1
|
Zhang Z, Wang X, Zhao C, Zhu H, Liao X, Tsai HI. STING and metabolism-related diseases: Roles, mechanisms, and applications. Cell Signal 2025; 132:111833. [PMID: 40294833 DOI: 10.1016/j.cellsig.2025.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The stimulator of interferon genes (STING) pathway plays a critical role in innate immunity, acting as a central mediator that links cytosolic DNA sensing to inflammatory signaling. STING not only responds to cellular metabolic states but also actively regulates key metabolic processes, including glycolysis, lipid metabolism, and redox balance. This bidirectional interaction underscores the existence of a dynamic feedback mechanism between STING signaling and metabolic pathways, which is essential for maintaining cellular homeostasis. This review provides a comprehensive analysis, beginning with an in-depth overview of the classical STING signaling pathway, followed by a detailed examination of its reciprocal regulation of various metabolic pathways. Additionally, it explores the role and mechanisms of STING signaling in metabolic disorders, including obesity, diabetes, and atherosclerosis. By integrating these insights into the mutual regulation between STING and its metabolism, novel therapeutic strategies targeting this pathway in metabolic diseases have been proposed.
Collapse
Affiliation(s)
- Zhengyang Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xirui Wang
- Department of Biomedical Engineering, School of Medical Imaging, Xuzhou Medical University, Xuzhou 221000, China
| | - Chuangchuang Zhao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China.
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
2
|
Song H, Chen L, Pan X, Shen Y, Ye M, Wang G, Cui C, Zhou Q, Tseng Y, Gong Z, Zhong B, Cui H, Mo S, Zheng J, Jin B, Zheng W, Luo F, Liu J. Targeting tumor monocyte-intrinsic PD-L1 by rewiring STING signaling and enhancing STING agonist therapy. Cancer Cell 2025; 43:503-518.e10. [PMID: 40068600 DOI: 10.1016/j.ccell.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/29/2024] [Accepted: 02/11/2025] [Indexed: 05/13/2025]
Abstract
STING is an important DNA sensing machinery in initiating immune response, yet therapies targeting STING have shown poor outcomes in clinical trials. Here, we reveal that STING signaling induces PD-L1hi tumor monocytes (Tu.Mons) that dominate the resistance against STING agonist therapy. Cell-intrinsic PD-L1, induced by the STING-IRF3-IFN-I axis, is identified as the driving factor for protumoral PD-L1hi Tu.Mons. Notably, TLR2-activated Tu.Mons resist STING-induced upregulation of cell-intrinsic PD-L1 and the associated protumoral functions. Mechanistically, TLR2 stimulation remodels STING signaling by facilitating STING and TRAF6 interaction, which suppresses the IRF3-IFN-I response and enhances NF-κB activation. Moreover, we demonstrate that combining STING agonists with TLR2 agonist pretreatment significantly improves antitumor efficacy in murine syngeneic and humanized models. Our findings uncover a protumoral aspect of STING activation mediated by cell-intrinsic PD-L1 and propose a promising strategy to boost antitumor immunity by fine-tuning STING signaling outputs.
Collapse
Affiliation(s)
- Huan Song
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lin Chen
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Xuanxuan Pan
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuru Shen
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Maolin Ye
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guohong Wang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Qi Zhou
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yujen Tseng
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zheng Gong
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bin Zhong
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haoshu Cui
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shaocong Mo
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiayue Zheng
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bryan Jin
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanwei Zheng
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feifei Luo
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jie Liu
- Department of Digestive Diseases, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200438, China.
| |
Collapse
|
3
|
Ying X, Chen Q, Yang Y, Wu Z, Zeng W, Miao C, Huang Q, Ai K. Nanomedicines harnessing cGAS-STING pathway: sparking immune revitalization to transform 'cold' tumors into 'hot' tumors. Mol Cancer 2024; 23:277. [PMID: 39710707 DOI: 10.1186/s12943-024-02186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
cGAS-STING pathway stands at the forefront of innate immunity and plays a critical role in regulating adaptive immune responses, making it as a key orchestrator of anti-tumor immunity. Despite the great potential, clinical outcomes with cGAS-STING activators have been disappointing due to their unfavorable in vivo fate, signaling an urgent need for innovative solutions to bridge the gap in clinical translation. Recent advancements in nanotechnology have propelled cGAS-STING-targeting nanomedicines to the cutting-edge of cancer therapy, leveraging precise drug delivery systems and multifunctional platforms to achieve remarkable region-specific biodistribution and potent therapeutic efficacy. In this review, we provide an in-depth exploration of the molecular mechanisms that govern cGAS-STING signaling and its potential to dynamically modulate the anti-tumor immune cycle. We subsequently introduced several investigational cGAS-STING-dependent anti-tumor agents and summarized their clinical trial progress. Additionally, we provided a comprehensive review of the unique advantages of cGAS-STING-targeted nanomedicines, highlighting the transformative potential of nanotechnology in this field. Furthermore, we comprehensively reviewed and comparatively analyzed the latest breakthroughs cGAS-STING-targeting nanomedicine, focusing on strategies that induce cytosolic DNA generation via exogenous DNA delivery, chemotherapy, radiotherapy, or dynamic therapies, as well as the nanodelivery of STING agonists. Lastly, we discuss the future prospects and challenges in cGAS-STING-targeting nanomedicine development, offering new insights to bridge the gap between mechanistic research and drug development, thereby opening new pathways in cancer treatment.
Collapse
Affiliation(s)
- Xiaohong Ying
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiaohui Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ziyu Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Wan Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chenxi Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Xiangya Hospital, Ministry of Education, Central South University, Changsha, 410008, China.
| |
Collapse
|
4
|
Danielson M, Nicolai CJ, Vo TT, Wolf NK, Burke TP. Cytosolic bacterial pathogens activate TLR pathways in tumors that synergistically enhance STING agonist cancer therapies. iScience 2024; 27:111385. [PMID: 39669426 PMCID: PMC11635009 DOI: 10.1016/j.isci.2024.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Intracellular bacterial pathogens are distinctive tools for fighting cancer, as they can proliferate in tumors and deliver therapeutic payloads to the eukaryotic cytosol. Cytosol-dwelling bacteria have undergone extensive preclinical and clinical testing, yet the mechanisms of activating innate immunity in tumors are unclear. We report that phylogenetically distinct cytosolic pathogens, including Listeria, Rickettsia, and Burkholderia species, elicited anti-tumor responses in poorly immunogenic melanoma and lymphoma in mice. Although the bacteria required cytosolic access, anti-tumor responses were largely independent of the cytosolic sensors cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), but instead required Toll-like receptor (TLR) signaling. Combining pathogens with STING agonists elicited profound, synergistic anti-tumor effects with complete responses in >80% of mice. Small molecule TLR agonists also synergistically enhanced STING agonists. The responses required RAG2 but not interferons, and cured mice developed immunity to cancer rechallenge requiring CD8+ T cells. These studies provide a framework for enhancing microbial and small molecule innate agonists for cancer, via co-activating STING and TLRs.
Collapse
Affiliation(s)
- Meggie Danielson
- Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92617, USA
| | | | - Thaomy T. Vo
- Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92617, USA
| | - Natalie K. Wolf
- Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas P. Burke
- Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
5
|
Mahin J, Xu X, Li L, Zhang C. cGAS/STING in skin melanoma: from molecular mechanisms to therapeutics. Cell Commun Signal 2024; 22:553. [PMID: 39558334 PMCID: PMC11571982 DOI: 10.1186/s12964-024-01860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/29/2024] [Indexed: 11/20/2024] Open
Abstract
Melanoma, recognized as the most aggressive type of skin cancer, has experienced a notable increase in cases, especially within populations with fair skin. This highly aggressive cancer is largely driven by UV radiation exposure, resulting in the uncontrolled growth and malignant transformation of melanocytes. The cGAS-STING pathway, an immune signaling mechanism responsible for detecting double-stranded DNA in the cytoplasm, is essential for mediating the immune response against melanoma. This pathway serves a dual purpose: it enhances antitumor immunity by activating immune cells, but it can also promote tumor growth when chronically activated by creating an immunosuppressive environment. This review comprehensively examines the multifaceted implication of the cGAS-STING pathway in melanoma pathogenesis and treatment. We explore its molecular mechanisms, including epigenetic regulation, interaction with signaling pathways such as AR signaling, and modulation by various cellular effectors like TG2 and activin-A. The therapeutic potential of modulating the cGAS-STING pathway is highlighted, with promising results from STING agonists, combination therapies with immune checkpoint inhibitors, and novel drug delivery systems, including nanoparticles and synthetic drugs. Our findings underscore the importance of the cGAS-STING pathway in melanoma, presenting it as a critical target for enhancing anti-tumor immunity. By leveraging this pathway, future therapeutic strategies can potentially convert 'cold' tumors into 'hot' tumors, making them more susceptible to immune responses.
Collapse
Affiliation(s)
- Jafaridarabjerdi Mahin
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xuezhu Xu
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Ling Li
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
6
|
Yu L, Liu P. cGAS/STING signalling pathway in senescence and oncogenesis. Semin Cancer Biol 2024; 106-107:87-102. [PMID: 39222763 PMCID: PMC11625615 DOI: 10.1016/j.semcancer.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The cGAS/STING signaling pathway is a crucial component of the innate immune system, playing significant roles in sensing cytosolic DNA, regulating cellular senescence, and contributing to oncogenesis. Recent advances have shed new lights into the molecular mechanisms governing pathway activation in multiple pathophysiological settings, the indispensable roles of cGAS/STING signaling in cellular senescence, and its context-dependent roles in cancer development and suppression. This review summarizes current knowledge related to the biology of cGAS/STING signaling pathway and its participations into senescence and oncogenesis. We further explore the clinical implications and therapeutic potential for cGAS/STING targeted therapies, and faced challenges in the field. With a focus on molecular mechanisms and emerging pharmacological targets, this review underscores the importance of future studies to harness the therapeutic potential of the cGAS/STING pathway in treating senescence-related disorders and cancer. Advanced understanding of the regulatory mechanisms of cGAS/STING signaling, along with the associated deregulations in diseases, combined with the development of new classes of cGAS/STING modulators, hold great promises for creating novel and effective therapeutic strategies. These advancements could address current treatment challenges and unlock the full potential of cGAS/STING in treating senescence-related disorders and oncogenesis.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Pulliam T, Jani S, Goff PH, Bhakuni R, Tabachnick-Cherny S, Smythe K, Seaton BW, Tachiki L, Kulikauskas R, Church C, Koelle DM, Nghiem P, Bhatia S. Intratumoral STING agonist reverses immune evasion in PD-(L)1-refractory Merkel cell carcinoma: mechanistic insights from detailed biomarker analyses. J Immunother Cancer 2024; 12:e009803. [PMID: 39401968 PMCID: PMC11474899 DOI: 10.1136/jitc-2024-009803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND Antibodies blocking programmed death (PD)-1 or its ligand (PD-L1) have revolutionized cancer care, but many patients do not experience durable benefits. Novel treatments to stimulate antitumor immunity are needed in the PD-(L)1 refractory setting. The stimulator of interferon genes (STING) protein, an innate sensor of cytoplasmic DNA, is a promising target with several agonists in development. However, response rates in most recent clinical trials have been low and mechanisms of response remain unclear. We report detailed biomarker analyses in a patient with anti-PD-L1 refractory, Merkel cell polyomavirus (MCPyV)-positive, metastatic Merkel cell carcinoma (MCC) who was treated with an intratumoral (IT) STING agonist (ADU-S100) plus intravenous anti-PD-1 antibody (spartalizumab) and experienced a durable objective response with regression of both injected and non-injected lesions. METHODS We analyzed pretreatment and post-treatment tumor and peripheral blood samples from our patient with single-cell RNA sequencing, 30-parameter flow cytometry, T cell receptor sequencing, and multiplexed immunohistochemistry. We analyzed cancer-specific CD8 T cells using human leukocyte antigen (HLA)-I tetramers loaded with MCPyV peptides. We also analyzed STING expression and signaling in the tumor microenvironment (TME) of 88 additional MCC tumor specimens and in MCC cell lines. RESULTS We observed high levels of MCPyV-specific T cells (12% of T cells) in our patient's tumor at baseline. These cancer-specific CD8 T cells exhibited characteristics of exhaustion including high TOX and low TCF1 proteins. Following treatment with STING-agonist plus anti-PD-1, IT CD8 T cells expanded threefold. We also observed evidence of likely improved antigen presentation in the MCC TME (greater than fourfold increase of HLA-I-positive cancer cells). STING expression was not detected in any cancer cells within our patient's tumor or in 88 other MCC tumors, however high STING expression was observed in immune and stromal cells within all 89 MCC tumors. CONCLUSIONS Our results suggest that STING agonists may be able to work indirectly in MCC via signaling through immune and stromal cells in the TME, and may not necessarily need STING expression in the cancer cells. This approach may be particularly effective in tumors that are already infiltrated by inflammatory cells in the TME but are evading immune detection via HLA-I downregulation.
Collapse
Affiliation(s)
- Thomas Pulliam
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Saumya Jani
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Peter H Goff
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Rashmi Bhakuni
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shira Tabachnick-Cherny
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | - Lisa Tachiki
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Rima Kulikauskas
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Candice Church
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
| | - David M Koelle
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Paul Nghiem
- Department of Dermatology, University of Washington School of Medicine, Seattle, Washington, USA
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Shailender Bhatia
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
9
|
Li C, Liu H, Yang L, Liu R, Yin G, Xie Q. Immune-mediated necrotizing myopathy: A comprehensive review of the pathogenesis, clinical features, and treatments. J Autoimmun 2024; 148:103286. [PMID: 39033686 DOI: 10.1016/j.jaut.2024.103286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Immune-mediated necrotizing myopathy (IMNM) is a rare and newly recognized autoimmune disease within the spectrum of idiopathic inflammatory myopathies. It is characterized by myositis-specific autoantibodies, elevated serum creatine kinase levels, inflammatory infiltrate, and weakness. IMNM can be classified into three subtypes based on the presence or absence of specific autoantibodies: anti-signal recognition particle myositis, anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase myositis, and seronegative IMNM. In recent years, IMNM has gained increasing attention and emerged as a research hotspot. Recent studies have suggested that the pathogenesis of IMNM is linked to aberrant activation of immune system, including immune responses mediated by antibodies, complement, and immune cells, particularly macrophages, as well as abnormal release of inflammatory factors. Non-immune mechanisms such as autophagy and endoplasmic reticulum stress also participate in this process. Additionally, genetic variations associated with IMNM have been identified, providing new insights into the genetic mechanisms of the disease. Progress has also been made in IMNM treatment research, including the use of immunosuppressants and the development of biologics. Despite the challenges in understanding the etiology and treatment of IMNM, the latest research findings offer important guidance and insights for delving deeper into the disease's pathogenic mechanisms and identifying new therapeutic strategies.
Collapse
Affiliation(s)
- Changpei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Leiyi Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiting Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Colangelo NW, Gerber NK, Vatner RE, Cooper BT. Harnessing the cGAS-STING pathway to potentiate radiation therapy: current approaches and future directions. Front Pharmacol 2024; 15:1383000. [PMID: 38659582 PMCID: PMC11039815 DOI: 10.3389/fphar.2024.1383000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
In this review, we cover the current understanding of how radiation therapy, which uses ionizing radiation to kill cancer cells, mediates an anti-tumor immune response through the cGAS-STING pathway, and how STING agonists might potentiate this. We examine how cGAS-STING signaling mediates the release of inflammatory cytokines in response to nuclear and mitochondrial DNA entering the cytoplasm. The significance of this in the context of cancer is explored, such as in response to cell-damaging therapies and genomic instability. The contribution of the immune and non-immune cells in the tumor microenvironment is considered. This review also discusses the burgeoning understanding of STING signaling that is independent of inflammatory cytokine release and the various mechanisms by which cancer cells can evade STING signaling. We review the available data on how ionizing radiation stimulates cGAS-STING signaling as well as how STING agonists may potentiate the anti-tumor immune response induced by ionizing radiation. There is also discussion of how novel radiation modalities may affect cGAS-STING signaling. We conclude with a discussion of ongoing and planned clinical trials combining radiation therapy with STING agonists, and provide insights to consider when planning future clinical trials combining these treatments.
Collapse
Affiliation(s)
- Nicholas W. Colangelo
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
| | - Naamit K. Gerber
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
| | - Ralph E. Vatner
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Benjamin T. Cooper
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
11
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
12
|
Danielson M, Nicolai CJ, Vo TT, Wolf N, Burke TP. Cytosolic bacterial pathogens activate TLR pathways in tumors that synergistically enhance STING agonist cancer therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578087. [PMID: 38352567 PMCID: PMC10862861 DOI: 10.1101/2024.01.30.578087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacterial pathogens that invade the eukaryotic cytosol are distinctive tools for fighting cancer, as they preferentially target tumors and can deliver cancer antigens to MHC-I. Cytosolic bacterial pathogens have undergone extensive preclinical development and human clinical trials, yet the molecular mechanisms by which they are detected by innate immunity in tumors is unclear. We report that intratumoral delivery of phylogenetically distinct cytosolic pathogens, including Listeria, Rickettsia, and Burkholderia species, elicited anti-tumor responses in established, poorly immunogenic melanoma and lymphoma in mice. We were surprised to observe that although the bacteria required entry to the cytosol, the anti-tumor responses were largely independent of the cytosolic sensors cGAS/STING and instead required TLR signaling. Combining pathogens with TLR agonists did not enhance anti-tumor efficacy, while combinations with STING agonists elicited profound, synergistic anti-tumor effects with complete responses in >80% of mice after a single dose. Small molecule TLR agonists also synergistically enhanced the anti-tumor activity of STING agonists. The anti-tumor effects were diminished in Rag2-deficient mice and upon CD8 T cell depletion. Mice cured from combination therapy developed immunity to cancer rechallenge that was superior to STING agonist monotherapy. Together, these data provide a framework for enhancing the efficacy of microbial cancer therapies and small molecule innate immune agonists, via the co-activation of STING and TLRs.
Collapse
Affiliation(s)
- Meggie Danielson
- Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA USA
| | - Chris J. Nicolai
- Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Thaomy T. Vo
- Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA USA
| | - Natalie Wolf
- Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Thomas P. Burke
- Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA USA
| |
Collapse
|
13
|
Shen Q, Xu P, Mei C. Role of micronucleus-activated cGAS-STING signaling in antitumor immunity. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:25-34. [PMID: 38273467 PMCID: PMC10945493 DOI: 10.3724/zdxbyxb-2023-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling is a significant component of the innate immune system and functions as a vital sentinel mechanism to monitor cellular and tissue aberrations in microbial invasion and organ injury. cGAS, a cytosolic DNA sensor, is specialized in recognizing abnormally localized cytoplasmic double-stranded DNA (dsDNA) and catalyzes the formation of a second messenger cyclic-GMP-AMP (cGAMP), which initiates a cascade of type Ⅰ interferon and inflammatory responses mediated by STING. Micronucleus, a byproduct of chromosomal missegregation during anaphase, is also a significant contributor to cytoplasmic dsDNA. These unstable subcellular structures are susceptible to irreversible nuclear envelope rupture, exposing genomic dsDNA to the cytoplasm, which potently recruits cGAS and activates STING-mediated innate immune signaling and its downstream activities, including type Ⅰ interferon and classical nuclear factor-κB (NF-κB) signaling pathways lead to senescence, apoptosis, autophagy activating anti-cancer immunity or directly killing tumor cells. However, sustained STING activation-induced endoplasmic reticulum stress, activated chronic type Ⅰ interferon and nonclassical NF-κB signaling pathways remodel immunosuppressive tumor microenvironment, leading to immune evasion and facilitating tumor metastasis. Therefore, activated cGAS-STING signaling plays a dual role of suppressing or facilitating tumor growth in tumorigenesis and therapy. This review elaborates on research advances in mechanisms of micronucleus inducing activation of cGAS-STING signaling and its implications in tumorigenesis and therapeutic strategies of malignant tumors.
Collapse
Affiliation(s)
- Qin Shen
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| | - Pinglong Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Biosystems Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China.
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Chen Mei
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
| |
Collapse
|
14
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
15
|
Korneenko TV, Pestov NB, Nevzorov IA, Daks AA, Trachuk KN, Solopova ON, Barlev NA. At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment. Pharmaceuticals (Basel) 2023; 16:1675. [PMID: 38139802 PMCID: PMC10747911 DOI: 10.3390/ph16121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
The evolutionary conserved DNA-sensing cGAS-STING innate immunity pathway represents one of the most important cytosolic DNA-sensing systems that is activated in response to viral invasion and/or damage to the integrity of the nuclear envelope. The key outcome of this pathway is the production of interferon, which subsequently stimulates the transcription of hundreds of genes. In oncology, the situation is complex because this pathway may serve either anti- or pro-oncogenic roles, depending on context. The prevailing understanding is that when the innate immune response is activated by sensing cytosolic DNA, such as DNA released from ruptured micronuclei, it results in the production of interferon, which attracts cytotoxic cells to destroy tumors. However, in tumor cells that have adjusted to significant chromosomal instability, particularly in relapsed, treatment-resistant cancers, the cGAS-STING pathway often supports cancer progression, fostering the epithelial-to-mesenchymal transition (EMT). Here, we review this intricate pathway in terms of its association with cancer progression, giving special attention to pancreatic ductal adenocarcinoma and gliomas. As the development of new cGAS-STING-modulating small molecules and immunotherapies such as oncolytic viruses involves serious challenges, we highlight several recent fundamental discoveries, such as the proton-channeling function of STING. These discoveries may serve as guiding lights for potential pharmacological advancements.
Collapse
Affiliation(s)
- Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikolay B. Pestov
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Ivan A. Nevzorov
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Alexandra A. Daks
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Kirill N. Trachuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Olga N. Solopova
- Research Institute of Experimental Diagnostics and Tumor Therapy, Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
16
|
Luo J, Pang S, Hui Z, Zhao H, Xu S, Yu W, Yang L, Sun Q, Hao X, Wei F, Wang J, Ren X. Blocking Tim-3 enhances the anti-tumor immunity of STING agonist ADU-S100 by unleashing CD4 + T cells through regulating type 2 conventional dendritic cells. Theranostics 2023; 13:4836-4857. [PMID: 37771774 PMCID: PMC10526657 DOI: 10.7150/thno.86792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Rationale: An immunosuppressive tumor microenvironment (TME) is a major obstacle in tumor immunotherapy. Stimulator of interferon genes (STING) agonists trigger an inflammatory innate immune response to potentially overcome tumor immunosuppression. While STING agonists may hold promise as potential cancer therapy agents, tumor resistance to STING monotherapy has emerged in clinical trials, and the mechanisms remain unclear. Methods: The in vivo anti-tumor immunity of STING agonist ADU-S100 (S100), plus anti-T cell immunoglobulin and mucin-domain containing-3 antibody (αTim-3) were measured using murine tumor models. Tumor-specific T cell activation and alterations in the TME were detected using flow cytometry. The maturation and function of dendritic cells (DC) were also measured using flow cytometry, and the importance of CD4+ T cells in combination therapy was measured by blocking antibodies. Additionally, the effect of S100 on CD4+ T was verified via in vitro assays. Lastly, the impact of conventional dendritic cells (cDC) 2 with a high expression of Tim-3 on survival or therapeutic outcomes was further evaluated in human tumor samples. Results: S100 boosted CD8+ T by activating cDC1 but failed to initiate cDC2. Mechanistically, the administration of S100 results in an upregulation of Tim-3 expressed in cDC2 (Tim-3+cDC2) in both mice and humans, which is immunosuppressive. Tim-3+cDC2 restrained CD4+ T and attenuated the CD4+ T-driven anti-tumor response. Combining S100 with αTim-3 effectively promoted cDC2 maturation and antigen presentation, releasing CD4+ T cells, thus reducing tumor burden while prolonging survival. Furthermore, high percentages of Tim-3+cDC2 in the human TME predicted poor prognosis, whereas the abundance of Tim-3+cDC2 may act as a biomarker for CD4+ T quality and a contributing indicator for responsiveness to immunotherapy. Conclusion: This research demonstrated that blocking Tim-3 could enhance the anti-tumor immunity of STING agonist ADU-S100 by releasing CD4+ T cells through regulating cDC2. It also revealed an intrinsic barrier to ADU-S100 monotherapy, besides providing a combinatorial strategy for overcoming immunosuppression in tumors.
Collapse
Affiliation(s)
- Jing Luo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Shuju Pang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Zhenzhen Hui
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Hua Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Haihe Laboratory of Cell Ecosystem, Tianjin 300060, China
| | - Shilei Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wenwen Yu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Lili Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Qian Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Haihe Laboratory of Cell Ecosystem, Tianjin 300060, China
| | - Xishan Hao
- Haihe Laboratory of Cell Ecosystem, Tianjin 300060, China
| | - Feng Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Haihe Laboratory of Cell Ecosystem, Tianjin 300060, China
| | - Jian Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, 300060, China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Haihe Laboratory of Cell Ecosystem, Tianjin 300060, China
| |
Collapse
|
17
|
Schunke J, Mailänder V, Landfester K, Fichter M. Delivery of Immunostimulatory Cargos in Nanocarriers Enhances Anti-Tumoral Nanovaccine Efficacy. Int J Mol Sci 2023; 24:12174. [PMID: 37569548 PMCID: PMC10419017 DOI: 10.3390/ijms241512174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Finding a long-term cure for tumor patients still represents a major challenge. Immunotherapies offer promising therapy options, since they are designed to specifically prime the immune system against the tumor and modulate the immunosuppressive tumor microenvironment. Using nucleic-acid-based vaccines or cellular vaccines often does not achieve sufficient activation of the immune system in clinical trials. Additionally, the rapid degradation of drugs and their non-specific uptake into tissues and cells as well as their severe side effects pose a challenge. The encapsulation of immunomodulatory molecules into nanocarriers provides the opportunity of protected cargo transport and targeted uptake by antigen-presenting cells. In addition, different immunomodulatory cargos can be co-delivered, which enables versatile stimulation of the immune system, enhances anti-tumor immune responses and improves the toxicity profile of conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Jenny Schunke
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Michael Fichter
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
18
|
Seok JK, Kim M, Kang HC, Cho YY, Lee HS, Lee JY. Beyond DNA sensing: expanding the role of cGAS/STING in immunity and diseases. Arch Pharm Res 2023:10.1007/s12272-023-01452-3. [PMID: 37354378 DOI: 10.1007/s12272-023-01452-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) is a DNA sensor that elicits a robust type I interferon response by recognizing ubiquitous danger-associated molecules. The cGAS/stimulator of interferon genes (cGAS/STING) is activated by endogenous DNA, including DNA released from mitochondria and extranuclear chromatin, as well as exogenous DNA derived from pathogenic microorganisms. cGAS/STING is positioned as a key axis of autoimmunity, the inflammatory response, and cancer progression, suggesting that the cGAS/STING signaling pathway represents an efficient therapeutic target. Based on the accumulated evidence, we present insights into the prevention and treatment of cGAS/STING-related chronic immune and inflammatory diseases. This review presents the current state of clinical and nonclinical development of modulators targeting cGAS/STING, providing useful information on the design of therapeutic strategies.
Collapse
Affiliation(s)
- Jin Kyung Seok
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Minhyuk Kim
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
19
|
Vonderhaar EP, Dwinell MB, Craig BT. Targeted immune activation in pediatric solid tumors: opportunities to complement local control approaches. Front Immunol 2023; 14:1202169. [PMID: 37426669 PMCID: PMC10325564 DOI: 10.3389/fimmu.2023.1202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Surgery or radiation therapy is nearly universally applied for pediatric solid tumors. In many cases, in diverse tumor types, distant metastatic disease is present and evades surgery or radiation. The systemic host response to these local control modalities may lead to a suppression of antitumor immunity, with potential negative impact on the clinical outcomes for patients in this scenario. Emerging evidence suggests that the perioperative immune responses to surgery or radiation can be modulated therapeutically to preserve anti-tumor immunity, with the added benefit of preventing these local control approaches from serving as pro-tumorigenic stimuli. To realize the potential benefit of therapeutic modulation of the systemic response to surgery or radiation on distant disease that evades these modalities, a detailed knowledge of the tumor-specific immunology as well as the immune responses to surgery and radiation is imperative. In this Review we highlight the current understanding of the tumor immune microenvironment for the most common peripheral pediatric solid tumors, the immune responses to surgery and radiation, and current evidence that supports the potential use of immune activating agents in the perioperative window. Finally, we define existing knowledge gaps that limit the current translational potential of modulating perioperative immunity to achieve effective anti-tumor outcomes.
Collapse
Affiliation(s)
- Emily P. Vonderhaar
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael B. Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian T. Craig
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
20
|
Cai L, Wang Y, Chen Y, Chen H, Yang T, Zhang S, Guo Z, Wang X. Manganese(ii) complexes stimulate antitumor immunity via aggravating DNA damage and activating the cGAS-STING pathway. Chem Sci 2023; 14:4375-4389. [PMID: 37123182 PMCID: PMC10132258 DOI: 10.1039/d2sc06036a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Activating the cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) pathway is a promising immunotherapeutic strategy for cancer treatment. Manganese(ii) complexes MnPC and MnPVA (P = 1,10-phenanthroline, C = chlorine, and VA = valproic acid) were found to activate the cGAS-STING pathway. The complexes not only damaged DNA, but also inhibited histone deacetylases (HDACs) and poly adenosine diphosphate-ribose polymerase (PARP) to impede the repair of DNA damage, thereby promoting the leakage of DNA fragments into cytoplasm. The DNA fragments activated the cGAS-STING pathway, which initiated an innate immune response and a two-way communication between tumor cells and neighboring immune cells. The activated cGAS-STING further increased the production of type I interferons and secretion of pro-inflammatory cytokines (TNF-α and IL-6), boosting the tumor infiltration of dendritic cells and macrophages, as well as stimulating cytotoxic T cells to kill cancer cells in vitro and in vivo. Owing to the enhanced DNA-damaging ability, MnPC and MnPVA showed more potent immunocompetence and antitumor activity than Mn2+ ions, thus demonstrating great potential as chemoimmunotherapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Linxiang Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Yayu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Hanhua Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| | - Tao Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 2589684549
| |
Collapse
|
21
|
Zhao X, Wang B, Zhuang Y, Du S, Zeng Z. Single High-Dose Irradiation-Induced iRhom2 Upregulation Promotes Macrophage Antitumor Activity Through cGAS/STING Signaling. Int J Radiat Oncol Biol Phys 2023:S0360-3016(23)00160-8. [PMID: 36792017 DOI: 10.1016/j.ijrobp.2023.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/15/2023]
Abstract
PURPOSE The clinical application of stereotactic body radiation therapy (SBRT) allows a high dose of radiation to be safely delivered to extracranial targets within the body; however, a high dose per fraction (hypofractionation) has opened the radiation oncology field to new questions on a variety of dose-fractionation schedules, especially the immunomodulatory effects of radiation therapy, which can change after various dose-fractionation schedules. We investigated the immunomodulatory effects of different fractionation schedules. METHODS AND MATERIALS We established a subcutaneous tumor model in wild-type C57BL/6J mice and STING (stimulator of interferon genes)-deficient mice. We then compared the tumor control efficacy of 3 different fractionation schedules: 2 Gy × 8, 4.5 Gy × 3, and 10 Gy × 1, which are similar biologically effective doses. RESULTS We found the fractionation schedule of 10 Gy × 1 had a significantly higher antitumor effect, suggesting that a single high dose induced enhanced antitumor immunity compared with conventional fractionation (2 Gy × 8) and moderate hypofractionation (4.5 Gy × 3). However, in STING-deficient mice, differential tumor control was not observed among the 3 dose-fractionation schedules, suggesting that cGAS (cyclic GMP-AMP synthase)/STING signaling is involved in the antitumor immune effects of single high-dose schedules. Mechanistically, we found that conventional fractionation induced apoptosis; by comparison, a single high dose was more attuned to induced necroptosis, leading to the release of intracellular irradiation-induced double-stranded DNA (dsDNA) due to the loss of plasma membrane integrity, which then activated the dsDNA sensing signaling cGAS/STING in the recruited macrophage. Furthermore, iRhom2, a member of the conserved family of inhibitory rhomboid-like pseudoproteases, was upregulated in infiltrated macrophages in the single high-dose irradiation microenvironment. Therefore, iRhom2 positively regulates STING and directly promotes tumor necrosis factor α secretion. This exacerbates necroptosis of irradiated tumor cells, leading to continuous dsDNA release and enhancement of cGAS/STING signaling antitumor immunity in a positive feedback loop. CONCLUSIONS iRhom2 amplifies antitumor signaling in a positive feedback loop mediated by cGAS/STING signaling and tumor necrosis factor-driven necroptosis after single high-dose radiation.
Collapse
Affiliation(s)
- Xiaomei Zhao
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Biao Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Zhuang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shisuo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Long Y, Guo J, Chen J, Sun J, Wang H, Peng X, Wang Z, Lai W, Liu N, Shu L, Chen L, Shi Y, Xiao D, Liu S, Tao Y. GPR162 activates STING dependent DNA damage pathway as a novel tumor suppressor and radiation sensitizer. Signal Transduct Target Ther 2023; 8:48. [PMID: 36725837 PMCID: PMC9892510 DOI: 10.1038/s41392-022-01224-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/05/2022] [Accepted: 10/09/2022] [Indexed: 02/03/2023] Open
Abstract
In the treatment of most malignancies, radiotherapy plays a significant role. However, the resistance of cancer cells to ionizing radiation (IR) is the main reason for the failure of radiotherapy, which causes tumor recurrence and metastasis. In this study, we confirmed that GPR162, an orphan receptor in the G-protein-coupled receptor family, acted as a novel radiotherapy sensitizer by interacting with the stimulator of interferon genes (STING), which targeted DNA damage responses, activated IRF3, accelerated the activation of type I interferon system, promoted the expression of chemokines including CXCL10 and CXCL4, and inhibited the occurrence and development of tumors. Interestingly, the activation of STING by overexpression of GPR162 was independent of the classical pathway of cGAS. STING inhibitors could resist the antitumor effect of overexpression of GPR162 in IR-induced mouse models. In addition, most solid tumors showed low expression of GPR162. And the higher expression of GPR162 indicated a better prognosis in patients with lung adenocarcinoma, liver cancer, breast cancer, etc. In summary, these results suggested that GPR162 may serve as a potential sensitizer of radiotherapy by promoting radiotherapy-induced STING-IFN production and increasing the expression of chemokines including CXCL10 and CXCL4 in DNA damage response, providing an alternative strategy for improving cancer radiotherapy.
Collapse
Affiliation(s)
- Yao Long
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaxing Guo
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jielin Chen
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingyue Sun
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyan Wang
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin Peng
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zuli Wang
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - WeiWei Lai
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Long Shu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling Chen
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Shi
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Desheng Xiao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| | - Shuang Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| | - Yongguang Tao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
23
|
Jneid B, Bochnakian A, Hoffmann C, Delisle F, Djacoto E, Sirven P, Denizeau J, Sedlik C, Gerber-Ferder Y, Fiore F, Akyol R, Brousse C, Kramer R, Walters I, Carlioz S, Salmon H, Malissen B, Dalod M, Piaggio E, Manel N. Selective STING stimulation in dendritic cells primes antitumor T cell responses. Sci Immunol 2023; 8:eabn6612. [PMID: 36638189 DOI: 10.1126/sciimmunol.abn6612] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
T cells that recognize tumor antigens are crucial for mounting antitumor immune responses. Induction of antitumor T cells in immunogenic tumors depends on STING, the intracellular innate immune receptor for cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) and related cyclic dinucleotides (CDNs). However, the optimal way to leverage STING activation in nonimmunogenic tumors is still unclear. Here, we show that cGAMP delivery by intratumoral injection of virus-like particles (cGAMP-VLP) led to differentiation of circulating tumor-specific T cells, decreased tumor regulatory T cells (Tregs), and antitumoral responses that synergized with PD1 blockade. By contrast, intratumoral injection of the synthetic CDN ADU-S100 led to tumor necrosis and systemic T cell activation but simultaneously depleted immune cells from injected tumors and induced minimal priming of circulating tumor-specific T cells. The antitumor effects of cGAMP-VLP required type 1 conventional dendritic cells (cDC1), whereas ADU-S100 eliminated cDC1 from injected tumors. cGAMP-VLP preferentially targeted STING in dendritic cells at a 1000-fold smaller dose than ADU-S100. Subcutaneous administration of cGAMP-VLP showed synergy when combined with PD1 blockade or a tumor Treg-depleting antibody to elicit systemic tumor-specific T cells and antitumor activity, leading to complete and durable tumor eradication in the case of tumor Treg depletion. These findings show that cell targeting of STING stimulation shapes the antitumor T cell response and identify a therapeutic strategy to enhance T cell-targeted immunotherapy.
Collapse
Affiliation(s)
- Bakhos Jneid
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Aurore Bochnakian
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Stimunity, Paris, France
| | - Caroline Hoffmann
- Institut Curie, INSERM U932 Immunity and Cancer, Department of Surgical Oncology, PSL University, Paris, France
| | - Fabien Delisle
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Emeline Djacoto
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Philémon Sirven
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Jordan Denizeau
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Christine Sedlik
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | - Frédéric Fiore
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Ramazan Akyol
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Carine Brousse
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | | | | | | | - Hélène Salmon
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Bernard Malissen
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Eliane Piaggio
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| |
Collapse
|
24
|
Meric-Bernstam F, Sweis RF, Kasper S, Hamid O, Bhatia S, Dummer R, Stradella A, Long GV, Spreafico A, Shimizu T, Steeghs N, Luke JJ, McWhirter SM, Müller T, Nair N, Lewis N, Chen X, Bean A, Kattenhorn L, Pelletier M, Sandhu S. Combination of the STING Agonist MIW815 (ADU-S100) and PD-1 Inhibitor Spartalizumab in Advanced/Metastatic Solid Tumors or Lymphomas: An Open-Label, Multicenter, Phase Ib Study. Clin Cancer Res 2023; 29:110-121. [PMID: 36282874 PMCID: PMC11188043 DOI: 10.1158/1078-0432.ccr-22-2235] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/28/2022] [Accepted: 10/21/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE The stimulator of IFN genes (STING) is a transmembrane protein that plays a role in the immune response to tumors. Single-agent STING agonist MIW815 (ADU-S100) has demonstrated immune activation but limited antitumor activity. This phase Ib, multicenter, dose-escalation study assessed the safety and tolerability of MIW815 plus spartalizumab (PDR001), a humanized IgG4 antibody against PD-1, in 106 patients with advanced solid tumors or lymphomas. PATIENTS AND METHODS Patients were treated with weekly intratumoral injections of MIW815 (50-3,200 μg) on a 3-weeks-on/1-week-off schedule or once every 4 weeks, plus a fixed dose of spartalizumab (400 mg) intravenously every 4 weeks. RESULTS Common adverse events were pyrexia (n = 23; 22%), injection site pain (n = 21; 20%), and diarrhea (n = 12; 11%). Overall response rate was 10.4%. The MTD was not reached. Pharmacodynamic biomarker analysis demonstrated on-target activity. CONCLUSIONS The combination of MIW815 and spartalizumab was well tolerated in patients with advanced/metastatic cancers, including in patients with anti-PD-1 refractory disease. Minimal antitumor responses were seen.
Collapse
Affiliation(s)
| | | | - Stefan Kasper
- University Hospital Essen, West German Cancer Center, Essen, Germany
| | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars Sinai Affiliate, Los Angeles, California
| | | | - Reinhard Dummer
- Universitaetsspital Zuerich Dermatology, Zurich, Switzerland
| | - Agostina Stradella
- Institut Catalàd’Oncologia - Hospital Duran i Reynals, L’Hospitalet de Llobregat, Catalunya, Spain
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, and Mater and Royal North Shore Hospitals, Sydney, Australia
| | | | | | | | - Jason J. Luke
- The University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Nitya Nair
- Aduro Biotech, Inc., Berkeley, California
| | - Nancy Lewis
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Xinhui Chen
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey
| | - Andrew Bean
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Lisa Kattenhorn
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Marc Pelletier
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre and the University of Melbourne, Melbourne, Australia
| |
Collapse
|
25
|
Zeng PH, Yin WJ. The cGAS/STING signaling pathway: a cross-talk of infection, senescence and tumors. Cell Cycle 2023; 22:38-56. [PMID: 35946607 PMCID: PMC9769453 DOI: 10.1080/15384101.2022.2109899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/28/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
The cGAS/STING signaling pathway is an important part of the cytoplasmic DNA sensor, which can trigger a type I interferon response to microbial infection when pathogenic DNA is detected. However, continuous inhibition of cGAS/STING signaling by viral infection may be an important cause of tumorigenesis. At the same time, recent studies have shown that although the cGAS/STING signaling pathway also plays a core role in anti-tumor immunity and cell senescence, the inflammatory response induced by cGAS/STING signaling will also promote tumorigenesis in different backgrounds. Here, we discuss the role of cGAS/STING in the context of infection, senescence, and tumors, especially with respect to progression, to facilitate a better understanding of the mechanism of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Peng-Hui Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wen-Jun Yin
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
26
|
Computational design of constitutively active cGAS. Nat Struct Mol Biol 2023; 30:72-80. [PMID: 36593311 DOI: 10.1038/s41594-022-00862-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/12/2022] [Indexed: 01/03/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS) is a pattern recognition receptor critical for the innate immune response to intracellular pathogens, DNA damage, tumorigenesis and senescence. Binding to double-stranded DNA (dsDNA) induces conformational changes in cGAS that activate the enzyme to produce 2'-3' cyclic GMP-AMP (cGAMP), a second messenger that initiates a potent interferon (IFN) response through its receptor, STING. Here, we combined two-state computational design with informatics-guided design to create constitutively active, dsDNA ligand-independent cGAS (CA-cGAS). We identified CA-cGAS mutants with IFN-stimulating activity approaching that of dsDNA-stimulated wild-type cGAS. DNA-independent adoption of the active conformation was directly confirmed by X-ray crystallography. In vivo expression of CA-cGAS in tumor cells resulted in STING-dependent tumor regression, demonstrating that the designed proteins have therapeutically relevant biological activity. Our work provides a general framework for stabilizing active conformations of enzymes and provides CA-cGAS variants that could be useful as genetically encoded adjuvants and tools for understanding inflammatory diseases.
Collapse
|
27
|
The cGAS-STING pathway and cancer. NATURE CANCER 2022; 3:1452-1463. [PMID: 36510011 DOI: 10.1038/s43018-022-00468-w] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has emerged as a critical innate immune pathway that, following engagement by DNA, promotes distinct immune effector responses that can impact virtually all aspects of tumorigenesis, from malignant cell transformation to metastasis. Here we address how natural tumor-associated processes and traditional cancer therapies are shaped by cGAS-STING signaling, and how this contributes to beneficial or detrimental outcomes of cancer. We consider current efforts to target the cGAS-STING axis in tumors and highlight new frontiers in cGAS-STING biology to inspire thinking about their connection to cancer.
Collapse
|
28
|
S-acylthioalkyl ester (SATE)-based prodrugs of deoxyribose cyclic dinucleotides (dCDNs) as the STING agonist for antitumor immunotherapy. Eur J Med Chem 2022; 243:114796. [DOI: 10.1016/j.ejmech.2022.114796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022]
|
29
|
Zhou M, Cheng X, Zhu W, Jiang J, Zhu S, Wu X, Liu M, Fang Q. Activation of
cGAS‐STING
pathway – A possible cause of myofiber atrophy/necrosis in dermatomyositis and immune‐mediated necrotizing myopathy. J Clin Lab Anal 2022; 36:e24631. [PMID: 36030554 PMCID: PMC9550984 DOI: 10.1002/jcla.24631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2019] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Objective The objective was to investigate the expression of the cGAS‐STING pathway‐associated protein in idiopathic inflammatory myopathy (IIM) and to investigate whether it is related to myofiber atrophy/necrosis in patients with dermatomyositis and immune‐mediated necrotizing myopathy. Material and Methods Muscle specimens obtained by open biopsy from 26 IIM patients (14 with dermatomyositis (DM), 8 with immune‐mediated necrotizing myopathy (IMNM), and 4 with other types of IIM), 4 dystrophinopathy, and 9 control patients were assessed for expression of cGAS‐STING pathway members via Western blot, quantitative real‐time PCR analysis (qRT‐PCR), and immunochemistry. Meanwhile, analysis its location distribution througn immunochemistry. Results Compared to the control group, the expression of cGAS, STING, and related molecules was obviously increased in muscle samples of IIM patients. Upregulated cGAS and STING were mainly located in the vascular structure, inflammatory infiltrates, and atrophic and necrotic fibers. While comparing to the Dys patients, the mRNA level of cGAS, STING, and TNF‐a was upregulated, meanwhile, the protein of the TBK1, P‐TBK1, and P‐IRF3 associated with interferon upregulation was overexpressed through Western blot in IMNM and DM. Considering that cGAS and STING are located in necrotic and Mx1‐positive atrophic fibers, it is really possible that the cGAS‐STING pathway may lead to fibers atrophy/necrosis by producing IFNs. Conclusion The cGAS‐STING pathway was activated in the muscle samples of IIM patients and its activation may be the reason of myofiber atrophy and necrosis in DM and IMNM patients.
Collapse
Affiliation(s)
- Meichen Zhou
- Department of Neurology First Affiliated Hospital of Soochow University Suzhou China
| | - Xiaoxiao Cheng
- Department of Neurology First Affiliated Hospital of Soochow University Suzhou China
| | - Wenhua Zhu
- Department of Neurology Huashan hospital Shanghai China
| | - Jianhua Jiang
- Department of Neurology First Affiliated Hospital of Soochow University Suzhou China
| | - Sijia Zhu
- Department of Neurology First Affiliated Hospital of Soochow University Suzhou China
| | - Xuan Wu
- Department of Neurology Affiliated Hospital of Yangzhou University Yangzhou China
| | - Meirong Liu
- Department of Neurology First Affiliated Hospital of Soochow University Suzhou China
| | - Qi Fang
- Department of Neurology First Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
30
|
Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov 2022; 21:559-577. [PMID: 35314852 PMCID: PMC10019065 DOI: 10.1038/s41573-022-00413-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells have crucial roles in the innate immunosurveillance of cancer and viral infections. They are 'first responders' that can spontaneously recognize abnormal cells in the body, rapidly eliminate them through focused cytotoxicity mechanisms and potently produce pro-inflammatory cytokines and chemokines that recruit and activate other immune cells to initiate an adaptive response. From the initial discovery of the diverse cell surface receptors on NK cells to the characterization of regulatory events that control their function, our understanding of the basic biology of NK cells has improved dramatically in the past three decades. This advanced knowledge has revealed increased mechanistic complexity, which has opened the doors to the development of a plethora of exciting new therapeutics that can effectively manipulate and target NK cell functional responses, particularly in cancer patients. Here, we summarize the basic mechanisms that regulate NK cell biology, review a wide variety of drugs, cytokines and antibodies currently being developed and used to stimulate NK cell responses, and outline evolving NK cell adoptive transfer approaches to treat cancer.
Collapse
|
31
|
Dane EL, Belessiotis-Richards A, Backlund C, Wang J, Hidaka K, Milling LE, Bhagchandani S, Melo MB, Wu S, Li N, Donahue N, Ni K, Ma L, Okaniwa M, Stevens MM, Alexander-Katz A, Irvine DJ. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. NATURE MATERIALS 2022; 21:710-720. [PMID: 35606429 PMCID: PMC9156412 DOI: 10.1038/s41563-022-01251-z] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/07/2022] [Indexed: 05/13/2023]
Abstract
Activation of the innate immune STimulator of INterferon Genes (STING) pathway potentiates antitumour immunity, but systemic delivery of STING agonists to tumours is challenging. We conjugated STING-activating cyclic dinucleotides (CDNs) to PEGylated lipids (CDN-PEG-lipids; PEG, polyethylene glycol) via a cleavable linker and incorporated them into lipid nanodiscs (LNDs), which are discoid nanoparticles formed by self-assembly. Compared to state-of-the-art liposomes, intravenously administered LNDs carrying CDN-PEG-lipid (LND-CDNs) exhibited more efficient penetration of tumours, exposing the majority of tumour cells to STING agonist. A single dose of LND-CDNs induced rejection of established tumours, coincident with immune memory against tumour rechallenge. Although CDNs were not directly tumoricidal, LND-CDN uptake by cancer cells correlated with robust T-cell activation by promoting CDN and tumour antigen co-localization in dendritic cells. LNDs thus appear promising as a vehicle for robust delivery of compounds throughout solid tumours, which can be exploited for enhanced immunotherapy.
Collapse
Affiliation(s)
- Eric L Dane
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexis Belessiotis-Richards
- Department of Materials, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
- Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Coralie Backlund
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jianing Wang
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Kousuke Hidaka
- Immunology Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Lauren E Milling
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sachin Bhagchandani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mariane B Melo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Na Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nathan Donahue
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Leyuan Ma
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Masanori Okaniwa
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Molly M Stevens
- Department of Materials, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
- Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Alfredo Alexander-Katz
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
32
|
Wolf NK, Blaj C, Picton LK, Snyder G, Zhang L, Nicolai CJ, Ndubaku CO, McWhirter SM, Garcia KC, Raulet DH. Synergy of a STING agonist and an IL-2 superkine in cancer immunotherapy against MHC I-deficient and MHC I + tumors. Proc Natl Acad Sci U S A 2022; 119:e2200568119. [PMID: 35588144 PMCID: PMC9295797 DOI: 10.1073/pnas.2200568119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/15/2022] [Indexed: 01/01/2023] Open
Abstract
Cyclic dinucleotides (CDN) and Toll-like receptor (TLR) ligands mobilize antitumor responses by natural killer (NK) cells and T cells, potentially serving as complementary therapies to immune checkpoint therapy. In the clinic thus far, however, CDN therapy targeting stimulator of interferon genes (STING) protein has yielded mixed results, perhaps because it initiates responses potently but does not provide signals to sustain activation and proliferation of activated cytotoxic lymphocytes. To improve efficacy, we combined CDN with a half life-extended interleukin-2 (IL-2) superkine, H9-MSA (mouse serum albumin). CDN/H9-MSA therapy induced dramatic long-term remissions of the most difficult to treat major histocompatibility complex class I (MHC I)–deficient and MHC I+ tumor transplant models. H9-MSA combined with CpG oligonucleotide also induced potent responses. Mechanistically, tumor elimination required CD8 T cells and not NK cells in the case of MHC I+ tumors and NK cells but not CD8 T cells in the case of MHC-deficient tumors. Furthermore, combination therapy resulted in more prolonged and more intense NK cell activation, cytotoxicity, and expression of cytotoxic effector molecules in comparison with monotherapy. Remarkably, in a primary autochthonous sarcoma model that is refractory to PD-1 checkpoint therapy, the combination of CDN/H9-MSA with checkpoint therapy yielded long-term remissions in the majority of the animals, mediated by T cells and NK cells. This combination therapy has the potential to activate responses in tumors resistant to current therapies and prevent MHC I loss accompanying acquired resistance of tumors to checkpoint therapy.
Collapse
Affiliation(s)
- Natalie K. Wolf
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Cristina Blaj
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Lora K. Picton
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Gail Snyder
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Li Zhang
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Christopher J. Nicolai
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | | | | | - K. Christopher Garcia
- HHMI, Stanford University School of Medicine, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - David H. Raulet
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
33
|
Kang J, Wu J, Liu Q, Wu X, Zhao Y, Ren J. Post-Translational Modifications of STING: A Potential Therapeutic Target. Front Immunol 2022; 13:888147. [PMID: 35603197 PMCID: PMC9120648 DOI: 10.3389/fimmu.2022.888147] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Stimulator of interferon genes (STING) is an endoplasmic-reticulum resident protein, playing essential roles in immune responses against microbial infections. However, over-activation of STING is accompanied by excessive inflammation and results in various diseases, including autoinflammatory diseases and cancers. Therefore, precise regulation of STING activities is critical for adequate immune protection while limiting abnormal tissue damage. Numerous mechanisms regulate STING to maintain homeostasis, including protein-protein interaction and molecular modification. Among these, post-translational modifications (PTMs) are key to accurately orchestrating the activation and degradation of STING by temporarily changing the structure of STING. In this review, we focus on the emerging roles of PTMs that regulate activation and inhibition of STING, and provide insights into the roles of the PTMs of STING in disease pathogenesis and as potential targeted therapy.
Collapse
Affiliation(s)
- Jiaqi Kang
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Wu
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Qinjie Liu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Jianan Ren
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
34
|
Re-engineered BCG overexpressing cyclic di-AMP augments trained immunity and exhibits improved efficacy against bladder cancer. Nat Commun 2022; 13:878. [PMID: 35169141 PMCID: PMC8847416 DOI: 10.1038/s41467-022-28509-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/27/2022] [Indexed: 01/11/2023] Open
Abstract
In addition to its role as a TB vaccine, BCG has been shown to elicit heterologous protection against many other pathogens including viruses through a process termed trained immunity. Despite its potential as a broadly protective vaccine, little has been done to determine if BCG-mediated trained immunity levels can be optimized. Here we re-engineer BCG to express high levels of c-di-AMP, a PAMP recognized by stimulator of interferon genes (STING). We find that BCG overexpressing c-di-AMP elicits more potent signatures of trained immunity including higher pro-inflammatory cytokine responses, greater myeloid cell reprogramming toward inflammatory and activated states, and enhances epigenetic and metabolomic changes. In a model of bladder cancer, we also show that re-engineered BCG induces trained immunity and improved functionality. These results indicate that trained immunity levels and antitumor efficacy may be increased by modifying BCG to express higher levels of key PAMP molecules.
Collapse
|
35
|
Meric-Bernstam F, Sweis RF, Hodi FS, Messersmith WA, Andtbacka RHI, Ingham M, Lewis N, Chen X, Pelletier M, Chen X, Wu J, McWhirter SM, Müller T, Nair N, Luke JJ. Phase I Dose-Escalation Trial of MIW815 (ADU-S100), an Intratumoral STING Agonist, in Patients with Advanced/Metastatic Solid Tumors or Lymphomas. Clin Cancer Res 2022; 28:677-688. [PMID: 34716197 DOI: 10.1158/1078-0432.ccr-21-1963] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/31/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE This phase I study assessed the safety, pharmacokinetics (PKs), and efficacy of MIW815 (ADU-S100), a novel synthetic cyclic dinucleotide that activates the stimulator of IFN genes (STING) pathway, in patients with advanced/metastatic cancers. PATIENTS AND METHODS Patients (n = 47) received weekly i.t. injections of MIW815, 50 to 6,400 μg, on a 3-weeks-on/1-week-off schedule. RESULTS A maximum tolerated dose was not reached. Most common treatment-related adverse events were pyrexia (17%), chills, and injection-site pain (each 15%). MIW815 was rapidly absorbed from the injection site with dose-proportional PK, a rapid terminal plasma half-life (approximately 24 minutes), and high interindividual variability. One patient had a partial response (PR; Merkel cell carcinoma); two patients had unconfirmed PR (parotid cancer, myxofibrosarcoma). Lesion size was stable or decreased in 94% of evaluable, injected lesions. RNA expression and immune infiltration assessments in paired tumor biopsies did not reveal significant on-treatment changes. However, increases in inflammatory cytokines and peripheral blood T-cell clonal expansion suggested systemic immune activation. CONCLUSIONS MIW815 was well tolerated in patients with advanced/metastatic cancers. Clinical activity of single-agent MIW815 was limited in this first-in-human study; however, evidence of systemic immune activation was seen.
Collapse
Affiliation(s)
- Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Wells A Messersmith
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Matthew Ingham
- Columbia University Irving Medical Center, New York, New York
| | - Nancy Lewis
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Xinhui Chen
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey
| | - Marc Pelletier
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts
| | - Xueying Chen
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts
| | - Jincheng Wu
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts
| | | | | | - Nitya Nair
- Aduro Biotech, Inc., Berkeley, California
| | - Jason J Luke
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
36
|
Ritchie C, Carozza JA, Li L. Biochemistry, Cell Biology, and Pathophysiology of the Innate Immune cGAS-cGAMP-STING Pathway. Annu Rev Biochem 2022; 91:599-628. [PMID: 35287475 DOI: 10.1146/annurev-biochem-040320-101629] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the decade since the discovery of the innate immune cyclic GMP-AMP synthase (cGAS)- 2'3'-cyclic GMP-AMP (cGAMP)- stimulator of interferon genes (STING) pathway, its proper activation and dysregulation have been rapidly implicated in many aspects of human disease. Understanding the biochemical, cellular, and regulatory mechanisms of this pathway is critical to developing therapeutic strategies that either harness it to boost defense or inhibit it to prevent unwanted inflammation. In this review, we first discuss how the second messenger cGAMP is synthesized by cGAS in response to double-stranded DNA and cGAMP's subsequent activation of cell-type-dependent STING signaling cascades with differential physiological consequences. We then review how cGAMP as an immunotransmitter mediates tightly controlled cell-cell communication by being exported from producing cells and imported into responding cells via cell-type-specific transporters. Finally, we review mechanisms by which the cGAS-cGAMP-STING pathway responds to different sources of mislocalized double-stranded DNA in pathogen defense, cancer, and autoimmune diseases. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Christopher Ritchie
- Department of Biochemistry, Stanford University, Stanford, California, USA.,ChEM-H Institute, Stanford University, Stanford, California, USA;
| | - Jacqueline A Carozza
- ChEM-H Institute, Stanford University, Stanford, California, USA; .,Department of Chemistry, Stanford University, Stanford, California, USA
| | - Lingyin Li
- Department of Biochemistry, Stanford University, Stanford, California, USA.,ChEM-H Institute, Stanford University, Stanford, California, USA;
| |
Collapse
|
37
|
Lombardo KA, Obradovic A, Singh AK, Liu JL, Joice G, Kates M, Bishai W, McConkey D, Chaux A, Eich ML, Rezaei MK, Netto GJ, Drake CG, Tran P, Matoso A, Bivalacqua TJ. BCG invokes superior STING-mediated innate immune response over radiotherapy in a carcinogen murine model of urothelial cancer. J Pathol 2022; 256:223-234. [PMID: 34731491 PMCID: PMC8738146 DOI: 10.1002/path.5830] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/07/2021] [Accepted: 10/30/2021] [Indexed: 02/03/2023]
Abstract
Radiation and bacillus Calmette-Guérin (BCG) instillations are used clinically for treatment of urothelial carcinoma, but the precise mechanisms by which they activate an immune response remain elusive. The role of the cGAS-STING pathway has been implicated in both BCG and radiation-induced immune response; however, comparison of STING pathway molecules and the immune landscape following treatment in urothelial carcinoma has not been performed. We therefore comprehensively analyzed the local immune response in the bladder tumor microenvironment following radiotherapy and BCG instillations in a well-established spontaneous murine model of urothelial carcinoma to provide insight into activation of STING-mediated immune response. Mice were exposed to the oral carcinogen, BBN, for 12 weeks prior to treatment with a single 15 Gy dose of radiation or three intravesical instillations of BCG (1 × 108 CFU). At sacrifice, tumors were staged by a urologic pathologist and effects of therapy on the immune microenvironment were measured using the NanoString Myeloid Innate Immunity Panel and immunohistochemistry. Clinical relevance was established by measuring immune biomarker expression of cGAS and STING on a human tissue microarray consisting of BCG-treated non-muscle-invasive urothelial carcinomas. BCG instillations in the murine model elevated STING and downstream STING-induced interferon and pro-inflammatory molecules, intratumoral M1 macrophage and T-cell accumulation, and complete tumor eradication. In contrast, radiotherapy caused no changes in STING pathway or innate immune gene expression; rather, it induced M2 macrophage accumulation and elevated FoxP3 expression characteristic of immunosuppression. In human non-muscle-invasive bladder cancer, STING protein expression was elevated at baseline in patients who responded to BCG therapy and increased further after BCG therapy. Overall, these results show that STING pathway activation plays a key role in effective BCG-induced immune response and strongly indicate that the effects of BCG on the bladder cancer immune microenvironment are more beneficial than those induced by radiation. © 2021 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kara A Lombardo
- Department of Urology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Greenberg Bladder Cancer Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Aleksandar Obradovic
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alok Kumar Singh
- Center for Tuberculosis Research, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - James L Liu
- Department of Urology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Gregory Joice
- Department of Urology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Max Kates
- Department of Urology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - William Bishai
- Center for Tuberculosis Research, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - David McConkey
- Greenberg Bladder Cancer Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, 1614 Asunción, Paraguay
| | - Marie-Lisa Eich
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Katayoon Rezaei
- Department of Pathology, George Washington University, Washington, DC, USA
| | - George J Netto
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles G Drake
- Division of Urology, Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Division Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Phuoc Tran
- Department of Urology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Radiation Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Andres Matoso
- Department of Urology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Greenberg Bladder Cancer Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Trinity J Bivalacqua
- Department of Urology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Greenberg Bladder Cancer Institute, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
38
|
Milling LE, Garafola D, Agarwal Y, Wu S, Thomas A, Donahue N, Adams J, Thai N, Suh H, Irvine DJ. Neoadjuvant STING Activation, Extended Half-life IL2, and Checkpoint Blockade Promote Metastasis Clearance via Sustained NK-cell Activation. Cancer Immunol Res 2022; 10:26-39. [PMID: 34686488 PMCID: PMC8732307 DOI: 10.1158/2326-6066.cir-21-0247] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023]
Abstract
Combination immunotherapy treatments that recruit both innate and adaptive immunity have the potential to increase cancer response rates by engaging a more complete repertoire of effector mechanisms. Here, we combined intratumoral STimulator of INterferon Genes (STING) agonist therapy with systemically injected extended half-life IL2 and anti-PD-1 checkpoint blockade (hereafter CIP therapy) to drive innate and adaptive antitumor immunity in models of triple-negative breast cancer. Unlike treatment with the individual components, this trivalent immunotherapy halted primary tumor progression and led to long-term remission for a majority of animals in two spontaneously metastasizing orthotopic breast tumor models, though only as a neoadjuvant therapy but not adjuvant therapy. CIP therapy induced antitumor T-cell responses, but protection from metastatic relapse depended on natural killer (NK) cells. The combination of STING agonists with IL2/anti-PD-1 synergized to stimulate sustained granzyme and cytokine expression by lung-infiltrating NK cells. Type I IFNs generated as a result of STING agonism, combined with IL2, acted in a positive-feedback loop by enhancing the expression of IFNAR-1 and CD25 on lung NK cells. These results suggest that NK cells can be therapeutically targeted to effectively eliminate tumor metastases.See related Spotlight by Demaria, p. 3.
Collapse
Affiliation(s)
- Lauren E Milling
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Daniel Garafola
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yash Agarwal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ayush Thomas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nathan Donahue
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Josetta Adams
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nikki Thai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
39
|
Perera SA, Kopinja JE, Ma Y, Muise ES, Laskey J, Chakravarthy K, Chen Y, Cui L, Presland J, Sathe M, Javaid S, Minnihan E, Ferguson H, Piesvaux J, Pan BS, Zhao S, Sharma SK, Woo HC, Pucci V, Knemeyer I, Cemerski S, Cumming J, Trotter BW, Tse A, Khilnani A, Ranganath S, Long BJ, Bennett DJ, Addona GH. STimulator of INterferon Genes Agonism Accelerates Anti-tumor Activity in Poorly Immunogenic Tumors. Mol Cancer Ther 2021; 21:282-293. [PMID: 34815361 DOI: 10.1158/1535-7163.mct-21-0136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/18/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
The innate immune agonist STING (STimulator of INterferon Genes) binds its natural ligand 2'3'-cGAMP (cyclic guanosine-adenosine monophosphate) and initiates type I interferon production. This promotes systemic antigen-specific CD8+ T-cell priming that eventually provides potent anti-tumor activity. To exploit this mechanism, we synthesized a novel STING agonist, MSA-1, that activates both mouse and human STING with higher in vitro potency than cGAMP. Following intratumoral (IT) administration of MSA-1 to a panel of syngeneic mouse tumors on immune-competent mice, cytokine upregulation and its exposure were detected in plasma, other tissues, injected tumors, and noninjected tumors. This was accompanied by effective anti-tumor activity. Mechanistic studies in immune-deficient mice suggested that anti-tumor activity of IT-dosed STING agonists is in part due to necrosis and/or innate immune responses such as tumor necrosis factor α (TNF-α) activity, but development of a robust adaptive anti-tumor immunity is necessary for complete tumor elimination. Combination with PD-1 blockade in anti-PD-1-resistant murine models demonstrated that MSA-1 may synergize with checkpoint inhibitors but can also provide superior tumor control as a single agent. We show for the first time that potent cyclic dinucleotides can promote a rapid and stronger induction of the same genes eventually regulated by PD-1 blockade. This may have contributed to the relatively early tumor control observed with MSA-1. Taken together, these data strongly support the development of STING agonists as therapy for patients with aggressive tumors that are partially responsive or nonresponsive to single-agent anti-PD-1 treatment by enhancing the anti-PD-1 immune profile.
Collapse
Affiliation(s)
| | | | - Yanhong Ma
- Quantitative Biosciences, Merck and Co. Inc
| | | | | | | | | | - Long Cui
- Quantitative Biosciences, Merck and Co. Inc
| | | | - Manjiri Sathe
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc
| | | | | | | | | | | | | | | | | | | | | | - Saso Cemerski
- Discovery and Translational Immunology, Cue BioPharma
| | | | | | - Archie Tse
- Research and Translational Medicine and Early Development, CStone Pharmaceuticals
| | | | | | | | | | | |
Collapse
|
40
|
STING Signaling and Skin Cancers. Cancers (Basel) 2021; 13:cancers13225603. [PMID: 34830754 PMCID: PMC8615888 DOI: 10.3390/cancers13225603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Recent developments in immunotherapy against malignancies overcome the disadvantages of traditional systemic treatments; however, this immune checkpoint treatment is not perfect and cannot obtain a satisfactory clinical outcome in all cases. Therefore, an additional therapeutic option for malignancy is needed in oncology. Stimulator of interferon genes (STING) has recently been highlighted as a strong type I interferon driver and shows anti-tumor immunity against various malignancies. STING-targeted anti-tumor immunotherapy is expected to enhance the anti-tumor effects and clinical outcomes of immunotherapy against malignancies. In this review, we focus on recent advancements in the knowledge gained from research on STING signaling in skin cancers. In addition to the limitations of STING-targeted immunotherapy, we also discuss the clinical application of STING agonists in the treatment of skin cancer.
Collapse
|
41
|
Lin C, Harner MJ, Douglas AE, Lafont V, Yu F, Lee VG, Poss MA, Swain JF, Wright M, Lipovšek D. A Selection of Macrocyclic Peptides That Bind STING From an mRNA‐Display Library With Split Degenerate Codons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chi‐Wang Lin
- Bristol Myers Squibb 100 Binney Street Cambridge MA 02142 USA
| | - Mary J. Harner
- Bristol Myers Squibb Route 206 & Province Line Road Lawrenceville NJ 08543 USA
| | - Andrew E. Douglas
- Bristol Myers Squibb Route 206 & Province Line Road Lawrenceville NJ 08543 USA
| | - Virginie Lafont
- Bristol Myers Squibb Route 206 & Province Line Road Lawrenceville NJ 08543 USA
| | - Fei Yu
- Bristol Myers Squibb Route 206 & Province Line Road Lawrenceville NJ 08543 USA
| | - Ving G. Lee
- Bristol Myers Squibb Route 206 & Province Line Road Lawrenceville NJ 08543 USA
| | - Michael A. Poss
- Bristol Myers Squibb Route 206 & Province Line Road Lawrenceville NJ 08543 USA
| | | | - Martin Wright
- Bristol Myers Squibb 100 Binney Street Cambridge MA 02142 USA
| | - Daša Lipovšek
- Bristol Myers Squibb 100 Binney Street Cambridge MA 02142 USA
| |
Collapse
|
42
|
Tang Z, Pilié PG, Geng C, Manyam GC, Yang G, Park S, Wang D, Peng S, Wu C, Peng G, Yap TA, Corn PG, Broom BM, Thompson TC. ATR Inhibition Induces CDK1-SPOP Signaling and Enhances Anti-PD-L1 Cytotoxicity in Prostate Cancer. Clin Cancer Res 2021; 27:4898-4909. [PMID: 34168048 PMCID: PMC8456453 DOI: 10.1158/1078-0432.ccr-21-1010] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite significant benefit for other cancer subtypes, immune checkpoint blockade (ICB) therapy has not yet been shown to significantly improve outcomes for men with castration-resistant prostate cancer (CRPC). Prior data have shown that DNA damage response (DDR) deficiency, via genetic alteration and/or pharmacologic induction using DDR inhibitors (DDRi), may improve ICB response in solid tumors in part due to induction of mitotic catastrophe and innate immune activation. Discerning the underlying mechanisms of this DDRi-ICB interaction in a prostate cancer-specific manner is vital to guide novel clinical trials and provide durable clinical responses for men with CRPC. EXPERIMENTAL DESIGN We treated prostate cancer cell lines with potent, specific inhibitors of ATR kinase, as well as with PARP inhibitor, olaparib. We performed analyses of cGAS-STING and DDR signaling in treated cells, and treated a syngeneic androgen-indifferent, prostate cancer model with combined ATR inhibition and anti-programmed death ligand 1 (anti-PD-L1), and performed single-cell RNA sequencing analysis in treated tumors. RESULTS ATR inhibitor (ATRi; BAY1895433) directly repressed ATR-CHK1 signaling, activated CDK1-SPOP axis, leading to destabilization of PD-L1 protein. These effects of ATRi are distinct from those of olaparib, and resulted in a cGAS-STING-initiated, IFN-β-mediated, autocrine, apoptotic response in CRPC. The combination of ATRi with anti-PD-L1 therapy resulted in robust innate immune activation and a synergistic, T-cell-dependent therapeutic response in our syngeneic mouse model. CONCLUSIONS This work provides a molecular mechanistic rationale for combining ATR-targeted agents with immune checkpoint blockade for patients with CRPC. Multiple early-phase clinical trials of this combination are underway.
Collapse
Affiliation(s)
- Zhe Tang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chuandong Geng
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guang Yang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanghee Park
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daoqi Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shan Peng
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cheng Wu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy A Yap
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
- The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bradley M Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
43
|
Yan H, Chen W. The Promise and Challenges of Cyclic Dinucleotides as Molecular Adjuvants for Vaccine Development. Vaccines (Basel) 2021; 9:917. [PMID: 34452042 PMCID: PMC8402453 DOI: 10.3390/vaccines9080917] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Cyclic dinucleotides (CDNs), originally discovered as bacterial second messengers, play critical roles in bacterial signal transduction, cellular processes, biofilm formation, and virulence. The finding that CDNs can trigger the innate immune response in eukaryotic cells through the stimulator of interferon genes (STING) signalling pathway has prompted the extensive research and development of CDNs as potential immunostimulators and novel molecular adjuvants for induction of systemic and mucosal innate and adaptive immune responses. In this review, we summarize the chemical structure, biosynthesis regulation, and the role of CDNs in enhancing the crosstalk between host innate and adaptive immune responses. We also discuss the strategies to improve the efficient delivery of CDNs and the recent advance and future challenges in the development of CDNs as potential adjuvants in prophylactic vaccines against infectious diseases and in therapeutic vaccines against cancers.
Collapse
Affiliation(s)
- Hongbin Yan
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Wangxue Chen
- Human Health and Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
44
|
Lin CW, Harner MJ, Douglas AE, Lafont V, Yu F, Lee VG, Poss MA, Swain JF, Wright M, Lipovšek D. A Selection of Macrocyclic Peptides That Bind STING From an mRNA-Display Library With Split Degenerate Codons. Angew Chem Int Ed Engl 2021; 60:22640-22645. [PMID: 34383389 PMCID: PMC8518765 DOI: 10.1002/anie.202103043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/11/2021] [Indexed: 12/05/2022]
Abstract
Recent improvements in mRNA display have enabled the selection of peptides that incorporate non‐natural amino acids, thus expanding the chemical diversity of macrocycles beyond what is accessible in nature. Such libraries have incorporated non‐natural amino acids at the expense of natural amino acids by reassigning their codons. Here we report an alternative approach to expanded amino‐acid diversity that preserves all 19 natural amino acids (no methionine) and adds 6 non‐natural amino acids, resulting in the highest sequence complexity reported to date. We have applied mRNA display to this 25‐letter library to select functional macrocycles that bind human STING, a protein involved in immunoregulation. The resulting STING‐binding peptides include a 9‐mer macrocycle with a dissociation constant (KD) of 3.4 nM, which blocks binding of cGAMP to STING and induces STING dimerization. This approach is generalizable to expanding the amino‐acid alphabet in a library beyond 25 building blocks.
Collapse
Affiliation(s)
- Chi-Wang Lin
- Bristol Myers Squibb, 100 Binney Street, Cambridge, MA, 02142, USA
| | - Mary J Harner
- Bristol Myers Squibb, Route 206 & Province Line Road, Lawrenceville, NJ, 08543, USA
| | - Andrew E Douglas
- Bristol Myers Squibb, Route 206 & Province Line Road, Lawrenceville, NJ, 08543, USA
| | - Virginie Lafont
- Bristol Myers Squibb, Route 206 & Province Line Road, Lawrenceville, NJ, 08543, USA
| | - Fei Yu
- Bristol Myers Squibb, Route 206 & Province Line Road, Lawrenceville, NJ, 08543, USA
| | - Ving G Lee
- Bristol Myers Squibb, Route 206 & Province Line Road, Lawrenceville, NJ, 08543, USA
| | - Michael A Poss
- Bristol Myers Squibb, Route 206 & Province Line Road, Lawrenceville, NJ, 08543, USA
| | | | - Martin Wright
- Bristol Myers Squibb, 100 Binney Street, Cambridge, MA, 02142, USA
| | - Daša Lipovšek
- Bristol Myers Squibb, 100 Binney Street, Cambridge, MA, 02142, USA
| |
Collapse
|
45
|
Ager CR, Boda A, Rajapakshe K, Lea ST, Di Francesco ME, Jayaprakash P, Slay RB, Morrow B, Prasad R, Dean MA, Duffy CR, Coarfa C, Jones P, Curran MA. High potency STING agonists engage unique myeloid pathways to reverse pancreatic cancer immune privilege. J Immunother Cancer 2021; 9:jitc-2021-003246. [PMID: 34341132 PMCID: PMC8330562 DOI: 10.1136/jitc-2021-003246] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Intratumoral injection of cyclic dinucleotide (CDN) agonists of the stimulator of interferon genes (STING) pathway engages innate immune activation and priming of adaptive immune effectors to foster local and distal tumor clearance. Despite proven therapeutic efficacy in preclinical models, a thorough understanding of how CDNs reprogram suppressive myeloid stroma in mouse and man is lacking. METHODS Here, we perform deep transcript-level and protein-level profiling of myeloid-derived suppressor cells and M2 macrophages following stimulation with CDNs of ascending potency. Additionally, we leverage orthotopic Kras+/G12DTP53+/R172HPdx1-Cre (KPC) derived models of pancreatic adenocarcinoma (PDAC) to determine the capacity for locally administered CDNs to sensitize PDAC to immune checkpoint blockade. We use bioluminescent in vivo imaging and 30-parameter flow cytometry to profile growth kinetics and remodeling of the tumor stroma post-therapy. RESULTS Highly potent synthetic STING agonists repolarize suppressive myeloid populations of human and murine origin in part through inhibition of Myc signaling, metabolic modulation, and antagonism of cell cycle. Surprisingly, high-potency synthetic agonists engage qualitatively unique pathways as compared with natural CDNs. Consistent with our mechanistic observations, we find that intratumoral injection of the highest activity STING agonist, IACS-8803, into orthotopic pancreatic adenocarcinoma lesions unmasks sensitivity to checkpoint blockade immunotherapy. Dimensionality reduction analyses of high parameter flow cytometry data reveals substantial contributions of both myeloid repolarization and T cell activation underlying the in vivo therapeutic benefit of this approach. CONCLUSIONS This study defines the molecular basis of STING-mediated myeloid reprogramming, revealing previously unappreciated and qualitatively unique pathways engaged by CDNs of ascending potency during functional repolarization. Furthermore, we demonstrate the potential for high potency CDNs to overcome immunotherapy resistance in an orthotopic, multifocal model of PDAC.
Collapse
Affiliation(s)
- Casey R Ager
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA,Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Akash Boda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Kimal Rajapakshe
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Spencer Thomas Lea
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Maria Emilia Di Francesco
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priyamvada Jayaprakash
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ravaen B Slay
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brittany Morrow
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Rishika Prasad
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Meghan A Dean
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Colm R Duffy
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Immunology Program, University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
46
|
Refractoriness of STING therapy is relieved by AKT inhibitor through effective vascular disruption in tumour. Nat Commun 2021; 12:4405. [PMID: 34285232 PMCID: PMC8292391 DOI: 10.1038/s41467-021-24603-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Stimulator of interferon genes (STING) promotes anti-tumour immunity by linking innate and adaptive immunity, but it remains unclear how intratumoural treatment with STING agonists yields anti-tumour effects. Here we demonstrate that intratumoural injection of the STING agonist cGAMP induces strong, rapid, and selective apoptosis of tumour endothelial cells (ECs) in implanted LLC tumour, melanoma and breast tumour, but not in spontaneous breast cancer and melanoma. In both implanted and spontaneous tumours, cGAMP greatly increases TNFα from tumour-associated myeloid cells. However, compared to spontaneous tumour ECs, implanted tumour ECs are more vulnerable to TNFα-TNFR1 signalling-mediated apoptosis, which promotes effective anti-tumour activity. The spontaneous tumour's refractoriness to cGAMP is abolished by co-treatment with AKT 1/2 inhibitor (AKTi). Combined treatment with cGAMP and AKTi induces extensive tumour EC apoptosis, leading to extensive tumour apoptosis and marked growth suppression of the spontaneous tumour. These findings propose an advanced avenue for treating primary tumours that are refractory to single STING agonist therapy.
Collapse
|
47
|
Amouzegar A, Chelvanambi M, Filderman JN, Storkus WJ, Luke JJ. STING Agonists as Cancer Therapeutics. Cancers (Basel) 2021; 13:2695. [PMID: 34070756 PMCID: PMC8198217 DOI: 10.3390/cancers13112695] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/10/2023] Open
Abstract
The interrogation of intrinsic and adaptive resistance to cancer immunotherapy has identified lack of antigen presentation and type I interferon signaling as biomarkers of non-T-cell-inflamed tumors and clinical progression. A myriad of pre-clinical studies have implicated the cGAS/stimulator of interferon genes (STING) pathway, a cytosolic DNA-sensing pathway that drives activation of type I interferons and other inflammatory cytokines, in the host immune response against tumors. The STING pathway is also increasingly understood to have other anti-tumor functions such as modulation of the vasculature and augmentation of adaptive immunity via the support of tertiary lymphoid structure development. Many natural and synthetic STING agonists have entered clinical development with the first generation of intra-tumor delivered cyclic dinucleotides demonstrating safety but only modest systemic activity. The development of more potent and selective STING agonists as well as novel delivery systems that would allow for sustained inflammation in the tumor microenvironment could potentially augment response rates to current immunotherapy approaches and overcome acquired resistance. In this review, we will focus on the latest developments in STING-targeted therapies and provide an update on the clinical development and application of STING agonists administered alone, or in combination with immune checkpoint blockade or other approaches.
Collapse
Affiliation(s)
- Afsaneh Amouzegar
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Manoj Chelvanambi
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.C.); (J.N.F.); (W.J.S.)
| | - Jessica N. Filderman
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.C.); (J.N.F.); (W.J.S.)
| | - Walter J. Storkus
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (M.C.); (J.N.F.); (W.J.S.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Jason J. Luke
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
48
|
Shaver KA, Croom-Perez TJ, Copik AJ. Natural Killer Cells: The Linchpin for Successful Cancer Immunotherapy. Front Immunol 2021; 12:679117. [PMID: 33995422 PMCID: PMC8115550 DOI: 10.3389/fimmu.2021.679117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is a highly successful and rapidly evolving treatment modality that works by augmenting the body’s own immune system. While various immune stimulation strategies such as PD-1/PD-L1 or CTLA-4 checkpoint blockade result in robust responses, even in patients with advanced cancers, the overall response rate is low. While immune checkpoint inhibitors are known to enhance cytotoxic T cells’ antitumor response, current evidence suggests that immune responses independent of cytotoxic T cells, such as Natural Killer (NK) cells, play crucial role in the efficacy of immunotherapeutic interventions. NK cells hold a distinct role in potentiating the innate immune response and activating the adaptive immune system. This review highlights the importance of the early actions of the NK cell response and the pivotal role NK cells hold in priming the immune system and setting the stage for successful response to cancer immunotherapy. Yet, in many patients the NK cell compartment is compromised thus lowering the chances of successful outcomes of many immunotherapies. An overview of mechanisms that can drive NK cell dysfunction and hinder immunotherapy success is provided. Rather than relying on the likely dysfunctional endogenous NK cells to work with immunotherapies, adoptive allogeneic NK cell therapies provide a viable solution to increase response to immunotherapies. This review highlights the advances made in development of NK cell therapeutics for clinical application with evidence supporting their combinatorial application with other immune-oncology approaches to improve outcomes of immunotherapies.
Collapse
Affiliation(s)
- Kari A Shaver
- College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Tayler J Croom-Perez
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Alicja J Copik
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
49
|
McWhirter SM, Jefferies CA. Nucleic Acid Sensors as Therapeutic Targets for Human Disease. Immunity 2021; 53:78-97. [PMID: 32668230 DOI: 10.1016/j.immuni.2020.04.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
Innate immune sensors that detect nucleic acids are attractive targets for therapeutic intervention because of their diverse roles in many disease processes. In detecting RNA and DNA from either self or non-self, nucleic acid sensors mediate the pathogenesis of many autoimmune and inflammatory conditions. Despite promising pre-clinical data and investigational use in the clinic, relatively few drugs targeting nucleic acid sensors are approved for therapeutic use. Nevertheless, there is growing appreciation for the untapped potential of nucleic acid sensors as therapeutic targets, driven by the need for better therapies for cancer, infectious diseases, and autoimmune disorders. This review highlights the diverse mechanisms by which nucleic acid sensors are activated and exert their biological effects in the context of various disease settings. We discuss current therapeutic strategies utilizing agonists and antagonists targeting nucleic acid sensors to treat infectious disease, cancer, and autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
| | - Caroline A Jefferies
- Department of Biomedical Sciences and Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
50
|
Shi F, Su J, Wang J, Liu Z, Wang T. Activation of STING inhibits cervical cancer tumor growth through enhancing the anti-tumor immune response. Mol Cell Biochem 2021; 476:1015-1024. [PMID: 33141310 DOI: 10.1007/s11010-020-03967-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/27/2020] [Indexed: 01/07/2023]
Abstract
Cervical cancer remains the second leading cause of gynecologic cancer-related mortality among women worldwide. STING (stimulator of interferon genes) was reported to be involved in the immune surveillance of tumors. However, the specific role of STING in cervical cancer remains unclear. In this study, we found that the cGAS (Cyclic GMP-AMP synthase)/STING signal decreased in cervical cancer cells. Knockdown of STING by siRNA enhanced the cell viability and migration of cervical cancer cells, while activation of STING by ADU-S100 inhibited the cell viability of cervical cancer cells, with no effect on the migration and apoptosis. In addition, ADU-S100 promoted the secretion of IFNβ and IL-6, and the activation of TBK1 (TANK-binding kinase 1)/NF-κB (nuclear factor kappa-B) pathway. Meanwhile, knockdown of STING inhibited the production of IFNβ and IL-6 that were triggered by dsDNA and suppressed the TBK1/NF-κB signaling. ADU-S100 also suppressed tumor growth in vivo and increased the tumor-infiltrating CD8+ T cell and CD103+ dendritic cell numbers. The NF-κB signal inhibitor limited the increasing numbers of CD8+ T cell and CD103+ dendritic cells induced by ADU-S100, without influence on tumor growth. Hence, our study suggested that STING could serve as a potential novel immunotherapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Fan Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West yanta road, Xi'an, 710061, China
| | - Jin Su
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West yanta road, Xi'an, 710061, China
| | - Juan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West yanta road, Xi'an, 710061, China
| | - Zi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West yanta road, Xi'an, 710061, China
| | - Tao Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277 West yanta road, Xi'an, 710061, China.
| |
Collapse
|