1
|
Sobti A, Skinner H, Wilke CT. Predictors of Radiation Resistance and Novel Radiation Sensitizers in Head and Neck Cancers: Advancing Radiotherapy Efficacy. Semin Radiat Oncol 2025; 35:224-242. [PMID: 40090749 DOI: 10.1016/j.semradonc.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/18/2025]
Abstract
Radiation resistance in head and neck squamous cell carcinoma (HNSCC), driven by intrinsic and extrinsic factors, poses a significant challenge in radiation oncology. The key contributors are tumor hypoxia, cancer stem cells, cell cycle checkpoint activation, and DNA repair processes (homologous recombination and non-homologous end-joining). Genetic modifications such as TP53 mutations, KRAS mutations, EGFR overexpression, and abnormalities in DNA repair proteins like BRCA1/2 additionally affect radiation sensitivity. Novel radiosensitizers targeting these pathways demonstrate the potential to overcome resistance. Hypoxia-activated drugs and gold nanoparticles enhance the efficacy of radiotherapy and facilitate targeted distribution. Integrating immunotherapy, especially immune checkpoint inhibitors, with radiation therapy, enhances anti-tumor responses and reduces resistance. Epigenetic alterations, such as DNA methylation and histone acetylation, significantly influence radiation response, with the potential for sensitization through histone deacetylase inhibitors and non-coding RNA regulators. Metabolic changes linked to glucose, lipid, and glutamine metabolism influence radiosensitivity, uncovering new targets for radiosensitization. Human papillomavirus (HPV)-associated malignancies exhibit increased radiosensitivity relative to other tumors due to impaired DNA repair mechanisms and heightened immunogenicity. Furthermore, understanding the interplay between HPV oncoproteins and p53 functionality can enhance treatment strategies for HPV-related cancers. Using DNA damage response inhibitors (PARP, ATM/ATR), cell cycle checkpoint inhibitors (WEE1, CHK1/2), and hypoxia-targeted agents as radiosensitizing strategies exhibit considerable promise. Immunomodulatory approaches, including PD-1 and CTLA-4 inhibitors in conjunction with radiation, enhance anti-tumor immunity. Future directions emphasize personalized radiation therapy using genetics, sophisticated medication delivery systems, adaptive radiotherapy, and real-time monitoring. These integrated strategies seek to diminish radiation resistance and improve therapeutic efficacy in HNSCC.
Collapse
Affiliation(s)
- Aastha Sobti
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Heath Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA
| | - Christopher T Wilke
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA..
| |
Collapse
|
2
|
Zhu TC, He ZP, Li ST, Zheng L, Zheng XY, Lan XL, Qu CH, Nie RC, Gu C, Huang LN, Cai XX, Xiang ZC, Xie D, Cai MY. TAOK1 promotes filament formation in HR repair through phosphorylating USP7. Proc Natl Acad Sci U S A 2025; 122:e2422262122. [PMID: 40106350 PMCID: PMC11962436 DOI: 10.1073/pnas.2422262122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
Poly-ADP-ribose polymerase (PARP) inhibitors are vital therapeutic agents that exploit synthetic lethality, particularly effective in tumors with homologous recombination (HR) defects. However, broadening their clinical utility remains a significant challenge. In this study, we conducted a high-throughput kinase inhibitor screen to identify potential targets exhibiting synthetical lethality with PARP inhibitors. Our results show that thousand and one amino acid protein kinase 1 (TAOK1) plays a pivotal role in the DNA damage response by phosphorylating ubiquitin specific peptidase 7 (USP7), thereby promoting its enzymatic activity and preventing the ubiquitylation and subsequent degradation of RAD51, a crucial protein in the filament formation of HR repair. Notably, genetic depletion or pharmacological inhibition of TAOK1, as well as blocking peptide targeting the USP7 phosphorylation site, impaired USP7 function, leading to RAD51 degradation, disruption of HR repair, and increased tumor cell and sensitivity to PARP inhibition. This study highlights TAOK1 as a critical regulator of HR repair pathway in human cancer cells and presents a therapeutic strategy overcoming resistance to PARPi inhibitors. These findings support the potential clinical application of combining PARP inhibitors with TAOK1 inhibition or peptide treatment to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Tian-Chen Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou510000, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Zhang-Ping He
- Institute of Basic Medical Sciences, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou510000, China
| | - Shu-Ting Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou510000, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Lin Zheng
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian350000, China
| | - Xue-Yi Zheng
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Xia-Lu Lan
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Chun-Hua Qu
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Run-Cong Nie
- Department of Gastric Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Chao Gu
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou215000, China
| | - Li-Ning Huang
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou215000, China
| | - Xiao-Xia Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou510000, China
| | - Zhi-Cheng Xiang
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou510000, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| | - Mu-Yan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou510000, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou510000, China
| |
Collapse
|
3
|
Hofstad M, Woods A, Parra K, Sychev ZE, Mazzagatti A, Huo X, Yu L, Gilbreath C, Chen WM, Davis AJ, Ly P, Drake JM, Kittler R. Dual inhibition of ATR and DNA-PKcs radiosensitizes ATM-mutant prostate cancer. Oncogene 2025:10.1038/s41388-025-03343-x. [PMID: 40119228 DOI: 10.1038/s41388-025-03343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/31/2025] [Accepted: 03/06/2025] [Indexed: 03/24/2025]
Abstract
In advanced castration resistant prostate cancer (CRPC), mutations in the DNA damage response (DDR) gene ataxia telangiectasia mutated (ATM) are common. While poly(ADP-ribose) polymerase inhibitors are approved in this context, their clinical efficacy remains limited. Thus, there is a compelling need to identify alternative therapeutic avenues for ATM mutant prostate cancer patients. Here, we generated matched ATM-proficient and ATM-deficient CRPC lines to elucidate the impact of ATM loss on DDR in response to DNA damage via irradiation. Through unbiased phosphoproteomic screening, we unveiled that ATM-deficient CRPC lines maintain dependence on downstream ATM targets through activation of ATR and DNA-PKcs kinases. Dual inhibition of ATR and DNA-PKcs effectively inhibited downstream γH2AX foci formation in response to irradiation and radiosensitized ATM-deficient lines to a greater extent than either ATM-proficient controls or single drug treatment. Further, dual inhibition abrogated residual downstream ATM pathway signaling and impaired replication fork dynamics. To circumvent potential toxicity, we leveraged the RUVBL1/2 ATPase inhibitor Compound B, which leads to the degradation of both ATR and DNA-PKcs kinases. Compound B effectively radiosensitized ATM-deficient CRPC in vitro and in vivo, and impacted replication fork dynamics. Overall, dual targeting of both ATR and DNA-PKcs is necessary to block DDR in ATM-deficient CRPC, and Compound B could be utilized as a novel therapy in combination with irradiation in these patients.
Collapse
Affiliation(s)
- Mia Hofstad
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Andrea Woods
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Karla Parra
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zoi E Sychev
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Alice Mazzagatti
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofang Huo
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lan Yu
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Collin Gilbreath
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wei-Min Chen
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anthony J Davis
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Peter Ly
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Justin M Drake
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Cereda V, D’Andrea MR. Pancreatic cancer: failures and hopes-a review of new promising treatment approaches. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002299. [PMID: 40124650 PMCID: PMC11926728 DOI: 10.37349/etat.2025.1002299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
Pancreatic cancer is a challenging disease with limited treatment options and a high mortality rate. Just few therapy advances have been made in recent years. Tumor microenvironment, immunosuppressive features and mutational status represent important obstacles in the improvement of survival outcomes. Up to now, first-line therapy did achieve a median overall survival of less than 12 months and this discouraging data lead clinicians all over the world to focus their efforts on various fields of investigation: 1) sequential cycling of different systemic therapy in order to overcome mechanisms of resistance; 2) discovery of new predictive bio-markers, in order to target specific patient population; 3) combination treatment, in order to modulate the tumor microenvironment of pancreatic cancer; 4) new modalities of the delivery of drugs in order to pass the physical barrier of desmoplasia and tumor stroma. This review shows future directions of treatment strategies in advanced pancreatic cancer through a deep analysis of these recent macro areas of research.
Collapse
Affiliation(s)
- Vittore Cereda
- Asl Roma 4, Hospital S. Paolo Civitavecchia, 00053 Civitavecchia, Italy
| | | |
Collapse
|
5
|
Heaphy CM, Patel S, Smith K, Wondisford AR, Lynskey ML, O'Sullivan RJ, Fuhrer K, Han X, Seethala RR, Liu TC, Cao D, Ertunc O, Zheng Q, Stojanova M, Zureikat AH, Paniccia A, Lee K, Ongchin MC, Pingpank JF, Zeh HJ, Hogg ME, Geller D, Marsh JW, Brand RE, Chennat JS, Das R, Fasanella KE, Gabbert C, Khalid A, McGrath K, Lennon AM, Sarkaria S, Singh H, Slivka A, Hsu D, Zhang JY, Nacev BA, Nikiforova MN, Wald AI, Vaddi N, De Marzo AM, Singhi AH, Bell PD, Singhi AD. Detection of Alternative Lengthening of Telomeres via Chromogenic In Situ Hybridization for the Prognostication of PanNETs and Other Neoplasms. Mod Pathol 2025; 38:100651. [PMID: 39522643 DOI: 10.1016/j.modpat.2024.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Molecular studies have shown alternative lengthening to telomeres (ALT) to be an important prognostic biomarker of shorter relapse-free survival (RFS) for patients with pancreatic neuroendocrine tumors (PanNETs) and other neoplasms. However, the preferred method of detecting ALT in tissue is by fluorescence in situ hybridization (FISH), which has several clinical limitations. These issues necessitate the creation of a chromogenic ALT assay that can be easily implemented into routine practice. A chromogenic in situ hybridization (CISH) assay was developed using genetically modified osteosarcoma cell lines, 20 normal pancreata, 20 ALT-positive PanNETs, and 20 ALT-negative PanNETs. Thereafter, it was validated on a multiinstitutional cohort of 360 surgically resected PanNETs and correlated with multiple clinicopathologic features, RFS, and FISH results. Separately, 109 leiomyosarcomas (LMS) were evaluated by both CISH and FISH, and, similarly, the prognostic significance of ALT status was assessed. Upon optimization, ALT-CISH was identified in 112 of 360 (31%) primary PanNETs and was 100% concordant with FISH testing. ALT correlated with several adverse prognostic findings and distant metastasis (all P < .004). The 5-year RFS for patients with ALT-positive PanNETs was 35% as compared with 94% for ALT-negative PanNETs. By multivariate analysis, ALT was an independent prognostic factor for shorter RFS. Similarly, ALT was associated with shorter RFS in patients with LMS and, analogous to PanNETs, a negative, independent prognostic factor. ALT-CISH was developed and validated in not only PanNETs but also sarcomas, specifically LMS. CISH testing has multiple advantages over FISH that facilitate its widespread clinical use in the detection of ALT and prognostication of patients with diverse neoplasms.
Collapse
Affiliation(s)
- Christopher M Heaphy
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.
| | - Simmi Patel
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Katelyn Smith
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michelle L Lynskey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kimberly Fuhrer
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Xiaoli Han
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Raja R Seethala
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Dengfeng Cao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Onur Ertunc
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qizhi Zheng
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marija Stojanova
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Amer H Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Alessandro Paniccia
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kenneth Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Melanie C Ongchin
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - James F Pingpank
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Herbert J Zeh
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melissa E Hogg
- Department of Surgery, NorthShore University Health System, Evanston, Illinois
| | - David Geller
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - James Wallis Marsh
- Department of Surgery, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jennifer S Chennat
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rohit Das
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kenneth E Fasanella
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Charles Gabbert
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Asif Khalid
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kevin McGrath
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anne Marie Lennon
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Savreet Sarkaria
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Harkirat Singh
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Adam Slivka
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Dennis Hsu
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Janie Y Zhang
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Benjamin A Nacev
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Abigail I Wald
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Neel Vaddi
- Drexel University, Philadelphia, Pennsylvania
| | - Angelo M De Marzo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anju H Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Phoenix D Bell
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
6
|
Villette CC, Dupuy N, Brightman FA, Zimmermann A, Lignet F, Zenke FT, Terranova N, Bolleddula J, El Bawab S, Chassagnole C. Semi-mechanistic efficacy model for PARP + ATR inhibitors-application to rucaparib and talazoparib in combination with gartisertib in breast cancer PDXs. Br J Cancer 2025; 132:481-491. [PMID: 39875558 PMCID: PMC11876674 DOI: 10.1038/s41416-024-02935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Promising cancer treatments, such as DDR inhibitors, are often challenged by the heterogeneity of responses in clinical trials. The present work aimed to build a computational framework to address those challenges. METHODS A semi-mechanistic pharmacokinetic-pharmacodynamic model of tumour growth inhibition was developed to investigate the efficacy of PARP and ATR inhibitors as monotherapies, and in combination. Key features of the DNA damage response were incorporated into the model to allow the emergence of synthetic lethality, including redundant DNA repair pathways that may be impaired due to genetic mutations, and due to PARP and ATR inhibition. Model parameters were calibrated using preclinical in vivo data for PARP inhibitors rucaparib and talazoparib and the ATR inhibitor gartisertib. RESULTS The model successfully captured the monotherapy efficacies of rucaparib and talazoparib, as well as the combination efficacy with gartisertib. The model was evaluated against multiple tumour xenografts with diverse genetic backgrounds and was able to capture the observed heterogeneity of response profiles. CONCLUSIONS By enabling simulation of in vivo tumour growth inhibition with PARP and ATR inhibitors for specific tumour types, the model provides a rational approach to support the optimisation of dosing regimens to stratified populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Frank T Zenke
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | - Nadia Terranova
- Quantitative Pharmacology, Ares Trading S.A. (An Affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland
| | | | | | | |
Collapse
|
7
|
Glaviano A, Singh SK, Lee EHC, Okina E, Lam HY, Carbone D, Reddy EP, O'Connor MJ, Koff A, Singh G, Stebbing J, Sethi G, Crasta KC, Diana P, Keyomarsi K, Yaffe MB, Wander SA, Bardia A, Kumar AP. Cell cycle dysregulation in cancer. Pharmacol Rev 2025; 77:100030. [PMID: 40148026 DOI: 10.1016/j.pharmr.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer is a systemic manifestation of aberrant cell cycle activity and dysregulated cell growth. Genetic mutations can determine tumor onset by either augmenting cell division rates or restraining normal controls such as cell cycle arrest or apoptosis. As a result, tumor cells not only undergo uncontrolled cell division but also become compromised in their ability to exit the cell cycle accurately. Regulation of cell cycle progression is enabled by specific surveillance mechanisms known as cell cycle checkpoints, and aberrations in these signaling pathways often culminate in cancer. For instance, DNA damage checkpoints, which preclude the generation and augmentation of DNA damage in the G1, S, and G2 cell cycle phases, are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Notably, tumors have evolved to become dependent on checkpoints for their survival. For example, checkpoint pathways such as the DNA replication stress checkpoint and the mitotic checkpoint rarely undergo mutations and remain intact because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation leading to cell death. In this review, we initially focus on cell cycle control pathways and specific functions of checkpoint signaling involved in normal and cancer cells and then proceed to examine how cell cycle control and checkpoint mechanisms can provide new therapeutic windows that can be exploited for cancer therapy. SIGNIFICANCE STATEMENT: DNA damage checkpoints are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Conversely, DNA replication stress and mitotic checkpoints rarely undergo mutations because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation, leading to cancer cell death. This review focuses on the checkpoint signaling mechanisms involved in cancer cells and how an emerging understanding of these pathways can provide new therapeutic opportunities for cancer therapy.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Samarendra K Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark J O'Connor
- Discovery Centre, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Andrew Koff
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York
| | - Garima Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karen Carmelina Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael B Yaffe
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Broad Institute, Massachusetts Institute of Technology, Cambridge, Boston, Massachusetts
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Chun JW, Shon HW, Gong JE, Lee MR, Lee YS, Kim SJ, Kang S, Kim S, Lee KY, Woo SM, Cho IR, Paik WH, Lee WJ, Kong SY, Ryu JK, Kim YT, Lee SH, Kim YH. ATR inhibition promotes synergistic antitumor effect in platinum-resistant pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167625. [PMID: 39689762 DOI: 10.1016/j.bbadis.2024.167625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Oxaliplatin is a commonly used platinum-based chemotherapy drug for patients with pancreatic cancer (PC). Drug resistance is a major challenge in PC treatment, underscoring the urgent need for new approaches. Targeting DNA damage repair, one of the factors responsible for platinum resistance, is an attractive strategy to overcome drug resistance. This study aimed to investigate the potential of the ATR inhibitor BAY 1895344 in improving the drug responsiveness of oxaliplatin-resistant PC. METHODS Oxaliplatin-resistant PC cells (CFPAC-1 and Capan-2) were selected and treated with oxaliplatin, BAY 1895344, or a combination of both in vivo and in vitro. Their combinatorial effects on the DNA damage response (DDR) signaling pathway, apoptosis, and extent of DNA damage were evaluated using appropriate methods. Patient response was predicted using organoid models. RESULTS Combination treatment with BAY 1895344 and oxaliplatin exhibited a synergistic effect on both PC cell lines, with the effect being more pronounced on Capan-2. Additionally, the combination treatment substantially suppressed phospho-Chk1, a coordinator of DDR and cell cycle checkpoints. Mechanistically, ATR inhibition augmented the DNA damage induced by oxaliplatin, leading to mitotic catastrophe and cell death. Furthermore, in an in vivo study using a tumor-bearing xenograft mouse model, the combination treatment markedly reduced tumor growth. This synergistic effect was confirmed in patient-derived organoids with poor response to oxaliplatin. CONCLUSION ATR inhibition enhanced the anticancer effect of oxaliplatin, suggesting that this combination treatment could be an effective therapeutic strategy for overcoming platinum resistance in PC.
Collapse
Affiliation(s)
- Jung Won Chun
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea; Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea; Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Hye Won Shon
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Jeong Eun Gong
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Mi Rim Lee
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Yu-Sun Lee
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Sung Joon Kim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Sumin Kang
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea; Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Sunshin Kim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Kyung Yong Lee
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea; Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Sang Myung Woo
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea; Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea; Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - In Rae Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Woo Hyun Paik
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Woo Jin Lee
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea; Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Sun-Young Kong
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea; Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea
| | - Ji Kon Ryu
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Yong-Tae Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Yun-Hee Kim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea; Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea.
| |
Collapse
|
9
|
Bruciamacchie M, Garambois V, Vie N, Bessede T, Michaud HA, Chepeaux LA, Gros L, Bonnefoy N, Robin M, Brager D, Bigot K, Evrard A, Pourquier P, Colinge J, Mathonnet M, Belhabib I, Jean C, Bousquet C, Colombo PE, Jarlier M, Tosi D, Gongora C, Larbouret C. ATR inhibition potentiates FOLFIRINOX cytotoxic effect in models of pancreatic ductal adenocarcinoma by remodelling the tumour microenvironment. Br J Cancer 2025; 132:222-235. [PMID: 39613844 PMCID: PMC11746931 DOI: 10.1038/s41416-024-02904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND In pancreatic ductal adenocarcinoma (PDAC), the dense stroma rich in cancer-associated fibroblasts (CAFs) and the immunosuppressive microenvironment confer resistance to treatments. To overcome such resistance, we tested the combination of FOLFIRINOX (DNA damage-inducing chemotherapy drugs) with VE-822 (an ataxia-telangiectasia and RAD3-related inhibitor that targets DNA damage repair). METHODS PDAC spheroid models and organoids were used to assess the combination effects. Tumour growth and the immune and fibrotic microenvironment were evaluated by immunohistochemistry, single-cell analysis and spatial proteomics in patient-derived xenograft (PDX) and orthotopic immunocompetent KPC mouse models. RESULTS The FOLFIRINOX and VE-822 combination had a strong synergistic effect in several PDAC cell lines, whatever their BRCA1, BRCA2 and ATM mutation status and resistance to standard chemotherapy agents. This was associated with high DNA damage and inhibition of DNA repair signalling pathways, leading to increased apoptosis. In immunocompetent and PDX mouse models of PDAC, the combination inhibited tumour growth more effectively than FOLFIRINOX alone. This was associated with tumour microenvironment remodelling, particularly decreased proportion of fibroblast activated protein-positive CAFs and increased anti-tumorigenic immune cell infiltration and interaction. CONCLUSION The FOLFIRINOX and VE-822 combination is a promising strategy to improve FOLFIRINOX efficacy and overcome drug resistance in PDAC.
Collapse
Affiliation(s)
| | | | - Nadia Vie
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Thomas Bessede
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | | | | | - Laurent Gros
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | | | - Mathilde Robin
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Dorian Brager
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Kevin Bigot
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Alexandre Evrard
- IRCM, Univ Montpellier, Inserm, ICM, CHU Nimes, Montpellier, France
| | | | | | | | - Ismahane Belhabib
- Université Toulouse III-Paul Sabatier-Centre de Recherche en Cancérologie de Toulouse (CRCT)-UMR1037 Inserm- UMR 5071 CNRS, Toulouse, France
| | - Christine Jean
- Université Toulouse III-Paul Sabatier-Centre de Recherche en Cancérologie de Toulouse (CRCT)-UMR1037 Inserm- UMR 5071 CNRS, Toulouse, France
| | - Corinne Bousquet
- Université Toulouse III-Paul Sabatier-Centre de Recherche en Cancérologie de Toulouse (CRCT)-UMR1037 Inserm- UMR 5071 CNRS, Toulouse, France
| | | | - Marta Jarlier
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Diégo Tosi
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Céline Gongora
- IRCM, Univ Montpellier, Inserm, ICM, CNRS, Montpellier, France
| | | |
Collapse
|
10
|
Yang X, Weng K, Xing P, Chen J, Hao H, Liu T, Song T, Qiao X, Hou Y, Chen J, Ran Y, Song L, Chen B, Yang H, Wang Z, Di J, Jiang B, Su X. WFDC3 sensitizes colorectal cancer to chemotherapy by regulating ATM/ATR kinase signaling pathway. FASEB J 2025; 39:e70329. [PMID: 39853769 DOI: 10.1096/fj.202402472r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
Chemoresistance is an ongoing challenge for colorectal cancer (CRC) that significantly compromises the anti-tumor efficacy of current drugs. Identifying effective targets or drugs for overcoming chemoresistance is urgently needed. Our previous study showed that WFDC3 served as a tumor suppressor that hindered CRC metastasis. However, the function of WFDC3 in chemotherapy remains unknown. Here, we found that high WFDC3 expression in CRC patients treated with oxaliplatin was associated with a better prognosis. Concordantly, overexpression of WFDC3 significantly increased sensitivity to oxaliplatin in CRC cells, whereas knocking down WFDC3 led to oxaliplatin resistance. In addition, WFDC3 promoted oxaliplatin-mediated suppression of tumor growth in vivo. Subsequently, we found that WFDC3 could enhance oxaliplatin-induced DNA damage through inhibiting ATM/ATR signaling. WFDC3 knockdown showed the opposite effects. Moreover, a combination treatment of oxaliplatin and inhibitors for ATM or ATR partially reversed chemoresistance to oxaliplatin in CRC cells with low WFDC3 expression. Our results demonstrate that WFDC3 is possibly a biomarker for increasing oxaliplatin sensitivity in CRC by modulating ATM/ATR kinase signaling. Thus, a combination of oxaliplatin with an ATM or ATR inhibitor is a potential treatment option for improving CRC outcome.
Collapse
Affiliation(s)
- Xinying Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Kai Weng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Pu Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiangbo Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hao Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tianqi Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tongkun Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaowen Qiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yifan Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Chen
- Peking University Health Science Center, Beijing, China
| | - Yumeng Ran
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bo Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hong Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital (Inner Mongolia Campus), Hohhot, China
| | - Zaozao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiabo Di
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Beihai Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangqian Su
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
11
|
Wang R, Liu Y, Liu M, Zhang M, Li C, Xu S, Tang S, Ma Y, Wu X, Fei W. Combating tumor PARP inhibitor resistance: Combination treatments, nanotechnology, and other potential strategies. Int J Pharm 2025; 669:125028. [PMID: 39638266 DOI: 10.1016/j.ijpharm.2024.125028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
PARP (poly (ADP-ribose) polymerase) inhibitors (PARPi) have demonstrated significant potential in cancer treatment, particularly in tumors with breast cancer susceptibility gene (BRCA) mutations and other DNA repair deficiencies. However, the development of resistance to PARPi has become a major challenge in their clinical application. The emergence of drug resistance leads to reduced efficacy of the PARPi over time, impacting long-term treatment outcomes and survival rates. PARPi resistance in tumors often arises as cells activate alternative DNA repair pathways or evade the effect of PARPi, diminishing therapeutic effectiveness. Consequently, overcoming resistance is crucial for maintaining treatment efficacy and improving patient prognosis. This paper reviews the strategies to overcome PARPi resistance through combination treatment and nanotechnology therapy. We first review the current combination therapies with PARPi, including anti-angiogenic therapies, radiotherapies, immunotherapies, and chemotherapies, and elucidate their mechanisms for overcoming PARPi resistance. Additionally, this paper focuses on the application of nanotechnology in improving the effectiveness of PARPi and overcoming drug resistance. Subsequently, this paper presents several promising strategies to tackle PARPi resistance, including but not limited to: structural modifications of PARPi, deployment of gene editing systems, implementation of "membrane lipid therapy," and modulation of cellular metabolism in tumors. By integrating these strategies, this research will provide comprehensive approaches to overcome the resistance of PARPi in cancer treatment and offer guidance for future research and clinical practice.
Collapse
Affiliation(s)
- Rong Wang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Mingqi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Meng Zhang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chaoqun Li
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shanshan Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Sangsang Tang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yidan Ma
- YiPeng Subdistrict Community Healthcare Center, Hangzhou 311225, China
| | - Xiaodong Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
12
|
Lin SF, Hsueh C, Chen WY, Chou TC, Wong RJ. Targeting Ataxia Telangiectasia-Mutated and Rad3-Related for Anaplastic Thyroid Cancer. Cancers (Basel) 2025; 17:359. [PMID: 39941729 PMCID: PMC11816221 DOI: 10.3390/cancers17030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies and has a poor prognosis. Ataxia telangiectasia mutated and Rad3 related (ATR) is a key regulator for the DNA damage response and a potential target to treat cancer. METHODS We assessed the efficacy of BAY 1895344, an ATR inhibitor, in three ATC cell lines. RESULTS BAY 1895344 caused dose-response cytotoxicity in three ATC cell lines. BAY 1895344 induced S-phase and G2-phase arrest, activated caspase-3 activity and induced apoptosis in ATC cells. BAY 1895344 meaningfully retarded the tumor growth of an ATC xenograft model. BAY 1895344 therapy, combined with dabrafenib and trametinib, had synergism in vitro and revealed robust tumor growth suppression in vivo in two xenograft models of ATC harboring mutant BRAFV600E. Furthermore, the combination of BAY 1895344 with lenvatinib was more effective than either agent alone in a xenograft model of ATC. CONCLUSIONS These results reveal that BAY 1895344 has potential in treating ATC.
Collapse
Affiliation(s)
- Shu-Fu Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City 23652, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Chuen Hsueh
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Pathology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Ting-Chao Chou
- Laboratory of Preclinical Pharmacology Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
13
|
Krishnamurthy A, Wang H, Rhee JC, Davar D, Moy RH, Ratner L, Christner SM, Holleran JL, Deppas J, Sclafani C, Schmitz JC, Gore S, Chu E, Bakkenist CJ, Beumer JH, Villaruz LC. Phase I trial of ATR inhibitor elimusertib with FOLFIRI in advanced or metastatic gastrointestinal malignancies (ETCTN 10406). Cancer Chemother Pharmacol 2025; 95:27. [PMID: 39841295 DOI: 10.1007/s00280-024-04745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND ATR is an apical DDR kinase activated at damaged replication forks. Elimusertib is an oral ATR inhibitor and potentiates irinotecan in human colorectal cancer models. METHODS To establish dose and tolerability of elimusertib with FOLFIRI, a Bayesian Optimal Interval trial design was pursued. Starting elimusertib dose was 20 mg BID days 1, 2, 15 and 16 every 28-day cycle, combined with irinotecan (150 mg/m2) and 5-FU (2000 mg/m2). RESULTS The trial was stopped after 10 accruals, with four DLT across 4 dose levels including grade 3 febrile neutropenia, mucositis, nausea, vomiting and grade 4 neutropenia. The most common grade 3/4 adverse events were neutropenia, leukopenia, lymphopenia and mucositis. Based on significant toxicities the trial was stopped. PK data for 5-FU and irinotecan were unremarkable and did not account for DLTs. Among the six response evaluable patients, four had stable disease as their best response. Median PFS was 7 months. A first case of ATRi chemotherapy combination related AML (t-AML) was observed. CONCLUSIONS The combination of elimusertib with FOLFIRI was associated with intolerable toxicity. Combination of ATR kinases with chemotherapies that target DNA replication may be associated with significant myelotoxicity. Ongoing ATRi trials should monitor for t-AML. CLINICALTRIALS GOV ID NCT04535401.
Collapse
Grants
- UM1CA186690 NCI, USA
- UM1CA186690 NCI, USA
- UM1CA186690 NCI, USA
- U24CA247643 NCI, USA
- U24CA247643 NCI, USA
- UM1CA186690 NCI, USA
- UM1CA186690 NCI, USA
- R01CA266172 NCI, USA
- U24CA247643 NCI, USA
- UM1CA186690 NCI, USA
Collapse
Affiliation(s)
- Anuradha Krishnamurthy
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Wang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - John C Rhee
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Diwakar Davar
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan H Moy
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lee Ratner
- Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Susan M Christner
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Julianne L Holleran
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Joshua Deppas
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Carina Sclafani
- Department of Radiation Oncology, School of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - John C Schmitz
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steve Gore
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Edward Chu
- Montefiore Einstein Cancer Canter, Bronx, NY, USA
| | - Christopher J Bakkenist
- Department of Radiation Oncology, School of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- University of Pittsburgh Cancer Institute, Hillman Research Pavilion, Room G27E, 5117 Centre Avenue, Pittsburgh, PA, 15213-1863, USA.
| | - Liza C Villaruz
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Drew Y, Zenke FT, Curtin NJ. DNA damage response inhibitors in cancer therapy: lessons from the past, current status and future implications. Nat Rev Drug Discov 2025; 24:19-39. [PMID: 39533099 DOI: 10.1038/s41573-024-01060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
The DNA damage response (DDR) is a network of proteins that coordinate DNA repair and cell-cycle checkpoints to prevent damage being transmitted to daughter cells. DDR defects lead to genomic instability, which enables tumour development, but they also create vulnerabilities that can be used for cancer therapy. Historically, this vulnerability has been taken advantage of using DNA-damaging cytotoxic drugs and radiotherapy, which are more toxic to tumour cells than to normal tissues. However, the discovery of the unique sensitivity of tumours defective in the homologous recombination DNA repair pathway to PARP inhibition led to the approval of six PARP inhibitors worldwide and to a focus on making use of DDR defects through the development of other DDR-targeting drugs. Here, we analyse the lessons learnt from PARP inhibitor development and how these may be applied to new targets to maximize success. We explore why, despite so much research, no other DDR inhibitor class has been approved, and only a handful have advanced to later-stage clinical trials. We discuss why more reliable predictive biomarkers are needed, explore study design from past and current trials, and suggest alternative models for monotherapy and combination studies. Targeting multiple DDR pathways simultaneously and potential combinations with anti-angiogenic agents or immune checkpoint inhibitors are also discussed.
Collapse
Affiliation(s)
- Yvette Drew
- BC Cancer Vancouver Centre and Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank T Zenke
- Research Unit Oncology, EMD Serono, Billerica, MA, USA
| | - Nicola J Curtin
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
15
|
Ngoi NYL, Gallo D, Torrado C, Nardo M, Durocher D, Yap TA. Synthetic lethal strategies for the development of cancer therapeutics. Nat Rev Clin Oncol 2025; 22:46-64. [PMID: 39627502 DOI: 10.1038/s41571-024-00966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Synthetic lethality is a genetic phenomenon whereby the simultaneous presence of two different genetic alterations impairs cellular viability. Importantly, targeting synthetic lethal interactions offers potential therapeutic strategies for cancers with alterations in pathways that might otherwise be considered undruggable. High-throughput screening methods based on modern CRISPR-Cas9 technologies have emerged and become crucial for identifying novel synthetic lethal interactions with the potential for translation into biologically rational cancer therapeutic strategies as well as associated predictive biomarkers of response capable of guiding patient selection. Spurred by the clinical success of PARP inhibitors in patients with BRCA-mutant cancers, novel agents targeting multiple synthetic lethal interactions within DNA damage response pathways are in clinical development, and rational strategies targeting synthetic lethal interactions spanning alterations in epigenetic, metabolic and proliferative pathways have also emerged and are in late preclinical and/or early clinical testing. In this Review, we provide a comprehensive overview of established and emerging technologies for synthetic lethal drug discovery and development and discuss promising therapeutic strategies targeting such interactions.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Gallo
- Repare Therapeutics, Inc., Montreal, Quebec, Canada
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Carroll CL, Johnson MG, Ding Y, Kang Z, Vijayan RSK, Bardenhagen JP, Fang C, Lapointe D, Li M, Liu CY, Lv X, Ma X, Pang J, Shepard HE, Suarez C, Yau AJ, Williams CC, Wu Q, Heald RA, Robinson HMR, Smith GCM, Cross JB, Do MKG, Jiang Y, Lively S, Yap TA, Giuliani V, Heffernan T, Jones P, Di Francesco ME. Discovery of ART0380, a Potent and Selective ATR Kinase Inhibitor Undergoing Phase 2 Clinical Studies for the Treatment of Advanced or Metastatic Solid Cancers. J Med Chem 2024; 67:21890-21904. [PMID: 39630604 DOI: 10.1021/acs.jmedchem.4c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
One of the hallmarks of cancer is high levels of DNA replication stress and defects in the DNA damage response (DDR) pathways, which are critical for maintaining genomic integrity. Ataxia telangiectasia and Rad3-related protein (ATR) is a key regulator of the DDR machinery and an attractive therapeutic target, with multiple ATR inhibitors holding significant promise in ongoing clinical studies. Herein, we describe the discovery and characterization of ART0380 (6), a potent and selective ATR inhibitor with a compelling in vitro and in vivo pharmacological profile currently undergoing Phase 2 clinical studies in patients with advanced or metastatic solid tumors as monotherapy and in combination with DNA-damaging agents (NCT04657068 and NCT05798611). ART0380 (6) has a favorable human PK profile suitable for both intermittent and continuous once-daily (QD) dosing, characterized by a dose-proportional increase in exposure and low variability.
Collapse
Affiliation(s)
- Christopher L Carroll
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Michael G Johnson
- ChemPartner Corporation, South San Francisco, California 94080, United States
| | | | - Zhijun Kang
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - R S K Vijayan
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jennifer P Bardenhagen
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Cheng Fang
- ChemPartner Corporation, Shanghai 201203, China
| | - David Lapointe
- ChemPartner Corporation, South San Francisco, California 94080, United States
| | - Meng Li
- ChemPartner Corporation, Shanghai 201203, China
| | - Chiu-Yi Liu
- Translational Research to AdvanCe Therapeutics and Innovation in Oncology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Xiaobing Lv
- ChemPartner Corporation, Shanghai 201203, China
| | - XiaoYan Ma
- Translational Research to AdvanCe Therapeutics and Innovation in Oncology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jihai Pang
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Hannah E Shepard
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Catalina Suarez
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Anne Ju Yau
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Christopher C Williams
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Qi Wu
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Robert A Heald
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge CB223FH, U.K
| | - Helen M R Robinson
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge CB223FH, U.K
| | - Graeme C M Smith
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge CB223FH, U.K
| | - Jason B Cross
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Mary K Geck Do
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Yongying Jiang
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Sarah Lively
- ChemPartner Corporation, South San Francisco, California 94080, United States
| | - Timothy A Yap
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Virginia Giuliani
- Translational Research to AdvanCe Therapeutics and Innovation in Oncology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Timothy Heffernan
- Translational Research to AdvanCe Therapeutics and Innovation in Oncology (TRACTION), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Philip Jones
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - M Emilia Di Francesco
- Institute for Applied Cancer Science (IACS), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
17
|
Ng V, Sinha S, Novaj A, Ma J, McDermott N, Pei X, Longhini ALF, Grimsley H, Gardner R, Rosen E, Powell SN, Pareja F, Mandelker D, Khan A, Setton J, Roulston A, Morris S, Koehler M, Lee N, Reis-Filho J, Riaz N. Genotype-Directed Synthetic Cytotoxicity of ATR Inhibition with Radiotherapy. Clin Cancer Res 2024; 30:5643-5656. [PMID: 39109923 DOI: 10.1158/1078-0432.ccr-24-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 07/03/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE The importance of the DNA damage response in mediating effects of radiotherapy (RT) has galvanized efforts to target this pathway with radiosensitizers. Yet early clinical trials of this approach have failed to yield a benefit in unselected populations. We hypothesized that ataxia-telangiectasia mutated (Atm)-null tumors would demonstrate genotype-specific synergy between RT and an inhibitor of the DNA damage response protein ataxia-telangiectasia and Rad3-related (ATR) kinase. EXPERIMENTAL DESIGN We investigated the synergistic potential of the ATR inhibitor (ATRi) RP-3500 and RT in two Atm-null and isogenic murine models, both in vitro and in vivo. Staining of γ-H2AX foci, characterization of the immune response via flow cytometry, and tumor rechallenge experiments were performed to elucidate the mechanism of interaction. To examine genotype specificity, we tested the interaction of ATRi and RT in a Brca1-null model. Finally, patients with advanced cancer with ATM alterations were enrolled in a phase I/II clinical trial to validate preclinical findings. RESULTS Synergy between RP-3500 and RT was confirmed in Atm-null lines in vitro, characterized by an accumulation of DNA double-strand breaks. In vivo, Atm-null tumor models had higher rates of durable control with RT and ATRi than controls. In contrast, there was no synergy in tumors lacking Brca1. Analysis of the immunologic response indicated that efficacy is largely mediated by cell-intrinsic mechanisms. Lastly, early results from our clinical trial showed complete responses in patients. CONCLUSIONS Genotype-directed radiosensitization with ATRi and RT can unleash significant therapeutic benefit and could represent a novel approach to develop more effective combinatorial synthetic cytotoxic RT-based treatments. See related commentary by Schrank and Colbert, p. 5505.
Collapse
Affiliation(s)
- Victor Ng
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sonali Sinha
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ardijana Novaj
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jennifer Ma
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Niamh McDermott
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xin Pei
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ana Leda F Longhini
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helen Grimsley
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rui Gardner
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ezra Rosen
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diana Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Atif Khan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeremy Setton
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
18
|
Henklewska M, Pawlak A, Obmińska-Mrukowicz B. Targeting ATR Kinase as a Strategy for Canine Lymphoma and Leukaemia Treatment. Vet Comp Oncol 2024; 22:602-612. [PMID: 39300906 DOI: 10.1111/vco.13014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Ataxia telangiectasia and Rad3-related (ATR) kinase is one of the main regulators of cell response to DNA damage and replication stress. Effectiveness of ATR targeting in human cancers has been confirmed in preclinical studies and ATR inhibitors are currently developed clinically in human oncology. In the presented study, we tested the anticancer efficacy of ATR inhibitor berzosertib in an in vitro model of canine haematopoietic cancers. Using MTT assay and flow cytometry, we assessed the cytotoxicity of berzosertib in four established canine lymphoma and leukaemia cell lines and compared it with its activity against noncancerous canine cells. Further, we estimated the level of apoptosis in berzosertib-treated cells via flow cytometry and assessed H2AX phosphorylation as a marker of DNA damage using western blot technique. In flow-cytometric analysis, we also evaluated potential synergism between berzosertib and chlorambucil and assessed the influence of berzosertib on cell cycle disturbances induced by the drug. The results demonstrated that berzosertib, even without additional DNA damaging agent, can be effective against canine lymphoma and leukaemia cells at concentrations that were harmless for noncancerous cells, although sensitivity of individual cancer cell lines varied greatly. Cell death occurred through caspase-dependent apoptosis via induction of DNA damage. Berzosertib also acted synergistically with chlorambucil, probably by preventing DNA damage repair as a consequence of S-phase arrest abrogation. In conclusion, ATR inhibition may provide a new therapeutic option for the treatment of canine lymphomas and leukaemias, but further studies are required to determine potential biomarkers of their susceptibility.
Collapse
Affiliation(s)
- Marta Henklewska
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
19
|
Hwang I, Lee S, Kim Y, Kim DG, Kang SY, Ahn S, Lee J, Kim KM. Association of ATM and ARID1A in gastric carcinoma. Pathol Res Pract 2024; 263:155664. [PMID: 39476606 DOI: 10.1016/j.prp.2024.155664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/10/2024]
Abstract
BACKGROUND The ataxia telangiectasia mutated (ATM) gene is involved in the repair of double-stranded DNA breaks and a component of the DNA damage repair pathway. Tumors with mutations or low expression of both ARID1A and ATM exhibit increased numbers of tumor-infiltrating lymphocytes and a favorable prognosis. However, the relationship between ATM and ARID1A in gastric carcinoma (GC) is unclear. METHODS We used the mRNA expression data from the Asian Cancer Research Group to construct tissue microarrays (N = 249). Next-generation sequencing (NGS) databases of Samsung Medical Center (SMC) (N = 813) were used to compare genetic alterations. Tissue microarrays were used for ATM and ARID1A immunohistochemistry, and expressions were categorized as "low" and "high." NGS data from TCGA-STAD (N = 431) were used as independent cohorts for genetic alterations validation. RESULTS In GCs, 32.1 % (80/249) of the cases showed low ATM protein expression (ATMlow) and 20.9 % (52/249) showed low ARID1A expression (ARID1Alow). ATMlow was significantly associated with older age (P <.01), gross type of tumor (P =.02), histology (P <. 01), lower incidence of perineural invasion (P =.04), lower disease stage (P <.01), microsatellite instability-high (P <.01), and ARID1Alow (P <.01). Furthermore, GCs in the SMC NGS database showed that ATM mutations were significantly correlated with ARID1A mutations (P <.01), and this finding remained significant in TCGA-STAD validation cohort (P <.01). CONCLUSION ATMlow in GCs shows a characteristic clinicopathological feature that correlates strongly with ARID1Alow. ATM mutation was also associated with ARID1A mutations, highlighting the interactions between ATM and ARID1A in GC and suggesting a potential therapeutic target.
Collapse
Affiliation(s)
- Inwoo Hwang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Somin Lee
- Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - Yuyeon Kim
- Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - Deok Geun Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeeyun Lee
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Rossetti GG, Dommann N, Karamichali A, Dionellis VS, Asensio Aldave A, Yarahmadov T, Rodriguez-Carballo E, Keogh A, Candinas D, Stroka D, Halazonetis TD. In vivo DNA replication dynamics unveil aging-dependent replication stress. Cell 2024; 187:6220-6234.e13. [PMID: 39293447 DOI: 10.1016/j.cell.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 03/16/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024]
Abstract
The genome duplication program is affected by multiple factors in vivo, including developmental cues, genotoxic stress, and aging. Here, we monitored DNA replication initiation dynamics in regenerating livers of young and old mice after partial hepatectomy to investigate the impact of aging. In young mice, the origin firing sites were well defined; the majority were located 10-50 kb upstream or downstream of expressed genes, and their position on the genome was conserved in human cells. Old mice displayed the same replication initiation sites, but origin firing was inefficient and accompanied by a replication stress response. Inhibitors of the ATR checkpoint kinase fully restored origin firing efficiency in the old mice but at the expense of an inflammatory response and without significantly enhancing the fraction of hepatocytes entering the cell cycle. These findings unveil aging-dependent replication stress and a crucial role of ATR in mitigating the stress-associated inflammation, a hallmark of aging.
Collapse
Affiliation(s)
- Giacomo G Rossetti
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland
| | - Noëlle Dommann
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Angeliki Karamichali
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland
| | - Vasilis S Dionellis
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland
| | - Ainhoa Asensio Aldave
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tural Yarahmadov
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Adrian Keogh
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Thanos D Halazonetis
- Department of Molecular and Cellular Biology, University of Geneva, Geneva 1205, Switzerland.
| |
Collapse
|
21
|
Popova LV, Garfinkle EAR, Chopyk DM, Navarro JB, Rivaldi A, Shu Y, Lomonosova E, Phay JE, Miller BS, Sattuwar S, Mullen M, Mardis ER, Miller KE, Dedhia PH. Single Nuclei Sequencing Reveals Intratumoral Cellular Heterogeneity and Replication Stress in Adrenocortical Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.30.615695. [PMID: 39554059 PMCID: PMC11565910 DOI: 10.1101/2024.09.30.615695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis and limited treatment options. Bulk genomic characterization of ACC has not yielded obvious therapeutic or immunotherapeutic targets, yet novel therapies are needed. We hypothesized that elucidating the intratumoral cellular heterogeneity by single nuclei RNA sequencing analyses would yield insights into potential therapeutic vulnerabilities of this disease. In addition to characterizing the immune cell and fibroblast landscape, our analyses of single nuclei gene expression profiles identified an adrenal cortex cell cluster exhibiting a program of replication stress and DNA damage response in primary and metastatic ACC. In vitro assessment of replication stress and DNA damage response using an ACC cell line and a series of newly-derived hormonally active patient-derived tumor organoids revealed ATR sensitivity. These findings provide novel mechanistic insight into ACC biology and suggest that an underlying dependency on ATR may be leveraged therapeutically in advanced ACC.
Collapse
|
22
|
Joo YK, Ramirez C, Kabeche L. A TRilogy of ATR's Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers (Basel) 2024; 16:3536. [PMID: 39456630 PMCID: PMC11506335 DOI: 10.3390/cancers16203536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Ataxia Telangiectasia and Rad3-related protein (ATR) is an apical kinase of the DNA Damage Response (DDR) pathway responsible for detecting and resolving damaged DNA. Because cancer cells depend heavily on the DNA damage checkpoint for their unchecked proliferation and propagation, ATR has gained enormous popularity as a cancer therapy target in recent decades. Yet, ATR inhibitors have not been the silver bullets as anticipated, with clinical trials demonstrating toxicity and mixed efficacy. To investigate whether the toxicity and mixed efficacy of ATR inhibitors arise from their off-target effects related to ATR's multiple roles within and outside the DDR pathway, we have analyzed recently published studies on ATR's non-canonical roles. Recent studies have elucidated that ATR plays a wide role throughout the cell cycle that is separate from its function in the DDR. This includes maintaining nuclear membrane integrity, detecting mechanical forces, and promoting faithful chromosome segregation during mitosis. In this review, we summarize the canonical, DDR-related roles of ATR and also focus on the non-canonical, multifaceted roles of ATR throughout the cell cycle and their clinical relevance. Through this summary, we also address the need for re-assessing clinical strategies targeting ATR as a cancer therapy based on these newly discovered roles for ATR.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Carlos Ramirez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
23
|
Rathi S, Mladek AC, Oh JH, Dragojevic S, Burgenske DM, Zhang W, Talele S, Zhang W, Bakken KK, Carlson BL, Connors MA, He L, Hu Z, Sarkaria JN, Elmquist WF. Factors Influencing the Central Nervous System (CNS) Distribution of the Ataxia Telangiectasia Mutated and Rad3-Related Inhibitor Elimusertib (BAY1895344): Implications for the Treatment of CNS Tumors. J Pharmacol Exp Ther 2024; 391:346-360. [PMID: 39284626 PMCID: PMC11493447 DOI: 10.1124/jpet.123.002002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 09/09/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is a disease of the whole brain, with infiltrative tumor cells protected by an intact blood-brain barrier (BBB). GBM has a poor prognosis despite aggressive treatment, in part due to the lack of adequate drug permeability at the BBB. Standard of care GBM therapies include radiation and cytotoxic chemotherapy that lead to DNA damage. Subsequent activation of DNA damage response (DDR) pathways can induce resistance. Various DDR inhibitors, targeting the key regulators of these pathways such as ataxia telangiectasia mutated and Rad3-related (ATR), are being explored as radio- and chemosensitizers. Elimusertib, a novel ATR kinase inhibitor, can prevent repair of damaged DNA, increasing efficacy of DNA-damaging cytotoxic therapies. Robust synergy was observed in vitro when elimusertib was combined with the DNA-damaging agent temozolomide; however, we did not observe improvement with this combination in in vivo efficacy studies in GBM orthotopic tumor-bearing mice. This in vitro-in vivo disconnect was explored to understand factors influencing central nervous system (CNS) distribution of elimusertib and reasons for lack of efficacy. We observed that elimusertib is rapidly cleared from systemic circulation in mice and would not maintain adequate exposure in the CNS for efficacious combination therapy with temozolomide. CNS distribution of elimusertib is partially limited by P-glycoprotein efflux at the BBB, and high binding to CNS tissues leads to low levels of pharmacologically active (unbound) drug in the brain. Acknowledging the potential for interspecies differences in pharmacokinetics, these data suggest that clinical translation of elimusertib in combination with temozolomide for treatment of GBM may be limited. SIGNIFICANCE STATEMENT: This study examined the disconnect between the in vitro synergy and in vivo efficacy of elimusertib/temozolomide combination therapy by exploring systemic and central nervous system (CNS) distributional pharmacokinetics. Results indicate that the lack of improvement in in vivo efficacy in glioblastoma (GBM) patient-derived xenograft (PDX) models could be attributed to inadequate exposure of pharmacologically active drug concentrations in the CNS. These observations can guide further exploration of elimusertib for the treatment of GBM or other CNS tumors.
Collapse
Affiliation(s)
- Sneha Rathi
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Ann C Mladek
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Sonja Dragojevic
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Danielle M Burgenske
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Wenqiu Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Katrina K Bakken
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Brett L Carlson
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Margaret A Connors
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Lihong He
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Zeng Hu
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - Jann N Sarkaria
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (S.R., J.-H.O., W.J.Z., S.T., W.Q.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (A.C.M., S.D., D.M.B., K.K.B., B.L.C., M.A.C., L.H., Z.H., J.N.S.)
| |
Collapse
|
24
|
Li J, Jia Z, Dong L, Cao H, Huang Y, Xu H, Xie Z, Jiang Y, Wang X, Liu J. DNA damage response in breast cancer and its significant role in guiding novel precise therapies. Biomark Res 2024; 12:111. [PMID: 39334297 PMCID: PMC11437670 DOI: 10.1186/s40364-024-00653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
DNA damage response (DDR) deficiency has been one of the emerging targets in treating breast cancer in recent years. On the one hand, DDR coordinates cell cycle and signal transduction, whose dysfunction may lead to cell apoptosis, genomic instability, and tumor development. Conversely, DDR deficiency is an intrinsic feature of tumors that underlies their response to treatments that inflict DNA damage. In this review, we systematically explore various mechanisms of DDR, the rationale and research advances in DDR-targeted drugs in breast cancer, and discuss the challenges in its clinical applications. Notably, poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated favorable efficacy and safety in breast cancer with high homogenous recombination deficiency (HRD) status in a series of clinical trials. Moreover, several studies on novel DDR-related molecules are actively exploring to target tumors that become resistant to PARP inhibition. Before further clinical application of new regimens or drugs, novel and standardized biomarkers are needed to develop for accurately characterizing the benefit population and predicting efficacy. Despite the promising efficacy of DDR-related treatments, challenges of off-target toxicity and drug resistance need to be addressed. Strategies to overcome drug resistance await further exploration on DDR mechanisms, and combined targeted drugs or immunotherapy will hopefully provide more precise or combined strategies and expand potential responsive populations.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heng Cao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yansong Huang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhixuan Xie
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yiwen Jiang
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
25
|
Qian J, Liao G, Chen M, Peng RW, Yan X, Du J, Huang R, Pan M, Lin Y, Gong X, Xu G, Zheng B, Chen C, Yang Z. Advancing cancer therapy: new frontiers in targeting DNA damage response. Front Pharmacol 2024; 15:1474337. [PMID: 39372203 PMCID: PMC11449873 DOI: 10.3389/fphar.2024.1474337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Genomic instability is a core characteristic of cancer, often stemming from defects in DNA damage response (DDR) or increased replication stress. DDR defects can lead to significant genetic alterations, including changes in gene copy numbers, gene rearrangements, and mutations, which accumulate over time and drive the clonal evolution of cancer cells. However, these vulnerabilities also present opportunities for targeted therapies that exploit DDR deficiencies, potentially improving treatment efficacy and patient outcomes. The development of PARP inhibitors like Olaparib has significantly improved the treatment of cancers with DDR defects (e.g., BRCA1 or BRCA2 mutations) based on synthetic lethality. This achievement has spurred further research into identifying additional therapeutic targets within the DDR pathway. Recent progress includes the development of inhibitors targeting other key DDR components such as DNA-PK, ATM, ATR, Chk1, Chk2, and Wee1 kinases. Current research is focused on optimizing these therapies by developing predictive biomarkers for treatment response, analyzing mechanisms of resistance (both intrinsic and acquired), and exploring the potential for combining DDR-targeted therapies with chemotherapy, radiotherapy, and immunotherapy. This article provides an overview of the latest advancements in targeted anti-tumor therapies based on DDR and their implications for future cancer treatment strategies.
Collapse
Affiliation(s)
- Jiekun Qian
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Guoliang Liao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Maohui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xin Yan
- Department of Cardiac Medical Center Nursing, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianting Du
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Renjie Huang
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Maojie Pan
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Yuxing Lin
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Xian Gong
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Guobing Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Bin Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Zhang Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| |
Collapse
|
26
|
Fontana E, Rosen E, Lee EK, Højgaard M, Mettu NB, Lheureux S, Carneiro BA, Cote GM, Carter L, Plummer R, Mahalingam D, Fretland AJ, Schonhoft JD, Silverman IM, Wainszelbaum M, Xu Y, Ulanet D, Koehler M, Yap TA. Ataxia telangiectasia and Rad3-related (ATR) inhibitor camonsertib dose optimization in patients with biomarker-selected advanced solid tumors (TRESR study). J Natl Cancer Inst 2024; 116:1439-1449. [PMID: 38710487 PMCID: PMC11378309 DOI: 10.1093/jnci/djae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Camonsertib is a selective oral inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase with demonstrated efficacy in tumors with DNA damage response gene deficiencies. On-target anemia is the main drug-related toxicity typically manifesting after the period of dose-limiting toxicity evaluation. Thus, dose and schedule optimization requires extended follow-up to assess prolonged treatment effects. METHODS Long-term safety, tolerability, and antitumor efficacy of 3 camonsertib monotherapy dosing regimens were assessed in the TRESR study dose-optimization phase: 160 mg once daily (QD) 3 days on, 4 days off (160 3/4; the preliminary recommended Phase II dose [RP2D]) and two step-down groups of 120 mg QD 3/4 (120 3/4) and 160 mg QD 3/4, 2 weeks on, 1 week off (160 3/4, 2/1w). Safety endpoints included incidence of treatment-related adverse events (TRAEs), dose modifications, and transfusions. Efficacy endpoints included overall response rate, clinical benefit rate, progression-free survival, and circulating tumor DNA (ctDNA)-based molecular response rate. RESULTS The analysis included 119 patients: 160 3/4 (n = 67), 120 3/4 (n = 25), and 160 3/4, 2/1w (n = 27) treated up to 117.1 weeks as of the data cutoff. The risk of developing grade 3 anemia was significantly lower in the 160 3/4, 2/1w group compared with the preliminary RP2D group (hazard ratio = 0.23, 2-sided P = .02), translating to reduced transfusion and dose reduction requirements. The intermittent weekly schedule did not compromise antitumor activity. CONCLUSION The 160 3/4, 2/1w dose was established as an optimized regimen for future camonsertib monotherapy studies offering a substantial reduction in the incidence of anemia without any compromise to efficacy. CLINICAL TRIAL ID NCT04497116.
Collapse
Affiliation(s)
| | - Ezra Rosen
- Early Drug Development and Breast Medicine Services, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth K Lee
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - Benedito A Carneiro
- Legorreta Cancer Center at Brown University and Lifespan Cancer Institute, Division of Hematology/Oncology, Department of Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | | - Louise Carter
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Ruth Plummer
- Sir Bobby Robson Cancer Trials Research Centre, Freeman Hospital, Newcastle upon Tyne, UK
| | - Devalingam Mahalingam
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | - Yi Xu
- Repare Therapeutics, Cambridge, MA, USA
| | | | | | - Timothy A Yap
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Elvebakken H, Venizelos A, Perren A, Couvelard A, Lothe IMB, Hjortland GO, Myklebust TÅ, Svensson J, Garresori H, Kersten C, Hofsli E, Detlefsen S, Vestermark LW, Knappskog S, Sorbye H. Treatment outcome according to genetic tumour alterations and clinical characteristics in digestive high-grade neuroendocrine neoplasms. Br J Cancer 2024; 131:676-684. [PMID: 38909137 PMCID: PMC11333587 DOI: 10.1038/s41416-024-02773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Chemotherapy has limited efficacy in advanced digestive high-grade neuroendocrine neoplasms (HG-NEN) and prognosis is dismal. Predictive markers for palliative chemotherapy are lacking, and prognostic markers are limited. METHODS Digestive HG-NEN patients (n = 229) were prospectively included 2013-2017. Pathological re-assessment revealed 188 neuroendocrine carcinomas (NEC) and 41 neuroendocrine tumours (NET G3). Tumour-DNA was sequenced across 360 cancer-related genes, assessing mutations (mut) and copy number alterations. We linked sequencing results to clinical information and explored potential markers for first-line chemotherapy efficacy and survival. RESULTS In NEC given cis/carboplatin and etoposide (PE), TP53mut predicted inferior response rate in multivariate analyses (p = 0.009) and no BRAFmut NEC showed response. In overall assessment of PE-treated NEC, no genetic alterations were prognostic for OS. For small-cell NEC, TP53mut were associated with longer OS (p = 0.011) and RB1 deletions predicted lack of immediate-progression (p = 0.003). In non-small cell NEC, APC mut were associated with immediate-progression and shorter PFS (p = 0.008/p = 0.004). For NET G3, ATRXmut, ARID1A- and ERS1 deletions were associated with shorter PFS. CONCLUSION Correlations between genetic alterations and response/immediate-progression to PE were frequent in NEC but affected PFS or OS only when subdividing for cell-type. The classification of digestive NEC into large- and small-cell seems therefore molecularly and clinically relevant.
Collapse
Affiliation(s)
- Hege Elvebakken
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Oncology, Ålesund Hospital, Møre and Romsdal Hospital Trust, Ålesund, Norway.
| | - Andreas Venizelos
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Aurel Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Anne Couvelard
- Department of Pathology, Université Paris Cité and AP-HP, Bichat Hospital, Paris, France
| | | | | | - Tor Å Myklebust
- Department of Research and Innovation, Møre and Romsdal Hospital Trust, Ålesund, Norway
- Department of Registration, Cancer Registry Norway, Oslo, Norway
| | - Johanna Svensson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Herish Garresori
- Department of Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Christian Kersten
- Department of Research, Hospital of Southern Norway, Kristiansand, Norway
| | - Eva Hofsli
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Oncology, St.Olavs Hospital, Trondheim, Norway
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Stian Knappskog
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Halfdan Sorbye
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
28
|
Lee J, Kida K, Koh J, Liu H, Manyam GC, Gi YJ, Rampa DR, Multani AS, Wang J, Jayachandran G, Lee DW, Reuben JM, Sahin A, Huo L, Tripathy D, Im SA, Ueno NT. The DNA repair pathway as a therapeutic target to synergize with trastuzumab deruxtecan in HER2-targeted antibody-drug conjugate-resistant HER2-overexpressing breast cancer. J Exp Clin Cancer Res 2024; 43:236. [PMID: 39164784 PMCID: PMC11337831 DOI: 10.1186/s13046-024-03143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/30/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Anti-HER2 therapies, including the HER2 antibody-drug conjugates (ADCs) trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd), have led to improved survival outcomes in patients with HER2-overexpressing (HER2+) metastatic breast cancer. However, intrinsic or acquired resistance to anti-HER2-based therapies remains a clinical challenge in these patients, as there is no standard of care following disease progression. The purpose of this study was to elucidate the mechanisms of resistance to T-DM1 and T-DXd in HER2+ BC patients and preclinical models and identify targets whose inhibition enhances the antitumor activity of T-DXd in HER2-directed ADC-resistant HER2+ breast cancer in vitro and in vivo. METHODS Targeted DNA and whole transcriptome sequencing were performed in breast cancer patient tissue samples to investigate genetic aberrations that arose after anti-HER2 therapy. We generated T-DM1 and T-DXd-resistant HER2+ breast cancer cell lines. To elucidate their resistance mechanisms and to identify potential synergistic kinase targets for enhancing the efficacy of T-DXd, we used fluorescence in situ hybridization, droplet digital PCR, Western blotting, whole-genome sequencing, cDNA microarray, and synthetic lethal kinome RNA interference screening. In addition, cell viability, colony formation, and xenograft assays were used to determine the synergistic antitumor effect of T-DXd combinations. RESULTS We found reduced HER2 expression in patients and amplified DNA repair-related genes in patients after anti-HER2 therapy. Reduced ERBB2 gene amplification in HER2-directed ADC-resistant HER2+ breast cancer cell lines was through DNA damage and epigenetic mechanisms. In HER2-directed ADC-resistant HER2+ breast cancer cell lines, our non-biased RNA interference screening identified the DNA repair pathway as a potential target within the canonical pathways to enhance the efficacy of T-DXd. We validated that the combination of T-DXd with ataxia telangiectasia and Rad3-related inhibitor, elimusertib, led to significant breast cancer cell death in vitro (P < 0.01) and in vivo (P < 0.01) compared to single agents. CONCLUSIONS The DNA repair pathways contribute to HER2-directed ADC resistance. Our data justify exploring the combination treatment of T-DXd with DNA repair-targeting drugs to treat HER2-directed ADC-resistant HER2+ breast cancer in clinical trials.
Collapse
Affiliation(s)
- Jangsoon Lee
- Section of Translational Breast Cancer Research and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Biology and Therapeutics, University of Hawai'I Cancer Center, 701 Ilalo Street, Room 622, Honolulu, HI, 96813, USA.
- Present address: Cancer Biology Program, University of Hawai'I Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| | - Kumiko Kida
- Section of Translational Breast Cancer Research and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Present address: Department of Breast Surgical Oncology, St. Luke's International Hospital, 9-1, Akashicho, Chuouku, Tokyo, 104-8560, Japan
| | - Jiwon Koh
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Huey Liu
- Section of Translational Breast Cancer Research and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Young Jin Gi
- Section of Translational Breast Cancer Research and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology and Therapeutics, University of Hawai'I Cancer Center, 701 Ilalo Street, Room 622, Honolulu, HI, 96813, USA
| | - Dileep R Rampa
- Cancer Biology and Therapeutics, University of Hawai'I Cancer Center, 701 Ilalo Street, Room 622, Honolulu, HI, 96813, USA
| | - Asha S Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gitanjali Jayachandran
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dae-Won Lee
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro Jongro-Gu, Seoul, 03080, Republic of Korea
| | - James M Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Section of Translational Breast Cancer Research and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro Jongro-Gu, Seoul, 03080, Republic of Korea.
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Biology and Therapeutics, University of Hawai'I Cancer Center, 701 Ilalo Street, Room 622, Honolulu, HI, 96813, USA.
| |
Collapse
|
29
|
Jadav R, Weiland F, Noordermeer SM, Carroll T, Gao Y, Wang J, Zhou H, Lamoliatte F, Toth R, Macartney T, Brown F, Hastie CJ, Alabert C, van Attikum H, Zenke F, Masson JY, Rouse J. Chemo-Phosphoproteomic Profiling with ATR Inhibitors Berzosertib and Gartisertib Uncovers New Biomarkers and DNA Damage Response Regulators. Mol Cell Proteomics 2024; 23:100802. [PMID: 38880245 PMCID: PMC11338954 DOI: 10.1016/j.mcpro.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
The ATR kinase protects cells against DNA damage and replication stress and represents a promising anti-cancer drug target. The ATR inhibitors (ATRi) berzosertib and gartisertib are both in clinical trials for the treatment of advanced solid tumors as monotherapy or in combination with genotoxic agents. We carried out quantitative phospho-proteomic screening for ATR biomarkers that are highly sensitive to berzosertib and gartisertib, using an optimized mass spectrometry pipeline. Screening identified a range of novel ATR-dependent phosphorylation events, which were grouped into three broad classes: (i) targets whose phosphorylation is highly sensitive to ATRi and which could be the next generation of ATR biomarkers; (ii) proteins with known genome maintenance roles not previously known to be regulated by ATR; (iii) novel targets whose cellular roles are unclear. Class iii targets represent candidate DNA damage response proteins and, with this in mind, proteins in this class were subjected to secondary screening for recruitment to DNA damage sites. We show that one of the proteins recruited, SCAF1, interacts with RNAPII in a phospho-dependent manner and recruitment requires PARP activity and interaction with RNAPII. We also show that SCAF1 deficiency partly rescues RAD51 loading in cells lacking the BRCA1 tumor suppressor. Taken together these data reveal potential new ATR biomarkers and new genome maintenance factors.
Collapse
Affiliation(s)
- Rathan Jadav
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Florian Weiland
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Sylvie M Noordermeer
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands; Department of Genetics, Oncode Institute, Utrecht, The Netherlands
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Yuandi Gao
- CHU de Quebec Research Center, Oncology Division, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec Cit, Quebec, Canada
| | - Jianming Wang
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Fiona Brown
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - C James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Constance Alabert
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Zenke
- EMD Serono, Research Unit Oncology, Billerica, Massachusetts, USA
| | - Jean-Yves Masson
- CHU de Quebec Research Center, Oncology Division, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec Cit, Quebec, Canada
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK.
| |
Collapse
|
30
|
Previtali V, Bagnolini G, Ciamarone A, Ferrandi G, Rinaldi F, Myers SH, Roberti M, Cavalli A. New Horizons of Synthetic Lethality in Cancer: Current Development and Future Perspectives. J Med Chem 2024; 67:11488-11521. [PMID: 38955347 DOI: 10.1021/acs.jmedchem.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In recent years, synthetic lethality has been recognized as a solid paradigm for anticancer therapies. The discovery of a growing number of synthetic lethal targets has led to a significant expansion in the use of synthetic lethality, far beyond poly(ADP-ribose) polymerase inhibitors used to treat BRCA1/2-defective tumors. In particular, molecular targets within DNA damage response have provided a source of inhibitors that have rapidly reached clinical trials. This Perspective focuses on the most recent progress in synthetic lethal targets and their inhibitors, within and beyond the DNA damage response, describing their design and associated therapeutic strategies. We will conclude by discussing the current challenges and new opportunities for this promising field of research, to stimulate discussion in the medicinal chemistry community, allowing the investigation of synthetic lethality to reach its full potential.
Collapse
Affiliation(s)
- Viola Previtali
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Ciamarone
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Giovanni Ferrandi
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Francesco Rinaldi
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Samuel Harry Myers
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
31
|
Hofstad M, Woods A, Parra K, Sychev ZE, Mazzagatti A, Yu L, Gilbreath C, Ly P, Drake JM, Kittler R. Dual inhibition of ATR and DNA-PKcs radiosensitizes ATM-mutant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602941. [PMID: 39026771 PMCID: PMC11257504 DOI: 10.1101/2024.07.10.602941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In advanced castration resistant prostate cancer (CRPC), mutations in the DNA damage response (DDR) gene ataxia telangiectasia mutated ( ATM ) are common. While poly(ADP-ribose) polymerase inhibitors are approved in this context, their clinical efficacy remains limited. Thus, there is a compelling need to identify alternative therapeutic avenues for ATM mutant prostate cancer patients. Here, we generated matched ATM-proficient and ATM-deficient CRPC lines to elucidate the impact of ATM loss on DDR in response to DNA damage via irradiation. Through unbiased phosphoproteomic screening, we unveiled that ATM-deficient CRPC lines maintain dependence on downstream ATM targets through activation of ATR and DNA-PKcs kinases. Dual inhibition of ATR and DNA-PKcs effectively inhibited downstream γH2AX foci formation in response to irradiation and radiosensitized ATM-deficient lines to a greater extent than either ATM-proficient controls or single drug treatment. Further, dual inhibition abrogated residual downstream ATM pathway signaling and impaired replication fork dynamics. To circumvent potential toxicity, we leveraged the RUVBL1/2 ATPase inhibitor Compound B, which leads to the degradation of both ATR and DNA-PKcs kinases. Compound B effectively radiosensitized ATM-deficient CRPC in vitro and in vivo , and impacted replication fork dynamics. Overall, dual targeting of both ATR and DNA-PKcs is necessary to block DDR in ATM-deficient CRPC, and Compound B could be utilized as a novel therapy in combination with irradiation in these patients.
Collapse
|
32
|
Jo U, Arakawa Y, Zimmermann A, Taniyama D, Mizunuma M, Jenkins LM, Maity T, Kumar S, Zenke FT, Takebe N, Pommier Y. The Novel ATR Inhibitor M1774 Induces Replication Protein Overexpression and Broad Synergy with DNA-targeted Anticancer Drugs. Mol Cancer Ther 2024; 23:911-923. [PMID: 38466804 PMCID: PMC11555614 DOI: 10.1158/1535-7163.mct-23-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/09/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase inhibitors are in clinical trials. Here we explored the molecular pharmacology and therapeutic combination strategies of the oral ATR inhibitor M1774 (Tuvusertib) with DNA-damaging agents (DDA). As single agent, M1774 suppressed cancer cell viability at nanomolar concentrations, showing greater activity than ceralasertib and berzosertib, but less potency than gartisertib and elimusertib in the small cell lung cancer H146, H82, and DMS114 cell lines. M1774 also efficiently blocked the activation of the ATR-CHK1 checkpoint pathway caused by replication stress induced by TOP1 inhibitors. Combination with non-toxic dose of M1774 enhanced TOP1 inhibitor-induced cancer cell death by enabling unscheduled replication upon replicative damage, thereby increasing genome instability. Tandem mass tag-based quantitative proteomics uncovered that M1774, in the presence of DDA, forces the expression of proteins activating replication (CDC45) and G2-M progression (PLK1 and CCNB1). In particular, the fork protection complex proteins (TIMELESS and TIPIN) were enriched. Low dose of M1774 was found highly synergistic with a broad spectrum of clinical DDAs including TOP1 inhibitors (SN-38/irinotecan, topotecan, exatecan, and exatecan), the TOP2 inhibitor etoposide, cisplatin, the RNA polymerase II inhibitor lurbinectedin, and the PARP inhibitor talazoparib in various models including cancer cell lines, patient-derived organoids, and mouse xenograft models. Furthermore, we demonstrate that M1774 reverses chemoresistance to anticancer DDAs in cancer cells lacking SLFN11 expression, suggesting that SLFN11 can be utilized for patient selection in upcoming clinical trials.
Collapse
Affiliation(s)
- Ukhyun Jo
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yasuhiro Arakawa
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Daiki Taniyama
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Makito Mizunuma
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tapan Maity
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Naoko Takebe
- Developmental Therapeutics Branch and Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Lead contact
| |
Collapse
|
33
|
Zhu X, Li Y, Liu H, Wang Y, Sun R, Jiang Z, Hou C, Hou X, Huang S, Zhang H, Wang H, Jiang B, Yang X, Xu B, Fan G. NAMPT-targeting PROTAC and nicotinic acid co-administration elicit safe and robust anti-tumor efficacy in NAPRT-deficient pan-cancers. Cell Chem Biol 2024; 31:1203-1218.e17. [PMID: 38906111 DOI: 10.1016/j.chembiol.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/23/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the biosynthesis of nicotinamide adenine dinucleotide (NAD+), making it a potential target for cancer therapy. Two challenges hinder its translation in the clinic: targeting the extracellular form of NAMPT (eNAMPT) remains insufficient, and side effects are observed in normal tissues. We previously utilized proteolysis-targeting chimera (PROTAC) to develop two compounds capable of simultaneously degrading iNAMPT and eNAMPT. Unfortunately, the pharmacokinetic properties were inadequate, and toxicities similar to those associated with traditional inhibitors arose. We have developed a next-generation PROTAC molecule 632005 to address these challenges, demonstrating exceptional target selectivity and bioavailability, improved in vivo exposure, extended half-life, and reduced clearance rate. When combined with nicotinic acid, 632005 exhibits safety and robust efficacy in treating NAPRT-deficient pan-cancers, including xenograft models with hematologic malignancy and prostate cancer and patient-derived xenograft (PDX) models with liver cancer. Our findings provide clinical references for patient selection and treatment strategies involving NAMPT-targeting PROTACs.
Collapse
Affiliation(s)
- Xiaotong Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ye Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haixia Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuetong Wang
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Renhong Sun
- Gluetacs Therapeutics (Shanghai) Co, Ltd, Building 20, Lane 218, Haiji Road 6, Pudong District, Shanghai 201306, China
| | - Zhenzhou Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chun Hou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xianyu Hou
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Suming Huang
- The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Huijuan Zhang
- The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Biao Jiang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaobao Yang
- Gluetacs Therapeutics (Shanghai) Co, Ltd, Building 20, Lane 218, Haiji Road 6, Pudong District, Shanghai 201306, China.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| |
Collapse
|
34
|
Stiegeler N, Garsed DW, Au-Yeung G, Bowtell DDL, Heinzelmann-Schwarz V, Zwimpfer TA. Homologous recombination proficient subtypes of high-grade serous ovarian cancer: treatment options for a poor prognosis group. Front Oncol 2024; 14:1387281. [PMID: 38894867 PMCID: PMC11183307 DOI: 10.3389/fonc.2024.1387281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Approximately 50% of tubo-ovarian high-grade serous carcinomas (HGSCs) have functional homologous recombination-mediated (HR) DNA repair, so-called HR-proficient tumors, which are often associated with primary platinum resistance (relapse within six months after completion of first-line therapy), minimal benefit from poly(ADP-ribose) polymerase (PARP) inhibitors, and shorter survival. HR-proficient tumors comprise multiple molecular subtypes including cases with CCNE1 amplification, AKT2 amplification or CDK12 alteration, and are often characterized as "cold" tumors with fewer infiltrating lymphocytes and decreased expression of PD-1/PD-L1. Several new treatment approaches aim to manipulate these negative prognostic features and render HR-proficient tumors more susceptible to treatment. Alterations in multiple different molecules and pathways in the DNA damage response are driving new drug development to target HR-proficient cancer cells, such as inhibitors of the CDK or P13K/AKT pathways, as well as ATR inhibitors. Treatment combinations with chemotherapy or PARP inhibitors and agents targeting DNA replication stress have shown promising preclinical and clinical results. New approaches in immunotherapy are also being explored, including vaccines or antibody drug conjugates. Many approaches are still in the early stages of development and further clinical trials will determine their clinical relevance. There is a need to include HR-proficient tumors in ovarian cancer trials and to analyze them in a more targeted manner to provide further evidence for their specific therapy, as this will be crucial in improving the overall prognosis of HGSC and ovarian cancer in general.
Collapse
Affiliation(s)
| | - Dale W. Garsed
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - George Au-Yeung
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - David D. L. Bowtell
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Tibor A. Zwimpfer
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Gynecological Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
35
|
Wang S, Qi Y, Zhao R, Pan Z, Li B, Qiu W, Zhao S, Guo X, Ni S, Li G, Xue H. Copy number gain of FAM131B-AS2 promotes the progression of glioblastoma by mitigating replication stress. Neuro Oncol 2024; 26:1027-1041. [PMID: 38285005 PMCID: PMC11145449 DOI: 10.1093/neuonc/noae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is characterized by chromosome 7 copy number gains, notably 7q34, potentially contributing to therapeutic resistance, yet the underlying oncogenes have not been fully characterized. Pertinently, the significance of long noncoding RNAs (lncRNAs) in this context has gained attention, necessitating further exploration. METHODS FAM131B-AS2 was quantified in GBM samples and cells using qPCR. Overexpression and knockdown of FAM131B-AS2 in GBM cells were used to study its functions in vivo and in vitro. The mechanisms of FAM131B-AS2 were studied using RNA-seq, qPCR, Western blotting, RNA pull-down, coimmunoprecipitation assays, and mass spectrometry analysis. The phenotypic changes that resulted from FAM131B-AS2 variation were evaluated through CCK8 assay, EdU assay, comet assay, and immunofluorescence. RESULTS Our analysis of 149 primary GBM patients identified FAM131B-AS2, a lncRNA located in the 7q34 region, whose upregulation predicts poor survival. Mechanistically, FAM131B-AS2 is a crucial regulator of the replication stress response, stabilizing replication protein A1 through recruitment of ubiquitin-specific peptidase 7 and activating the ataxia telangiectasia and rad3-related protein kinase pathway to protect single-stranded DNA from breakage. Furthermore, FAM131B-AS2 overexpression inhibited CD8+ T-cell infiltration, while FAM131B-AS2 inhibition activated the cGAS-STING pathway, increasing lymphocyte infiltration and improving the response to immune checkpoint inhibitors. CONCLUSIONS FAM131B-AS2 emerges as a promising indicator for adjuvant therapy response and could also be a viable candidate for combined immunotherapies against GBMs.
Collapse
Affiliation(s)
- Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Ziwen Pan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Shulin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Xiaofan Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Department of Neurology, Loma Linda University Health, Loma Linda, California, USA
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| |
Collapse
|
36
|
Murciano-Goroff YR, Uppal M, Chen M, Harada G, Schram AM. Basket Trials: Past, Present, and Future. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:59-80. [PMID: 38938274 PMCID: PMC11210107 DOI: 10.1146/annurev-cancerbio-061421-012927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Large-scale tumor molecular profiling has revealed that diverse cancer histologies are driven by common pathways with unifying biomarkers that can be exploited therapeutically. Disease-agnostic basket trials have been increasingly utilized to test biomarker-driven therapies across cancer types. These trials have led to drug approvals and improved the lives of patients while simultaneously advancing our understanding of cancer biology. This review focuses on the practicalities of implementing basket trials, with an emphasis on molecularly targeted trials. We examine the biologic subtleties of genomic biomarker and patient selection, discuss previous successes in drug development facilitated by basket trials, describe certain novel targets and drugs, and emphasize practical considerations for participant recruitment and study design. This review also highlights strategies for aiding patient access to basket trials. As basket trials become more common, steps to ensure equitable implementation of these studies will be critical for molecularly targeted drug development.
Collapse
Affiliation(s)
| | - Manik Uppal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Monica Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guilherme Harada
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alison M Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
37
|
Ng YB, Akincilar SC. Shaping DNA damage responses: Therapeutic potential of targeting telomeric proteins and DNA repair factors in cancer. Curr Opin Pharmacol 2024; 76:102460. [PMID: 38776747 DOI: 10.1016/j.coph.2024.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 05/25/2024]
Abstract
Shelterin proteins regulate genomic stability by preventing inappropriate DNA damage responses (DDRs) at telomeres. Unprotected telomeres lead to persistent DDR causing cell cycle inhibition, growth arrest, and apoptosis. Cancer cells rely on DDR to protect themselves from DNA lesions and exogenous DNA-damaging agents such as chemotherapy and radiotherapy. Therefore, targeting DDR machinery is a promising strategy to increase the sensitivity of cancer cells to existing cancer therapies. However, the success of these DDR inhibitors depends on other mutations, and over time, patients develop resistance to these therapies. This suggests the need for alternative approaches. One promising strategy is co-inhibiting shelterin proteins with DDR molecules, which would offset cellular fitness in DNA repair in a mutation-independent manner. This review highlights the associations and dependencies of the shelterin complex with the DDR proteins and discusses potential co-inhibition strategies that might improve the therapeutic potential of current inhibitors.
Collapse
Affiliation(s)
- Yu Bin Ng
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Semih Can Akincilar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore.
| |
Collapse
|
38
|
Yap TA, Tolcher AW, Plummer R, Mukker JK, Enderlin M, Hicking C, Grombacher T, Locatelli G, Szucs Z, Gounaris I, de Bono JS. First-in-Human Study of the Ataxia Telangiectasia and Rad3-Related (ATR) Inhibitor Tuvusertib (M1774) as Monotherapy in Patients with Solid Tumors. Clin Cancer Res 2024; 30:2057-2067. [PMID: 38407317 PMCID: PMC11094421 DOI: 10.1158/1078-0432.ccr-23-2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
PURPOSE Tuvusertib (M1774) is a potent, selective, orally administered ataxia telangiectasia and Rad3-related (ATR) protein kinase inhibitor. This first-in-human study (NCT04170153) evaluated safety, tolerability, maximum tolerated dose (MTD), recommended dose for expansion (RDE), pharmacokinetics (PK), pharmacodynamics (PD), and preliminary efficacy of tuvusertib monotherapy. PATIENTS AND METHODS Ascending tuvusertib doses were evaluated in 55 patients with metastatic or locally advanced unresectable solid tumors. A safety monitoring committee determined dose escalation based on PK, PD, and safety data guided by a Bayesian 2-parameter logistic regression model. Molecular responses (MR) were assessed in circulating tumor DNA samples. RESULTS Most common grade ≥3 treatment-emergent adverse events were anemia (36%), neutropenia, and lymphopenia (both 7%). Eleven patients experienced dose-limiting toxicities, most commonly grade 2 (n = 2) or 3 (n = 8) anemia. No persistent effects on blood immune cell populations were observed. The RDE was 180 mg tuvusertib QD (once daily), 2 weeks on/1 week off treatment, which was better tolerated than the MTD (180 mg QD continuously). Tuvusertib median time to peak plasma concentration ranged from 0.5 to 3.5 hours and mean elimination half-life from 1.2 to 5.6 hours. Exposure-related PD analysis suggested maximum target engagement at ≥130 mg tuvusertib QD. Tuvusertib induced frequent MRs in the predicted efficacious dose range; MRs were enriched in patients with radiological disease stabilization, and complete MRs were detected for mutations in ARID1A, ATRX, and DAXX. One patient with platinum- and PARP inhibitor-resistant BRCA wild-type ovarian cancer achieved an unconfirmed RECIST v1.1 partial response. CONCLUSIONS Tuvusertib demonstrated manageable safety and exposure-related target engagement. Further clinical evaluation of tuvusertib is ongoing.
Collapse
Affiliation(s)
- Timothy A. Yap
- University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ruth Plummer
- Newcastle University and Northern Centre for Cancer Care, Newcastle Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom
| | | | - Marta Enderlin
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | | | | | - Zoltan Szucs
- Merck Serono Ltd., Feltham, UK, an affiliate of Merck KGaA, Darmstadt, Germany
| | - Ioannis Gounaris
- Merck Serono Ltd., Feltham, UK, an affiliate of Merck KGaA, Darmstadt, Germany
| | | |
Collapse
|
39
|
Pilié PG, Giuliani V, Wang WL, McGrail DJ, Bristow CA, Ngoi NY, Kyewalabye K, Wani KM, Le H, Campbell E, Sanchez NS, Yang D, Gheeya JS, Goswamy RV, Holla V, Shaw KR, Meric-Bernstam F, Liu CY, Ma X, Feng N, Machado AA, Bardenhagen JP, Vellano CP, Marszalek JR, Rajendra E, Piscitello D, Johnson TI, Likhatcheva M, Elinati E, Majithiya J, Neves J, Grinkevich V, Ranzani M, Luzarraga MR, Boursier M, Armstrong L, Geo L, Lillo G, Tse WY, Lazar AJ, Kopetz SE, Geck Do MK, Lively S, Johnson MG, Robinson HM, Smith GC, Carroll CL, Di Francesco ME, Jones P, Heffernan TP, Yap TA. Ataxia-Telangiectasia Mutated Loss-of-Function Displays Variant and Tissue-Specific Differences across Tumor Types. Clin Cancer Res 2024; 30:2121-2139. [PMID: 38416404 PMCID: PMC11094420 DOI: 10.1158/1078-0432.ccr-23-1763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/31/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM-aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed. EXPERIMENTAL DESIGN We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models. To refine ATM LOF as a predictive biomarker, we performed a comprehensive pan-cancer analysis of ATM variants in patient tumors and then assessed the ATM variant-to-protein relationship. Finally, we assessed a novel ATM LOF biomarker approach in retrospective clinical data sets of patients treated with platinum-based chemotherapy or ATR inhibition. RESULTS ART0380 had potent, selective antitumor activity in a range of preclinical cancer models with differing degrees of ATM LOF. Pan-cancer analysis identified 10,609 ATM variants in 8,587 patient tumors. Cancer lineage-specific differences were seen in the prevalence of deleterious (Tier 1) versus unknown/benign (Tier 2) variants, selective pressure for loss of heterozygosity, and concordance between a deleterious variant and ATM loss of protein (LOP). A novel ATM LOF biomarker approach that accounts for variant classification, relationship to ATM LOP, and tissue-specific penetrance significantly enriched for patients who benefited from platinum-based chemotherapy or ATR inhibition. CONCLUSIONS These data help to better define ATM LOF across tumor types in order to optimize patient selection and improve molecularly targeted therapeutic approaches for patients with ATM LOF cancers.
Collapse
Affiliation(s)
- Patrick G. Pilié
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Virginia Giuliani
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel J. McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Christopher A. Bristow
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Natalie Y.L. Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith Kyewalabye
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khalida M. Wani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hung Le
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erick Campbell
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nora S. Sanchez
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dong Yang
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinesh S. Gheeya
- The University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Vijaykumar Holla
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kenna Rael Shaw
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chiu-Yi Liu
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - XiaoYan Ma
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ningping Feng
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Annette A. Machado
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer P. Bardenhagen
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher P. Vellano
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph R. Marszalek
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eeson Rajendra
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Desiree Piscitello
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Timothy I. Johnson
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Maria Likhatcheva
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Elias Elinati
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Jayesh Majithiya
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Joana Neves
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Vera Grinkevich
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Marco Ranzani
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Marina Roy Luzarraga
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Marie Boursier
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Lucy Armstrong
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Lerin Geo
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Giorgia Lillo
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Wai Yiu Tse
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Alexander J. Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott E. Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mary K. Geck Do
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah Lively
- ChemPartner Corporation, San Francisco, California
| | | | - Helen M.R. Robinson
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Graeme C.M. Smith
- Artios Pharma, the Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Christopher L. Carroll
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - M. Emilia Di Francesco
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy P. Heffernan
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy A. Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
40
|
Slootbeek PHJ, Tolmeijer SH, Mehra N, Schalken JA. Therapeutic biomarkers in metastatic castration-resistant prostate cancer: does the state matter? Crit Rev Clin Lab Sci 2024; 61:178-204. [PMID: 37882463 DOI: 10.1080/10408363.2023.2266482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The treatment of metastatic castration-resistant prostate cancer (mCRPC) has been fundamentally transformed by our greater understanding of its complex biological mechanisms and its entrance into the era of precision oncology. A broad aim is to use the extreme heterogeneity of mCRPC by matching already approved or new targeted therapies to the correct tumor genotype. To achieve this, tumor DNA must be obtained, sequenced, and correctly interpreted, with individual aberrations explored for their druggability, taking into account the hierarchy of driving molecular pathways. Although tumor tissue sequencing is the gold standard, tumor tissue can be challenging to obtain, and a biopsy from one metastatic site or primary tumor may not provide an accurate representation of the current genetic underpinning. Sequencing of circulating tumor DNA (ctDNA) might catalyze precision oncology in mCRPC, as it enables real-time observation of genomic changes in tumors and allows for monitoring of treatment response and identification of resistance mechanisms. Moreover, ctDNA can be used to identify mutations that may not be detected in solitary metastatic lesions and can provide a more in-depth understanding of inter- and intra-tumor heterogeneity. Finally, ctDNA abundance can serve as a prognostic biomarker in patients with mCRPC.The androgen receptor (AR)-axis is a well-established therapeutical target for prostate cancer, and through ctDNA sequencing, insights have been obtained in (temporal) resistance mechanisms that develop through castration resistance. New third-generation AR-axis inhibitors are being developed to overcome some of these resistance mechanisms. The druggability of defects in the DNA damage repair machinery has impacted the treatment landscape of mCRPC in recent years. For patients with deleterious gene aberrations in genes linked to homologous recombination, particularly BRCA1 or BRCA2, PARP inhibitors have shown efficacy compared to the standard of care armamentarium, but platinum-based chemotherapy may be equally effective. A hierarchy exists in genes associated with homologous recombination, where, besides the canonical genes in this pathway, not every other gene aberration predicts the same likelihood of response. Moreover, evidence is emerging on cross-resistance between therapies such as PARP inhibitors, platinum-based chemotherapy and even radioligand therapy that target this genotype. Mismatch repair-deficient patients can experience a beneficial response to immune checkpoint inhibitors. Activation of other cellular signaling pathways such as PI3K, cell cycle, and MAPK have shown limited success with monotherapy, but there is potential in co-targeting these pathways with combination therapy, either already witnessed or anticipated. This review outlines precision medicine in mCRPC, zooming in on the role of ctDNA, to identify genomic biomarkers that may be used to tailor molecularly targeted therapies. The most common druggable pathways and outcomes of therapies matched to these pathways are discussed.
Collapse
Affiliation(s)
- Peter H J Slootbeek
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Sofie H Tolmeijer
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Niven Mehra
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Jack A Schalken
- Department of Experimental Urology, Research Institute of Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Bychkov I, Deneka A, Topchu I, Pangeni R, Ismail A, Lengner C, Karanicolas J, Golemis E, Makhov P, Boumber Y. Musashi-2 (MSI2) regulation of DNA damage response in lung cancer. RESEARCH SQUARE 2024:rs.3.rs-4021568. [PMID: 38659828 PMCID: PMC11042440 DOI: 10.21203/rs.3.rs-4021568/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Lung cancer is one of the most common types of cancer worldwide. Non-small cell lung cancer (NSCLC), typically caused by KRAS and TP53 driver mutations, represents the majority of all new lung cancer diagnoses. Overexpression of the RNA-binding protein (RBP) Musashi-2 (MSI2) has been associated with NSCLC progression. To investigate the role of MSI2 in NSCLC development, we compared the tumorigenesis in mice with lung-specific Kras-activating mutation and Trp53 deletion, with and without Msi2 deletion (KPM2 versus KP mice). KPM2 mice showed decreased lung tumorigenesis in comparison with KP mice. In addition, KPM2 lung tumors showed evidence of decreased proliferation, but increased DNA damage, marked by increased levels of phH2AX (S139) and phCHK1 (S345), but decreased total and activated ATM. Using cell lines from KP and KPM2 tumors, and human NSCLC cell lines, we found that MSI2 directly binds ATM mRNA and regulates its translation. MSI2 depletion impaired DNA damage response (DDR) signaling and sensitized human and murine NSCLC cells to treatment with PARP inhibitors in vitro and in vivo. Taken together, we conclude that MSI2 supports NSCLC tumorigenesis, in part, by supporting repair of DNA damage by controlling expression of DDR proteins. These results suggest that targeting MSI2 may be a promising strategy for lung cancers treated with DNA-damaging agents.
Collapse
|
42
|
Pusch FF, Dorado García H, Xu R, Gürgen D, Bei Y, Brückner L, Röefzaad C, von Stebut J, Bardinet V, Chamorro Gonzalez R, Eggert A, Schulte JH, Hundsdörfer P, Seifert G, Haase K, Schäfer BW, Wachtel M, Kühl AA, Ortiz MV, Wengner AM, Scheer M, Henssen AG. Elimusertib has Antitumor Activity in Preclinical Patient-Derived Pediatric Solid Tumor Models. Mol Cancer Ther 2024; 23:507-519. [PMID: 38159110 PMCID: PMC10985474 DOI: 10.1158/1535-7163.mct-23-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The small-molecule inhibitor of ataxia telangiectasia and Rad3-related protein (ATR), elimusertib, is currently being tested clinically in various cancer entities in adults and children. Its preclinical antitumor activity in pediatric malignancies, however, is largely unknown. We here assessed the preclinical activity of elimusertib in 38 cell lines and 32 patient-derived xenograft (PDX) models derived from common pediatric solid tumor entities. Detailed in vitro and in vivo molecular characterization of the treated models enabled the evaluation of response biomarkers. Pronounced objective response rates were observed for elimusertib monotherapy in PDX, when treated with a regimen currently used in clinical trials. Strikingly, elimusertib showed stronger antitumor effects than some standard-of-care chemotherapies, particularly in alveolar rhabdomysarcoma PDX. Thus, elimusertib has strong preclinical antitumor activity in pediatric solid tumor models, which may translate to clinically meaningful responses in patients.
Collapse
Affiliation(s)
- Fabian F. Pusch
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heathcliff Dorado García
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robin Xu
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dennis Gürgen
- Experimental Pharmacology and Oncology (EPO), Berlin, Germany
| | - Yi Bei
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lotte Brückner
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany
| | - Claudia Röefzaad
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jennifer von Stebut
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor Bardinet
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
| | - Rocío Chamorro Gonzalez
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, University Hospital Tübingen, Tübingen, Germany
| | - Patrick Hundsdörfer
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Georg Seifert
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kerstin Haase
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
| | | | | | - Anja A. Kühl
- iPATH.Berlin—Core Unit Immunopathology for Experimental Models, Charité Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael V. Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York City, New York
| | | | - Monika Scheer
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anton G. Henssen
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
43
|
Zhang ZJ, Zhou Y, Tong H, Sun XC, Lv ZC, Yong JK, Wu YC, Xiang XL, Ding F, Zuo XL, Li F, Xia Q, Feng H, Fan CH. Programmable DNA Hydrogel Assisting Microcrystal Formulations for Sustained Locoregional Drug Delivery in Surgical Residual Tumor Lesions and Lymph Node Metastasis. Adv Healthc Mater 2024; 13:e2303762. [PMID: 38047767 DOI: 10.1002/adhm.202303762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Indexed: 12/05/2023]
Abstract
Surgical residual tumor lesions (R1 resection of surgical procedures (e.g., liver cancer infiltrating the diaphragm, surgical residual breast cancer, postoperative residual ovarian cancer) or boundary residual after ablation) and lymph node metastasis that cannot be surgically resected (retroperitoneal lymph nodes) significantly affect postoperative survival of tumor patients. This clinical conundrum poses three challenges for local drug delivery systems: stable and continuous delivery, good biocompatibility, and the ability to package new targeted drugs that can synergize with other treatments. Here, a drug-laden hydrogel generated from pure DNA strands and highly programmable in adjusting its mesh size is reported. Meanwhile, the DNA hydrogel can assist the microcrystallization of novel radiosensitizing drugs, ataxia telangiectasia and rad3-related protein (ATR) inhibitor (Elimusertib), further facilitating its long-term release. When applied to the tumor site, the hydrogel system demonstrates significant antitumor activity, minimized systemic toxicity, and has a modulatory effect on the tumor-immune cell interface. This drug-loaded DNA-hydrogel platform represents a novel modality for adjuvant therapy in patients with surgical residual tumor lesions and lymph node metastasis.
Collapse
Affiliation(s)
- Zi-Jie Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Institute of Transplantation, Shanghai, 200127, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Yi Zhou
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Huan Tong
- Shanghai First Maternity and Infant Hospital, Shanghai, 200127, China
| | - Xi-Cheng Sun
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Zi-Cheng Lv
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - June-Kong Yong
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Yi-Chi Wu
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Xue-Lin Xiang
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Fei Ding
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Xiao-Lei Zuo
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fan Li
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Institute of Transplantation, Shanghai, 200127, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Institute of Transplantation, Shanghai, 200127, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Chun-Hai Fan
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| |
Collapse
|
44
|
Ngoi NYL, Pilié PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 2024; 21:278-293. [PMID: 38378898 DOI: 10.1038/s41571-024-00863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
45
|
Burris HA, Berlin J, Arkenau T, Cote GM, Lolkema MP, Ferrer-Playan J, Kalapur A, Bolleddula J, Locatelli G, Goddemeier T, Gounaris I, de Bono J. A phase I study of ATR inhibitor gartisertib (M4344) as a single agent and in combination with carboplatin in patients with advanced solid tumours. Br J Cancer 2024; 130:1131-1140. [PMID: 38287179 PMCID: PMC10991509 DOI: 10.1038/s41416-023-02436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Gartisertib is an oral inhibitor of ataxia telangiectasia and Rad3-related protein (ATR), a key kinase of the DNA damage response. We aimed to determine the safety and tolerability of gartisertib ± carboplatin in patients with advanced solid tumours. METHODS This phase I open-label, multicenter, first-in-human study comprised four gartisertib cohorts: A (dose escalation [DE]; Q2W); A2 (DE; QD/BID); B1 (DE+carboplatin); and C (biomarker-selected patients). RESULTS Overall, 97 patients were enroled into cohorts A (n = 42), A2 (n = 26), B1 (n = 16) and C (n = 13). The maximum tolerated dose and recommended phase II dose (RP2D) were not declared for cohorts A or B1. In cohort A2, the RP2D for gartisertib was determined as 250 mg QD. Gartisertib was generally well-tolerated; however, unexpected increased blood bilirubin in all study cohorts precluded further DE. Investigations showed that gartisertib and its metabolite M26 inhibit UGT1A1-mediated bilirubin glucuronidation in human but not dog or rat liver microsomes. Prolonged partial response (n = 1 [cohort B1]) and stable disease >6 months (n = 3) did not appear to be associated with biomarker status. Exposure generally increased dose-dependently without accumulation. CONCLUSION Gartisertib was generally well-tolerated at lower doses; however, unexpected liver toxicity prevented further DE, potentially limiting antitumour activity. Gartisertib development was subsequently discontinued. CLINICALTRIALS GOV: NCT02278250.
Collapse
Affiliation(s)
| | - Jordan Berlin
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Gregory M Cote
- Division of Hematology and Oncology, Mass General Cancer Center, Boston, MA, USA
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Utrecht, Netherlands
- Amgen Inc., Thousand Oaks, CA, USA
| | - Jordi Ferrer-Playan
- Global Clinical Development, Ares Trading SA, an affiliate of Merck KGaA, Eysins, Switzerland
| | - Anup Kalapur
- Global Patient Safety Oncology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Jayaprakasam Bolleddula
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc., an affiliate of Merck KGaA, Billerica, MA, USA
| | | | | | - Ioannis Gounaris
- Global Clinical Development, Merck Serono Ltd., an affiliate of Merck KGaA, Feltham, UK
| | - Johann de Bono
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Royal Marsden, Hospital, London, UK
| |
Collapse
|
46
|
Giudice E, Huang TT, Nair JR, Zurcher G, McCoy A, Nousome D, Radke MR, Swisher EM, Lipkowitz S, Ibanez K, Donohue D, Malys T, Lee MJ, Redd B, Levy E, Rastogi S, Sato N, Trepel JB, Lee JM. The CHK1 inhibitor prexasertib in BRCA wild-type platinum-resistant recurrent high-grade serous ovarian carcinoma: a phase 2 trial. Nat Commun 2024; 15:2805. [PMID: 38555285 PMCID: PMC10981752 DOI: 10.1038/s41467-024-47215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
The multi-cohort phase 2 trial NCT02203513 was designed to evaluate the clinical activity of the CHK1 inhibitor (CHK1i) prexasertib in patients with breast or ovarian cancer. Here we report the activity of CHK1i in platinum-resistant high-grade serous ovarian carcinoma (HGSOC) with measurable and biopsiable disease (cohort 5), or without biopsiable disease (cohort 6). The primary endpoint was objective response rate (ORR). Secondary outcomes were safety and progression-free survival (PFS). 49 heavily pretreated patients were enrolled (24 in cohort 5, 25 in cohort 6). Among the 39 RECISTv1.1-evaluable patients, ORR was 33.3% in cohort 5 and 28.6% in cohort 6. Primary endpoint was not evaluable due to early stop of the trial. The median PFS was 4 months in cohort 5 and 6 months in cohort 6. Toxicity was manageable. Translational research was an exploratory endpoint. Potential biomarkers were investigated using pre-treatment fresh biopsies and serial blood samples. Transcriptomic analysis revealed high levels of DNA replication-related genes (POLA1, POLE, GINS3) associated with lack of clinical benefit [defined post-hoc as PFS < 6 months]. Subsequent preclinical experiments demonstrated significant cytotoxicity of POLA1 silencing in combination with CHK1i in platinum-resistant HGSOC cell line models. Therefore, POLA1 expression may be predictive for CHK1i resistance, and the concurrent POLA1 inhibition may improve the efficacy of CHK1i monotherapy in this hard-to-treat population, deserving further investigation.
Collapse
Affiliation(s)
- Elena Giudice
- Women's Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Tzu-Ting Huang
- Women's Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jayakumar R Nair
- Women's Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Grant Zurcher
- Women's Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Ann McCoy
- Women's Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Darryl Nousome
- Center for Cancer Research Collaborative Bioinformatics Resource, CCR, NCI, NIH, Bethesda, MD, 20892, USA
| | - Marc R Radke
- Department of Ob/Gyn, University of Washington, Seattle, WA, 98195, USA
| | | | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Kristen Ibanez
- Women's Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Duncan Donohue
- Statistical Consulting and Scientific Programming Group, Computer and Statistical Services, Data Management Services, Inc. (a BRMI company), NCI, Frederick, MD, 21702, USA
| | - Tyler Malys
- Statistical Consulting and Scientific Programming Group, Computer and Statistical Services, Data Management Services, Inc. (a BRMI company), NCI, Frederick, MD, 21702, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, MD, 20892, USA
| | - Bernadette Redd
- Clinical Image Processing Service, Department of Radiology and Imaging Sciences, CCR, NCI, NIH, Bethesda, MD, 20892, USA
| | - Elliot Levy
- Interventional Radiology, CCR, NCI, NIH, Bethesda, MD, 20892, USA
| | - Shraddha Rastogi
- Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, MD, 20892, USA
| | - Nahoko Sato
- Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, MD, 20892, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, MD, 20892, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
47
|
Huang L, Shao J, Lai W, Gu H, Yang J, Shi S, Wufoyrwoth S, Song Z, Zou Y, Xu Y, Zhu Q. Discovery of the first ataxia telangiectasia and Rad3-related (ATR) degraders for cancer treatment. Eur J Med Chem 2024; 267:116159. [PMID: 38325007 DOI: 10.1016/j.ejmech.2024.116159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
The first examples of ataxia telangiectasia and Rad3-related (ATR) PROTACs were designed and synthesized. Among them, the most potent degrader, ZS-7, demonstrated selective and effective ATR degradation in ATM-deficient LoVo cells, with a DC50 value of 0.53 μM. Proteasome-mediated ATR degradation by ZS-7 lasted approximately 12 h after washout in the LoVo cell lines. Notably, ZS-7 demonstrated reasonable PK profiles and, as a single agent or in combination with cisplatin, showed improved antitumor activity and safety profiles compared with the parent inhibitor AZD6738 in a xenograft mouse model of LoVo human colorectal cancer cells upon intraperitoneal (i.p.) administration.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Jialu Shao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenwen Lai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Hongfeng Gu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Jieping Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Shi Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Shepherd Wufoyrwoth
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhe Song
- China Pharmaceutical University Center for Analysis and Testing, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Zou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yungen Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Qihua Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
48
|
Petralia F, Ma W, Yaron TM, Caruso FP, Tignor N, Wang JM, Charytonowicz D, Johnson JL, Huntsman EM, Marino GB, Calinawan A, Evangelista JE, Selvan ME, Chowdhury S, Rykunov D, Krek A, Song X, Turhan B, Christianson KE, Lewis DA, Deng EZ, Clarke DJB, Whiteaker JR, Kennedy JJ, Zhao L, Segura RL, Batra H, Raso MG, Parra ER, Soundararajan R, Tang X, Li Y, Yi X, Satpathy S, Wang Y, Wiznerowicz M, González-Robles TJ, Iavarone A, Gosline SJC, Reva B, Robles AI, Nesvizhskii AI, Mani DR, Gillette MA, Klein RJ, Cieslik M, Zhang B, Paulovich AG, Sebra R, Gümüş ZH, Hostetter G, Fenyö D, Omenn GS, Cantley LC, Ma'ayan A, Lazar AJ, Ceccarelli M, Wang P. Pan-cancer proteogenomics characterization of tumor immunity. Cell 2024; 187:1255-1277.e27. [PMID: 38359819 PMCID: PMC10988632 DOI: 10.1016/j.cell.2024.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/29/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.
Collapse
Affiliation(s)
- Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Francesca Pia Caruso
- BIOGEM Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy; Department of Electrical Engineering and Information Technologies, University of Naples "Federico II", Naples, Italy
| | - Nicole Tignor
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua M Wang
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Giacomo B Marino
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John Erol Evangelista
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Myvizhi Esai Selvan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaoyu Song
- Institute for Healthcare Delivery Science, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Berk Turhan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karen E Christianson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David A Lewis
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eden Z Deng
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel J B Clarke
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey R Whiteaker
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jacob J Kennedy
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lei Zhao
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Rossana Lazcano Segura
- Departments of Pathology & Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Harsh Batra
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Ying Wang
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Maciej Wiznerowicz
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; International Institute for Molecular Oncology, 60-203 Poznań, Poland; Department of Oncology, Heliodor Swiecicki Clinical Hospital, 60-203 Poznań, Poland
| | - Tania J González-Robles
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Antonio Iavarone
- Department of Neurological Surgery, Department of Biochemistry, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sara J C Gosline
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Alexey I Nesvizhskii
- Departments of Pathology and Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marcin Cieslik
- Departments of Pathology and Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda G Paulovich
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - David Fenyö
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gilbert S Omenn
- Departments of Computational Medicine & Bioinformatics, Internal Medicine, Human Genetics, & Environmental Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA; Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
49
|
Mao X, Lee NK, Saad SE, Fong IL. Clinical translation for targeting DNA damage repair in non-small cell lung cancer: a review. Transl Lung Cancer Res 2024; 13:375-397. [PMID: 38496700 PMCID: PMC10938103 DOI: 10.21037/tlcr-23-742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/31/2024] [Indexed: 03/19/2024]
Abstract
Despite significant advancements in screening, diagnosis, and treatment of non-small cell lung cancer (NSCLC), it remains the primary cause of cancer-related deaths globally. DNA damage is caused by the exposure to exogenous and endogenous factors and the correct functioning of DNA damage repair (DDR) is essential to maintain of normal cell circulation. The presence of genomic instability, which results from defective DDR, is a critical characteristic of cancer. The changes promote the accumulation of mutations, which are implicated in cancer cells, but these may be exploited for anti-cancer therapies. NSCLC has a distinct genomic profile compared to other tumors, making precision medicine essential for targeting actionable gene mutations. Although various treatment options for NSCLC exist including chemotherapy, targeted therapy, and immunotherapy, drug resistance inevitably arises. The identification of deleterious DDR mutations in 49.6% of NSCLC patients has led to the development of novel target therapies that have the potential to improve patient outcomes. Synthetic lethal treatment using poly (ADP-ribose) polymerase (PARP) inhibitors is a breakthrough in biomarker-driven therapy. Additionally, promising new compounds targeting DDR, such as ATR, CHK1, CHK2, DNA-PK, and WEE1, had demonstrated great potential for tumor selectivity. In this review, we provide an overview of DDR pathways and discuss the clinical translation of DDR inhibitors in NSCLC, including their application as single agents or in combination with chemotherapy, radiotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Xinru Mao
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | - Nung Kion Lee
- Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | | | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| |
Collapse
|
50
|
Guney Eskiler G, Halis H, Hamarat KF, Derlioglu RR, Ugurlu BT, Haciefendi A. The ATR inhibition by Elimusertib enhances the radiosensitivity of MDA-MB-231 triple negative breast cancer in vitro. Int J Radiat Biol 2024; 100:715-723. [PMID: 38421209 DOI: 10.1080/09553002.2024.2316606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE DNA damage response (DDR) is the principal mechanism regulating genomic stability and cell cycle checkpoint activation by coordinating DNA repair and apoptotic pathways. Ataxia telangiectasia and Rad3-related protein (ATR) play a significant role in the DDR due to its capability to detect a wide spectrum of DNA damage. Therefore, targeting DDR, specifically ATR, is a promising therapeutic strategy in cancer treatment. Furthermore, the inhibition of ATR sensitizes cancer cells to radiotherapy (RT). Herein, we, for the first time, investigated the synergistic effects of Elimusertib (BAY-1895344) as a highly potent selective ATR inhibitor with RT combination in triple-negative breast cancer (TNBC), in vitro. METHODS MDA-MB-231 TNBC cells were firstly treated with different concentrations of Elimusertib for 24 h and then exposed to 4 and 8 Gy of X-ray irradiation. After post-irradiation for 72 h, WST-1, Annexin V, cell cycle, acridine orange/propidium iodide, mitochondria staining and western blot analysis were conducted. RESULTS Our findings showed that 4 Gy irradiation and lower doses (especially 2 and 4 nM) of Elimusertib combination exerted a considerable anticancer activity at 72 h post-irradiation through apoptotic cell death, marked nuclear and mitochondrial damages and the suppression of ATR-Chk1 based DDR mechanism. CONCLUSION ATR inhibition by Elimusertib in combination with RT may be a promising new treatment strategy in the treatment of TNBC. However, further experiments should be performed to elucidate the underlying molecular mechanisms of the therapeutic efficacy of this combination treatment and its association with DNS repair mechanisms in TNBC, in vitro and in vivo.
Collapse
Affiliation(s)
| | - Hatice Halis
- Department of Radiation Oncology, Sakarya Training and Research Hospital, Sakarya, Turkey
| | | | - Rabia Rana Derlioglu
- Department of Medical Biology, Institute of Health Sciences, Sakarya University, Sakarya, Turkey
| | | | - Ayten Haciefendi
- Department of Medical Biology, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|