1
|
Vincent A, Krishnakumar S, Parameswaran S. Monoallelic loss of RB1 enhances osteogenic differentiation and delays DNA repair without inducing tumorigenicity. Differentiation 2024; 140:100815. [PMID: 39342657 DOI: 10.1016/j.diff.2024.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The Retinoblastoma (RB1) gene plays a pivotal role in osteogenic differentiation. Our previous study, employing temporal gene expression analysis using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), revealed the deregulation of osteogenic differentiation in patient-derived heterozygous RB1 mutant orbital adipose-derived mesenchymal stem cells (OAMSCs). The study revealed increased Alizarin Red staining, suggesting heightened mineralization without a corresponding increase in osteogenic lineage-specific gene expression. In this study, we performed high-throughput RNA sequencing on RB1+/+ and RB1+/- patient-derived OAMSCs differentiated towards the osteogenic lineage to investigate the pathways and molecular mechanisms. The pathway analysis revealed significant differences in cell proliferation, DNA repair, osteoblast differentiation, and cancer-related pathways in RB1+/- OAMSC-derived osteocytes. These findings were subsequently validated through functional assays. The study revealed that osteogenic differentiation is increased in RB1+/- cells, along with enhanced proliferation of the osteocytes. There were delayed but persistent DNA repair mechanisms in RB1+/- osteocytes, which were sufficient to maintain genomic integrity, thereby preventing or delaying the onset of tumors. This contrasts with our earlier observation of increased mineralization without corresponding gene expression changes, emphasizing the importance of high-throughput analysis over preselected gene set analysis in comprehending functional assay results.
Collapse
Affiliation(s)
- Ambily Vincent
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed-to-Be University, Thanjavur, India
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India.
| |
Collapse
|
2
|
Pendleton E, Ketner A, Ransick P, Ardekani D, Bodenstine T, Chandar N. Loss of Function of the Retinoblastoma Gene Affects Gap Junctional Intercellular Communication and Cell Fate in Osteoblasts. BIOLOGY 2024; 13:39. [PMID: 38248470 PMCID: PMC10813623 DOI: 10.3390/biology13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Loss of function of the Retinoblastoma gene (RB1) due to mutations is commonly seen in human osteosarcomas. One of the Rb1 gene functions is to facilitate cell fate from mesenchymal stem cells to osteoblasts and prevent adipocyte differentiations. In this study, we demonstrate that a stable reduction of Rb1 expression (RbKD) in murine osteoblasts causes them to express higher levels of PPAR-ɣ and other adipocyte-specific transcription factors while retaining high expression of osteoblast-specific transcription factors, Runx2/Cbfa1 and SP7/Osterix. Inhibition of gap junctional intercellular communication (GJIC) in osteoblasts is another mechanism that causes osteoblasts to transdifferentiate to adipocytes. We found that preosteoblasts exposed to osteoblast differentiating media (DP media) increased GJIC. RbKD cells showed reduced GJIC along with a reduction in expression of Cx43, the protein that mediates GJIC. Other membrane associated adhesion protein Cadherin 11 (Cad11) was also decreased. Since PPAR-ɣ is increased with Rb1 loss, we wondered if the reduction of this transcription factor would reverse the changes observed. Reduction of PPAR-ɣ in control osteoblasts slightly increased bone-specific expression and reduced adipocytic expression as expected along with an increase in Cad11 and Cx43 expression. GJIC remained high and was unaffected by a reduction in PPAR-ɣ in control cells. Knockdown of PPAR-ɣ in RbKD cells reduced adipocyte gene expression, while osteoblast-specific expression showed improvement. Cx43, Cad11 and GJIC remained unaffected by PPAR-ɣ reduction. Our observations suggest that increased PPAR-ɣ that happens with Rb1 loss only affects osteoblast-adipocyte-specific gene expression but does not completely reverse Cx43 gene expression or GJIC. Therefore, these effects may represent independent events triggered by Rb1loss and/or the differentiation process.
Collapse
Affiliation(s)
- Elisha Pendleton
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (E.P.); (A.K.); (T.B.)
| | - Anthony Ketner
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (E.P.); (A.K.); (T.B.)
| | - Phil Ransick
- Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA; (P.R.); (D.A.)
| | - Doug Ardekani
- Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA; (P.R.); (D.A.)
| | - Thomas Bodenstine
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (E.P.); (A.K.); (T.B.)
| | - Nalini Chandar
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (E.P.); (A.K.); (T.B.)
| |
Collapse
|
3
|
Vimalraj S, Sekaran S. RUNX Family as a Promising Biomarker and a Therapeutic Target in Bone Cancers: A Review on Its Molecular Mechanism(s) behind Tumorigenesis. Cancers (Basel) 2023; 15:3247. [PMID: 37370857 DOI: 10.3390/cancers15123247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The transcription factor runt-related protein (RUNX) family is the major transcription factor responsible for the formation of osteoblasts from bone marrow mesenchymal stem cells, which are involved in bone formation. Accumulating evidence implicates the RUNX family for its role in tumor biology and cancer progression. The RUNX family has been linked to osteosarcoma via its regulation of many tumorigenicity-related factors. In the regulatory network of cancers, with numerous upstream signaling pathways and its potential target molecules downstream, RUNX is a vital molecule. Hence, a pressing need exists to understand the precise process underpinning the occurrence and prognosis of several malignant tumors. Until recently, RUNX has been regarded as one of the therapeutic targets for bone cancer. Therefore, in this review, we have provided insights into various molecular mechanisms behind the tumorigenic role of RUNX in various important cancers. RUNX is anticipated to grow into a novel therapeutic target with the in-depth study of RUNX family-related regulatory processes, aid in the creation of new medications, and enhance clinical efficacy.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
4
|
Kang CW, Blackburn AC, Loh AHP, Hong KC, Goh JY, Hein N, Drygin D, Parish CR, Hannan RD, Hannan KM, Coupland LA. Targeting RNA Polymerase I Transcription Activity in Osteosarcoma: Pre-Clinical Molecular and Animal Treatment Studies. Biomedicines 2023; 11:biomedicines11041133. [PMID: 37189750 DOI: 10.3390/biomedicines11041133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The survival rate of patients with osteosarcoma (OS) has not improved over the last 30 years. Mutations in the genes TP53, RB1 and c-Myc frequently occur in OS and enhance RNA Polymerase I (Pol I) activity, thus supporting uncontrolled cancer cell proliferation. We therefore hypothesised that Pol I inhibition may be an effective therapeutic strategy for this aggressive cancer. The Pol I inhibitor CX-5461 has demonstrated therapeutic efficacy in different cancers in pre-clinical and phase I clinical trials; thus, the effects were determined on ten human OS cell lines. Following characterisation using genome profiling and Western blotting, RNA Pol I activity, cell proliferation and cell cycle progression were evaluated in vitro, and the growth of TP53 wild-type and mutant tumours was measured in a murine allograft model and in two human xenograft OS models. CX-5461 treatment resulted in reduced ribosomal DNA (rDNA) transcription and Growth 2 (G2)-phase cell cycle arrest in all OS cell lines. Additionally, tumour growth in all allograft and xenograft OS models was effectively suppressed without apparent toxicity. Our study demonstrates the efficacy of Pol I inhibition against OS with varying genetic alterations. This study provides pre-clinical evidence to support this novel therapeutic approach in OS.
Collapse
Affiliation(s)
- Chang-Won Kang
- The Division of Genome Science and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra 2601, Australia
| | - Anneke C Blackburn
- The Division of Genome Science and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra 2601, Australia
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Kuick Chick Hong
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Jian Yuan Goh
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Nadine Hein
- The Division of Genome Science and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra 2601, Australia
| | - Denis Drygin
- Regulus Therapeutics, 4224 Campus Point C, San Diego, CA 92121, USA
| | - Chris R Parish
- The Division of Genome Science and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra 2601, Australia
| | - Ross D Hannan
- The Division of Genome Science and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra 2601, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
- School of Biomedical Sciences, University of Queensland, St. Lucia 4067, Australia
| | - Katherine M Hannan
- The Division of Genome Science and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra 2601, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3010, Australia
| | - Lucy A Coupland
- The Division of Genome Science and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra 2601, Australia
| |
Collapse
|
5
|
Kopanja D, Chand V, O’Brien E, Mukhopadhyay NK, Zappia MP, Islam AB, Frolov MV, Merrill BJ, Raychaudhuri P. Transcriptional Repression by FoxM1 Suppresses Tumor Differentiation and Promotes Metastasis of Breast Cancer. Cancer Res 2022; 82:2458-2471. [PMID: 35583996 PMCID: PMC9258028 DOI: 10.1158/0008-5472.can-22-0410] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 01/07/2023]
Abstract
The transcription factor Forkhead box M1 (FoxM1) is overexpressed in breast cancers and correlates with poor prognosis. Mechanistically, FoxM1 associates with CBP to activate transcription and with Rb to repress transcription. Although the activating function of FoxM1 in breast cancer has been well documented, the significance of its repressive activity is poorly understood. Using CRISPR-Cas9 engineering, we generated a mouse model that expresses FoxM1-harboring point mutations that block binding to Rb while retaining its ability to bind CBP. Unlike FoxM1-null mice, mice harboring Rb-binding mutant FoxM1 did not exhibit significant developmental defects. The mutant mouse line developed PyMT-driven mammary tumors that were deficient in lung metastasis, which was tumor cell-intrinsic. Single-cell RNA-seq of the tumors revealed a deficiency in prometastatic tumor cells and an expansion of differentiated alveolar type tumor cells, and further investigation identified that loss of the FoxM1/Rb interaction caused enhancement of the mammary alveolar differentiation program. The FoxM1 mutant tumors also showed increased Pten expression, and FoxM1/Rb was found to activate Akt signaling by repressing Pten. In human breast cancers, expression of FoxM1 negatively correlated with Pten mRNA. Furthermore, the lack of tumor-infiltrating cells in FoxM1 mutant tumors appeared related to decreases in pro-metastatic tumor cells that express factors required for infiltration. These observations demonstrate that the FoxM1/Rb-regulated transcriptome is critical for the plasticity of breast cancer cells that drive metastasis, identifying a prometastatic role of Rb when bound to FoxM1. SIGNIFICANCE This work provides new insights into how the interaction between FoxM1 and Rb facilitates the evolution of metastatic breast cancer cells by altering the transcriptome.
Collapse
Affiliation(s)
- Dragana Kopanja
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Vaibhav Chand
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Eilidh O’Brien
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nishit K. Mukhopadhyay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maria P. Zappia
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Abul B.M.M.K. Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Bradley J. Merrill
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
- Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence: Pradip Raychaudhuri, 900 S. Ashland Ave, Chicago, Il, 60607, Phone number: 312-413-0255;
| |
Collapse
|
6
|
Chand V, Liao X, Guzman G, Benevolenskaya E, Raychaudhuri P. Hepatocellular carcinoma evades RB1-induced senescence by activating the FOXM1-FOXO1 axis. Oncogene 2022; 41:3778-3790. [PMID: 35761036 PMCID: PMC9329203 DOI: 10.1038/s41388-022-02394-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. The retinoblastoma protein (RB1), a regulator of cell proliferation, is functionally inactivated in HCC by CYCLIN D/E-mediated phosphorylation. However, the mechanism of RB1-inactivation is unclear because only small percentages of HCCs exhibit amplification of CYCLIN D/E or mutations in the CDK-inhibitory genes. We show that FOXM1, which is overexpressed and critical for HCC, plays essential roles in inactivating RB1 and suppressing RB1-induced senescence of the HCC cells. Mechanistically, FOXM1 binds RB1 and DNMT3B to repress the expression of FOXO1, leading to a decrease in the levels of the CDK-inhibitors, creating an environment for phosphorylation and inactivation of RB1. Consistent with that, inhibition of FOXM1 causes increased expression of FOXO1 with consequent activation of RB1, leading to senescence of the HCC cells, in vitro and in vivo. Also, repression-deficient mutants of FOXM1 induce senescence that is blocked by depletion of RB1 or FOXO1. We provide evidence that human HCCs rely upon this FOXM1-FOXO1 axis for phosphorylation and inactivation of RB1. The observations demonstrate the existence of a new autoregulatory loop of RB1-inactivation in HCC involving a FOXM1-FOXO1 axis that is required for phosphorylation of RB1 and for aggressive progression of HCC.
Collapse
Affiliation(s)
- Vaibhav Chand
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA
| | - Xiubei Liao
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA
| | - Grace Guzman
- Department of Pathology, University of Illinois, College of Medicine, Chicago, IL, 60612, USA
| | - Elizaveta Benevolenskaya
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900S. Ashland Ave., Chicago, IL, 60607, USA. .,Jesse Brown VA Medical Center, 820S. Damen Ave., Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Chu ECP. Improvement of quality of life by conservative management of thoracic scoliosis at 172°: a case report. J Med Life 2022; 15:144-148. [PMID: 35186149 PMCID: PMC8852635 DOI: 10.25122/jml-2021-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Adult scoliosis is a sideways curvature of the spine causing bilateral lower back pain and paresthesia of the lower limbs. Conservative treatment for scoliosis is primarily performed for youth, but scoliosis can be deteriorating as the patient ages. Rare, severe scoliosis with a Cobb angle over 40 degrees with respiratory difficulties leaves open surgery as the only option. However, surgical treatments often suffer from various complications. This case report presents an elderly woman with severe scoliosis at a Cobb angle of 172°. The patient showed no respiratory difficulties. As the patient refused to receive surgical treatment, conservative care was performed. A series of treatments showed positive outcomes to improve the quality of the patient's life. Extremely severe scoliosis with a 172° Cobb angle has never been reported in the geriatric population. Our case supports the efficiency of conservative management for such severe scoliosis.
Collapse
Affiliation(s)
- Eric Chun-Pu Chu
- New York Chiropractic and Physiotherapy Centre, Hong Kong, China,Corresponding Author: Eric Chun-Pu Chu, New York Chiropractic and Physiotherapy Centre, Hong Kong, China. E-mail:
| |
Collapse
|
8
|
Zhang Y, Jing X, Li Z, Tian Q, Wang Q, Chen X. Investigation of the role of the miR17-92 cluster in BMP9-induced osteoblast lineage commitment. J Orthop Surg Res 2021; 16:652. [PMID: 34717687 PMCID: PMC8557618 DOI: 10.1186/s13018-021-02804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) has been identified as a crucial inducer of osteoblastic differentiation in mesenchymal stem cells (MSCs). Although microRNAs (miRNAs) are known to play a role in MSC osteogenesis, the mechanisms of action of miRNAs in BMP9-induced osteoblastic differentiation remain poorly understood. METHODS In this study, we investigate the possible role of the miR17-92 cluster in the BMP9-induced osteogenic differentiation of MSCs by using both in vitro and in vivo bone formation assays. RESULTS The results show that miR-17, a member of the miR17-92 cluster, significantly impairs BMP9-induced osteogenic differentiation. This impairment is effectively rescued by a miR-17 sponge, an antagomiR sequence against miR-17. Using TargetScan and the 3'-untranslated region luciferase reporter assays, we show that the direct target of miR-17 is the retinoblastoma gene (RB1), a gene that is pivotal to osteoblastic differentiation. We also confirm that RB1 is essential for the miR-17 effects on osteogenesis. CONCLUSION Our results indicate that miR-17 expression impairs normal osteogenesis by downregulating RB1 expression and significantly inhibiting the function of BMP9.
Collapse
Affiliation(s)
- Yunyuan Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuran Jing
- Department of Molecular Laboratory, Qingdao, Endocrine and Diabetes Hospital, Qingdao, Shandong, China
| | - Zhongzhu Li
- Department of Clinical Laboratory, Pingyi Hospital of Traditional Chinese Medicine, Linyi, 273300, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
9
|
Karimi S, Arabi A, Shahraki T, Ansari I, Safi S. Development of Progressive Chiari I Malformation in a Child with Unilateral Sporadic Retinoblastoma. J Curr Ophthalmol 2021; 33:88-90. [PMID: 34084963 PMCID: PMC8102953 DOI: 10.4103/joco.joco_166_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/26/2020] [Accepted: 08/04/2020] [Indexed: 11/04/2022] Open
Abstract
Purpose: To report a case of progressive Chiari malformation type I (CIM) in a patient with unilateral sporadic retinoblastoma (RB) treated with intra-arterial chemotherapy (IAC) and enucleation. Methods: A 5-year-old male patient with a history of RB in his left eye treated with IAC and enucleation presented to our clinic for routine RB surveillance. Radiotherapy had not been used for the treatment of his RB. Results: A progressive herniation of cerebellar tonsils through the foramen magnum was detected on follow-up magnetic resonance imaging (MRI). Brain and cervical MRI revealed no central nervous system mass, hydrocephalus, or syringomyelia. There was no history of head trauma. Conclusion: Progressive CIM may occur in unilateral sporadic RB.
Collapse
Affiliation(s)
- Saeed Karimi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Ophthalmology, Torfeh Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Arabi
- Department of Ophthalmology, Torfeh Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Toktam Shahraki
- Department of Ophthalmology, Torfeh Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Ansari
- Department of Ophthalmology, Torfeh Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sare Safi
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Olsen RR, Ireland AS, Kastner DW, Groves SM, Spainhower KB, Pozo K, Kelenis DP, Whitney CP, Guthrie MR, Wait SJ, Soltero D, Witt BL, Quaranta V, Johnson JE, Oliver TG. ASCL1 represses a SOX9 + neural crest stem-like state in small cell lung cancer. Genes Dev 2021; 35:847-869. [PMID: 34016693 PMCID: PMC8168563 DOI: 10.1101/gad.348295.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
ASCL1 is a neuroendocrine lineage-specific oncogenic driver of small cell lung cancer (SCLC), highly expressed in a significant fraction of tumors. However, ∼25% of human SCLC are ASCL1-low and associated with low neuroendocrine fate and high MYC expression. Using genetically engineered mouse models (GEMMs), we show that alterations in Rb1/Trp53/Myc in the mouse lung induce an ASCL1+ state of SCLC in multiple cells of origin. Genetic depletion of ASCL1 in MYC-driven SCLC dramatically inhibits tumor initiation and progression to the NEUROD1+ subtype of SCLC. Surprisingly, ASCL1 loss promotes a SOX9+ mesenchymal/neural crest stem-like state and the emergence of osteosarcoma and chondroid tumors, whose propensity is impacted by cell of origin. ASCL1 is critical for expression of key lineage-related transcription factors NKX2-1, FOXA2, and INSM1 and represses genes involved in the Hippo/Wnt/Notch developmental pathways in vivo. Importantly, ASCL1 represses a SOX9/RUNX1/RUNX2 program in vivo and SOX9 expression in human SCLC cells, suggesting a conserved function for ASCL1. Together, in a MYC-driven SCLC model, ASCL1 promotes neuroendocrine fate and represses the emergence of a SOX9+ nonendodermal stem-like fate that resembles neural crest.
Collapse
Affiliation(s)
- Rachelle R Olsen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - David W Kastner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, USA
| | - Kyle B Spainhower
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Karine Pozo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Demetra P Kelenis
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Christopher P Whitney
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Matthew R Guthrie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah J Wait
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Danny Soltero
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Benjamin L Witt
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, USA
- ARUP Laboratories at University of Utah, Salt Lake City, Utah 84108, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
11
|
Ötvös K, Miskolczi P, Marhavý P, Cruz-Ramírez A, Benková E, Robert S, Bakó L. Pickle Recruits Retinoblastoma Related 1 to Control Lateral Root Formation in Arabidopsis. Int J Mol Sci 2021; 22:ijms22083862. [PMID: 33917959 PMCID: PMC8068362 DOI: 10.3390/ijms22083862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
Lateral root (LR) formation is an example of a plant post-embryonic organogenesis event. LRs are issued from non-dividing cells entering consecutive steps of formative divisions, proliferation and elongation. The chromatin remodeling protein PICKLE (PKL) negatively regulates auxin-mediated LR formation through a mechanism that is not yet known. Here we show that PKL interacts with RETINOBLASTOMA-RELATED 1 (RBR1) to repress the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) promoter activity. Since LBD16 function is required for the formative division of LR founder cells, repression mediated by the PKL–RBR1 complex negatively regulates formative division and LR formation. Inhibition of LR formation by PKL–RBR1 is counteracted by auxin, indicating that, in addition to auxin-mediated transcriptional responses, the fine-tuned process of LR formation is also controlled at the chromatin level in an auxin-signaling dependent manner.
Collapse
Affiliation(s)
- Krisztina Ötvös
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, S-901 87 Umeå, Sweden
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; (P.M.); (E.B.)
- Bioresources Unit, AIT Austrian Institute of Technology, 3430 Tulln, Austria
- Correspondence: (K.Ö.); (L.B.); Tel.: +46-907867970 (K.Ö.); Fax: +46-907866676 (K.Ö.)
| | - Pál Miskolczi
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S-901 87 Umeå, Sweden; (P.M.); (S.R.)
| | - Peter Marhavý
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; (P.M.); (E.B.)
| | - Alfredo Cruz-Ramírez
- Laboratory of Molecular and Developmental Complexity at Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, (CINVESTAV-IPN), 36590 Irapuato, Mexico;
| | - Eva Benková
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; (P.M.); (E.B.)
| | - Stéphanie Robert
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, S-901 87 Umeå, Sweden; (P.M.); (S.R.)
| | - László Bakó
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, S-901 87 Umeå, Sweden
- Correspondence: (K.Ö.); (L.B.); Tel.: +46-907867970 (K.Ö.); Fax: +46-907866676 (K.Ö.)
| |
Collapse
|
12
|
Tooley JG, Catlin JP, Schaner Tooley CE. CREB-mediated transcriptional activation of NRMT1 drives muscle differentiation. Transcription 2021; 12:72-88. [PMID: 34403304 PMCID: PMC8555533 DOI: 10.1080/21541264.2021.1963627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
The N-terminal methyltransferase NRMT1 is an important regulator of protein/DNA interactions and plays a role in many cellular processes, including mitosis, cell cycle progression, chromatin organization, DNA damage repair, and transcriptional regulation. Accordingly, loss of NRMT1 results in both developmental pathologies and oncogenic phenotypes. Though NRMT1 plays such important and diverse roles in the cell, little is known about its own regulation. To better understand the mechanisms governing NRMT1 expression, we first identified its predominant transcriptional start site and minimal promoter region with predicted transcription factor motifs. We then used a combination of luciferase and binding assays to confirm CREB1 as the major regulator of NRMT1 transcription. We tested which conditions known to activate CREB1 also activated NRMT1 transcription, and found CREB1-mediated NRMT1 expression was increased during recovery from serum starvation and muscle cell differentiation. To determine how NRMT1 expression affects myoblast differentiation, we used CRISPR/Cas9 technology to knock out NRMT1 expression in immortalized C2C12 mouse myoblasts. C2C12 cells depleted of NRMT1 lacked Pax7 expression and were unable to proceed down the muscle differentiation pathway. Instead, they took on characteristics of C2C12 cells that have transdifferentiated into osteoblasts, including increased alkaline phosphatase and type I collagen expression and decreased proliferation. These data implicate NRMT1 as an important downstream target of CREB1 during muscle cell differentiation.
Collapse
Affiliation(s)
- John G. Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - James P. Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Christine E. Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
13
|
Rozner R, Vernikov J, Griess-Fishheimer S, Travinsky T, Penn S, Schwartz B, Mesilati-Stahy R, Argov-Argaman N, Shahar R, Monsonego-Ornan E. The Role of Omega-3 Polyunsaturated Fatty Acids from Different Sources in Bone Development. Nutrients 2020; 12:nu12113494. [PMID: 33202985 PMCID: PMC7697266 DOI: 10.3390/nu12113494] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 01/01/2023] Open
Abstract
N-3 polyunsaturated fatty acids (PUFAs) are essential nutrients that must be obtained from the diet. We have previously showed that endogenous n-3 PUFAs contribute to skeletal development and bone quality in fat-1 mice. Unlike other mammals, these transgenic mice, carry the n-3 desaturase gene and thus can convert n-6 to n-3 PUFAs endogenously. Since this model does not mimic dietary exposure to n-3 PUFAs, diets rich in fish and flaxseed oils were used to further elucidate the role of n-3 PUFAs in bone development. Our investigation reveals that dietary n-3 PUFAs decrease fat accumulation in the liver, lower serum fat levels, and alter fatty acid (FA) content in liver and serum. Bone analyses show that n-3 PUFAs improve mechanical properties, which were measured using a three-point bending test, but exert complex effects on bone structure that vary according to its source. In a micro-CT analysis, we found that the flaxseed oil diet improves trabecular bone micro-architecture, whereas the fish oil diet promotes higher bone mineral density (BMD) with no effect on trabecular bone. The transcriptome characterization of bone by RNA-seq identified regulatory mechanisms of n-3 PUFAs via modulation of the cell cycle and peripheral circadian rhythm genes. These results extend our knowledge and provide insights into the molecular mechanisms of bone remodeling regulation induced by different sources of dietary n-3 PUFAs.
Collapse
Affiliation(s)
- Reut Rozner
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.R.); (J.V.); (S.G.-F.); (T.T.); (S.P.); (B.S.)
| | - Janna Vernikov
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.R.); (J.V.); (S.G.-F.); (T.T.); (S.P.); (B.S.)
| | - Shelley Griess-Fishheimer
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.R.); (J.V.); (S.G.-F.); (T.T.); (S.P.); (B.S.)
| | - Tamar Travinsky
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.R.); (J.V.); (S.G.-F.); (T.T.); (S.P.); (B.S.)
| | - Svetlana Penn
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.R.); (J.V.); (S.G.-F.); (T.T.); (S.P.); (B.S.)
| | - Betty Schwartz
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.R.); (J.V.); (S.G.-F.); (T.T.); (S.P.); (B.S.)
| | - Ronit Mesilati-Stahy
- Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.M.-S.); (N.A.-A.)
| | - Nurit Argov-Argaman
- Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.M.-S.); (N.A.-A.)
| | - Ron Shahar
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Efrat Monsonego-Ornan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (R.R.); (J.V.); (S.G.-F.); (T.T.); (S.P.); (B.S.)
- Correspondence:
| |
Collapse
|
14
|
Vincent A, Natarajan V, Khetan V, Krishnakumar S, Parameswaran S. Heterozygous retinoblastoma gene mutation compromises in vitro osteogenesis of adipose mesenchymal stem cells - a temporal gene expression study. Exp Cell Res 2020; 396:112263. [PMID: 32890459 DOI: 10.1016/j.yexcr.2020.112263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/27/2022]
Abstract
Osteosarcoma (OS) is a bone malignancy affecting children and adolescents. Retinoblastoma (RB) patients with germline RB1 mutations are susceptible to osteosarcoma in the second decade of their life. Several studies, particularly in mice, have revealed a role for RB1 in osteogenesis. Since, there is species specific difference attributed in retinoblastoma tumorigenesis between mice and human, we assumed, it is worthwhile exploring the role of RB1 in osteogenesis and thus onset of osteosarcoma. In this study, we analyzed the temporal gene expression of the osteogenic markers, tumor suppressor genes and hormone receptors associated with growth spurt during in vitro osteogenesis of mesenchymal stem cells derived from orbital adipose tissue of germline RB patients and compared it with those with wild type RB1 gene. Mesenchymal stem cells with the heterozygous RB1 mutation showed reduced expression of RB1 and other tumor suppressor genes and showed deregulation of osteogenic markers which could be an initial step for the onset of osteosarcoma.
Collapse
Affiliation(s)
- Ambily Vincent
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India; School of Chemical and Biotechnology, SASTRA Deemed-to-be University, Thanjavur, India
| | | | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Medical Research Foundation, Chennai, India
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India.
| |
Collapse
|
15
|
Morsczeck C. Effects of Cellular Senescence on Dental Follicle Cells. Pharmacology 2020; 106:137-142. [PMID: 32980839 DOI: 10.1159/000510014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
The dental follicle is part of the tooth germ, and isolated stem cells from this tissue (dental follicle cells; DFCs) are considered, for example, for regenerative medicine and immunotherapies. However somatic stem cells can also improve pharmaceutical research. Cell proliferation is limited by the induction of senescence, which, while reducing the therapeutic potential of DFCs for cell therapy, can also be used to study aging processes at the cellular level that can be used to test anti-aging pharmaceuticals. Unfortunately, very little is known about cellular senescence in DFCs. This review presents current knowledge about cellular senescence in DFCs.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany,
| |
Collapse
|
16
|
Li Q, Sun X, Tang Y, Qu Y, Zhou Y, Zhang Y. EZH2 reduction is an essential mechanoresponse for the maintenance of super-enhancer polarization against compressive stress in human periodontal ligament stem cells. Cell Death Dis 2020; 11:757. [PMID: 32934212 PMCID: PMC7493952 DOI: 10.1038/s41419-020-02963-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022]
Abstract
Despite the ubiquitous mechanical cues at both spatial and temporal dimensions, cell identities and functions are largely immune to the everchanging mechanical stimuli. To understand the molecular basis of this epigenetic stability, we interrogated compressive force-elicited transcriptomic changes in mesenchymal stem cells purified from human periodontal ligament (PDLSCs), and identified H3K27me3 and E2F signatures populated within upregulated and weakly downregulated genes, respectively. Consistently, expressions of several E2F family transcription factors and EZH2, as core methyltransferase for H3K27me3, decreased in response to mechanical stress, which were attributed to force-induced redistribution of RB from nucleoplasm to lamina. Importantly, although epigenomic analysis on H3K27me3 landscape only demonstrated correlating changes at one group of mechanoresponsive genes, we observed a genome-wide destabilization of super-enhancers along with aberrant EZH2 retention. These super-enhancers were tightly bounded by H3K27me3 domain on one side and exhibited attenuating H3K27ac deposition and flattening H3K27ac peaks along with compensated EZH2 expression after force exposure, analogous to increased H3K27ac entropy or decreased H3K27ac polarization. Interference of force-induced EZH2 reduction could drive actin filaments dependent spatial overlap between EZH2 and super-enhancers and functionally compromise the multipotency of PDLSC following mechanical stress. These findings together unveil a specific contribution of EZH2 reduction for the maintenance of super-enhancer stability and cell identity in mechanoresponse.
Collapse
Affiliation(s)
- Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiwen Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yunyi Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanan Qu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
17
|
Pieles O, Reck A, Reichert TE, Morsczeck C. p53 inhibits the osteogenic differentiation but does not induce senescence in human dental follicle cells. Differentiation 2020; 114:20-26. [PMID: 32473528 DOI: 10.1016/j.diff.2020.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
Abstract
Replicative senescence causes a reduced osteogenic differentiation potential of senescent dental follicle cells (DFCs). The transcription factor p53 is often involved in the induction of cellular senescence, but little is known about its role in DFCs. This study examined for the first time the role of p53 compared to its pro-proliferative antagonist E2F-1 in terms of osteogenic differentiation potential and induction of senescence. Protein expression of E2F-1 decreased during cell aging, while p53 was expressed constitutively. Gene silencing of E2F1 (E2F-1) inhibited the proliferation rate of DFCs and increased the induction of cellular senescence. The induction of cellular senescence is regulated independently of the gene expression of TP53 (p53), since its gene expression depends on the expression of E2F1. Moreover, gene silencing of TP53 induced E2F1 gene expression and increased cell proliferation, but did not affect the rate of induction of cellular senescence. TP53 knockdown further induced the alkaline phosphatase and mineralization in DFCs. However, the simultaneous silencing of TP53 and E2F1 did not inhibit the inductive effect of TP53 knockdown on osteogenic differentiation, indicating that this effect is independent of E2F-1. In summary, our results suggest that p53 inhibits osteogenic differentiation and cell proliferation in senescent DFCs, but is not significantly involved in senescence induction.
Collapse
Affiliation(s)
- Oliver Pieles
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Anja Reck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
18
|
Caspases interplay with kinases and phosphatases to determine cell fate. Eur J Pharmacol 2019; 855:20-29. [DOI: 10.1016/j.ejphar.2019.04.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
|
19
|
Goupille O, Kadri Z, Langelé A, Luccantoni S, Badoual C, Leboulch P, Chrétien S. The integrity of the FOG-2 LXCXE pRb-binding motif is required for small intestine homeostasis. Exp Physiol 2019; 104:1074-1089. [PMID: 31012180 DOI: 10.1113/ep087369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/16/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do Fog2Rb- / Rb- mice present a defect of small intestine homeostasis? What is the main finding and its importance? The importance of interactions between FOG-2 and pRb in adipose tissue physiology has previously been demonstrated. Here it is shown that this interaction is also intrinsic to small intestine homeostasis and exerts extrinsic control over mouse metabolism. Thus, this association is involved in maintaining small intestine morphology, and regulating crypt proliferation and lineage differentiation. It therefore affects mouse growth and adaptation to a high-fat diet. ABSTRACT GATA transcription factors and their FOG cofactors play a key role in tissue-specific development and differentiation, from worms to humans. We have shown that GATA-1 and FOG-2 contain an LXCXE pRb-binding motif. Interactions between retinoblastoma protein (pRb) and GATA-1 are crucial for erythroid proliferation and differentiation, whereas the LXCXE pRb-binding site of FOG-2 is involved in adipogenesis. Fog2-knock-in mice have defective pRb binding and are resistant to obesity, due to efficient white-into-brown fat conversion. Our aim was to investigate the pathophysiological impact of FOG-2-pRb interaction on the small intestine and mouse growth. Histological analysis of the small intestine revealed architectural changes in Fog2Rb- / Rb- mice, including villus shortening, with crypt expansion and a change in muscularis propria thickness. These differences were more marked in the proximo-distal part of the small intestine and were associated with an increase in crypt cell proliferation and disruption of the goblet and Paneth cell lineage. The small intestine of the mutants was unable to adapt to a high-fat diet, and had significantly lower plasma lipid levels on such a diet. Fog2Rb- / Rb- mice displayed higher levels of glucose-dependent insulinotropic peptide release, and lower levels of insulin-like growth factor I release on a regular diet. Their intestinal lipid absorption was impaired, resulting in restricted weight gain. In addition to the intrinsic effects of the mutation on adipose tissue, we show here an extrinsic relationship between the intestine and the effect of FOG-2 mutation on mouse metabolism. In conclusion, the interaction of FOG-2 with pRb coordinates the crypt-villus axis and controls small intestine homeostasis.
Collapse
Affiliation(s)
- Olivier Goupille
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Zahra Kadri
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Amandine Langelé
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France
| | - Sophie Luccantoni
- Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, Institute of Biology François Jacob, CEA - Université Paris Sud 11 - INSERM U1184, Fontenay-aux-Roses, France
| | - Cécile Badoual
- Department of Pathology, G. Pompidou European Hospital APHP - Université Paris, Descartes, Paris, France
| | - Philippe Leboulch
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France.,Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Stany Chrétien
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Université Paris Sud, Université Paris-Saclay, Fontenay aux Roses, France.,INSERM, Paris, France
| |
Collapse
|
20
|
Premnath P, Jorgenson B, Hess R, Tailor P, Louie D, Taiani J, Boyd S, Krawetz R. p21 -/- mice exhibit enhanced bone regeneration after injury. BMC Musculoskelet Disord 2017; 18:435. [PMID: 29121899 PMCID: PMC5679350 DOI: 10.1186/s12891-017-1790-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
Background p21(WAF1/CIP1/SDI1), a cyclin dependent kinase inhibitor has been shown to influence cell proliferation, differentiation and apoptosis; but more recently, p21 has been implicated in tissue repair. Studies on p21(−/−) knockout mice have demonstrated results that vary from complete regeneration and healing of tissue to attenuated healing. There have however been no studies that have evaluated the role of p21 inhibition in bone healing and remodeling. Methods The current study employs a burr-hole fracture model to investigate bone regeneration subsequent to an injury in a p21−/− mouse model. p21−/− and C57BL/6 mice were subjected to a burr-hole fracture on their proximal tibia, and their bony parameters were measured over 4 weeks via in vivo μCT scanning. Results p21−/− mice present with enhanced healing from week 1 through week 4. Differences in bone formation and resorption potential between the two mouse models are assessed via quantitative and functional assays. While the μCT analysis indicates that p21−/− mice have enhanced bone healing capabilities, it appears that the differences observed may not be due to the function of osteoblasts or osteoclasts. Furthermore, no differences were observed in the differentiation of progenitor cells (mesenchymal or monocytic) into osteoblasts or osteoclasts respectively. Conclusions Therefore, it remains unknown how p21 is regulating enhanced fracture repair and further studies are required to determine which cell type(s) are responsible for this regenerative phenotype. Electronic supplementary material The online version of this article (10.1186/s12891-017-1790-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priyatha Premnath
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Britta Jorgenson
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ricarda Hess
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pankaj Tailor
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dante Louie
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jaymi Taiani
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada. .,Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Snyder Institute, Cummings School of Medicine, University of Calgary, HRIC 3AA14, 3330 Hospital Dr. NW., Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
21
|
Silva IAL, Conceição N, Gagnon É, Caiado H, Brown JP, Gianfrancesco F, Michou L, Cancela ML. Effect of genetic variants of OPTN in the pathophysiology of Paget's disease of bone. Biochim Biophys Acta Mol Basis Dis 2017; 1864:143-151. [PMID: 28993189 DOI: 10.1016/j.bbadis.2017.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/14/2023]
Abstract
Paget's disease of bone (PDB) is the second most frequent metabolic bone disease after osteoporosis. Genetic factors play an important role in PDB, but to date PDB causing mutations were identified only in the Sequestosome 1 gene at the PDB3 locus. OPTN has been recently associated with PDB, however little is known about the effect of genetic variants in this gene in PDB pathophysiology. By sequencing OPTN in SQSTM1 non-carriers PDB patients we found 16 SNPs in regulatory, coding and non-coding regions. One of those was found to be associated with PDB in our cohort - rs2234968. Our results show that rs2238968 effect may be explained by a change in OPTN splicing that give rise to a predicted truncated protein. We also performed functional studies on the variants located in OPTN promoter - rs3829923 and the rare variant -9906 - to investigate putative regulators of OPTN. Our results show that OPTN expression seems to be regulated by SP1, RXR, E47, and the E2F family. In conclusion, our work suggests a potential pathophysiological role of SNPs in OPTN, giving a new perspective about the regulatory mechanisms of this gene. Ultimately we discovered a new variant associated with PDB in OPTN, reinforcing the relevance of this gene for the development of this bone disease.
Collapse
Affiliation(s)
- Iris A L Silva
- PhD program in Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal; Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal
| | - Édith Gagnon
- Research centre of the CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Helena Caiado
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal; PhD program in Regenerative Medicine, University of Algarve, Faro 8005-139, Portugal
| | - Jacques P Brown
- Research centre of the CHU de Québec-Université Laval, Québec City, QC, Canada; Division of Rheumatology, Department of Medicine, Université Laval and Department of Rheumatology, CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Fernando Gianfrancesco
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council of Italy, 80131 Naples, Italy
| | - Laëtitia Michou
- Research centre of the CHU de Québec-Université Laval, Québec City, QC, Canada; Division of Rheumatology, Department of Medicine, Université Laval and Department of Rheumatology, CHU de Québec-Université Laval, Québec City, QC, Canada.
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal.
| |
Collapse
|
22
|
Nakamura M, Sugimoto H, Ogata T, Hiraoka K, Yoda H, Sang M, Sang M, Zhu Y, Yu M, Shimozato O, Ozaki T. Improvement of gemcitabine sensitivity of p53-mutated pancreatic cancer MiaPaCa-2 cells by RUNX2 depletion-mediated augmentation of TAp73-dependent cell death. Oncogenesis 2016; 5:e233. [PMID: 27294865 PMCID: PMC4945741 DOI: 10.1038/oncsis.2016.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/21/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer exhibits the worst prognostic outcome among human cancers. Recently, we have described that depletion of RUNX2 enhances gemcitabine (GEM) sensitivity of p53-deficient pancreatic cancer AsPC-1 cells through the activation of TAp63-mediated cell death pathway. These findings raised a question whether RUNX2 silencing could also improve GEM efficacy on pancreatic cancer cells bearing p53 mutation. In the present study, we have extended our study to p53-mutated pancreatic cancer MiaPaCa-2 cells. Based on our current results, MiaPaCa-2 cells were much more resistant to GEM as compared with p53-proficient pancreatic cancer SW1990 cells, and there existed a clear inverse relationship between the expression levels of TAp73 and RUNX2 in response to GEM. Forced expression of TAp73α in MiaPaCa-2 cells significantly promoted cell cycle arrest and/or cell death, indicating that a large amount of TAp73 might induce cell death even in the presence of mutant p53. Consistent with this notion, overexpression of TAp73α stimulated luciferase activity driven by p53/TAp73-target gene promoters in MiaPaCa-2 cells. Similar to AsPC-1 cells, small interfering RNA-mediated knockdown of RUNX2 remarkably enhanced GEM sensitivity of MiPaCa-2 cells. Under our experimental conditions, TAp73 further accumulated in RUNX2-depleted MiaPaCa-2 cells exposed to GEM relative to GEM-treated non-silencing control cells. As expected, silencing of p73 reduced GEM sensitivity of MiPaCa-2 cells. Moreover, GEM-mediated Tyr phosphorylation level of TAp73 was much more elevated in RUNX2-depleted MiaPaCa-2 cells. Collectively, our present findings strongly suggest that knockdown of RUNX2 contributes to a prominent enhancement of GEM sensitivity of p53-mutated pancreatic cancer cells through the activation of TAp73-mediated cell death pathway, and also provides a promising strategy for the treatment of patients with pancreatic cancer bearing p53 mutation.
Collapse
Affiliation(s)
- M Nakamura
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - H Sugimoto
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - T Ogata
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - K Hiraoka
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - H Yoda
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - M Sang
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Regenerative Medicine, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - M Sang
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan.,Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei province, P.R. China
| | - Y Zhu
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning Sheng province, P.R. China
| | - M Yu
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Laboratory Animal of China Medical University, Shenyang, Liaoning Sheng province, P.R. China
| | - O Shimozato
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - T Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
23
|
Taylor S, Ominsky MS, Hu R, Pacheco E, He YD, Brown DL, Aguirre JI, Wronski TJ, Buntich S, Afshari CA, Pyrah I, Nioi P, Boyce RW. Time-dependent cellular and transcriptional changes in the osteoblast lineage associated with sclerostin antibody treatment in ovariectomized rats. Bone 2016; 84:148-159. [PMID: 26721737 DOI: 10.1016/j.bone.2015.12.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 12/14/2022]
Abstract
Inhibition of sclerostin with sclerostin antibody (Scl-Ab) has been shown to stimulate bone formation, decrease bone resorption, and increase bone mass in both animals and humans. To obtain insight into the temporal cellular and transcriptional changes in the osteoblast (OB) lineage associated with long-term Scl-Ab treatment, stereological and transcriptional analyses of the OB lineage were performed on lumbar vertebrae from aged ovariectomized rats. Animals were administered Scl-Ab 3 or 50mg/kg/wk or vehicle (VEH) for up to 26weeks (d183), followed by a treatment-free period (TFP). At 50mg/kg/wk, bone volume (BV/total volume [TV]) increased through d183 and declined during the TFP. Bone formation rate (BFR/bone surface [BS]) and total OB number increased through d29, then progressively declined, coincident with a decrease in total osteoprogenitor (OP) numbers from d29 through d183. Analysis of differentially expressed genes (DEGs) from microarray analysis of mRNA isolated from laser capture microdissection samples enriched for OB, lining cells, and osteocytes (OCy) revealed modules of genes that correlated with BFR/BS, BV/TV, and osteoblastic surface (Ob.S)/BS. Expression change of canonical Wnt target genes was similar in all three cell types at d8, including upregulation of Twist1 and Wisp1. At d29, the pattern of Wnt target gene expression changed in the OCy, with Twist1 returning to VEH level, sustained upregulation of Wisp1, and upregulation of several other Wnt targets that continued into the TFP. Predicted activation of pathways recognized to integrate with and regulate canonical Wnt signaling were also activated at d29 in the OCy. The most significantly affected pathways represented transcription factor signaling known to inhibit cell cycle progression (notably p53) and mitogenesis (notably c-Myc). These changes occurred at the time of peak BFR/BS and continued as BFR/BS declined during treatment, then trended toward VEH level in the TFP. Concurrent with this transcriptional switch was a reduction in OP numbers, an effect that would ultimately limit bone formation. This study confirms that the initial transcriptional response in response to Scl-Ab is activation of canonical Wnt signaling and the data demonstrate that there is induction of additional regulatory pathways in OCy with long-term treatment. The interactions between Wnt and p53/c-Myc signaling may be key in limiting OP populations, thus contributing to self-regulation of bone formation with continued Scl-Ab administration.
Collapse
Affiliation(s)
- Scott Taylor
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, USA
| | - Michael S Ominsky
- Department of CardioMetabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - Rong Hu
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, USA
| | - Efrain Pacheco
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, USA
| | - Yudong D He
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, USA
| | | | - J Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Thomas J Wronski
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Sabina Buntich
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, USA
| | - Cynthia A Afshari
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, USA
| | - Ian Pyrah
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, USA
| | - Paul Nioi
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, USA
| | - Rogely Waite Boyce
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, CA, USA.
| |
Collapse
|
24
|
Hesse RG, Kouklis GK, Ahituv N, Pomerantz JH. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration. eLife 2015; 4:e07702. [PMID: 26575287 PMCID: PMC4657621 DOI: 10.7554/elife.07702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/02/2015] [Indexed: 12/29/2022] Open
Abstract
The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species' regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF -p53 axis activation.
Collapse
Affiliation(s)
- Robert G Hesse
- Department of Surgery,
Division of Plastic Surgery, Program in Craniofacial Biology,
University of California, San Francisco,
San
Francisco, United States
| | - Gayle K Kouklis
- Department of Surgery,
Division of Plastic Surgery, Program in Craniofacial Biology,
University of California, San Francisco,
San
Francisco, United States
| | - Nadav Ahituv
- Department of
Bioengineering and Therapeutic Sciences and Institute for Human
Genetics, University of California, San
Francisco, San
Francisco, United States
| | - Jason H Pomerantz
- Departments of Surgery
and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial
Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, University of California, San
Francisco, San
Francisco, United States
| |
Collapse
|
25
|
Sosa-García B, Vázquez-Rivera V, González-Flores JN, Engel BE, Cress WD, Santiago-Cardona PG. The Retinoblastoma Tumor Suppressor Transcriptionally Represses Pak1 in Osteoblasts. PLoS One 2015; 10:e0142406. [PMID: 26555075 PMCID: PMC4640669 DOI: 10.1371/journal.pone.0142406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/21/2015] [Indexed: 12/26/2022] Open
Abstract
We previously characterized the retinoblastoma tumor suppressor protein (Rb) as a regulator of adherens junction assembly and cell-to-cell adhesion in osteoblasts. This is a novel function since Rb is predominantly known as a cell cycle repressor. Herein, we characterized the molecular mechanisms by which Rb performs this function, hypothesizing that Rb controls the activity of known regulators of adherens junction assembly. We found that Rb represses the expression of the p21-activated protein kinase (Pak1), an effector of the small Rho GTPase Rac1. Rac1 is a well-known regulator of adherens junction assembly whose increased activity in cancer is linked to perturbations of intercellular adhesion. Using nuclear run-on and luciferase reporter transcription assays, we found that Pak1 repression by Rb is transcriptional, without affecting Pak1 mRNA and protein stability. Pak1 promoter bioinformatics showed multiple E2F1 binding sites within 155 base pairs of the transcriptional start site, and a Pak1-promoter region containing these E2F sites is susceptible to transcriptional inhibition by Rb. Chromatin immunoprecipitations showed that an Rb-E2F complex binds to the region of the Pak1 promoter containing the E2F1 binding sites, suggesting that Pak1 is an E2F target and that the repressive effect of Rb on Pak1 involves blocking the trans-activating capacity of E2F. A bioinformatics analysis showed elevated Pak1 expression in several solid tumors relative to adjacent normal tissue, with both Pak1 and E2F increased relative to normal tissue in breast cancer, supporting a cancer etiology for Pak1 up-regulation. Therefore, we propose that by repressing Pak1 expression, Rb prevents Rac1 hyperactivity usually associated with cancer and related to cytoskeletal derangements that disrupt cell adhesion, consequently enhancing cancer cell migratory capacity. This de-regulation of cell adhesion due to Rb loss could be part of the molecular events associated with cancer progression and metastasis.
Collapse
Affiliation(s)
- Bernadette Sosa-García
- Department of Basic Sciences, Biochemistry Division, Ponce Health Science University, Ponce, Puerto Rico
| | - Viviana Vázquez-Rivera
- Department of Basic Sciences, Biochemistry Division, Ponce Health Science University, Ponce, Puerto Rico
| | | | - Brienne E. Engel
- Molecular Oncology and Thoracic Oncology Departments, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States of America
| | - W. Douglas Cress
- Molecular Oncology and Thoracic Oncology Departments, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States of America
| | - Pedro G. Santiago-Cardona
- Department of Basic Sciences, Biochemistry Division, Ponce Health Science University, Ponce, Puerto Rico
- * E-mail:
| |
Collapse
|
26
|
Cheng YH, Streicher DA, Waning DL, Chitteti BR, Gerard-O'Riley R, Horowitz MC, Bidwell JP, Pavalko FM, Srour EF, Mayo LD, Kacena MA. Signaling pathways involved in megakaryocyte-mediated proliferation of osteoblast lineage cells. J Cell Physiol 2015; 230:578-86. [PMID: 25160801 DOI: 10.1002/jcp.24774] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/22/2014] [Indexed: 01/07/2023]
Abstract
Recent studies suggest that megakaryocytes (MKs) may play a significant role in skeletal homeostasis, as evident by the occurrence of osteosclerosis in multiple MK related diseases (Lennert et al., 1975; Thiele et al., 1999; Chagraoui et al., 2006). We previously reported a novel interaction whereby MKs enhanced proliferation of osteoblast lineage/osteoprogenitor cells (OBs) by a mechanism requiring direct cell-cell contact. However, the signal transduction pathways and the downstream effector molecules involved in this process have not been characterized. Here we show that MKs contact with OBs, via beta1 integrin, activate the p38/MAPKAPK2/p90RSK kinase cascade in the bone cells, which causes Mdm2 to neutralizes p53/Rb-mediated check point and allows progression through the G1/S. Interestingly, activation of MAPK (ERK1/2) and AKT, collateral pathways that regulate the cell cycle, remained unchanged with MK stimulation of OBs. The MK-to-OB signaling ultimately results in significant increases in the expression of c-fos and cyclin A, necessary for sustaining the OB proliferation. Overall, our findings show that OBs respond to the presence of MKs, in part, via an integrin-mediated signaling mechanism, activating a novel response axis that de-represses cell cycle activity. Understanding the mechanisms by which MKs enhance OB proliferation will facilitate the development of novel anabolic therapies to treat bone loss associated with osteoporosis and other bone-related diseases.
Collapse
Affiliation(s)
- Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Flowers S, Patel PJ, Gleicher S, Amer K, Himelman E, Goel S, Moran E. p107-Dependent recruitment of SWI/SNF to the alkaline phosphatase promoter during osteoblast differentiation. Bone 2014; 69:47-54. [PMID: 25182511 PMCID: PMC5222550 DOI: 10.1016/j.bone.2014.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/11/2014] [Accepted: 08/16/2014] [Indexed: 12/28/2022]
Abstract
The retinoblastoma protein family is intimately involved in the regulation of tissue specific gene expression during mesenchymal stem cell differentiation. The role of the following proteins, pRB, p107 and p130, is particularly significant in differentiation to the osteoblast lineage, as human germ-line mutations of RB1 greatly increase susceptibility to osteosarcoma. During differentiation, pRB directly targets certain osteogenic genes for activation, including the alkaline phosphatase-encoding gene Alpl. Chromatin immunoprecipitation (ChIP) assays indicate that Alpl is targeted by p107 in differentiating osteoblasts selectively during activation with the same dynamics as pRB, which suggests that p107 helps promote Alpl activation. Mouse models indicate overlapping roles for pRB and p107 in bone and cartilage formation, but very little is known about direct tissue-specific gene targets of p107, or the consequences of targeting by p107. Here, the roles of p107 and pRB were compared using shRNA-mediated knockdown genetics in an osteoblast progenitor model, MC3T3-E1 cells. The results show that p107 has a distinct role along with pRB in induction of Alpl. Deficiency of p107 does not impede recruitment of transcription factors recognized as pRB co-activation partners at the promoter; however, p107 is required for the efficient recruitment of an activating SWI/SNF chromatin-remodeling complex, an essential event in Alpl induction.
Collapse
Affiliation(s)
- Stephen Flowers
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Parth J Patel
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Stephanie Gleicher
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Kamal Amer
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Eric Himelman
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Shruti Goel
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Elizabeth Moran
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
28
|
Donehower LA. Insights into Wild-Type and Mutant p53 Functions Provided by Genetically Engineered Mice. Hum Mutat 2014; 35:715-27. [DOI: 10.1002/humu.22507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/02/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Lawrence A. Donehower
- Departments of Molecular Virology and Microbiology, Molecular and Cellular Biology, and Pediatrics; Baylor College of Medicine; Houston Texas 77030
| |
Collapse
|
29
|
Yu S, Yerges-Armstrong LM, Chu Y, Zmuda JM, Zhang Y. E2F1 effects on osteoblast differentiation and mineralization are mediated through up-regulation of frizzled-1. Bone 2013; 56:234-41. [PMID: 23806799 PMCID: PMC3758927 DOI: 10.1016/j.bone.2013.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/18/2022]
Abstract
Frizzled homolog 1 (FZD1) is a transmembrane receptor that mediates Wnt signaling. The transcriptional regulation of FZD1 and the role of FZD1 in osteoblast biology are not well understood. We examined the role of E2F1 in FZD1 promoter activation and osteoblast differentiation and mineralization. A putative E2F1 binding site in the FZD1 promoter region was initially identified in silico and characterized further in Saos2 cells in vitro by chromatin immunoprecipitation (ChIP), electrophoretic mobility shift (EMSA) and promoter reporter assays. Over-expression of E2F1 transactivated the FZD1 promoter and increased endogenous FZD1 mRNA and protein levels in Saos2 cells. Over-expression of E2F1 in Saos2 cells up-regulated osteoblast differentiation markers alkaline phosphatase (ALP), type I collagen α (COL1A), and osteocalcin (OCN). Furthermore, E2F1 over-expression enhanced mineralization of differentiated Saos2 cells, whereas siRNA knockdown of FZD1 diminished the effects of E2F1 on osteoblast mineralization. The effects of E2F1 on FZD1 expression and osteoblast mineralization were further confirmed in normal human FOB osteoblasts. Taken together, our experiments demonstrate a role of E2F1 in osteoblast differentiation and mineralization and suggest that FZD1 is required, in part, for E2F1 regulation of osteoblast mineralization.
Collapse
Affiliation(s)
- Shibing Yu
- Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
| | - Laura M Yerges-Armstrong
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, PA, USA
- Program in Personalized and Genomic Medicine and Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, School of Medicine, University of Maryland, USA
| | - Yanxia Chu
- Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
| | - Joseph M. Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA, USA
| | - Yingze Zhang
- Department of Medicine, School of Medicine, University of Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA, USA
- Corresponding author at: Department of Medicine, University of Pittsburgh School of Medicine, NW628 MUH, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA. Fax: +1 412 692 2210. (Y. Zhang)
| |
Collapse
|
30
|
Di Fiore R, D'Anneo A, Tesoriere G, Vento R. RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J Cell Physiol 2013; 228:1676-87. [PMID: 23359405 DOI: 10.1002/jcp.24329] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 01/15/2013] [Indexed: 12/14/2022]
Abstract
Loss of RB1 gene is considered either a causal or an accelerating event in retinoblastoma. A variety of mechanisms inactivates RB1 gene, including intragenic mutations, loss of expression by methylation and chromosomal deletions, with effects which are species-and cell type-specific. RB1 deletion can even lead to aneuploidy thus greatly increasing cancer risk. The RB1gene is part of a larger gene family that includes RBL1 and RBL2, each of the three encoding structurally related proteins indicated as pRb, p107, and p130, respectively. The great interest in these genes and proteins springs from their ability to slow down neoplastic growth. pRb can associate with various proteins by which it can regulate a great number of cellular activities. In particular, its association with the E2F transcription factor family allows the control of the main pRb functions, while the loss of these interactions greatly enhances cancer development. As RB1 gene, also pRb can be functionally inactivated through disparate mechanisms which are often tissue specific and dependent on the scenario of the involved tumor suppressors and oncogenes. The critical role of the context is complicated by the different functions played by the RB proteins and the E2F family members. In this review, we want to emphasize the importance of the mechanisms of RB1/pRb inactivation in inducing cancer cell development. The review is divided in three chapters describing in succession the mechanisms of RB1 inactivation in cancer cells, the alterations of pRb pathway in tumorigenesis and the RB protein and E2F family in cancer.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Polyclinic, University of Palermo, Palermo, Italy
| | | | | | | |
Collapse
|
31
|
Abstract
The retinoblastoma tumor suppressor protein pRB is conventionally regarded as an inhibitor of the E2F family of transcription factors. Conversely, pRB is also recognized as an activator of tissue-specific gene expression along various lineages including osteoblastogenesis. During osteoblast differentiation, pRB directly targets Alpl and Bglap, which encode the major markers of osteogenesis alkaline phosphatase and osteocalcin. Surprisingly, p130 and repressor E2Fs were recently found to cooccupy and repress Alpl and Bglap in proliferating osteoblast precursors before differentiation. This raises the further question of whether these genes convert to E2F activation targets when differentiation begins, which would constitute a remarkable situation wherein pRB and E2F would be cotargeting genes for activation. Chromatin immunoprecipitation analysis in an osteoblast differentiation model shows that Alpl and Bglap are indeed targeted by an activator E2F, i.e., is E2F1. Promoter occupation of Alpl and Bglap by E2F1 occurs specifically during activation, and depletion of E2F1 severely impairs their induction. Mechanistically, promoter occupation by E2F1 and pRB is mutually dependent, and without this cooperative effect, activation steps previously shown to be dependent on pRB, including recruitment of RNA polymerase II, are impaired. Myocyte- and adipocyte-specific genes are also cotargeted by E2F1 and pRB during differentiation along their respective lineages. The finding that pRB and E2F1 cooperate to activate expression of tissue-specific genes is a paradigm distinct from the classical concept of pRB as an inhibitor of E2F1, but is consistent with the observed roles of these proteins in physiological models.
Collapse
Affiliation(s)
- Stephen Flowers
- Department of Orthopaedics, New Jersey Medical School-University Hospital Cancer Center, UMDNJ, Newark, NJ 07103, USA
| | | | | |
Collapse
|
32
|
Watanabe T, Oyama T, Asada M, Harada D, Ito Y, Inagawa M, Suzuki Y, Sugano S, Katsube KI, Karsenty G, Komori T, Kitagawa M, Asahara H. MAML1 enhances the transcriptional activity of Runx2 and plays a role in bone development. PLoS Genet 2013; 9:e1003132. [PMID: 23326237 PMCID: PMC3542067 DOI: 10.1371/journal.pgen.1003132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/30/2012] [Indexed: 11/19/2022] Open
Abstract
Mastermind-like 1 (MAML1) is a transcriptional co-activator in the Notch signaling pathway. Recently, however, several reports revealed novel and unique roles for MAML1 that are independent of the Notch signaling pathway. We found that MAML1 enhances the transcriptional activity of runt-related transcription factor 2 (Runx2), a transcription factor essential for osteoblastic differentiation and chondrocyte proliferation and maturation. MAML1 significantly enhanced the Runx2-mediated transcription of the p6OSE2-Luc reporter, in which luciferase expression was controlled by six copies of the osteoblast specific element 2 (OSE2) from the Runx2-regulated osteocalcin gene promoter. Interestingly, a deletion mutant of MAML1 lacking the N-terminal Notch-binding domain also enhanced Runx2-mediated transcription. Moreover, inhibition of Notch signaling did not affect the action of MAML1 on Runx2, suggesting that the activation of Runx2 by MAML1 may be caused in a Notch-independent manner. Overexpression of MAML1 transiently enhanced the Runx2-mediated expression of alkaline phosphatase, an early marker of osteoblast differentiation, in the murine pluripotent mesenchymal cell line C3H10T1/2. MAML1(-/-) embryos at embryonic day 16.5 (E16.5) had shorter bone lengths than wild-type embryos. The area of primary spongiosa of the femoral diaphysis was narrowed. At E14.5, extended zone of collagen type II alpha 1 (Col2a1) and Sox9 expression, markers of chondrocyte differentiation, and decreased zone of collagen type X alpha 1 (Col10a1) expression, a marker of hypertrophic chondrocyte, were observed. These observations suggest that chondrocyte maturation was impaired in MAML1(-/-) mice. MAML1 enhances the transcriptional activity of Runx2 and plays a role in bone development.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshinao Oyama
- Department of Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Maki Asada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Daisuke Harada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoshiaki Ito
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masayo Inagawa
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Ken-ichi Katsube
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Toshihisa Komori
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Motoo Kitagawa
- Department of Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Landman AS, Danielian PS, Lees JA. Loss of pRB and p107 disrupts cartilage development and promotes enchondroma formation. Oncogene 2012; 32:4798-805. [PMID: 23146901 DOI: 10.1038/onc.2012.496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/22/2012] [Accepted: 08/30/2012] [Indexed: 01/20/2023]
Abstract
The pocket proteins pRB, p107 and p130 have established roles in regulating the cell cycle through the control of E2F activity. The pocket proteins regulate differentiation of a number of tissues in both cell cycle-dependent and -independent manners. Prior studies showed that mutation of p107 and p130 in the mouse leads to defects in cartilage development during endochondral ossification, the process by which long bones form. Despite evidence of a role for pRB in osteoblast differentiation, it is unknown whether it functions during cartilage development. Here, we show that mutation of Rb in the early mesenchyme of p107-mutant mice results in severe cartilage defects in the growth plates of long bones. This is attributable to inappropriate chondrocyte proliferation that persists after birth and leads to the formation of enchondromas in the growth plates as early as 8 weeks of age. Genetic crosses show that development of these tumorigenic lesions is E2f3 dependent. These results reveal an overlapping role for pRB and p107 in cartilage development, endochondral ossification and enchondroma formation that reflects their coordination of cell-cycle exit at appropriate developmental stages.
Collapse
Affiliation(s)
- A S Landman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
34
|
Association of single nucleotide polymorphism of RB1 gene with body weight traits in chicken. YI CHUAN = HEREDITAS 2012; 34:1320-7. [DOI: 10.3724/sp.j.1005.2012.01320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Evidence for autoregulation and cell signaling pathway regulation from genome-wide binding of the Drosophila retinoblastoma protein. G3-GENES GENOMES GENETICS 2012; 2:1459-72. [PMID: 23173097 PMCID: PMC3484676 DOI: 10.1534/g3.112.004424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/20/2012] [Indexed: 12/24/2022]
Abstract
The retinoblastoma (RB) tumor suppressor protein is a transcriptional cofactor with essential roles in cell cycle and development. Physical and functional targets of RB and its paralogs p107/p130 have been studied largely in cultured cells, but the full biological context of this family of proteins' activities will likely be revealed only in whole organismal studies. To identify direct targets of the major Drosophila RB counterpart in a developmental context, we carried out ChIP-Seq analysis of Rbf1 in the embryo. The association of the protein with promoters is developmentally controlled; early promoter access is globally inhibited, whereas later in development Rbf1 is found to associate with promoter-proximal regions of approximately 2000 genes. In addition to conserved cell-cycle-related genes, a wholly unexpected finding was that Rbf1 targets many components of the insulin, Hippo, JAK/STAT, Notch, and other conserved signaling pathways. Rbf1 may thus directly affect output of these essential growth-control and differentiation pathways by regulation of expression of receptors, kinases and downstream effectors. Rbf1 was also found to target multiple levels of its own regulatory hierarchy. Bioinformatic analysis indicates that different classes of genes exhibit distinct constellations of motifs associated with the Rbf1-bound regions, suggesting that the context of Rbf1 recruitment may vary within the Rbf1 regulon. Many of these targeted genes are bound by Rbf1 homologs in human cells, indicating that a conserved role of RB proteins may be to adjust the set point of interlinked signaling networks essential for growth and development.
Collapse
|
36
|
RBF binding to both canonical E2F targets and noncanonical targets depends on functional dE2F/dDP complexes. Mol Cell Biol 2012; 32:4375-87. [PMID: 22927638 DOI: 10.1128/mcb.00536-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The retinoblastoma (RB) family of proteins regulate transcription. These proteins lack intrinsic DNA-binding activity but are recruited to specific genomic locations through interactions with sequence-specific DNA-binding factors. The best-known target of RB protein (pRB) is the E2F transcription factor; however, many other chromatin-associated proteins have been described that may allow RB family members to act at additional sites. To gain a perspective on the scale of E2F-dependent and E2F-independent functions, we generated genome-wide binding profiles of RBF1 and dE2F proteins in Drosophila larvae. RBF1 and dE2F2 associate with a large number of binding sites at genes with diverse biological functions. In contrast, dE2F1 was detected at a smaller set of promoters, suggesting that it overrides repression by RBF1/dE2F2 at a specific subset of targets. Approximately 15% of RBF1-bound regions lacked consensus E2F-binding motifs. To test whether RBF1 action at these sites is E2F independent, we examined dDP mutant larvae that lack any functional dE2F/dDP heterodimers. As measured by chromatin immunoprecipitation-microarray analysis (ChIP-chip), ChIP-quantitative PCR (qPCR), and cell fractionation, the stable association of RBF1 with chromatin was eliminated in dDP mutants. This requirement for dDP was seen at classic E2F-regulated promoters and at promoters that lacked canonical E2F-binding sites. These results suggest that E2F/DP complexes are essential for all genomic targeting of RBF1.
Collapse
|
37
|
Cruz-Ramírez A, Díaz-Triviño S, Blilou I, Grieneisen VA, Sozzani R, Zamioudis C, Miskolczi P, Nieuwland J, Benjamins R, Dhonukshe P, Caballero-Pérez J, Horvath B, Long Y, Mähönen AP, Zhang H, Xu J, Murray JAH, Benfey PN, Bako L, Marée AFM, Scheres B. A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell 2012; 150:1002-15. [PMID: 22921914 DOI: 10.1016/j.cell.2012.07.017] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 05/24/2012] [Accepted: 07/11/2012] [Indexed: 12/21/2022]
Abstract
In plants, where cells cannot migrate, asymmetric cell divisions (ACDs) must be confined to the appropriate spatial context. We investigate tissue-generating asymmetric divisions in a stem cell daughter within the Arabidopsis root. Spatial restriction of these divisions requires physical binding of the stem cell regulator SCARECROW (SCR) by the RETINOBLASTOMA-RELATED (RBR) protein. In the stem cell niche, SCR activity is counteracted by phosphorylation of RBR through a cyclinD6;1-CDK complex. This cyclin is itself under transcriptional control of SCR and its partner SHORT ROOT (SHR), creating a robust bistable circuit with either high or low SHR-SCR complex activity. Auxin biases this circuit by promoting CYCD6;1 transcription. Mathematical modeling shows that ACDs are only switched on after integration of radial and longitudinal information, determined by SHR and auxin distribution, respectively. Coupling of cell-cycle progression to protein degradation resets the circuit, resulting in a "flip flop" that constrains asymmetric cell division to the stem cell region.
Collapse
Affiliation(s)
- Alfredo Cruz-Ramírez
- Molecular Genetics, Department of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kelleher FC, Cain JE, Healy JM, Watkins DN, Thomas DM. Prevailing importance of the hedgehog signaling pathway and the potential for treatment advancement in sarcoma. Pharmacol Ther 2012; 136:153-68. [PMID: 22906929 DOI: 10.1016/j.pharmthera.2012.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 12/19/2022]
Abstract
The hedgehog signaling pathway is important in embryogenesis and post natal development. Constitutive activation of the pathway due to mutation of pathway components occurs in ~25% of medulloblastomas and also in basal cell carcinomas. In many other malignancies the therapeutic role for hedgehog inhibition though intriguing, based on preclinical data, is far from assured. Hedgehog inhibition is not an established part of the treatment paradigm of sarcoma but the scientific rationale for a possible benefit is compelling. In chondrosarcoma there is evidence of hedgehog pathway activation and an ontologic comparison between growth plate chondrocyte differentiation and different chondrosarcoma subtypes. Immunostaining epiphyseal growth plate for Indian hedgehog is particularly positive in the zone of pre-hypertrophic chondrocytes which correlates ontologically with conventional chondrosarcoma. In Ewing sarcoma/PNET tumors the Gli1 transcription factor is a direct target of the EWS-FLI1 oncoprotein present in 85% of cases. In many cases of rhabdomyosarcomas there is increased expression of Gli1 (Ragazzini et al., 2004). Additionally, a third of embryonal rhabdomyosarcomas have loss of Chr.9q22 that encompasses the patched locus (Bridge et al., 2000). The potential to treat osteosarcoma by inhibition of Gli2 and the role of the pathway in ovarian fibromas and other connective tissue tumors is also discussed (Nagao et al., 2011; Hirotsu et al., 2010). Emergence of acquired secondary resistance to targeted therapeutics is an important issue that is also relevant to hedgehog inhibition. In this context secondary resistance of medulloblastomas to treatment with a smoothened antagonist in two tumor mouse models is examined.
Collapse
Affiliation(s)
- Fergal C Kelleher
- Sarcoma Service, Peter MacCallum Cancer Centre, 12 St. Andrew's Place, A'Beckitt Street, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
39
|
Pierce AD, Anglin IE, Vitolo MI, Mochin MT, Underwood KF, Goldblum SE, Kommineni S, Passaniti A. Glucose-activated RUNX2 phosphorylation promotes endothelial cell proliferation and an angiogenic phenotype. J Cell Biochem 2012; 113:282-92. [PMID: 21913213 DOI: 10.1002/jcb.23354] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The runt-related protein-2 (RUNX2) is a DNA-binding transcription factor that regulates bone formation, tumor cell metastasis, endothelial cell (EC) proliferation, and angiogenesis. RUNX2 DNA binding is glucose and cell cycle regulated. We propose that glucose may activate RUNX2 through changes in post-translational phosphorylation that are cell cycle-specific and will regulate EC function. Glucose increased cell cycle progression in EC through both G2/M and G1 phases with entry into S-phase occurring only in subconfluent cells. In the absence of nutrients and growth factors (starvation), subconfluent EC were delayed in G1 when RUNX2 expression was reduced. RUNX2 phosphorylation, activation of DNA binding, and pRb phosphorylation were stimulated by glucose and were necessary to promote cell cycle progression. Glucose increased RUNX2 localization at focal subnuclear sites, which co-incided with RUNX2 occupancy of the cyclin-dependent kinase (cdk) inhibitor p21(Cip1) promoter, a gene normally repressed by RUNX2. Mutation of the RUNX2 cdk phosphorylation site in the C-terminal domain (S451A.RUNX2) reduced RUNX2 phosphorylation and DNA binding. Expression of this cdk site mutant in EC inhibited glucose-stimulated differentiation (in vitro tube formation), monolayer wound healing, and proliferation. These results define a novel relationship between glucose-activated RUNX2 phosphorylation, cell cycle progression, and EC differentiation. These data suggest that inhibition of RUNX2 expression or DNA binding may be a useful strategy to inhibit EC proliferation in tumor angiogenesis.
Collapse
Affiliation(s)
- Adam D Pierce
- The Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Saidak Z, Haÿ E, Marty C, Barbara A, Marie PJ. Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling. Aging Cell 2012; 11:467-74. [PMID: 22321691 DOI: 10.1111/j.1474-9726.2012.00804.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
With aging, bone marrow mesenchymal stromal cell (MSC) osteoblast differentiation decreases whereas MSC differentiation into adipocytes increases, resulting in increased adipogenesis and bone loss. Here, we investigated whether activation of cell signaling by strontium ranelate (SrRan) can reverse the excessive adipogenic differentiation associated with aging. In murine MSC cultures, SrRan increased Runx2 expression and matrix mineralization and decreased PPARγ2 expression and adipogenesis. This effect was associated with increased expression of the Wnt noncanonical representative Wnt5a and adipogenic modulator Maf and was abrogated by Wnt- and nuclear factor of activated T-cells (NFAT)c antagonists, implying a role for Wnt and NFATc/Maf signaling in the switch in osteoblastogenesis to adipogenesis induced by SrRan. To confirm this finding, we investigated the effect of SrRan in SAMP6 senescent mice, which exhibit decreased osteoblastogenesis, increased adipogenesis, and osteopenia. SrRan administration at a clinically relevant dose level increased bone mineral density, bone volume, trabecular thickness and number, as shown by densitometric, microscanning, and histomorphometric analyses in long bones and vertebrae. This attenuation of bone loss was related to increased osteoblast surface and bone formation rate and decreased bone marrow adipocyte volume and size. The restoration of osteoblast and adipocyte balance induced by SrRan was linked to increased Wnt5a and Maf expression in the bone marrow. The results indicate that SrRan acts on lineage allocation of MSCs by antagonizing the age-related switch in osteoblast to adipocyte differentiation via mechanisms involving NFATc/Maf and Wnt signaling, resulting in increased bone formation and attenuation of bone loss in senescent osteopenic mice.
Collapse
|
41
|
Basu-Roy U, Basilico C, Mansukhani A. Perspectives on cancer stem cells in osteosarcoma. Cancer Lett 2012; 338:158-67. [PMID: 22659734 DOI: 10.1016/j.canlet.2012.05.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/21/2012] [Accepted: 05/24/2012] [Indexed: 12/27/2022]
Abstract
Osteosarcoma is an aggressive pediatric tumor of growing bones that, despite surgery and chemotherapy, is prone to relapse. These mesenchymal tumors are derived from progenitor cells in the osteoblast lineage that have accumulated mutations to escape cell cycle checkpoints leading to excessive proliferation and defects in their ability to differentiate appropriately into mature bone-forming osteoblasts. Like other malignant tumors, osteosarcoma is often heterogeneous, consisting of phenotypically distinct cells with features of different stages of differentiation. The cancer stem cell hypothesis posits that tumors are maintained by stem cells and it is the incomplete eradication of a refractory population of tumor-initiating stem cells that accounts for drug resistance and tumor relapse. In this review we present our current knowledge about the biology of osteosarcoma stem cells from mouse and human tumors, highlighting new insights and unresolved issues in the identification of this elusive population. We focus on factors and pathways that are implicated in maintaining such cells, and differences from paradigms of epithelial cancers. Targeting of the cancer stem cells in osteosarcoma is a promising avenue to explore to develop new therapies for this devastating childhood cancer.
Collapse
Affiliation(s)
- Upal Basu-Roy
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | | | | |
Collapse
|
42
|
Miller ES, Berman SD, Yuan TL, Lees JA. Disruption of calvarial ossification in E2f4 mutant embryos correlates with increased proliferation and progenitor cell populations. Cell Cycle 2011; 9:2620-8. [PMID: 20581455 DOI: 10.4161/cc.9.13.12108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The E2F family of transcription factors, in association with pocket protein family members, are important for regulating genes required for cellular proliferation. The most abundant E2F, E2F4, is implicated in maintaining the G(0)/G(1) cell cycle state via transcriptional repression of genes that encode proteins required for S-phase progression. Here, we investigate E2F4's role in bone development using E2f4 germline mutant mice. We find that mutation of E2f4 impairs the formation of several bones that arise through intramembranous or endochondral ossification. The most severe defect occurred in the calvarial bones of the skull where we observed a striking delay in their ossification. In vivo and in vitro analyses established that E2F4 loss did not block the intrinsic differentiation potential of calvarial osteoblast progenitors. However, our data showed that E2f4 mutation elevated proliferation in the developing calvaria in vivo and it increased the endogenous pool of undifferentiated progenitor cells. These data suggest that E2F4 plays an important role in enabling osteoblast progenitors to exit the cell cycle and subsequently differentiate thereby contributing to the commitment of these cells to the bone lineage.
Collapse
Affiliation(s)
- Emily S Miller
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | | | | | | |
Collapse
|
43
|
Zhang H, Liu SH, Zhang Q, Zhang YD, Wang SZ, Wang QG, Wang YX, Tang ZQ, Li H. Fine-mapping of quantitative trait loci for body weight and bone traits and positional cloning of the RB1 gene in chicken. J Anim Breed Genet 2011; 128:366-75. [PMID: 21906182 DOI: 10.1111/j.1439-0388.2011.00927.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previously, a quantitative trait locus (QTL) that affects body weight (BW) at 4-12 weeks of age and carcass weight at 12 weeks of age had been mapped on chicken chromosome 1. After including more markers and individuals, the confidence interval was narrowed down to approximately 5.5 Mbps and located this QTL near a microsatellite marker (ADL328). This QTL is the same as the QTL for 12 bone traits, including metatarsus length and metatarsus circumference at 4, 6, 8, 10 and 12 weeks of age and keel length and metatarsus claw weight at 12 weeks of age, that was identified using the same population. In the current study, 1010 individuals from the Northeast Agricultural University F(2) resource population were used and 14 single-nucleotide polymorphism (SNPs) around ADL328 were developed to construct haplotypes, and an association analysis was performed to fine-map the QTL. The haplotypes were constructed on the basis of a sliding 'window', with three SNP markers included in each 'window'. The association analysis results indicated that the haplotypes in 'windows' 6-12 were significantly associated with BW and bone traits and suggested that the QTL for BW and bone traits was located between SNP8 and SNP14 or was in linkage disequilibrium with this region. The interval from SNP8 to SNP14 was approximately 400 kbps. This region contained five RefSeq genes (RB1, P2RY5, FNDC3A, MLNR and CAB39L) on the University of California Santa Cruz website. The RB1 gene was selected as a candidate gene and five SNPs were identified in the gene. The association results indicated that the RB1 gene was a major gene for BW and bone traits. The SNPs g.39692 G>A and g.77260 A>G in RB1 gene might be two quantitative trait nucleotides for BW and bone traits.
Collapse
Affiliation(s)
- H Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Osteosarcoma is an aggressive but ill-understood cancer of bone that predominantly affects adolescents. Its rarity and biological heterogeneity have limited studies of its molecular basis. In recent years, an important role has emerged for the RUNX2 "platform protein" in osteosarcoma oncogenesis. RUNX proteins are DNA-binding transcription factors that regulate the expression of multiple genes involved in cellular differentiation and cell-cycle progression. RUNX2 is genetically essential for developing bone and osteoblast maturation. Studies of osteosarcoma tumours have revealed that the RUNX2 DNA copy number together with RNA and protein levels are highly elevated in osteosarcoma tumors. The protein is also important for metastatic bone disease of prostate and breast cancers, while RUNX2 may have both tumor suppressive and oncogenic roles in bone morphogenesis. This paper provides a synopsis of the current understanding of the functions of RUNX2 and its potential role in osteosarcoma and suggests directions for future study.
Collapse
|
45
|
Janeway KA, Walkley CR. Modeling human osteosarcoma in the mouse: From bedside to bench. Bone 2010; 47:859-65. [PMID: 20696288 DOI: 10.1016/j.bone.2010.07.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/28/2010] [Accepted: 07/30/2010] [Indexed: 01/06/2023]
Abstract
Osteosarcoma (OS) is the most common primary tumour of bone, occurring predominantly in the second decade of life. High-dose cytotoxic chemotherapy and surgical resection have improved prognosis, with long-term survival for patients with localized (non-metastatic) disease approaching 70%. At presentation approximately 20% of patients have metastases and almost all patients with recurrent OS have metastatic disease and cure rates for patients with metastatic or recurrent disease remain poor (<20% survival). Over the past 20 years, considerable progress has been made in the understanding of OS pathogenesis, yet these insights have not translated into substantial therapeutic advances and clinical outcomes. Further progress is essential in order to develop molecularly based therapies that target both primary lesions as well as metastatic disease. The increasing sophistication with which gene expression can be modulated in the mouse, both positively and negatively in addition to temporally, has allowed for the recent generation of more faithful OS models than have previously been available. These murine OS models can recapitulate all aspects of the disease process, from initiation and establishment to invasion and dissemination to distant sites. The development and utilisation of murine models that faithfully recapitulate human osteosarcoma, complementing existing approaches using human and canine disease, holds significant promise in furthering our understanding of the genetic basis of the disease and, more critically, in advancing pre-clinical studies aimed at the rational development and trialing of new therapeutic approaches.
Collapse
Affiliation(s)
- Katherine A Janeway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, 44 Binney St, Boston, MA 02115, USA.
| | | |
Collapse
|
46
|
Abstract
Calo et al. (2010) recently reported that the absence of the transcriptional regulator pRb enhances differentiation of mesenchymal precursors toward the brown adipocyte lineage in detriment of osteoblast and white fat populations. These findings may have therapeutic implications for cancer and bone and metabolic disease.
Collapse
|
47
|
Flowers S, Beck GR, Moran E. Transcriptional activation by pRB and its coordination with SWI/SNF recruitment. Cancer Res 2010; 70:8282-7. [PMID: 20851996 DOI: 10.1158/0008-5472.can-10-2205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A central question in cancer biology is why most tumor susceptibility genes are linked with only limited types of cancer. Human germ-line mutation of the retinoblastoma susceptibility gene Rb1 is closely linked with just retinoblastoma and osteosarcoma, although the gene is universally expressed. Functional analysis of pRB and its close relatives, p107 and p130, has largely focused on their roles in repression of proliferation across all tissue types, but genetic evidence indicates an active requirement for pRB in osteoblast differentiation that correlates more directly with osteosarcoma susceptibility. Still, potential promoter targets of pRB and its role in normally differentiating osteoblasts remain insufficiently characterized. Here, an early marker of osteoblast differentiation, alkaline phosphatase, is identified as a direct promoter activation target of pRB. One role of pRB on this promoter is to displace the histone lysine demethylase KDM5A, thereby favoring trimethylation of H3K4, a promoter activation mark. A major new aspect of pRB-mediated transcriptional activation revealed in this promoter analysis is its role in recruitment of an activating SWI/SNF chromatin-remodeling complex. SWI/SNF is a critical coordinator of tissue-specific gene expression. In osteoblasts, SWI/SNF complexes containing the BRM ATPase repress osteoblast-specific genes to maintain the precursor state, whereas the alternative ATPase BRG1 distinguishes an activating SWI/SNF complex necessary for RNA polymerase-II recruitment. A switch from BRM to BRG1 on the alkaline phosphatase promoter marks the onset of differentiation and is accomplished in a precise two-step mechanism. Dissociation of BRM-containing SWI/SNF depends on p300, and association of BRG1-containing SWI/SNF depends on pRB.
Collapse
Affiliation(s)
- Stephen Flowers
- Department of Orthopaedics, New Jersey Medical School-University Hospital Cancer Center, UMDNJ, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
48
|
Calo E, Quintero-Estades JA, Danielian PS, Nedelcu S, Berman SD, Lees JA. Rb regulates fate choice and lineage commitment in vivo. Nature 2010; 466:1110-4. [PMID: 20686481 PMCID: PMC2933655 DOI: 10.1038/nature09264] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 06/07/2010] [Indexed: 02/07/2023]
Abstract
Mutation of the retinoblastoma gene (RB1) tumour suppressor occurs in one-third of all human tumours and is particularly associated with retinoblastoma and osteosarcoma. Numerous functions have been ascribed to the product of the human RB1 gene, the retinoblastoma protein (pRb). The best known is pRb's ability to promote cell-cycle exit through inhibition of the E2F transcription factors and the transcriptional repression of genes encoding cell-cycle regulators. In addition, pRb has been shown in vitro to regulate several transcription factors that are master differentiation inducers. Depending on the differentiation factor and cellular context, pRb can either suppress or promote their transcriptional activity. For example, pRb binds to Runx2 and potentiates its ability to promote osteogenic differentiation in vitro. In contrast, pRb acts with E2F to suppress peroxisome proliferator-activated receptor gamma subunit (PPAR-gamma), the master activator of adipogenesis. Because osteoblasts and adipocytes can both arise from mesenchymal stem cells, these observations suggest that pRb might play a role in the choice between these two fates. However, so far, there is no evidence for this in vivo. Here we use mouse models to address this hypothesis in mesenchymal tissue development and tumorigenesis. Our data show that Rb status plays a key role in establishing fate choice between bone and brown adipose tissue in vivo.
Collapse
Affiliation(s)
- Eliezer Calo
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
49
|
Nicolay BN, Bayarmagnai B, Moon NS, Benevolenskaya EV, Frolov MV. Combined inactivation of pRB and hippo pathways induces dedifferentiation in the Drosophila retina. PLoS Genet 2010; 6:e1000918. [PMID: 20421993 PMCID: PMC2858677 DOI: 10.1371/journal.pgen.1000918] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 03/22/2010] [Indexed: 01/23/2023] Open
Abstract
Functional inactivation of the Retinoblastoma (pRB) pathway is an early and obligatory event in tumorigenesis. The importance of pRB is usually explained by its ability to promote cell cycle exit. Here, we demonstrate that, independently of cell cycle exit control, in cooperation with the Hippo tumor suppressor pathway, pRB functions to maintain the terminally differentiated state. We show that mutations in the Hippo signaling pathway, wts or hpo, trigger widespread dedifferentiation of rbf mutant cells in the Drosophila eye. Initially, rbf wts or rbf hpo double mutant cells are morphologically indistinguishable from their wild-type counterparts as they properly differentiate into photoreceptors, form axonal projections, and express late neuronal markers. However, the double mutant cells cannot maintain their neuronal identity, dedifferentiate, and thus become uncommitted eye specific cells. Surprisingly, this dedifferentiation is fully independent of cell cycle exit defects and occurs even when inappropriate proliferation is fully blocked by a de2f1 mutation. Thus, our results reveal the novel involvement of the pRB pathway during the maintenance of a differentiated state and suggest that terminally differentiated Rb mutant cells are intrinsically prone to dedifferentiation, can be converted to progenitor cells, and thus contribute to cancer advancement.
Collapse
Affiliation(s)
- Brandon N. Nicolay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Battuya Bayarmagnai
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Nam Sung Moon
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Elizaveta V. Benevolenskaya
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
50
|
Pereira BP, Zhou Y, Gupta A, Leong DT, Aung KZ, Ling L, Pho RWH, Galindo M, Salto-Tellez M, Stein GS, Cool SM, van Wijnen AJ, Nathan SS. Runx2, p53, and pRB status as diagnostic parameters for deregulation of osteoblast growth and differentiation in a new pre-chemotherapeutic osteosarcoma cell line (OS1). J Cell Physiol 2009; 221:778-88. [PMID: 19746444 DOI: 10.1002/jcp.21921] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Osteosarcomas are the most prevalent primary bone tumors found in pediatric patients. To understand their molecular etiology, cell culture models are used to define disease mechanisms under controlled conditions. Many osteosarcoma cell lines (e.g., SAOS-2, U2OS, MG63) are derived from Caucasian patients. However, patients exhibit individual and ethnic differences in their responsiveness to irradiation and chemotherapy. This motivated the establishment of osteosarcoma cell lines (OS1, OS2, OS3) from three ethnically Chinese patients. OS1 cells, derived from a pre-chemotherapeutic tumor in the femur of a 6-year-old female, were examined for molecular markers characteristic for osteoblasts, stem cells, and cell cycle control by immunohistochemistry, reverse transcriptase-PCR, Western blotting and flow cytometry. OS1 have aberrant G-banded karyotypes, possibly reflecting chromosomal abnormalities related to p53 deficiency. OS1 had ossification profiles similar to human fetal osteoblasts rather than SAOS-2 which ossifies ab initio (P < 0.05). Absence of p53 correlates with increased Runx2 expression, while the slow proliferation of OS1 cells is perhaps attenuated by pRB retention. OS1 express mesenchymal stem cell markers (CD44, CD105) and differ in relative expression of CD29, CD63, and CD71 to SAOS-2. (P < 0.05). Cell cycle synchronization with nocodazole did not affect Runx2 and CDK1 levels but decreased cyclin-E and increased cyclin-A (P < 0.05). Xenotransplantion of OS1 in SCID mice yields spontaneous tumors that were larger and grew faster than SAOS-2 transplants. Hence, OS1 is a new osteosarcoma cell culture model derived from a pre-chemotherapeutic ethnic Chinese patient, for mechanistic studies and development of therapeutic strategies to counteract metastasis and deregulation of mesenchymal development.
Collapse
Affiliation(s)
- Barry P Pereira
- Department of Orthopaedic Surgery, Musculoskeletal Research Laboratories, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|