1
|
Turnham RE, Pitea A, Jang GM, Xu Z, Lim HC, Choi AL, Von Dollen J, Levin RS, Webber JT, McCarthy E, Hu J, Li X, Che L, Singh A, Yoon A, Chan G, Kelley RK, Swaney DL, Zhang W, Bandyopadhyay S, Theis FJ, Eckhardt M, Chen X, Shokat KM, Ideker T, Krogan NJ, Gordan JD. HBV Remodels PP2A Complexes to Rewire Kinase Signaling in Hepatocellular Carcinoma. Cancer Res 2025; 85:660-674. [PMID: 39652575 PMCID: PMC11949624 DOI: 10.1158/0008-5472.can-24-0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/09/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025]
Abstract
Hepatitis B virus (HBV) infections promote liver cancer initiation by inducing inflammation and cellular stress. Despite a primarily indirect effect on oncogenesis, HBV is associated with a recurrent genomic phenotype in hepatocellular carcinoma (HCC), suggesting that it impacts the biology of established HCC. Characterization of the interaction of HBV with host proteins and the mechanistic contributions of HBV to HCC initiation and maintenance could provide insights into HCC biology and uncover therapeutic vulnerabilities. In this study, we used affinity purification mass spectrometry to comprehensively map a network of 145 physical interactions between HBV and human proteins in HCC. A subset of the host factors targeted by HBV proteins were preferentially mutated in non-HBV-associated HCC, suggesting that their interaction with HBV influences HCC biology. HBV interacted with proteins involved in mRNA splicing, mitogenic signaling, and DNA repair, with the latter set interacting with the HBV oncoprotein X (HBx). HBx remodeled the PP2A phosphatase complex by excluding striatin regulatory subunits from the PP2A holoenzyme, and the HBx effects on PP2A caused Hippo kinase activation. In parallel, HBx activated mTOR complex 2, which can prevent YAP degradation. mTOR complex 2-mediated upregulation of YAP was observed in human HCC specimens and mouse HCC models and could be targeted with mTOR kinase inhibitors. Thus, HBV interaction with host proteins rewires HCC signaling rather than directly activating mitogenic pathways, providing an alternative paradigm for the cellular effects of a tumor-promoting virus. Significance: Integrative proteomic and genomic analysis of HBV/host interactions illuminated modifiers of hepatocellular carcinoma behavior and key signaling mechanisms in advanced disease, which suggested that HBV may have therapeutically actionable effects.
Collapse
Affiliation(s)
- Rigney E Turnham
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Adriana Pitea
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Gwendolyn M Jang
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Zhong Xu
- Department of Bioengineering, University of California, San Francisco CA
| | - Huat Chye Lim
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Alex L Choi
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - John Von Dollen
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Rebecca S. Levin
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - James T Webber
- Department of Bioengineering, University of California, San Francisco CA
| | - Elizabeth McCarthy
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Junjie Hu
- Department of Bioengineering, University of California, San Francisco CA
| | - Xiaolei Li
- Department of Bioengineering, University of California, San Francisco CA
| | - Li Che
- Department of Bioengineering, University of California, San Francisco CA
| | - Ananya Singh
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Alex Yoon
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Gary Chan
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| | - Robin K Kelley
- Division of Hematology/Oncology, University of California, San Francisco CA
| | - Danielle L Swaney
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
| | - Wei Zhang
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Fabian J Theis
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Manon Eckhardt
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA
| | - Xin Chen
- Department of Bioengineering, University of California, San Francisco CA
| | - Kevan M Shokat
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
- Howard Hughes Medical Institute, University of California, San Francisco CA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Nevan J Krogan
- Quantitative Biosciences Institute, University of California, San Francisco CA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA
| | - John D Gordan
- Division of Hematology/Oncology, University of California, San Francisco CA
- Quantitative Biosciences Institute, University of California, San Francisco CA
| |
Collapse
|
2
|
Kathleen W. Too many cooks in the kitchen: HPV driven carcinogenesis - The result of collaboration or competition? Tumour Virus Res 2024; 19:200311. [PMID: 39733972 PMCID: PMC11753912 DOI: 10.1016/j.tvr.2024.200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024] Open
Abstract
Infection by Human Papillomaviruses accounts for the most widespread sexually transmitted infection worldwide. Clinical presentation of these infections can range from subclinical and asymptomatic to anogenital cancers, with the latter associated with persistent infection over a significant period of time. Of the over 200 isotypes of the human virus identified, a subset of these has been characterized as high-risk due to their ability to induce oncogenesis. At the core of Papillomavirus pathogenesis sits three virally encoded oncoproteins: E5, E6, and E7. In this review we will discuss the respective roles of these proteins and how they contribute to carcinogenesis, evaluating key distinguishing features that separate them from their low-risk counterparts. Furthermore, we will consider the complex relationship between this trio and how their interwoven functional networks underpin the development of cancer.
Collapse
Affiliation(s)
- Weimer Kathleen
- IGBMC - CBI: Institut de génétique et de biologie moléculaire et cellulaire, Centre de biologie intégrative, 1 rue Laurent Fries, Illkirch-Graffenstaden, BP 10142, 67404, France.
| |
Collapse
|
3
|
Santa S, Kwofie SK, Agyenkwa-Mawuli K, Quaye O, Brown CA, Tagoe EA. Prediction of Human Papillomavirus-Host Oncoprotein Interactions Using Deep Learning. Bioinform Biol Insights 2024; 18:11779322241304666. [PMID: 39664297 PMCID: PMC11632871 DOI: 10.1177/11779322241304666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024] Open
Abstract
Background Human papillomavirus (HPV) causes disease through complex interactions between viral and host proteins, with the PI3K signaling pathway playing a key role. Proteins like AKT, IQGAP1, and MMP16 are involved in HPV-related cancer development. Traditional methods for studying protein-protein interactions (PPIs) are labor-intensive and time-consuming. Computational models are becoming more popular as they are less labor-intensive and often more efficient. This study aimed to develop a deep learning model to predict interactions between HPV and host proteins. Method To achieve this, available HPV and host protein interaction data was retrieved from the protocol of Eckhardt et al and used to train a Recurrent Neural Network algorithm. Training of the model was performed on the SPYDER (scientific python development environment) platform using python libraries; Scikit-learn, Pandas, NumPy, and TensorFlow. The data was split into training, validation, and testing sets in the ratio 7:1:2, respectively. After the training and validation, the model was then used to predict the possible interactions between HPV 31 and 18 E6 and E7, and host oncoproteins AKT, IQGAP1 and MMP16. Results The model showed good performance, with an MCC score of 0.7937 and all other metrics above 88%. The model predicted an interaction between E6 and E7 of both HPV types with AKT, while only HPV31 E7 was shown to interact with IQGAP1 and MMP16 with confidence scores of 0.9638 and 0.5793, respectively. Conclusion The current model strongly predicted HPVs E6 and E7 interactions with PI3K pathway, and the viral proteins may be involved in AKT activation, driving HPV-associated cancers. This model supports the robust prediction of interactomes for experimental validation.
Collapse
Affiliation(s)
- Sheila Santa
- Department of Biochemistry, Cell & Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Samuel Kojo Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kwasi Agyenkwa-Mawuli
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell & Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Charles A Brown
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Emmanuel A Tagoe
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Contreras M, Sobrino I, de la Fuente J. Paratransgenic quantum vaccinology. Trends Parasitol 2024; 40:1107-1114. [PMID: 39462754 DOI: 10.1016/j.pt.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Tick vaccines are an environmentally friendly intervention for the prevention and control of tick-borne diseases affecting humans and animals worldwide. From our perspective, the challenges in tick vaccinology have encouraged the implementation of new interventions. In this opinion article we propose paratransgenic quantum vaccinology as a new approach that integrates platform trends in biotechnology, such as omics datasets combined with big data analytics, machine learning, and paratransgenesis with a systems biology perspective. This innovative approach allows the identification of protective epitopes in tick- and/or pathogen-derived proteins for the design of chimeric vaccine candidate antigens which can be produced by commensal/symbiotic microorganisms eliciting a protective response in the host.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Isidro Sobrino
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
5
|
Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct Target Ther 2024; 9:175. [PMID: 39013849 PMCID: PMC11252281 DOI: 10.1038/s41392-024-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 07/18/2024] Open
Abstract
Traditional therapeutic approaches such as chemotherapy and radiation therapy have burdened cancer patients with onerous physical and psychological challenges. Encouragingly, the landscape of tumor treatment has undergone a comprehensive and remarkable transformation. Emerging as fervently pursued modalities are small molecule targeted agents, antibody-drug conjugates (ADCs), cell-based therapies, and gene therapy. These cutting-edge treatment modalities not only afford personalized and precise tumor targeting, but also provide patients with enhanced therapeutic comfort and the potential to impede disease progression. Nonetheless, it is acknowledged that these therapeutic strategies still harbour untapped potential for further advancement. Gaining a comprehensive understanding of the merits and limitations of these treatment modalities holds the promise of offering novel perspectives for clinical practice and foundational research endeavours. In this review, we discussed the different treatment modalities, including small molecule targeted drugs, peptide drugs, antibody drugs, cell therapy, and gene therapy. It will provide a detailed explanation of each method, addressing their status of development, clinical challenges, and potential solutions. The aim is to assist clinicians and researchers in gaining a deeper understanding of these diverse treatment options, enabling them to carry out effective treatment and advance their research more efficiently.
Collapse
Affiliation(s)
- Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Hongyu Zhou
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Licheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Kin To Hugo Siu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Zou J, Zhang Y, Pan Y, Mao Z, Chen X. Advancing nanotechnology for neoantigen-based cancer theranostics. Chem Soc Rev 2024; 53:3224-3252. [PMID: 38379286 DOI: 10.1039/d3cs00162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neoantigens play a pivotal role in the field of tumour therapy, encompassing the stimulation of anti-tumour immune response and the enhancement of tumour targeting capability. Nonetheless, numerous factors directly influence the effectiveness of neoantigens in bolstering anti-tumour immune responses, including neoantigen quantity and specificity, uptake rates by antigen-presenting cells (APCs), residence duration within the tumour microenvironment (TME), and their ability to facilitate the maturation of APCs for immune response activation. Nanotechnology assumes a significant role in several aspects, including facilitating neoantigen release, promoting neoantigen delivery to antigen-presenting cells, augmenting neoantigen uptake by dendritic cells, shielding neoantigens from protease degradation, and optimizing interactions between neoantigens and the immune system. Consequently, the development of nanotechnology synergistically enhances the efficacy of neoantigens in cancer theranostics. In this review, we provide an overview of neoantigen sources, the mechanisms of neoantigen-induced immune responses, and the evolution of precision neoantigen-based nanomedicine. This encompasses various therapeutic modalities, such as neoantigen-based immunotherapy, phototherapy, radiotherapy, chemotherapy, chemodynamic therapy, and other strategies tailored to augment precision in cancer therapeutics. We also discuss the current challenges and prospects in the application of neoantigen-based precision nanomedicine, aiming to expedite its clinical translation.
Collapse
Affiliation(s)
- Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yu Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yuanbo Pan
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumour of Zhejiang Province, Hangzhou, Zhejiang 310009, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
7
|
Wang B, Vartak R, Zaltsman Y, Naing ZZC, Hennick KM, Polacco BJ, Bashir A, Eckhardt M, Bouhaddou M, Xu J, Sun N, Lasser MC, Zhou Y, McKetney J, Guiley KZ, Chan U, Kaye JA, Chadha N, Cakir M, Gordon M, Khare P, Drake S, Drury V, Burke DF, Gonzalez S, Alkhairy S, Thomas R, Lam S, Morris M, Bader E, Seyler M, Baum T, Krasnoff R, Wang S, Pham P, Arbalaez J, Pratt D, Chag S, Mahmood N, Rolland T, Bourgeron T, Finkbeiner S, Swaney DL, Bandyopadhay S, Ideker T, Beltrao P, Willsey HR, Obernier K, Nowakowski TJ, Hüttenhain R, State MW, Willsey AJ, Krogan NJ. A foundational atlas of autism protein interactions reveals molecular convergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.03.569805. [PMID: 38076945 PMCID: PMC10705567 DOI: 10.1101/2023.12.03.569805] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Translating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional regulation, and chromatin modification. A PPI map of 54 patient-derived missense variants identified differential physical interactions, and we leveraged AlphaFold-Multimer predictions to prioritize direct PPIs and specific variants for interrogation in Xenopus tropicalis and human forebrain organoids. A mutation in the transcription factor FOXP1 led to reconfiguration of DNA binding sites and altered development of deep cortical layer neurons in forebrain organoids. This work offers new insights into molecular mechanisms underlying ASD and describes a powerful platform to develop and test therapeutic strategies for many genetically-defined conditions.
Collapse
|
8
|
Olwal CO, Fabius JM, Zuliani-Alvarez L, Eckhardt M, Kyei GB, Quashie PK, Krogan NJ, Bouhaddou M, Bediako Y. Network modeling suggests HIV infection phenocopies PI3K-AKT pathway mutations to enhance HPV-associated cervical cancer. Mol Omics 2023; 19:538-551. [PMID: 37204043 PMCID: PMC10524288 DOI: 10.1039/d3mo00025g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Women coinfected with human immunodeficiency virus type 1 (HIV-1) and human papillomavirus (HPV) are six times as likely to develop invasive cervical carcinoma compared to those without HIV. Unlike other HIV-associated cancers, the risk of cervical cancer development does not change when HPV/HIV coinfected women begin antiretroviral therapy, suggesting HIV-associated immune suppression is not a key driver of cervical cancer development in coinfected women. Here, we investigated whether the persistent secretion of inflammatory factors in HIV-positive patients on antiretroviral therapy could enhance cancer signaling in HPV-infected cervical cells via endocrine mechanisms. We integrated previously reported HIV-induced secreted inflammatory factors (Hi-SIFs), HIV and HPV virus-human protein interactions, and cervical cancer patient genomic data using network propagation to understand the pathways underlying disease development in HPV/HIV coinfection. Our results pinpointed the PI3K-AKT signaling pathway to be enriched at the interface between Hi-SIFs and HPV-host molecular networks, in alignment with PI3K pathway mutations being prominent drivers of HPV-associated, but HIV independent, cervical cancer development. Furthermore, we experimentally stimulated cervical cells with 14 Hi-SIFs to assess their ability to activate PI3K-AKT signaling. Strikingly, we found 8 factors (CD14, CXCL11, CXCL9, CXCL13, CXCL17, AHSG, CCL18, and MMP-1) to significantly upregulate AKT phosphorylation (pAKT-S473) relative to a phosphate buffered saline control. Our findings suggest that Hi-SIFs cooperate with HPV infection in cervical cells to over-activate PI3K-AKT signaling, effectively phenocopying PI3K-AKT pathway mutations, resulting in enhanced cervical cancer development in coinfected women. Our insights could support the design of therapeutic interventions targeting the PI3K-AKT pathway or neutralizing Hi-SIFs in HPV/HIV coinfected cervical cancer patients.
Collapse
Affiliation(s)
- Charles Ochieng' Olwal
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Jacqueline M Fabius
- The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Lorena Zuliani-Alvarez
- The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Manon Eckhardt
- The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - George Boateng Kyei
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- University of Ghana Medical Centre, University of Ghana, Accra, Ghana
| | - Peter Kojo Quashie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.
| | - Nevan J Krogan
- The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Mehdi Bouhaddou
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- Institute for Quantitative and Computational Biosciences (QCBio), University of California, Los Angeles, LA, USA
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, LA, USA.
- Molecular Biology Institute, University of California, Los Angeles, LA, USA
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.
- Yemaachi Biotech, Accra, Ghana
| |
Collapse
|
9
|
Amin FAS, Un Naher Z, Ali PSS. Molecular markers predicting the progression and prognosis of human papillomavirus-induced cervical lesions to cervical cancer. J Cancer Res Clin Oncol 2023; 149:8077-8086. [PMID: 37000261 DOI: 10.1007/s00432-023-04710-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Persistent Human Papillomavirus (HPV) infection is linked to 99% of cervical cancer (CC) cases. HPV types 16 and 18 alone result in 75% of CC cases and thus are considered to be high-risk types (HR-HPV). CC is the third most common cancer among women globally. Approximately, 7000 patients die from it yearly. It is worthy to note that not every patient with HPV precancerous lesions will progress to CC. OBJECTIVES The objectives of this review is to explore the utilization of molecular and viral biomarkers as a tool for early detection and prediction of HPV-induced cervical lesions that might progress to CC. METHODS The data bases PubMed, Google Scholar, EBSCO were searched using keywords CC screening, HPV, and recent molecular biomarkers. The search time frame was within the last 7 years. Studies on HPV-induced cancers other than CC were excluded; a total of 200 eligible articles were retrieved. RESULTS In this review we explored the current literature about HPV virology, virulence genes and early diagnostic/prognostic molecular biomarkers in CC. The oncogenic property of HPV is attributed to viral expression of various early proteins (E5, E6, E7). The interaction between viral oncoproteins and the cellular genetic apparatus alters the expression of many genes at different phases of the disease. There was an association between cervical lesions induced by HR-HPV and the overexpression of markers of oxidative DNA damage and other proteins. The markers p16INK4a, programmed cell death-1 (PD-1)/programmed cell death ligand 1, mismatch repair enzymes (MMR), miRNA-377, claudin family (CLDN) are dysregulated and are associated with high risk lesions. Furthermore, advanced older cervical lesions were associated with high methylation levels and higher risk to progress to CC. CONCLUSION Adding different the above markers to the CC screening program scheme might offer a triage for prioritizing patient management.
Collapse
Affiliation(s)
| | - Zeba Un Naher
- School of Medicine, Maldives National University, Male', Maldives
| | - P Shaik Syed Ali
- School of Medicine, Maldives National University, Male', Maldives
| |
Collapse
|
10
|
Stein CM. Genetic epidemiology of resistance to M. tuberculosis Infection: importance of study design and recent findings. Genes Immun 2023; 24:117-123. [PMID: 37085579 PMCID: PMC10121418 DOI: 10.1038/s41435-023-00204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Resistance to M. tuberculosis, often referred to as "RSTR" in the literature, is being increasingly studied because of its potential relevance as a clinical outcome in vaccine studies. This review starts by addressing the importance of epidemiological characterization of this phenotype, and ongoing challenges in that characterization. Then, this review summarizes the extant genetic and genomic studies of this phenotype, including heritability studies, candidate gene studies, and genome-wide association studies, as well as whole transcriptome studies. Findings from recent studies that used longitudinal characterization of the RSTR phenotype are compared to those using a cross-sectional definition, and the challenges of using tuberculin skin test and interferon-gamma release assay are discussed. Finally, future directions are proposed. Since this is a rapidly evolving area of public health significance, this review will help frame future research questions and study designs.
Collapse
Affiliation(s)
- Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
11
|
The Impact of YRNAs on HNSCC and HPV Infection. Biomedicines 2023; 11:biomedicines11030681. [PMID: 36979661 PMCID: PMC10045647 DOI: 10.3390/biomedicines11030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
HPV infection is one of the most important risk factors for head and neck squamous cell carcinoma among younger patients. YRNAs are short non-coding RNAs involved in DNA replication. YRNAs have been found to be dysregulated in many cancers, including head and neck squamous cell carcinoma (HNSCC). In this study, we investigated the role of YRNAs in HPV-positive HNSCC using publicly available gene expression datasets from HNSCC tissue, where expression patterns of YRNAs in HPV(+) and HPV(−) HNSCC samples significantly differed. Additionally, HNSCC cell lines were treated with YRNA1-overexpressing plasmid and RNA derived from these cell lines was used to perform a NGS analysis. Additionally, a deconvolution analysis was performed to determine YRNA1’s impact on immune cells. YRNA expression levels varied according to cancer pathological and clinical stages, and correlated with more aggressive subtypes. YRNAs were mostly associated with more advanced cancer stages in the HPV(+) group, and YRNA3 and YRNA1 expression levels were found to be correlated with more advanced clinical stages despite HPV infection status, showing that they may function as potential biomarkers of more advanced stages of the disease. YRNA5 was associated with less-advanced cancer stages in the HPV(−) group. Overall survival and progression-free survival analyses showed opposite results between the HPV groups. The expression of YRNAs, especially YRNA1, correlated with a vast number of proteins and cellular processes associated with viral infections and immunologic responses to viruses. HNSCC-derived cell lines overexpressing YRNA1 were then used to determine the correlation of YRNA1 and the expression of genes associated with HPV infections. Taken together, our results highlight the potential of YRNAs as possible HNSCC biomarkers and new molecular targets.
Collapse
|
12
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 360] [Impact Index Per Article: 180.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
13
|
Ishii Y, Mori S, Kukimoto I. [Identification of new host factors supporting the human papillomavirus life cycle]. Uirusu 2023; 73:189-198. [PMID: 39343554 DOI: 10.2222/jsv.73.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
|
14
|
Tang K, Tang J, Zeng J, Shen W, Zou M, Zhang C, Sun Q, Ye X, Li C, Sun C, Liu S, Jiang G, Du X. A network view of human immune system and virus-human interaction. Front Immunol 2022; 13:997851. [PMID: 36389817 PMCID: PMC9643829 DOI: 10.3389/fimmu.2022.997851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
The immune system is highly networked and complex, which is continuously changing as encountering old and new pathogens. However, reductionism-based researches do not give a systematic understanding of the molecular mechanism of the immune response and viral pathogenesis. Here, we present HUMPPI-2022, a high-quality human protein-protein interaction (PPI) network, containing > 11,000 protein-coding genes with > 78,000 interactions. The network topology and functional characteristics analyses of the immune-related genes (IRGs) reveal that IRGs are mostly located in the center of the network and link genes of diverse biological processes, which may reflect the gene pleiotropy phenomenon. Moreover, the virus-human interactions reveal that pan-viral targets are mostly hubs, located in the center of the network and enriched in fundamental biological processes, but not for coronavirus. Finally, gene age effect was analyzed from the view of the host network for IRGs and virally-targeted genes (VTGs) during evolution, with IRGs gradually became hubs and integrated into host network through bridging functionally differentiated modules. Briefly, HUMPPI-2022 serves as a valuable resource for gaining a better understanding of the composition and evolution of human immune system, as well as the pathogenesis of viruses.
Collapse
Affiliation(s)
- Kang Tang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jing Tang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jinfeng Zeng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Wei Shen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Min Zou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Chi Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qianru Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Ye
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Siyang Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Guozhi Jiang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiangjun Du,
| |
Collapse
|
15
|
Vikramdeo KS, Anand S, Pierce JY, Singh AP, Singh S, Dasgupta S. Distribution of microbiota in cervical preneoplasia of racially disparate populations. BMC Cancer 2022; 22:1074. [PMID: 36258167 PMCID: PMC9578267 DOI: 10.1186/s12885-022-10112-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUNDS Microbiome dysbiosis is an important contributing factor in tumor development and thus may be a risk predictor for human malignancies. In the United States, women with Hispanic/Latina (HIS) and African American (AA) background have a higher incidence of cervical cancer and poorer outcomes than Caucasian American (CA) women. METHODS Here, we assessed the distribution pattern of microbiota in cervical intraepithelial neoplasia (CIN) lesions obtained from HIS (n = 12), AA (n = 12), and CA (n = 12) women, who were screened for CC risk assessment. We employed a 16S rRNA gene sequencing approach adapted from the NIH-Human Microbiome Project to identify the microbial niche in all CIN lesions (n = 36). RESULTS We detected an appreciably decreased abundance of beneficial Lactobacillus in the CIN lesions of the AA and HIS women compared to the CA women. Differential abundance of potentially pathogenic Prevotella, Delftia, Gardnerella, and Fastidiosipila was also evident among the various racial groups. An increased abundance of Micrococcus was also evident in AA and HIS women compared to the CA women. The detection level of Rhizobium was higher among the AA ad CA women compared to the HIS women. In addition to the top 10 microbes, a unique niche of 27 microbes was identified exclusively in women with a histopathological diagnosis of CIN. Among these microbes, a group of 8 microbiota; Rubellimicrobium, Podobacter, Brevibacterium, Paracoccus, Atopobium, Brevundimonous, Comamonous, and Novospingobium was detected only in the CIN lesions obtained from AA and CA women. CONCLUSIONS Microbial dysbiosis in the cervical epithelium represented by an increased ratio of potentially pathogenic to beneficial microbes may be associated with increased CC risk disparities. Developing a race-specific reliable panel of microbial markers could be beneficial for CC risk assessment, disease prevention, and/or therapeutic guidance.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Shashi Anand
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | | | - Ajay Pratap Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Santanu Dasgupta
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
- Department of Pathology, College of Medicine, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA.
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
16
|
Identification of the effects of COVID-19 on patients with pulmonary fibrosis and lung cancer: a bioinformatics analysis and literature review. Sci Rep 2022; 12:16040. [PMID: 36163484 PMCID: PMC9512912 DOI: 10.1038/s41598-022-20040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) poses a serious threat to human health and life. The effective prevention and treatment of COVID-19 complications have become crucial to saving patients’ lives. During the phase of mass spread of the epidemic, a large number of patients with pulmonary fibrosis and lung cancers were inevitably infected with the SARS-CoV-2 virus. Lung cancers have the highest tumor morbidity and mortality rates worldwide, and pulmonary fibrosis itself is one of the complications of COVID-19. Idiopathic lung fibrosis (IPF) and various lung cancers (primary and metastatic) become risk factors for complications of COVID-19 and significantly increase mortality in patients. Therefore, we applied bioinformatics and systems biology approaches to identify molecular biomarkers and common pathways in COVID-19, IPF, colorectal cancer (CRC) lung metastasis, SCLC and NSCLC. We identified 79 DEGs between COVID-19, IPF, CRC lung metastasis, SCLC and NSCLC. Meanwhile, based on the transcriptome features of DSigDB and common DEGs, we identified 10 drug candidates. In this study, 79 DEGs are the common core genes of the 5 diseases. The 10 drugs were found to have positive effects in treating COVID-19 and lung cancer, potentially reducing the risk of pulmonary fibrosis.
Collapse
|
17
|
Fu M, Liu Y, Wang G, Wang P, Zhang J, Chen C, Zhao M, Zhang S, Jiao J, Ouyang X, Yu Y, Wen B, He C, Wang J, Zhou D, Xiong X. A protein–protein interaction map reveals that the Coxiella burnetii effector CirB inhibits host proteasome activity. PLoS Pathog 2022; 18:e1010660. [PMID: 35816513 PMCID: PMC9273094 DOI: 10.1371/journal.ppat.1010660] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
Coxiella burnetii is the etiological agent of the zoonotic disease Q fever, which is featured by its ability to replicate in acid vacuoles resembling the lysosomal network. One key virulence determinant of C. burnetii is the Dot/Icm system that transfers more than 150 effector proteins into host cells. These effectors function to construct the lysosome-like compartment permissive for bacterial replication, but the functions of most of these effectors remain elusive. In this study, we used an affinity tag purification mass spectrometry (AP-MS) approach to generate a C. burnetii-human protein-protein interaction (PPI) map involving 53 C. burnetii effectors and 3480 host proteins. This PPI map revealed that the C. burnetii effector CBU0425 (designated CirB) interacts with most subunits of the 20S core proteasome. We found that ectopically expressed CirB inhibits hydrolytic activity of the proteasome. In addition, overexpression of CirB in C. burnetii caused dramatic inhibition of proteasome activity in host cells, while knocking down CirB expression alleviated such inhibitory effects. Moreover, we showed that a region of CirB that spans residues 91–120 binds to the proteasome subunit PSMB5 (beta 5). Finally, PSMB5 knockdown promotes C. burnetii virulence, highlighting the importance of proteasome activity modulation during the course of C. burnetii infection. As the causative agent of Q fever, C. burnetii colonizes host cells by transferring effector proteins into the host cytoplasm through its Dot/Icm secretion system to construct a replicative vacuole. The function of effectors remains largely unknown. Here, we performed a large-scale AP-MS screen to analyze the interactions among C. burnetii effectors and human proteins. These analyses found that CirB functions as an inhibitor of host proteasome activity, revealing that proteasome activity is important for intracellular survival of C. burnetii. Our data have laid the foundation for future exploring the molecular mechanisms underlying the roles of C. burnetii effectors in its virulence and for the identification of novel potential drug targets for the development of novel therapeutic treatment for C. burnetii infection.
Collapse
Affiliation(s)
- Mengjiao Fu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Yuchen Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Guannan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Jianing Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Chen Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Mingliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Shan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Xuan Ouyang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
- * E-mail: , (DZ); (XX)
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
- * E-mail: , (DZ); (XX)
| |
Collapse
|
18
|
Tang Y, Chen Q, Chen J, Mo Z, Li H, Peng L, Ke Y, Liang B, Li R, Zhu H. Green Tea Polyphenols Cause Apoptosis and Autophagy in HPV-16 Subgene-Immortalized Human Cervical Epithelial Cells via the Activation of the Nrf2 Pathway. Nutr Cancer 2022; 74:3769-3778. [PMID: 35770917 DOI: 10.1080/01635581.2022.2093922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Infection with human papillomavirus (HPV) is relatively common and certain high-risk HPV strains can induce epithelial dysplasia, increasing the risk of cervical cancer. Green tea polyphenol (GTP) preparations exhibit diverse anti-inflammatory, antioxidative, and antitumor properties In Vitro and In Vivo. Topical GTP application has been recommended as a treatment for genital warts, but the effect of GTP treatment on HPV infection and HPV-associated cancer remains to be established. The present study aimed to explore the mechanism by which GTP affected HPV type 16 (HPV-16)-positive immortalized human cervical epithelial cells. Survival, apoptosis, and autophagocytosis of these cells following GTP treatment was assessed using CCK-8 assay, flow cytometry, and monodansylcadaverine (MDC) staining. These cells were further transfected with an shRNA specific for Nrf2 to generate stable Nrf2-knockdown cells. The levels of Caspase-3, Bcl-2, Bax, P53, Rb, HPV-16 E6, HPV-16 E7, P62, Beclin1 and LC3B were determined via Western blotting. These analyses revealed that GTP treatment induced autophagy and apoptosis in HPV-16-positive cells, while Nrf2 gene knockdown reversed GTP-induced autophagic and apoptotic effects. Together, these results suggested that GTP could alleviate HPV infection and HPV-associated precancerous lesions In Vitro by regulating the Nrf2 pathway, highlighting the therapeutic potential of GTP in treating HPV infection.
Collapse
Affiliation(s)
- Yi Tang
- Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Quan Chen
- Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jiaoquan Chen
- Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ziyin Mo
- Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Dermatology Department, Guangzhou Red Cross Hospital, Guangzhou, Guangdong Province, China
| | - Huaping Li
- Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Liqian Peng
- Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yanan Ke
- Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Bihua Liang
- Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Runxiang Li
- Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Huilan Zhu
- Guangzhou Medical University, Guangzhou, Guangdong Province, China.,Guangzhou Institute of Dermatology, Guangzhou, Guangdong Province, China.,Institute of Dermatology, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
Vali-Pour M, Park S, Espinosa-Carrasco J, Ortiz-Martínez D, Lehner B, Supek F. The impact of rare germline variants on human somatic mutation processes. Nat Commun 2022; 13:3724. [PMID: 35764656 PMCID: PMC9240060 DOI: 10.1038/s41467-022-31483-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/17/2022] [Indexed: 02/07/2023] Open
Abstract
Somatic mutations are an inevitable component of ageing and the most important cause of cancer. The rates and types of somatic mutation vary across individuals, but relatively few inherited influences on mutation processes are known. We perform a gene-based rare variant association study with diverse mutational processes, using human cancer genomes from over 11,000 individuals of European ancestry. By combining burden and variance tests, we identify 207 associations involving 15 somatic mutational phenotypes and 42 genes that replicated in an independent data set at a false discovery rate of 1%. We associate rare inherited deleterious variants in genes such as MSH3, EXO1, SETD2, and MTOR with two phenotypically different forms of DNA mismatch repair deficiency, and variants in genes such as EXO1, PAXIP1, RIF1, and WRN with deficiency in homologous recombination repair. In addition, we identify associations with other mutational processes, such as APEX1 with APOBEC-signature mutagenesis. Many of the genes interact with each other and with known mutator genes within cellular sub-networks. Considered collectively, damaging variants in the identified genes are prevalent in the population. We suggest that rare germline variation in diverse genes commonly impacts mutational processes in somatic cells.
Collapse
Affiliation(s)
- Mischan Vali-Pour
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Solip Park
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Jose Espinosa-Carrasco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Daniel Ortiz-Martínez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
20
|
Precision Medicine in Head and Neck Cancers: Genomic and Preclinical Approaches. J Pers Med 2022; 12:jpm12060854. [PMID: 35743639 PMCID: PMC9224778 DOI: 10.3390/jpm12060854] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancers (HNCs) represent the sixth most widespread malignancy worldwide. Surgery, radiotherapy, chemotherapeutic and immunotherapeutic drugs represent the main clinical approaches for HNC patients. Moreover, HNCs are characterised by an elevated mutational load; however, specific genetic mutations or biomarkers have not yet been found. In this scenario, personalised medicine is showing its efficacy. To study the reliability and the effects of personalised treatments, preclinical research can take advantage of next-generation sequencing and innovative technologies that have been developed to obtain genomic and multi-omic profiles to drive personalised treatments. The crosstalk between malignant and healthy components, as well as interactions with extracellular matrices, are important features which are responsible for treatment failure. Preclinical research has constantly implemented in vitro and in vivo models to mimic the natural tumour microenvironment. Among them, 3D systems have been developed to reproduce the tumour mass architecture, such as biomimetic scaffolds and organoids. In addition, in vivo models have been changed over the last decades to overcome problems such as animal management complexity and time-consuming experiments. In this review, we will explore the new approaches aimed to improve preclinical tools to study and apply precision medicine as a therapeutic option for patients affected by HNCs.
Collapse
|
21
|
Shah PS, Beesabathuni NS, Fishburn AT, Kenaston MW, Minami SA, Pham OH, Tucker I. Systems Biology of Virus-Host Protein Interactions: From Hypothesis Generation to Mechanisms of Replication and Pathogenesis. Annu Rev Virol 2022; 9:397-415. [PMID: 35576593 PMCID: PMC10150767 DOI: 10.1146/annurev-virology-100520-011851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As obligate intracellular parasites, all viruses must co-opt cellular machinery to facilitate their own replication. Viruses often co-opt these cellular pathways and processes through physical interactions between viral and host proteins. In addition to facilitating fundamental aspects of virus replication cycles, these virus-host protein interactions can also disrupt physiological functions of host proteins, causing disease that can be advantageous to the virus or simply a coincidence. Consequently, unraveling virus-host protein interactions can serve as a window into molecular mechanisms of virus replication and pathogenesis. Identifying virus-host protein interactions using unbiased systems biology approaches provides an avenue for hypothesis generation. This review highlights common systems biology approaches for identification of virus-host protein interactions and the mechanistic insights revealed by these methods. We also review conceptual innovations using comparative and integrative systems biology that can leverage global virus-host protein interaction data sets to more rapidly move from hypothesis generation to mechanism. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Priya S Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA; .,Department of Chemical Engineering, University of California, Davis, California, USA
| | - Nitin S Beesabathuni
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Adam T Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA;
| | - Matthew W Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA;
| | - Shiaki A Minami
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Oanh H Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA;
| | - Inglis Tucker
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA;
| |
Collapse
|
22
|
High Risk-Human Papillomavirus in HNSCC: Present and Future Challenges for Epigenetic Therapies. Int J Mol Sci 2022; 23:ijms23073483. [PMID: 35408843 PMCID: PMC8998945 DOI: 10.3390/ijms23073483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is a highly heterogeneous group of tumors characterized by an incidence of 650,000 new cases and 350,000 deaths per year worldwide and a male to female ratio of 3:1. The main risk factors are alcohol and tobacco consumption and Human Papillomavirus (HPV) infections. HNSCC cases are divided into two subgroups, the HPV-negative (HPV−) and the HPV-positive (HPV+) which have different clinicopathological and molecular profiles. However, patients are still treated with the same therapeutic regimens. It is thus of utmost importance to characterize the molecular mechanisms underlying these differences to find new biomarkers and novel therapeutic targets towards personalized therapies. Epigenetic alterations are a hallmark of cancer and can be exploited as both promising biomarkers and potential new targets. E6 and E7 HPV oncoviral proteins besides targeting p53 and pRb, impair the expression and the activity of several epigenetic regulators. While alterations in DNA methylation patterns have been well described in HPV+ and HPV− HNSCC, accurate histone post-translational modifications (hPTMs) characterization is still missing. Herein, we aim to provide an updated overview on the impact of HPV on the hPTMs landscape in HNSCC. Moreover, we will also discuss the sex and gender bias in HNSCC and how the epigenetic machinery could be involved in this process, and the importance of taking into account sex and/or gender also in this field.
Collapse
|
23
|
Ekanayake Weeramange C, Shu D, Tang KD, Batra J, Ladwa R, Kenny L, Vasani S, Frazer IH, Dolcetti R, Ellis JJ, Sturm RA, Leo P, Punyadeera C. Analysis of human leukocyte antigen associations in human papillomavirus-positive and -negative head and neck cancer: Comparison with cervical cancer. Cancer 2022; 128:1937-1947. [PMID: 35176174 PMCID: PMC9306518 DOI: 10.1002/cncr.34148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/08/2022]
Abstract
Background Although the majority of human papillomavirus (HPV) infections are cleared by the immune system, a small percentage of them progress to develop HPV‐driven cancers. Cervical cancer studies highlight that HPV persistence and cancer risk are associated with genetic factors, especially at the human leukocyte antigen (HLA) genes. This study was conducted to investigate such associations in head and neck cancer (HNC). Methods In all, 192 patients with HNC and 384 controls were genotyped with the Infinium Global Screening Array (Illumina, Inc). HLA variants were imputed with SNP2HLA, and an association analysis was performed by logistic regression. Results HPV‐positive HNCs were significantly associated with single‐nucleotide polymorphisms (SNPs) at DRB1_32660090 (P = 1.728 × 10–6) and DRB1_32660116 (P = 1.728 × 10–6) and with the amino acid variant DRB1_11_32660115 (P = 1.728 × 10–6). None of these associations were observed in the HPV‐negative cohort, and this suggested their specificity to convey risk for HPV‐associated HNCs. In general, associations observed for HPV‐negative HNC were relatively weak, and variants in the HLA‐DPA1 region were the strongest among them (P = 4.531 × 10–4). Several lead signals reported by previous HNC genome‐wide association studies, including SNPs rs3135001 (P = .012), rs1049055 (P = .012), and rs34518860 (P = .029) and allele HLA‐DQB1*06 (P = .009), were replicated in the current study. However, these associations were limited to the HPV‐positive HNC group. Several cervical cancer–associated HLA variants, including SNPs rs9272143 (P = .002) and rs9271858 (P = .002) and alleles HLA‐B‐1501 (P = .009) and HLA‐B‐15 (P = .015), were also exclusively associated with HPV‐positive HNC. Conclusions HPV‐positive HNC risk is associated with distinct HLA variants, and some of them are shared by both cervical cancer and HPV‐positive HNC. Human papillomavirus (HPV)–positive head and neck cancer (HNC) risk is associated with distinct human leukocyte antigen variants, and some of them are shared by both cervical cancer and HPV‐positive HNC. Lay Summary Cervical cancer studies highlight that human papillomavirus (HPV)–driven cancer risk is linked with human leukocyte antigen (HLA) polymorphism. Hence, the current study was designed to investigate the HLA associations in HPV‐positive and HPV‐negative head and neck cancer (HNC) and compare these associations with cervical cancer. Several lead signals reported by previous HNC and cervical genome‐wide association studies were replicated in the current study. However, these associations were limited to the HPV‐positive HNC group, and this suggests that HPV‐positive HNC risk is associated with distinct HLA variants, and some of them are shared by both cervical cancer and HPV‐positive HNC.
Collapse
Affiliation(s)
- Chameera Ekanayake Weeramange
- Centre for Biomedical Technologies, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery and Menzies Health Institute Queensland, Southport, Queensland, Australia.,Translational Research Institute, Woolloongabba, Queensland, Australia.,Department of Medical Laboratory Sciences, Faculty of Health Sciences, Open University of Sri Lanka, Nugegoda, Sri Lanka
| | - Danhua Shu
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Translational Research Institute, Woolloongabba, Queensland, Australia.,Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kai Dun Tang
- Centre for Biomedical Technologies, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jyotsna Batra
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Rahul Ladwa
- Department of Cancer Care Services, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.,Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Lizbeth Kenny
- Faculty of Medicine, University of Queensland, Herston, Queensland, Australia.,Department of Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Sarju Vasani
- Faculty of Medicine, University of Queensland, Herston, Queensland, Australia.,Department of Otolaryngology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Ian H Frazer
- Translational Research Institute, Woolloongabba, Queensland, Australia.,Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Riccardo Dolcetti
- Faculty of Medicine, University of Queensland, Herston, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan J Ellis
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Translational Research Institute, Woolloongabba, Queensland, Australia.,Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Richard A Sturm
- Diamantina Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Paul Leo
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Translational Research Institute, Woolloongabba, Queensland, Australia.,Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Chamindie Punyadeera
- Centre for Biomedical Technologies, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery and Menzies Health Institute Queensland, Southport, Queensland, Australia.,Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
24
|
Sharifi Tabar M, Francis H, Yeo D, Bailey CG, Rasko JEJ. Mapping oncogenic protein interactions for precision medicine. Int J Cancer 2022; 151:7-19. [PMID: 35113472 PMCID: PMC9306658 DOI: 10.1002/ijc.33954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/10/2022]
Abstract
Normal protein‐protein interactions (normPPIs) occur with high fidelity to regulate almost every physiological process. In cancer, this highly organised and precisely regulated network is disrupted, hijacked or reprogrammed resulting in oncogenic protein‐protein interactions (oncoPPIs). OncoPPIs, which can result from genomic alterations, are a hallmark of many types of cancers. Recent technological advances in the field of mass spectrometry (MS)‐based interactomics, structural biology and drug discovery have prompted scientists to identify and characterise oncoPPIs. Disruption of oncoPPI interfaces has become a major focus of drug discovery programs and has resulted in the use of PPI‐specific drugs clinically. However, due to several technical hurdles, studies to build a reference oncoPPI map for various cancer types have not been undertaken. Therefore, there is an urgent need for experimental workflows to overcome the existing challenges in studying oncoPPIs in various cancers and to build comprehensive reference maps. Here, we discuss the important hurdles for characterising oncoPPIs and propose a three‐phase multidisciplinary workflow to identify and characterise oncoPPIs. Systematic identification of cancer‐type‐specific oncogenic interactions will spur new opportunities for PPI‐focused drug discovery projects and precision medicine.
Collapse
Affiliation(s)
- Mehdi Sharifi Tabar
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Habib Francis
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Dannel Yeo
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia.,Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia.,Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
| |
Collapse
|
25
|
Trembley JH, Li B, Kren BT, Peltola J, Manivel J, Meyyappan D, Gravely A, Klein M, Ahmed K, Caicedo-Granados E. Identification of high protein kinase CK2α in HPV(+) oropharyngeal squamous cell carcinoma and correlation with clinical outcomes. PeerJ 2022; 9:e12519. [PMID: 34993017 PMCID: PMC8675248 DOI: 10.7717/peerj.12519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
Background Oropharyngeal squamous cell carcinoma (OPSCC) incidence is rising worldwide, especially human papillomavirus (HPV)-associated disease. Historically, high levels of protein kinase CK2 were linked with poor outcomes in head and neck squamous cell carcinoma (HNSCC), without consideration of HPV status. This retrospective study examined tumor CK2α protein expression levels and related clinical outcomes in a cohort of Veteran OPSCC patient tumors which were determined to be predominantly HPV(+). Methods Patients at the Minneapolis VA Health Care System with newly diagnosed primary OPSCC from January 2005 to December 2015 were identified. A total of 119 OPSCC patient tumors were stained for CK2α, p16 and Ki-67 proteins and E6/E7 RNA. CK2α protein levels in tumors and correlations with HPV status and Ki-67 index were assessed. Overall survival (OS) analysis was performed stratified by CK2α protein score and separately by HPV status, followed by Cox regression controlling for smoking status. To strengthen the limited HPV(−) data, survival analysis for HPV(−) HNSCC patients in the publicly available The Cancer Genome Atlas (TCGA) PanCancer RNA-seq dataset was determined for CSNK2A1. Results The patients in the study population were all male and had a predominant history of tobacco and alcohol use. This cohort comprised 84 HPV(+) and 35 HPV(−) tumors. CK2α levels were higher in HPV(+) tumors compared to HPV(−) tumors. Higher CK2α scores positively correlated with higher Ki-67 index. OS improved with increasing CK2α score and separately OS was significantly better for those with HPV(+) as opposed to HPV(−) OPSCC. Both remained significant after controlling for smoking status. High CSNK2A1 mRNA levels from TCGA data associated with worse patient survival in HPV(−) HNSCC. Conclusions High CK2α protein levels are detected in HPV(+) OPSCC tumors and demonstrate an unexpected association with improved survival in a strongly HPV(+) OPSCC cohort. Worse survival outcomes for high CSNK2A1 mRNA levels in HPV(−) HNSCC are consistent with historical data. Given these surprising findings and the rising incidence of HPV(+) OPSCC, further study is needed to understand the biological roles of CK2 in HPV(+) and HPV(−) HNSCC and the potential utility for therapeutic targeting of CK2 in these two disease states.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Department of Laboratory Medicine and Pathology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Masonic Cancer Center, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America
| | - Bin Li
- Otolaryngology Section, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Department of Otolaryngology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Current affiliation: Kaiser Permanente Roseville Medical Center, Department of Head and Neck Surgery, Roseville, CA, United States of America
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Masonic Cancer Center, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America
| | - Justin Peltola
- Department of Laboratory Medicine and Pathology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Laboratory Medicine and Pathology Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America
| | - Juan Manivel
- Department of Laboratory Medicine and Pathology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Laboratory Medicine and Pathology Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America
| | - Devi Meyyappan
- Hematology and Oncology Section, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Current affiliation: University of Texas Medical Branch, University Blvd, Galveston, TX, United States of America
| | - Amy Gravely
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America
| | - Mark Klein
- Masonic Cancer Center, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Hematology and Oncology Section, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Department of Medicine, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Department of Laboratory Medicine and Pathology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Masonic Cancer Center, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Department of Otolaryngology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America
| | - Emiro Caicedo-Granados
- Masonic Cancer Center, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Otolaryngology Section, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Department of Otolaryngology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America
| |
Collapse
|
26
|
Dong H, Shu X, Xu Q, Zhu C, Kaufmann AM, Zheng ZM, Albers AE, Qian X. Current Status of Human Papillomavirus-Related Head and Neck Cancer: From Viral Genome to Patient Care. Virol Sin 2021. [PMID: 34152564 DOI: 10.1007/s12250-021-00413-8/figures/2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Human papillomavirus (HPV) infection identified as a definitive human carcinogen is increasingly being recognized for its role in carcinogenesis of human cancers. Up to 38%-80% of head and neck squamous cell carcinoma (HNSCC) in oropharyngeal location (OPSCC) and nearly all cervical cancers contain the HPV genome which is implicated in causing cancer through its oncoproteins E6 and E7. Given by the biologically distinct HPV-related OPSCC and a more favorable prognosis compared to HPV-negative tumors, clinical trials on de-escalation treatment strategies for these patients have been studied. It is therefore raised the questions for the patient stratification if treatment de-escalation is feasible. Moreover, understanding the crosstalk of HPV-mediated malignancy and immunity with clinical insights from the proportional response rate to immune checkpoint blockade treatments in patients with HNSCC is of importance to substantially improve the treatment efficacy. This review discusses the biology of HPV-related HNSCC as well as successful clinically findings with promising candidates in the pipeline for future directions. With the advent of various sequencing technologies, further biomolecules associated with HPV-related HNSCC progression are currently being identified to be used as potential biomarkers or targets for clinical decisions throughout the continuum of cancer care.
Collapse
Affiliation(s)
- Haoru Dong
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinhua Shu
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Qiang Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Chen Zhu
- Department of Cancer Prevention, Cancer Hospital University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Andreas M Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 12203, Germany
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Andreas E Albers
- Department of Otolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 13353, Germany
| | - Xu Qian
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
27
|
Blanco R, Carrillo-Beltrán D, Corvalán AH, Aguayo F. High-Risk Human Papillomavirus and Epstein-Barr Virus Coinfection: A Potential Role in Head and Neck Carcinogenesis. BIOLOGY 2021; 10:biology10121232. [PMID: 34943147 PMCID: PMC8698839 DOI: 10.3390/biology10121232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary A subset of carcinomas that arise in the head and neck region show a viral etiology. In fact, a subgroup of oropharyngeal cancers are caused by some types of human papillomavirus (HPV), so-called high-risk (HR)-HPVs, whereas undifferentiated nasopharyngeal carcinomas are etiologically related to Epstein–Barr virus (EBV). However, studies have reported the presence of both HR-HPV and EBV in some types of head and neck cancers. In this review, we discuss the potential contribution and role of HR-HPV/EBV coinfection in head and neck carcinogenesis, as well as the mechanisms that are potentially involved. In addition, HR-HPV/EBV interaction models are proposed. Abstract High-risk human papillomaviruses (HR-HPVs) and Epstein–Barr virus (EBV) are recognized oncogenic viruses involved in the development of a subset of head and neck cancers (HNCs). HR-HPVs are etiologically associated with a subset of oropharyngeal carcinomas (OPCs), whereas EBV is a recognized etiological agent of undifferentiated nasopharyngeal carcinomas (NPCs). In this review, we address epidemiological and mechanistic evidence regarding a potential cooperation between HR-HPV and EBV for HNC development. Considering that: (1) both HR-HPV and EBV infections require cofactors for carcinogenesis; and (2) both oropharyngeal and oral epithelium can be directly exposed to carcinogens, such as alcohol or tobacco smoke, we hypothesize possible interaction mechanisms. The epidemiological and experimental evidence suggests that HR-HPV/EBV cooperation for developing a subset of HNCs is plausible and warrants further investigation.
Collapse
Affiliation(s)
- Rancés Blanco
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (R.B.); (D.C.-B.)
| | - Diego Carrillo-Beltrán
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (R.B.); (D.C.-B.)
| | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
| | | |
Collapse
|
28
|
Cruz-Gregorio A, Aranda-Rivera AK, Pedraza-Chaverri J. Nuclear factor erythroid 2-related factor 2 in human papillomavirus-related cancers. Rev Med Virol 2021; 32:e2308. [PMID: 34694662 DOI: 10.1002/rmv.2308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023]
Abstract
High-risk human papillomavirus (HR-HPV) infection is a necessary cause for the development of cervical cancer. Moreover, HR-HPV is also associated with cancers in the anus, vagina, vulva, penis and oropharynx. HR-HPVs target and modify the function of different cell biomolecules, such as glucose, amino acids, lipids and transcription factors (TF), such as p53, nuclear factor erythroid 2-related factor 2 (Nrf2), among others. The latter is a master TF that maintains redox homeostasis. Nrf2 also induces the transcription of genes associated with cell detoxification. Since both processes are critical for cell physiology, Nrf2 deregulation is associated with cancer development. Nrf2 is a crucial molecule in HPV-related cancer development but underexplored. Moreover, Nrf2 activation is also associated with resistance to chemotherapy and radiotherapy in these cancers. This review focusses on the importance of Nrf2 during HPV-related cancer development, resistance to therapy and potential therapies associated with Nrf2 as a molecular target.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Ana Karina Aranda-Rivera
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - José Pedraza-Chaverri
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| |
Collapse
|
29
|
Swaney DL, Ramms DJ, Wang Z, Park J, Goto Y, Soucheray M, Bhola N, Kim K, Zheng F, Zeng Y, McGregor M, Herrington KA, O'Keefe R, Jin N, VanLandingham NK, Foussard H, Von Dollen J, Bouhaddou M, Jimenez-Morales D, Obernier K, Kreisberg JF, Kim M, Johnson DE, Jura N, Grandis JR, Gutkind JS, Ideker T, Krogan NJ. A protein network map of head and neck cancer reveals PIK3CA mutant drug sensitivity. Science 2021; 374:eabf2911. [PMID: 34591642 DOI: 10.1126/science.abf2911] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Dana J Ramms
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Department of Pharmacology, University of California San Diego, La Jolla, CA.,Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Zhiyong Wang
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Jisoo Park
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Yusuke Goto
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Margaret Soucheray
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Neil Bhola
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Kyumin Kim
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Fan Zheng
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Yan Zeng
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Michael McGregor
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Kari A Herrington
- Department of Biochemistry and Biophysics Center for Advanced Light Microscopy at UCSF, University of California San Francisco, San Francisco, CA, USA
| | - Rachel O'Keefe
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Nan Jin
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Nathan K VanLandingham
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Helene Foussard
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - John Von Dollen
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Mehdi Bouhaddou
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - David Jimenez-Morales
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Jason F Kreisberg
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Minkyu Kim
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| | - Daniel E Johnson
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer R Grandis
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - J Silvio Gutkind
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Department of Pharmacology, University of California San Diego, La Jolla, CA.,Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Trey Ideker
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA.,Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA.,Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.,Department of Computer Science, University of California San Diego, La Jolla, CA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.,J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA
| |
Collapse
|
30
|
Zheng F, Kelly MR, Ramms DJ, Heintschel ML, Tao K, Tutuncuoglu B, Lee JJ, Ono K, Foussard H, Chen M, Herrington KA, Silva E, Liu S, Chen J, Churas C, Wilson N, Kratz A, Pillich RT, Patel DN, Park J, Kuenzi B, Yu MK, Licon K, Pratt D, Kreisberg JF, Kim M, Swaney DL, Nan X, Fraley SI, Gutkind JS, Krogan NJ, Ideker T. Interpretation of cancer mutations using a multiscale map of protein systems. Science 2021; 374:eabf3067. [PMID: 34591613 PMCID: PMC9126298 DOI: 10.1126/science.abf3067] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major goal of cancer research is to understand how mutations distributed across diverse genes affect common cellular systems, including multiprotein complexes and assemblies. Two challenges—how to comprehensively map such systems and how to identify which are under mutational selection—have hindered this understanding. Accordingly, we created a comprehensive map of cancer protein systems integrating both new and published multi-omic interaction data at multiple scales of analysis. We then developed a unified statistical model that pinpoints 395 specific systems under mutational selection across 13 cancer types. This map, called NeST (Nested Systems in Tumors), incorporates canonical processes and notable discoveries, including a PIK3CA-actomyosin complex that inhibits phosphatidylinositol 3-kinase signaling and recurrent mutations in collagen complexes that promote tumor proliferation. These systems can be used as clinical biomarkers and implicate a total of 548 genes in cancer evolution and progression. This work shows how disparate tumor mutations converge on protein assemblies at different scales.
Collapse
Affiliation(s)
- Fan Zheng
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Marcus R. Kelly
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Dana J. Ramms
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Marissa L. Heintschel
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kai Tao
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Beril Tutuncuoglu
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - John J. Lee
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Keiichiro Ono
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Helene Foussard
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Michael Chen
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kari A. Herrington
- Department of Biochemistry and Biophysics Center for Advanced Light Microscopy at UCSF, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Erica Silva
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sophie Liu
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jing Chen
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher Churas
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Wilson
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Anton Kratz
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Rudolf T. Pillich
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Devin N. Patel
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Jisoo Park
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Brent Kuenzi
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Michael K. Yu
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Katherine Licon
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Dexter Pratt
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jason F. Kreisberg
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Minkyu Kim
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Danielle L. Swaney
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - J. Silvio Gutkind
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Nevan J. Krogan
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| |
Collapse
|
31
|
Kim M, Park J, Bouhaddou M, Kim K, Rojc A, Modak M, Soucheray M, McGregor MJ, O'Leary P, Wolf D, Stevenson E, Foo TK, Mitchell D, Herrington KA, Muñoz DP, Tutuncuoglu B, Chen KH, Zheng F, Kreisberg JF, Diolaiti ME, Gordan JD, Coppé JP, Swaney DL, Xia B, van 't Veer L, Ashworth A, Ideker T, Krogan NJ. A protein interaction landscape of breast cancer. Science 2021; 374:eabf3066. [PMID: 34591612 PMCID: PMC9040556 DOI: 10.1126/science.abf3066] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Minkyu Kim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Jisoo Park
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Mehdi Bouhaddou
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Kyumin Kim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Ajda Rojc
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Maya Modak
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Margaret Soucheray
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Michael J McGregor
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Patrick O'Leary
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Denise Wolf
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Erica Stevenson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Tzeh Keong Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Dominique Mitchell
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Kari A Herrington
- Department of Biochemistry and Biophysics, Center for Advanced Light Microscopy, University of California, San Francisco, CA, USA
| | - Denise P Muñoz
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Beril Tutuncuoglu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Kuei-Ho Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Fan Zheng
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Jason F Kreisberg
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA
| | - Morgan E Diolaiti
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - John D Gordan
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Jean-Philippe Coppé
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Laura van 't Veer
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Alan Ashworth
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Trey Ideker
- The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA.,Department of Bioengineering, University of California, San Diego, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.,The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| |
Collapse
|
32
|
Vyas A, Harbison RA, Faden DL, Kubik M, Palmer D, Zhang Q, Osmanbeyoglu HU, Kiselyov K, Méndez E, Duvvuri U. Recurrent Human Papillomavirus-Related Head and Neck Cancer Undergoes Metabolic Reprogramming and Is Driven by Oxidative Phosphorylation. Clin Cancer Res 2021; 27:6250-6264. [PMID: 34407971 DOI: 10.1158/1078-0432.ccr-20-4789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/10/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Human papillomavirus (HPV) infection drives the development of some head and neck squamous cell carcinomas (HNSCC). This disease is rapidly increasing in incidence worldwide. Although these tumors are sensitive to treatment, approximately 10% of patients fail therapy. However, the mechanisms that underlie treatment failure remain unclear. EXPERIMENTAL DESIGN We performed RNA sequencing (RNA-seq) on tissues from matched primary- (pHNSCC) and metachronous-recurrent cancers (rHNSCC) to identify transcriptional differences to gain mechanistic insight into the evolutionary adaptations of metachronous-recurrent tumors. We used HPV-related HNSCC cells lines to investigate the effect of (i) NRF2 overexpression on growth in vitro and in vivo, (ii) oxidative phosphorylation (OXPHOS) inhibition using IACS-010759 on NRF2-dependent cells, and (iii) combination of cisplatin and OXPHOS inhibition. RESULTS The OXPHOS pathway is enriched in recurrent HPV-associated HNSCC and may contribute to treatment failure. NRF2-enriched HNSCC samples from The Cancer Genome Atlas (TCGA) with enrichment in OXPHOS, fatty-acid metabolism, Myc, Mtor, reactive oxygen species (ROS), and glycolytic signaling networks exhibited worse survival. HPV-positive HNSCC cells demonstrated sensitivity to the OXPHOS inhibitor, in a NRF2-dependent manner. Further, using murine xenograft models, we identified NRF2 as a driver of tumor growth. Mechanistically, NRF2 drives ROS and mitochondrial respiration, and NRF2 is a critical regulator of redox homeostasis that can be crippled by disruption of OXPHOS. NRF2 also mediated cisplatin sensitivity in endogenously overexpressing primary HPV-related HNSCC cells. CONCLUSIONS These results unveil a paradigm-shifting translational target harnessing NRF2-mediated metabolic reprogramming in HPV-related HNSCC.
Collapse
Affiliation(s)
- Avani Vyas
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - R Alex Harbison
- Department of Otolaryngology, University of Washington School of Medicine, Seattle, Washington
| | - Daniel L Faden
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Mark Kubik
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Drake Palmer
- Department of Biological Sciences, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qing Zhang
- Genomics & Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Hatice U Osmanbeyoglu
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,VA Pittsburgh Healthcare System, U.S. Department of Veterans Affairs, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Dong H, Shu X, Xu Q, Zhu C, Kaufmann AM, Zheng ZM, Albers AE, Qian X. Current Status of Human Papillomavirus-Related Head and Neck Cancer: From Viral Genome to Patient Care. Virol Sin 2021; 36:1284-1302. [PMID: 34152564 PMCID: PMC8692589 DOI: 10.1007/s12250-021-00413-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Human papillomavirus (HPV) infection identified as a definitive human carcinogen is increasingly being recognized for its role in carcinogenesis of human cancers. Up to 38%–80% of head and neck squamous cell carcinoma (HNSCC) in oropharyngeal location (OPSCC) and nearly all cervical cancers contain the HPV genome which is implicated in causing cancer through its oncoproteins E6 and E7. Given by the biologically distinct HPV-related OPSCC and a more favorable prognosis compared to HPV-negative tumors, clinical trials on de-escalation treatment strategies for these patients have been studied. It is therefore raised the questions for the patient stratification if treatment de-escalation is feasible. Moreover, understanding the crosstalk of HPV-mediated malignancy and immunity with clinical insights from the proportional response rate to immune checkpoint blockade treatments in patients with HNSCC is of importance to substantially improve the treatment efficacy. This review discusses the biology of HPV-related HNSCC as well as successful clinically findings with promising candidates in the pipeline for future directions. With the advent of various sequencing technologies, further biomolecules associated with HPV-related HNSCC progression are currently being identified to be used as potential biomarkers or targets for clinical decisions throughout the continuum of cancer care.
Collapse
Affiliation(s)
- Haoru Dong
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinhua Shu
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Qiang Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Chen Zhu
- Department of Cancer Prevention, Cancer Hospital University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Andreas M Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 12203, Germany
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Andreas E Albers
- Department of Otolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, 13353, Germany
| | - Xu Qian
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
34
|
CX-4945 and siRNA-Mediated Knockdown of CK2 Improves Cisplatin Response in HPV(+) and HPV(-) HNSCC Cell Lines. Biomedicines 2021; 9:biomedicines9050571. [PMID: 34070147 PMCID: PMC8158385 DOI: 10.3390/biomedicines9050571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) can be categorized into human papillomavirus (HPV) positive or negative disease. Elevated protein kinase CK2 level and activity have been historically observed in HNSCC cells. Previous studies on CK2 in HNSCC did not generally include consideration of HPV(+) and HPV(−) status. Here, we investigated the response of HPV(+) and HPV(−) HNSCC cells to CK2 targeting using CX-4945 or siRNA downregulation combined with cisplatin treatment. HNSCC cell lines were examined for CK2 expression levels and activity and response to CX-4945, with and without cisplatin. CK2 levels and NFκB p65-related activity were high in HPV(+) HNSCC cells relative to HPV(−) HNSCC cells. Treatment with CX-4945 decreased viability and cisplatin IC50 in all cell lines. Targeting of CK2 increased tumor suppressor protein levels for p21 and PDCD4 in most instances. Further study is needed to understand the role of CK2 in HPV(+) and HPV(−) HNSCC and to determine how incorporation of the CK2-targeted inhibitor CX-4945 could improve cisplatin response in HNSCC.
Collapse
|
35
|
Ramakrishnan V, de Haydu C, Wilkinson P, Hooda U, Giri B, Oleas JM, Rive V, Roy S, Dudeja V, Slomovitch B, Saluja A, Ramakrishnan S. Minnelide, a prodrug, inhibits cervical cancer growth by blocking HPV-induced changes in p53 and pRb. Am J Cancer Res 2021; 11:2202-2214. [PMID: 34094678 PMCID: PMC8167699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/05/2020] [Indexed: 06/12/2023] Open
Abstract
HPV-induced cervical cancer is one of the prevalent gynecological cancers world-wide. In the present study, we determined the efficacy of Minnelide, a prodrug which is converted to its active form (Triptolide) in vivo against cervical cancer cells. Our studies show that Triptolide inhibited HPV-16 and HPV-18 positive cells at nanomolar concentrations. Tumor cells treated with Triptolide failed to grow in 3-D cultures in a concentration-dependent manner. Triptolide markedly reduced E6 and E7 transcript levels. Further studies revealed that exposure to Triptolide increased the levels of p53 and pRb. As a consequence, Caspase-3/7 activation and apoptosis was induced in cervical cancer cells by Triptolide. Subsequently, we evaluated the efficacy of Minnelide in xenotransplantation models of cervical cancer. Minnelide at very low doses effectively inhibited the growth of established cervical cancers in all the three animal models tested. Furthermore, Minnelide treatment was more effective when combined with platinum-based chemotherapy. These studies show that Minnelide can be used to inhibit the growth of cervical cancer.
Collapse
Affiliation(s)
- Vivek Ramakrishnan
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
| | - Christopher de Haydu
- Department of Obstetrics and Gynecology, Miller School of Medicine, University of MiamiFL, USA
| | - Peter Wilkinson
- School of Dentistry, University of MinnesotaMinneapolis, MN, USA
| | - Urvashi Hooda
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
| | - Bhuwan Giri
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
| | - Janneth M Oleas
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
| | - Veronica Rive
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
| | - Sabita Roy
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
- Department of Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of MiamiFL, USA
| | - Vikas Dudeja
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
- Department of Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of MiamiFL, USA
| | - Brian Slomovitch
- Department of Obstetrics and Gynecology, Miller School of Medicine, University of MiamiFL, USA
- Department of Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of MiamiFL, USA
| | - Ashok Saluja
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
- Department of Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of MiamiFL, USA
| | - Sundaram Ramakrishnan
- Department of Surgery, Miller School of Medicine, University of MiamiFL, USA
- Department of Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of MiamiFL, USA
| |
Collapse
|
36
|
Pathogenic Role of Immune Evasion and Integration of Human Papillomavirus in Oropharyngeal Cancer. Microorganisms 2021; 9:microorganisms9050891. [PMID: 33919460 PMCID: PMC8143538 DOI: 10.3390/microorganisms9050891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence of oropharyngeal cancer (OPC) is increasing remarkably among all head and neck cancers, mainly due to its association with the human papillomavirus (HPV). Most HPVs are eliminated by the host’s immune system; however, because HPV has developed an effective immune evasion mechanism to complete its replication cycle, a small number of HPVs are not eliminated, leading to persistent infection. Moreover, during the oncogenic process, the extrachromosomal HPV genome often becomes integrated into the host genome. Integration involves the induction and high expression of E6 and E7, leading to cell cycle activation and increased genomic instability in the host. Therefore, integration is an important event in oncogenesis, although the associated mechanism remains unclear, especially in HPV-OPC. In this review, we summarize the current knowledge on HPV-mediated carcinogenesis, with special emphasis on immune evasion and integration mechanisms, which are crucial for oncogenesis.
Collapse
|
37
|
Martiáñez-Vendrell X, Kikkert M. Proteomics approaches for the identification of protease substrates during virus infection. Adv Virus Res 2021; 109:135-161. [PMID: 33934826 DOI: 10.1016/bs.aivir.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Proteases precisely and irreversibly catalyze the hydrolysis of peptide bonds, regulating the fate, localization, and activity of many proteins. Consequently, proteolytic activity plays an important role in fundamental cellular processes such as differentiation and migration, immunological and inflammatory reactions, apoptosis and survival. During virus infection, host proteases are involved in several processes, from cell entry to initiation, progression and resolution of inflammation. On the other hand, many viruses encode their own highly specific proteases, responsible for the proteolytic processing of viral proteins, but, at the same time, to cleave host proteins to corrupt antiviral host responses and adjust protein activity to favor viral replication. Traditionally, protease substrate identification has been addressed by means of hypothesis-driven approaches, but recent advances in proteomics have made a toolkit available to uncover the extensive repertoire of host proteins cleaved during infection, either by viral or host proteases. Here, we review the currently available proteomics-based methods that can and have contributed to the systematic and unbiased identification of new protease substrates in the context of virus-host interactions. The role of specific proteases during the course of virus infections will also be highlighted.
Collapse
Affiliation(s)
- Xavier Martiáñez-Vendrell
- Molecular Virology Laboratory, Department of Medical Microbiology, LUMC Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Department of Medical Microbiology, LUMC Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
38
|
Cruz-Gregorio A, Aranda-Rivera AK. Redox-sensitive signalling pathways regulated by human papillomavirus in HPV-related cancers. Rev Med Virol 2021; 31:e2230. [PMID: 33709497 DOI: 10.1002/rmv.2230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
High-risk human papillomavirus (HR-HPV) chronic infection is associated with the induction of different HPV-related cancers, such as cervical, anus, vaginal, vulva, penis and oropharynx. HPV-related cancers have been related to oxidative stress (OS), where OS has a significant role in cancer development and maintenance. Surgical resection is the treatment of choice for localised HPV-related cancers; however, these malignancies commonly progress to metastasis. In advanced stages, systemic therapies are the best option against HPV-related cancers. These therapies include cytokine therapy or a combination of tyrosine kinase inhibitors with immunotherapies. Nevertheless, these strategies are still insufficient. Cell redox-sensitive signalling pathways have been poorly studied, although they have been associated with the development and maintenance of HPV-related cancers. In this review, we analyse the known alterations of the following redox-sensitive molecules and signalling pathways by HR-HPV in HPV-related cancers: MAPKs, Akt/TSC2/mTORC1, Wnt/β-Cat, NFkB/IkB/NOX2, HIF/VHL/VEGF and mitochondrial signalling pathways as potential targets for redox therapy.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México City, México
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México City, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, México
| |
Collapse
|
39
|
Lian X, Yang X, Yang S, Zhang Z. Current status and future perspectives of computational studies on human-virus protein-protein interactions. Brief Bioinform 2021; 22:6161422. [PMID: 33693490 DOI: 10.1093/bib/bbab029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
The protein-protein interactions (PPIs) between human and viruses mediate viral infection and host immunity processes. Therefore, the study of human-virus PPIs can help us understand the principles of human-virus relationships and can thus guide the development of highly effective drugs to break the transmission of viral infectious diseases. Recent years have witnessed the rapid accumulation of experimentally identified human-virus PPI data, which provides an unprecedented opportunity for bioinformatics studies revolving around human-virus PPIs. In this article, we provide a comprehensive overview of computational studies on human-virus PPIs, especially focusing on the method development for human-virus PPI predictions. We briefly introduce the experimental detection methods and existing database resources of human-virus PPIs, and then discuss the research progress in the development of computational prediction methods. In particular, we elaborate the machine learning-based prediction methods and highlight the need to embrace state-of-the-art deep-learning algorithms and new feature engineering techniques (e.g. the protein embedding technique derived from natural language processing). To further advance the understanding in this research topic, we also outline the practical applications of the human-virus interactome in fundamental biological discovery and new antiviral therapy development.
Collapse
Affiliation(s)
- Xianyi Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaodi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
40
|
Haas P, Muralidharan M, Krogan NJ, Kaake RM, Hüttenhain R. Proteomic Approaches to Study SARS-CoV-2 Biology and COVID-19 Pathology. J Proteome Res 2021; 20:1133-1152. [PMID: 33464917 PMCID: PMC7839417 DOI: 10.1021/acs.jproteome.0c00764] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/17/2022]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), was declared a pandemic infection in March 2020. As of December 2020, two COVID-19 vaccines have been authorized for emergency use by the U.S. Food and Drug Administration, but there are no effective drugs to treat COVID-19, and pandemic mitigation efforts like physical distancing have had acute social and economic consequences. In this perspective, we discuss how the proteomic research community can leverage technologies and expertise to address the pandemic by investigating four key areas of study in SARS-CoV-2 biology. Specifically, we discuss how (1) mass spectrometry-based structural techniques can overcome limitations and complement traditional structural approaches to inform the dynamic structure of SARS-CoV-2 proteins, complexes, and virions; (2) virus-host protein-protein interaction mapping can identify the cellular machinery required for SARS-CoV-2 replication; (3) global protein abundance and post-translational modification profiling can characterize signaling pathways that are rewired during infection; and (4) proteomic technologies can aid in biomarker identification, diagnostics, and drug development in order to monitor COVID-19 pathology and investigate treatment strategies. Systems-level high-throughput capabilities of proteomic technologies can yield important insights into SARS-CoV-2 biology that are urgently needed during the pandemic, and more broadly, can inform coronavirus virology and host biology.
Collapse
Affiliation(s)
- Paige Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J. Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robyn M. Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
41
|
Chen Z, Chen J. Mass spectrometry-based protein‒protein interaction techniques and their applications in studies of DNA damage repair. J Zhejiang Univ Sci B 2021; 22:1-20. [PMID: 33448183 PMCID: PMC7818012 DOI: 10.1631/jzus.b2000356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Proteins are major functional units that are tightly connected to form complex and dynamic networks. These networks enable cells and organisms to operate properly and respond efficiently to environmental cues. Over the past decades, many biochemical methods have been developed to search for protein-binding partners in order to understand how protein networks are constructed and connected. At the same time, rapid development in proteomics and mass spectrometry (MS) techniques makes it possible to identify interacting proteins and build comprehensive protein‒protein interaction networks. The resulting interactomes and networks have proven informative in the investigation of biological functions, such as in the field of DNA damage repair. In recent years, a number of proteins involved in DNA damage response and DNA repair pathways have been uncovered with MS-based protein‒protein interaction studies. As the technologies for enriching associated proteins and MS become more sophisticated, the studies of protein‒protein interactions are entering a new era. In this review, we summarize the strategies and recent developments for exploring protein‒protein interaction. In addition, we discuss the application of these tools in the investigation of protein‒protein interaction networks involved in DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Guo M, Xiao ZD, Dai Z, Zhu L, Lei H, Diao LT, Xiong Y. The landscape of long noncoding RNA-involved and tumor-specific fusions across various cancers. Nucleic Acids Res 2021; 48:12618-12631. [PMID: 33275145 PMCID: PMC7736799 DOI: 10.1093/nar/gkaa1119] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
The majority of the human genome encodes long noncoding RNA (lncRNA) genes, critical regulators of various cellular processes, which largely outnumber protein-coding genes. However, lncRNA-involved fusions have not been surveyed and characterized yet. Here, we present a systematic study of the lncRNA fusion landscape across cancer types and identify >30 000 high-confidence tumor-specific lncRNA fusions (using 8284 tumor and 6946 normal samples). Fusions positively correlated with DNA damage and cancer stemness and were specifically low in microsatellite instable (MSI)-High or virus-infected tumors. Moreover, fusions distribute differently among cancer molecular subtypes, but with shared enrichment in tumors that are microsatellite stable (MSS), with high somatic copy number alterations (SCNA), and with poor survival. Importantly, we find a potentially new mechanism, mediated by enhancer RNAs (eRNA), which generates secondary fusions that form densely connected fusion networks with many fusion hubs targeted by FDA-approved drugs. Finally, we experimentally validate functions of two tumor-promoting chimeric proteins derived from mRNA-lncRNA fusions, KDM4B-G039927 and EPS15L1-lncOR7C2-1. The EPS15L1 fusion protein may regulate (Gasdermin E) GSDME, critical in pyroptosis and anti-tumor immunity. Our study completes the fusion landscape in cancers, sheds light on fusion mechanisms, and enriches lncRNA functions in tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhen-Dong Xiao
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhiming Dai
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Zhu
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Lei
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Li-Ting Diao
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
43
|
Richards AL, Eckhardt M, Krogan NJ. Mass spectrometry-based protein-protein interaction networks for the study of human diseases. Mol Syst Biol 2021; 17:e8792. [PMID: 33434350 PMCID: PMC7803364 DOI: 10.15252/msb.20188792] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/23/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
A better understanding of the molecular mechanisms underlying disease is key for expediting the development of novel therapeutic interventions. Disease mechanisms are often mediated by interactions between proteins. Insights into the physical rewiring of protein-protein interactions in response to mutations, pathological conditions, or pathogen infection can advance our understanding of disease etiology, progression, and pathogenesis and can lead to the identification of potential druggable targets. Advances in quantitative mass spectrometry (MS)-based approaches have allowed unbiased mapping of these disease-mediated changes in protein-protein interactions on a global scale. Here, we review MS techniques that have been instrumental for the identification of protein-protein interactions at a system-level, and we discuss the challenges associated with these methodologies as well as novel MS advancements that aim to address these challenges. An overview of examples from diverse disease contexts illustrates the potential of MS-based protein-protein interaction mapping approaches for revealing disease mechanisms, pinpointing new therapeutic targets, and eventually moving toward personalized applications.
Collapse
Affiliation(s)
- Alicia L Richards
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
44
|
Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primers 2020; 6:92. [PMID: 33243986 PMCID: PMC7944998 DOI: 10.1038/s41572-020-00224-3] [Citation(s) in RCA: 2222] [Impact Index Per Article: 444.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Most head and neck cancers are derived from the mucosal epithelium in the oral cavity, pharynx and larynx and are known collectively as head and neck squamous cell carcinoma (HNSCC). Oral cavity and larynx cancers are generally associated with tobacco consumption, alcohol abuse or both, whereas pharynx cancers are increasingly attributed to infection with human papillomavirus (HPV), primarily HPV-16. Thus, HNSCC can be separated into HPV-negative and HPV-positive HNSCC. Despite evidence of histological progression from cellular atypia through various degrees of dysplasia, ultimately leading to invasive HNSCC, most patients are diagnosed with late-stage HNSCC without a clinically evident antecedent pre-malignant lesion. Traditional staging of HNSCC using the tumour-node-metastasis system has been supplemented by the 2017 AJCC/UICC staging system, which incorporates additional information relevant to HPV-positive disease. Treatment is generally multimodal, consisting of surgery followed by chemoradiotherapy (CRT) for oral cavity cancers and primary CRT for pharynx and larynx cancers. The EGFR monoclonal antibody cetuximab is generally used in combination with radiation in HPV-negative HNSCC where comorbidities prevent the use of cytotoxic chemotherapy. The FDA approved the immune checkpoint inhibitors pembrolizumab and nivolumab for treatment of recurrent or metastatic HNSCC and pembrolizumab as primary treatment for unresectable disease. Elucidation of the molecular genetic landscape of HNSCC over the past decade has revealed new opportunities for therapeutic intervention. Ongoing efforts aim to integrate our understanding of HNSCC biology and immunobiology to identify predictive biomarkers that will enable delivery of the most effective, least-toxic therapies.
Collapse
Affiliation(s)
- Daniel E. Johnson
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA, USA
| | - Barbara Burtness
- Department of Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - C. René Leemans
- Department of Otolaryngology-Head and Neck Surgery, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Julie E. Bauman
- Department of Medicine-Hematology/Oncology, University of Arizona, Tucson, AZ, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, San Francisco, CA, USA,
| |
Collapse
|
45
|
Olmedo-Nieva L, Muñoz-Bello JO, Manzo-Merino J, Lizano M. New insights in Hippo signalling alteration in human papillomavirus-related cancers. Cell Signal 2020; 76:109815. [PMID: 33148514 DOI: 10.1016/j.cellsig.2020.109815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/09/2023]
Abstract
The persistent infection with high-risk human papillomavirus (HPV) is an etiologic factor for the development of different types of cancers, mainly attributed to the continuous expression of E6 and E7 HPV oncoproteins, which regulate several cell signalling pathways including the Hippo pathway. It has been demonstrated that E6 proteins promote the increase of the Hippo elements YAP, TAZ and TEAD, at protein level, as well as their transcriptional targets. Also, E6 and E7 oncoproteins promote nuclear YAP localization and a decrease in YAP negative regulators such as MST1, PTPN14 or SOCS6. Interestingly, Hippo signalling components modulate HPV activity, such as TEAD1 and the transcriptional co-factor VGLL1, induce the activation of HPV early and late promoters, while hyperactivation of YAP in specific cells facilitates virus infection by increasing putative HPV receptors and by evading innate immunity. Additionally, alterations in Hippo signalling elements have been found in HPV-related cancers and particularly, the involvement of HPV oncoproteins on the regulation of some of these Hippo components has been also proposed, although the precise mechanisms remain unclear. The present review addresses the recent findings describing the interplay between HPV and Hippo signalling in HPV-related cancers, a fact that highlights the importance of developing more in-depth studies in this field to establish key therapeutic targets.
Collapse
Affiliation(s)
- Leslie Olmedo-Nieva
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - J Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede sur, Mexico City 14330, Mexico
| | - Joaquín Manzo-Merino
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Cátedras CONACyT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico.
| |
Collapse
|
46
|
Kelly MR, Kostyrko K, Han K, Mooney NA, Jeng EE, Spees K, Dinh PT, Abbott KL, Gwinn DM, Sweet-Cordero EA, Bassik MC, Jackson PK. Combined Proteomic and Genetic Interaction Mapping Reveals New RAS Effector Pathways and Susceptibilities. Cancer Discov 2020; 10:1950-1967. [PMID: 32727735 PMCID: PMC7710624 DOI: 10.1158/2159-8290.cd-19-1274] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/08/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022]
Abstract
Activating mutations in RAS GTPases drive many cancers, but limited understanding of less-studied RAS interactors, and of the specific roles of different RAS interactor paralogs, continues to limit target discovery. We developed a multistage discovery and screening process to systematically identify genes conferring RAS-related susceptibilities in lung adenocarcinoma. Using affinity purification mass spectrometry, we generated a protein-protein interaction map of RAS interactors and pathway components containing hundreds of interactions. From this network, we constructed a CRISPR dual knockout library targeting 119 RAS-related genes that we screened for KRAS-dependent genetic interactions (GI). This approach identified new RAS effectors, including the adhesion controller RADIL and the endocytosis regulator RIN1, and >250 synthetic lethal GIs, including a potent KRAS-dependent interaction between RAP1GDS1 and RHOA. Many GIs link specific paralogs within and between gene families. These findings illustrate the power of multiomic approaches to uncover synthetic lethal combinations specific for hitherto untreatable cancer genotypes. SIGNIFICANCE: We establish a deep network of protein-protein and genetic interactions in the RAS pathway. Many interactions validated here demonstrate important specificities and redundancies among paralogous RAS regulators and effectors. By comparing synthetic lethal interactions across KRAS-dependent and KRAS-independent cell lines, we identify several new combination therapy targets for RAS-driven cancers.This article is highlighted in the In This Issue feature, p. 1775.
Collapse
Affiliation(s)
- Marcus R Kelly
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California.,Program in Cancer Biology, Stanford University School of Medicine, Stanford, California
| | - Kaja Kostyrko
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Nancie A Mooney
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California
| | - Edwin E Jeng
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Kaitlyn Spees
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Phuong T Dinh
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Keene L Abbott
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California
| | - Dana M Gwinn
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - E Alejandro Sweet-Cordero
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, California.
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, California. .,Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California. .,Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
47
|
Gatti V, Bernassola F, Talora C, Melino G, Peschiaroli A. The Impact of the Ubiquitin System in the Pathogenesis of Squamous Cell Carcinomas. Cancers (Basel) 2020; 12:1595. [PMID: 32560247 PMCID: PMC7352818 DOI: 10.3390/cancers12061595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin system is a dynamic regulatory pathway controlling the activity, subcellular localization and stability of a myriad of cellular proteins, which in turn affects cellular homeostasis through the regulation of a variety of signaling cascades. Aberrant activity of key components of the ubiquitin system has been functionally linked with numerous human diseases including the initiation and progression of human tumors. In this review, we will contextualize the importance of the two main components of the ubiquitin system, the E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs), in the etiology of squamous cell carcinomas (SCCs). We will discuss the signaling pathways regulated by these enzymes, emphasizing the genetic and molecular determinants underlying their deregulation in SCCs.
Collapse
Affiliation(s)
- Veronica Gatti
- National Research Council of Italy, Institute of Translational Pharmacology, 00133 Rome, Italy;
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (G.M.)
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (F.B.); (G.M.)
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, 00133 Rome, Italy;
| |
Collapse
|
48
|
Eckhardt M, Hultquist JF, Kaake RM, Hüttenhain R, Krogan NJ. A systems approach to infectious disease. Nat Rev Genet 2020; 21:339-354. [PMID: 32060427 PMCID: PMC7839161 DOI: 10.1038/s41576-020-0212-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Abstract
Ongoing social, political and ecological changes in the 21st century have placed more people at risk of life-threatening acute and chronic infections than ever before. The development of new diagnostic, prophylactic, therapeutic and curative strategies is critical to address this burden but is predicated on a detailed understanding of the immensely complex relationship between pathogens and their hosts. Traditional, reductionist approaches to investigate this dynamic often lack the scale and/or scope to faithfully model the dual and co-dependent nature of this relationship, limiting the success of translational efforts. With recent advances in large-scale, quantitative omics methods as well as in integrative analytical strategies, systems biology approaches for the study of infectious disease are quickly forming a new paradigm for how we understand and model host-pathogen relationships for translational applications. Here, we delineate a framework for a systems biology approach to infectious disease in three parts: discovery - the design, collection and analysis of omics data; representation - the iterative modelling, integration and visualization of complex data sets; and application - the interpretation and hypothesis-based inquiry towards translational outcomes.
Collapse
Affiliation(s)
- Manon Eckhardt
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- J. David Gladstone Institutes, San Francisco, CA, USA.
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- J. David Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
49
|
Farooq QUA, Shaukat Z, Zhou T, Aiman S, Gong W, Li C. Inferring Virus-Host relationship between HPV and its host Homo sapiens using protein interaction network. Sci Rep 2020; 10:8719. [PMID: 32457456 PMCID: PMC7251128 DOI: 10.1038/s41598-020-65837-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Human papilloma virus (HPV) is a serious threat to human life globally with over 100 genotypes including cancer causing high risk HPVs. Study on protein interaction maps of pathogens with their host is a recent trend in ‘omics’ era and has been practiced by researchers to find novel drug targets. In current study, we construct an integrated protein interaction map of HPV with its host human in Cytoscape and analyze it further by using various bioinformatics tools. We found out 2988 interactions between 12 HPV and 2061 human proteins among which we identified MYLK, CDK7, CDK1, CDK2, JAK1 and 6 other human proteins associated with multiple viral oncoproteins. The functional enrichment analysis of these top-notch key genes is performed using KEGG pathway and Gene Ontology analysis, which reveals that the gene set is enriched in cell cycle a crucial cellular process, and the second most important pathway in which the gene set is involved is viral carcinogenesis. Among the viral proteins, E7 has the highest number of associations in the network followed by E6, E2 and E5. We found out a group of genes which is not targeted by the existing drugs available for HPV infections. It can be concluded that the molecules found in this study could be potential targets and could be used by scientists in their drug design studies.
Collapse
Affiliation(s)
- Qurat Ul Ain Farooq
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Zeeshan Shaukat
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Tong Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Sara Aiman
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Weikang Gong
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Chunhua Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
50
|
El-Bayoumy K, Christensen ND, Hu J, Viscidi R, Stairs DB, Walter V, Chen KM, Sun YW, Muscat JE, Richie JP. An Integrated Approach for Preventing Oral Cavity and Oropharyngeal Cancers: Two Etiologies with Distinct and Shared Mechanisms of Carcinogenesis. Cancer Prev Res (Phila) 2020; 13:649-660. [PMID: 32434808 DOI: 10.1158/1940-6207.capr-20-0096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) was the 7th most common malignancy worldwide in 2018 and despite therapeutic advances, the overall survival rate for oral squamous cell carcinoma (OSCC; ∼50%) has remained unchanged for decades. The most common types are OSCC and oropharyngeal squamous cell carcinoma (OPSCC, survival rate ∼85%). Tobacco smoking is a major risk factor of HNSCC. In the developed world, the incidence of OSCC is declining as a result of tobacco cessation programs. However, OPSCC, which is also linked to human papillomavirus (HPV) infection, is on the rise and now ranks as the most common HPV-related cancer. The current state of knowledge indicates that HPV-associated disease differs substantially from other types of HNSCC and distinct biological differences between HPV-positive and HPV-negative HNSCC have been identified. Although risk factors have been extensively discussed in the literature, there are multiple clinically relevant questions that remain unanswered and even unexplored. Moreover, existing approaches (e.g., tobacco cessation, vaccination, and chemoprevention) to manage and control this disease remain a challenge. Thus, in this review, we discuss potential future basic research that can assist in a better understanding of disease pathogenesis which may lead to novel and more effective preventive strategies for OSCC and OPSCC.
Collapse
Affiliation(s)
- Karam El-Bayoumy
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.
| | - Neil D Christensen
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.,Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.,Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Raphael Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas B Stairs
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Vonn Walter
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.,Department of Public Health Sciences, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Kun-Ming Chen
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Yuan-Wan Sun
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Joshua E Muscat
- Department of Public Health Sciences, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - John P Richie
- Department of Public Health Sciences, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| |
Collapse
|