tumor-bearing mice. PDAC patient tissues showed significantly higher levels of p-AKT (Ser473), p-ERK (T202/T204), and p-mTOR compared to surrounding non-cancerous tissues. ONC201 in combination with L_GEM, showed a superior inhibitory effect on the growth of MIA PaCa-2 cells. In our in-vivo study, we found that ONC201 and L_GEM combination prevented neoplastic proliferation via AKT/ERK blockade to overcome chemoresistance and increased T-cell tumor surveillance. Simultaneous inhibition of the PI3K/AKT and MEK pathways with ONC201 is an attractive approach to potentiate the effect of GEM. Our findings provide insight into rational-directed precision chemo and immunotherapy therapy in PDAC.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dalton W Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prakash Shrestha
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
14
|
Hamel Z, Sanchez S, Standing D, Anant S. Role of STAT3 in pancreatic cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:20-34. [PMID: 38464736 PMCID: PMC10918236 DOI: 10.37349/etat.2024.00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 03/12/2024] Open
Abstract
Pancreatic cancer remains a serious and deadly disease, impacting people globally. There remain prominent gaps in the current understanding of the disease, specifically regarding the role of the signal transducer and activator of transcription (STAT) family of proteins in pancreatic tumors. STAT proteins, particularly STAT3, play important roles in pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), which is the most prevalent histotype. The role of STAT3 across a continuum of molecular processes, such as PDAC tumorigenesis and progression, immune escape, drug resistance and stemness, and modulation of the tumor microenvironment (TME), are only a tip of the iceberg. In some ways, the role of STAT3 in PDAC may hold greater importance than that of oncogenic Kirsten rat sarcoma virus (KRAS). This makes STAT3 a highly attractive target for developing targeted therapies for the treatment of pancreatic cancer. In this review, the current knowledge of STAT3 in pancreatic cancer has been summarized, particularly relating to STAT3 activation in cancer cells, cells of the TME, and the state of targeting STAT3 in pre-clinical and clinical trials of PDAC.
Collapse
Affiliation(s)
- Zachary Hamel
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sierra Sanchez
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
15
|
Chakkera M, Foote JB, Farran B, Nagaraju GP. Breaking the stromal barrier in pancreatic cancer: Advances and challenges. Biochim Biophys Acta Rev Cancer 2024; 1879:189065. [PMID: 38160899 DOI: 10.1016/j.bbcan.2023.189065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Pancreatic cancer (PC) remains a leading cause of mortality worldwide due to the absence of early detection methods and the low success rates of traditional therapeutic strategies. Drug resistance in PC is driven by its desmoplastic stroma, which creates a barrier that shields cancer niches and prevents the penetration of drugs. The PC stroma comprises heterogeneous cellular populations and non-cellular components involved in aberrant ECM deposition, immunosuppression, and drug resistance. These components can influence PC development through intricate and complex crosstalk with the PC cells. Understanding how stromal components and cells interact with and influence the invasiveness and refractoriness of PC cells is thus a prerequisite for developing successful stroma-modulating strategies capable of remodeling the PC stroma to alleviate drug resistance and enhance therapeutic outcomes. In this review, we explore how non-cellular and cellular stromal components, including cancer-associated fibroblasts and tumor-associated macrophages, contribute to the immunosuppressive and tumor-promoting effects of the stroma. We also examine the signaling pathways underlying their activation, tumorigenic effects, and interactions with PC cells. Finally, we discuss recent pre-clinical and clinical work aimed at developing and testing novel stroma-modulating agents to alleviate drug resistance and improve therapeutic outcomes in PC.
Collapse
Affiliation(s)
- Mohana Chakkera
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
16
|
Fang Z, Jiang J, Zheng X. Interleukin-1 receptor antagonist: An alternative therapy for cancer treatment. Life Sci 2023; 335:122276. [PMID: 37977354 DOI: 10.1016/j.lfs.2023.122276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The interleukin-1 receptor antagonist (IL-1Ra) is an anti-inflammatory cytokine and a naturally occurring antagonist of the IL-1 receptor. It effectively counteracts the IL-1 signaling pathway mediated by IL-1α/β. Over the past few decades, accumulating evidence has suggested that IL-1 signaling plays an essential role in tumor formation, growth, and metastasis. Significantly, anakinra, the first United States Food and Drug Administration (FDA)-approved IL-1Ra drug, has demonstrated promising antitumor effects in animal studies. Numerous clinical trials have subsequently incorporated anakinra into their cancer treatment protocols. In this review, we comprehensively discuss the research progress on the role of IL-1 in tumors and summarize the significant contribution of IL-1Ra (anakinra) to tumor immunity. Additionally, we analyze the potential value of IL-1Ra as a biomarker from a clinical perspective. This review is aimed to highlight the important link between inflammation and cancer and provide potential drug targets for future cancer therapy.
Collapse
Affiliation(s)
- Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China; Institute for Cell Therapy of Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China; Institute for Cell Therapy of Soochow University, Changzhou, Jiangsu, China.
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China; Institute for Cell Therapy of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
17
|
Sa P, Mohapatra P, Swain SS, Khuntia A, Sahoo SK. Phytochemical-Based Nanomedicine for Targeting Tumor Microenvironment and Inhibiting Cancer Chemoresistance: Recent Advances and Pharmacological Insights. Mol Pharm 2023; 20:5254-5277. [PMID: 37596986 DOI: 10.1021/acs.molpharmaceut.3c00286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Cancer remains the leading cause of death and rapidly evolving disease worldwide. The understanding of disease pathophysiology has improved through advanced research investigation, and several therapeutic strategies are being used for better cancer treatment. However, the increase in cancer relapse and metastatic-related deaths indicate that available therapies and clinically approved chemotherapy drugs are not sufficient to combat cancer. Further, the constant crosstalk between tumor cells and the tumor microenvironment (TME) is crucial for the development, progression, metastasis, and therapeutic response to tumors. In this regard, phytochemicals with multimodal targeting abilities can be used as an alternative to current cancer therapy by inhibiting cancer survival pathways or modulating TME. However, due to their poor pharmacokinetics and low bioavailability, the success of phytochemicals in clinical trials is limited. Therefore, developing phytochemical-based nanomedicine or phytonanomedicine can improve the pharmacokinetic profile of these phytochemicals. Herein, the molecular characteristics and pharmacological insights of the proposed phytonanomedicine in cancer therapy targeting tumor tissue and altering the characteristics of cancer stem cells, chemoresistance, TME, and cancer immunity are well discussed. Further, we have highlighted the clinical perspective and challenges of phytonanomedicine in filling the gap in potential cancer therapeutics using various nanoplatforms. Overall, we have discussed how clinical success and pharmacological insights could make it more beneficial to boost the concept of nanomedicine in the academic and pharmaceutical fields to counter cancer metastases and drug resistance.
Collapse
Affiliation(s)
- Pratikshya Sa
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | - Priyanka Mohapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | | | - Auromira Khuntia
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, NCR Delhi, India
| | | |
Collapse
|
18
|
Tengesdal IW, Dinarello CA, Marchetti C. NLRP3 and cancer: Pathogenesis and therapeutic opportunities. Pharmacol Ther 2023; 251:108545. [PMID: 37866732 PMCID: PMC10710902 DOI: 10.1016/j.pharmthera.2023.108545] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
More than a decade ago IL-1 blockade was suggested as an add-on therapy for the treatment of cancer. This proposal was based on the overall safety record of anti-IL-1 biologics and the anti-tumor properties of IL-1 blockade in animal models of cancer. Today, a new frontier in IL-1 activity regulation has developed with several orally active NLRP3 inhibitors currently in clinical trials, including cancer. Despite an increasing body of evidence suggesting a role of NLRP3 and IL-1-mediated inflammation driving cancer initiation, immunosuppression, growth, and metastasis, NLRP3 activation in cancer remains controversial. In this review, we discuss the recent advances in the understanding of NLRP3 activation in cancer. Further, we discuss the current opportunities for NLRP3 inhibition in cancer intervention with novel small molecules.
Collapse
Affiliation(s)
- Isak W Tengesdal
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Carlo Marchetti
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
Chitty JL, Yam M, Perryman L, Parker AL, Skhinas JN, Setargew YFI, Mok ETY, Tran E, Grant RD, Latham SL, Pereira BA, Ritchie SC, Murphy KJ, Trpceski M, Findlay AD, Melenec P, Filipe EC, Nadalini A, Velayuthar S, Major G, Wyllie K, Papanicolaou M, Ratnaseelan S, Phillips PA, Sharbeen G, Youkhana J, Russo A, Blackwell A, Hastings JF, Lucas MC, Chambers CR, Reed DA, Stoehr J, Vennin C, Pidsley R, Zaratzian A, Da Silva AM, Tayao M, Charlton B, Herrmann D, Nobis M, Clark SJ, Biankin AV, Johns AL, Croucher DR, Nagrial A, Gill AJ, Grimmond SM, Pajic M, Timpson P, Jarolimek W, Cox TR. A first-in-class pan-lysyl oxidase inhibitor impairs stromal remodeling and enhances gemcitabine response and survival in pancreatic cancer. NATURE CANCER 2023; 4:1326-1344. [PMID: 37640930 PMCID: PMC10518255 DOI: 10.1038/s43018-023-00614-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/07/2023] [Indexed: 08/31/2023]
Abstract
The lysyl oxidase family represents a promising target in stromal targeting of solid tumors due to the importance of this family in crosslinking and stabilizing fibrillar collagens and its known role in tumor desmoplasia. Using small-molecule drug-design approaches, we generated and validated PXS-5505, a first-in-class highly selective and potent pan-lysyl oxidase inhibitor. We demonstrate in vitro and in vivo that pan-lysyl oxidase inhibition decreases chemotherapy-induced pancreatic tumor desmoplasia and stiffness, reduces cancer cell invasion and metastasis, improves tumor perfusion and enhances the efficacy of chemotherapy in the autochthonous genetically engineered KPC model, while also demonstrating antifibrotic effects in human patient-derived xenograft models of pancreatic cancer. PXS-5505 is orally bioavailable, safe and effective at inhibiting lysyl oxidase activity in tissues. Our findings present the rationale for progression of a pan-lysyl oxidase inhibitor aimed at eliciting a reduction in stromal matrix to potentiate chemotherapy in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jessica L Chitty
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle Yam
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Lara Perryman
- Pharmaxis, Frenchs Forest, New South Wales, Australia
| | - Amelia L Parker
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joanna N Skhinas
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Yordanos F I Setargew
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Ellie T Y Mok
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Emmi Tran
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Rhiannon D Grant
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Sharissa L Latham
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Brooke A Pereira
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Shona C Ritchie
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Kendelle J Murphy
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Trpceski
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | | | - Pauline Melenec
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Elysse C Filipe
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Audrey Nadalini
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Sipiththa Velayuthar
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Gretel Major
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Kaitlin Wyllie
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Papanicolaou
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Shivanjali Ratnaseelan
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Phoebe A Phillips
- School of Biomedical Sciences, Faculty of Medicine, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - George Sharbeen
- School of Biomedical Sciences, Faculty of Medicine, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Janet Youkhana
- School of Biomedical Sciences, Faculty of Medicine, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Alice Russo
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Antonia Blackwell
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Jordan F Hastings
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Cecilia R Chambers
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Daniel A Reed
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Janett Stoehr
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Claire Vennin
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Ruth Pidsley
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Andrew M Da Silva
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Tayao
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | | | - David Herrmann
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Max Nobis
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- Intravital Imaging Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Susan J Clark
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Amber L Johns
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - David R Croucher
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Adnan Nagrial
- Department of Medical Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Anthony J Gill
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sean M Grimmond
- University of Melbourne Centre for Cancer Research, VCCC, Melbourne, Victoria, Australia
| | - Marina Pajic
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Paul Timpson
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | | | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
20
|
Mahato R, Kumar V, Sethi B, Staller D. Gemcitabine elaidate and ONC201 combination therapy inhibits pancreatic cancer in a KRAS mutated syngeneic mouse model. RESEARCH SQUARE 2023:rs.3.rs-3108907. [PMID: 37503215 PMCID: PMC10371096 DOI: 10.21203/rs.3.rs-3108907/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Approximately 90% of pancreatic cancer (PC) contain KRAS mutations. Mutated KRAS activates the downstream oncogenic PI3K/AKT and MEK signaling pathways and induces drug resistance. However, targeting both pathways with different drugs can also lead to access of toxicity. ONC201 targets DR5 to induce apoptosis in several types of cancers and has an excellent safety profile. ONC201 is also a dual PI3K/AKT and MEK pathways inhibitor. Gemcitabine (GEM) is a first-line chemotherapy in PC, but it is metabolically unstable, which can be stabilized by prodrug approach. Here, we used lipid-gemcitabine (L_GEM) conjugate, which is more stable and enters the cells by passive diffusion. We evaluated the efficacy of L_GEM and ONC201 in PanCan cells, and "KrasLSL-G12D; p53LoxP; Pdx1-CreER (KPC) triple mutant xenograft tumor-bearing mice. ONC201, in combination with L_GEM, showed a superior inhibitory effect on the growth of MIA PaCa-2 cells. ONC201 and L_GEM combination prevented neoplastic proliferation via AKT/ERK blockade, to overcome chemoresistance, and increased T-cell tumor surveillance. Simultaneous inhibition of the PI3K/AKT and MEK pathways with ONC201 is an attractive approach to potentiate GEM. Our findings provide insight into rational-directed precision chemo and immunotherapy therapy in PDAC.
Collapse
|
21
|
Mehra S, Garrido VT, Dosch AR, Lamichhane P, Srinivasan S, Singh SP, Zhou Z, De Castro Silva I, Joshi C, Ban Y, Datta J, Gilboa E, Merchant NB, Nagathihalli NS. Remodeling of Stromal Immune Microenvironment by Urolithin A Improves Survival with Immune Checkpoint Blockade in Pancreatic Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:1224-1236. [PMID: 37448553 PMCID: PMC10337606 DOI: 10.1158/2767-9764.crc-22-0329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/20/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a significant contributor to cancer-related morbidity and mortality, and it is known for its resistance to conventional treatment regimens, including chemotherapy and immune checkpoint blockade (ICB)-based therapies. We have previously shown that Urolithin A (Uro A), a gut microbial metabolite derived from pomegranates, can target and inhibit KRAS-dependent PI3K/AKT/mTOR signaling pathways to overcome therapeutic resistance and improve survival in PDAC. However, the effect of Uro A on the tumor immune microenvironment and its ability to enhance ICB efficacy has not been explored. This study demonstrates that Uro A treatment reduces stromal fibrosis and reinvigorates the adaptive T-cell immune response to overcome resistance to PD-1 blockade in a genetically engineered mouse model (GEMM) of PDAC. Flow cytometric-based analysis of Uro A-treated mouse tumors revealed a significant attenuation of immunosuppressive tumor-associated M2-like macrophages with a concurrent increase in the infiltration of CD4+ and CD8+ T cells with memory-like phenotype along with reduced expression of the exhaustion-associated protein, PD-1. Importantly, the combination of Uro A treatment with anti-PD-1 immunotherapy promoted enhancement of the antitumor response with increased infiltration of CD4+ Th1 cells, ultimately resulting in a remarkable improvement in overall survival in GEMM of PDAC. Overall, our findings provide preclinical evidence for the potential of Uro A as a novel therapeutic agent to increase sensitivity to immunotherapy in PDAC and warrant further mechanistic exploration in preclinical and clinical studies. Significance Immunotherapeutic agents are ineffective against pancreatic cancer, mainly due to the immunosuppressive tumor microenvironment and stromal desmoplasia. Our current study demonstrates the therapeutic utility of a novel gut microbial metabolite, Uro A, to remodel the stromal-immune microenvironment and improve overall survival with anti-PD-1 therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Siddharth Mehra
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Vanessa T. Garrido
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Austin R. Dosch
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Supriya Srinivasan
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Samara P. Singh
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Zhiqun Zhou
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Iago De Castro Silva
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Yuguang Ban
- Department of Biostatistics and Bioinformatics, University of Miami, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Jashodeep Datta
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Eli Gilboa
- Department of Microbiology and Immunology, University of Miami, Miami, Florida
| | - Nipun B. Merchant
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nagaraj S. Nagathihalli
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
22
|
Bianchi A, De Castro Silva I, Deshpande NU, Singh S, Mehra S, Garrido VT, Guo X, Nivelo LA, Kolonias DS, Saigh SJ, Wieder E, Rafie CI, Dosch AR, Zhou Z, Umland O, Amirian H, Ogobuiro IC, Zhang J, Ban Y, Shiau C, Nagathihalli NS, Montgomery EA, Hwang WL, Brambilla R, Komanduri K, Villarino AV, Toska E, Stanger BZ, Gabrilovich DI, Merchant NB, Datta J. Cell-Autonomous Cxcl1 Sustains Tolerogenic Circuitries and Stromal Inflammation via Neutrophil-Derived TNF in Pancreatic Cancer. Cancer Discov 2023; 13:1428-1453. [PMID: 36946782 PMCID: PMC10259764 DOI: 10.1158/2159-8290.cd-22-1046] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
We have shown that KRAS-TP53 genomic coalteration is associated with immune-excluded microenvironments, chemoresistance, and poor survival in pancreatic ductal adenocarcinoma (PDAC) patients. By treating KRAS-TP53 cooperativity as a model for high-risk biology, we now identify cell-autonomous Cxcl1 as a key mediator of spatial T-cell restriction via interactions with CXCR2+ neutrophilic myeloid-derived suppressor cells in human PDAC using imaging mass cytometry. Silencing of cell-intrinsic Cxcl1 in LSL-KrasG12D/+;Trp53R172H/+;Pdx-1Cre/+(KPC) cells reprograms the trafficking and functional dynamics of neutrophils to overcome T-cell exclusion and controls tumor growth in a T cell-dependent manner. Mechanistically, neutrophil-derived TNF is a central regulator of this immunologic rewiring, instigating feed-forward Cxcl1 overproduction from tumor cells and cancer-associated fibroblasts (CAF), T-cell dysfunction, and inflammatory CAF polarization via transmembrane TNF-TNFR2 interactions. TNFR2 inhibition disrupts this circuitry and improves sensitivity to chemotherapy in vivo. Our results uncover cancer cell-neutrophil cross-talk in which context-dependent TNF signaling amplifies stromal inflammation and immune tolerance to promote therapeutic resistance in PDAC. SIGNIFICANCE By decoding connections between high-risk tumor genotypes, cell-autonomous inflammatory programs, and myeloid-enriched/T cell-excluded contexts, we identify a novel role for neutrophil-derived TNF in sustaining immunosuppression and stromal inflammation in pancreatic tumor microenvironments. This work offers a conceptual framework by which targeting context-dependent TNF signaling may overcome hallmarks of chemoresistance in pancreatic cancer. This article is highlighted in the In This Issue feature, p. 1275.
Collapse
Affiliation(s)
- Anna Bianchi
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Iago De Castro Silva
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nilesh U. Deshpande
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Samara Singh
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Siddharth Mehra
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vanessa T. Garrido
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xinyu Guo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Luis A. Nivelo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Despina S. Kolonias
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Eric Wieder
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Christine I. Rafie
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Austin R. Dosch
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhiqun Zhou
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oliver Umland
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Haleh Amirian
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ifeanyichukwu C. Ogobuiro
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jian Zhang
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuguang Ban
- Department of Public Health Sciences; University of Miami Miller School of Medicine, Miami, FL, USA Miami, FL, USA
| | - Carina Shiau
- Center for Systems Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nagaraj S. Nagathihalli
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Elizabeth A. Montgomery
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William L. Hwang
- Center for Systems Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krishna Komanduri
- Department of Medicine, University of California San Francisco Health, San Francisco, CA, USA
| | - Alejandro V. Villarino
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eneda Toska
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ben Z. Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Nipun B. Merchant
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jashodeep Datta
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
23
|
He Z, Song B, Zhu M, Liu J. Comprehensive pan-cancer analysis of STAT3 as a prognostic and immunological biomarker. Sci Rep 2023; 13:5069. [PMID: 36977736 PMCID: PMC10050087 DOI: 10.1038/s41598-023-31226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Numerous studies have indicated that STAT3 plays a key role in promoting oncogenesis and it is considered a potential therapeutic target for cancer treatment; however, there are no reports on STAT3 using pan-cancer analysis. Therefore, it is important to investigate the role of STAT3 in different types of tumors using pan-cancer analysis. In the present study, we used multiple databases to comprehensively analyze the relationship between STAT3 expression and prognosis, different stages of patients with cancer, investigate the clinical value of STAT3 in predicting prognosis, and the relationship between STAT3 genetic alteration and prognosis, drug sensitivity, and STAT3 expression, to determine whether STAT3 participates in tumor immunity, to provide a rationale for STAT3 as a treatment target for a broad-spectrum malignancies. Our results indicate that STAT3 can serve as a prognostic, sensitivity prediction biomarker and a target for immunotherapy, which has been of great value for pan-cancer treatment. Overall, we found that STAT3 significantly predicted cancer prognosis, drug resistance, and immunotherapy, providing a rationale for further experimental studies.
Collapse
Affiliation(s)
- Zhibo He
- The School of Foreign Languages, Jiujiang University, Jiujiang, China
| | - Biao Song
- Medical School, Jiujiang University, Jiujiang, China
| | - Manling Zhu
- Medical School, Jiujiang University, Jiujiang, China
| | - Jun Liu
- Medical School, Jiujiang University, Jiujiang, China.
- Laboratory of Precision Preventive Medicine, Jiujiang University, Jiujiang, China.
| |
Collapse
|
24
|
Targeting Tumor Microenvironment Akt Signaling Represents a Potential Therapeutic Strategy for Aggressive Thyroid Cancer. Int J Mol Sci 2023; 24:ijms24065471. [PMID: 36982542 PMCID: PMC10049397 DOI: 10.3390/ijms24065471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Effects of the tumor microenvironment (TME) stromal cells on progression in thyroid cancer are largely unexplored. Elucidating the effects and underlying mechanisms may facilitate the development of targeting therapy for aggressive cases of this disease. In this study, we investigated the impact of TME stromal cells on cancer stem-like cells (CSCs) in patient-relevant contexts where applying in vitro assays and xenograft models uncovered contributions of TME stromal cells to thyroid cancer progression. We found that TME stromal cells can enhance CSC self-renewal and invasiveness mainly via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. The disruption of Akt signaling could diminish the impact of TME stromal cells on CSC aggressiveness in vitro and reduce CSC tumorigenesis and metastasis in xenografts. Notably, disrupting Akt signaling did not cause detectable alterations in tumor histology and gene expression of major stromal components while it produced therapeutic benefits. In addition, using a clinical cohort, we discovered that papillary thyroid carcinomas with lymph node metastasis are more likely to have elevated Akt signaling compared with the ones without metastasis, suggesting the relevance of Akt-targeting. Overall, our results identify PI3K/Akt pathway-engaged contributions of TME stromal cells to thyroid tumor disease progression, illuminating TME Akt signaling as a therapeutic target in aggressive thyroid cancer.
Collapse
|
25
|
Overcoming Acquired Drug Resistance to Cancer Therapies through Targeted STAT3 Inhibition. Int J Mol Sci 2023; 24:ijms24054722. [PMID: 36902166 PMCID: PMC10002572 DOI: 10.3390/ijms24054722] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Anti-neoplastic agents for cancer treatment utilize many different mechanisms of action and, when combined, can result in potent inhibition of cancer growth. Combination therapies can result in long-term, durable remission or even cure; however, too many times, these anti-neoplastic agents lose their efficacy due to the development of acquired drug resistance (ADR). In this review, we evaluate the scientific and medical literature that elucidate STAT3-mediated mechanisms of resistance to cancer therapeutics. Herein, we have found that at least 24 different anti-neoplastic agents-standard toxic chemotherapeutic agents, targeted kinase inhibitors, anti-hormonal agents, and monoclonal antibodies-that utilize the STAT3 signaling pathway as one mechanism of developing therapeutic resistance. Targeting STAT3, in combination with existing anti-neoplastic agents, may prove to be a successful therapeutic strategy to either prevent or even overcome ADR to standard and novel cancer therapies.
Collapse
|
26
|
Deng Y, Lu L, Zhang H, Fu Y, Liu T, Chen Y. The role and regulation of Maf proteins in cancer. Biomark Res 2023; 11:17. [PMID: 36750911 PMCID: PMC9903618 DOI: 10.1186/s40364-023-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/22/2023] [Indexed: 02/09/2023] Open
Abstract
The Maf proteins (Mafs) belong to basic leucine zipper transcription factors and are members of the activator protein-1 (AP-1) superfamily. There are two subgroups of Mafs: large Mafs and small Mafs, which are involved in a wide range of biological processes, such as the cell cycle, proliferation, oxidative stress, and inflammation. Therefore, dysregulation of Mafs can affect cell fate and is closely associated with diverse diseases. Accumulating evidence has established both large and small Mafs as mediators of tumor development. In this review, we first briefly describe the structure and physiological functions of Mafs. Then we summarize the upstream regulatory mechanisms that control the expression and activity of Mafs. Furthermore, we discuss recent studies on the critical role of Mafs in cancer progression, including cancer proliferation, apoptosis, metastasis, tumor/stroma interaction and angiogenesis. We also review the clinical implications of Mafs, namely their potential possibilities and limitations as biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yalan Deng
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Liqing Lu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Huajun Zhang
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Ultrasonic Imaging, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ying Fu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
27
|
Villéger R, Chulkina M, Mifflin RC, Markov NS, Trieu J, Sinha M, Johnson P, Saada JI, Adegboyega PA, Luxon BA, Beswick EJ, Powell DW, Pinchuk IV. Loss of alcohol dehydrogenase 1B in cancer-associated fibroblasts: contribution to the increase of tumor-promoting IL-6 in colon cancer. Br J Cancer 2023; 128:537-548. [PMID: 36482184 PMCID: PMC9938173 DOI: 10.1038/s41416-022-02066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increases in IL-6 by cancer-associated fibroblasts (CAFs) contribute to colon cancer progression, but the mechanisms involved in the increase of this tumor-promoting cytokine are unknown. The aim of this study was to identify novel targets involved in the dysregulation of IL-6 expression by CAFs in colon cancer. METHODS Colonic normal (N), hyperplastic, tubular adenoma, adenocarcinoma tissues, and tissue-derived myo-/fibroblasts (MFs) were used in these studies. RESULTS Transcriptomic analysis demonstrated a striking decrease in alcohol dehydrogenase 1B (ADH1B) expression, a gene potentially involved in IL-6 dysregulation in CAFs. ADH1B expression was downregulated in approximately 50% of studied tubular adenomas and all T1-4 colon tumors, but not in hyperplastic polyps. ADH1B metabolizes alcohols, including retinol (RO), and is involved in the generation of all-trans retinoic acid (atRA). LPS-induced IL-6 production was inhibited by either RO or its byproduct atRA in N-MFs, but only atRA was effective in CAFs. Silencing ADH1B in N-MFs significantly upregulated LPS-induced IL-6 similar to those observed in CAFs and lead to the loss of RO inhibitory effect on inducible IL-6 expression. CONCLUSION Our data identify ADH1B as a novel potential mesenchymal tumor suppressor, which plays a critical role in ADH1B/retinoid-mediated regulation of tumor-promoting IL-6.
Collapse
Affiliation(s)
- Romain Villéger
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Marina Chulkina
- Department of Medicine at PennState Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Randy C Mifflin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
| | - Nikolay S Markov
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Judy Trieu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
| | - Mala Sinha
- Institute for Translational Sciences, UTMB, Galveston, TX, 77555, USA
| | - Paul Johnson
- Department of Surgery, UTMB, Galveston, TX, 77555, USA
| | - Jamal I Saada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
| | - Patrick A Adegboyega
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO, 63106, USA
| | - Bruce A Luxon
- Institute for Translational Sciences, UTMB, Galveston, TX, 77555, USA
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Don W Powell
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UTMB, Galveston, TX, 77555, USA
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, USA
- Department of Neuroscience and Cell Biology, UTMB, Galveston, TX, 77555, USA
| | - Irina V Pinchuk
- Department of Medicine at PennState Health Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
28
|
Datta J, Dai X, Bianchi A, De Castro Silva I, Mehra S, Garrido VT, Lamichhane P, Singh SP, Zhou Z, Dosch AR, Messaggio F, Ban Y, Umland O, Hosein PJ, Nagathihalli NS, Merchant NB. Combined MEK and STAT3 Inhibition Uncovers Stromal Plasticity by Enriching for Cancer-Associated Fibroblasts With Mesenchymal Stem Cell-Like Features to Overcome Immunotherapy Resistance in Pancreatic Cancer. Gastroenterology 2022; 163:1593-1612. [PMID: 35948109 PMCID: PMC10257389 DOI: 10.1053/j.gastro.2022.07.076] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/09/2022] [Accepted: 07/31/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS We have shown that reciprocally activated rat sarcoma (RAS)/mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) and Janus kinase/signal transducer and activator of transcription 3 (STAT3) pathways mediate therapeutic resistance in pancreatic ductal adenocarcinoma (PDAC), while combined MEK and STAT3 inhibition (MEKi+STAT3i) overcomes such resistance and alters stromal architecture. We now determine whether MEKi+STAT3i reprograms the cancer-associated fibroblast (CAF) and immune microenvironment to overcome resistance to immune checkpoint inhibition in PDAC. METHODS CAF and immune cell transcriptomes in MEKi (trametinib)+STAT3i (ruxolitinib)-treated vs vehicle-treated Ptf1aCre/+;LSL-KrasG12D/+;Tgfbr2flox/flox (PKT) tumors were examined via single-cell RNA sequencing (scRNAseq). Clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats associated protein 9 silencing of CAF-restricted Map2k1/Mek1 or Stat3, or both, enabled interrogation of CAF-dependent effects on immunologic remodeling in orthotopic models. Tumor growth, survival, and immune profiling via mass cytometry by time-of-flight were examined in PKT mice treated with vehicle, anti-programmed cell death protein 1 (PD-1) monotherapy, and MEKi+STAT3i combined with anti-PD1. RESULTS MEKi+STAT3i attenuates Il6/Cxcl1-expressing proinflammatory and Lrrc15-expressing myofibroblastic CAF phenotypes while enriching for Ly6a/Cd34-expressing CAFs exhibiting mesenchymal stem cell-like features via scRNAseq in PKT mice. This CAF plasticity is associated with M2-to-M1 reprogramming of tumor-associated macrophages, and enhanced trafficking of cluster of differentiation 8+ T cells, which exhibit distinct effector transcriptional programs. These MEKi+STAT3i-induced effects appear CAF-dependent, because CAF-restricted Mek1/Stat3 silencing mitigates inflammatory-CAF polarization and myeloid infiltration in vivo. Addition of MEKi+STAT3i to PD-1 blockade not only dramatically improves antitumor responses and survival in PKT mice but also augments recruitment of activated/memory T cells while improving their degranulating and cytotoxic capacity compared with anti-PD-1 monotherapy. Importantly, treatment of a patient who has chemotherapy-refractory metastatic PDAC with MEKi (trametinib), STAT3i (ruxolitinib), and PD-1 inhibitor (nivolumab) yielded clinical benefit. CONCLUSIONS Combined MEKi+STAT3i mitigates stromal inflammation and enriches for CAF phenotypes with mesenchymal stem cell-like properties to overcome immunotherapy resistance in PDAC.
Collapse
Affiliation(s)
- Jashodeep Datta
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida; Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Xizi Dai
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Anna Bianchi
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Iago De Castro Silva
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Siddharth Mehra
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Vanessa T Garrido
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Purushottam Lamichhane
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida; Clovis Oncology, Boulder, Colorado
| | - Samara P Singh
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Zhiqun Zhou
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Austin R Dosch
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Fanuel Messaggio
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Yuguang Ban
- Bioinformatics and Biostatistics Shared Resource, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Oliver Umland
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Peter J Hosein
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida; Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Nagaraj S Nagathihalli
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida; Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nipun B Merchant
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida; Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida.
| |
Collapse
|
29
|
de Castro Silva I, Bianchi A, Deshpande NU, Sharma P, Mehra S, Garrido VT, Saigh SJ, England J, Hosein PJ, Kwon D, Merchant NB, Datta J. Neutrophil-mediated fibroblast-tumor cell il-6/stat-3 signaling underlies the association between neutrophil-to-lymphocyte ratio dynamics and chemotherapy response in localized pancreatic cancer: A hybrid clinical-preclinical study. eLife 2022; 11:e78921. [PMID: 36107485 PMCID: PMC9512403 DOI: 10.7554/elife.78921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Partial/complete pathologic response following neoadjuvant chemotherapy (NAC) in pancreatic cancer (PDAC) patients undergoing pancreatectomy is associated with improved survival. We sought to determine whether neutrophil-to-lymphocyte ratio (NLR) dynamics predict pathologic response following chemotherapy in PDAC, and if manipulating NLR impacts chemosensitivity in preclinical models and uncovers potential mechanistic underpinnings underlying these effects. Methods Pathologic response in PDAC patients (n=94) undergoing NAC and pancreatectomy (7/2015-12/2019) was dichotomized as partial/complete or poor/absent. Bootstrap-validated multivariable models assessed associations between pre-chemotherapy NLR (%neutrophils÷%lymphocytes) or NLR dynamics during chemotherapy (ΔNLR = pre-surgery-pre-chemotherapy NLR) and pathologic response, disease-free survival (DFS), and overall survival (OS). To preclinically model effects of NLR attenuation on chemosensitivity, Ptf1aCre/+; KrasLSL-G12D/+;Tgfbr2flox/flox (PKT) mice and C57BL/6 mice orthotopically injected with KrasLSL-G12D/+;Trp53LSL-R172H/+;Pdx1Cre(KPC) cells were randomized to vehicle, gemcitabine/paclitaxel alone, and NLR-attenuating anti-Ly6G with/without gemcitabine/paclitaxel treatment. Results In 94 PDAC patients undergoing NAC (median:4 months), pre-chemotherapy NLR (p<0.001) and ΔNLR attenuation during NAC (p=0.002) were independently associated with partial/complete pathologic response. An NLR score = pre-chemotherapy NLR+ΔNLR correlated with DFS (p=0.006) and OS (p=0.002). Upon preclinical modeling, combining NLR-attenuating anti-Ly6G treatment with gemcitabine/paclitaxel-compared with gemcitabine/paclitaxel or anti-Ly6G alone-not only significantly reduced tumor burden and metastatic outgrowth, but also augmented tumor-infiltrating CD107a+-degranulating CD8+ T-cells (p<0.01) while dampening inflammatory cancer-associated fibroblast (CAF) polarization (p=0.006) and chemoresistant IL-6/STAT-3 signaling in vivo. Neutrophil-derived IL-1β emerged as a novel mediator of stromal inflammation, inducing inflammatory CAF polarization and CAF-tumor cell IL-6/STAT-3 signaling in ex vivo co-cultures. Conclusions Therapeutic strategies to mitigate neutrophil-CAF-tumor cell IL-1β/IL-6/STAT-3 signaling during NAC may improve pathologic responses and/or survival in PDAC. Funding Supported by KL2 career development grant by Miami CTSI under NIH Award UL1TR002736, Stanley Glaser Foundation, American College of Surgeons Franklin Martin Career Development Award, and Association for Academic Surgery Joel J. Roslyn Faculty Award (to J. Datta); NIH R01 CA161976 (to N.B. Merchant); and NCI/NIH Award P30CA240139 (to J. Datta and N.B. Merchant).
Collapse
Affiliation(s)
- Iago de Castro Silva
- Department of Surgery, University of Miami Miller School of MedicineMiamiUnited States
| | - Anna Bianchi
- Department of Surgery, University of Miami Miller School of MedicineMiamiUnited States
| | - Nilesh U Deshpande
- Department of Surgery, University of Miami Miller School of MedicineMiamiUnited States
| | - Prateek Sharma
- Department of Surgery, University of Miami Miller School of MedicineMiamiUnited States
- Department of Surgery, University of Nebraska Medical CenterOmahaUnited States
| | - Siddharth Mehra
- Department of Surgery, University of Miami Miller School of MedicineMiamiUnited States
| | - Vanessa Tonin Garrido
- Department of Surgery, University of Miami Miller School of MedicineMiamiUnited States
| | | | | | - Peter Joel Hosein
- Sylvester Comprehensive Cancer CenterMiamiUnited States
- Department of Medicine, University of MiamiMiamiUnited States
| | - Deukwoo Kwon
- Department of Public Health Sciences, The University of Texas Health Science Center at HoustonHoustonUnited States
| | - Nipun B Merchant
- Department of Surgery, University of Miami Miller School of MedicineMiamiUnited States
- Department of Public Health Sciences, The University of Texas Health Science Center at HoustonHoustonUnited States
| | - Jashodeep Datta
- Department of Surgery, University of Miami Miller School of MedicineMiamiUnited States
- Department of Public Health Sciences, The University of Texas Health Science Center at HoustonHoustonUnited States
| |
Collapse
|
30
|
Zhang Z, Zhang H, Shi L, Wang D, Tang D. Heterogeneous cancer-associated fibroblasts: A new perspective for understanding immunosuppression in pancreatic cancer. Immunology 2022; 167:1-14. [PMID: 35569095 DOI: 10.1111/imm.13496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022] Open
Abstract
Immunotherapy has shown promising efficacy in the treatment of a wide range of cancers; however, it has had little effect on pancreatic cancer. Cancer-associated fibroblasts (CAFs), the predominant mesenchymal cells present in the pancreatic cancer microenvironment, are powerful supporters of the malignant progression of pancreatic cancer. CAFs can modify the microenvironment, establish a refuge to aid cancer cells in immune escape by secreting large amounts of extracellular matrix, and produce soluble cytokines and exosomal vesicles. Hence, CAFs are important contributors to the failure of immunotherapy. Current in-depth studies of CAFs have shown that CAFs are a heterogeneous population of mesenchymal cells; therefore, the functional complexity of their populations needs in-depth explorations in future studies. This review summarizes how heterogeneous CAFs help cancer cells achieve immune escape and suggests potential directions for using CAFs as targets to address immune escape.
Collapse
Affiliation(s)
- Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lin Shi
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
31
|
Frisch SM. Interleukin-1α: Novel functions in cell senescence and antiviral response. Cytokine 2022; 154:155875. [PMID: 35447531 DOI: 10.1016/j.cyto.2022.155875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Accepted: 04/01/2022] [Indexed: 12/21/2022]
Abstract
The interleukin-1 proteins are a hub of innate inflammatory signaling that activates diverse aspects of adaptive immunity. Until recently, the IL-1α isoform was relatively incompletely understood compared with IL-1β. This review briefly summarizes novel and surprising aspects of IL-1α biology. IL-1α localizes to the nucleus, cytoplasm, mitochondria, cell membrane or extracellular space in various contexts, with corresponding distinct functions. In particular, we focus on multiple pathways by which IL-1α promotes the senescent cell phenotype, unexpectedly involving signaling molecules including mTOR, GATA4, mitochondrial cardiolipin and caspases-4/5. Finally, I review a novel pathway by which IL-1α promotes antiviral immunity.
Collapse
Affiliation(s)
- Steven M Frisch
- Department of Biochemistry and WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
32
|
Tagirasa R, Yoo E. Role of Serine Proteases at the Tumor-Stroma Interface. Front Immunol 2022; 13:832418. [PMID: 35222418 PMCID: PMC8873516 DOI: 10.3389/fimmu.2022.832418] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 01/19/2023] Open
Abstract
During tumor development, invasion and metastasis, the intimate interaction between tumor and stroma shapes the tumor microenvironment and dictates the fate of tumor cells. Stromal cells can also influence anti-tumor immunity and response to immunotherapy. Understanding the molecular mechanisms that govern this complex and dynamic interplay, thus is important for cancer diagnosis and therapy. Proteolytic enzymes that are expressed and secreted by both cancer and stromal cells play important roles in modulating tumor-stromal interaction. Among, several serine proteases such as fibroblast activation protein, urokinase-type plasminogen activator, kallikrein-related peptidases, and granzymes have attracted great attention owing to their elevated expression and dysregulated activity in the tumor microenvironment. This review highlights the role of serine proteases that are mainly derived from stromal cells in tumor progression and associated theranostic applications.
Collapse
|
33
|
Dosch AR, Singh S, Nagathihalli NS, Datta J, Merchant NB. Interleukin-1 signaling in solid organ malignancies. Biochim Biophys Acta Rev Cancer 2021; 1877:188670. [PMID: 34923027 DOI: 10.1016/j.bbcan.2021.188670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
As inflammation plays a critical role in the development and progression of cancer, therapeutic targeting of cytokine pathways involved in both tumorigenesis and dictating response to clinical treatments are of significant interest. Recent evidence has highlighted the importance of the pro-inflammatory cytokine interleukin-1 (IL-1) as a key mediator of tumor growth, metastatic disease spread, immunosuppression, and drug resistance in cancer. IL-1 promotes tumorigenesis through diverse mechanisms, including the activation of oncogenic signaling pathways directly in tumor cells and via orchestrating crosstalk between the cellular constituents of the tumor microenvironment (TME), thereby driving cancer growth. This review will provide an overview of IL-1 signaling and physiology and summarize the disparate mechanisms involving IL-1 in tumorigenesis and cancer progression. Additionally, clinical studies targeting IL-1 signaling in the management of solid organ tumors will be summarized herein.
Collapse
Affiliation(s)
- Austin R Dosch
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States of America
| | - Samara Singh
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States of America
| | - Nagaraj S Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States of America
| | - Jashodeep Datta
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States of America
| | - Nipun B Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States of America.
| |
Collapse
|