1
|
Tanigawa K, Redmond WL. Current landscape and future prospects of interleukin-2 receptor (IL-2R) agonists in cancer immunotherapy. Oncoimmunology 2025; 14:2452654. [PMID: 39812092 PMCID: PMC11740684 DOI: 10.1080/2162402x.2025.2452654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Immune checkpoint blockade (ICB) has significantly improved the survival for many patients with advanced malignancy. However, fewer than 50% of patients benefit from ICB, highlighting the need for more effective immunotherapy options. High-dose interleukin-2 (HD IL-2) immunotherapy, which is approved for patients with metastatic melanoma and renal cell carcinoma, stimulates CD8+ T cells and NK cells and can generate durable responses in a subset of patients. Moreover, HD IL-2 may have potential efficacy in patients whose disease has progressed following ICB and plays a vital role in expanding tumor-infiltrating lymphocyte (TIL) in TIL therapy. Despite its potential, the use of HD IL-2 is limited by severe toxicities such as hypotension and vascular leak syndrome. Additionally, only a few patients achieve a good outcome after HD IL-2 therapy. To address these challenges, numerous next-generation IL-2 receptor (IL-2 R) agonists have been developed to exhibit treatment effects while minimizing adverse events. This review will explore IL-2 biology, the clinical application of HD IL-2 therapy, and the development of novel IL-2 R agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Kengo Tanigawa
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - William L. Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| |
Collapse
|
2
|
Tassinari E, Danielli L, Marchetti A, Rosellini M, Ricci C, Piazza P, Mottaran A, Schiavina R, Santoni M, Mollica V, Massari F. State of the art of adjuvant immunotherapy in urothelial cancer: New developments and upcoming changes. Hum Vaccin Immunother 2025; 21:2440165. [PMID: 39701156 PMCID: PMC11730629 DOI: 10.1080/21645515.2024.2440165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
In recent years, several clinical trials focused on the potential role of immune-checkpoint inhibitors (ICIs) in the adjuvant treatment of muscle-invasive urothelial cancer (UC). Heretofore, only the anti-programmed death protein 1 (anti-PD1) nivolumab received European Medical Agency (EMA) approval for cisplatin-unfit patients. In our work, we deeply analyzed the results of the three pivotal studies in view of the rapidly evolving therapeutic advanced UC's scenario. Furthermore, there are several ongoing research to investigate ICIs and other emerging immune agents in this setting; results are awaited. Additionally, current efforts have been made to assess the role of these agents in earlier disease settings, particularly in high-risk non-muscle-invasive bladder cancer (NMIBC). In our review, we analyzed the potential role of predictive and/or prognostic biomarkers that may improve patient selection and treatment efficacy. To conclude, we highlighted the upcoming changes that could redefine the standard of care for patients with early-stage UC.
Collapse
Affiliation(s)
- Elisa Tassinari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Linda Danielli
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Costantino Ricci
- Pathology Unit, DIAP-Dipartimento InterAziendale di Anatomia Patologica di Bologna, Maggiore Hospital-AUSL Bologna, Bologna, Italy
| | - Pietro Piazza
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Division of Urology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Angelo Mottaran
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Division of Urology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Riccardo Schiavina
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Division of Urology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Siefker-Radtke AO, Huddart RA, Bilen MA, Balar A, Castellano D, Sridhar SS, De Giorgi U, Penkov K, Vasiliev A, Peer A, Järvinen R, Harputluoğlu H, Koshkin VS, Poushnejad S, Wang T, Qureshi A, Tagliaferri MA, Zalevsky J, Loriot Y. Bempegaldesleukin plus nivolumab in first-line advanced/metastatic urothelial carcinoma: Results from a phase II single-arm study (PIVOT-10). Urol Oncol 2025; 43:330.e1-330.e9. [PMID: 39477771 DOI: 10.1016/j.urolonc.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 05/14/2025]
Abstract
BACKGROUND In PIVOT-02, bempegaldesleukin (BEMPEG), a pegylated interleukin-2 cytokine prodrug, in combination with nivolumab (NIVO), a Programmed cell death protein 1 inhibitor, demonstrated the potential to provide additional benefits over immune checkpoint inhibitor monotherapy in patients with urothelial carcinoma, warranting further investigation. We evaluated BEMPEG plus NIVO in cisplatin-ineligible patients with previously untreated locally advanced or metastatic urothelial carcinoma. METHODS This open-label, multicenter, single-arm, phase II study enrolled patients with locally advanced/surgically unresectable or metastatic urothelial carcinoma and who were ineligible for cisplatin-based treatment. Patients received BEMPEG plus NIVO were administered intravenously every 3 weeks for ≤2 years or until progression or unacceptable toxicity. The primary endpoint was objective response rate (ORR) by blinded independent central review (BICR) in patients with low programmed death ligand-1 (PD-L1) expression. Secondary endpoints included ORR and duration of response in the overall population. Progression-free survival (PFS) and overall survival (OS) were exploratory endpoints. RESULTS One hundred and eighty-eight patients were enrolled; 123 patients were PD-L1 low (combined positive score [CPS] <10; 65.4%), 59 were PD-L1 high (31.4%; CPS ≥10), and 6 had PD-L1 status unknown (3.2%). ORR per blinded independent central review in patients with PD-L1-low tumors was 17.9% (95% confidence interval [CI] 11.6-25.8) while in all treated patients was 19.7% (95% CI 14.3-26.1). Median PFS and OS in the overall population were 3.0 months and 12.6 months, respectively. BEMPEG plus NIVO combination was well tolerated, with a safety profile similar to previously reported trials; no new or unexpected safety signals were reported. CONCLUSIONS BEMPEG plus NIVO did not meet the efficacy threshold for ORR in patients with previously untreated locally advanced or metastatic urothelial carcinoma and low PD-L1 expression.
Collapse
Affiliation(s)
| | | | - Mehmet A Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA
| | - Arjun Balar
- Perlmutter Cancer Center at NYU Langone Health, New York, NY
| | | | | | - Ugo De Giorgi
- Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Emilia-Romagna, Italy
| | - Konstantin Penkov
- Private Medical Institution Euromedservice, St. Petersburg, Russian Federation
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Karati D, Meur S, Das S, Adak A, Mukherjee S. Peptide-based drugs in immunotherapy: current advances and future prospects. Med Oncol 2025; 42:177. [PMID: 40266466 DOI: 10.1007/s12032-025-02739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
In immunotherapy, peptide-based medications are showing great promise as a new class of therapies that can be used to treat autoimmune diseases, cancer, and other immune-related conditions. Peptides are being created for use in immunotherapy as vaccines, immunological modulators, and adjuvants because of their capacity to precisely alter immune responses. They can imitate endogenous signals or interact with immune cells, improving the body's capacity to identify and combat malignancies or reestablishing immunological tolerance in autoimmune disorders. Notably, peptide-based treatments have demonstrated promise in promoting tumor-specific immune responses and improving the effectiveness of already available immunotherapies, such as immune checkpoint inhibitors. Notwithstanding its potential, peptide-based medications' clinical translation is fraught with difficulties, such as those pertaining to immunogenicity, bioavailability, and peptide stability. Overcoming these obstacles has been made possible by developments in peptide engineering, including pharmacokinetic optimization, receptor-binding affinity enhancement, and the creation of innovative delivery systems. The targeted distribution and effectiveness of peptide medications can be improved by using liposomes, nanoparticles, and other delivery methods, increasing their therapeutic utility. With an emphasis on recent scientific developments, mechanisms of action, and therapeutic uses, this review examines the present status of peptide-based medications in immunotherapy. We also look at the obstacles that still need to be overcome in order to get peptide-based treatments from the lab to the clinic and offer suggestions for future research initiatives. By tackling these important problems, we hope to demonstrate how peptide-based medications have the ability to revolutionize immunotherapeutic treatment approaches.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University-TIU, Kolkata, West Bengal, 700091, India
| | - Shreyasi Meur
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, West Bengal, 700053, India
| | - Soumi Das
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Arpan Adak
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
5
|
Choi Y, Tan J, Lin D, Lee JS, Yuan Y. Immunotherapy in Breast Cancer: Beyond Immune Checkpoint Inhibitors. Int J Mol Sci 2025; 26:3920. [PMID: 40332761 PMCID: PMC12027891 DOI: 10.3390/ijms26083920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
The systemic treatment of breast cancer has evolved remarkably over the past decades. With the introduction of immune checkpoint inhibitors (ICIs), clinical outcomes for solid tumor malignancies have significantly improved. However, in breast cancer, the indication for ICIs is currently limited to triple-negative breast cancer (TNBC) only. In high-risk luminal B hormone receptor-positive (HR+) breast cancer (BC) and HER2-positive (HER2+) BC, modest efficacy of ICI and chemotherapy combinations were identified in the neoadjuvant setting. To address the unmet need, several novel immunotherapy strategies are being tested in ongoing clinical trials as summarized in the current review: bispecific antibodies, chimeric antigen receptor T-cell therapy (CAR-T), T-cell receptors (TCRs), tumor-infiltrating lymphocytes (TILs), tumor vaccines, and oncolytic virus therapy.
Collapse
Affiliation(s)
| | | | | | | | - Yuan Yuan
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; (Y.C.); (J.T.); (D.L.); (J.S.L.)
| |
Collapse
|
6
|
Marr B, Jo D, Jang M, Lee SH. Cytokines in Focus: IL-2 and IL-15 in NK Adoptive Cell Cancer Immunotherapy. Immune Netw 2025; 25:e17. [PMID: 40342841 PMCID: PMC12056295 DOI: 10.4110/in.2025.25.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 05/11/2025] Open
Abstract
NK cell adoptive cell therapy (ACT) has emerged as a promising strategy for cancer immunotherapy, offering advantages in scalability, accessibility, efficacy, and safety. Ex vivo activation and expansion protocols, incorporating feeder cells and cytokine cocktails, have enabled the production of highly functional NK cells in clinically relevant quantities. Advances in NK cell engineering, including CRISPR-mediated gene editing and chimeric Ag receptor technologies, have further enhanced cytotoxicity, persistence, and tumor targeting. Cytokine support post-adoptive transfer, particularly with IL-2 and IL-15, remains critical for promoting NK cell survival, proliferation, and anti-tumor activity despite persistent challenges such as regulatory T cell expansion and cytokine-related toxicities. This review explores the evolving roles of IL-2 and IL-15 in NK cell-based ACT, evaluating their potential and limitations, and highlights strategies to optimize these cytokines for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Bryan Marr
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Donghyeon Jo
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mihue Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, Faculty of Medicine and Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
7
|
Wang M, Yu F, Zhang Y. Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges. Mol Cancer 2025; 24:26. [PMID: 39827147 PMCID: PMC11748575 DOI: 10.1186/s12943-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Clinically, multimodal therapies are adopted worldwide for the management of cancer, which continues to be a leading cause of death. In recent years, immunotherapy has firmly established itself as a new paradigm in cancer care that activates the body's immune defense to cope with cancer. Immunotherapy has resulted in significant breakthroughs in the treatment of stubborn tumors, dramatically improving the clinical outcome of cancer patients. Multiple forms of cancer immunotherapy, including immune checkpoint inhibitors (ICIs), adoptive cell therapy and cancer vaccines, have become widely available. However, the effectiveness of these immunotherapies is not much satisfying. Many cancer patients do not respond to immunotherapy, and disease recurrence appears to be unavoidable because of the rapidly evolving resistance. Moreover, immunotherapies can give rise to severe off-target immune-related adverse events. Strategies to remove these hindrances mainly focus on the development of combinatorial therapies or the exploitation of novel immunotherapeutic mediations. Nanomaterials carrying anticancer agents to the target site are considered as practical approaches for cancer treatment. Nanomedicine combined with immunotherapies offers the possibility to potentiate systemic antitumor immunity and to facilitate selective cytotoxicity against cancer cells in an effective and safe manner. A myriad of nano-enabled cancer immunotherapies are currently under clinical investigation. Owing to gaps between preclinical and clinical studies, nano-immunotherapy faces multiple challenges, including the biosafety of nanomaterials and clinical trial design. In this review, we provide an overview of cancer immunotherapy and summarize the evidence indicating how nanomedicine-based approaches increase the efficacy of immunotherapies. We also discuss the key challenges that have emerged in the era of nanotechnology-based cancer immunotherapy. Taken together, combination nano-immunotherapy is drawing increasing attention, and it is anticipated that the combined treatment will achieve the desired success in clinical cancer therapy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| |
Collapse
|
8
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Shi Y, Hao D, Qian H, Tao Z. Natural killer cell-based cancer immunotherapy: from basics to clinical trials. Exp Hematol Oncol 2024; 13:101. [PMID: 39415291 PMCID: PMC11484118 DOI: 10.1186/s40164-024-00561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/07/2024] [Indexed: 10/18/2024] Open
Abstract
Cellular immunotherapy exploits the capacity of the human immune system in self-protection and surveillance to achieve the anti-tumor effects. Natural killer (NK) cells are lymphocytes of innate immune system and they display a unique inherent ability to identify and eliminate tumor cells. In this review, we first introduce the basic characteristics of NK cells in the physiological and pathological milieus, followed by a discussion of their effector function and immunosuppression in the tumor microenvironment. Clinical strategies and reports regarding NK cellular therapy are analyzed in the context of tumor treatment, especially against solid tumors. Given the widely studied T-cell therapy in the recent years, particularly the chimeric antigen receptor (CAR) T-cell therapy, we compare the technical features of NK- and T-cell based tumor therapies at the clinical front. Finally, the technical challenges and potential solutions for both T and NK cell-based immunotherapies in treating tumor malignancies are delineated. By overviewing its clinical applications, we envision the NK-cell based immunotherapy as an up-and-comer in cancer therapeutics.
Collapse
Affiliation(s)
- Yinghong Shi
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Donglin Hao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Zhimin Tao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Department of Emergency Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
10
|
Wu J, Bloch N, Chang AY, Bhavsar R, Wang Q, Crawford A, DiLillo DJ, Vazzana K, Mohrs K, Dudgeon D, Patel S, Ahmed H, Garg V, Amatulli M, Antao OQ, Yan Y, Wang S, Ramos W, Krueger P, Adler C, Ni M, Wei Y, Guo C, Macdonald L, Huang T, Ullman E, Hermann A, Yancopoulos GD, Murphy AJ, Davis S, Olson WC, Lin JC, Smith E, Zhang T. A PD-1-targeted, receptor-masked IL-2 immunocytokine that engages IL-2Rα strengthens T cell-mediated anti-tumor therapies. Cell Rep Med 2024; 5:101747. [PMID: 39326410 PMCID: PMC11513833 DOI: 10.1016/j.xcrm.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
The clinical use of interleukin-2 (IL-2) for cancer immunotherapy is limited by severe toxicity. Emerging IL-2 therapies with reduced IL-2 receptor alpha (IL-2Rα) binding aim to mitigate toxicity and regulatory T cell (Treg) expansion but have had limited clinical success. Here, we show that IL-2Rα engagement is critical for the anti-tumor activity of systemic IL-2 therapy. A "non-α" IL-2 mutein induces systemic expansion of CD8+ T cells and natural killer (NK) cells over Tregs but exhibits limited anti-tumor efficacy. We develop a programmed cell death protein 1 (PD-1)-targeted, receptor-masked IL-2 immunocytokine, PD1-IL2Ra-IL2, which attenuates systemic IL-2 activity while maintaining the capacity to engage IL-2Rα on PD-1+ T cells. Mice treated with PD1-IL2Ra-IL2 show no systemic toxicities observed with unmasked IL-2 treatment yet achieve robust tumor growth control. Furthermore, PD1-IL2Ra-IL2 can be effectively combined with other T cell-mediated immunotherapies to enhance anti-tumor responses. These findings highlight the therapeutic potential of PD1-IL2Ra-IL2 as a targeted, receptor-masked, and "α-maintained" IL-2 therapy for cancer.
Collapse
Affiliation(s)
- Jiaxi Wu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA.
| | - Nicolin Bloch
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Aaron Y Chang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Qingqing Wang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | | | - Katja Mohrs
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Supriya Patel
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Hassan Ahmed
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Vidur Garg
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Olivia Q Antao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yuetian Yan
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Shunhai Wang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Willy Ramos
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Pamela Krueger
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Chunguang Guo
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Lynn Macdonald
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Erica Ullman
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Aynur Hermann
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | - Samuel Davis
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - John C Lin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Eric Smith
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Tong Zhang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| |
Collapse
|
11
|
Wang L, Tang D. Akkermania muciniphila: a rising star in tumor immunology. Clin Transl Oncol 2024; 26:2418-2430. [PMID: 38653927 DOI: 10.1007/s12094-024-03493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Tumor is accompanied by complex and dynamic microenvironment development, and the interaction of all its components influences disease progression and response to treatment. Once the tumor microenvironment has been eradicated, various mechanisms can induce the tumors. Microorganisms can maintain the homeostasis of the tumor microenvironment through immune regulation, thereby inhibiting tumor development. Akkermania muciniphila (A. muciniphila), an anaerobic bacterium, can induce tumor immunity, regulate the gastrointestinal microenvironment through metabolites, outer membrane proteins, and some cytokines, and enhance the curative effect through combined immunization. Therefore, a comprehensive understanding of the complex interaction between A. muciniphila and human immunity will facilitate the development of immunotherapeutic strategies in the future and enable patients to obtain a more stable clinical response. This article reviews the most recent developments in the tumor immunity of A. muciniphila.
Collapse
Affiliation(s)
- Leihan Wang
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
12
|
Sommer C, Neuhaus V, Gogesch P, Flandre T, Dehmel S, Sewald K. Type 2 responses determine skin rash during recombinant interleukin-2 therapy. J Immunotoxicol 2024; 21:S48-S59. [PMID: 39655497 DOI: 10.1080/1547691x.2024.2343359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/11/2024] [Accepted: 04/10/2024] [Indexed: 12/18/2024] Open
Abstract
The skin is the organ most often affected by adverse drug reactions. Although these cutaneous adverse drug reactions (CADRs) often are mild, they represent a major burden for patients. One of the drugs inducing CADRs is aldesleukin, a recombinant interleukin-2 (recIL-2) originally approved to treat malignant melanoma and metastatic renal cell carcinoma which frequently led to skin rashes when applied in high doses for anti-cancer therapy. Skin rashes and other side effects, together with poor efficacy led to a drawback of the therapeutic, but modified recIL-2 molecules are on the rise to treat both cancer and inflammatory diseases such as autoimmunity. Still, pathophysiological mechanisms of recIL-2-induced skin rashes are not understood. In the study reported here, a hypothetical literature-based immune-related adverse outcome pathway (irAOP) was developed to identify possible key cells and molecules in recIL-2-induced skin rash. Using this approach, a hypothesis was formed that the induced immune response predominantly is Type 2-driven by T-helper and innate lymphoid cells, leading to the occurrence of cutaneous side effects during recIL-2 therapy. This paper further discusses mechanisms beyond the proposed irAOP which might add to the pathology but currently are less-studied. Together, this hypothetic irAOP forms a basis to clarify possible cellular and molecular interactions leading to recIL-2-induced skin rash. This might be used to adapt existing or develop new test systems to help predict and prevent cutaneous side effects in future IL-2-based or similar therapies.
Collapse
Affiliation(s)
- Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| | | | | | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department for Preclinical Pharmacology and Toxicology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hanover, Germany
| |
Collapse
|
13
|
Roser LA, Sommer C, Ortega Iannazzo S, Sakellariou C, Waibler Z, Gogesch P. Revival of recombinant IL-2 therapy - approaches from the past until today. J Immunotoxicol 2024; 21:S38-S47. [PMID: 39655498 DOI: 10.1080/1547691x.2024.2335219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 12/18/2024] Open
Abstract
Interleukin-2 (IL-2) was one of the first cytokines discovered and its central role in T cell function soon led to the notion that the cytokine could specifically activate immune cells to combat cancer cells. Recombinant human IL-2 (recIL-2) belonged to the first anti-cancer immunotherapeutics that received marketing authorization and while it mediated anti-tumor effects in some cancer entities, treatment was associated with severe and systemic side effects. RecIL-2 holds an exceptional therapeutic potential, which can either lead to stimulation of the immune system - favorable during cancer treatment - or immunosuppression - used for treatment of inflammatory diseases such as autoimmunity. Due to these pleiotropic immune effects, recIL-2 therapy is still a hot topic in research and modified recIL-2 drug candidates show ameliorated efficacy and safety in pre-clinical and clinical studies. The Immune Safety Avatar (imSAVAR) consortium aims to systemically assess mechanisms leading to adverse events provoked by recIL-2 immunotherapy as a use case in order to aid safety evaluation of future recIL-2-based therapies. Here, we summarize the historical use of recIL-2 therapy, associated side effects, and describe the molecular basis of the dual role of IL-2. Finally, an overview of new recIL-2 compounds and delivery systems, which are currently being developed, will be given, highlighting a possible comeback of recIL-2 therapy.
Collapse
Affiliation(s)
- Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | | | | - Zoe Waibler
- Paul-Ehrlich-Institut, Division of Immunology, Langen, Germany
| | | |
Collapse
|
14
|
Tannir NM, Formiga MN, Penkov K, Kislov N, Vasiliev A, Gunnar Skare N, Hong W, Dai S, Tang L, Qureshi A, Zalevsky J, Tagliaferri MA, George D, Agarwal N, Pal S. Bempegaldesleukin Plus Nivolumab Versus Sunitinib or Cabozantinib in Previously Untreated Advanced Clear Cell Renal Cell Carcinoma: A Phase III Randomized Study (PIVOT-09). J Clin Oncol 2024; 42:2800-2811. [PMID: 38838287 DOI: 10.1200/jco.23.02082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE Bempegaldesleukin (BEMPEG) is a pegylated interleukin (IL)-2 cytokine prodrug engineered to provide controlled and sustained activation of the clinically validated IL-2 pathway, with the goal of preferentially activating and expanding effector CD8+ T cells and natural killer cells over immunosuppressive regulator T cells in the tumor microenvironment. The open-label, phase III randomized controlled PIVOT-09 trial investigated the efficacy and safety of BEMPEG plus nivolumab (NIVO) as first-line treatment for advanced/metastatic clear cell renal cell carcinoma (ccRCC) with intermediate-/poor-risk disease. METHODS Patients with previously untreated advanced/metastatic ccRCC were randomly assigned (1:1) to BEMPEG plus NIVO, or investigator's choice of tyrosine kinase inhibitor (TKI; sunitinib or cabozantinib). Coprimary end points were objective response rate (ORR) by blinded independent central review and overall survival (OS) in patients with International Metastatic RCC Database Consortium (IMDC) intermediate-/poor-risk disease. RESULTS Overall, 623 patients were randomly assigned to BEMPEG plus NIVO (n = 311) or TKI (n = 312; sunitinib n = 225, cabozantinib n = 87), of whom 514 (82.5%) had IMDC intermediate-/poor-risk disease. In patients with IMDC intermediate-/poor-risk disease, ORR with BEMPEG plus NIVO versus TKI was 23.0% (95% CI, 18.0 to 28.7) versus 30.6% (95% CI, 25.1 to 36.6; difference, -7.7 [95% CI, -15.2 to -0.2]; P = .0489), and median OS was 29.0 months versus not estimable (hazard ratio, 0.82 [95% CI, 0.61 to 1.10]; P = .192), respectively. More frequent all-grade treatment-related adverse events (TRAEs) with BEMPEG plus NIVO versus TKI included pyrexia (32.6% v 2.0%) and pruritus (31.3% v 8.8%). Grade 3/4 TRAEs were less frequent with BEMPEG plus NIVO (25.8%) versus TKI (56.5%). CONCLUSION First-line BEMPEG plus NIVO for advanced/metastatic ccRCC did not improve efficacy in patients with intermediate-/poor-risk disease but led to fewer grade 3/4 TRAEs versus TKI.
Collapse
Affiliation(s)
- Nizar M Tannir
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Konstantin Penkov
- Private Medical Institution Euromedservice, St Petersburg, Russian Federation
| | - Nikolay Kislov
- Regional Clinical Oncology Hospital, Yaroslavl, Russian Federation
| | | | - Nils Gunnar Skare
- Paraná Institute of Oncology, and Hospital Erasto Gaertner, Curitiba, Brazil
| | | | | | - Lily Tang
- Nektar Therapeutics, San Francisco, CA
| | | | | | | | | | | | | |
Collapse
|
15
|
Boersma B, Poinot H, Pommier A. Stimulating the Antitumor Immune Response Using Immunocytokines: A Preclinical and Clinical Overview. Pharmaceutics 2024; 16:974. [PMID: 39204319 PMCID: PMC11357675 DOI: 10.3390/pharmaceutics16080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cytokines are immune modulators which can enhance the immune response and have been proven to be an effective class of immunotherapy. Nevertheless, the clinical use of cytokines in cancer treatment has faced several challenges associated with poor pharmacokinetic properties and the occurrence of adverse effects. Immunocytokines (ICKs) have emerged as a promising approach to overcome the pharmacological limitations observed with cytokines. ICKs are fusion proteins designed to deliver cytokines in the tumor microenvironment by taking advantage of the stability and specificity of immunoglobulin-based scaffolds. Several technological approaches have been developed. This review focuses on ICKs designed with the most impactful cytokines in the cancer field: IL-2, TNFα, IL-10, IL-12, IL-15, IL-21, IFNγ, GM-CSF, and IFNα. An overview of the pharmacological effects of the naked cytokines and ICKs tested for cancer therapy is detailed. A particular emphasis is given on the immunomodulatory effects of ICKs associated with their technological design. In conclusion, this review highlights active ways of development of ICKs. Their already promising results observed in clinical trials are likely to be improved with the advances in targeting technologies such as cytokine/linker engineering and the design of multispecific antibodies with tumor targeting and immunostimulatory functional properties.
Collapse
Affiliation(s)
- Bart Boersma
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland;
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Hélène Poinot
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Translational Research Centre in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
| | - Aurélien Pommier
- UMR1240 Imagerie Moléculaire et Stratégies Théranostiques INSERM, Université Clermont Auvergne, BP 184, F-63005 Clermont-Ferrand, France
| |
Collapse
|
16
|
Rokade S, Damani AM, Oft M, Emmerich J. IL-2 based cancer immunotherapies: an evolving paradigm. Front Immunol 2024; 15:1433989. [PMID: 39114660 PMCID: PMC11303236 DOI: 10.3389/fimmu.2024.1433989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Discovered over 4 decades ago in the supernatants of activated T cells, interleukin-2 (IL-2) is a potent pleiotropic cytokine involved in the regulation of immune responses. It is required for effector T cell expansion and differentiation as well as for peripheral tolerance induced by regulatory T cells. High-dose IL-2 treatment was the first FDA-approved immunotherapy for renal cell carcinoma and melanoma, achieving single agent complete and durable responses, albeit only in a small proportion of patients. The therapeutic potential of wild type IL-2 is clinically limited by its short half-life and severe vascular toxicity. Moreover, the activation of regulatory T cells and the terminal differentiation of effector T cells on IL-2 pose additional restrictions. To overcome the toxicity of IL-2 in order to realize its full potential for patients, several novel engineering strategies are being developed and IL-2 based immunotherapy for cancer has emerged as a burgeoning field of clinical and experimental research. In addition, combination of IL-2 with PD-1/L1 pathway blockade shows vastly improved anti-tumor efficacy over either monotherapy in preclinical tumor models. In this review we discuss the biological characteristics of IL-2 and its receptors, as well as its efficacy and treatment limiting toxicities in cancer patients. We also explore the efforts aimed at developing novel and safer IL-2 therapies to harness the full therapeutic potential of this cytokine.
Collapse
Affiliation(s)
- Sushama Rokade
- Development Department, Synthekine, Menlo Park, CA, United States
| | | | | | - Jan Emmerich
- Development Department, Synthekine, Menlo Park, CA, United States
| |
Collapse
|
17
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
18
|
Gogas H, Ravimohan S, Datta A, Chhibber A, Couselo EM, Diab A, Pereira C, Quéreux G, Sandhu S, Curti B, Khushalani NI, Taylor MH, Daniels GA, Spreafico A, Meniawy T, Van Den Eertwegh AJM, Sun Y, Arriaga Y, Zhou M, Long GV, Lebbé C. Baseline biomarkers of efficacy and on-treatment immune-profile changes associated with bempegaldesleukin plus nivolumab. NPJ Precis Oncol 2024; 8:150. [PMID: 39025948 PMCID: PMC11258232 DOI: 10.1038/s41698-024-00641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
In PIVOT IO 001 (NCT03635983), the combination of the investigational interleukin-2 agonist bempegaldesleukin (BEMPEG) with nivolumab (NIVO) had no added clinical benefit over NIVO monotherapy in unresectable/metastatic melanoma. Pre-defined baseline and on-treatment changes in selected biomarkers were analyzed to explore the potential mechanisms underlying the clinical observations. In each treatment arm, higher baseline tumor mutational burden or immune infiltration/inflammation was associated with improved efficacy compared with lower levels. On-treatment peripheral biomarker changes showed that BEMPEG + NIVO increased all immune cell subset counts interrogated, including regulatory T cells. This was followed by attenuation of the increase in CD8 + T cells, conventional CD4 + T cells, and systemic interferon gamma levels at later treatment cycles in the combination arm. Changes in tumor biomarkers were comparable between arms. These biomarker results help provide a better understanding of the mechanism of action of BEMPEG + NIVO and may help contextualize the clinical observations from PIVOT IO 001.
Collapse
Affiliation(s)
- Helen Gogas
- National and Kapodistrian University of Athens, Athens, Greece.
| | | | | | | | - Eva Muñoz Couselo
- Vall d'Hebron Barcelona Hospital and Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Adi Diab
- MD Anderson Cancer Center, Houston, TX, USA
| | - Caio Pereira
- Fundação Pio XII - Hospital de Câncer de Barretos, São Paulo, Brazil
| | | | | | - Brendan Curti
- Eerle A. Chiles Research Institute, Providence Cancer Institute of Oregon, Portland, OR, USA
| | | | - Matthew H Taylor
- Eerle A. Chiles Research Institute, Providence Cancer Institute of Oregon, Portland, OR, USA
| | | | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tarek Meniawy
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Alfons J M Van Den Eertwegh
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | | | - Ming Zhou
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Georgina V Long
- The Melanoma Institute Australia, The University of Sydney and Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Céleste Lebbé
- Université Paris Cité, Dermato-Oncology and CIC AP-HP Hôpital Saint Louis, Cancer Institute APHP, Nord-Université Paris Cité, Paris, France
- INSERM U976 HIPI, Paris, France
| |
Collapse
|
19
|
Liu Q, Ma H. Cancer biotherapy: review and prospect. Clin Exp Med 2024; 24:114. [PMID: 38801637 PMCID: PMC11130057 DOI: 10.1007/s10238-024-01376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Malignant tumors pose a grave threat to the quality of human life. The prevalence of malignant tumors in China is steadily rising. Presently, clinical interventions encompass surgery, radiotherapy, and pharmaceutical therapy in isolation or combination. Nonetheless, these modalities fail to completely eradicate malignant tumor cells, frequently leading to metastasis and recurrence. Conversely, tumor biotherapy has emerged as an encouraging fourth approach in preventing and managing malignant tumors owing to its safety, efficacy, and minimal adverse effects. Currently, a range of tumor biotherapy techniques are employed, including gene therapy, tumor vaccines, monoclonal antibody therapy, cancer stem cell therapy, cytokine therapy, and adoptive cellular immunotherapy. This study aims to comprehensively review the latest developments in biological treatments for malignant tumors.
Collapse
Affiliation(s)
- Qi Liu
- Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Department of Thoracic Oncology, The Second Affiliated Hospital of Zunyi Medical University, Guizhou, 56300, Zunyi, China
| | - Hu Ma
- Zunyi Medical University, Zunyi, Guizhou, 563000, China.
- Department of Thoracic Oncology, The Second Affiliated Hospital of Zunyi Medical University, Guizhou, 56300, Zunyi, China.
| |
Collapse
|
20
|
Kong JC, Sa’ad MA, Vijayan HM, Ravichandran M, Balakrishnan V, Tham SK, Tye GJ. Chimeric antigen receptor-natural killer cell therapy: current advancements and strategies to overcome challenges. Front Immunol 2024; 15:1384039. [PMID: 38726000 PMCID: PMC11079817 DOI: 10.3389/fimmu.2024.1384039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is a novel immunotherapy targeting cancer cells via the generation of chimeric antigen receptors on NK cells which recognize specific cancer antigens. CAR-NK cell therapy is gaining attention nowadays owing to the ability of CAR-NK cells to release potent cytotoxicity against cancer cells without side effects such as cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GvHD). CAR-NK cells do not require antigen priming, thus enabling them to be used as "off-the-shelf" therapy. Nonetheless, CAR-NK cell therapy still possesses several challenges in eliminating cancer cells which reside in hypoxic and immunosuppressive tumor microenvironment. Therefore, this review is envisioned to explore the current advancements and limitations of CAR-NK cell therapy as well as discuss strategies to overcome the challenges faced by CAR-NK cell therapy. This review also aims to dissect the current status of clinical trials on CAR-NK cells and future recommendations for improving the effectiveness and safety of CAR-NK cell therapy.
Collapse
Affiliation(s)
- Jun Chang Kong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mohammad Auwal Sa’ad
- Celestialab Sdn Bhd, Kuala Lumpur, Malaysia
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Manickam Ravichandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
- MyGenome, ALPS Global Holding, Kuala Lumpur, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Seng Kong Tham
- ALPS Medical Centre, ALPS Global Holding, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
21
|
Jiang Y, Chen C, Liu Y, Wang R, Feng C, Cai L, Chang S, Zhao L. A novel dual mechanism-of-action bispecific PD-1-IL-2v armed by a "βγ-only" interleukin-2 variant. Front Immunol 2024; 15:1369376. [PMID: 38638426 PMCID: PMC11024467 DOI: 10.3389/fimmu.2024.1369376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION Interleukin-2 (IL-2) is one of the first cytokines to be discovered as an immune agonist for cancer immunotherapy. Biased IL-2 variants had been discovered to eliminate Treg activation or enhance the tumor specific T cell cytotoxicity. However, all the biased IL-2 variants pose the risk to overstimulate immune response at a low-dose range. Here, we introduce a novel dual-MOA bispecific PD-1-IL-2v molecule with great anti-tumor efficacy in a high dosed manner. METHODS The novel IL-2 variant was designed by structural truncation and shuffling. The single armed bispecific PD-1-IL-2v molecule and IL-2v were studied by immune cell activations in vitro and in vivo and anti-tumor efficacy in mouse model. RESULTS AND DISCUSSION The IL-2 variant in this bispecific antibody only binds to IL-2Rβγ complex in a fast-on/off manner without α, β or γ single receptor binding. This IL-2v mildly activates T and NK cells without over stimulation, meanwhile it diminishes Treg activation compared to the wild type IL-2. This unique bispecific molecule with "βγ-only" IL-2v can not only "in-cis" stimulate and expand CD8 T and NK cells moderately without Treg activation, but also block the PD-1/L1 interaction at a similar dose range with monoclonal antibody.
Collapse
Affiliation(s)
- Yongji Jiang
- Division of AAV Discovery, Department of Gene Therapy, Cure Genetics Co., LTD, Suzhou, China
| | - Chuyuan Chen
- Division of AAV Discovery, Department of Gene Therapy, Cure Genetics Co., LTD, Suzhou, China
| | - Yuan Liu
- Division of Research & Development, Department of Cell Therapy, Cure Genetics Co., LTD, Suzhou, China
| | - Rong Wang
- Division of Research & Development, Department of Cell Therapy, Cure Genetics Co., LTD, Suzhou, China
| | - Chuan Feng
- Division of Research & Development, Department of Cell Therapy, Cure Genetics Co., LTD, Suzhou, China
| | - Lili Cai
- Division of AAV Discovery, Department of Gene Therapy, Cure Genetics Co., LTD, Suzhou, China
| | - Shuang Chang
- Division of AAV Discovery, Department of Gene Therapy, Cure Genetics Co., LTD, Suzhou, China
| | - Lei Zhao
- Division of AAV Discovery, Department of Gene Therapy, Cure Genetics Co., LTD, Suzhou, China
| |
Collapse
|
22
|
Jiang Y, Zhang Y, Liu C, Liu J, Xue W, Wang Z, Li X. Tumor-activated IL-2 mRNA delivered by lipid nanoparticles for cancer immunotherapy. J Control Release 2024; 368:663-675. [PMID: 38492862 DOI: 10.1016/j.jconrel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Interleukin-2 (IL-2) exhibits the unique capacity to modulate immune functions, potentially exerting antitumor effects by stimulating immune responses, making it highly promising for immunotherapy. However, the clinical use of recombinant IL-2 protein faces significant limitations due to its short half-life and systemic toxicity. To overcome these challenges and fully exploit IL-2's potential in tumor immunotherapy, this study reports the development of a tumor-activated IL-2 mRNA, delivered via lipid nanoparticles (LNPs). Initially, ionizable lipid U-101 derived nanoparticles (U-101-LNP) were prepared using microfluidic technology. Subsequent in vitro and in vivo delivery tests demonstrated that U-101-LNP achieved more effective transfection than the approved ALC-0315-LNP. Following this, IL-2F mRNAs, encoding fusion proteins comprising IL-2, a linker, and CD25 (IL-2Rα), were designed and synthesized through in vitro transcription. A cleavable linker, consisting of the peptide sequence SGRSEN↓IRTA, was selected for cleavage by matrix metalloproteinase-14 (MMP-14). IL-2F mRNA was then encapsulated in U-101-LNP to create U-101-LNP/IL-2F mRNA complexes. After optimization, assessments of expression efficiency, masking, and release characteristics revealed that IL-2F with linker C4 demonstrated superior performance. Finally, the antitumor activity of IL-2F mRNA was evaluated. The results indicated that U-101-LNP/IL-2F mRNA achieved the strongest antitumor effect, with an inhibition rate of 70.3%. Immunohistochemistry observations revealed significant expressions of IL-2, IFN-γ, and CD8, suggesting an up-regulation of immunomodulation in tumor tissues. This effect could be ascribed to the expression of IL-2F, followed by the cleavage of the linker under the action of MMP-14 in tumor tissue, which sustainably releases IL-2. H&E staining of tissues treated with U-101-LNP/IL-2F mRNA showed no abnormalities. Further evaluations indicated that the U-101-LNP/IL-2F mRNA group maintained proper levels of inflammatory factors without obvious alterations in liver and renal functions. Taken together, the U-101-LNP/IL-2F mRNA formulation demonstrated effective antitumor activity and safety, which suggests potential applicability in clinical immunotherapy.
Collapse
Affiliation(s)
- Yuhao Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yanhao Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chao Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jinyu Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wenliang Xue
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zihao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
23
|
Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol 2024; 17:13. [PMID: 38520006 PMCID: PMC10960486 DOI: 10.1186/s13045-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
24
|
Tomasovic LM, Liu K, VanDyke D, Fabilane CS, Spangler JB. Molecular Engineering of Interleukin-2 for Enhanced Therapeutic Activity in Autoimmune Diseases. BioDrugs 2024; 38:227-248. [PMID: 37999893 PMCID: PMC10947368 DOI: 10.1007/s40259-023-00635-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The interleukin-2 (IL-2) cytokine plays a crucial role in regulating immune responses and maintaining immune homeostasis. Its immunosuppressive effects have been harnessed therapeutically via administration of low cytokine doses. Low-dose IL-2 has shown promise in the treatment of various autoimmune and inflammatory diseases; however, the clinical use of IL-2 is complicated by its toxicity, its pleiotropic effects on both immunostimulatory and immunosuppressive cell subsets, and its short serum half-life, which collectively limit the therapeutic window. As a result, there remains a considerable need for IL-2-based autoimmune disease therapies that can selectively target regulatory T cells with minimal off-target binding to immune effector cells in order to prevent cytokine-mediated toxicities and optimize therapeutic efficacy. In this review, we discuss exciting advances in IL-2 engineering that are empowering the development of novel therapies to treat autoimmune conditions. We describe the structural mechanisms of IL-2 signaling, explore current applications of IL-2-based compounds as immunoregulatory interventions, and detail the progress and challenges associated with clinical adoption of IL-2 therapies. In particular, we focus on protein engineering approaches that have been employed to optimize the regulatory T-cell bias of IL-2, including structure-guided or computational design of cytokine mutants, conjugation to polyethylene glycol, and the development of IL-2 fusion proteins. We also consider future research directions for enhancing the translational potential of engineered IL-2-based therapies. Overall, this review highlights the immense potential to leverage the immunoregulatory properties of IL-2 for targeted treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Luke M Tomasovic
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathy Liu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek VanDyke
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Charina S Fabilane
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
25
|
Qin L, Shi L, Wang Y, Yu H, Du Z, Chen M, Cai Y, Cao Y, Deng S, Wang J, Cheng D, Heng Y, Xu J, Cai K, Wu K. Fumarate Hydratase Enhances the Therapeutic Effect of PD-1 Antibody in Colorectal Cancer by Regulating PCSK9. Cancers (Basel) 2024; 16:713. [PMID: 38398104 PMCID: PMC10887080 DOI: 10.3390/cancers16040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Despite the notable achievements of programmed death 1 (PD-1) antibodies in treating various cancers, the overall efficacy remains limited in the majority of colorectal cancer (CRC) cases. Metabolism reprogramming of tumors inhibits the tricarboxylic acid (TCA) cycle, leading to down-regulation of fumarate hydratase (FH), which is related to poor prognosis in CRC patients. By establishing a tumor-bearing mouse model of CRC with Fh1 expression deficiency, we confirmed that the therapeutic effect of PD-1 antibodies alone was suboptimal in mice with low Fh1 expression, which was improved by combination with a protein invertase subtilisin/kexin 9 (PCSK9) inhibitor. Mechanistically, FH binds to Ras-related nucleoprotein (RAN), which inhibits the nuclear import of the PCSK9 transcription factor SREBF1/2, thus reducing the expression of PCSK9. This leads to increased clonal expansion of CD8+ T cells while the number of Tregs remains unchanged, and the expression of PD-L1 does not change significantly, thus enhancing the immunotherapy response. On the contrary, the expression of PCSK9 increased in CRC cells with low FH expression, which antagonized the effects of immunotherapy. Overall, CRC patients with low FH expression may benefit from combinatorial therapy with PD-1 antibodies and PCSK9 inhibitors to enhance the curative effect.
Collapse
Affiliation(s)
- Le Qin
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
- Department of General Surgery, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China; (Y.H.); (J.X.)
| | - Liang Shi
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| | - Yu Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Haixin Yu
- Department of Digestive Surgical Oncology, Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (Z.D.); (Y.C.)
| | - Zhouyuan Du
- Department of Digestive Surgical Oncology, Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (Z.D.); (Y.C.)
| | - Mian Chen
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| | - Yuxuan Cai
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| | - Yinghao Cao
- Department of Digestive Surgical Oncology, Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (Z.D.); (Y.C.)
| | - Shenghe Deng
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| | - Jun Wang
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| | - Denglong Cheng
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| | - Yixin Heng
- Department of General Surgery, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China; (Y.H.); (J.X.)
| | - Jiaxin Xu
- Department of General Surgery, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China; (Y.H.); (J.X.)
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| | - Ke Wu
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China; (L.Q.); (L.S.); (M.C.); (Y.C.); (S.D.); (J.W.); (D.C.)
| |
Collapse
|
26
|
Ji C, Kuang B, Buetow BS, Vitsky A, Xu Y, Huang TH, Chaparro-Riggers J, Kraynov E, Matsumoto D. Pharmacokinetics, pharmacodynamics, and toxicity of a PD-1-targeted IL-15 in cynomolgus monkeys. PLoS One 2024; 19:e0298240. [PMID: 38315680 PMCID: PMC10843171 DOI: 10.1371/journal.pone.0298240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
PF-07209960 is a novel bispecific fusion protein composed of an anti-PD-1 antibody and engineered IL-15 cytokine mutein with reduced binding affinity to its receptors. The pharmacokinetics (PK), pharmacodynamics (PD), and toxicity of PF-07209960 were evaluated following once every other week subcutaneous (SC) or intravenous (IV) administration to cynomolgus monkeys in a repeat-dose PKPD (0.01-0.3 mg/kg/dose) and GLP toxicity study (0.1-3 mg/kg/dose). PF-07209960 showed dose dependent pharmacokinetics with a terminal T1/2 of 8 and 13 hours following IV administration at 0.03 and 0.1 mg/kg, respectively. The clearance is faster than a typical IgG1 antibody. Slightly faster clearance was also observed following the second dose, likely due to increased target pool and formation of anti-drug antibodies (ADA). Despite a high incidence rate of ADA (92%) observed in GLP toxicity study, PD-1 receptor occupancy, IL-15 signaling (STAT5 phosphorylation) and T cell expansion were comparable following the first and second doses. Activation and proliferation of T cells were observed with largest increase in cell numbers found in gamma delta T cells, followed by CD4+ and CD8+ T cells, and then NK cells. Release of cytokines IL-6, IFNγ, and IL-10 were detected, which peaked at 72 hours postdose. There was PF-07209960-related mortality at ≥1 mg/kg. At scheduled necropsy, microscopic findings were generalized mononuclear infiltration in various tissues. Both the no observed adverse effect level (NOAEL) and the highest non severely toxic dose (HNSTD) were determined to be 0.3 mg/kg/dose, which corresponded to mean Cmax and AUC48 values of 1.15 μg/mL and 37.9 μg*h/mL, respectively.
Collapse
Affiliation(s)
- Changhua Ji
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Bing Kuang
- Biomedical Design, Pfizer Inc, San Diego, California, United States of America
| | - Bernard S. Buetow
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Allison Vitsky
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Yuanming Xu
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, United States of America
| | - Tzu-Hsuan Huang
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, United States of America
| | | | - Eugenia Kraynov
- Biomedical Design, Pfizer Inc, San Diego, California, United States of America
| | - Diane Matsumoto
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| |
Collapse
|
27
|
Zhou Y, Richmond A, Yan C. Harnessing the potential of CD40 agonism in cancer therapy. Cytokine Growth Factor Rev 2024; 75:40-56. [PMID: 38102001 PMCID: PMC10922420 DOI: 10.1016/j.cytogfr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily of receptors expressed on a variety of cell types. The CD40-CD40L interaction gives rise to many immune events, including the licensing of dendritic cells to activate CD8+ effector T cells, as well as the facilitation of B cell activation, proliferation, and differentiation. In malignant cells, the expression of CD40 varies among cancer types, mediating cellular proliferation, apoptosis, survival and the secretion of cytokines and chemokines. Agonistic human anti-CD40 antibodies are emerging as an option for cancer treatment, and early-phase clinical trials explored its monotherapy or combination with radiotherapy, chemotherapy, immune checkpoint blockade, and other immunomodulatory approaches. In this review, we present the current understanding of the mechanism of action for CD40, along with results from the clinical development of agonistic human CD40 antibodies in cancer treatment (selicrelumab, CDX-1140, APX005M, mitazalimab, 2141-V11, SEA-CD40, LVGN7409, and bispecific antibodies). This review also examines the safety profile of CD40 agonists in both preclinical and clinical settings, highlighting optimized dosage levels, potential adverse effects, and strategies to mitigate them.
Collapse
Affiliation(s)
- Yang Zhou
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Chi Yan
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA.
| |
Collapse
|
28
|
Gupta MK, Vadde R. Delivery strategies of immunotherapies in the treatment of pancreatic cancer. IMMUNE LANDSCAPE OF PANCREATIC CANCER DEVELOPMENT AND DRUG RESISTANCE 2024:173-202. [DOI: 10.1016/b978-0-443-23523-8.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Luo M, Gong W, Zhang Y, Li H, Ma D, Wu K, Gao Q, Fang Y. New insights into the stemness of adoptively transferred T cells by γc family cytokines. Cell Commun Signal 2023; 21:347. [PMID: 38049832 PMCID: PMC10694921 DOI: 10.1186/s12964-023-01354-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 12/06/2023] Open
Abstract
T cell-based adoptive cell therapy (ACT) has exhibited excellent antitumoral efficacy exemplified by the clinical breakthrough of chimeric antigen receptor therapy (CAR-T) in hematologic malignancies. It relies on the pool of functional T cells to retain the developmental potential to serially kill targeted cells. However, failure in the continuous supply and persistence of functional T cells has been recognized as a critical barrier to sustainable responses. Conferring stemness on infused T cells, yielding stem cell-like memory T cells (TSCM) characterized by constant self-renewal and multilineage differentiation similar to pluripotent stem cells, is indeed necessary and promising for enhancing T cell function and sustaining antitumor immunity. Therefore, it is crucial to identify TSCM cell induction regulators and acquire more TSCM cells as resource cells during production and after infusion to improve antitumoral efficacy. Recently, four common cytokine receptor γ chain (γc) family cytokines, encompassing interleukin-2 (IL-2), IL-7, IL-15, and IL-21, have been widely used in the development of long-lived adoptively transferred TSCM in vitro. However, challenges, including their non-specific toxicities and off-target effects, have led to substantial efforts for the development of engineered versions to unleash their full potential in the induction and maintenance of T cell stemness in ACT. In this review, we summarize the roles of the four γc family cytokines in the orchestration of adoptively transferred T cell stemness, introduce their engineered versions that modulate TSCM cell formation and demonstrate the potential of their various combinations. Video Abstract.
Collapse
Affiliation(s)
- Mengshi Luo
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjian Gong
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuewen Zhang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
30
|
Chen P, Paraiso WKD, Cabral H. Revitalizing Cytokine-Based Cancer Immunotherapy through Advanced Delivery Systems. Macromol Biosci 2023; 23:e2300275. [PMID: 37565723 DOI: 10.1002/mabi.202300275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Cytokines can coordinate robust immune responses, holding great promise as therapeutics against infections, autoimmune diseases, and cancers. In cancer treatment, numerous pro-inflammatory cytokines have displayed promising efficacy in preclinical studies. However, their clinical application is hindered by poor pharmacokinetics, significant toxicity and unsatisfactory anticancer efficacy. Thus, while IFN-α and IL-2 are approved for specific cancer treatments, other cytokines still remain subject of intense investigation. To accelerate the application of cytokines as cancer immunotherapeutics, strategies need to be directed to improve their safety and anticancer performance. In this regard, delivery systems could be used to generate innovative therapies by targeting the cytokines or nucleic acids, such as DNA and mRNA, encoding the cytokines to tumor tissues. This review centers on these innovative delivery strategies for cytokines, summarizing key approaches, such as gene delivery and protein delivery, and critically examining their potential and challenges for clinical translation.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
31
|
Yoon AR, Hong J, Jung BK, Ahn HM, Zhang S, Yun CO. Oncolytic adenovirus as pancreatic cancer-targeted therapy: Where do we go from here? Cancer Lett 2023; 579:216456. [PMID: 37940067 DOI: 10.1016/j.canlet.2023.216456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Pancreatic cancer remains one of the deadliest cancers with extremely high mortality rate, and the number of cases is expected to steadily increase with time. Pancreatic cancer is refractory to conventional cancer treatment options, like chemotherapy and radiotherapy, and commercialized immunotherapeutics, owing to its immunosuppressive and desmoplastic phenotype. Due to these reasons, development of an innovative treatment option that can overcome these challenges posed by the pancreatic tumor microenvironment (TME) is in an urgent need. The present review aims to summarize the evolution of oncolytic adenovirus (oAd) engineering and usage as therapeutics (either monotherapy or combination therapy) over the last decade to overcome these hurdles to instigate a potent antitumor effect against desmoplastic and immunosuppressive pancreatic cancer.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea
| | - JinWoo Hong
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Bo-Kyeong Jung
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Hyo Min Ahn
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Songnam Zhang
- Department of Medical Oncology, Yanbian University Hospital, Jilin, China
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea; GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Roser LA, Luckhardt S, Ziegler N, Thomas D, Wagner PV, Damm G, Scheffschick A, Hewitt P, Parnham MJ, Schiffmann S. Immuno-inflammatory in vitro hepatotoxicity models to assess side effects of biologicals exemplified by aldesleukin. Front Immunol 2023; 14:1275368. [PMID: 38045689 PMCID: PMC10693457 DOI: 10.3389/fimmu.2023.1275368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Hepatotoxicity induced by immunotherapeutics is an appearing cause for immune-mediated drug-induced liver injury. Such immuno-toxic mechanisms are difficult to assess using current preclinical models and the incidence is too low to detect in clinical trials. As hepatotoxicity is a frequent reason for post-authorisation drug withdrawal, there is an urgent need for immuno-inflammatory in vitro models to assess the hepatotoxic potential of immuno-modulatory drug candidates. We developed several immuno-inflammatory hepatotoxicity test systems based on recombinant human interleukin-2 (aldesleukin). Methods Co-culture models of primary human CD8+ T cells or NK cells with the hepatocyte cell line HepaRG were established and validated with primary human hepatocytes (PHHs). Subsequently, the HepaRG model was refined by increasing complexity by inclusion of monocyte-derived macrophages (MdMs). The main readouts were cytotoxicity, inflammatory mediator release, surface marker expression and specific hepatocyte functions. Results We identified CD8+ T cells as possible mediators of aldesleukin-mediated hepatotoxicity, with MdMs being implicated in increased aldesleukin-induced inflammatory effects. In co-cultures of CD8+ T cells with MdMs and HepaRG cells, cytotoxicity was induced at intermediate/high aldesleukin concentrations and perforin was upregulated. A pro-inflammatory milieu was created measured by interleukin-6 (IL-6), c-reactive protein (CRP), interferon gamma (IFN-γ), and monocyte chemoattractant protein-1 (MCP-1) increase. NK cells responded to aldesleukin, however, only minor aldesleukin-induced cytotoxic effects were measured in co-cultures. Results obtained with HepaRG cells and with PHHs were comparable, especially regarding cytotoxicity, but high inter-donor variations limited meaningfulness of the PHH model. Discussion The in vitro test systems developed contribute to the understanding of potential key mechanisms in aldesleukin-mediated hepatotoxicity. In addition, they may aid assessment of immune-mediated hepatotoxicity during the development of novel immunotherapeutics.
Collapse
Affiliation(s)
- Luise A. Roser
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Sonja Luckhardt
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Nicole Ziegler
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Dominique Thomas
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- pharmazentrum frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Pia Viktoria Wagner
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Andrea Scheffschick
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J. Parnham
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Susanne Schiffmann
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- pharmazentrum frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| |
Collapse
|
33
|
Diab A, Gogas H, Sandhu S, Long GV, Ascierto PA, Larkin J, Sznol M, Franke F, Ciuleanu TE, Pereira C, Muñoz Couselo E, Bronzon Damian F, Schenker M, Perfetti A, Lebbe C, Quéreux G, Meier F, Curti BD, Rojas C, Arriaga Y, Yang H, Zhou M, Ravimohan S, Statkevich P, Tagliaferri MA, Khushalani NI. Bempegaldesleukin Plus Nivolumab in Untreated Advanced Melanoma: The Open-Label, Phase III PIVOT IO 001 Trial Results. J Clin Oncol 2023; 41:4756-4767. [PMID: 37651676 PMCID: PMC10602507 DOI: 10.1200/jco.23.00172] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 06/29/2023] [Indexed: 09/02/2023] Open
Abstract
PURPOSE Despite marked advances in the treatment of unresectable or metastatic melanoma, the need for novel therapies remains. Bempegaldesleukin (BEMPEG), a pegylated interleukin-2 (IL-2) cytokine prodrug, demonstrated efficacy in the phase II PIVOT-02 trial. PIVOT IO 001 (ClinicalTrials.gov identifier: NCT03635983) is a phase III, randomized, open-label study that builds on the PIVOT-02 results in first-line melanoma. METHODS Patients with previously untreated, unresectable, or metastatic melanoma were randomly assigned 1:1 to receive BEMPEG plus nivolumab (NIVO) or NIVO monotherapy. Primary end points were objective response rate (ORR) and progression-free survival (PFS) by blinded independent central review and overall survival (OS). Secondary and exploratory end points included additional efficacy measures, safety, and pharmacokinetics (PKs) and pharmacodynamics analyses. RESULTS In 783 patients (n = 391, BEMPEG plus NIVO; n = 392, NIVO monotherapy), the median follow-up was 11.6 months in the intent-to-treat population. The ORR with BEMPEG plus NIVO was 27.7% versus 36.0% with NIVO (two-sided P = .0311). The median PFS with BEMPEG plus NIVO was 4.17 months (95% CI, 3.52 to 5.55) versus 4.99 months (95% CI, 4.14 to 7.82) with NIVO (hazard ratio [HR], 1.09; 97% CI, 0.88 to 1.35; P = .3988). The median OS was 29.67 months (95% CI, 22.14 to not reached [NR]) with BEMPEG plus NIVO versus 28.88 months (95% CI, 21.32 to NR) with NIVO (HR, 0.94; 99.929% CI, 0.59 to 1.48; P = .6361). Grade 3-4 treatment-related adverse events (AEs) and serious AE rates were higher with the combination (21.7% and 10.1%, respectively) versus NIVO (11.5% and 5.5%, respectively). BEMPEG PK exposure and absolute lymphocyte count changes after BEMPEG plus NIVO were comparable between PIVOT IO 001 and PIVOT-02. CONCLUSION The PIVOT IO 001 study did not meet its primary end points of ORR, PFS, and OS. Increased toxicity was observed with BEMPEG plus NIVO versus NIVO.
Collapse
Affiliation(s)
- Adi Diab
- Melanoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Shahneen Sandhu
- Department of Medical Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, Royal North Shore and Mater Hospitals, The University of Sydney, Sydney, NSW, Australia
| | - Paolo A. Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Department, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - James Larkin
- Medical Oncology, The Royal Marsden Hospital, London, United Kingdom
| | - Mario Sznol
- Medical Oncology, Yale Cancer Center, Yale University School of Medicine, Smilow Cancer Hospital Yale New Haven Health, New Haven, CT
| | - Fabio Franke
- Medical Oncology, Oncosite Centro de Pesquisa Clínica, Ijui, Brazil
| | - Tudor E. Ciuleanu
- Medical Oncology, Institutul Prof Dr Ion Chiricuţă, Cluj-Napoca, Romania
| | - Caio Pereira
- Fundação Pio XII, Hospital de Câncer de Barretos, Barretos, Brazil
| | - Eva Muñoz Couselo
- Medical Oncology, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Michael Schenker
- Sf Nectarie Oncology Center, University of Medicine and Pharmacy, Craiova, Romania
| | - Aldo Perfetti
- Clínica Adventista Belgrano, Buenos Aires, Argentina
| | - Celeste Lebbe
- AP-HP Department of Dermato-oncology and CIC, INSERM U976, Cancer Institute APHP, Nord-Université Paris Cite, Université Paris Cité, Paris, France
| | - Gaëlle Quéreux
- Department of Dermatology, CIC 1413, de Cancéro-Dermatologie-CIC Biothérapie Nantes, Nantes University Hospital, Nantes, France
| | - Friedegund Meier
- Skin Cancer Center, National Center for Tumor Diseases, University Cancer Centre Dresden, Dresden, Germany
- Department of Dermatology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Brendan D. Curti
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR
| | - Carlos Rojas
- Medical Oncology, Bradford Hill Clinical Research Center, Santiago, Chile
| | - Yull Arriaga
- Medical Oncology, Bristol Myers Squibb, Princeton, NJ
| | - Haisu Yang
- Medical Oncology, Bristol Myers Squibb, Princeton, NJ
| | - Ming Zhou
- Medical Oncology, Bristol Myers Squibb, Princeton, NJ
| | | | - Paul Statkevich
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, NJ
| | | | | |
Collapse
|
34
|
Xu M, Yu J, Zhang C, Xu C, Wei X, Pu K. Sonodynamic Cytokine Nanocomplexes with Specific Stimulation towards Effector T Cell for Combination Cancer Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202308362. [PMID: 37587095 DOI: 10.1002/anie.202308362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Cytokine therapy mediates the interaction between immune cells and non-immune cells in the tumor microenvironment (TME), forming a promising approach in cancer therapy. However, the dose-dependent adverse effects and non-selective stimulation of cytokines limit their clinical use. We herein report a sonodynamic cytokine nano-immunocomplex (SPNAI ) that specifically activates effector T cells (Teffs) for antitumor immunotherapy. By conjugating anti-interleukin-2 (anti-IL-2) antibodies S4B6 on the semiconducting polymer nanoparticles to afford SPNA , this nanoantibody SPNA can bind with IL-2 to form SPNAI which can block the interaction between IL-2 and regulatory T cells (Tregs), selectively activating Teffs in TME. Moreover, SPNAI generates 1 O2 to trigger immunogenic cell death of cancer cells upon sono-irradiation, which promotes the maturation of dendritic cells and the proliferation of Teffs. This SPNAI -mediated combination sonodynamic immunotherapy thus elevates the ratio of Teffs/Tregs in TME, resulting in inhibition of tumor growth, suppression of lung metastasis and prevention of tumor relapse.
Collapse
Affiliation(s)
- Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jie Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
35
|
Zhu J, Fan J, Xia Y, Wang H, Li Y, Feng Z, Fu C. Potential targets and applications of nanodrug targeting myeloid cells in osteosarcoma for the enhancement of immunotherapy. Front Pharmacol 2023; 14:1271321. [PMID: 37808190 PMCID: PMC10551637 DOI: 10.3389/fphar.2023.1271321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Targeted immunotherapies have emerged as a transformative approach in cancer treatment, offering enhanced specificity to tumor cells, and minimizing damage to healthy tissues. The targeted treatment of the tumor immune system has become clinically applicable, demonstrating significant anti-tumor activity in both early and late-stage malignancies, subsequently enhancing long-term survival rates. The most frequent and significant targeted therapies for the tumor immune system are executed through the utilization of checkpoint inhibitor antibodies and chimeric antigen receptor T cell treatment. However, when using immunotherapeutic drugs or combined treatments for solid tumors like osteosarcoma, challenges arise due to limited efficacy or the induction of severe cytotoxicity. Utilizing nanoparticle drug delivery systems to target tumor-associated macrophages and bone marrow-derived suppressor cells is a promising and attractive immunotherapeutic approach. This is because these bone marrow cells often exert immunosuppressive effects in the tumor microenvironment, promoting tumor progression, metastasis, and the development of drug resistance. Moreover, given the propensity of myeloid cells to engulf nanoparticles and microparticles, they are logical therapeutic targets. Therefore, we have discussed the mechanisms of nanomedicine-based enhancement of immune therapy through targeting myeloid cells in osteosarcoma, and how the related therapeutic strategies well adapt to immunotherapy from perspectives such as promoting immunogenic cell death with nanoparticles, regulating the proportion of various cellular subgroups in tumor-associated macrophages, interaction with myeloid cell receptor ligands, activating immunostimulatory signaling pathways, altering myeloid cell epigenetics, and modulating the intensity of immunostimulation. We also explored the clinical implementations of immunotherapy grounded on nanomedicine.
Collapse
Affiliation(s)
- Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zijia Feng
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Feils AS, Erbe AK, Birstler J, Kim K, Hoch U, Currie SL, Nguyen T, Yu D, Siefker-Radtke AO, Tannir N, Tolaney SM, Diab A, Sondel PM. Associations between KIR/KIR-ligand genotypes and clinical outcome for patients with advanced solid tumors receiving BEMPEG plus nivolumab combination therapy in the PIVOT-02 trial. Cancer Immunol Immunother 2023; 72:2099-2111. [PMID: 36823323 PMCID: PMC10264535 DOI: 10.1007/s00262-023-03383-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/22/2023] [Indexed: 02/25/2023]
Abstract
Bempegaldesleukin (BEMPEG), a CD122-preferential IL2 pathway agonist, has been shown to induce proliferation and activation of NK cells. NK activation is dependent on the balance of inhibitory and excitatory signals transmitted by NK receptors, including Fc-gamma receptors (FCγRs) and killer immunoglobulin-like receptors (KIRs) along with their KIR-ligands. The repertoire of KIRs/KIR-ligands an individual inherits and the single-nucleotide polymorphisms (SNPs) of FCγRs can influence NK function and affect responses to immunotherapies. In this retrospective analysis of the single-arm PIVOT-02 trial, 200 patients with advanced solid tumors were genotyped for KIR/KIR-ligand gene status and FCγR SNP status and evaluated for associations with clinical outcome. Patients with inhibitory KIR2DL2 and its ligand (HLA-C1) observed significantly greater tumor shrinkage (TS, median change -13.0 vs. 0%) and increased PFS (5.5 vs. 3.3 months) and a trend toward improved OR (31.2 vs. 19.5%) compared to patients with the complementary genotype. Furthermore, patients with KIR2DL2 and its ligand together with inhibitory KIR3DL1 and its ligand (HLA-Bw4) had improved OR (36.5 vs. 19.6%), greater TS (median change -16.1 vs. 0%), and a trend toward prolonged PFS (8.4 vs. 3.6 months) as compared to patients with the complementary genotype. FCγR polymorphisms did not influence OR/PFS/TS.These data show that clinical response to BEMPEG plus nivolumab treatment in the PIVOT-02 trial may be associated with the repertoire of KIR/KIR-ligands an individual inherits. Further investigation and validation of these results may enable KIR/KIR-ligand genotyping to be utilized prospectively for identifying patients likely to benefit from certain cancer immunotherapy regimens.
Collapse
Affiliation(s)
- A S Feils
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - A K Erbe
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J Birstler
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - K Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - U Hoch
- Nektar Therapeutics, San Francisco, CA, USA
| | | | - T Nguyen
- Nektar Therapeutics, San Francisco, CA, USA
| | - D Yu
- Nektar Therapeutics, San Francisco, CA, USA
| | | | - N Tannir
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - A Diab
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P M Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
37
|
Abstract
T cells and natural killer (NK) cells have complementary roles in tumor immunity, and dual T cell and NK cell attack thus offers opportunities to deepen the impact of immunotherapy. Recent work has also shown that NK cells play an important role in recruiting dendritic cells to tumors and thus enhance induction of CD8 T cell responses, while IL-2 secreted by T cells activates NK cells. Targeting of immune evasion mechanisms from the activating NKG2D receptor and its MICA and MICB ligands on tumor cells offers opportunities for therapeutic intervention. Interestingly, T cells and NK cells share several important inhibitory and activating receptors that can be targeted to enhance T cell- and NK cell-mediated immunity. These inhibitory receptor-ligand systems include CD161-CLEC2D, TIGIT-CD155, and NKG2A/CD94-HLA-E. We also discuss emerging therapeutic strategies based on inhibitory and activating cytokines that profoundly impact the function of both lymphocyte populations within tumors.
Collapse
Affiliation(s)
- Oleksandr Kyrysyuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Neurology, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Cooper AJ, Heist RS. New Therapies on the Horizon. Hematol Oncol Clin North Am 2023; 37:623-658. [PMID: 37029036 DOI: 10.1016/j.hoc.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Although lung cancer treatment has been transformed by the advent of checkpoint inhibitor immunotherapies, there remains a high unmet need for new effective therapies for patients with progressive disease. Novel treatment strategies include combination therapies with currently available programmed death ligand 1 inhibitors, targeting alternative immune checkpoints, and the use of novel immunomodulatory therapies. In addition, antibody-drug conjugates offer great promise as potent management options. As these agents are further tested in clinical trials, we anticipate that more effective therapies for patients with lung cancer are integrated into regular clinical practice.
Collapse
|
39
|
Raeber ME, Sahin D, Karakus U, Boyman O. A systematic review of interleukin-2-based immunotherapies in clinical trials for cancer and autoimmune diseases. EBioMedicine 2023; 90:104539. [PMID: 37004361 PMCID: PMC10111960 DOI: 10.1016/j.ebiom.2023.104539] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The cytokine interleukin-2 (IL-2) can stimulate both effector immune cells and regulatory T (Treg) cells. The ability of selectively engaging either of these effects has spurred interest in using IL-2 for immunotherapy of cancer and autoimmune diseases. Thus, numerous IL-2-based biologic agents with improved bias or delivery towards effector immune cells or Treg cells have been developed. This study systematically reviews clinical results of improved IL-2-based compounds. METHODS We searched the ClinicalTrials.gov database for registered trials using improved IL-2-based agents and different databases for available results of these studies. FINDINGS From 576 registered clinical trials we extracted 36 studies on different improved IL-2-based compounds. Adding another nine agents reported in recent literature reviews and based on our knowledge totalled in 45 compounds. A secondary search for registered clinical trials of each of these 45 compounds resulted in 141 clinical trials included in this review, with 41 trials reporting results. INTERPRETATION So far, none of the improved IL-2-based compounds has gained regulatory approval for the treatment of cancer or autoimmune diseases. NKTR-214 is the only compound completing phase 3 studies. The PIVOT IO-001 trial testing the combination of NKTR-214 plus Pembrolizumab compared to Pembrolizumab monotherapy in metastatic melanoma missed its primary endpoints. Also the PIVOT-09 study, combining NKTR-214 with Nivolumab compared to Sunitinib or Cabozantinib in advanced renal cell carcinoma, missed its primary endpoint. Trials in autoimmune diseases are currently in early stages, thus not allowing definite conclusions on efficacy. FUNDING This work was supported by public funding agencies.
Collapse
|
40
|
Ni JJ, Zhang ZZ, Ge MJ, Chen JY, Zhuo W. Immune-based combination therapy to convert immunologically cold tumors into hot tumors: an update and new insights. Acta Pharmacol Sin 2023; 44:288-307. [PMID: 35927312 PMCID: PMC9889774 DOI: 10.1038/s41401-022-00953-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023]
Abstract
As a breakthrough strategy for cancer treatment, immunotherapy mainly consists of immune checkpoint inhibitors (ICIs) and other immunomodulatory drugs that provide a durable protective antitumor response by stimulating the immune system to fight cancer. However, due to the low response rate and unique toxicity profiles of immunotherapy, the strategies of combining immunotherapy with other therapies have attracted enormous attention. These combinations are designed to exert potent antitumor effects by regulating different processes in the cancer-immunity cycle. To date, immune-based combination therapy has achieved encouraging results in numerous clinical trials and has received Food and Drug Administration (FDA) approval for certain cancers with more studies underway. This review summarizes the emerging strategies of immune-based combination therapy, including combinations with another immunotherapeutic strategy, radiotherapy, chemotherapy, anti-angiogenic therapy, targeted therapy, bacterial therapy, and stroma-targeted therapy. Here, we highlight the rationale of immune-based combination therapy, the biomarkers and the clinical progress for these immune-based combination therapies.
Collapse
Affiliation(s)
- Jiao-Jiao Ni
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zi-Zhen Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Jie Ge
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Hangzhou, 310006, China
| | - Jing-Yu Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol 2023; 23:90-105. [PMID: 35637393 DOI: 10.1038/s41577-022-00732-1] [Citation(s) in RCA: 241] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 02/04/2023]
Abstract
Great strides have been made in recent years towards understanding the roles of natural killer (NK) cells in immunity to tumours and viruses. NK cells are cytotoxic innate lymphoid cells that produce inflammatory cytokines and chemokines. By lysing transformed or infected cells, they limit tumour growth and viral infections. Whereas T cells recognize peptides presented by MHC molecules, NK cells display receptors that recognize stress-induced autologous proteins on cancer cells. At the same time, their functional activity is inhibited by MHC molecules displayed on such cells. The enormous potential of NK cells for immunotherapy for cancer is illustrated by their broad recognition of stressed cells regardless of neoantigen presentation, and enhanced activity against tumours that have lost expression of MHC class I owing to acquired resistance mechanisms. As a result, many efforts are under way to mobilize endogenous NK cells with therapeutics, or to provide populations of ex vivo-expanded NK cells as a cellular therapy, in some cases by equipping the NK cells with chimeric antigen receptors. Here we consider the key features that underlie why NK cells are emerging as important new additions to the cancer therapeutic arsenal.
Collapse
|
42
|
Bottoni U, Clerico R, Richetta AG, Panasiti V, Corsetti P, Roberti V, Paolino G, Moliterni E, Grassi S, Calvieri S. Melanoma and immunotherapy: the experience of Sapienza University of Rome. Ital J Dermatol Venerol 2023; 158:1-3. [PMID: 36939498 DOI: 10.23736/s2784-8671.23.07424-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Affiliation(s)
- Ugo Bottoni
- Unit of Dermatology, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Rita Clerico
- Unit of Dermatology, Sapienza University, Rome, Italy
| | | | | | | | | | - Giovanni Paolino
- Unit of Dermatology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Sara Grassi
- Unit of Dermatology, Sapienza University, Rome, Italy
| | | |
Collapse
|
43
|
Tabolacci C, De Vita D, Facchiano A, Bozzuto G, Beninati S, Failla CM, Di Martile M, Lintas C, Mischiati C, Stringaro A, Del Bufalo D, Facchiano F. Phytochemicals as Immunomodulatory Agents in Melanoma. Int J Mol Sci 2023; 24:2657. [PMID: 36768978 PMCID: PMC9916941 DOI: 10.3390/ijms24032657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma is an immunogenic highly heterogenic tumor characterized by poor outcomes when it is diagnosed late. Therefore, immunotherapy in combination with other anti-proliferative approaches is among the most effective weapons to control its growth and metastatic dissemination. Recently, a large amount of published reports indicate the interest of researchers and clinicians about plant secondary metabolites as potentially useful therapeutic tools due to their lower presence of side effects coupled with their high potency and efficacy. Published evidence was reported in most cases through in vitro studies but also, with a growing body of evidence, through in vivo investigations. Our aim was, therefore, to review the published studies focused on the most interesting phytochemicals whose immunomodulatory activities and/or mechanisms of actions were demonstrated and applied to melanoma models.
Collapse
Affiliation(s)
- Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Daniela De Vita
- Department of Environmental Biology, University of Rome La Sapienza, 00185 Rome, Italy
| | | | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico, 00128 Rome, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, School of Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
44
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
45
|
Jeon EY, Choi DS, Choi S, Won JY, Jo Y, Kim HB, Jung Y, Shin SC, Min H, Choi HW, Lee MS, Park Y, Chung JJ, Jin HS. Enhancing adoptive T-cell therapy with fucoidan-based IL-2 delivery microcapsules. Bioeng Transl Med 2023; 8:e10362. [PMID: 36684086 PMCID: PMC9842027 DOI: 10.1002/btm2.10362] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/20/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023] Open
Abstract
Adoptive cell therapy (ACT) with antigen-specific T cells is a promising treatment approach for solid cancers. Interleukin-2 (IL-2) has been utilized in boosting the efficacy of ACT. However, the clinical applications of IL-2 in combination with ACT is greatly limited by short exposure and high toxicities. Herein, a complex coacervate was designed to intratumorally deliver IL-2 in a sustained manner and protect against proteolysis. The complex coacervate consisted of fucoidan, a specific IL-2 binding glycosaminoglycan, and poly-l-lysine, a cationic counterpart (FPC2). IL-2-laden FPC2 exhibited a preferential bioactivity in ex vivo expansion of CD8+T cells over Treg cells. Additionally, FPC2 was embedded in pH modulating injectable gel (FPC2-IG) to endure the acidic tumor microenvironment. A single intratumoral administration of FPC2-IG-IL-2 increased expansion of tumor-infiltrating cytotoxic lymphocytes and reduced frequencies of myeloid populations. Notably, the activation and persistency of tumor-reactive T cells were observed only in the tumor site, not in the spleen, confirming a localized effect of FPC2-IG-IL-2. The immune-favorable tumor microenvironment induced by FPC2-IG-IL-2 enabled adoptively transferred TCR-engineered T cells to effectively eradicate tumors. FPC2-IG delivery system is a promising strategy for T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Eun Young Jeon
- Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Da-Som Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Seunghyun Choi
- Theragnosis Center Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
- Department of Life Sciences Korea University Seoul South Korea
| | - Ju-Young Won
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Yunju Jo
- Theragnosis Center Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
- Department of Life Sciences Korea University Seoul South Korea
| | - Hye-Bin Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Youngmee Jung
- Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
- School of Electrical and Electronic Engineering Yonsei University Seoul South Korea
- Yonsei-KIST Convergence Research Institute Seoul South Korea
| | - Sang Chul Shin
- Technology Support Center Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Hophil Min
- Doping Control Center Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Hae Woong Choi
- Department of Life Sciences Korea University Seoul South Korea
| | - Myeong Sup Lee
- Department of Biomedical Sciences University of Ulsan College of Medicine Seoul South Korea
| | - Yoon Park
- Theragnosis Center Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Justin J Chung
- Transdisciplinary Department of Medicine and Advanced Technology Seoul National University Hospital Seoul South Korea
- Department of Medicine Seoul National University College of Medicine Seoul South Korea
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| |
Collapse
|
46
|
Sznol M, Rizvi N. Teaching an old dog new tricks: re-engineering IL-2 for immuno-oncology applications. J Immunother Cancer 2023; 11:jitc-2022-006346. [PMID: 36609489 PMCID: PMC9827269 DOI: 10.1136/jitc-2022-006346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
Various approaches are being explored to address the unmet medical need among patients with advanced cancer who do not respond to immune checkpoint inhibitors. Interleukin-2 has become a prominent focus of preclinical and clinical investigation, because of its known clinical activity, the important role of this cytokine in immune biology, and the ability to engineer variant proteins with potentially improved antitumor immunomodulatory activity and reduced toxicity. Bempegaldesleukin, the first of the modified IL-2 agents to reach phase 3 evaluation in combination with an anti-PD-1, did not improve outcome for patients with metastatic melanoma and renal carcinoma. The disappointing data raise important questions about the potential efficacy of other interleukin-2 variants, however, several of the other variants appear to be sufficiently differentiated in anticipated pharmacokinetic properties and immune modulatory effects to warrant continued clinical development.
Collapse
Affiliation(s)
- Mario Sznol
- Yale Cancer Center, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
47
|
George A, Varghese J, Padinharayil H. Potential of Biotechnology in Cancer Management. NOVEL TECHNOLOGIES IN BIOSYSTEMS, BIOMEDICAL & DRUG DELIVERY 2023:9-44. [DOI: 10.1007/978-981-99-5281-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
48
|
Tang G, Sun K, Ding G, Wu J. Low Expression of TSTD2 Serves as a Biomarker for Poor Prognosis in Kidney Renal Clear Cell Carcinoma. Int J Gen Med 2023; 16:1437-1453. [PMID: 37114071 PMCID: PMC10126726 DOI: 10.2147/ijgm.s408854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Kidney renal clear cell carcinoma (KIRC) is a common cancer in people worldwide, and one of the main issues is developing suitable biomarkers. This study aims to investigate the expression of TSTD2 in KIRC and its impact on prognosis. Methods RNA sequencing data from TCGA and GTEx were gathered to examine the functional enrichment of TSTD2-related differentially expressed genes (DEGs) using GO/KEGG, GSEA, immunocyte permeation analysis, and protein-protein interaction (PPI) network analysis. The Kaplan‒Meier-Cox regression model and the prognostic nomograph model were used to assess the clinical importance of TSTD2 in KIRC. R software was used to analyze the included studies. Finally, verification of cells and tissues was performed using immunohistochemical staining and quantitative real‒time PCR. Results In contrast to normal samples, it was discovered that TSTD2 was underexpressed in a number of malignancies, including KIRC. Furthermore, in 163 KIRC samples, low expression of TSTD2 was linked to a poor prognosis, as were subgroups with age greater than 60, the integrin pathway, the development of elastic fibers, and high TNM stage, pathologic stage, and histologic grade (P < 0.05). Age and TNM stage were included in the nomogram prognostic model, and low TSTD2 was a prognostic predictor that could be used independently in Cox regression analysis. In addition, 408 DEGs with 111 upregulated genes and 297 downregulated genes were found between the high- and low-expression groups. Conclusion The diminished expression of TSTD2 may serve as a biomarker for unfavorable outcomes in KIRC, and holds potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Gonglin Tang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, People’s Republic of China
| | - Kai Sun
- Urology Department, Shandong Province Hospital, Shandong University, Jinan, 250021, People’s Republic of China
| | - Guixin Ding
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, People’s Republic of China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, People’s Republic of China
- Correspondence: Jitao Wu, Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, People’s Republic of China, Email
| |
Collapse
|
49
|
Zhou Y, Quan G, Liu Y, Shi N, Wu Y, Zhang R, Gao X, Luo L. The application of Interleukin-2 family cytokines in tumor immunotherapy research. Front Immunol 2023; 14:1090311. [PMID: 36936961 PMCID: PMC10018032 DOI: 10.3389/fimmu.2023.1090311] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The Interleukin-2 Family contains six kinds of cytokines, namely IL-2, IL-15, IL-4, IL-7, IL-9, and IL-21, all of which share a common γ chain. Many cytokines of the IL-2 family have been reported to be a driving force in immune cells activation. Therefore, researchers have tried various methods to study the anti-tumor effect of cytokines for a long time. However, due to the short half-life, poor stability, easy to lead to inflammatory storms and narrow safety treatment window of cytokines, this field has been tepid. In recent years, with the rapid development of protein engineering technology, some engineered cytokines have a significant effect in tumor immunotherapy, showing an irresistible trend of development. In this review, we will discuss the current researches of the IL-2 family and mainly focus on the application and achievements of engineered cytokines in tumor immunotherapy.
Collapse
Affiliation(s)
- Yangyihua Zhou
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guiqi Quan
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yujun Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ning Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha, China
| | - Yahui Wu
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ran Zhang
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- *Correspondence: Ran Zhang, ; Xiang Gao, ; Longlong Luo,
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Ran Zhang, ; Xiang Gao, ; Longlong Luo,
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Ran Zhang, ; Xiang Gao, ; Longlong Luo,
| |
Collapse
|
50
|
Zhang L, Zhang M, Wang J, Li Y, Wang T, Xia J, Feng B, Shen J. Immunogenic change after percutaneous microwave ablation in pulmonary malignancies: Variation in immune cell subsets and cytokines in peripheral blood. Front Immunol 2022; 13:1069192. [PMID: 36569954 PMCID: PMC9780363 DOI: 10.3389/fimmu.2022.1069192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction To investigate immunogenic changes after percutaneous microwave ablation (MWA) in pulmonary malignancies. Methods Twenty-two consecutive patients with pulmonary malignancies who underwent percutaneous lung tumor MWA were prospectively enrolled in this study. Peripheral blood samples were collected on the day before (D0) and one month (M1) after MWA. Changes in immune cell subsets (CD3+, CD4+, and CD8+ T cells, and B, natural killer, regulatory T (Treg), and CD3-CD20+ cells) and cytokines (interleukin [IL]-2, 4, 6, 10, 17A, tumor necrosis factor [TNF]-α, and interferon-γ) were noted and compared. Progression-free survival (PFS) and potentially related factors were analyzed. Results The proportion of CD8+ T cells increased from 22.95 ± 7.38% (D0) to 25.95 ± 9.16% (M1) (p = 0.031). The proportion of Treg cells decreased from 10.82 ± 4.52% (D0) to 8.77 ± 2.05% (M1) (p = 0.049). The IL-2 concentration was also decreased from 1.58 ± 0.46 pg/mL (D0) to 1.26 ± 0.60 pg/mL (M1) (p = 0.028). The reduction in Treg cells predicted PFS independently of clinical prognostic features in multivariate analysis (hazard ratio = 4.97, 95% confidence interval: 1.32-18.66, p = 0.018). A reduction in the proportion of Treg cells was observed in 15 patients (68.2%) and the average of the reduction was 2.05 ± 4.60%. Those patients with a reduction in the proportion of Treg cells that was more than average showed a significantly longer median PFS time than those with a reduction that was less than average (16 months vs. 8.5 months, p = 0.025). Discussion Percutaneous MWA of pulmonary malignancies leads to immunogenic changes. The reduction in the proportion of Treg cells was independently associated with PFS.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Pudong, Shanghai, China
| | - Mingming Zhang
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Jun Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Pudong, Shanghai, China
| | - Yang Li
- Department of Radiology, Shanghai Jiao Tong University School of Medicine, Pudong, Shanghai, China
| | - Taijie Wang
- Department of Radiology, People’s Hospital of Qintong, Taizhou, Jiangsu, China
| | - Jianguo Xia
- Department of Ultrasound, Shanghai Jiao Tong University School of Medicine, Pudong, Shanghai, China
| | - Bo Feng
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Jialin Shen, ; Bo Feng,
| | - Jialin Shen
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Pudong, Shanghai, China,*Correspondence: Jialin Shen, ; Bo Feng,
| |
Collapse
|