1
|
Wang H, Zhang G, Zhao C, Xue Y, Zhu D, Chang Y. RORγt agonist LYC-55716 potentiates IFN-α's efficacy in hepatocellular carcinoma through enhancing cytotoxicity of Tc17 cells and infiltration of CD8 + T cells. Biochem Pharmacol 2025:116963. [PMID: 40312017 DOI: 10.1016/j.bcp.2025.116963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/13/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
While interferon-alpha (IFN-α) demonstrates potent antineoplastic activity against hepatocellular carcinoma (HCC), but many patients have a low response rate and may even develop resistance to it. It is necessary to find new strategies to reduce IFN-α resistance and improve its efficacy. RAR-related orphan receptor gamma t (RORγt) agonists exhibit dual immunomodulatory functions, demonstrating both immunosuppression-reducing and immune-activating properties. In this study, we demonstrated that the combination of the RORγt agonist-LYC-55716 and IFN-α significantly promoted cytotoxic T cell 17 (Tc17 cell) differentiation and interleukin-17a (I1-17a) expression through activation of the Akt/Stat3 signal pathway. The combination therapy markedly enhanced the tumoricidal activity of differentiated Tc17 cells against hepatoma carcinoma cells. Moreover, this therapeutic strategy showed superior antitumor efficacy in multiple HCC models while maintaining a favorable safety profile compared to single-agent treatment. Importantly, our findings revealed that the combination treatment significantly enhanced CD8+ T cells infiltration into tumor tissues. Moreover, our mechanistic studies revealed that the observed synergistic antitumor effect was mediated by enhanced CD8+ T cell tumor infiltration, which was facilitated by the C-X-C motif chemokine ligand 10 (Cxcl10)- C-X-C motif chemokine receptor 3 (Cxcr3) interaction. Collectively, these findings support a novel immunoregulatory strategy that leverages RORγt agonists to enhance the efficacy of IFN-α in HCC therapy.
Collapse
Affiliation(s)
- Heng Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Innostar Bio-Tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | | | - Cai Zhao
- Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China
| | - Youan Xue
- Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China
| | - Di Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yan Chang
- Shanghai Innostar Bio-Tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| |
Collapse
|
2
|
He F, Liu H, Zhao F. The oncogenic role of FOXM1 in hepatocellular carcinoma: molecular mechanisms, clinical significance, and therapeutic potentials. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04144-5. [PMID: 40266300 DOI: 10.1007/s00210-025-04144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
Hepatocellular carcinoma (HCC) remains a major global health challenge due to its aggressive nature and limited treatment options. This review aims to clarify the oncogenic role of FOXM1 in HCC and its potential as a therapeutic target. We examine how FOXM1 drives cancer development by regulating key cellular processes such as cell cycle progression, proliferation, metastasis, and therapy resistance. The review details mechanisms that control FOXM1 activity, including transcriptional regulation by upstream factors, post-transcriptional modulation via non-coding RNAs, and epigenetic modifications. We also explore how FOXM1 interacts with critical signaling pathways, such as AKT, p53, ERK, Hedgehog, STAT3, and Wnt/β-catenin, to promote metabolic reprogramming, angiogenesis, and the maintenance of cancer stem cell properties. In the therapeutic section, we assess emerging strategies that target FOXM1, including small-molecule inhibitors, proteasome inhibitors, and immunotherapeutic approaches, to improve treatment outcomes for HCC patients. This comprehensive review highlights the pivotal role of FOXM1 in HCC pathogenesis and provides novel avenues for targeted intervention.
Collapse
Affiliation(s)
- Fangyu He
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - He Liu
- Department of Infection Control and Prevention, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fangcheng Zhao
- Department of Infectious Diseases, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Su P, Han Y, Yi J, Hou Y, Xiao Y. Research status and frontiers in liver cancer immunotherapy: a bibliometric perspective on highly cited literature. Front Oncol 2025; 15:1587252. [PMID: 40276056 PMCID: PMC12018336 DOI: 10.3389/fonc.2025.1587252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 04/26/2025] Open
Abstract
Background Liver cancer is one of the major causes of cancer-related death in the world. As a breakthrough therapy, immunotherapy had significantly improved the prognosis of patients. However, the current research status and research hotspots in the field of liver cancer immunotherapy still lack systematic review. Based on the bibliometric analysis of highly cited papers, this study intended to reveal the current research status, research hotspots and future research trends in this field. Objective The purpose of this study was to analyze the national/regional contributions, authors and institutions cooperation network, keywords clustering and keywords burst analysis of highly cited papers on liver cancer immunotherapy through bibliometrics, so as to clarify the research frontier and development direction, and provide objective data support for future research direction and clinical practice. Methods The highly cited papers on liver cancer immunotherapy from the Web of Science core collection up to February 23, 2025 were retrieved, and 232 studies were included. CiteSpace was used to build a knowledge map, analyze the distribution of years, countries, authors, institutions and cooperation networks, and identify research hotspots and emerging trends through keyword clustering and burst detection. Results The number of highly cited papers continued to increase from 2014 and reached a peak in 2022. China and the United States had the highest number of publications and the centrality of cooperation networks. The author with the highest number of papers was Llovet, Josep M, whose research direction mainly focused on immune checkpoint inhibitor combination therapy and molecular typing. The author with the highest cooperation network centrality was Duda, Dan G, whose research team focused on tumor microenvironment regulation. Harvard University and the University of Barcelona played an important central role in the institutional collaboration. Keywords analysis showed that immune checkpoint inhibitors, tumor microenvironment and combination therapy were the core of liver cancer immunotherapy. Burst keywords such as cell lung cancer, pembrolizumab, advanced melanoma, blockade, lymphocytes, etc. had revealed the research frontier of liver cancer immunotherapy research. Conclusion The research on liver cancer immunotherapy had made multi-dimensional progress, with China and the United States leading the global cooperation. The main research directions were the combination strategy of immunization, the regulation of tumor microenvironment and the exploration of novel targets. In the future, it is necessary to optimize treatment resistance solutions, integrate interdisciplinary resources, and promote the development of precision and personalized treatment.
Collapse
Affiliation(s)
- Pan Su
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Yeqiong Han
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Jindong Yi
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Hou
- Department of Pulmonology, Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standards, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Qin A, Ho MC, Tsai CY, Liu CJ, Chen PJ. Sequential combination with ropeginterferon alfa-2b and anti-PD-1 treatment as adjuvant therapy in HBV-related HCC: a phase 1 dose escalation trial. Hepatol Int 2025:10.1007/s12072-025-10824-4. [PMID: 40186764 DOI: 10.1007/s12072-025-10824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND/PURPOSE Post-operative recurrence is a major clinical challenge with hepatocellular carcinoma (HCC). While currently unapproved, anti-programmed cell death 1 (PD-1) and anti-vascular endothelial growth factor combination adjuvant therapy showed promise. We initiated a phase I trial using sequential treatment with ropeginterferon alfa-2b (ropeg), a novel interferon-based antiviral and antitumor agent, followed by anti-PD-1 therapeutic antibody nivolumab as an adjuvant therapy for hepatitis B virus (HBV)-related HCC. METHODS Patients who underwent surgical resection of HBV-related HCC with curative intent received sequential therapy with six doses of ropeg every two weeks at 450 μg, followed by three doses of nivolumab escalating from 0.3 to 0.75 mg/kg every two weeks. Safety, HBV surface antigen (HBsAg) loss or decrease, anti-HBV surface (HBs) antibodies, cancer recurrence, and survival were evaluated. RESULTS Fifteen eligible patients were enrolled. Most adverse events (AEs) were mild or moderate and no severe or serious AEs were observed. Alanine transaminase flares, including one grade 3 event as dose-limiting toxicity, were noted in five cases and the final recommended dose for anti-PD1 was determined at 0.75 mg/kg. Interestingly, all five cases had HBsAg clearance or reduction. All patients in the study were alive without cancer recurrence during a median follow-up of 1024 days with six patients surviving > 4 years and three for > 5 years. CONCLUSIONS This phase I trial supports the safety and clinical efficacy of sequential treatment with ropeg and nivolumab in post-resection HBV-related HCC. This regimen holds promise for further adjuvant therapy trials in HCC, both HBV-related and other types.
Collapse
Affiliation(s)
- Albert Qin
- Medical Research and Clinical Operations, PharmaEssentia Corporation, Taipei, Taiwan
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chan-Yen Tsai
- Medical Research and Clinical Operations, PharmaEssentia Corporation, Taipei, Taiwan
| | - Chun-Jen Liu
- Department of Internal Medicine, Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, No. 7, Chung Shan South Rd., Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Jer Chen
- Department of Internal Medicine, Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, No. 7, Chung Shan South Rd., Taipei, Taiwan.
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Jiang J, Zhang H, Ou Y, Lai J, Huang Y, Cai W, Li C, Zhang L, Fu Y. The immune-reinforcements of Lenvatinib plus anti-PD-1 and their rationale to unite with TACE for unresectable hepatocellular carcinoma treatment. Immunol Lett 2025; 275:107003. [PMID: 40189154 DOI: 10.1016/j.imlet.2025.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/05/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Despite encouraging clinical benefits have gained by anti-PD-1 and Lenvatinib combination, in-depth characterizations about the mechanisms of action remain poorly characterized. Furthermore, although the combination of systemic anti-PD-1 or Lenvatinib treatment and locoregional transcatheter arterial chemoembolization (TACE) is widely carried out to treat unresectable HCC in clinical, the efficacies of different combination regimens are uncertain due to limited researches. METHODS We firstly generated murine HCC models to validate the enhanced anti-tumor effects of anti-PD-1 and Lenvatinib combination therapy. Then single cell mass cytometry (CyTOF) was employed to phenotypically reveal their mechanisms of action. After that, we further compared the effectiveness of TACE plus Lenvatinib (i.e., TACE-Len) dual therapy with TACE, Lenvatinib plus anti-PD-1 (i.e., TACE-Len-PD-1) triple therapy as conversion therapy for unresectable HCC. RESULTS Lenvatinib and anti-PD-1 combination could generate activated immune profiles not only by increasing systemic CD4+, CD8+T cells and B cells proportions, but also by weakening the immune-tolerance functions derived from both immunosuppressive cells (i.e., MDSCs) and co-inhibitory mediators (i.e., PD-L1 and LAG-3). Meanwhile, our study also suggested that TACE-Len-PD-1 triple therapy could achieve better clinical responses with powerful immune profiles for unresectable HCC compared to TACE-Len dual therapy. CONCLUSIONS Our study provided a delicate immune landscape of anti-PD-1and Lenvatinib combination, and we also offered scientific evidences that TACE-Len-PD-1 triple therapy could fulfill better clinical benefits than TACE-Len dual therapy, which is anticipated to provide objective and effective evidences for clinical use.
Collapse
Affiliation(s)
- Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing, 400038, PR China
| | - Hui Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing, 400038, PR China
| | - Yanjiao Ou
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing, 400038, PR China
| | - Jiejuan Lai
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing, 400038, PR China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| | - Leida Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing, 400038, PR China.
| | - Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
6
|
Wang Y, Li Y, Lin Y, Cao C, Chen D, Huang X, Li C, Xu H, Lai H, Chen H, Zhou Y. Roles of the gut microbiota in hepatocellular carcinoma: from the gut dysbiosis to the intratumoral microbiota. Cell Death Discov 2025; 11:140. [PMID: 40185720 PMCID: PMC11971373 DOI: 10.1038/s41420-025-02413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is closely linked to alterations in the gut microbiota. This dysbiosis is characterized by significant changes in the microbial population, which correlate with the progression of HCC. Gut dysbiosis ultimately promotes HCC development in several ways: it damages the integrity of the gut-vascular barrier (GVB), alters the tumor microenvironment (TME), and even affects the intratumoral microbiota. Subsequently, intratumoral microbiota present a characteristic profile and play an essential role in HCC progression mainly by causing DNA damage, mediating tumor-related signaling pathways, altering the TME, promoting HCC metastasis, or through other mechanisms. Both gut microbiota and intratumoral microbiota have dual effects on HCC progression; a comprehensive understanding of their complex biological roles will provide a theoretical foundation for potential clinical applications in HCC treatment.
Collapse
Affiliation(s)
- Yiqin Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong Lin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chuangyu Cao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dongcheng Chen
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Xianguang Huang
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Canhua Li
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huasheng Lai
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
7
|
Wang S, Huang J, Zeng T, Chen Y, Xu Y, Zhang B. Parps in immune response: Potential targets for cancer immunotherapy. Biochem Pharmacol 2025; 234:116803. [PMID: 39965743 DOI: 10.1016/j.bcp.2025.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Immunotherapy in clinical application faces numerous challenges pertaining to both effectiveness and safety. Poly(ADP-ribose) polymerases (PARPs) exhibit multifunctional characteristics by transferring ADP-ribose units to target proteins or nucleic acids. In recent years, more and more attention has been paid to the biological function of PARPs in immune response. This article reviews the relationship between PARP family members and immune response. PARP1 and PARP2 inhibit anti-tumor immune activity by regulating immune checkpoint expression and the cGAS/STING signaling pathway. PARP7 and PARP11 play an important role in promoting immunosuppressive tumor microenvironment. PARP9 promotes the production of Type I interferon and the infiltration of macrophages. PARP13 is a key tumor suppressor that promotes anti-tumor immune response. PARP14 plays a crucial role in promoting the differentiation of macrophages towards the M2 pro-tumor phenotype. Summarizing the molecular mechanisms of PARP7, PARP9, PARP11, PARP13 and PARP14 in regulating immune response is helpful to deepen our comprehension of the role of PARPs in immune function regulation. This provides a reference and basis for targeted PARP-based cancer treatment strategies and drug development. PARP1, PARP7 inhibitors or other PARP inhibitors in combination with immune checkpoint inhibitors or other immunotherapy strategies may be a more effective cancer therapy.
Collapse
Affiliation(s)
- Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Jingling Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tingyu Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yali Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of New Drug Design and Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
8
|
Xiao J, Liu T, Zeng F, Zhang J. New insights into T cell metabolism in liver cancer: from mechanism to therapy. Cell Death Discov 2025; 11:118. [PMID: 40122853 PMCID: PMC11930970 DOI: 10.1038/s41420-025-02397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Liver cancer is the sixth most common cancer worldwide and the third most common cause of cancer mortality. The development and progression of liver cancer and metastases is a multifaceted process involving numerous metabolic pathways. T cells have a protective role in the defense against cancer, and manipulating metabolic pathways in T cells can alter their antitumor activity. Furthermore, Liver cancer and T cell nutrition competition lead to T cell dysfunction through various molecular mechanisms. Some nanomaterials and drugs can improve T cell metabolism and promote the anti-liver cancer function of T cells. This review discusses the current literature regarding metabolic changes in liver cancer, the role of T cells in liver cancer, T cell metabolism in liver cancer, and targeted T cell metabolism therapy for liver cancer. The promise and challenges of studying target T cell metabolism for treating liver cancer are also addressed. Targeting T cell metabolism is a promising approach for treating liver cancer.
Collapse
Affiliation(s)
- Jie Xiao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, China
| | - Ting Liu
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
- School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichua, China.
| | - Jinhua Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, China.
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China.
| |
Collapse
|
9
|
Dong J, Su T, Wu J, Xiang Y, Song M, He C, Shao L, Yang Y, Chen S. Drug functional remapping: a new promise for tumor immunotherapy. Front Oncol 2025; 15:1519355. [PMID: 40161377 PMCID: PMC11949826 DOI: 10.3389/fonc.2025.1519355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
The research and development of new anti-cancer drugs face challenges such as high costs, lengthy development cycles, and limited data on side effects. In contrast, the clinical safety and side effects of traditional drugs have been well established through long-term use. The development or repurposing of traditional drugs with potential applications in cancer treatment offers an economical, feasible, and promising strategy for new drug development. This article reviews the novel applications of traditional drugs in tumor immunotherapy, discussing how they can enhance tumor treatment efficacy through functional repositioning, while also reducing development time and costs. Recent advancements in cancer immunotherapy have revolutionized treatment options, but resistance to ICIs remains a significant challenge. Drug repurposing has emerged as a promising strategy to identify novel agents that can enhance the efficacy of immunotherapies by overcoming ICI resistance. A study suggests that drug repositioning has the potential to modulate immune cell activity or alter the tumor microenvironment, thereby circumventing the resistance mechanisms associated with immune checkpoint blockade. This approach provides a rapid and cost-effective pathway for identifying therapeutic candidates that can be quickly transitioned into clinical trials. To improve the effectiveness of tumor immunotherapy, it is crucial to explore systematic methods for identifying repurposed drug candidates. Methods such as high-throughput screening, computational drug repositioning, and bioinformatic analysis have been employed to efficiently identify potential candidates for cancer treatment. Furthermore, leveraging databases related to immunotherapy and drug repurposing can provide valuable resources for drug discovery and facilitate the identification of promising compounds. It focuses on the latest advancements in the use of antidiabetic drugs, antihypertensive agents, weight-loss medications, antifungal agents, and antiviral drugs in tumor immunotherapy, examining their mechanisms of action, clinical application prospects, and associated challenges. In this context, our aim is to explore these strategies and highlight their potential for expanding the therapeutic options available for cancer immunotherapy, providing valuable references for cancer research and treatment.
Collapse
Affiliation(s)
- Jiayi Dong
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Su
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiexiong Wu
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Xiang
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minghan Song
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
| | - Canfeng He
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lijuan Shao
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yubin Yang
- Traditional Chinese Medicine Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Size Chen
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Precision Medicine in Esophageal Cancer, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Monitoring Adverse Reactions Associated with Chimeric Antigen Receptor T-Cell Therapy, Guangdong Higher Education Institutions, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
10
|
Niu Y, Jia S, Xiao X, Tu K, Liu Q. High glucose facilitates hepatocellular carcinoma cell proliferation and invasion via WTAP-mediated HK2 mRNA stability. Mol Cell Biochem 2025:10.1007/s11010-025-05235-w. [PMID: 40032749 DOI: 10.1007/s11010-025-05235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers, and diabetes is a risk factor for hepatocarcinogenesis. N6-methyladenosine (m6A) methyltransferase WT1-associated protein (WTAP) is highly expressed in HCC and contributes to tumor progression. However, its role in high glucose-driven HCC progression remains unclear. The m6A quantitative assay was used to detect the m6A modification level. The levels of mRNAs and proteins were detected by qPCR, Western blot, and immunohistochemistry. CCK-8, colony formation, EdU, and transwell assays were used to detect HCC cell proliferation, invasion, and migration. Immunoprecipitation and CHX assays were used to reveal the regulatory effect of high glucose on WTAP. An RNA degradation experiment was used to explore WTAP's regulation of HK2 mRNA. To demonstrate the effect of high glucose on HCC growth in vivo, a diabetic mouse model was constructed, and HCC cells were subcutaneously injected. High glucose prominently increased the global level of m6A in HCC cells. Interestingly, high glucose upregulated WTAP protein rather than mRNA expression. We found that WTAP expression was significantly upregulated in HCC tissues, especially in tumor tissues of diabetic patients. WTAP knockdown markedly attenuated high glucose-induced abilities of HCC cell proliferation, colony formation, migration, and invasion. Meanwhile, WTAP overexpression significantly enhanced the malignant behaviors of HCC cells under low glucose conditions. High glucose reduced the ubiquitination of WTAP, thereby inhibiting its proteasomal and lysosomal degradation. Phosphorylated ERK (p-ERK) was required for high glucose-mediated WTAP stability. WTAP knockdown prominently abrogated high glucose-induced global m6A levels and HK2 expression in HCC cells. WTAP positively regulated HK2 expression by increasing mRNA stability. HK2 overexpression remarkably reversed the suppressive effects of WTAP knockdown on HCC cells. HK2 knockdown prominently abolished the promoting role of WTAP in HCC cells. Importantly, the growth of HCC cells in diabetic mice was significantly faster than that in control mice, which was prominently attenuated by WTAP knockdown. Our study demonstrated that high glucose decreased WTAP degradation and maintained its protein level by activating ERK phosphorylation. WTAP promoted HCC cell proliferation, colony formation, migration, and invasion by stabilizing HK2 mRNA.
Collapse
Affiliation(s)
- Yongshen Niu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Siying Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xuelian Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
11
|
Xu J, Zhao Y, Tyler Mertens R, Ding Y, Xiao P. Sweet regulation - The emerging immunoregulatory roles of hexoses. J Adv Res 2025; 69:361-379. [PMID: 38631430 PMCID: PMC11954837 DOI: 10.1016/j.jare.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/20/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND It is widely acknowledged that dietary habits have profound impacts on human health and diseases. As the most important sweeteners and energy sources in human diets, hexoses take part in a broad range of physiopathological processes. In recent years, emerging evidence has uncovered the crucial roles of hexoses, such as glucose, fructose, mannose, and galactose, in controlling the differentiation or function of immune cells. AIM OF REVIEW Herein, we reviewed the latest research progresses in the hexose-mediated modulation of immune responses, provided in-depth analyses of the underlying mechanisms, and discussed the unresolved issues in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Owing to their immunoregulatory effects, hexoses affect the onset and progression of various types of immune disorders, including inflammatory diseases, autoimmune diseases, and tumor immune evasion. Thus, targeting hexose metabolism is becoming a promising strategy for reversing immune abnormalities in diseases.
Collapse
Affiliation(s)
- Junjie Xu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuening Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Yimin Ding
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
12
|
Zhang YZ, Ma Y, Ma E, Chen X, Zhang Y, Yin B, Zhao J. Sophisticated roles of tumor microenvironment in resistance to immune checkpoint blockade therapy in hepatocellular carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:10. [PMID: 40051497 PMCID: PMC11883234 DOI: 10.20517/cdr.2024.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/13/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025]
Abstract
Hepatocellular carcinoma (HCC) remains a serious threat to global health, with rising incidence and mortality rates. Therapeutic options for advanced HCC are quite limited, and the overall prognosis remains poor. Recent advancements in immunotherapy, particularly immune-checkpoint blockade (ICB) targeting anti-PD1/PD-L1 and anti-CTLA4, have facilitated a paradigm shift in cancer treatment, demonstrating substantial survival benefits across various cancer types, including HCC. However, only a subset of HCC patients exhibit a favorable response to ICB therapy, and its efficacy is often hindered by the development of resistance. There are many studies to explore the underlying mechanisms of ICB response. In this review, we compiled the latest progression in immunotherapies for HCC and systematically summarized the sophisticated mechanisms by which components of the tumor microenvironment (TME) regulate resistance to ICB therapy. Additionally, we also outlined some scientific rationale strategies to boost antitumor immunity and enhance the efficacy of ICB in HCC. These insights may serve as a roadmap for future research and help improve outcomes for HCC patients.
Collapse
Affiliation(s)
- Yi-Zhe Zhang
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Authors contributed equally
| | - Yunshu Ma
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Authors contributed equally
| | - Ensi Ma
- Liver Transplantation Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Institute of Organ Transplantation, Fudan University, Shanghai 200040, China
| | - Xizhi Chen
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yue Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Baobing Yin
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Hepatobiliary surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Jing Zhao
- Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Hepatobiliary surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
- Cancer Metastasis Institute, Fudan University, Shanghai 201206, China
| |
Collapse
|
13
|
Tang L, Hao G, Zhou D, Fan Y, Wei Z, Li D, Shen Y, Fang H, Lin F, Zhao M, Zhang H. Hepatotoxicity in Carp ( Carassius auratus) Exposed to Perfluorooctane Sulfonate (PFOS): Integrative Histopathology and Transcriptomics Analysis. Animals (Basel) 2025; 15:610. [PMID: 40003090 PMCID: PMC11851982 DOI: 10.3390/ani15040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Perfluorooctane sulfonate (PFOS) contamination poses a significant environmental threat due to its widespread distribution and persistence. However, the hepatotoxic effects of PFOS on key aquatic species, such as crucian carp, remain understudied. This study systematically investigated the hepatotoxicity and underlying molecular mechanisms associated with PFOS exposure in crucian carp over a 21 day period. We determined a 96 h 50% lethal concentration (LC50) of 23.17 mg/L. Histopathological and transcriptomic analyses confirmed PFOS-induced liver damage in the carp, characterized by venous congestion, nucleolar dissolution and cellular vacuolation. Transcriptomic profiling further identified 1036 differentially expressed genes (DEGs), involving critical pathways related to lipid and energy metabolism, immunity, and endocrine regulation. These pathways are integral to the development of nonalcoholic fatty liver disease (NAFLD). Specifically, DEGs related to lipid metabolism showed significant changes, while those involved in energy metabolism indicated disrupted ATP production and mitochondrial function. Genes associated with immune response revealed an upregulation of pro-inflammatory markers, and hormone regulation genes highlighted alterations in endocrine signaling. Our findings emphasized that PFOS exhibits acute toxicity to crucian carp, potentially inducing hepatotoxicity by disrupting multiple physiological systems. This research provides a theoretical foundation for mitigating aquatic pollution and protecting eco-health, contributing to broader ecological and conservation biology discussions.
Collapse
Affiliation(s)
- Lin Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (L.T.); (Z.W.); (D.L.); (H.F.); (M.Z.)
| | - Guijie Hao
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| | - Dongren Zhou
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| | - Yunpeng Fan
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| | - Zihao Wei
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (L.T.); (Z.W.); (D.L.); (H.F.); (M.Z.)
| | - Dongsheng Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (L.T.); (Z.W.); (D.L.); (H.F.); (M.Z.)
| | - Yafang Shen
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| | - Haoyu Fang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (L.T.); (Z.W.); (D.L.); (H.F.); (M.Z.)
| | - Feng Lin
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (L.T.); (Z.W.); (D.L.); (H.F.); (M.Z.)
| | - Haiqi Zhang
- Key Laboratory of Freshwater Fisheries Healthy Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; (G.H.); (D.Z.); (Y.F.); (Y.S.); (F.L.)
| |
Collapse
|
14
|
Yang H, Li J, Niu Y, Zhou T, Zhang P, Liu Y, Li Y. Interactions between the metabolic reprogramming of liver cancer and tumor microenvironment. Front Immunol 2025; 16:1494788. [PMID: 40028341 PMCID: PMC11868052 DOI: 10.3389/fimmu.2025.1494788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Metabolic reprogramming is one of the major biological features of malignant tumors, playing a crucial role in the initiation and progression of cancer. The tumor microenvironment consists of various non-cancer cells, such as hepatic stellate cells, cancer-associated fibroblasts (CAFs), immune cells, as well as extracellular matrix and soluble substances. In liver cancer, metabolic reprogramming not only affects its own growth and survival but also interacts with other non-cancer cells by influencing the expression and release of metabolites and cytokines (such as lactate, PGE2, arginine). This interaction leads to acidification of the microenvironment and restricts the uptake of nutrients by other non-cancer cells, resulting in metabolic competition and symbiosis. At the same time, metabolic reprogramming in neighboring cells during proliferation and differentiation processes also impacts tumor immunity. This article provides a comprehensive overview of the metabolic crosstalk between liver cancer cells and their tumor microenvironment, deepening our understanding of relevant findings and pathways. This contributes to further understanding the regulation of cancer development and immune evasion mechanisms while providing assistance in advancing personalized therapies targeting metabolic pathways for anti-cancer treatment.
Collapse
Affiliation(s)
- Haoqiang Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jinghui Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yiting Niu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Tao Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pengyu Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yanjun Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, TongjiShanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
15
|
Wang K, Li X, Guo S, Chen J, Lv Y, Guo Z, Liu H. Metabolic reprogramming of glucose: the metabolic basis for the occurrence and development of hepatocellular carcinoma. Front Oncol 2025; 15:1545086. [PMID: 39980550 PMCID: PMC11839411 DOI: 10.3389/fonc.2025.1545086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Primary liver cancer is a common malignant tumor of the digestive system, with hepatocellular carcinoma (HCC) being the most prevalent type. It is characterized by high malignancy, insidious onset, and a lack of specific early diagnostic and therapeutic markers, posing a serious threat to human health. The occurrence and development of HCC are closely related to its metabolic processes. Similar to other malignant tumors, metabolic reprogramming occurs extensively in tumor cells, with glucose metabolism reprogramming being particularly prominent. This is characterized by abnormal activation of glycolysis and inhibition of oxidative phosphorylation and gluconeogenesis, among other changes. Glucose metabolism reprogramming provides intermediates and energy for HCC to meet its demands for rapid growth, proliferation, and metastasis. Additionally, various enzymes and signaling molecules involved in glucose metabolism reprogramming play irreplaceable roles. Therefore, regulating key metabolic enzymes and pathways in these processes is considered an important target for the diagnosis and treatment of HCC. This paper reviews the current status and progress of glucose metabolism reprogramming in HCC, aiming to provide new insights for the diagnosis, detection, and comprehensive treatment strategies of HCC involving combined glucose metabolism intervention in clinical settings.
Collapse
Affiliation(s)
- Kai Wang
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaodan Li
- Department of Pediatric Health Care, Zhangzi County Maternal and Child Health Family Planning Service Center, Changzhi, Shanxi, China
| | - Shuwei Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Junsheng Chen
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yandong Lv
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Zhiqiang Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Hongzhou Liu
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
16
|
Shao N, Xi L, Lv Y, Idris M, Zhang L, Cao Y, Xiang J, Xu X, Ong BX, Zhang Q, Peng X, Yue X, Xu F, Liu C. USP5 stabilizes YTHDF1 to control cancer immune surveillance through mTORC1-mediated phosphorylation. Nat Commun 2025; 16:1313. [PMID: 39900921 PMCID: PMC11791202 DOI: 10.1038/s41467-025-56564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
The N6-methyladenosine binding protein YTHDF1, often upregulated in cancer, promotes tumor growth and hinders immune checkpoint blockade treatment. A comprehensive understanding of the molecular mechanisms governing YTHDF1 protein stability is pivotal for enhancing clinical response rates and the effectiveness of immune checkpoint blockade in cancer patients. Here, we report that USP5 interacts with YTHDF1, stabilizing it by removing K11-linked polyubiquitination. Insulin activates mTORC1, phosphorylating USP5 and promoting its dimerization, which binds to and protects YTHDF1 from degradation. Conversely, the CUL7-FBXW8 E3 ligase promotes YTHDF1 degradation. Deficiency in YTHDF1 or USP5 increases PD-L1 expression and suppresses immune-related gene expression, facilitating immune evasion. Combining USP5 inhibition with anti-PD-L1 therapy enhances anti-tumor immunity, suggesting USP5 as a potential biomarker for patient stratification. This study reveals a ubiquitination-dependent regulation of YTHDF1, proposing USP5 inhibition alongside PD-(L)1 blockade as a promising cancer treatment strategy.
Collapse
Affiliation(s)
- Na Shao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Lei Xi
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, PR China
| | - Yangfan Lv
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Muhammad Idris
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Lin Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Ya Cao
- Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Jingyi Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Xi Xu
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Belinda X Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Qiongyi Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Xu Peng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Xiaoyan Yue
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Feng Xu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Chungang Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
17
|
Wu X, Chen J, Chen Y, Song S, Fang Y, Mao S, Gao J, Zhu G, Qu W, Zhao Q, Yang R, Guan Z, Chu T, Bu Y, Wang Y, Chen F, Zhou J, Fan J, Tang Z, Liu W, Ruan Y, Shi Y. Targeting Deltex E3 Ubiquitin Ligase 2 Inhibits Tumor-associated Neutrophils and Sensitizes Hepatocellular Carcinoma Cells to Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408233. [PMID: 39733452 PMCID: PMC11831464 DOI: 10.1002/advs.202408233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/01/2024] [Indexed: 12/31/2024]
Abstract
Several E3 ligases have been found to affect the immune microenvironment of hepatocellular carcinoma (HCC) and lead to the resistance of immunotherapy. In this study, genes of E3 ligases are screened based on The Cancer Genome Atlas (TCGA) dataset. Through cytometry by time of flight (CyTOF), flow cytometry, and further experiments, Deltex E3 ubiquitin ligase 2 (DTX2) in HCC cells is identified to promote the infiltration and polarization of tumor-associated neutrophils (TANs) with a protumor phenotype, thus attenuating the infiltration and cytotoxicity of CD8+ T cells partially through C-X-C motif chemokine 2 (CXCL2) and C-X-C motif chemokine 6 (CXCL6). Mechanistically, DTX2 can interact with histone H2B and promote its monoubiquitination at lysine120 (H2BK120ub1), thereby increasing CXCL2 and CXCL6 transcription through histone epigenetic regulation. Different tumor models in vivo demonstrated that DTX2 inhibitor treatment inhibited tumor growth and sensitized HCC cells to the therapeutic effects of programmed cell death protein 1 (PD-1) antibody. In summary, this study identifies DTX2 as a potential target for HCC immunotherapy.
Collapse
|
18
|
Sheng Y, Lin Y, Qiang Z, Shen X, He Y, Li L, Li S, Zhang G, Wang F. Protein kinase a suppresses antiproliferative effect of interferon-α in hepatocellular carcinoma by activation of protein tyrosine phosphatase SHP2. J Biol Chem 2025; 301:108195. [PMID: 39826687 PMCID: PMC11849638 DOI: 10.1016/j.jbc.2025.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) plays a dual role in cancer initiation and progression. Identifying signals that modulate the function of SHP2 can improve current therapeutic approaches for IFN-α/β in HCC. We showed that cAMP-dependent PKA suppresses IFN-α/β-induced JAK/STAT signaling by increasing the phosphatase activity of SHP2, promoting the dissociation of SHP2 from the receptor for activated C-kinase 1 (RACK1) and binding to STAT1. Additionally, cAMP-degrading phosphodiesterase 4D (PDE4D) physically interacts with RACK1 to regulate PKA-mediated SHP2 activity and STAT1 phosphorylation. IFN-α activates PKA by inducing the expression of cyclooxygenase 2 (COX2) and the production of prostaglandin E2 (PGE2), which in turn stimulates the binding of SHP2 to IFNAR2 via RACK1. A COX inhibitor aspirin potently increases the antitumor effects of IFN-α in the suppression of HCC cell proliferation in vivo. Higher expression of COX2 and phosphorylated STAT3 is associated with poor development and prognosis in HCC patients by analyzing human HCC clinical samples. These observations suggest that a fundamental PKA/SHP2-dependent negative feedback loop acts on IFN signaling, and inhibition of this signaling by the selective COX2 inhibitors may enhance the clinical efficacy of type I IFNs in treating HCC.
Collapse
MESH Headings
- Humans
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/enzymology
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/enzymology
- Interferon-alpha/pharmacology
- Interferon-alpha/metabolism
- Receptors for Activated C Kinase
- Animals
- Cell Proliferation/drug effects
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Mice
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/genetics
- Signal Transduction/drug effects
- STAT1 Transcription Factor/metabolism
- STAT1 Transcription Factor/genetics
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2/genetics
- Receptor, Interferon alpha-beta/metabolism
- Receptor, Interferon alpha-beta/genetics
- GTP-Binding Proteins/metabolism
- GTP-Binding Proteins/genetics
- Cell Line, Tumor
- Phosphorylation/drug effects
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Dinoprostone/metabolism
Collapse
Affiliation(s)
- Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yuan Lin
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhe Qiang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiaofei Shen
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujiao He
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Lingyu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
| |
Collapse
|
19
|
Zhang Q, Chan WL, Fung SY, Pang L, Ding T, Teo JMN, Zhou Y, Wu CMA, Siu KL, Bi J, Ling GS, Jin DY, Man K, Ching YP. Centrosome protein TAX1BP2 mediates STING-dependent immune response and potentiates anti-PD-1 efficacy in hepatocellular carcinoma. Mol Ther 2025:S1525-0016(25)00047-4. [PMID: 39881544 DOI: 10.1016/j.ymthe.2025.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/19/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025] Open
Abstract
Centrosome aberrations are a common feature in human cancer cells. Our previous studies demonstrated that the centrosomal protein Tax1 binding protein 2 (TAX1BP2) inhibits centrosome overduplication and is underexpressed in hepatocellular carcinoma (HCC). Here, we report that Intratumoral TAX1BP2 promotes tumor lymphocyte infiltration and enhances the efficacy of anti-PD-1 therapy. Clinically, we discovered that a hallmark of low TAX1BP2 expression in HCC tumors is T cell exclusion, whereas re-depression of TAX1BP2 in preclinical models restores antitumor immunity and potentiates anti-PD-1 efficacy. Mechanistically, we identified that reconstitution of intratumor TAX1BP2 triggers the type I interferon (IFN-I) response and subsequent facilitation of a subtype of CD27+CD8+ T cell recruitment. Furthermore, we demonstrated that Intratumor TAX1BP2 upregulates STING by inhibiting the hyperactivation of DNMT1, and EZH2 is linked to endogenous LKB1 activity.
Collapse
Affiliation(s)
- Qingmei Zhang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China; Department of Surgery, HKU-Shenzhen Hospital and Department of Surgery, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Wing-Lim Chan
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Sin-Yee Fung
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Li Pang
- Department of Surgery, HKU-Shenzhen Hospital and Department of Surgery, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China; Organ Transplantation Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Ding
- Department of Surgery, HKU-Shenzhen Hospital and Department of Surgery, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | | | - Yuan Zhou
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Chung Ming Alex Wu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Kam-Leung Siu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Jiacheng Bi
- The CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Kwan Man
- Department of Surgery, HKU-Shenzhen Hospital and Department of Surgery, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Yick Pang Ching
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research (University of Hong Kong), Hong Kong SAR, China.
| |
Collapse
|
20
|
Xie P, Guo L, Yu Q, Zhao Y, Yu M, Wang H, Wu M, Xu W, Xu M, Zhu XD, Xu Y, Xiao YS, Huang C, Zhou J, Fan J, Hung MC, Sun H, Ye QH, Zhang B, Li H. ACE2 Enhances Sensitivity to PD-L1 Blockade by Inhibiting Macrophage-Induced Immunosuppression and Angiogenesis. Cancer Res 2025; 85:299-313. [PMID: 39495239 DOI: 10.1158/0008-5472.can-24-0954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/07/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Anti-PD-L1-based combination immunotherapy has become the first-line treatment for unresectable hepatocellular carcinoma (HCC). However, the objective response rate is lower than 40%, highlighting the need to identify mechanisms of tolerance to immune checkpoint inhibitors and accurate biomarkers of response. In this study, we used next-generation sequencing to analyze HCC samples from 10 patients receiving anti-PD-L1 therapy. Activation of the renin-angiotensin system was elevated in nonresponders compared with responders, and angiotensin-converting enzyme 2 (ACE2) expression was significantly downregulated in nonresponders. ACE2 deficiency promoted HCC development and anti-PD-L1 resistance, whereas ACE2 overexpression inhibited HCC progression in immune-competent mice. Mass cytometry by time of flight revealed that ACE2-deficient murine orthotopic tumor tissues featured elevated M2-like tumor-associated macrophages, displayed a CCR5+PD-L1+ immunosuppressive phenotype, and exhibited high VEGFα expression. ACE2 downregulated tumor-intrinsic chemokine (C-C motif) ligand 5 expression by suppressing NF-κB signaling through the ACE2/angiotensin-(1-7)/Mas receptor axis. The lower chemokine (C-C motif) ligand 5 levels led to reduced activation of the JAK-STAT3 pathway and suppressed PD-L1 and VEGFα expression in macrophages, blocking macrophage infiltration and M2-like polarization. Pharmacologic targeting of CCR5 using maraviroc enhanced the tumor-suppressive effect of anti-PD-L1 therapy. Together, these findings suggest that activation of the ACE2 axis overcomes the immunosuppressive microenvironment of HCC and may serve as an immunotherapeutic target and predictive biomarker of response to PD-L1 blockade. Significance: ACE2 regulates the immune landscape of hepatocellular carcinoma by abrogating M2-like macrophage polarization and sensitizes tumors to anti-PD-L1, suggesting that harnessing the ACE2 axis could be a promising strategy to improve immunotherapy efficacy.
Collapse
Affiliation(s)
- Peiyi Xie
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Lei Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Qiang Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Yufei Zhao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Mincheng Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Hui Wang
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Mengyuan Wu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Wenxin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Min Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Xiao-Dong Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Yongfeng Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Yong-Sheng Xiao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Cheng Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Huichuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Qing-Hai Ye
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Bo Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Hui Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Translational Research Center, Shanghai, P.R. China
| |
Collapse
|
21
|
Wu Y, Jiang X, Yu Z, Xing Z, Ma Y, Qing H. Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms. Recent Pat Anticancer Drug Discov 2025; 20:1-25. [PMID: 38305306 PMCID: PMC11865675 DOI: 10.2174/0115748928269276231120103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 02/03/2024]
Abstract
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
22
|
Mo Y, Zou Z, Chen E. [Research progress on ferroptosis regulation in tumor immunity of hepatocellular carcinoma]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:715-725. [PMID: 39694527 PMCID: PMC11726010 DOI: 10.3724/zdxbyxb-2024-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/30/2024] [Indexed: 12/20/2024]
Abstract
Ferroptosis is a form of regulated cell death, which is dependent on iron metabolism imbalance and characterized by lipid peroxidation. Ferroptosis plays a crucial role in various pathological processes. Studies have shown that the occurrence of ferroptosis is closely associated with the progression of hepatocellular carcinoma (HCC). Ferroptosis is involved in regulating the lipid metabolism, iron homeostasis, mitochondrial metabolism, and redox processes in HCC. Additionally, ferroptosis plays a key role in HCC tumor immunity by modulating the phenotype and function of various immune cells in the tumor microenvironment, affecting tumor immune escape and progression. Ferroptosis-induced lipid peroxidation and oxidative stress can promote the polarization of M1 macrophages and enhance the pro-inflammatory response in tumors, inhibiting immune suppressive cells such as myeloid-derived suppressor cells and regulatory T cells to disrupt their immune suppression function. The regulation of expression of ferroptosis-related molecules such as GPX4 and SLC7A11 not only affects the sensitivity of tumor cells to immunotherapy but also directly influences the activity and survival of effector cells such as T cells and dendritic cells, further enhancing or weakening host antitumor immune response. Targeting ferroptosis has demonstrated significant clinical potential in HCC treatment. Induction of ferroptosis by nanomedicines and molecular targeting strategies can directly kill tumor cells or enhance antitumor immune responses. The integration of multimodal therapies with immunotherapy further expands the application of ferroptosis targeting as a cancer therapy. This article reviews the relationship between ferroptosis and antitumor immune responses and the role of ferroptosis in HCC progression from the perspective of tumor immune microenvironment, to provide insights for the development of antitumor immune therapies targeting ferroptosis.
Collapse
Affiliation(s)
- Yuqian Mo
- School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China.
| | - Zhilin Zou
- School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Erbao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China.
| |
Collapse
|
23
|
Dong YM, Bao GQ. CD27 as a Diagnostic Biomarker and Its Role in Immune Heterogeneity and Predicting Clinical Drug Responses in Hashimoto's Thyroiditis. Pharmgenomics Pers Med 2024; 17:535-550. [PMID: 39717528 PMCID: PMC11664005 DOI: 10.2147/pgpm.s487091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
Objective To identify key genes and potential molecular mechanisms associated with Hashimoto's thyroiditis (HT) to provide new insights for the development of diagnostic and therapeutic targets for this disease. Methods Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were conducted to identify the differentially expressed genes (DEGs) associated with HT. A protein-protein interaction (PPI) network was used to obtain hub genes, with CD27 emerging as the key gene in HT. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, Gene Set Enrichment Analysis (GSEA), and HT-infiltrating immune cell components as well as functions were performed to further investigate the role and potential mechanism of CD27 in cohorts with high and low expression of CD27. Results CD27 was found to be upregulated in HT tissues and showed considerable clinical utility in HT. The CD27 of the high-expression cohort exhibited a higher enrichment in immune-related biological processes than the low-expression group. Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) analysis revealed that several activated HT-infiltrating immune cells were strongly associated with CD27, suggesting that CD27 has the potential to be a marker for the immune state in HT. Conclusion In our study, CD27 was found to contribute to predicting clinical outcomes in patients with HT, including disease status and response to immunotherapy. CD27 is a promising biomarker for HT microenvironment remodeling, offering insights into new therapeutic approaches to improve treatment of HT.
Collapse
Affiliation(s)
- Yan-ming Dong
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Guo-qiang Bao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| |
Collapse
|
24
|
Huang Y, Piao L, Liu X. Enhancing Tumor-Specific immunity with SL dacA: A attenuated Salmonella-mediated c-di-AMP delivery system targeting the STING pathway. Int J Pharm 2024; 666:124759. [PMID: 39332458 DOI: 10.1016/j.ijpharm.2024.124759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
The STING agonist stimulates an anti-tumor immune response by activating T cells, but its limited tumor-targeting specificity poses risks of cytokine storms or autoimmune reactions. Conversely, attenuated Salmonella typhimurium △ppGpp (S.t△ppGpp) exhibits superior tumor-targeting specificity and potent anti-tumor immunogenicity. However, the anti-tumor effects of Salmonella carrying STING agonists remain underexplored. In this study, we engineered a strain called SLdacA, utilizing S.t△ppGpp as a carrier, to produce c-di-AMP. This engineered strain effectively enhances dendritic cell maturation and M1-type macrophage polarization by inducing type I interferon production, thereby recruiting and activating effector T cells against tumor progression. This process is regulated by the STING/type I interferon pathway. Our findings indicate that utilizing S.t△ppGpp as a delivery vehicle for STING agonists holds promise as a strategy for synergistic bacterial-mediated immunotherapy.
Collapse
Affiliation(s)
- Yuanjia Huang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation center of One Health, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China
| | - Linghua Piao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Science, Hainan Medical University, No. 3 Xueyuan Avenue, Haikou 57119, China.
| | - Xiande Liu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation center of One Health, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China.
| |
Collapse
|
25
|
Wang R, Liu Q, You W, Chen Y. A multi-task deep learning model based on comprehensive feature integration and self-attention mechanism for predicting response to anti-PD1/PD-L1. Int Immunopharmacol 2024; 142:113099. [PMID: 39265355 DOI: 10.1016/j.intimp.2024.113099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Immune checkpoint inhibitor (ICI) has been widely used in the treatment of advanced cancers, but predicting their efficacy remains challenging. Traditional biomarkers are numerous but exhibit heterogeneity within populations. For comprehensively utilizing the ICI-related biomarkers, we aim to conduct multidimensional feature selection and deep learning model construction. METHODS We used statistical and machine learning methods to map features of different levels to next-generation sequencing gene expression. We integrated genes from different sources into the feature input of a deep learning model, by means of self-attention mechanism. RESULTS We performed feature selection at the single-cell sequencing level, PD-L1 (CD274) analysis level, tumor mutational burden (TMB)/mismatch repair (MMR) level, and somatic copy number alteration (SCNA) level, obtaining 96 feature genes. Based on the pan-cancer dataset, we trained a multi-task deep learning model. We tested the model in the bladder urothelial carcinoma testing set 1 (AUC = 0.62, n = 298), bladder urothelial carcinoma testing set 2 (AUC = 0.66, n = 89), non-small cell lung cancer testing set (AUC = 0.85, n = 27), and skin cutaneous melanoma testing set (AUC = 0.71, n = 27). CONCLUSION Our study demonstrates the potential of the deep learning model for integrating multidimensional features in predicting the outcome of ICI. Our study also provides a potential methodological case for medical scenarios requiring the integration of multiple levels of features.
Collapse
Affiliation(s)
- Ren Wang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Huai'an, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiumei Liu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Huai'an, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wenhua You
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Huai'an, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yun Chen
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Huai'an, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
26
|
Chen S, Tang Q, Hu M, Song S, Wu X, Zhou Y, Yang Z, Liao S, Zhou L, Wang Q, Liu H, Yang M, Chen Z, Zhao W, He S, Zhou Z. Loss of Carbamoyl Phosphate Synthetase 1 Potentiates Hepatocellular Carcinoma Metastasis by Reducing Aspartate Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402703. [PMID: 39387452 PMCID: PMC11615744 DOI: 10.1002/advs.202402703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/01/2024] [Indexed: 10/15/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. Numerous studies have shown that metabolic reprogramming is crucial for the development of HCC. Carbamoyl phosphate synthase 1 (CPS1), a rate-limiting enzyme in urea cycle, is an abundant protein in normal hepatocytes, however, lacking systemic research in HCC. It is found that CPS1 is low-expressed in HCC tissues and circulating tumor cells, negatively correlated with HCC stage and prognosis. Further study reveals that CPS1 is a double-edged sword. On the one hand, it inhibits the activity of phosphatidylcholine-specific phospholipase C to block the biosynthesis of diacylglycerol (DAG), leading to the downregulation of the DAG/protein kinase C pathway to inhibit invasion and metastasis of cancer cells. On the other hand, CPS1 promotes cell proliferation by increasing intracellular S-adenosylmethionin to enhance the m6A modification of solute carrier family 1 member 3 mRNA, a key transporter for aspartate intake. Finally, CPS1 overexpressing adeno-associated virus can dampen HCC progression. Collectively, this results uncovered that CPS1 is a switch between HCC proliferation and metastasis by increasing intracellular aspartate level.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Qin Tang
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Manqiu Hu
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Sijie Song
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Xiaohong Wu
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - You Zhou
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Zihan Yang
- Department of Biomedical Sciencesand Tung Biomedical Sciences CenterCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077P. R. China
| | - Siqi Liao
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Li Zhou
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Qingliang Wang
- Department of PathologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Hongtao Liu
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Mengsu Yang
- Department of Biomedical Sciencesand Tung Biomedical Sciences CenterCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077P. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesInstitute for BiotechnologyCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Wei Zhao
- School of Clinical MedicineThe First Affiliated HospitalChengdu Medical CollegeSichuan610500P. R. China
- Department of Clinical BiochemistrySchool of Laboratory MedicineChengdu Medical CollegeSichuan610500P. R. China
| | - Song He
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Zhihang Zhou
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| |
Collapse
|
27
|
Zhuo W, Xia H, Lan B, Chen Y, Wang X, Liu J. Signature of immune-related metabolic genes predicts the prognosis of hepatocellular carcinoma. Front Immunol 2024; 15:1481331. [PMID: 39654885 PMCID: PMC11625796 DOI: 10.3389/fimmu.2024.1481331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction The majority of liver cancer cases (90%) are attributed to hepatocellular carcinoma (HCC), which exhibits significant heterogeneity and an unfavorable prognosis. Modulating the immune response and metabolic processes play a crucial role in both the prevention and treatment of HCC. However, there is still a lack of comprehensive understanding regarding the immune-related metabolic genes that can accurately reflect the prognosis of HCC. Methods In order to address this issue, we developed a prognostic prediction model based on immune and metabolic genes. To evaluate the accuracy of our model, we performed survival analyses including Kaplan-Meier (K-M) curve and time-dependent receiver operating characteristic (ROC) curve. Furthermore, we compared the predictive performance of our risk model with existing models. Finally, we validated the accuracy of our risk model using mouse models with in situ transplanted liver cancer. Results By conducting lasso regression analysis, we identified four independent prognostic genes: fatty acid binding protein 6 (FABP6), phosphoribosyl pyrophosphate amidotransferase (PPAT), spermine synthase (SMS), and dihydrodiol dehydrogenase (DHDH). Based on these findings, we constructed a prognostic model. Survival analysis revealed that the high-risk group had significantly lower overall survival (OS) rates. Besides that, the ROC curve demonstrated the effective prognostic capability of our risk model for hepatocellular carcinoma (HCC) patients. Furthermore, through animal experiments, we validated the accuracy of our model by showing a correlation between high-risk scores and poor prognosis in tumor development. Discussion In conclusion, our prognostic model surpasses those solely based on immune genes or metabolic genes in terms of accuracy. We observed variations in prognosis among different risk groups, accompanied by distinct immune and metabolic characteristics. Therefore, our model provides an original evaluation index for personalized clinical treatment strategies targeting HCC patients.
Collapse
Affiliation(s)
- Weibin Zhuo
- Innovation Center for Cancer Research, Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Hongmei Xia
- Huzhou Central Hospital, Fifth School of Clinical Medicine, Zhejiang Chinese Medical University, Huzhou, Zhejiang, China
| | - Bin Lan
- Innovation Center for Cancer Research, Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, Fujian, China
- XMU-Fujian Cancer Hospital Research Center of Metabolism and Cancer, Xiamen University, Xiamen, Fujian, China
| | - Yu Chen
- Innovation Center for Cancer Research, Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, Fujian, China
- XMU-Fujian Cancer Hospital Research Center of Metabolism and Cancer, Xiamen University, Xiamen, Fujian, China
| | - Xuefeng Wang
- Innovation Center for Cancer Research, Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, Fujian, China
- XMU-Fujian Cancer Hospital Research Center of Metabolism and Cancer, Xiamen University, Xiamen, Fujian, China
| | - Jingfeng Liu
- Innovation Center for Cancer Research, Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, Fujian, China
- XMU-Fujian Cancer Hospital Research Center of Metabolism and Cancer, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
28
|
Lu M, Wu Y, Xia M, Zhang Y. The role of metabolic reprogramming in liver cancer and its clinical perspectives. Front Oncol 2024; 14:1454161. [PMID: 39610917 PMCID: PMC11602425 DOI: 10.3389/fonc.2024.1454161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Primary liver cancer (PLC), which includes hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), remains a leading cause of cancer-related death worldwide. Chronic liver diseases, such as hepatitis B and C infections and metabolic dysfunction-associated steatotic liver disease (MASLD), are key risk factors for PLC. Metabolic reprogramming, a defining feature of cancer, enables liver cancer cells to adapt to the demands of rapid proliferation and the challenging tumor microenvironment (TME). This manuscript examines the pivotal role of metabolic reprogramming in PLC, with an emphasis on the alterations in glucose, lipid, and amino acid metabolism that drive tumor progression. The Warburg effect, marked by increased glycolysis, facilitates rapid energy production and biosynthesis of cellular components in HCC. Changes in lipid metabolism, including elevated de novo fatty acid synthesis and lipid oxidation, support membrane formation and energy storage essential for cancer cell survival. Amino acid metabolism, particularly glutamine utilization, supplies critical carbon and nitrogen for nucleotide synthesis and maintains redox homeostasis. These metabolic adaptations not only enhance tumor growth and invasion but also reshape the TME, promoting immune escape. Targeting these metabolic pathways presents promising therapeutic opportunities for PLC. This review underscores the interaction between metabolic reprogramming and tumor immunity, suggesting potential metabolic targets for innovative therapeutic strategies. A comprehensive understanding of PLC's intricate metabolic landscape may lead to more effective treatments and better patient outcomes. Integrating metabolomics, genomics, and proteomics in future research will be vital for identifying precise therapeutic targets and advancing personalized therapies for liver cancer.
Collapse
Affiliation(s)
- Mengxiao Lu
- Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | | | | | | |
Collapse
|
29
|
Yang Z, Zuo H, Hou Y, Zhou S, Zhang Y, Yang W, He J, Shen X, Peng Q. Dual Oxygen-Supply Immunosuppression-Inhibiting Nanomedicine to Avoid the Intratumoral Recruitment of Myeloid-Derived Suppressor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406860. [PMID: 39233543 DOI: 10.1002/smll.202406860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are reported to be responsible for the negative prognosis of colorectal cancer (CRC) patients due to the mediated immunosuppressive tumor microenvironment (TME). The selective and chronic circumvention of tumor-infiltrated MDSCs has potential clinical significance for CRC treatment, which unluckily remains a technical challenge. Because tumor hypoxia makes a significant contribution to the recruitment of MDSCs in tumor sites, a dual oxygen-supplied immunosuppression-inhibiting nanomedicine (DOIN) is demonstrated for overcoming tumor hypoxia, which achieves selective and long-term inhibition of intratumoral recruitment of MDSCs. The DOIN is constructed by the encasement of perfluorooctyl bromide (PFOB) and 4-methylumbelliferone (4-MU) into a TME-responsive amphiphilic polymer. This nanoplatform directly carries oxygen to the tumor region and simultaneously loosens the condensed tumor extracellular matrix for the normalization of tumor vasculature, which selectively remodels the TME toward one adverse to the intratumoral recruitment of MDSCs. Importantly, this nanoplatform offers a long-acting alleviation of the hypoxic TME, chronically avoiding the comeback of tumor-infiltrated MDSCs. Consequently, the immunosuppressive TME is relieved, and T cells are successfully proliferated and activated into cytotoxic T lymphocytes, which boosts a systemic immune response and contributes to lasting inhibition of tumor growth with a prolonged survival span of xenograft.
Collapse
Affiliation(s)
- Zhengyang Yang
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Huaqin Zuo
- Department of Hematology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yuchen Hou
- Department of General Surgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, China
| | - Shuqin Zhou
- Department of Anesthesiology of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Ying Zhang
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Wanren Yang
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaofei Shen
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan RD, Nanjing, 210008, China
| | - Qing Peng
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, China
| |
Collapse
|
30
|
DeAzevedo R, Steiner M, Turner BX, Liu A, Newton S, Schmidt J, Fleming R, Tolentino A, Kaseb AO, Curran MA. Type I MET inhibitors cooperate with PD-1 blockade to promote rejection of hepatocellular carcinoma. J Immunother Cancer 2024; 12:e009690. [PMID: 39477243 PMCID: PMC11529525 DOI: 10.1136/jitc-2024-009690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Blockade of the immune checkpoints programmed death-1 (PD-1) and cytotoxic lymphocyte antigen 4 has improved outcomes for patients with hepatocellular carcinoma (HCC), yet most still fail to achieve objective clinical benefit. MET plays key roles in both HCC tumorigenesis and immunosuppressive conditioning; however, inhibition of MET causes upregulation of PD-ligand 1 (PD-L1) suggesting the use of these inhibitors in the context of PD-1 blockade. We sought to investigate across the Hepa1-6, HCA-1 and diethylnitrosamine (DEN) models of HCC whether the combination of more specific type I versus more pleiotropic type II MET inhibitors would confer superior outcomes in combination with PD-1 blockade. While MET inhibition demonstrated cooperativity with αPD-1 across all three models, the type I MET inhibitor capmatinib showed optimal activity in combination and statistically significantly outperformed the combination with the type II inhibitor cabozantinib in the αPD-1 refractory DEN model. In both HCA-1 and DEN HCC, the capmatinib and αPD-1 combination enhanced CD8 T cell frequency and activation state while limiting intratumoral myeloid immune suppression. In vitro studies of antigen-specific T cell activation reveal significantly less inhibition of effector cytokine production and proliferation by capmatinib versus by type II or type III MET inhibitors. These findings suggest significant potential for clinical HCC combination studies of type I MET inhibitors and PD-1 blockade where prior trials using type II inhibitors have yielded limited benefit.
Collapse
Affiliation(s)
- Ricardo DeAzevedo
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Madeline Steiner
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Broderick X Turner
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Arthur Liu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Sherwin Newton
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | - Ahmed O Kaseb
- Department of Gastrointestinal (GI) Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
31
|
Cao WH, Zhang YQ, Li XX, Zhang ZY, Li MH. Advances in immunotherapy for hepatitis B virus associated hepatocellular carcinoma patients. World J Hepatol 2024; 16:1158-1168. [PMID: 39474576 PMCID: PMC11514615 DOI: 10.4254/wjh.v16.i10.1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024] Open
Abstract
Hepatitis B virus (HBV) infection plays an important role in the occurrence and development of hepatocellular carcinoma (HCC), and the rate of HBV infection in liver cancer patients in China is as high as 92.05%. Due to long-term exposure to chronic antigens from the gut, the liver needs to maintain a certain level of immune tolerance, both to avoid severe inflammation caused by non-pathogenic antigens and to maintain the possibility of rapid and violent responses to infection and tumors. Therefore, HBV infection interacts with the tumor microenvironment (TME) through a highly complex and intertwined signaling pathway, which results in a special TME in HCC. Due to changes in the TME, tumor cells can evade immune surveillance by inhibiting tumor-specific T cell function through cytotoxic T-lymphocy-associated protein-4 (CTLA-4) and programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1). Interferons, as a class of immune factors with strong biological activity, can improve the TME of HBV-HCC through various pathways. In recent years, the systematic treatment of HCC has gradually come out of the dilemma. In addition to the continuous emergence of new multi-target anti-vascular tyrosine kinase inhibitor drugs, immune checkpoint inhibitors have opened up a new avenue for the systematic treatment of HCC. At present, immunotherapy based on PD-1/L1 inhibitors has gradually become a new direction of systematic treatment for HCC, and the disease characteristics of patients included in global clinical studies are different from those of Chinese patients. Therefore, whether a group of HCC patients with HBV background and poor prognosis in China can also benefit from immunotherapy is an issue of wide concern. This review aims to elucidate the advances of immunotherapy for HBV related HCC patients with regard to: (1) Immunotherapy based on interferons; (2) Immunotherapy based on PD-1/L1 inhibitors; (3) Immunotherapy based on CTLA4 inhibitors; (4) Adoptive cell transfer; (5) Combination immunotherapy strategy; and (6) Shortcomings of immunotherapy.
Collapse
Affiliation(s)
- Wei-Hua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ya-Qin Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xin-Xin Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Zi-Yu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ming-Hui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Peking University Ditan Teaching Hospital, Beijing 100015, China
| |
Collapse
|
32
|
Cao WH, Zhang YQ, Li XX, Zhang ZY, Li MH. Advances in immunotherapy for hepatitis B virus associated hepatocellular carcinoma patients. World J Hepatol 2024; 16:1338-1348. [DOI: 10.4254/wjh.v16.i10.1338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 11/22/2024] Open
Abstract
Hepatitis B virus (HBV) infection plays an important role in the occurrence and development of hepatocellular carcinoma (HCC), and the rate of HBV infection in liver cancer patients in China is as high as 92.05%. Due to long-term exposure to chronic antigens from the gut, the liver needs to maintain a certain level of immune tolerance, both to avoid severe inflammation caused by non-pathogenic antigens and to maintain the possibility of rapid and violent responses to infection and tumors. Therefore, HBV infection interacts with the tumor microenvironment (TME) through a highly complex and intertwined signaling pathway, which results in a special TME in HCC. Due to changes in the TME, tumor cells can evade immune surveillance by inhibiting tumor-specific T cell function through cytotoxic T-lymphocy-associated protein-4 (CTLA-4) and programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1). Interferons, as a class of immune factors with strong biological activity, can improve the TME of HBV-HCC through various pathways. In recent years, the systematic treatment of HCC has gradually come out of the dilemma. In addition to the continuous emergence of new multi-target anti-vascular tyrosine kinase inhibitor drugs, immune checkpoint inhibitors have opened up a new avenue for the systematic treatment of HCC. At present, immunotherapy based on PD-1/L1 inhibitors has gradually become a new direction of systematic treatment for HCC, and the disease characteristics of patients included in global clinical studies are different from those of Chinese patients. Therefore, whether a group of HCC patients with HBV background and poor prognosis in China can also benefit from immunotherapy is an issue of wide concern. This review aims to elucidate the advances of immunotherapy for HBV related HCC patients with regard to: (1) Immunotherapy based on interferons; (2) Immunotherapy based on PD-1/L1 inhibitors; (3) Immunotherapy based on CTLA4 inhibitors; (4) Adoptive cell transfer; (5) Combination immunotherapy strategy; and (6) Shortcomings of immunotherapy.
Collapse
Affiliation(s)
- Wei-Hua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ya-Qin Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xin-Xin Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Zi-Yu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ming-Hui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Peking University Ditan Teaching Hospital, Beijing 100015, China
| |
Collapse
|
33
|
Ning J, Wang Y, Tao Z. The complex role of immune cells in antigen presentation and regulation of T-cell responses in hepatocellular carcinoma: progress, challenges, and future directions. Front Immunol 2024; 15:1483834. [PMID: 39502703 PMCID: PMC11534672 DOI: 10.3389/fimmu.2024.1483834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent form of liver cancer that poses significant challenges regarding morbidity and mortality rates. In the context of HCC, immune cells play a vital role, especially concerning the presentation of antigens. This review explores the intricate interactions among immune cells within HCC, focusing on their functions in antigen presentation and the modulation of T-cell responses. We begin by summarizing the strategies that HCC uses to escape immune recognition, emphasizing the delicate equilibrium between immune surveillance and evasion. Next, we investigate the specific functions of various types of immune cells, including dendritic cells, natural killer (NK) cells, and CD8+ T cells, in the process of antigen presentation. We also examine the impact of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and the pathways involving programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1), on antigen presentation, while taking into account the clinical significance of checkpoint inhibitors. The review further emphasizes the importance of immune-based therapies, including cancer vaccines and CAR-T cell therapy, in improving antigen presentation. In conclusion, we encapsulate the latest advancements in research, propose future avenues for exploration, and stress the importance of innovative technologies and customized treatment strategies. By thoroughly analyzing the interactions of immune cells throughout the antigen presentation process in HCC, this review provides an up-to-date perspective on the field, setting the stage for new therapeutic approaches.
Collapse
Affiliation(s)
- Jianbo Ning
- The Fourth Clinical College, China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zijia Tao
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Liu D, Li M, Zhao Z, Zhou L, Zhi F, Guo Z, Cui J. Targeting the TRIM14/USP14 Axis Enhances Immunotherapy Efficacy by Inducing Autophagic Degradation of PD-L1. Cancer Res 2024; 84:2806-2819. [PMID: 38924473 DOI: 10.1158/0008-5472.can-23-3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Immunotherapy has greatly improved cancer treatment in recent years by harnessing the immune system to target cancer cells. The first immunotherapeutic agent approved by the FDA was IFNα. Treatment with IFNα can lead to effective immune activation and attenuate tumor immune evasion, but persistent treatment has been shown to elicit immunosuppressive effects. Here, we identified an autophagy-dependent mechanism by which IFNα triggers tumor immune evasion by upregulating PD-L1 to suppress the antitumor activity of CD8+ T cells. Mechanistically, IFNα increased the transcription of TRIM14, which recruited the deubiquitinase USP14 to inhibit the autophagic degradation of PD-L1. USP14 removed K63-linked ubiquitin chains from PD-L1, impairing its recognition by the cargo receptor p62 (also known as SQSTM1) for subsequent autophagic degradation. Combining the USP14 inhibitor IU1 with IFNα and anti-CTLA4 treatment effectively suppressed tumor growth without significant toxicity. This work suggests a strategy for targeting selective autophagy to abolish PD-L1-mediated cancer immune evasion. Significance: IFNα-induced TRIM14 transcription suppresses antitumor immunity by recruiting USP14 to inhibit autophagic degradation of PD-L1, indicating that targeting this axis could be an effective immunotherapeutic approach for treating cancer.
Collapse
Affiliation(s)
- Di Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Joint Lab of First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Mengqiu Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Joint Lab of First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiyao Zhao
- Greater Bay Area Institute of Precision Medicine, Guangzhou, China
| | - Liang Zhou
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Joint Lab of First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Feng Zhi
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Zhiyong Guo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Joint Lab of First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Joint Lab of First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Xu X, Yan SL, Yo YT, Chiang P, Tsai CY, Lin LL, Qin A. A Novel Monoclonal Antibody against PD-1 for the Treatment of Viral Oncogene-Induced Tumors or Other Cancer. Cancers (Basel) 2024; 16:3052. [PMID: 39272910 PMCID: PMC11393876 DOI: 10.3390/cancers16173052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Programmed cell death 1 (PD-1) and programmed death-ligand 1 (PD-L1) interact to form an immune checkpoint fostering viral infection and viral oncogene-induced tumorigenesis. We generated a novel anti-human PD-1, humanized monoclonal antibody P1801 and investigated its pharmacologic, pharmacokinetic (PK), and pharmacodynamic properties. In vitro binding assays revealed that P1801 uniquely binds to human PD-1 and inhibits its interaction with PD-L1/2. It showed a minor effect on the induction of antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). P1801 significantly induced the release of IL-2 from activated T-cells but not from nonactivated T-cells. A dose-dependent linear PK profile was observed for the cynomolgus monkeys treated with repeated doses of P1801 at 5 mg/kg to 200 mg/kg once weekly. A four-week repeat-dose toxicity study revealed that P1801 given weekly was safe and well tolerated at doses ranging from 5 to 200 mg/kg/dose. No pathological abnormalities were noted. In humanized PD-1 mice harboring human PD-L1-expressing colon tumor cells, P1801 administered intraperitoneally twice per week at 12 mg/kg significantly inhibited tumor growth and prolonged mouse survival. P1801 displayed unique binding properties different from pembrolizumab and nivolumab. Therefore, it showed distinctive immunological reactions and significant antitumor activities. We are initiating a Phase 1 clinical study to test its combination use with ropeginterferon alfa-2b, which also has antiviral and antitumor activities, for the treatment of cancer.
Collapse
Affiliation(s)
- Xu Xu
- Research Department, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Shih-Long Yan
- Research Department, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Yi-Te Yo
- Research Department, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Peiyu Chiang
- Research Department, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Chan-Yen Tsai
- Medical Research & Clinical Operations, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Lih-Ling Lin
- Research Department, PharmaEssentia Corporation, Taipei 115, Taiwan
| | - Albert Qin
- Medical Research & Clinical Operations, PharmaEssentia Corporation, Taipei 115, Taiwan
| |
Collapse
|
36
|
Tang Q, Wu S, Zhao B, Li Z, Zhou Q, Yu Y, Yang X, Wang R, Wang X, Wu W, Wang S. Reprogramming of glucose metabolism: The hallmark of malignant transformation and target for advanced diagnostics and treatments. Biomed Pharmacother 2024; 178:117257. [PMID: 39137648 DOI: 10.1016/j.biopha.2024.117257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Reprogramming of cancer metabolism has become increasingly concerned over the last decade, particularly the reprogramming of glucose metabolism, also known as the "Warburg effect". The reprogramming of glucose metabolism is considered a novel hallmark of human cancers. A growing number of studies have shown that reprogramming of glucose metabolism can regulate many biological processes of cancers, including carcinogenesis, progression, metastasis, and drug resistance. In this review, we summarize the major biological functions, clinical significance, potential targets and signaling pathways of glucose metabolic reprogramming in human cancers. Moreover, the applications of natural products and small molecule inhibitors targeting glucose metabolic reprogramming are analyzed, some clinical agents targeting glucose metabolic reprogramming and trial statuses are summarized, as well as the pros and cons of targeting glucose metabolic reprogramming for cancer therapy are analyzed. Overall, the reprogramming of glucose metabolism plays an important role in the prediction, prevention, diagnosis and treatment of human cancers. Glucose metabolic reprogramming-related targets have great potential to serve as biomarkers for improving individual outcomes and prognosis in cancer patients. The clinical innovations related to targeting the reprogramming of glucose metabolism will be a hotspot for cancer therapy research in the future. We suggest that more high-quality clinical trials with more abundant drug formulations and toxicology experiments would be beneficial for the development and clinical application of drugs targeting reprogramming of glucose metabolism.This review will provide the researchers with the broader perspective and comprehensive understanding about the important significance of glucose metabolic reprogramming in human cancers.
Collapse
Affiliation(s)
- Qing Tang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China.
| | - Siqi Wu
- The First Clinical School of Guangzhou University of Chinese Medicine;Department of Oncology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine,Guangzhou 510000, China; Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan 528400, China
| | - Baiming Zhao
- The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhanyang Li
- School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qichun Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Yaya Yu
- The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Xiaobing Yang
- The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Rui Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Xi Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China
| | - Wanyin Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China.
| | - Sumei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; The Second Clinical Medical College, The Second Affiliated Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, 510120, P. R. China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P. R. China.
| |
Collapse
|
37
|
Li M, Gao X, Su Y, Shan S, Qian W, Zhang Z, Zhu D. FOXM1 transcriptional regulation. Biol Cell 2024; 116:e2400012. [PMID: 38963053 DOI: 10.1111/boc.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024]
Abstract
FOXM1 is a key transcriptional regulator involved in various biological processes in mammals, including carbohydrate and lipid metabolism, aging, immune regulation, development, and disease. Early studies have shown that FOXM1 acts as an oncogene by regulating cell proliferation, cell cycle, migration, metastasis, and apoptosis, as well as genes related to diagnosis, treatment, chemotherapy resistance, and prognosis. Researchers are increasingly focusing on FOXM1 functions in tumor microenvironment, epigenetics, and immune infiltration. However, researchers have not comprehensively described FOXM1's involvement in tumor microenvironment shaping, epigenetics, and immune cell infiltration. Here we review the role of FOXM1 in the formation and development of malignant tumors, and we will provide a comprehensive summary of the role of FOXM1 in transcriptional regulation, interacting proteins, tumor microenvironment, epigenetics, and immune infiltration, and suggest areas for further research.
Collapse
Affiliation(s)
- Mengxi Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Xuzheng Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Wenbin Qian
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| |
Collapse
|
38
|
Chen W, Tan M, Zhang H, Gao T, Ren J, Cheng S, Chen J. Signaling molecules in the microenvironment of hepatocellular carcinoma. Funct Integr Genomics 2024; 24:146. [PMID: 39207523 DOI: 10.1007/s10142-024-01427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major fatal cancer that is known for its high recurrence and metastasis. An increasing number of studies have shown that the tumor microenvironment is closely related to the metastasis and invasion of HCC. The HCC microenvironment is a complex integrated system composed of cellular components, the extracellular matrix (ECM), and signaling molecules such as chemokines, growth factors, and cytokines, which are generally regarded as crucial molecules that regulate a series of important processes, such as the migration and invasion of HCC cells. Considering the crucial role of signaling molecules, this review aims to elucidate the regulatory effects of chemokines, growth factors, and cytokines on HCC cells in their microenvironment to provide important references for clarifying the development of HCC and exploring effective therapeutic targets.
Collapse
Affiliation(s)
- Wanjin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Gao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
39
|
Pandey S, Anang V, Schumacher MM. Tumor microenvironment induced switch to mitochondrial metabolism promotes suppressive functions in immune cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:67-103. [PMID: 39396850 DOI: 10.1016/bs.ircmb.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Understanding the intricacies of the metabolic phenotype in immune cells and its plasticity within the tumor microenvironment is pivotal in understanding the pathology and prognosis of cancer. Unfavorable conditions and cellular stress in the tumor microenvironment (TME) exert a profound impact on cellular functions in immune cells, thereby influencing both tumor progression and immune responses. Elevated AMP:ATP ratio, a consequence of limited glucose levels, activate AMP-activated protein kinase (AMPK) while concurrently repressing the activity of mechanistic target of rapamycin (mTOR) and hypoxia-inducible factor 1-alpha (HIF-1α). The intricate balance between AMPK, mTOR, and HIF-1α activities defines the metabolic phenotype of immune cells in the TME. These Changes in metabolic phenotype are strongly associated with immune cell functions and play a crucial role in creating a milieu conducive to tumor progression. Insufficiency of nutrient and oxygen supply leads to a metabolic shift in immune cells characterized by a decrease in glycolysis and an increase in oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) rates. In most cases, this shift in metabolism is accompanied by a compromise in the effector functions of these immune cells. This metabolic adaptation prompts immune cells to turn down their effector functions, entering a quiescent or immunosuppressive state that may support tumor growth. This article discusses how tumor microenvironment alters the metabolism in immune cells leading to their tolerance and tumor progression, with emphasis on mitochondrial metabolism (OXPHOS and FAO).
Collapse
Affiliation(s)
- Sanjay Pandey
- Department of Radiation Oncology, Montefiorke Medical Center, Bronx, NY, United States.
| | - Vandana Anang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| | - Michelle M Schumacher
- Department of Radiation Oncology, Montefiorke Medical Center, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
40
|
Zuo MX, An C, Cao YZ, Pan JY, Xie LP, Yang XJ, Li W, Wu PH. Camrelizumab, apatinib and hepatic artery infusion chemotherapy combined with microwave ablation for advanced hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:3481-3495. [PMID: 39171171 PMCID: PMC11334027 DOI: 10.4251/wjgo.v16.i8.3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/01/2024] [Accepted: 06/12/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Hepatic arterial infusion chemotherapy and camrelizumab plus apatinib (TRIPLET protocol) is promising for advanced hepatocellular carcinoma (Ad-HCC). However, the usefulness of microwave ablation (MWA) after TRIPLET is still controversial. AIM To compare the efficacy and safety of TRIPLET alone (T-A) vs TRIPLET-MWA (T-M) for Ad-HCC. METHODS From January 2018 to March 2022, 217 Ad-HCC patients were retrospectively enrolled. Among them, 122 were included in the T-A group, and 95 were included in the T-M group. A propensity score matching (PSM) was applied to balance bias. Overall survival (OS) was compared using the Kaplan-Meier curve with the log-rank test. The overall objective response rate (ORR) and major complications were also assessed. RESULTS After PSM, 82 patients were included both the T-A group and the T-M group. The ORR (85.4%) in the T-M group was significantly higher than that (65.9%) in the T-A group (P < 0.001). The cumulative 1-, 2-, and 3-year OS rates were 98.7%, 93.4%, and 82.0% in the T-M group and 85.1%, 63.1%, and 55.0% in the T-A group (hazard ratio = 0.22; 95% confidence interval: 0.10-0.49; P < 0.001). The incidence of major complications was 4.9% (6/122) in the T-A group and 5.3% (5/95) in the T-M group, which were not significantly different (P = 1.000). CONCLUSION T-M can provide better survival outcomes and comparable safety for Ad-HCC than T-A.
Collapse
Affiliation(s)
- Meng-Xuan Zuo
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Chao An
- Department of Interventional Ultrasound, Chinese General PLA Hospital, Beijing 100853, China
| | - Yu-Zhe Cao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Jia-Yu Pan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Lu-Ping Xie
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Xin-Jing Yang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Wang Li
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Pei-Hong Wu
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
41
|
Shen Y, Zhao X, Chen L, Wang X, Wang D, Zhang H, Zheng Z, Huang W, Zheng C, Chen Y, Chen C, Chen Q. A modified HSV-1 oncolytic virus reconciles antiviral and antitumor immunity via promoting IFNβ expression and inhibiting PKR. Int J Biol Macromol 2024; 274:133297. [PMID: 38925170 DOI: 10.1016/j.ijbiomac.2024.133297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Type I interferon (IFN-I) is a potent immune modulator intricately involved in regulating tumor immunity. Meanwhile, the integrity of the IFN-I signaling pathway is essential for radiotherapy, chemotherapy, targeted therapy, and immunotherapy. However, the clinical application of IFN-I remains challenging due to its non-specific cytotoxicity and limited half-life. To overcome these limitations, we developed a gene delivery platform, CRISPR-V, enabling the rapid creation of novel HSV-1 oncolytic viruses. Utilizing this platform, we created an oncolytic virus, OVH-IFNβ, in which the IFNβ gene was incorporated into the HSV-1 genome. However, exogenous IFNβ expression significantly inhibited OVH-IFNβ replication. Through transcriptome data analyses, we identified several ISG genes inhibiting OVH-IFNβ replication. By gene knockout and functional studies of the downstream effectors, we confirmed the prominent antiviral activities of protein kinase R (PKR). To balance the antitumor and antiviral immunity of IFNβ, we developed a novel HSV-1 oncolytic virus, OVH-IFNβ-iPKR, which can express IFNβ while inhibiting PKR, leading to a potent antitumor immunity while reducing the antiviral capacity of IFNβ. OVH-IFNβ-iPKR shows a strong ability to induce immunogenic cell death and activate tumor-specific CD8+ T cells, leading to de novo immune responses and providing a novel strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xiangqian Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Lizhu Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xin Wang
- Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dawei Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Hucheng Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zuda Zheng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Weiwei Huang
- Department of Medical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
| | - Chuanben Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
42
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
43
|
Li X, Zhou L, Xu X, Liu X, Wu W, Feng Q, Tang Z. Metabolic reprogramming in hepatocellular carcinoma: a bibliometric and visualized study from 2011 to 2023. Front Pharmacol 2024; 15:1392241. [PMID: 39086383 PMCID: PMC11289777 DOI: 10.3389/fphar.2024.1392241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Background and aims Metabolic reprogramming has been found to be a typical feature of tumors. Hepatocellular carcinoma (HCC), a cancer with high morbidity and mortality, has been extensively studied for its metabolic reprogramming-related mechanisms. Our study aims to identify the hotspots and frontiers of metabolic reprogramming research in HCC and to provide guidance for future scientific research and decision-making in HCC metabolism. Methods Relevant studies on the metabolic reprogramming of HCC were derived from the Web of Science Core Collection (WoSCC) database up until November 2023. The bibliometrix tools in R were used for scientometric analysis and visualization. Results From 2011 to 2023, a total of 575 publications were obtained from WoSCC that met the established criteria. These publications involved 3,904 researchers and 948 organizations in 37 countries, with an average annual growth rate of 39.11% in research. These studies were published in 233 journals, with Cancers (n = 29) ranking first, followed by Frontiers in Oncology (n = 20) and International Journal of Molecular Sciences (n = 19). The top ten journals accounted for 26% of the 575 studies. The most prolific authors were Wang J (n = 14), Li Y (n = 12), and Liu J (n = 12). The country with the most publications is China, followed by the United States, Italy, and France. Fudan University had the largest percentage of research results with 15.48% (n = 89). Ally A's paper in Cell has the most citations. A total of 1,204 keywords were analyzed, with the trend themes such as "glycolysis," "tumor microenvironment," "Warburg effect," "mitochondria," "hypoxia ," etc. Co-occurrence network and cluster analysis revealed the relationships between keywords, authors, publications, and journals. Moreover, the close collaboration between countries in this field was elucidated. Conclusion This bibliometric and visual analysis delves into studies related to metabolic reprogramming in HCC between 2012 and 2023, elucidating the characteristics of research in this field, which has gradually moved away from single glycolipid metabolism studies to the integration of overall metabolism in the body, pointing out the trend of research topics, and the dynamics of the interaction between the tumor microenvironment and metabolic reprogramming will be the future direction of research, which provides blueprints and inspirations for HCC prevention and treatment programs to the researchers in this field. Systematic Review Registration: [https://www.bibliometrix.org].
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liping Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Xu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyang Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Tang
- The Beibei Affiliated Hospital of Chongqing Medical University, The Ninth People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
44
|
Sun BY, Zhang D, Gan W, Wu JF, Wang ZT, Sun GQ, Zhou J, Fan J, Yi Y, Hu B, Zhang BH, Qiu SJ. Targeting CD73 limits tumor progression and enhances anti-tumor activity of anti-PD-1 therapy in intrahepatic cholangiocarcinoma. J Cancer Res Clin Oncol 2024; 150:348. [PMID: 39002018 PMCID: PMC11246275 DOI: 10.1007/s00432-024-05869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND & AIMS Patients with intrahepatic cholangiocarcinoma (iCCA) respond poorly to immune checkpoint blockades (ICBs). In this study, we aimed to dissect the potential mechanisms underlying poor response to ICBs and explore a rational ICB-based combination therapy in iCCA. METHODS scRNA-seq dataset GSE151530 was analyzed to investigate the differentially expressed genes in malignant cells following ICBs therapy. RNA-seq analysis and western blot assays were performed to examine the upstream and downstream signaling pathways of CD73. Subcutaneous tumor xenograft models were utilized to investigate the impact of CD73 on iCCA growth. Plasmid AKT/NICD-induced spontaneous murine iCCAs were used to explore the therapeutic efficacy of CD73 enzymatic inhibitor AB680 combined with PD-1 blockade. Time-of-flight mass cytometry (CyTOF) was conducted to identify the tumor-infiltrating immune cell populations and their functional changes in murine iCCAs treated with AB680 in combination with PD-1 antibody. RESULTS scRNA-seq analysis identified elevated CD73 expression in malignant cells in response to ICBs therapy. Mechanistically, ICBs therapy upregulated CD73 expression in malignant cells via TNF-α/NF-κB signaling pathway. In vivo studies revealed that CD73 inhibition suppressed the growth of subcutaneous tumors, and achieved synergistic depression effects with gemcitabine and cisplatin (GC). Adenosine produced by CD73 activates AKT/GSK3β/β-catenin signaling axis in iCCA cells. CD73 inhibitor AB680 potentiates anti-tumor efficacy of PD-1 antibody in murine iCCAs. CyTOF analysis showed that AB680 combined with anti-PD-1 therapy promoted the infiltration of CD8+ T, CD4+ T cells, and NK cells in murine iCCAs, while simultaneously decreased the proportions of macrophages and neutrophils. Moreover, AB680 combined with anti-PD-1 significantly upregulated the expression of Granzyme B, Tbet and co-stimulatory molecule ICOS in infiltrating CD8+ T cells. CONCLUSIONS CD73 inhibitor AB680 limits tumor progression and potentiates therapeutic efficacy of GC chemotherapy or anti-PD-1 treatment in iCCA. AB680 combined with anti-PD-1 therapy effectively elicits anti-tumor immune response.
Collapse
Affiliation(s)
- Bao-Ye Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dai Zhang
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Gan
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing-Fang Wu
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhu-Tao Wang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guo-Qiang Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bo Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Bo-Heng Zhang
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China.
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
45
|
Chen S, Yi W, Zhou H, Jiang H, Lan P, Chen Z. FOS+ Macrophages Promote Chronic Rejection of Cardiac Transplantation. EXP CLIN TRANSPLANT 2024; 22:540-550. [PMID: 39223812 DOI: 10.6002/ect.2024.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Chronic rejection remains the leading cause of progressive decline in graft function. Accumulating evidence indicates that macrophages participate in chronic rejection dependent on CD40-CD40L. The FOS family members are critical in inflammatory and immune responses. However, the mechanisms underlying the role of FOS family members in chronic rejection remain unclear. In this study, we aimed to elucidate the role and underlying mechanisms of FOS-positive macrophages regulated by CD40 that mediate chronic allograft rejection. MATERIALS AND METHODS We downloaded publicly accessible chronic rejection kidney transplant single-cell sequencing datasets from the gene expression omnibus database. Differentially expressed genes between the CD40hi and CD40low macrophage chronic rejection groups were analyzed. We established a chronic rejection mouse model by using CTLA-4-Ig. We treated bone marrow-derived macrophages with an anti-CD40 antibody. We assessed expression of the FOS family by flow cytometry, real-time quantitative polymerase chain reaction, Western blotting, and immunofluorescence. We identified altered signaling pathways by using RNA sequencing analysis. We detected DNA specifically bound to transcription factors by using ChIP-sequencing, with detection of the degree of graft fibrosis and survival. RESULTS FOS was highly expressed on CD40hi macrophages in patients with chronic transplantrejection. Mechanistically, we showed that CD40 activated NF-κB2 translocation into the nucleus to upregulate c-Fos and FosB expression, thus promoting chronic rejection of cardiac transplant.We showed thatNF-κB2 regulated c-Fos and FosB expression by binding to the c-fos and fosb promoter regions. Inhibition of c-Fos/activator protein-1 decreased graft fibrosis and prolonged graft survival. CONCLUSIONS CD40 may activate transcription factor NF-κB2 translocation into the nucleus of macrophages to upregulate c-Fos and FosB expression, thus promoting chronic rejection of cardiac transplant. Inhibition of c-Fos/activator protein-1 decreased grafts fibrosis and prolonged graft survival.
Collapse
Affiliation(s)
- Shi Chen
- >From the Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China Key Laboratory of Organ Transplantation, Ministry of Education; the NHC Key Laboratory of Organ Transplantation; and the Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | | | | | | | | | | |
Collapse
|
46
|
Yue B, Gao Y, Hu Y, Zhan M, Wu Y, Lu L. Harnessing CD8 + T cell dynamics in hepatitis B virus-associated liver diseases: Insights, therapies and future directions. Clin Transl Med 2024; 14:e1731. [PMID: 38935536 PMCID: PMC11210506 DOI: 10.1002/ctm2.1731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Hepatitis B virus (HBV) infection playsa significant role in the etiology and progression of liver-relatedpathologies, encompassing chronic hepatitis, fibrosis, cirrhosis, and eventual hepatocellularcarcinoma (HCC). Notably, HBV infection stands as the primary etiologicalfactor driving the development of HCC. Given the significant contribution ofHBV infection to liver diseases, a comprehensive understanding of immunedynamics in the liver microenvironment, spanning chronic HBV infection,fibrosis, cirrhosis, and HCC, is essential. In this review, we focused on thefunctional alterations of CD8+ T cells within the pathogenic livermicroenvironment from HBV infection to HCC. We thoroughly reviewed the roles ofhypoxia, acidic pH, metabolic reprogramming, amino acid deficiency, inhibitory checkpointmolecules, immunosuppressive cytokines, and the gut-liver communication in shapingthe dysfunction of CD8+ T cells in the liver microenvironment. Thesefactors significantly impact the clinical prognosis. Furthermore, we comprehensivelyreviewed CD8+ T cell-based therapy strategies for liver diseases,encompassing HBV infection, fibrosis, cirrhosis, and HCC. Strategies includeimmune checkpoint blockades, metabolic T-cell targeting therapy, therapeuticT-cell vaccination, and adoptive transfer of genetically engineered CD8+ T cells, along with the combined usage of programmed cell death protein-1/programmeddeath ligand-1 (PD-1/PD-L1) inhibitors with mitochondria-targeted antioxidants.Given that targeting CD8+ T cells at various stages of hepatitis Bvirus-induced hepatocellular carcinoma (HBV + HCC) shows promise, we reviewedthe ongoing need for research to elucidate the complex interplay between CD8+ T cells and the liver microenvironment in the progression of HBV infection toHCC. We also discussed personalized treatment regimens, combining therapeuticstrategies and harnessing gut microbiota modulation, which holds potential forenhanced clinical benefits. In conclusion, this review delves into the immunedynamics of CD8+ T cells, microenvironment changes, and therapeuticstrategies within the liver during chronic HBV infection, HCC progression, andrelated liver diseases.
Collapse
Affiliation(s)
- Bing Yue
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yuxia Gao
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yi Hu
- Microbiology and Immunology DepartmentSchool of MedicineFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Jinan UniversityZhuhaiGuangdongChina
| |
Collapse
|
47
|
Wei R, Xiao S, Zhao S, Guo W, Liu Y, Mullor MDMR, Rodrìguez RA, Wei Q, Wu Y. Pan-cancer analysis of T-cell proliferation regulatory genes as potential immunotherapeutic targets. Aging (Albany NY) 2024; 16:11224-11247. [PMID: 39068665 PMCID: PMC11315386 DOI: 10.18632/aging.205977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/03/2024] [Indexed: 07/30/2024]
Abstract
T cells are the key to killing tumor cells. However, the exact mechanism of their role in cancer is not fully understood. Therefore, a comprehensive understanding of the role of T-cell proliferation regulatory genes in tumors is needed. In our study, we investigated the expression levels of genes controlling T-cell proliferation, their impact on prognosis, and their genetic variations. Additionally, we explored their associations with TMB, MSI, ESTIMATEScore, ImmuneScore, StromalScore, and immune cell infiltration. We examined the role of these genes in cancer-related pathways using GSEA. Furthermore, we calculated their activity levels across various types of cancer. Drug analysis was also conducted targeting these genes. Single-cell analysis, LASSO Cox model construction, and prognosis analysis were performed. We observed distinct expression patterns of T-cell proliferation regulatory genes across different malignant tumors. Their abnormal expression may be caused by CNA and DNA methylation. In certain cancers, they also showed complex associations with TMB and MSI. Moreover, in many tumors, they exhibited significant positive correlations with ESTIMATEScores, ImmuneScore, and StromalScore. Additionally, in most tumors, their GSVA scores were significantly positively correlated with various T-cell subtypes. GSEA analysis revealed their involvement in multiple immune pathways. Furthermore, we found that model scores were associated with patient prognosis and related to tumor malignancy progression. T-cell proliferation regulatory genes are closely associated with the tumor immune microenvironment (TIM), especially T cells. Targeting them may be an essential approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shihui Xiao
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shijian Zhao
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Kunming Medical University (Fuwai Yunnan Cardiovascular Hospital), Kunming, Yunnan 650000, China
| | - Wenliang Guo
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi 537100, China
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | | | - Raquel Alarcòn Rodrìguez
- Faculty of Health Sciences, University of Almerìa, Carretera de Sacramento, Almeria 04120, Spain
| | - Qingjun Wei
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
48
|
Qu J, Li Y, Wu B, Shen Q, Chen L, Sun W, Wang B, Ying L, Wu L, Zhou H, Zhou J, Zhou J. CD161 +CD127 +CD8 + T cell subsets can predict the efficacy of anti-PD-1 immunotherapy in non-small cell lung cancer with diabetes mellitus. Oncoimmunology 2024; 13:2371575. [PMID: 38952673 PMCID: PMC11216103 DOI: 10.1080/2162402x.2024.2371575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
The role of CD161+CD127+CD8+ T cells in non-small cell lung cancer (NSCLC) patients with diabetes remains unexplored. This study determined the prevalence, phenotype, and function of CD8+ T cell subsets in NSCLC with diabetes. We recruited NSCLC patients (n = 436) treated with anti-PD-1 immunotherapy as first-line treatment. The progression-free survival (PFS), overall survival (OS), T cells infiltration, and peripheral blood immunological characteristics were analyzed in NSCLC patients with or without diabetes. NSCLC patients with diabetes exhibited shorter PFS and OS (p = 0.0069 and p = 0.012, respectively) and significantly lower CD8+ T cells infiltration. Mass cytometry by time-of-flight (CyTOF) showed a higher percentage of CD161+CD127+CD8+ T cells among CD8+T cells in NSCLC with diabetes before anti-PD-1 treatment (p = 0.0071) than that in NSCLC without diabetes and this trend continued after anti-PD-1 treatment (p = 0.0393). Flow cytometry and multiple-immunofluorescence confirmed that NSCLC with diabetes had significantly higher CD161+CD127+CD8+ T cells to CD8+T cells ratios than NSCLC patients without diabetes. The RNA-sequencing analysis revealed immune-cytotoxic genes were reduced in the CD161+CD127+CD8+ T cell subset compared to CD161+CD127-CD8+ T cells in NSCLC with diabetes. CD161+CD127+CD8+ T cells exhibited more T cell-exhausted phenotypes in NSCLC with diabetes. NSCLC patients with diabetes with ≥ 6.3% CD161+CD127+CD8+ T cells to CD8+T cells ratios showed worse PFS. These findings indicate that diabetes is a risk factor for NSCLC patients who undergo anti-PD-1 immunotherapy.CD161+CD127+CD8+ T cells could be a key indicator of a poor prognosis in NSCLC with diabetes. Our findings would help in advancing anti-PD-1 therapy in NSCLC patients with diabetes.
Collapse
Affiliation(s)
- Jingjing Qu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
| | - Yuekang Li
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
| | - Binggen Wu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
| | - Qian Shen
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
| | - Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Wenjia Sun
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
| | - Bo Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Lixiong Ying
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Li Wu
- Department of Endocrinology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Hong Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Jianya Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
49
|
Zhang Q, Wang C, Qin M, Ye Y, Mo Y, Meng Q, Yang G, Feng G, Lin R, Xian S, Wei J, Chen S, Wang S, Mo Z. Investigating cellular similarities and differences between upper tract urothelial carcinoma and bladder urothelial carcinoma using single-cell sequencing. Front Immunol 2024; 15:1298087. [PMID: 38903524 PMCID: PMC11187293 DOI: 10.3389/fimmu.2024.1298087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
Background Upper tract urothelial carcinoma (UTUC) and bladder urothelial carcinoma (BLCA) both originate from uroepithelial tissue, sharing remarkably similar clinical manifestations and therapeutic modalities. However, emerging evidence suggests that identical treatment regimens may lead to less favorable outcomes in UTUC compared to BLCA. Therefore, it is imperative to explore molecular processes of UTUC and identify biological differences between UTUC and BLCA. Methods In this study, we performed a comprehensive analysis using single-cell RNA sequencing (scRNA-seq) on three UTUC cases and four normal ureteral tissues. These data were combined with publicly available datasets from previous BLCA studies and RNA sequencing (RNA-seq) data for both cancer types. This pooled analysis allowed us to delineate the transcriptional differences among distinct cell subsets within the microenvironment, thus identifying critical factors contributing to UTUC progression and phenotypic differences between UTUC and BLCA. Results scRNA-seq analysis revealed seemingly similar but transcriptionally distinct cellular identities within the UTUC and BLCA ecosystems. Notably, we observed striking differences in acquired immunological landscapes and varied cellular functional phenotypes between these two cancers. In addition, we uncovered the immunomodulatory functions of vein endothelial cells (ECs) in UTUC, and intercellular network analysis demonstrated that fibroblasts play important roles in the microenvironment. Further intersection analysis showed that MARCKS promote UTUC progression, and immunohistochemistry (IHC) staining revealed that the diverse expression patterns of MARCKS in UTUC, BLCA and normal ureter tissues. Conclusion This study expands our multidimensional understanding of the similarities and distinctions between UTUC and BLCA. Our findings lay the foundation for further investigations to develop diagnostic and therapeutic targets for UTUC.
Collapse
Affiliation(s)
- Qingyun Zhang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Chengbang Wang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Min Qin
- Human Sperm Bank, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Ye
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yingxi Mo
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qinggui Meng
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Guanglin Yang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Guanzheng Feng
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Rui Lin
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Shinan Xian
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jueling Wei
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Shaohua Chen
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shan Wang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
50
|
Dong W, Lin M, Zhang R, Sun X, Li H, Liu T, Xu Y, Lv L. d-mannose targets PD-1 to lysosomal degradation and enhances T cell-mediated anti-tumor immunity. Cancer Lett 2024; 591:216883. [PMID: 38615929 DOI: 10.1016/j.canlet.2024.216883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
High expression of programmed cell death protein 1 (PD-1), a typical immune checkpoint, results in dysfunction of T cells in tumor microenvironment. Antibodies and inhibitors against PD-1 or its ligand (PD-L1) have been widely used in various malignant tumors. However, the mechanisms by which PD-1 is regulated are not fully understood. Here, we report a mechanism of PD-1 degradation triggered by d-mannose and the universality of this mechanism in anti-tumor immunity. We show that d-mannose inactivates GSK3β via promoting phosphorylation of GSK3β at Ser9, thereby leading to TFE3 translocation to nucleus and subsequent PD-1 proteolysis induced by enhanced lysosome biogenesis. Notably, combination of d-mannose and PD-1 blockade exhibits remarkable tumor growth suppression attributed to elevated cytotoxicity activity of T cells in vivo. Furthermore, d-mannose treatment dramatically improves the therapeutic efficacy of MEK inhibitor (MEKi) trametinib in vivo. Our findings unveil a universally unrecognized anti-tumor mechanism of d-mannose by destabilizing PD-1 and provide strategies to enhance the efficacy of both immune checkpoint blockade (ICB) and MEKi -based therapies.
Collapse
Affiliation(s)
- Wenjing Dong
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mingen Lin
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ruonan Zhang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xue Sun
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongchen Li
- Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Tianshu Liu
- Dept of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yanping Xu
- Tongji Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Lei Lv
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|