1
|
Riedl JM, Fece de la Cruz F, Lin JJ, Parseghian C, Kim JE, Matsubara H, Barnes H, Caughey B, Norden BL, Morales-Giron AA, Kushner EW, Ehnstrom S, Nakamura H, Patel PS, Ellis H, Pappas L, Vakaris A, Gainor JF, Kopetz S, Klempner SJ, Parikh AR, Hata AN, Heist RS, Corcoran RB. Genomic landscape of clinically acquired resistance alterations in patients treated with KRAS G12C inhibitors. Ann Oncol 2025:S0923-7534(25)00052-3. [PMID: 39914665 DOI: 10.1016/j.annonc.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Mutant-selective inhibitors of KRASG12C (KRASG12Ci) have demonstrated efficacy in KRASG12C cancers. However, resistance invariably develops, resulting in short-lived responses. We aimed to define the genomic landscape of acquired resistance to KRASG12Ci and to elucidate whether novel classes of KRAS inhibitors can overcome these resistance mechanisms. METHODS To assess clinical frequencies of acquired resistance alterations, we evaluated genomic sequencing data from postprogression cell-free DNA samples in patients treated with KRASG12Ci at two United States cancer centers, alongside data from six previously published studies. Cell viability assays using engineered cell models were employed to functionally validate candidate resistance drivers and to evaluate novel classes of KRAS inhibitors. RESULTS A total of 143 patients were analyzed. Most patients had non-small-cell lung cancer (NSCLC, n = 68) or colorectal cancer (CRC, n = 58) and were treated with single-agent KRASG12Ci (n = 109) or combined with anti-EGFR antibodies (n = 30). RAS/MAPK alterations emerged in 46% of patients (n = 66), with 39% developing one or more new KRAS alterations (n = 56) and 23% (n = 33) showing multiple concurrent alterations. The genomic landscape of acquired alterations included KRAS-activating mutations (25% of patients), KRAS amplifications (22%), RAF/MAPK mutations/fusions (21%), KRAS switch-II pocket mutations (14%), and NRAS/HRAS mutations (8%). Notably, the proportion of patients with one or more acquired RAS/MAPK alteration was significantly higher in CRC compared with NSCLC (69% versus 26%, P < 0.001). Functional studies confirmed most alterations as resistance drivers. Sotorasib, adagrasib, and divarasib demonstrated distinct activity against KRAS switch-II pocket mutations, yet all were responsive to the RAS(ON) G12C-selective tri-complex inhibitor RM-018. The KRAS-selective inhibitor Pan KRAS-IN-1 effectively targeted KRAS-activating mutations, and the RAS(ON) multiselective tri-complex inhibitor RMC-7797 demonstrated high potency across all RAS alterations. CONCLUSIONS Acquired RAS/MAPK alterations are recurrent drivers of resistance to KRASG12Ci detected in CRC and, less frequently, in NSCLC. Preclinical data suggest that novel (K)RAS inhibitors may overcome many of these resistance alterations.
Collapse
Affiliation(s)
- J M Riedl
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA; Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - F Fece de la Cruz
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - J J Lin
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - C Parseghian
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - J E Kim
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA; Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - H Matsubara
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - H Barnes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - B Caughey
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - B L Norden
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - A A Morales-Giron
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - E W Kushner
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - S Ehnstrom
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - H Nakamura
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - P S Patel
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - H Ellis
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - L Pappas
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - A Vakaris
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - J F Gainor
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - S Kopetz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - S J Klempner
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - A R Parikh
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - A N Hata
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - R S Heist
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA
| | - R B Corcoran
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, USA.
| |
Collapse
|
2
|
Huang FF, Di XF, Bai MH. Analysis of urine cell-free DNA in bladder cancer diagnosis by emerging bioactive technologies and materials. Front Bioeng Biotechnol 2024; 12:1458362. [PMID: 39295845 PMCID: PMC11408225 DOI: 10.3389/fbioe.2024.1458362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Urinary cell-free DNA (UcfDNA) is gaining recognition as an important biomarker for diagnosing bladder cancer. UcfDNA contains tumor derived DNA sequences, making it a viable candidate for non-invasive early detection, diagnosis, and surveillance of bladder cancer. The quantification and qualification of UcfDNA have demonstrated high sensitivity and specificity in the molecular characterization of bladder cancer. However, precise analysis of UcfDNA for clinical bladder cancer diagnosis remains challenging. This review summarizes the history of UcfDNA discovery, its biological properties, and the quantitative and qualitative evaluations of UcfDNA for its clinical significance and utility in bladder cancer patients, emphasizing the critical role of UcfDNA in bladder cancer diagnosis. Emerging bioactive technologies and materials currently offer promising tools for multiple UcfDNA analysis, aiming to achieve more precise and efficient capture of UcfDNA, thereby significantly enhancing diagnostic accuracy. This review also highlights breakthroughs in detection technologies and substrates with the potential to revolutionize bladder cancer diagnosis in clinic.
Collapse
Affiliation(s)
- Fei-Fei Huang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiao-Fei Di
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Mo-Han Bai
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Lin H, Cao XX. Current State of Targeted Therapy in Adult Langerhans Cell Histiocytosis and Erdheim-Chester Disease. Target Oncol 2024; 19:691-703. [PMID: 38990463 DOI: 10.1007/s11523-024-01080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
The mitogen-activated protein kinase (MAPK) pathway is a key driver in many histiocytic disorders, including Langerhans cell histiocytosis (LCH) and Erdheim-Chester disease (ECD). This has led to successful and promising treatment with targeted therapies, including BRAF inhibitors and MEK inhibitors. Additional novel inhibitors have also demonstrated encouraging results. Nevertheless, there are several problems concerning targeted therapy that need to be addressed. These include, among others, incomplete responsiveness and the emergence of resistance to BRAF inhibition as observed in other BRAF-mutant malignancies. Drug resistance and relapse after treatment interruption remain problems with current targeted therapies. Targeted therapy does not seem to eradicate the mutated clone, leading to inevitable relapes, which is a huge challenge for the future. More fundamental research and clinical trials are needed to address these issues and to develop improved targeted therapies that can overcome resistance and achieve long-lasting remissions.
Collapse
Affiliation(s)
- He Lin
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Xin-Xin Cao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
4
|
Gu R, Fang H, Wang R, Dai W, Cai G. A comprehensive overview of the molecular features and therapeutic targets in BRAF V600E-mutant colorectal cancer. Clin Transl Med 2024; 14:e1764. [PMID: 39073010 PMCID: PMC11283586 DOI: 10.1002/ctm2.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
As one of the most prevalent digestive system tumours, colorectal cancer (CRC) poses a significant threat to global human health. With the emergence of immunotherapy and target therapy, the prognosis for the majority of CRC patients has notably improved. However, the subset of patients with BRAF exon 15 p.V600E mutation (BRAFV600E) has not experienced remarkable benefits from these therapeutic advancements. Hence, researchers have undertaken foundational investigations into the molecular pathology of this specific subtype and clinical effectiveness of diverse therapeutic drug combinations. This review comprehensively summarised the distinctive molecular features and recent clinical research advancements in BRAF-mutant CRC. To explore potential therapeutic targets, this article conducted a systematic review of ongoing clinical trials involving patients with BRAFV600E-mutant CRC.
Collapse
Affiliation(s)
- Ruiqi Gu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Hongsheng Fang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Renjie Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Weixing Dai
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Guoxiang Cai
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Corcoran RB, Do KT, Kim JE, Cleary JM, Parikh AR, Yeku OO, Xiong N, Weekes CD, Veneris J, Ahronian LG, Mauri G, Tian J, Norden BL, Michel AG, Van Seventer EE, Siravegna G, Camphausen K, Chi G, Fetter IJ, Brugge JS, Chen H, Takebe N, Penson RT, Juric D, Flaherty KT, Sullivan RJ, Clark JW, Heist RS, Matulonis UA, Liu JF, Shapiro GI. Phase I/II Study of Combined BCL-xL and MEK Inhibition with Navitoclax and Trametinib in KRAS or NRAS Mutant Advanced Solid Tumors. Clin Cancer Res 2024; 30:1739-1749. [PMID: 38456660 PMCID: PMC11061595 DOI: 10.1158/1078-0432.ccr-23-3135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE MEK inhibitors (MEKi) lack monotherapy efficacy in most RAS-mutant cancers. BCL-xL is an anti-apoptotic protein identified by a synthetic lethal shRNA screen as a key suppressor of apoptotic response to MEKi. PATIENTS AND METHODS We conducted a dose escalation study (NCT02079740) of the BCL-xL inhibitor navitoclax and MEKi trametinib in patients with RAS-mutant tumors with expansion cohorts for: pancreatic, gynecologic (GYN), non-small cell lung cancer (NSCLC), and other cancers harboring KRAS/NRAS mutations. Paired pretreatment and day 15 tumor biopsies and serial cell-free (cf)DNA were analyzed. RESULTS A total of 91 patients initiated treatment, with 38 in dose escalation. Fifty-eight percent had ≥3 prior therapies. A total of 15 patients (17%) had colorectal cancer, 19 (11%) pancreatic, 15 (17%) NSCLC, and 32 (35%) GYN cancers. The recommended phase II dose (RP2D) was established as trametinib 2 mg daily days 1 to 14 and navitoclax 250 mg daily days 1 to 28 of each cycle. Most common adverse events included diarrhea, thrombocytopenia, increased AST/ALT, and acneiform rash. At RP2D, 8 of 49 (16%) evaluable patients achieved partial response (PR). Disease-specific differences in efficacy were noted. In patients with GYN at the RP2D, 7 of 21 (33%) achieved a PR and median duration of response 8.2 months. No PRs occurred in patients with colorectal cancer, NSCLC, or pancreatic cancer. MAPK pathway inhibition was observed in on-treatment tumor biopsies. Reductions in KRAS/NRAS mutation levels in cfDNA correlated with clinical benefit. CONCLUSIONS Navitoclax in combination with trametinib was tolerable. Durable clinical responses were observed in patients with RAS-mutant GYN cancers, warranting further evaluation in this population.
Collapse
Affiliation(s)
- Ryan B. Corcoran
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Khanh T. Do
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jeong E. Kim
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Aparna R. Parikh
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Oladapo O. Yeku
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Niya Xiong
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Colin D. Weekes
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jennifer Veneris
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Leanne G. Ahronian
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Gianluca Mauri
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, and Department of Hematology Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Jun Tian
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Bryanna L. Norden
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Alexa G. Michel
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Emily E. Van Seventer
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Giulia Siravegna
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kyle Camphausen
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Gary Chi
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Isobel J. Fetter
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Joan S. Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Helen Chen
- National Institute of Health, National Cancer Institute, Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, Bethesda, Maryland
| | - Naoko Takebe
- National Institute of Health, National Cancer Institute, Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, Bethesda, Maryland
| | - Richard T. Penson
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Dejan Juric
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Keith T. Flaherty
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ryan J. Sullivan
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey W. Clark
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Rebecca S. Heist
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ursula A. Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joyce F. Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
6
|
Jin H, Huang X, Pan Q, Ma N, Xie X, Wei Y, Yu F, Wen W, Zhang B, Zhang P, Chen X, Wang J, Liu RY, Lin J, Meng X, Lee MH. The EIF3H-HAX1 axis increases RAF-MEK-ERK signaling activity to promote colorectal cancer progression. Nat Commun 2024; 15:2551. [PMID: 38514606 PMCID: PMC10957977 DOI: 10.1038/s41467-024-46521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Eukaryotic initiation translation factor 3 subunit h (EIF3H) plays critical roles in regulating translational initiation and predicts poor cancer prognosis, but the mechanism underlying EIF3H tumorigenesis remains to be further elucidated. Here, we report that EIF3H is overexpressed in colorectal cancer (CRC) and correlates with poor prognosis. Conditional Eif3h deletion suppresses colorectal tumorigenesis in AOM/DSS model. Mechanistically, EIF3H functions as a deubiquitinase for HAX1 and stabilizes HAX1 via antagonizing βTrCP-mediated ubiquitination, which enhances the interaction between RAF1, MEK1 and ERK1, thereby potentiating phosphorylation of ERK1/2. In addition, activation of Wnt/β-catenin signaling induces EIF3H expression. EIF3H/HAX1 axis promotes CRC tumorigenesis and metastasis in mouse orthotopic cancer model. Significantly, combined targeting Wnt and RAF1-ERK1/2 signaling synergistically inhibits tumor growth in EIF3H-high patient-derived xenografts. These results uncover the important roles of EIF3H in mediating CRC progression through regulating HAX1 and RAF1-ERK1/2 signaling. EIF3H represents a promising therapeutic target and prognostic marker in CRC.
Collapse
Affiliation(s)
- Huilin Jin
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hepatobiliary, Pancreatic and Splenic surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Huang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qihao Pan
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Ma
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoshan Xie
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue Wei
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fenghai Yu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weijie Wen
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boyu Zhang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Zhang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xijie Chen
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Wang
- Department of Radiation Oncology, Dalian Municipal Central Hospital, Dalian, China
| | - Ran-Yi Liu
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junzhong Lin
- State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiangqi Meng
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Mong-Hong Lee
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Wu J, Chen Y, Li R, Guan Y, Chen M, Yin H, Yang X, Jin M, Huang B, Ding X, Yang J, Wang Z, He Y, Wang Q, Luo J, Wang P, Mao Z, Huen MS, Lou Z, Yuan J, Gong F. Synergistic anticancer effect by targeting CDK2 and EGFR-ERK signaling. J Cell Biol 2024; 223:e202203005. [PMID: 37955924 PMCID: PMC10641568 DOI: 10.1083/jcb.202203005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2023] [Accepted: 06/26/2023] [Indexed: 11/14/2023] Open
Abstract
The EGFR-RAS-ERK pathway is one of the most important signaling cascades in cell survival, growth, and proliferation. Aberrant activation of this pathway is a common mechanism in various cancers. Here, we report that CDK2 is a novel regulator of the ERK pathway via USP37 deubiquitinase (DUB). Mechanistically, CDK2 phosphorylates USP37, which is required for USP37 DUB activity. Further, USP37 deubiquitinates and stabilizes ERK1/2, thereby enhancing cancer cell proliferation. Thus, CDK2 is able to promote cell proliferation by activating USP37 and, in turn, stabilizing ERK1/2. Importantly, combined CDK1/2 and EGFR inhibitors have a synergetic anticancer effect through the downregulation of ERK1/2 stability and activity. Indeed, our patient-derived xenograft (PDX) results suggest that targeting both ERK1/2 stability and activity kills cancer cells more efficiently even at lower doses of these two inhibitors, which may reduce their associated side effects and indicate a potential new combination strategy for cancer therapy.
Collapse
Affiliation(s)
- Jinhuan Wu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Yuping Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Rui Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Yaping Guan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mu Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Yin
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoning Yang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Mingpeng Jin
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Bingsong Huang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Ding
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jie Yang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhe Wang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Yiming He
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qianwen Wang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jian Luo
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Michael S.Y. Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong S.A.R
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Fanghua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Tamura S, Tazawa H, Hori N, Li Y, Yamada M, Kikuchi S, Kuroda S, Urata Y, Kagawa S, Fujiwara T. p53-armed oncolytic adenovirus induces autophagy and apoptosis in KRAS and BRAF-mutant colorectal cancer cells. PLoS One 2023; 18:e0294491. [PMID: 37972012 PMCID: PMC10653454 DOI: 10.1371/journal.pone.0294491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Colorectal cancer (CRC) cells harboring KRAS or BRAF mutations show a more-malignant phenotype than cells with wild-type KRAS and BRAF. KRAS/BRAF-wild-type CRCs are sensitive to epidermal growth factor receptor (EGFR)-targeting agents, whereas KRAS/BRAF-mutant CRCs are resistant due to constitutive activation of the EGFR-downstream KRAS/BRAF signaling pathway. Novel therapeutic strategies to treat KRAS/BRAF mutant CRC cells are thus needed. We recently demonstrated that the telomerase-specific replication-competent oncolytic adenoviruses OBP-301 and p53-armed OBP-702 exhibit therapeutic potential against KRAS-mutant human pancreatic cancer cells. In this study, we evaluated the therapeutic potential of OBP-301 and OBP-702 against human CRC cells with differing KRAS/BRAF status. Human CRC cells with wild-type KRAS/BRAF (SW48, Colo320DM, CACO-2), mutant KRAS (DLD-1, SW620, HCT116), and mutant BRAF (RKO, HT29, COLO205) were used in this study. The antitumor effect of OBP-301 and OBP-702 against CRC cells was analyzed using the XTT assay. Virus-mediated modulation of apoptosis, autophagy, and the EGFR-MEK-ERK and AKT-mTOR signaling pathways was analyzed by Western blotting. Wild-type and KRAS-mutant CRC cells were sensitive to OBP-301 and OBP-702, whereas BRAF-mutant CRC cells were sensitive to OBP-702 but resistant to OBP-301. Western blot analysis demonstrated that OBP-301 induced autophagy and that OBP-702 induced autophagy and apoptosis in human CRC cells. In BRAF-mutant CRC cells, OBP-301 and OBP-702 suppressed the expression of EGFR, MEK, ERK, and AKT proteins, whereas mTOR expression was suppressed only by OBP-702. Our results suggest that p53-armed oncolytic virotherapy is a viable therapeutic option for treating KRAS/BRAF-mutant CRC cells via induction of autophagy and apoptosis.
Collapse
Affiliation(s)
- Shuta Tamura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Naoto Hori
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuncheng Li
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Motohiko Yamada
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
9
|
Chen W, Park JI. Tumor Cell Resistance to the Inhibition of BRAF and MEK1/2. Int J Mol Sci 2023; 24:14837. [PMID: 37834284 PMCID: PMC10573597 DOI: 10.3390/ijms241914837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BRAF is one of the most frequently mutated oncogenes, with an overall frequency of about 50%. Targeting BRAF and its effector mitogen-activated protein kinase kinase 1/2 (MEK1/2) is now a key therapeutic strategy for BRAF-mutant tumors, and therapies based on dual BRAF/MEK inhibition showed significant efficacy in a broad spectrum of BRAF tumors. Nonetheless, BRAF/MEK inhibition therapy is not always effective for BRAF tumor suppression, and significant challenges remain to improve its clinical outcomes. First, certain BRAF tumors have an intrinsic ability to rapidly adapt to the presence of BRAF and MEK1/2 inhibitors by bypassing drug effects via rewired signaling, metabolic, and regulatory networks. Second, almost all tumors initially responsive to BRAF and MEK1/2 inhibitors eventually acquire therapy resistance via an additional genetic or epigenetic alteration(s). Overcoming these challenges requires identifying the molecular mechanism underlying tumor cell resistance to BRAF and MEK inhibitors and analyzing their specificity in different BRAF tumors. This review aims to update this information.
Collapse
Affiliation(s)
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| |
Collapse
|
10
|
Liu J, Xie H. BRAF Non-V600 Mutations in Metastatic Colorectal Cancer. Cancers (Basel) 2023; 15:4604. [PMID: 37760573 PMCID: PMC10527056 DOI: 10.3390/cancers15184604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the United States. Despite advancements in detection and therapeutic options, patients with metastatic CRC continue to face poor survival rates. The heterogeneity of oncogenic alterations, including BRAF mutations, poses a substantial challenge in identifying optimal treatment approaches. Notably, BRAF non-V600 mutations, encompassing class II and class III mutations, exhibit the distinct patterns of the signaling pathways and responses to targeted therapies compared to BRAF V600 mutations (class I). Nevertheless, the current classification system may underestimate the complexity and heterogeneity of BRAF-mutant CRC. Ongoing clinical trials are actively investigating targeted therapies for BRAF non-V600 mutations, but they are being confronted with patient recruitment obstacles due to the genetic diversity of these alterations. Continued research is needed to refine mutation subtyping, identify effective treatment strategies, and improve outcomes for patients with BRAF non-V600-mutant CRC. Enhancing our understanding and management of this specific subgroup of CRC is crucial for developing personalized treatment approaches and advancing patient care. This manuscript provides a comprehensive overview of the recent advances in and perspectives on BRAF non-V600 alterations in colorectal cancer, including relevant ongoing clinical trials.
Collapse
Affiliation(s)
- Junjia Liu
- Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Hao Xie
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Loft M, To YH, Gibbs P, Tie J. Clinical application of circulating tumour DNA in colorectal cancer. Lancet Gastroenterol Hepatol 2023; 8:837-852. [PMID: 37499673 DOI: 10.1016/s2468-1253(23)00146-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 07/29/2023]
Abstract
Liquid biopsies that detect circulating tumour DNA (ctDNA) have the potential to revolutionise the personalised management of colorectal cancer. For patients with early-stage disease, emerging clinical applications include the assessment of molecular residual disease after surgery, the monitoring of adjuvant chemotherapy efficacy, and early detection of recurrence during surveillance. In the advanced disease setting, data highlight the potential of ctDNA levels as a prognostic marker and as an early indicator of treatment response. ctDNA assessment can complement standard tissue-based testing for molecular characterisation, with the added ability to monitor emerging mutations under the selective pressure of targeted therapy. Here we provide an overview of the evidence supporting the use of ctDNA in colorectal cancer, the studies underway to address some of the outstanding questions, and the barriers to widespread clinical uptake.
Collapse
Affiliation(s)
- Matthew Loft
- Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Oncology, Western Health, Footscray, VIC, Australia
| | - Yat Hang To
- Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Peter Gibbs
- Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Oncology, Western Health, Footscray, VIC, Australia
| | - Jeanne Tie
- Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
12
|
Li S, de Camargo Correia GS, Wang J, Manochakian R, Zhao Y, Lou Y. Emerging Targeted Therapies in Advanced Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:2899. [PMID: 37296863 PMCID: PMC10251928 DOI: 10.3390/cancers15112899] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 06/12/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC) is the most common type and is still incurable for most patients at the advanced stage. Targeted therapy is an effective treatment that has significantly improved survival in NSCLC patients with actionable mutations. However, therapy resistance occurs widely among patients leading to disease progression. In addition, many oncogenic driver mutations in NSCLC still lack targeted agents. New drugs are being developed and tested in clinical trials to overcome these challenges. This review aims to summarize emerging targeted therapy that have been conducted or initiated through first-in-human clinical trials in the past year.
Collapse
Affiliation(s)
- Shenduo Li
- Division of Hematology and Medical Oncology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA (G.S.d.C.C.)
| | | | - Jing Wang
- Department of Medicine, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA
| | - Rami Manochakian
- Division of Hematology and Medical Oncology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA (G.S.d.C.C.)
| | - Yujie Zhao
- Division of Hematology and Medical Oncology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA (G.S.d.C.C.)
| | - Yanyan Lou
- Division of Hematology and Medical Oncology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA (G.S.d.C.C.)
| |
Collapse
|
13
|
David P, Mittelstädt A, Kouhestani D, Anthuber A, Kahlert C, Sohn K, Weber GF. Current Applications of Liquid Biopsy in Gastrointestinal Cancer Disease-From Early Cancer Detection to Individualized Cancer Treatment. Cancers (Basel) 2023; 15:cancers15071924. [PMID: 37046585 PMCID: PMC10093361 DOI: 10.3390/cancers15071924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Worldwide, gastrointestinal (GI) cancers account for a significant amount of cancer-related mortality. Tests that allow an early diagnosis could lead to an improvement in patient survival. Liquid biopsies (LBs) due to their non-invasive nature as well as low risk are the current focus of cancer research and could be a promising tool for early cancer detection. LB involves the sampling of any biological fluid (e.g., blood, urine, saliva) to enrich and analyze the tumor's biological material. LBs can detect tumor-associated components such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), and circulating tumor cells (CTCs). These components can reflect the status of the disease and can facilitate clinical decisions. LBs offer a unique and new way to assess cancers at all stages of treatment, from cancer screenings to prognosis to management of multidisciplinary therapies. In this review, we will provide insights into the current status of the various types of LBs enabling early detection and monitoring of GI cancers and their use in in vitro diagnostics.
Collapse
Affiliation(s)
- Paul David
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anke Mittelstädt
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dina Kouhestani
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Anthuber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christoph Kahlert
- Department of Surgery, Carl Gustav Carus University Hospital, 01307 Dresden, Germany
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
| | - Georg F Weber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
14
|
Ducreux M, Tabernero J, Grothey A, Arnold D, O'Dwyer PJ, Gilberg F, Abbas A, Thakur MD, Prizant H, Irahara N, Tahiri A, Schmoll HJ, Van Cutsem E, de Gramont A. Clinical and exploratory biomarker findings from the MODUL trial (Cohorts 1, 3 and 4) of biomarker-driven maintenance therapy for metastatic colorectal cancer. Eur J Cancer 2023; 184:137-150. [PMID: 36921494 DOI: 10.1016/j.ejca.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE MODUL is an adaptable, signal-seeking trial of biomarker-driven maintenance therapy following first-line induction treatment in patients with metastatic colorectal cancer (mCRC). We report findings from Cohorts 1 (BRAFmut), 3 (human epidermal growth factor 2 [HER2]+) and 4 (HER2‒/high microsatellite instability, HER2‒/microsatellite stable [MSS]/BRAFwt or HER2‒/MSS/BRAFmut/RASmut). METHODS Patients with unresectable, previously untreated mCRC without disease progression following standard induction treatment (5-fluorouracil/leucovorin [5-FU/LV] plus oxaliplatin plus bevacizumab) were randomly assigned to control (fluoropyrimidine plus bevacizumab) or cohort-specific experimental maintenance therapy (Cohort 1: vemurafenib plus cetuximab plus 5-FU/LV; Cohort 3: capecitabine plus trastuzumab plus pertuzumab; Cohort 4: cobimetinib plus atezolizumab). The primary efficacy end-point was progression-free survival (PFS). RESULTS Cohorts 1, 3 and 4 did not reach target sample size because of early study closure. In Cohort 1 (n = 60), PFS did not differ between treatment arms (hazard ratio, 0.95; 95% confidence intervals 0.50-1.82; P = 0.872). However, Cohort 1 exploratory biomarker data showed preferential selection for mitogen-activated protein kinase (MAPK) pathway mutations (mainly KRAS, NRAS, MAP2K1 or BRAF) in the experimental arm but not the control arm. In Cohort 3 (n = 5), PFS ranged from 3.6 to 14.7 months versus 4.0 to 5.4 months in the experimental and control arms, respectively. In Cohort 4 (n = 99), PFS was shorter in the experimental arm (hazard ratio, 1.44; 95% confidence intervals 0.90-2.29; P = 0.128). CONCLUSIONS Vemurafenib plus cetuximab plus 5-FU/LV warrants further investigation as first-line maintenance treatment for BRAFmut mCRC. MAPK-pathway emergent genomic alterations may offer novel therapeutic opportunities in BRAFmut mCRC. Cobimetinib plus atezolizumab had an unfavourable benefit:risk ratio in HER2‒/MSS/BRAFwt mCRC. New strategies are required to increase the susceptibility of MSS mCRC to immunotherapy. TRIAL REGISTRATION ClinicalTrials.gov: NCT02291289.
Collapse
Affiliation(s)
- Michel Ducreux
- Université Paris-Saclay, Gustave Roussy, Villejuif, France.
| | - Josep Tabernero
- Vall D'Hebron Hospital Campus and Institute of Oncology (VHIO), IOB-Quiron, UVic-UCC, Barcelona, Spain.
| | | | - Dirk Arnold
- Asklepios Tumorzentrum Hamburg, AK Altona, Hamburg, Germany.
| | - Peter J O'Dwyer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | - Hen Prizant
- F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | | | | | | | - Eric Van Cutsem
- University Hospitals Gasthuisberg, Leuven and KU Leuven, Leuven, Belgium.
| | | |
Collapse
|
15
|
Tian J, Chen JH, Chao SX, Pelka K, Giannakis M, Hess J, Burke K, Jorgji V, Sindurakar P, Braverman J, Mehta A, Oka T, Huang M, Lieb D, Spurrell M, Allen JN, Abrams TA, Clark JW, Enzinger AC, Enzinger PC, Klempner SJ, McCleary NJ, Meyerhardt JA, Ryan DP, Yurgelun MB, Kanter K, Van Seventer EE, Baiev I, Chi G, Jarnagin J, Bradford WB, Wong E, Michel AG, Fetter IJ, Siravegna G, Gemma AJ, Sharpe A, Demehri S, Leary R, Campbell CD, Yilmaz O, Getz GA, Parikh AR, Hacohen N, Corcoran RB. Combined PD-1, BRAF and MEK inhibition in BRAF V600E colorectal cancer: a phase 2 trial. Nat Med 2023; 29:458-466. [PMID: 36702949 PMCID: PMC9941044 DOI: 10.1038/s41591-022-02181-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/12/2022] [Indexed: 01/27/2023]
Abstract
While BRAF inhibitor combinations with EGFR and/or MEK inhibitors have improved clinical efficacy in BRAFV600E colorectal cancer (CRC), response rates remain low and lack durability. Preclinical data suggest that BRAF/MAPK pathway inhibition may augment the tumor immune response. We performed a proof-of-concept single-arm phase 2 clinical trial of combined PD-1, BRAF and MEK inhibition with sparatlizumab (PDR001), dabrafenib and trametinib in 37 patients with BRAFV600E CRC. The primary end point was overall response rate, and the secondary end points were progression-free survival, disease control rate, duration of response and overall survival. The study met its primary end point with a confirmed response rate (24.3% in all patients; 25% in microsatellite stable patients) and durability that were favorable relative to historical controls of BRAF-targeted combinations alone. Single-cell RNA sequencing of 23 paired pretreatment and day 15 on-treatment tumor biopsies revealed greater induction of tumor cell-intrinsic immune programs and more complete MAPK inhibition in patients with better clinical outcome. Immune program induction in matched patient-derived organoids correlated with the degree of MAPK inhibition. These data suggest a potential tumor cell-intrinsic mechanism of cooperativity between MAPK inhibition and immune response, warranting further clinical evaluation of optimized targeted and immune combinations in CRC. ClinicalTrials.gov registration: NCT03668431.
Collapse
Affiliation(s)
- Jun Tian
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Jonathan H Chen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Sherry X Chao
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Karin Pelka
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Gladstone-UCSF Institute of Genomic Immunology, Gladstone Institutes Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Marios Giannakis
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Julian Hess
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Kelly Burke
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Vjola Jorgji
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Princy Sindurakar
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Jonathan Braverman
- The Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnav Mehta
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Tomonori Oka
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Mei Huang
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - David Lieb
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Maxwell Spurrell
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Jill N Allen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Thomas A Abrams
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jeffrey W Clark
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Andrea C Enzinger
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Peter C Enzinger
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Samuel J Klempner
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Nadine J McCleary
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | - David P Ryan
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Matthew B Yurgelun
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Katie Kanter
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Emily E Van Seventer
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Islam Baiev
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Gary Chi
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Joy Jarnagin
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - William B Bradford
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Edmond Wong
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Alexa G Michel
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Isobel J Fetter
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Giulia Siravegna
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Angelo J Gemma
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Arlene Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shadmehr Demehri
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Rebecca Leary
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Omer Yilmaz
- The Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gad A Getz
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Aparna R Parikh
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Corcoran RB. Line by Line: Distinct Patterns of Anti-EGFR Antibody Resistance by Line of Therapy. J Clin Oncol 2023; 41:436-438. [PMID: 36480767 DOI: 10.1200/jco.22.01922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ryan B Corcoran
- Massachusetts General Hospital Cancer Center and Department of Medicine Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Telekes A, Horváth A. The Role of Cell-Free DNA in Cancer Treatment Decision Making. Cancers (Basel) 2022; 14:6115. [PMID: 36551600 PMCID: PMC9776613 DOI: 10.3390/cancers14246115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to evaluate the present status of the use of cell-free DNA and its fraction of circulating tumor DNA (ctDNA) because this year July 2022, an ESMO guideline was published regarding the application of ctDNA in patient care. This review is for clinical oncologists to explain the concept, the terms used, the pros and cons of ctDNA; thus, the technical aspects of the different platforms are not reviewed in detail, but we try to help in navigating the current knowledge in liquid biopsy. Since the validated and adequately sensitive ctDNA assays have utility in identifying actionable mutations to direct targeted therapy, ctDNA may be used for this soon in routine clinical practice and in other different areas as well. The cfDNA fragments can be obtained by liquid biopsy and can be used for diagnosis, prognosis, and selecting among treatment options in cancer patients. A great proportion of cfDNA comes from normal cells of the body or from food uptake. Only a small part (<1%) of it is related to tumors, originating from primary tumors, metastatic sites, or circulating tumor cells (CTCs). Soon the data obtained from ctDNA may routinely be used for finding minimal residual disease, detecting relapse, and determining the sites of metastases. It might also be used for deciding appropriate therapy, and/or emerging resistance to the therapy and the data analysis of ctDNA may be combined with imaging or other markers. However, to achieve this goal, further clinical validations are inevitable. As a result, clinicians should be aware of the limitations of the assays. Of course, several open questions are still under research and because of it cfDNA and ctDNA testing are not part of routine care yet.
Collapse
Affiliation(s)
- András Telekes
- Omnimed-Etosz, Ltd., 81 Széher Rd., 1021 Budapest, Hungary
- Semmelweis University, 26. Üllői Rd., 1085 Budapest, Hungary
| | - Anna Horváth
- Department of Internal Medicine and Haematology, Semmelweis University, 46. Szentkirályi Rd., 1088 Budapest, Hungary
| |
Collapse
|
18
|
Poulikakos PI, Sullivan RJ, Yaeger R. Molecular Pathways and Mechanisms of BRAF in Cancer Therapy. Clin Cancer Res 2022; 28:4618-4628. [PMID: 35486097 PMCID: PMC9616966 DOI: 10.1158/1078-0432.ccr-21-2138] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 01/24/2023]
Abstract
With the identification of activating mutations in BRAF across a wide variety of malignancies, substantial effort was placed in designing safe and effective therapeutic strategies to target BRAF. These efforts have led to the development and regulatory approval of three BRAF inhibitors as well as five combinations of a BRAF inhibitor plus an additional agent(s) to manage cancer such as melanoma, non-small cell lung cancer, anaplastic thyroid cancer, and colorectal cancer. To date, each regimen is effective only in patients with tumors harboring BRAFV600 mutations and the duration of benefit is often short-lived. Further limitations preventing optimal management of BRAF-mutant malignancies are that treatments of non-V600 BRAF mutations have been less profound and combination therapy is likely necessary to overcome resistance mechanisms, but multi-drug regimens are often too toxic. With the emergence of a deeper understanding of how BRAF mutations signal through the RAS/MAPK pathway, newer RAF inhibitors are being developed that may be more effective and potentially safer and more rational combination therapies are being tested in the clinic. In this review, we identify the mechanics of RAF signaling through the RAS/MAPK pathway, present existing data on single-agent and combination RAF targeting efforts, describe emerging combinations, summarize the toxicity of the various agents in clinical testing, and speculate as to where the field may be headed.
Collapse
Affiliation(s)
- Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ryan J. Sullivan
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
19
|
Xu T, Wang X, Wang Z, Deng T, Qi C, Liu D, Li Y, Ji C, Li J, Shen L. Molecular mechanisms underlying the resistance of BRAF V600E-mutant metastatic colorectal cancer to EGFR/BRAF inhibitors. Ther Adv Med Oncol 2022; 14:17588359221105022. [PMID: 35747165 PMCID: PMC9210093 DOI: 10.1177/17588359221105022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background Combinatorial inhibition of epidermal growth factor receptor (EGFR) and BRAF shows remarkable clinical benefits in patients with BRAF V600E-mutant metastatic colorectal cancer (mCRC). However, the tumor may inevitably develop resistance to the targeted therapy, thereby limiting the response rate and durability. This study aimed to determine the genetic alterations associated with intrinsic and acquired resistance to EGFR/BRAF inhibitors in BRAF V600E-mutant mCRC. Methods Targeted sequencing of 520 cancer-related genes was performed in tumor tissues and in plasma samples collected from patients with BRAF V600E-mutant mCRC, who were treated with EGFR/BRAF ± MEK inhibitors, before and after the targeted treatment. Clinical benefit was defined as an objective response or a stable disease lasting longer than the median progression-free survival (PFS). Results In all, 25 patients with BRAF V600E-mutant mCRC were included in this study. Those with RNF43 mutations (n = 8) were more likely to achieve clinical benefit from EGFR/BRAF inhibitors than those with wild-type RNF43 (87.5% versus 37.5%, p = 0.034). Genetic alterations in receptor tyrosine kinase genes (n = 6) were associated with worse PFS (p = 0.005). Among the 23 patients whose disease progressed after the EGFR/BRAF-targeted therapy, at least one acquired resistance-related mutation was detected in 12 patients. Acquired mutations were most frequently observed in the mitogen-activated protein kinase pathway-related genes (n = 9), including KRAS (G12D and Q61H/R), NRAS (Q61L/R/K and amplification), BRAF (amplification), and MEK1 (K57T). MET amplification and PIK3R1 Q579fs mutation emerged in three patients and one patient, respectively, after disease progression. Conclusion Multiple genetic alterations are associated with clinical benefits and resistance to EGFR/BRAF inhibitors in BRAF V600E-mutant mCRC. Our findings provide novel insights into strategies for overcoming resistance to EGFR/BRAF inhibitors in patients with BRAF V600E-mutant mCRC.
Collapse
Affiliation(s)
- Ting Xu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xicheng Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ting Deng
- National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Dan Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanyan Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Congcong Ji
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China
| |
Collapse
|
20
|
Ryan MB, Coker O, Sorokin A, Fella K, Barnes H, Wong E, Kanikarla P, Gao F, Zhang Y, Zhou L, Kopetz S, Corcoran RB. KRAS G12C-independent feedback activation of wild-type RAS constrains KRAS G12C inhibitor efficacy. Cell Rep 2022; 39:110993. [PMID: 35732135 PMCID: PMC9809542 DOI: 10.1016/j.celrep.2022.110993] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/12/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023] Open
Abstract
Although KRAS has long been considered undruggable, direct KRASG12C inhibitors have shown promising initial clinical efficacy. However, the majority of patients still fail to respond. Adaptive feedback reactivation of RAS-mitogen-activated protein kinase (MAPK) signaling has been proposed by our group and others as a key mediator of resistance, but the exact mechanism driving reactivation and the therapeutic implications are unclear. We find that upstream feedback activation of wild-type RAS, as opposed to a shift in KRASG12C to its active guanosine triphosphate (GTP)-bound state, is sufficient to drive RAS-MAPK reactivation in a KRASG12C-independent manner. Moreover, multiple receptor tyrosine kinases (RTKs) can drive feedback reactivation, potentially necessitating targeting of convergent signaling nodes for more universal efficacy. Even in colorectal cancer, where feedback is thought to be primarily epidermal growth factor receptor (EGFR)-mediated, alternative RTKs drive pathway reactivation and limit efficacy, but convergent upstream or downstream signal blockade can enhance activity. Overall, these data provide important mechanistic insight to guide therapeutic strategies targeting KRAS.
Collapse
Affiliation(s)
- Meagan B Ryan
- Massachusetts General Hospital Cancer Center, 149 13(th) Street, 7(th) Floor, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Oluwadara Coker
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexey Sorokin
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katerina Fella
- Massachusetts General Hospital Cancer Center, 149 13(th) Street, 7(th) Floor, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Haley Barnes
- Massachusetts General Hospital Cancer Center, 149 13(th) Street, 7(th) Floor, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Edmond Wong
- Massachusetts General Hospital Cancer Center, 149 13(th) Street, 7(th) Floor, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Preeti Kanikarla
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fengqin Gao
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Scott Kopetz
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center, 149 13(th) Street, 7(th) Floor, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Shimizu Y, Maruyama K, Suzuki M, Kawachi H, Low SK, Oh-Hara T, Takeuchi K, Fujita N, Nagayama S, Katayama R. Acquired resistance to BRAF inhibitors is mediated by BRAF splicing variants in BRAF V600E mutation-positive colorectal neuroendocrine carcinoma. Cancer Lett 2022; 543:215799. [PMID: 35724767 DOI: 10.1016/j.canlet.2022.215799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022]
Abstract
Neuroendocrine carcinomas (NECs), a poorly differentiated subtype of neuroendocrine neoplasms, are aggressive and have a poor prognosis. Colorectal neuroendocrine carcinomas (CRC-NECs) are observed in about 0.6% of all patients with CRC. Interestingly, patients with CRC-NECs show higher frequencies of BRAF mutation than typical CRC. BRAF V600E mutation-positive CRC-NECs were shown to be sensitive to BRAF inhibitors and now are treated by BRAF inhibitors. Similar to the other BRAF V600E mutated cancers, resistances against BRAF inhibitors have been observed, but the resistance mechanisms are still unclear. In this study, we established BRAF V600E mutated CRC-NEC cell line directly from surgical specimens and experimentally obtained BRAF inhibitor dabrafenib resistant cell lines. The resistant cells are revealed to express at least three types of BRAF splicing variants harboring V600E-mutation, and contribute to RAF/MEK/ERK pathway activation. In these cells, MEK and ERK inhibitors but not dabrafenib significantly suppressed cell growth and survival. Thus, in BRAF V600E mutation-positive CRC-NECs, BRAF splicing variants activate the RAF/MEK/ERK pathway and contribute to acquire BRAF inhibitor resistance. Hence, MEK or ERK are potential therapeutic targets to overcome BRAF resistance.
Collapse
Affiliation(s)
- Yuki Shimizu
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Maruyama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Mai Suzuki
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kawachi
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Siew-Kee Low
- Cancer Precision Medicine Center, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomoko Oh-Hara
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan; Pathology Project for Molecular Targets, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Surgery, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
22
|
Brown KM, Xue A, Smith RC, Samra JS, Gill AJ, Hugh TJ. Cancer-associated stroma reveals prognostic biomarkers and novel insights into the tumour microenvironment of colorectal cancer and colorectal liver metastases. Cancer Med 2022; 11:492-506. [PMID: 34874125 PMCID: PMC8729056 DOI: 10.1002/cam4.4452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND AIMS Cancer-associated stroma (CAS) is emerging as a key determinant of metastasis in colorectal cancer (CRC); however, little is known about CAS in colorectal liver metastases (CRLM). This study aimed to validate the prognostic significance of stromal protein biomarkers in primary CRC and CRLM. Secondly, this study aimed to describe the transcriptome of the CAS of CRLM and identify novel targetable pathways of metastasis. METHODS A case-control study design from a prospectively maintained database was adopted. The prognostic value of epithelial and stromal CALD1, IGFBP7, POSTN, FAP, TGF-β and pSMAD2 expression was assessed by immunohistochemistry (IHC) in multivariate models. Pathway enrichment and sparse partial least square-discriminant analysis (sPLS-DA) were performed on a nested cohort after isolating epithelial tumour and CAS by laser capture microdissection. RESULTS 110 CRCs with 124 paired CRLMs, and 110 matched non-metastatic control CRCs were included. Median follow-up was 62 and 45 months for primary and CRLM groups, respectively. Stromal FAP and POSTN were independent predictors for the development of CRLM. After CRLM resection, stromal IGFBP7 and POSTN were predictors of poorer survival. sPLS-DA on the nested cohort identified a number of novel targetable stromal genes and pathways that defined poor prognosis CRC and the CAS of CRLM. CONCLUSIONS This study is the first to describe key differences in stromal gene expression between paired primary CRC and CRLM as well as identifying several targetable biomarkers and transcriptomic pathways whose relevance specifically in the CAS of CRC and CRLM have not been previously described.
Collapse
Affiliation(s)
- Kai M. Brown
- Cancer Surgery and Metabolism Research GroupKolling Institute of Medical ResearchRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- Upper GI Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
- Northern Clinical SchoolSydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Aiqun Xue
- Cancer Surgery and Metabolism Research GroupKolling Institute of Medical ResearchRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- Northern Clinical SchoolSydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Ross C. Smith
- Cancer Surgery and Metabolism Research GroupKolling Institute of Medical ResearchRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- Northern Clinical SchoolSydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Jaswinder S. Samra
- Upper GI Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
- Northern Clinical SchoolSydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Anthony J. Gill
- Northern Clinical SchoolSydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
- Cancer Diagnosis and Pathology GroupUniversity of SydneyKolling Institute of Medical ResearchRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
| | - Thomas J. Hugh
- Cancer Surgery and Metabolism Research GroupKolling Institute of Medical ResearchRoyal North Shore HospitalSt LeonardsNew South WalesAustralia
- Upper GI Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
- Northern Clinical SchoolSydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
23
|
Hou P, Wang YA. Conquering oncogenic KRAS and its bypass mechanisms. Theranostics 2022; 12:5691-5709. [PMID: 35966590 PMCID: PMC9373815 DOI: 10.7150/thno.71260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Aberrant activation of KRAS signaling is common in cancer, which has catalyzed heroic drug development efforts to target KRAS directly or its downstream signaling effectors. Recent works have yielded novel small molecule drugs with promising preclinical and clinical activities. Yet, no matter how a cancer is addicted to a specific target - cancer's genetic and biological plasticity fashions a variety of resistance mechanisms as a fait accompli, limiting clinical benefit of targeted interventions. Knowledge of these mechanisms may inform combination strategies to attack both oncogenic KRAS and subsequent bypass mechanisms.
Collapse
Affiliation(s)
- Pingping Hou
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.,Lead contact
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
24
|
Munck JM, Berdini V, Bevan L, Brothwood JL, Castro J, Courtin A, East C, Ferraldeschi R, Heightman TD, Hindley CJ, Kucia-Tran J, Lyons JF, Martins V, Muench S, Murray CW, Norton D, O'Reilly M, Reader M, Rees DC, Rich SJ, Richardson CJ, Shah AD, Stanczuk L, Thompson NT, Wilsher NE, Woolford AJA, Wallis NG. ASTX029, a Novel Dual-mechanism ERK Inhibitor, Modulates Both the Phosphorylation and Catalytic Activity of ERK. Mol Cancer Ther 2021; 20:1757-1768. [PMID: 34330842 DOI: 10.1158/1535-7163.mct-20-0909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/11/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
The MAPK signaling pathway is commonly upregulated in human cancers. As the primary downstream effector of the MAPK pathway, ERK is an attractive therapeutic target for the treatment of MAPK-activated cancers and for overcoming resistance to upstream inhibition. ASTX029 is a highly potent and selective dual-mechanism ERK inhibitor, discovered using fragment-based drug design. Because of its distinctive ERK-binding mode, ASTX029 inhibits both ERK catalytic activity and the phosphorylation of ERK itself by MEK, despite not directly inhibiting MEK activity. This dual mechanism was demonstrated in cell-free systems, as well as cell lines and xenograft tumor tissue, where the phosphorylation of both ERK and its substrate, ribosomal S6 kinase (RSK), were modulated on treatment with ASTX029. Markers of sensitivity were highlighted in a large cell panel, where ASTX029 preferentially inhibited the proliferation of MAPK-activated cell lines, including those with BRAF or RAS mutations. In vivo, significant antitumor activity was observed in MAPK-activated tumor xenograft models following oral treatment. ASTX029 also demonstrated activity in both in vitro and in vivo models of acquired resistance to MAPK pathway inhibitors. Overall, these findings highlight the therapeutic potential of a dual-mechanism ERK inhibitor such as ASTX029 for the treatment of MAPK-activated cancers, including those which have acquired resistance to inhibitors of upstream components of the MAPK pathway. ASTX029 is currently being evaluated in a first in human phase I-II clinical trial in patients with advanced solid tumors (NCT03520075).
Collapse
Affiliation(s)
| | | | - Luke Bevan
- Astex Pharmaceuticals, Cambridge, United Kingdom
| | | | - Juan Castro
- Astex Pharmaceuticals, Cambridge, United Kingdom
| | | | | | | | | | | | | | - John F Lyons
- Astex Pharmaceuticals, Cambridge, United Kingdom
| | | | | | | | - David Norton
- Astex Pharmaceuticals, Cambridge, United Kingdom
| | | | | | - David C Rees
- Astex Pharmaceuticals, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Portelinha A, Thompson S, Smith RA, Da Silva Ferreira M, Asgari Z, Knezevic A, Seshan V, de Stanchina E, Gupta S, Denis L, Younes A, Reddy S. ASN007 is a selective ERK1/2 inhibitor with preferential activity against RAS-and RAF-mutant tumors. Cell Rep Med 2021; 2:100350. [PMID: 34337566 PMCID: PMC8324497 DOI: 10.1016/j.xcrm.2021.100350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/21/2020] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
Inhibition of the extracellular signal-regulated kinases ERK1 and ERK2 (ERK1/2) offers a promising therapeutic strategy in cancers harboring activated RAS/RAF/MEK/ERK signaling pathways. Here, we describe an orally bioavailable and selective ERK1/2 inhibitor, ASN007, currently in clinical development for the treatment of cancer. In preclinical studies, ASN007 shows strong antiproliferative activity in tumors harboring mutations in BRAF and RAS (KRAS, NRAS, and HRAS). ASN007 demonstrates activity in a BRAFV600E mutant melanoma tumor model that is resistant to BRAF and MEK inhibitors. The PI3K inhibitor copanlisib enhances the antiproliferative activity of ASN007 both in vitro and in vivo due to dual inhibition of RAS/MAPK and PI3K survival pathways. Our data provide a rationale for evaluating ASN007 in RAS/RAF-driven tumors as well as a mechanistic basis for combining ASN007 with PI3K inhibitors.
Collapse
Affiliation(s)
- Ana Portelinha
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Zahra Asgari
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Knezevic
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Venkatraman Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Anas Younes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
26
|
Giordano G, Parcesepe P, Bruno G, Piscazzi A, Lizzi V, Remo A, Pancione M, D’Andrea MR, De Santis E, Coppola L, Pietrafesa M, Fersini A, Ambrosi A, Landriscina M. Evidence-Based Second-Line Treatment in RAS Wild-Type/Mutated Metastatic Colorectal Cancer in the Precision Medicine Era. Int J Mol Sci 2021; 22:7717. [PMID: 34299337 PMCID: PMC8307359 DOI: 10.3390/ijms22147717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Target-oriented agents improve metastatic colorectal cancer (mCRC) survival in combination with chemotherapy. However, the majority of patients experience disease progression after first-line treatment and are eligible for second-line approaches. In such a context, antiangiogenic and anti-Epidermal Growth Factor Receptor (EGFR) agents as well as immune checkpoint inhibitors have been approved as second-line options, and RAS and BRAF mutations and microsatellite status represent the molecular drivers that guide therapeutic choices. Patients harboring K- and N-RAS mutations are not eligible for anti-EGFR treatments, and bevacizumab is the only antiangiogenic agent that improves survival in combination with chemotherapy in first-line, regardless of RAS mutational status. Thus, the choice of an appropriate therapy after the progression to a bevacizumab or an EGFR-based first-line treatment should be evaluated according to the patient and disease characteristics and treatment aims. The continuation of bevacizumab beyond progression or its substitution with another anti-angiogenic agents has been shown to increase survival, whereas anti-EGFR monoclonals represent an option in RAS wild-type patients. In addition, specific molecular subgroups, such as BRAF-mutated and Microsatellite Instability-High (MSI-H) mCRCs represent aggressive malignancies that are poorly responsive to standard therapies and deserve targeted approaches. This review provides a critical overview about the state of the art in mCRC second-line treatment and discusses sequential strategies according to key molecular biomarkers.
Collapse
Affiliation(s)
- Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy; (G.B.); (A.P.)
| | - Pietro Parcesepe
- Department of Diagnostics and Public Health—Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Giuseppina Bruno
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy; (G.B.); (A.P.)
| | - Annamaria Piscazzi
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy; (G.B.); (A.P.)
| | - Vincenzo Lizzi
- General Surgey Unit, Policlinico Riuniti, 71122 Foggia, Italy;
| | - Andrea Remo
- Pathology Unit “Mater Salutis” Hospital, ULSS9, Legnago, 37045 Verona, Italy;
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy;
| | | | - Elena De Santis
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luigi Coppola
- UOC Anatomia ed Istologia Patologica e Citologia Diagnostica, Dipartimento dei Servizi Diagnostici e della Farmaceutica, Ospedale Sandro Pertini, ASL Roma 2, 00157 Roma, Italy;
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture, 85028 Potenza, Italy;
| | - Alberto Fersini
- General Surgery Unit, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy; (A.F.); (A.A.)
| | - Antonio Ambrosi
- General Surgery Unit, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy; (A.F.); (A.A.)
| | - Matteo Landriscina
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy; (G.B.); (A.P.)
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture, 85028 Potenza, Italy;
| |
Collapse
|
27
|
Catalano A, Adlesic M, Kaltenbacher T, Klar RFU, Albers J, Seidel P, Brandt LP, Hejhal T, Busenhart P, Röhner N, Zodel K, Fritsch K, Wild PJ, Duyster J, Fritsch R, Brummer T, Frew IJ. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers (Basel) 2021; 13:cancers13081852. [PMID: 33924486 PMCID: PMC8069437 DOI: 10.3390/cancers13081852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Mutations in RAS-family genes frequently cause different types of human cancers. Inhibitors of the MEK (mitogen-activated protein kinase) and ERK (extracellular signal-regulated kinase) protein kinases that function downstream of RAS proteins have shown some clinical benefits when used for the treatment of these cancers, but drug resistance frequently emerges. Here we show that combined treatment with MEK and ERK inhibitors blocks the emergence of resistance to either drug alone. However, if cancer cells have already developed resistance to MEK inhibitors or to ERK inhibitors, the combined therapy is frequently ineffective. These findings imply that these inhibitors should be used together for cancer therapy. We also show that drug resistance involves complex patterns of rewiring of cellular kinase signaling networks that do not overlap between each different cancer cell line. Nonetheless, we show that MAP4K4 is required for efficient cell proliferation in several different MEK/ERK inhibitor resistant cancer cell lines, uncovering a potential new therapeutic target. Abstract Oncogenic mutations in RAS family genes arise frequently in metastatic human cancers. Here we developed new mouse and cellular models of oncogenic HrasG12V-driven undifferentiated pleomorphic sarcoma metastasis and of KrasG12D-driven pancreatic ductal adenocarcinoma metastasis. Through analyses of these cells and of human oncogenic KRAS-, NRAS- and BRAF-driven cancer cell lines we identified that resistance to single MEK inhibitor and ERK inhibitor treatments arise rapidly but combination therapy completely blocks the emergence of resistance. The prior evolution of resistance to either single agent frequently leads to resistance to dual treatment. Dual MEK inhibitor plus ERK inhibitor therapy shows anti-tumor efficacy in an HrasG12V-driven autochthonous sarcoma model but features of drug resistance in vivo were also evident. Array-based kinome activity profiling revealed an absence of common patterns of signaling rewiring in single or double MEK and ERK inhibitor resistant cells, showing that the development of resistance to downstream signaling inhibition in oncogenic RAS-driven tumors represents a heterogeneous process. Nonetheless, in some single and double MEK and ERK inhibitor resistant cell lines we identified newly acquired drug sensitivities. These may represent additional therapeutic targets in oncogenic RAS-driven tumors and provide general proof-of-principle that therapeutic vulnerabilities of drug resistant cells can be identified.
Collapse
Affiliation(s)
- Antonella Catalano
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
| | - Mojca Adlesic
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
| | - Thorsten Kaltenbacher
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Rhena F. U. Klar
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Joachim Albers
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| | - Philipp Seidel
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
| | - Laura P. Brandt
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| | - Tomas Hejhal
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| | - Philipp Busenhart
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| | - Niklas Röhner
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
| | - Kyra Zodel
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
| | - Kornelia Fritsch
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
| | - Peter J. Wild
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8006 Zurich, Switzerland;
| | - Justus Duyster
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ralph Fritsch
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Hematology and Medical Oncology, University Hospital of Zurich, 8006 Zurich, Switzerland
| | - Tilman Brummer
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Ian J. Frew
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.C.); (M.A.); (R.F.U.K.); (P.S.); (N.R.); (K.Z.); (K.F.); (J.D.); (R.F.)
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland; (J.A.); (L.P.B.); (T.H.); (P.B.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
- Signaling Research Centre BIOSS, University of Freiburg, 79104 Freiburg, Germany;
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-270-71831
| |
Collapse
|
28
|
Picco G, Cattaneo CM, van Vliet EJ, Crisafulli G, Rospo G, Consonni S, Vieira SF, Rodríguez IS, Cancelliere C, Banerjee R, Schipper LJ, Oddo D, Dijkstra KK, Cinatl J, Michaelis M, Yang F, Di Nicolantonio F, Sartore-Bianchi A, Siena S, Arena S, Voest EE, Bardelli A, Garnett MJ. Werner Helicase Is a Synthetic-Lethal Vulnerability in Mismatch Repair-Deficient Colorectal Cancer Refractory to Targeted Therapies, Chemotherapy, and Immunotherapy. Cancer Discov 2021; 11:1923-1937. [PMID: 33837064 DOI: 10.1158/2159-8290.cd-20-1508] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
Targeted therapies, chemotherapy, and immunotherapy are used to treat patients with mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer. The clinical effectiveness of targeted therapy and chemotherapy is limited by resistance and drug toxicities, and about half of patients receiving immunotherapy have disease that is refractory to immune checkpoint inhibitors. Loss of Werner syndrome ATP-dependent helicase (WRN) is a synthetic lethality in dMMR/MSI-H cells. To inform the development of WRN as a therapeutic target, we performed WRN knockout or knockdown in 60 heterogeneous dMMR colorectal cancer preclinical models, demonstrating that WRN dependency is an almost universal feature and a robust marker for patient selection. Furthermore, models of resistance to clinically relevant targeted therapy, chemotherapy, and immunotherapy retain WRN dependency. These data show the potential of therapeutically targeting WRN in patients with dMMR/MSI-H colorectal cancer and support WRN as a therapeutic option for patients with dMMR/MSI-H cancers refractory to current treatment strategies. SIGNIFICANCE: We found that a large, diverse set of dMMR/MSI-H colorectal cancer preclinical models, including models of treatment-refractory disease, are WRN-dependent. Our results support WRN as a promising synthetic-lethal target in dMMR/MSI-H colorectal cancer tumors as a monotherapy or in combination with targeted agents, chemotherapy, or immunotherapy.This article is highlighted in the In This Issue feature, p. 1861.
Collapse
Affiliation(s)
| | - Chiara M Cattaneo
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, the Netherlands
| | | | - Giovanni Crisafulli
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| | - Giuseppe Rospo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| | | | - Sara F Vieira
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Iñigo Sánchez Rodríguez
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, the Netherlands
| | | | - Ruby Banerjee
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Luuk J Schipper
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, the Netherlands
| | - Daniele Oddo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| | - Krijn K Dijkstra
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, the Netherlands
| | - Jindrich Cinatl
- Institute for Medical Virology, Goethe-University, Frankfurt am Main, Germany
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milano, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Milano, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milano, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Milano, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| | - Emile E Voest
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, the Netherlands
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| | | | | |
Collapse
|
29
|
Decoding the Evolutionary Response to Ensartinib in Patients With ALK-Positive NSCLC by Dynamic Circulating Tumor DNA Sequencing. J Thorac Oncol 2021; 16:827-839. [PMID: 33588113 DOI: 10.1016/j.jtho.2021.01.1615] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/10/2020] [Accepted: 01/09/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION By implementing dynamic circulating tumor DNA (ctDNA) analysis, we explored the impact of TP53 mutations on tumor evolution and resistance mechanisms to ensartinib in patients with ALK-positive NSCLC. METHODS In a multicenter phase 2 trial, patients with ALK-positive NSCLC who progressed on crizotinib were treated with ensartinib. Blood samples for ctDNA analysis were collected at baseline, cycle 3 day 1, and progression disease (PD) and analyzed with a 212-gene panel. RESULTS A total of 440 samples were collected from 168 patients. Baseline TP53 mutations (20.2%) significantly correlated with inferior progression-free survival (4.2 mo versus 11.7 mo, p < 0.0001). Patients with TP53 mutations had higher mutation load than those without TP53 mutations at baseline (13.79 ± 3.72 versus 4.67 ± 0.39, p < 0.001). Although there was no significant difference in mutation load between these groups at cycle 3 day 1 (5.89 ± 2.25 versus 3.72 ± 0.62, p = 0.425), patients with mutated TP53 developed more mutations at PD (7.07 ± 1.25 versus 3.20 ± 0.33, p = 0.003). Frequency and abundance of secondary ALK mutations G1269A, G1202R, and E1210K increased markedly at PD than baseline. In patients without secondary ALK mutations, we identified ALK-independent resistance mechanisms including bypass signaling activation, downstream effector protein reactivation, epithelial-mesenchymal transformation, and epigenetic dysregulation. CONCLUSIONS Our study highlighted the advantage of ctDNA analysis for monitoring tumor evolution. TP53 mutations promoted genetic evolution and accelerated occurrence of resistance. We also unveiled ALK-dependent resistance mechanisms, mainly by G1269A, G1202R, and E1210K mutations, and ALK-independent resistance mechanisms to ensartinib.
Collapse
|
30
|
MicroRNA-Based Therapeutics for Drug-Resistant Colorectal Cancer. Pharmaceuticals (Basel) 2021; 14:ph14020136. [PMID: 33567635 PMCID: PMC7915952 DOI: 10.3390/ph14020136] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Although therapeutic approaches for patients with colorectal cancer (CRC) have improved in the past decades, the problem of drug resistance still persists and acts as a major obstacle for effective therapy. Many studies have shown that drug resistance is related to reduced drug uptake, modification of drug targets, and/or transformation of cell cycle checkpoints. A growing body of evidence indicates that several microRNAs (miRNAs) may contribute to the drug resistance to chemotherapy, targeted therapy, and immunotherapy by regulating the drug resistance-related target genes in CRC. These drug resistance-related miRNAs may be used as promising biomarkers for predicting drug response or as potential therapeutic targets for treating patients with CRC. In this review, we summarized the recent discoveries regarding anti-cancer drug-related miRNAs and their molecular mechanisms in CRC. Furthermore, we discussed the challenges associated with the clinical application of miRNAs as biomarkers for the diagnosis of drug-resistant patients and as therapeutic targets for CRC treatment.
Collapse
|
31
|
McDuff SGR, Hardiman KM, Ulintz PJ, Parikh AR, Zheng H, Kim DW, Lennerz JK, Hazar-Rethinam M, Van Seventer EE, Fetter IJ, Nadres B, Eyler CE, Ryan DP, Weekes CD, Clark JW, Cusack JC, Goyal L, Zhu AX, Wo JY, Blaszkowsky LS, Allen J, Corcoran RB, Hong TS. Circulating Tumor DNA Predicts Pathologic and Clinical Outcomes Following Neoadjuvant Chemoradiation and Surgery for Patients With Locally Advanced Rectal Cancer. JCO Precis Oncol 2021; 5:PO.20.00220. [PMID: 34250394 DOI: 10.1200/po.20.00220] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/16/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE This study was designed to assess the ability of perioperative circulating tumor DNA (ctDNA) to predict surgical outcome and recurrence following neoadjuvant chemoradiation for locally advanced rectal cancer (LARC). MATERIALS AND METHODS Twenty-nine patients with newly diagnosed LARC treated between January 2014 and February 2018 were enrolled. Patients received long-course neoadjuvant chemoradiation prior to surgery. Plasma ctDNA was collected at baseline, preoperatively, and postoperatively. Next-generation sequencing was used to identify mutations in the primary tumor, and mutation-specific droplet digital polymerase chain reaction was used to assess mutation fraction in ctDNA. RESULTS The median age was 54 years. The overall margin-negative, node-negative resection rate was 73% and was significantly higher among patients with undetectable preoperative ctDNA (n = 17, 88%) versus patients with detectable preoperative ctDNA (n = 9, 44%; P = .028). Undetectable ctDNA was also associated with more favorable neoadjuvant rectal scores (univariate linear regression, P = .029). Recurrence-free survival (RFS) was calculated for the subset (n = 19) who both underwent surgery and had postoperative ctDNA available. At a median follow-up of 20 months, patients with detectable postoperative ctDNA experienced poorer RFS (hazard ratio, 11.56; P = .007). All patients (4 of 4) with detectable postoperative ctDNA recurred (positive predictive value = 100%), whereas only 2 of 15 patients with undetectable ctDNA recurred (negative predictive value = 87%). CONCLUSION Among patients treated with neoadjuvant chemoradiation for LARC, patients with undetectable preoperative ctDNA were more likely to have a favorable surgical outcome as measured by the rate of margin-negative, node-negative resections and neoadjuvant rectal score. Furthermore, we have confirmed prior reports indicating that detectable postoperative ctDNA is associated with worse RFS. Future prospective study is needed to assess the potential for ctDNA to assist with personalizing treatment for LARC.
Collapse
Affiliation(s)
- Susan G R McDuff
- Department of Radiation Oncology, Duke Cancer Center, Duke University Medical Center, Duke Medicine Circle, Durham, NC.,Harvard Radiation Oncology Program, Boston, MA
| | - Karin M Hardiman
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Peter J Ulintz
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI
| | - Aparna R Parikh
- Department of Internal Medicine and Hematology/Oncology, Massachusetts General Hospital, Boston, MA
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Boston, MA
| | | | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Boston, MA
| | | | | | | | - Brandon Nadres
- Massachusetts General Hospital Cancer Center, Boston, MA
| | - Christine E Eyler
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - David P Ryan
- Department of Internal Medicine and Hematology/Oncology, Massachusetts General Hospital, Boston, MA
| | - Colin D Weekes
- Department of Internal Medicine and Hematology/Oncology, Massachusetts General Hospital, Boston, MA
| | - Jeffrey W Clark
- Department of Internal Medicine and Hematology/Oncology, Massachusetts General Hospital, Boston, MA
| | - James C Cusack
- The Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Boston, MA
| | - Lipika Goyal
- Department of Internal Medicine and Hematology/Oncology, Massachusetts General Hospital, Boston, MA
| | - Andrew X Zhu
- Department of Internal Medicine and Hematology/Oncology, Massachusetts General Hospital, Boston, MA.,Jiahui International Cancer Center, Jiahui Health, Shanghai, China
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Lawrence S Blaszkowsky
- Department of Internal Medicine and Hematology/Oncology, Massachusetts General Hospital, Boston, MA
| | - Jill Allen
- Department of Internal Medicine and Hematology/Oncology, Massachusetts General Hospital, Boston, MA
| | - Ryan B Corcoran
- Department of Internal Medicine and Hematology/Oncology, Massachusetts General Hospital, Boston, MA.,Massachusetts General Hospital Cancer Center, Boston, MA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
32
|
Koçana CÇ, Toprak SF, Sözer S. Extracellular genetic materials and their application in clinical practice. Cancer Genet 2020; 252-253:48-63. [PMID: 33387935 DOI: 10.1016/j.cancergen.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/12/2020] [Accepted: 12/20/2020] [Indexed: 11/20/2022]
Abstract
This study reviews the possible origins, functional roles, and diagnostic applications of 'extracellular genetic material' (EGM), a novel term introduced to cover DNA, RNA, and DNA/RNA-related molecules released from all types of cells into the extracellular region. The literature on EGMs shows them to play a dual role in diverse, fine-tuning mechanisms involved in both homeostasis and pathological events, including cancerogenesis and genometastasis. Recent developments in the next-generation technology have provided successful applications of low quantities of genomic materials into the diagnostic field, yielding high sensitivity and specificity in test results. Also, the successful application of EGMs into diagnostics has afforded promising outcomes for researchers and clinicians. This study of EGM provides a deeper understanding of the subject as an area of interest, especially cell-free DNA, aiming toward the eventual development of new therapeutic applications and diagnostic strategies.
Collapse
Affiliation(s)
- Cemal Çağıl Koçana
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Selin Fulya Toprak
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Selçuk Sözer
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
33
|
Nakayama I, Hirota T, Shinozaki E. BRAF Mutation in Colorectal Cancers: From Prognostic Marker to Targetable Mutation. Cancers (Basel) 2020; 12:cancers12113236. [PMID: 33152998 PMCID: PMC7694028 DOI: 10.3390/cancers12113236] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Colorectal cancer with a mutation in an oncogene BRAF has paid much attention, as it comprises a population with dismal prognosis since two decades ago. A series of research since then has successfully changed this malignancy to be treatable with specific treatment. Here we thoroughly overviewed the basic, translational and clinical studies on colorectal cancer with BRAF mutation from a physician’s viewpoint. Accumulating lines of evidence suggest that intervention of the trunk cellular growth signal transduction pathway, namely EGFR-RAS-RAF-MEK-ERK pathway, is a clue to controlling this disease. However, it is not so straightforward. Recent studies unveil the diverse and plastic nature of this signal transduction pathway. We will introduce our endeavor to conquer this condition, based on newly arriving datasets, and discuss how we could open the door to future development of CRC treatment. Abstract The Raf murine sarcoma viral oncogene homolog B (BRAF) mutation is detected in 8–12% of metastatic colorectal cancers (mCRCs) and is strongly correlated with poor prognosis. The recent success of the BEACON CRC study and the development of targeted therapy have led to the determination of BRAF-mutated mCRCs as an independent category. For nearly two decades, a growing body of evidence has established the significance of the BRAF mutation in the development of CRC. Herein, we overview both basic and clinical data relevant to BRAF-mutated CRC, mainly focusing on the development of treatment strategies. This review is organized into eight sections, including clinicopathological features, molecular features, prognosis, the predictive value of anti-epidermal growth factor receptor (EGFR) therapy, resistant mechanisms for BRAF-targeting treatment, the heterogeneity of the BRAF mutation, future perspectives, and conclusions. A characterization of the canonical mitogen-activated protein kinase (MAPK) pathway is essential for controlling this malignancy, and the optimal combination of multiple interventions for treatments remains a point of debate.
Collapse
Affiliation(s)
- Izuma Nakayama
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan
- Correspondence: (I.N.); (E.S.); Tel.: +81-3-3520-0111
| | - Toru Hirota
- Department of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan;
| | - Eiji Shinozaki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan
- Correspondence: (I.N.); (E.S.); Tel.: +81-3-3520-0111
| |
Collapse
|
34
|
Salem ME, Puccini A, Tie J. Redefining Colorectal Cancer by Tumor Biology. Am Soc Clin Oncol Educ Book 2020; 40:1-13. [PMID: 32207671 DOI: 10.1200/edbk_279867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Colorectal cancer treatment has undergone a paradigm shift. We no longer see this disease as a singular, anatomic tumor type but rather a set of disease subgroups. Largely because of a better understanding of cancer biology and the introduction and integration of molecular biomarkers-the premise of precision therapy-we are beginning to direct treatments toward the right tumor target(s) in the right patients. The field of molecular profiling is continually evolving, and new biomarkers are constantly being discovered that have investigational, therapeutic, and/or prognostic implications-negative or positive. To date, only a few biomarkers have sufficient actionable, clinical implication to earn international guideline-recommended routine testing. Hence, it is vital that the treating oncologist should know which biomarkers to assess, when in the treatment course to test for them, and how the test is to be done. Correct interpretation of profiling results is imperative. Herein, we focus on international guideline-recommended mutation testing for patients prior to their colorectal cancer treatment initiation. The clinical applications of circulating tumor DNA (ctDNA) in patients with metastatic disease, based on our current knowledge and capabilities, are also addressed.
Collapse
Affiliation(s)
- Mohamed E Salem
- Department of Medical Oncology, Levine Cancer Institute, Charlotte, NC
| | - Alberto Puccini
- University of Genoa, Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Jeanne Tie
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Division of Personalized Oncology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Ortiz-Cuaran S, Mezquita L, Swalduz A, Aldea M, Mazieres J, Leonce C, Jovelet C, Pradines A, Avrillon V, Chumbi Flores WR, Lacroix L, Loriot Y, Westeel V, Ngo-Camus M, Tissot C, Raynaud C, Gervais R, Brain E, Monnet I, Giroux Leprieur E, Caramella C, Mahier-Aït Oukhatar C, Hoog-Labouret N, de Kievit F, Howarth K, Morris C, Green E, Friboulet L, Chabaud S, Guichou JF, Perol M, Besse B, Blay JY, Saintigny P, Planchard D. Circulating Tumor DNA Genomics Reveal Potential Mechanisms of Resistance to BRAF-Targeted Therapies in Patients with BRAF-Mutant Metastatic Non-Small Cell Lung Cancer. Clin Cancer Res 2020; 26:6242-6253. [PMID: 32859654 DOI: 10.1158/1078-0432.ccr-20-1037] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/11/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The limited knowledge on the molecular profile of patients with BRAF-mutant non-small cell lung cancer (NSCLC) who progress under BRAF-targeted therapies (BRAF-TT) has hampered the development of subsequent therapeutic strategies for these patients. Here, we evaluated the clinical utility of circulating tumor DNA (ctDNA)-targeted sequencing to identify canonical BRAF mutations and genomic alterations potentially related to resistance to BRAF-TT, in a large cohort of patients with BRAF-mutant NSCLC. EXPERIMENTAL DESIGN This was a prospective study of 78 patients with advanced BRAF-mutant NSCLC, enrolled in 27 centers across France. Blood samples (n = 208) were collected from BRAF-TT-naïve patients (n = 47), patients nonprogressive under treatment (n = 115), or patients at disease progression (PD) to BRAF-TT (24/46 on BRAF monotherapy and 22/46 on BRAF/MEK combination therapy). ctDNA sequencing was performed using InVisionFirst-Lung. In silico structural modeling was used to predict the potential functional effect of the alterations found in ctDNA. RESULTS BRAFV600E ctDNA was detected in 74% of BRAF-TT-naïve patients, where alterations in genes related with the MAPK and PI3K pathways, signal transducers, and protein kinases were identified in 29% of the samples. ctDNA positivity at the first radiographic evaluation under treatment, as well as BRAF-mutant ctDNA positivity at PD were associated with poor survival. Potential drivers of resistance to either BRAF-TT monotherapy or BRAF/MEK combination were identified in 46% of patients and these included activating mutations in effectors of the MAPK and PI3K pathways, as well as alterations in U2AF1, IDH1, and CTNNB1. CONCLUSIONS ctDNA sequencing is clinically relevant for the detection of BRAF-activating mutations and the identification of alterations potentially related to resistance to BRAF-TT in BRAF-mutant NSCLC.
Collapse
Affiliation(s)
- Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.
| | - Laura Mezquita
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France.,Department of Medical Oncology, Hospital Clinic, Laboratory of Translational Genomics and Targeted Therapeutics in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Aurélie Swalduz
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Department of Medical Oncology, Centre Léon Bérard & Université Claude Bernard Lyon I/Université de Lyon, Lyon, France
| | - Mihalea Aldea
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Julien Mazieres
- Department of Respiratory Disease, Larrey Hospital, University Hospital of Toulouse, Paul Sabatier University, Toulouse, France
| | - Camille Leonce
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Cecile Jovelet
- Translational Research Laboratory, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Virginie Avrillon
- Department of Medical Oncology, Centre Léon Bérard & Université Claude Bernard Lyon I/Université de Lyon, Lyon, France
| | | | - Ludovic Lacroix
- Translational Research Laboratory, Gustave Roussy Cancer Campus, Villejuif, France
| | - Yohann Loriot
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Maud Ngo-Camus
- Department of Early Drug Development, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claire Tissot
- University Hospital of Saint-Etienne, Saint-Etienne, France
| | | | | | | | - Isabelle Monnet
- Centre Hospitalier Intercommunal de Créteil, Creteil, France
| | | | - Caroline Caramella
- Department of Radiology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | | | | | | | | | | | - Luc Friboulet
- Université Paris-Saclay, Gustave Roussy Cancer Campus, Inserm, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, Villejuif, France
| | - Sylvie Chabaud
- Department of Clinical Research, Centre Léon Bérard, Lyon, France
| | - Jean-François Guichou
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Maurice Perol
- Department of Medical Oncology, Centre Léon Bérard & Université Claude Bernard Lyon I/Université de Lyon, Lyon, France
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard & Université Claude Bernard Lyon I/Université de Lyon, Lyon, France
| | - Pierre Saintigny
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France. .,Department of Medical Oncology, Centre Léon Bérard & Université Claude Bernard Lyon I/Université de Lyon, Lyon, France
| | - David Planchard
- Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
36
|
Vaishnavi A, Scherzer MT, Kinsey CG, Parkman GL, Truong A, Ghazi P, Schuman S, Battistone B, Garrido-Laguna I, McMahon M. Inhibition of MEK1/2 Forestalls the Onset of Acquired Resistance to Entrectinib in Multiple Models of NTRK1-Driven Cancer. Cell Rep 2020; 32:107994. [PMID: 32755586 PMCID: PMC7478141 DOI: 10.1016/j.celrep.2020.107994] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/11/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
NTRK1 gene fusions are actionable drivers of numerous human malignancies. Here, we show that expression of the TPR-NTRK1 fusion kinase in immortalized mouse pancreatic ductal epithelial (IMPE) (pancreas) or mouse lung epithelial (MLE-12) cells is sufficient to promote rapidly growing tumors in mice. Both tumor models are exquisitely sensitive to targeted inhibition with entrectinib, a tropomyosin-related kinase A (TRKA) inhibitor. Initial regression of NTRK1-driven tumors is driven by induced expression of BIM, such that BIM silencing leads to a diminished response to entrectinib in vivo. However, the emergence of drug-resistant disease limits the long-term durability of responses. Based on the reactivation of RAF>MEK>ERK signaling observed in entrectinib-treated tumors, we show that the combination of entrectinib plus the MEK1/2 inhibitor cobimetinib dramatically forestalls the onset of drug resistance in vivo. Collectively, these data provide a mechanistic rationale for rapid clinical deployment of combined inhibition of TRKA plus MEK1/2 in NTRK1-driven cancers.
Collapse
Affiliation(s)
- Aria Vaishnavi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael T Scherzer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Conan G Kinsey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Oncology, University of Utah, Salt Lake City, UT 84112, USA
| | - Gennie L Parkman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Amanda Truong
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Phaedra Ghazi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Sophia Schuman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Benjamin Battistone
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ignacio Garrido-Laguna
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Oncology, University of Utah, Salt Lake City, UT 84112, USA
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Department of Dermatology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
37
|
A CRAF/glutathione-S-transferase P1 complex sustains autocrine growth of cancers with KRAS and BRAF mutations. Proc Natl Acad Sci U S A 2020; 117:19435-19445. [PMID: 32719131 PMCID: PMC7430992 DOI: 10.1073/pnas.2000361117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A strategy to overcome therapeutic obstacles of mKRAS and mBRAF cancers is devised based on the finding, here, that the RAF/MEK/ERK cascade is by-passed by an autocrine signal loop established by interaction of CRAF with GSTP1. The interaction evokes stabilization of CRAF from proteosomal degradation and facilitation of RAF-dimer formation. Thus, blocking CRAF/GSTP1 interactions should generate additive antiproliferative effects. The Ras/RAF/MEK/ERK pathway is an essential signaling cascade for various refractory cancers, such as those with mutant KRAS (mKRAS) and BRAF (mBRAF). However, there are unsolved ambiguities underlying mechanisms for this growth signaling thereby creating therapeutic complications. This study shows that a vital component of the pathway CRAF is directly impacted by an end product of the cascade, glutathione transferases (GST) P1 (GSTP1), driving a previously unrecognized autocrine cycle that sustains proliferation of mKRAS and mBRAF cancer cells, independent of oncogenic stimuli. The CRAF interaction with GSTP1 occurs at its N-terminal regulatory domain, CR1 motif, resulting in its stabilization, enhanced dimerization, and augmented catalytic activity. Consistent with the autocrine cycle scheme, silencing GSTP1 brought about significant suppression of proliferation of mKRAS and mBRAF cells in vitro and suppressed tumorigenesis of the xenografted mKRAS tumor in vivo. GSTP1 knockout mice showed significantly impaired carcinogenesis of mKRAS colon cancer. Consequently, hindering the autocrine loop by targeting CRAF/GSTP1 interactions should provide innovative therapeutic modalities for these cancers.
Collapse
|
38
|
Gumusay O, Vitiello PP, Wabl C, Corcoran RB, Bardelli A, Rugo HS. Strategic Combinations to Prevent and Overcome Resistance to Targeted Therapies in Oncology. Am Soc Clin Oncol Educ Book 2020; 40:e292-e308. [PMID: 32453634 DOI: 10.1200/edbk_280845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in the understanding of underlying molecular signaling mechanisms of cancer susceptibility and progression have led to an increase in the use of targeted therapies for cancer treatment. Despite improvements in survival with new treatment options in oncology, resistance to therapy is a major obstacle to the long-term effectiveness of targeted agents in metastatic cancer treatment, culminating in insensitivity to treatment and tumor outgrowth. Adaptive resistance can play an important role in primary and upfront resistance to therapy as well as in secondary or acquired resistance. By focusing on colorectal and breast tumors, we discuss how therapeutic combinations based on specific drivers of tumor biology can be used to overcome resistance. We present how monitoring tumor dynamics over time may allow early adaptation of treatment. Breast cancer is the most common malignancy in women worldwide, and the majority of these cancers are sensitive to endocrine therapy (ET) blocking the production of or response to estrogen. However, primary and acquired resistance limits efficacy. Recent combinations of agents targeted to pathways that drive tumor growth resistance with ET have resulted in remarkable improvements in disease response and control, improving survival in some settings. In this review, we summarize adaptive resistance mechanisms, approaches to combination strategies, and dynamic tumor monitoring to improve efficacy and overcome resistance. We provide examples of combination therapy to enhance the efficacy of targeted therapies in breast and colorectal tumors.
Collapse
Affiliation(s)
- Ozge Gumusay
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA.,Department of Internal Medicine, Division of Medical Oncology, Gaziosmanpasa University Faculty of Medicine, Tokat, Turkey
| | - Pietro Paolo Vitiello
- Department of Oncology, University of Torino, Candiolo (TO), Italy.,Dipartimento di Medicina di Precisione, Unità di Oncologia Medica, Università degli Studi della Campania Luigi Vanvitelli, Italy
| | - Chiara Wabl
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | | | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo (TO), Italy.,Candiolo Cancer Institute, Candiolo (TO), Italy
| | - Hope S Rugo
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| |
Collapse
|
39
|
Kurreck A, Geissler M, Martens UM, Riera-Knorrenschild J, Greeve J, Florschütz A, Wessendorf S, Ettrich T, Kanzler S, Nörenberg D, Seidensticker M, Held S, Buechner-Steudel P, Atzpodien J, Heinemann V, Stintzing S, Seufferlein T, Tannapfel A, Reinacher-Schick AC, Modest DP. Dynamics in treatment response and disease progression of metastatic colorectal cancer (mCRC) patients with focus on BRAF status and primary tumor location: analysis of untreated RAS-wild-type mCRC patients receiving FOLFOXIRI either with or without panitumumab in the VOLFI trial (AIO KRK0109). J Cancer Res Clin Oncol 2020; 146:2681-2691. [PMID: 32449003 PMCID: PMC7467910 DOI: 10.1007/s00432-020-03257-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE In mCRC, disease dynamics may play a critical role in the understanding of long-term outcome. We evaluated depth of response (DpR), time to DpR, and post-DpR survival as relevant endpoints. METHODS We analyzed DpR by central review of computer tomography images (change from baseline to smallest tumor diameter), early tumor shrinkage (≥ 20% reduction in tumor diameter at first reassessment), time to DpR (study randomization to DpR-image), post-DpR progression-free survival (pPFS = DpR-image to tumor progression or death), and post-DpR overall survival (pOS = DpR-image to death) with special focus on BRAF status in 66 patients and primary tumor site in 86 patients treated within the VOLFI-trial, respectively. RESULTS BRAF wild-type (BRAF-WT) compared to BRAF mutant (BRAF-MT) patients had greater DpR (- 57.6% vs. - 40.8%, p = 0.013) with a comparable time to DpR [4.0 (95% CI 3.1-4.4) vs. 3.9 (95% CI 2.5-5.5) months; p = 0.8852]. pPFS was 6.5 (95% CI 4.9-8.0) versus 2.6 (95% CI 1.2-4.0) months in favor of BRAF-WT patients (HR 0.24 (95% CI 0.11-0.53); p < 0.001). This transferred into a significant difference in pOS [33.6 (95% CI 26.0-41.3) vs. 5.4 (95% CI 5.0-5.9) months; HR 0.27 (95% CI 0.13-0.55); p < 0.001]. Similar observations were made for patients stratified for primary tumor site. CONCLUSIONS BRAF-MT patients derive a less profound treatment response compared to BRAF-WT patients. The difference in outcome according to BRAF status is evident after achievement of DpR with BRAF-MT patients hardly deriving any further disease control beyond DpR. Our observations hint towards an aggressive tumor evolution in BRAF-MT tumors, which may already be molecularly detectable at the time of DpR.
Collapse
Affiliation(s)
- A Kurreck
- Department of Hematology, Oncology, and Tumor Immunology (CVK/CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | - U M Martens
- Klinik für Innere Medizin III, SLK-Kliniken Heilbronn, Heilbronn, Germany
| | | | - J Greeve
- St. Vincenz-Krankenhaus Paderborn, Paderborn, Germany
| | | | | | - T Ettrich
- Universitätsklinikum Ulm, Ulm, Germany
| | - S Kanzler
- Leopoldina Krankenhaus, Schweinfurt, Germany
| | - D Nörenberg
- Medical Faculty Mannheim, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - M Seidensticker
- Klinik Und Poliklinik für Radiologie, LMU Klinikum, München, Germany
| | - S Held
- ClinAssess, Leverkusen, Germany
| | | | - J Atzpodien
- Franziskus-Hospital Harderberg, Georgsmarienhütte, Germany
| | - V Heinemann
- Department of Medicine III and Comprehensive Cancer Center, University Hospital Munich (LMU), Munich, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - S Stintzing
- Department of Hematology, Oncology, and Tumor Immunology (CVK/CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | - A Tannapfel
- Institute of Pathology, Ruhr-University Bochum, Bochum, Germany
| | - A C Reinacher-Schick
- Department of Hematology, Oncology and Palliative Care, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - D P Modest
- Department of Hematology, Oncology, and Tumor Immunology (CVK/CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
40
|
Hanker AB, Sudhan DR, Arteaga CL. Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell 2020; 37:496-513. [PMID: 32289273 PMCID: PMC7169993 DOI: 10.1016/j.ccell.2020.03.009] [Citation(s) in RCA: 524] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Estrogen receptor-positive (ER+) breast cancer is the most common breast cancer subtype. Treatment of ER+ breast cancer comprises interventions that suppress estrogen production and/or target the ER directly (overall labeled as endocrine therapy). While endocrine therapy has considerably reduced recurrence and mortality from breast cancer, de novo and acquired resistance to this treatment remains a major challenge. An increasing number of mechanisms of endocrine resistance have been reported, including somatic alterations, epigenetic changes, and changes in the tumor microenvironment. Here, we review recent advances in delineating mechanisms of resistance to endocrine therapies and potential strategies to overcome such resistance.
Collapse
Affiliation(s)
- Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Dhivya R Sudhan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
41
|
Sveen A, Kopetz S, Lothe RA. Biomarker-guided therapy for colorectal cancer: strength in complexity. Nat Rev Clin Oncol 2020; 17:11-32. [PMID: 31289352 PMCID: PMC7577509 DOI: 10.1038/s41571-019-0241-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
The number of molecularly stratified treatment options available to patients with colorectal cancer (CRC) is increasing, with a parallel rise in the use of biomarkers to guide prognostication and treatment decision-making. The increase in both the number of biomarkers and their use has resulted in a progressively complex situation, evident both from the extensive interactions between biomarkers and from their sometimes complex associations with patient prognosis and treatment benefit. Current and emerging biomarkers also reflect the genomic complexity of CRC, and include a wide range of aberrations such as point mutations, amplifications, fusions and hypermutator phenotypes, in addition to global gene expression subtypes. In this Review, we provide an overview of current and emerging clinically relevant biomarkers and their role in the management of patients with CRC, illustrating the intricacies of biomarker interactions and the growing treatment opportunities created by the availability of comprehensive molecular profiling.
Collapse
Affiliation(s)
- Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research & K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer Research & K.G. Jebsen Colorectal Cancer Research Centre, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Antoniotti C, Pietrantonio F, Corallo S, De Braud F, Falcone A, Cremolini C. Circulating Tumor DNA Analysis in Colorectal Cancer: From Dream to Reality. JCO Precis Oncol 2019; 3:1-14. [DOI: 10.1200/po.18.00397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Carlotta Antoniotti
- Unit of Medical Oncology 2, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Salvatore Corallo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo De Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology 2, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
43
|
ERK Inhibitor LY3214996 Targets ERK Pathway–Driven Cancers: A Therapeutic Approach Toward Precision Medicine. Mol Cancer Ther 2019; 19:325-336. [DOI: 10.1158/1535-7163.mct-19-0183] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/10/2019] [Accepted: 11/12/2019] [Indexed: 11/16/2022]
|
44
|
Imatinib revives the therapeutic potential of metformin on ewing sarcoma by attenuating tumor hypoxic response and inhibiting convergent signaling pathways. Cancer Lett 2019; 469:195-206. [PMID: 31672491 DOI: 10.1016/j.canlet.2019.10.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
Ewing sarcoma (EwS) is an aggressive pediatric tumor treated with intensive cytotoxic chemotherapies. Overall survival for metastatic or relapsed disease is only 20-30%. Metformin has long been an attractive therapeutic option for EwS, but hypoxia limits its efficacy. Through a systematic integration of drug combination screening, bioinformatics analyses, functional and in vivo studies, and correlation with clinical outcome, we identified another known drug, imatinib that could augment the in vivo anti-tumor capacity of metformin by attenuating tumor hypoxic response. This drug combination regimen widely suppressed multiple dominant mechanisms in EwS genesis, growth, and metastasis, including key EWS-FLI1 downstream targets that converge into the PI3K/AKT/mTOR signaling pathway. In addition, the combination significantly enhanced inhibition on tumor cell proliferation by standard EwS chemotherapy drugs, including cyclophosphamide and ifosfamide. This suggests a potential clinical benefit of the metformin/imatinib combination by allowing the reduction in dose intensity of standard chemotherapy without compromising survival outcome and represents a potential faster track application for EwS patients.
Collapse
|
45
|
Bosdriesz E, Prahallad A, Klinger B, Sieber A, Bosma A, Bernards R, Blüthgen N, Wessels LFA. Comparative Network Reconstruction using mixed integer programming. Bioinformatics 2019; 34:i997-i1004. [PMID: 30423075 PMCID: PMC6129277 DOI: 10.1093/bioinformatics/bty616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Motivation Signal-transduction networks are often aberrated in cancer cells, and new anti-cancer drugs that specifically target oncogenes involved in signaling show great clinical promise. However, the effectiveness of such targeted treatments is often hampered by innate or acquired resistance due to feedbacks, crosstalks or network adaptations in response to drug treatment. A quantitative understanding of these signaling networks and how they differ between cells with different oncogenic mutations or between sensitive and resistant cells can help in addressing this problem. Results Here, we present Comparative Network Reconstruction (CNR), a computational method to reconstruct signaling networks based on possibly incomplete perturbation data, and to identify which edges differ quantitatively between two or more signaling networks. Prior knowledge about network topology is not required but can straightforwardly be incorporated. We extensively tested our approach using simulated data and applied it to perturbation data from a BRAF mutant, PTPN11 KO cell line that developed resistance to BRAF inhibition. Comparing the reconstructed networks of sensitive and resistant cells suggests that the resistance mechanism involves re-establishing wild-type MAPK signaling, possibly through an alternative RAF-isoform. Availability and implementation CNR is available as a python module at https://github.com/NKI-CCB/cnr. Additionally, code to reproduce all figures is available at https://github.com/NKI-CCB/CNR-analyses. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Evert Bosdriesz
- Division of Molecular Carcinogenesis, The Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anirudh Prahallad
- Division of Molecular Carcinogenesis, The Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bertram Klinger
- Institute of Pathology, Charité Universitätsmedizin, Berlin, Germany.,IRI Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Anja Sieber
- Institute of Pathology, Charité Universitätsmedizin, Berlin, Germany.,IRI Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Astrid Bosma
- Division of Molecular Carcinogenesis, The Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, The Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nils Blüthgen
- Institute of Pathology, Charité Universitätsmedizin, Berlin, Germany.,IRI Life Sciences, Humboldt University of Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
46
|
Khaliq M, Fallahi-Sichani M. Epigenetic Mechanisms of Escape from BRAF Oncogene Dependency. Cancers (Basel) 2019; 11:cancers11101480. [PMID: 31581557 PMCID: PMC6826668 DOI: 10.3390/cancers11101480] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 12/14/2022] Open
Abstract
About eight percent of all human tumors (including 50% of melanomas) carry gain-of-function mutations in the BRAF oncogene. Mutated BRAF and subsequent hyperactivation of the MAPK signaling pathway has motivated the use of MAPK-targeted therapies for these tumors. Despite great promise, however, MAPK-targeted therapies in BRAF-mutant tumors are limited by the emergence of drug resistance. Mechanisms of resistance include genetic, non-genetic and epigenetic alterations. Epigenetic plasticity, often modulated by histone-modifying enzymes and gene regulation, can influence a tumor cell's BRAF dependency and therefore, response to therapy. In this review, focusing primarily on class 1 BRAF-mutant cells, we will highlight recent work on the contribution of epigenetic mechanisms to inter- and intratumor cell heterogeneity in MAPK-targeted therapy response.
Collapse
Affiliation(s)
- Mehwish Khaliq
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Mohammad Fallahi-Sichani
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
47
|
Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat Med 2019; 25:1415-1421. [PMID: 31501609 PMCID: PMC6741444 DOI: 10.1038/s41591-019-0561-9] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
During cancer therapy, tumor heterogeneity can drive the evolution of multiple tumor subclones harboring unique resistance mechanisms in an individual patient1–3. Prior case reports and small case series have suggested that liquid biopsy (specifically, cell-free DNA (cfDNA)) may better capture the heterogeneity of acquired resistance4–8. However, the effectiveness of cfDNA versus standard single-lesion tumor biopsies has not been directly compared in larger scale prospective cohorts of patients following progression on targeted therapy. Here, in a prospective cohort of 42 patients with molecularly-defined gastrointestinal cancers and acquired resistance to targeted therapy, direct comparison of post-progression cfDNA versus tumor biopsy revealed that cfDNA more frequently identified clinically-relevant resistance alterations and multiple resistance mechanisms, detecting resistance alterations not found in the matched tumor biopsy in 78% of cases. Whole-exome sequencing of serial cfDNA, tumor biopsies, and rapid autopsy specimens elucidated substantial geographic and evolutionary differences across lesions. Our data suggest that acquired resistance is frequently characterized by profound tumor heterogeneity, and that the emergence of multiple resistance alterations in an individual patient may represent the “rule” rather than the “exception.” These findings have profound therapeutic implications and highlight the potential advantages of cfDNA over tissue biopsy in the setting of acquired resistance.
Collapse
|
48
|
Jin Z, Sinicrope FA. Advances in the therapy of BRAF V600E metastatic colorectal cancer. Expert Rev Anticancer Ther 2019; 19:823-829. [PMID: 31455117 DOI: 10.1080/14737140.2019.1661778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: BRAFV600E metastatic colorectal cancer (CRC) is an aggressive tumor subset with an approximate 8% incidence. In these patients, standard chemotherapy has limited efficacy, and the recent development of novel-targeted treatment regimens may significantly improve clinical outcome. Area covered: This review provides an overview of available data regarding advances in the first-line treatment of BRAFV600E metastatic CRC including patient tumors with microsatellite instability. The implications of BRAFV600E in earlier stage CRC are also discussed. Expert opinion: Recently, significant progress has been achieved in improving tumor response rates using a novel-targeted regimen in patients with BRAFV600E metastatic CRC. The implications of BRAFV600E in non-metastatic CRC are also becoming more evident and remains an area of ongoing investigation. The majority of CRCs with microsatellite instability high are sporadic and frequently harbor BRAFV600E. All patients with microsatellite instability high metastatic CRCs, irrespective of BRAFV600E, are candidates for immune checkpoint inhibitors. The optimal sequencing of treatment regimens for patients with BRAFV600E metastatic CRCs is an important area for future research.
Collapse
Affiliation(s)
- Zhaohui Jin
- Division of Oncology, Mayo Clinic and Mayo Comprehensive Cancer Center , Rochester , MN , USA
| | - Frank A Sinicrope
- Division of Oncology, Mayo Clinic and Mayo Comprehensive Cancer Center , Rochester , MN , USA
| |
Collapse
|
49
|
Najafi M, Ahmadi A, Mortezaee K. Extracellular-signal-regulated kinase/mitogen-activated protein kinase signaling as a target for cancer therapy: an updated review. Cell Biol Int 2019; 43:1206-1222. [PMID: 31136035 DOI: 10.1002/cbin.11187] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathway is activated in a wide spectrum of human tumors, exhibiting cardinal oncogenic roles and sustained inhibition of this pathway is considered as a primary goal in clinic. Within this pathway, receptor tyrosine kinases such as epithelial growth factor receptor, mesenchymal-epithelial transition, and AXL act as upstream regulators of RAS/RAF/MEK/extracellular-signal-regulated kinase. MAPK signaling is active in both early and advanced stages of tumorigenesis, and it promotes tumor proliferation, survival, and metastasis. MAPK regulatory effects on cellular constituent of the tumor microenvironment is for immunosuppressive purposes. Cross-talking between MAPK with oncogenic signaling pathways including WNT, cyclooxygenase-2, transforming growth factor-β, NOTCH and (in particular) with phosphatidylinositol 3-kinase is contributed to the multiplication of tumor progression and drug resistance. Developing resistance (intrinsic or acquired) to MAPK-targeted therapy also occurs due to heterogeneity of tumors along with mutations and negative feedback loop of interactions exist between various kinases causing rebound activation of this signaling. Multidrug regimen is a preferred therapeutic avenue for targeting MAPK signaling. To enhance patient tolerance and to mitigate potential adversarial effects related to the combination therapy, determination of a desired dose and drug along with pre-evaluation of cancer-type-specific kinase mutation and sensitivity, especially for patients receiving triplet therapy is an urgent need.
Collapse
Affiliation(s)
- Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, 48175-861, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
50
|
Abstract
RAS genes are the most commonly mutated oncogenes in cancer, but effective therapeutic strategies to target RAS-mutant cancers have proved elusive. A key aspect of this challenge is the fact that direct inhibition of RAS proteins has proved difficult, leading researchers to test numerous alternative strategies aimed at exploiting RAS-related vulnerabilities or targeting RAS effectors. In the past few years, we have witnessed renewed efforts to target RAS directly, with several promising strategies being tested in clinical trials at different stages of completion. Important advances have also been made in approaches designed to indirectly target RAS by improving inhibition of RAS effectors, exploiting synthetic lethal interactions or metabolic dependencies, using therapeutic combination strategies or harnessing the immune system. In this Review, we describe historical and ongoing efforts to target RAS-mutant cancers and outline the current therapeutic landscape in the collective quest to overcome the effects of this crucial oncogene.
Collapse
|