1
|
Holthoff JH, Karakala N, Basnakian AG, Edmondson RD, Fite TW, Gokden N, Harville Y, Herzog C, Holthoff KG, Juncos LA, Reynolds KL, Shelton RS, Arthur JM. The role of IGFBP-1 in the clinical prognosis and pathophysiology of acute kidney injury. Am J Physiol Renal Physiol 2025; 328:F647-F661. [PMID: 40172487 DOI: 10.1152/ajprenal.00173.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/30/2024] [Accepted: 03/26/2025] [Indexed: 04/04/2025] Open
Abstract
The ability to predict progression to severe acute kidney injury (AKI) remains an unmet challenge. Contributing to the inability to predict the course of AKI is a void of understanding of the pathophysiological mechanisms of AKI. The identification of novel prognostic biomarkers could both predict patient outcomes and unravel the molecular mechanisms of AKI. We performed a multicenter retrospective observational study from a cohort of patients following cardiac surgery. We identified novel urinary prognostic biomarkers of severe AKI among subjects with early AKI. Of 2,065 proteins identified in the discovery cohort, insulin-like growth factor binding protein 1 (IGFBP-1) was the most promising. We validated IGFBP-1 as a prognostic biomarker of AKI in 213 patients. In addition, we investigated its role in the pathophysiology of AKI using a murine model of cisplatin-induced AKI (CIAKI). Urinary IGFBP-1 concentration in samples collected from patients with stage 1 AKI following cardiothoracic surgery was significantly higher in patients who progressed to severe AKI compared with patients who did not progress beyond stage 1 AKI (40.28 ng/ml vs. 2.8 ng/ml, P < 0.0001) and predicted the progression to the composite outcome (area under the curve: 0.85, P < 0.0001). IGFBP-1 knockout mice showed less renal injury, cell death, and apoptosis following CIAKI, possibly through increased activation of the insulin growth factor receptor 1. IGFBP-1 is a clinical prognostic biomarker of AKI and a direct mediator of the pathophysiology of AKI. Therapies that target the IGFBP-1 pathways may help alleviate the severity of AKI.NEW & NOTEWORTHY The ability to predict progression to severe AKI remains an unmet challenge. Early prognostic biomarkers of AKI hold promise to improve patient outcomes by early implementation of clinical therapy, as well as unravel the pathophysiological mechanisms of AKI. Here, we present a novel urinary biomarker, IGFBP-1, that predicts the progression to severe AKI following cardiac surgery. In addition, we show that IGFBP-1 mice are protected against CIAKI, suggesting a mechanistic role for IGFBP-1 in AKI.
Collapse
Affiliation(s)
- Joseph Hunter Holthoff
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| | - Nithin Karakala
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Alexei G Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Todd Wesley Fite
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| | - Neriman Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Yanping Harville
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Christian Herzog
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| | - Kaegan G Holthoff
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Luis A Juncos
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| | - Katlyn L Reynolds
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| | - Randall S Shelton
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| | - John M Arthur
- Department of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Section of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States
| |
Collapse
|
2
|
Lee PH, Huang SM, Tsai YC, Wang YT, Chew FY. Biomarkers in Contrast-Induced Nephropathy: Advances in Early Detection, Risk Assessment, and Prevention Strategies. Int J Mol Sci 2025; 26:2869. [PMID: 40243457 PMCID: PMC11989060 DOI: 10.3390/ijms26072869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Contrast-induced nephropathy (CIN) represents a significant complication associated with the use of iodinated contrast media (ICM), especially in individuals with preexisting renal impairment. The pathophysiology of CIN encompasses oxidative stress, inflammation, endothelial dysfunction, and hemodynamic disturbances, resulting in acute kidney injury (AKI). Early detection is essential for effective management; however, conventional markers like serum creatinine (sCr) and estimated glomerular filtration rate (eGFR) exhibit limitations in sensitivity and timeliness. This review emphasizes the increasing significance of novel biomarkers in enhancing early detection and risk stratification of contrast-induced nephropathy (CIN). Recent advancements in artificial intelligence and computational analytics have improved the predictive capabilities of these biomarkers, enabling personalized risk assessment and precision medicine strategies. Additionally, we discuss mitigation strategies, including hydration protocols, pharmacological interventions, and procedural modifications, aimed at reducing CIN incidence. Incorporating biomarker-driven assessments into clinical decision-making can enhance patient management and outcomes. Future research must prioritize the standardization of biomarker assays, the validation of predictive models across diverse patient populations, and the exploration of novel therapeutic targets. Utilizing advancements in biomarkers and risk mitigation strategies allows clinicians to improve the safety of contrast-enhanced imaging and reduce the likelihood of renal injury.
Collapse
Affiliation(s)
- Pei-Hua Lee
- Department of Medical Imaging, China Medical University Hospital, Taichung 404, Taiwan
- Department of Radiology, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Shao Min Huang
- Department of Medical Education, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Yi-Ching Tsai
- Division of Endocrinology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Ting Wang
- Department of Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Fatt Yang Chew
- Department of Medical Imaging, China Medical University Hospital, Taichung 404, Taiwan
- Department of Radiology, School of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
3
|
Baryła M, Skrzycki M, Danielewicz R, Kosieradzki M, Struga M. Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review). Int J Mol Med 2024; 54:107. [PMID: 39370783 PMCID: PMC11448562 DOI: 10.3892/ijmm.2024.5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/31/2024] [Indexed: 10/08/2024] Open
Abstract
To meet the demand for kidney transplants (KTx), organs are frequently retrieved not only from standard criteria donors (SCD; a donor who is aged <50 years and suffered brain death from any number of causes, such as traumatic injuries or a stroke) but also from expanded criteria donors (any donor aged >60 years or donors aged >50 years with two of the following: A history of high blood pressure, a creatinine serum level ≥1.5 mg/dl or death resulting from a stroke). This comes at the cost of a higher risk of primary non‑function (the permanent hyperkalemia, hyperuremia and fluid overload that result in the need for continuous dialysis after KTx), delayed graft function (the need for dialysis session at least once during the first week after KTx), earlier graft loss and urinary complications (vesico‑ureteral reflux, obstruction of the vesico‑ureteral anastomosis, urine leakage). At present, there are no commercially available diagnostic tools for assessing kidney quality prior to KTx. Currently available predictive models based on clinical data, such as the Kidney Donor Profile Index, are insufficient. One promising option is the application of perfusion solutions for protein biomarkers of kidney quality and predictors of short‑ and long‑term outcomes. However, to date, protein markers that can be detected with ELISA, western blotting and cytotoxic assays have not been identified to be a beneficial predictors of kidney quality. These include lactate dehydrogenases, glutathione S‑transferases, fatty acid binding proteins, extracellular histones, IL‑18, neutrophil gelatinase‑associated lipocalin, MMPs and kidney injury molecule‑1. However, novel methods, including liquid chromatography‑mass spectrometry (LC‑MS) and microarrays, allow the analysis of all renal proteins suspended/dissolved in the acellular preservation solution used for kidney storage before KTx (including hypothermic machine perfusion as one of kidney storage methods) e.g. Belzer University of Wisconsin. Recent proteomic studies utilizing LC‑MS have identified complement pathway elements (C3, C1QB, C4BPA, C1S, C1R and C1RL), desmoplakin, blood coagulation pathway elements and immunoglobulin heavy variable 2‑26 to be novel predictors of kidney quality before transplantation. This was because they were found to correlate with estimated glomerular filtration rate at 3 and 12 months after kidney transplantation. However, further proteomic studies focusing on distinct markers obtained from hypothermic and normothermic machine perfusion are needed to confirm their predictive value and to improve kidney storage methods. Therefore, the present literature review from PubMed, Scopus, Embase and Web of Science was performed with the aims of summarizing the current knowledge on the most frequently studied single protein biomarkers. In addition, novel analytical methods and insights into organ injury during preservation were documented, where future directions in assessing organ quality before kidney transplantation were also discussed.
Collapse
Affiliation(s)
- Maksymilian Baryła
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Michał Skrzycki
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Roman Danielewicz
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Maciej Kosieradzki
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Marta Struga
- Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
4
|
Lyrio RMDC, Rocha BRA, Corrêa ALRM, Mascarenhas MGS, Santos FL, Maia RDH, Segundo LB, de Almeida PAA, Moreira CMO, Sassi RH. Chemotherapy-induced acute kidney injury: epidemiology, pathophysiology, and therapeutic approaches. FRONTIERS IN NEPHROLOGY 2024; 4:1436896. [PMID: 39185276 PMCID: PMC11341478 DOI: 10.3389/fneph.2024.1436896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Despite significant advancements in oncology, conventional chemotherapy remains the primary treatment for diverse malignancies. Acute kidney injury (AKI) stands out as one of the most prevalent and severe adverse effects associated with these cytotoxic agents. While platinum compounds are well-known for their nephrotoxic potential, other drugs including antimetabolites, alkylating agents, and antitumor antibiotics are also associated. The onset of AKI poses substantial risks, including heightened morbidity and mortality rates, prolonged hospital stays, treatment interruptions, and the need for renal replacement therapy, all of which impede optimal patient care. Various proactive measures, such as aggressive hydration and diuresis, have been identified as potential strategies to mitigate AKI; however, preventing its occurrence during chemotherapy remains challenging. Additionally, several factors, including intravascular volume depletion, sepsis, exposure to other nephrotoxic agents, tumor lysis syndrome, and direct damage from cancer's pathophysiology, frequently contribute to or exacerbate kidney injury. This article aims to comprehensively review the epidemiology, mechanisms of injury, diagnosis, treatment options, and prevention strategies for AKI induced by conventional chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Felipe Luz Santos
- Department of Medicine, Universidade Salvador (UNIFACS), Salvador, Brazil
| | | | | | | | | | - Rafael Hennemann Sassi
- Hematology Department, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
5
|
Claudel SE, Waikar SS. Systematic Review of Kidney Injury Biomarkers for the Evaluation of CKD of Uncertain Etiology. Kidney Int Rep 2024; 9:1614-1632. [PMID: 38899184 PMCID: PMC11184258 DOI: 10.1016/j.ekir.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Chronic kidney disease of uncertain etiology (CKDu) is an incompletely defined phenotype of chronic kidney disease (CKD) affecting young individuals mostly in agricultural communities in Central America and South Asia. CKDu is a diagnosis of exclusion made in individuals from endemic regions. Methods We conducted a systematic review of the primary literature on urinary and plasma kidney injury biomarkers measured in the setting of CKDu (through February 2023). The literature was identified via a Web of Science search and hand search of the references of previously identified literature. Search terms included "CKDu," "Mesoamerican Nephropathy," "CKD of unknown etiology," "Chronic Interstitial Nephritis in Agricultural Communities," "biomarker," "urin∗," and/or "plasma." Results A total of 25 papers were included. The 2 most frequently measured biomarkers were urinary kidney injury molecule-1 (KIM-1) and urinary neutrophil gelatinase-associated lipocalin (NGAL). There was substantial variability in study design, laboratory assay methods, and statistical methodology, which prohibited meta-analysis. Conclusion Biomarkers that identify tubulointerstitial disease early and accurately may substantially accelerate progress in the study of CKDu and facilitate public health approaches that eventually lead to its prevention and elimination. To date, the literature is limited by relatively small sample sizes and methodological limitations which should be addressed in future studies.
Collapse
Affiliation(s)
- Sophie E. Claudel
- Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Sushrut S. Waikar
- Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Huang RS, McMahon KR, Wang S, Chui H, Lebel A, Lee J, Cockovski V, Rassekh SR, Schultz KR, Blydt-Hansen TD, Cuvelier GD, Mammen C, Pinsk M, Carleton BC, Tsuyuki RT, Ross CJ, Palijan A, Zappitelli M. Tubular Injury Biomarkers to Predict CKD and Hypertension at 3 Months Post-Cisplatin in Children. KIDNEY360 2024; 5:821-833. [PMID: 38668904 PMCID: PMC11219117 DOI: 10.34067/kid.0000000000000448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
Key Points Tubular injury biomarkers are not individually strong predictors of 3-month post-cisplatin CKD. When combined with clinical measures, tubular injury biomarkers can predict post-therapy hypertension and identify high-risk patients. Background Urine kidney injury biomarkers measured during cisplatin therapy may identify patients at risk of adverse subsequent kidney outcomes. We examined relationships between tubular injury biomarkers collected early (early visit [EV]: first or s econd cisplatin cycle) and late (late visit: last or second-last cisplatin cycle) during cisplatin therapy, with 3-month post-cisplatin CKD and hypertension (HTN). Methods We analyzed data from the Applying Biomarkers to Minimize Long-Term Effects of Childhood/Adolescent Cancer Treatment Nephrotoxicity study, a 12-center prospective cohort study of 159 children receiving cisplatin. We measured urine neutrophil gelatinase-associated lipocalin (NGAL)/creatinine, kidney injury molecule-1/creatinine, tissue inhibitor of metalloproteinase-2 (TIMP-2), and insulin-like growth factor-binding protein 7 (IGFBP-7) (TIMP-2 and IGFBP-7 expressed as their product, ng/ml2/1000) at an EV and late visit during cisplatin therapy with preinfusion, postinfusion, and hospital discharge sampling. Area under the curve (AUC) was calculated for biomarkers to detect 3-month post-cisplatin CKD (Kidney Disease Improving Global Outcomes guidelines: low eGFR or elevated urine albumin-to-creatinine ratio for age) and HTN (three BPs; per American Academy of Pediatrics guidelines). Results At median follow-up of 90 days, 52 of 118 patients (44%) and 17 of 125 patients (14%) developed CKD and HTN, respectively. Biomarker prediction for 3-month CKD was low to modest; NGAL combined with kidney injury molecule-1 at EV discharge yielded the highest AUC (0.67; 95% confidence interval, 0.57 to 0.77). Biomarker prediction of 3-month HTN was stronger, but modest; the highest AUC was from combining EV preinfusion NGAL and TIMP-2×IGFBP-7 (0.71; 95% confidence interval, 0.62 to 0.80). When EV preinfusion NGAL and TIMP-2×IGFBP-7 were added to the 3-month HTN clinical predictive model, AUCs increased from 0.81 (0.72 to 0.91) to 0.89 (0.83 to 0.95) (P < 0.05). Conclusions Tubular injury biomarkers we studied were individually not strong predictors of 3-month post-cisplatin kidney outcomes. Adding biomarkers to existing clinical prediction models may help predict post-therapy HTN and identify higher kidney-risk patients.
Collapse
Affiliation(s)
- Ryan S. Huang
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Nephrology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kelly R. McMahon
- Division of Nephrology, Department of Pediatrics, Centre for Outcomes Research and Evaluation (CORE), Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Stella Wang
- Division of Nephrology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Hayton Chui
- Division of Nephrology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Asaf Lebel
- Division of Nephrology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jasmine Lee
- Division of Nephrology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Vedran Cockovski
- Division of Nephrology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Shahrad Rod Rassekh
- Division of Hematology/Oncology/Bone Marrow Transplantation, Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirk R. Schultz
- Division of Hematology/Oncology/Bone Marrow Transplantation, Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tom D. Blydt-Hansen
- Division of Pediatric Nephrology, Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Geoffrey D.E. Cuvelier
- Department of Pediatric Hematology-Oncology-BMT, CancerCare Manitoba, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Cherry Mammen
- Division of Hematology/Oncology/Bone Marrow Transplantation, Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maury Pinsk
- Section of Pediatric Nephrology, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bruce C. Carleton
- Division of Translational Therapeutics, Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ross T. Tsuyuki
- Departments of Pharmacology and Medicine, Faculty of Medicine and Dentistry, EPICORE Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Colin J.D. Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ana Palijan
- Division of Nephrology, Department of Pediatrics, Centre for Outcomes Research and Evaluation (CORE), Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Michael Zappitelli
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Nephrology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Sujana D, Sumiwi SA, Saptarini NM, Levita J. The Nephroprotective Activity of Boesenbergia Rotunda Rhizome by Reducing Creatinine, Urea Nitrogen, Glutamic Pyruvic Transaminase, and Malondialdehyde Levels in the Blood and Attenuating the Expression of Havcr1 (KIM-1), Lcn2 (NGAL), Casp3, and Casp7 Genes in the Kidney Cortex of Cisplatin-Induced Sprague-Dawley Rats. J Exp Pharmacol 2024; 16:189-200. [PMID: 38736464 PMCID: PMC11086399 DOI: 10.2147/jep.s459483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
Background Cisplatin chemotherapy induces nephrotoxicity by producing reactive oxygen species, hence, discovering add-on nephroprotective drugs for patients with cancer is challenging. Boesenbergia rotunda has been reported for its antioxidant properties. Purpose This study aims to explore the nephroprotective mechanism of the ethanol extract of Boesenbergia rotunda rhizome (EEBR) in cisplatin-induced rats. Methods The rats were randomly assigned into 6 groups: the normal control (treated with saline); the negative control (cisplatin-induced without any treatment); the positive control (treated with quercetin 50 mg/kg BW); and 3 treatment EEBR (125 mg/kg BW; 250 mg/kg BW; 500 mg/kg BW) groups for 10 days. The % relative organ weight, kidney histopathology, and nephrotoxicity biomarkers expression were evaluated. Results EEBR decreased creatinine, urea nitrogen, glutamic pyruvate transaminase, and malondialdehyde levels in the blood of cisplatin-induced rats. An insignificant increase in GOT was observed in rats treated with the highest dose of EEBR. EEBR did not significantly alter the BW and the % kidney relative weight. An abnormal shape of the Bowman capsule is observed in the negative control group. EEBR reduced the expression of Havcr1 (KIM-1), Lcn2 (NGAL), Casp3, and Casp7 genes in rats' kidneys. Conclusion Boesenbergia rotunda could be considered a potential candidate for add-on therapy in cisplatin-treated patients, but further studies are needed to verify its efficacy and safety.
Collapse
Affiliation(s)
- Dani Sujana
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 46363, Indonesia
- Diploma Program of Pharmacy, Karsa Husada Garut College of Health Sciences (Stikes Karsa Husada Garut), Garut, West Java, 44151, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 46363, Indonesia
| | - Nyi Mekar Saptarini
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 46363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 46363, Indonesia
| |
Collapse
|
8
|
Abel B, Mares J, Hutzler J, Parajuli B, Kurada L, White JM, Propper BW, Stewart IJ, Burmeister DM. The degree of aortic occlusion in the setting of trauma alters the extent of acute kidney injury associated with mitochondrial preservation. Am J Physiol Renal Physiol 2024; 326:F669-F679. [PMID: 38450433 DOI: 10.1152/ajprenal.00323.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
Resuscitative endovascular balloon occlusion of the aorta (REBOA) is used to control noncompressible hemorrhage not addressed with traditional tourniquets. However, REBOA is associated with acute kidney injury (AKI) and subsequent mortality in severely injured trauma patients. Here, we investigated how the degree of aortic occlusion altered the extent of AKI in a porcine model. Female Yorkshire-cross swine (n = 16, 68.1 ± 0.7 kg) were anesthetized and had carotid and bilateral femoral arteries accessed for REBOA insertion and distal and proximal blood pressure monitoring. Through a laparotomy, a 6-cm liver laceration was performed and balloon inflation was performed in zone 1 of the aorta for 90 min, during which animals were randomized to target distal mean arterial pressures of 25 or 45 mmHg via balloon volume adjustment. Blood draws were taken at baseline, end of occlusion, and time of death, at which point renal tissues were harvested 6 h after balloon deflation for histological and molecular analyses. Renal blood flow was lower in the 25-mmHg group (48.5 ± 18.3 mL/min) than in the 45-mmHg group (177.9 ± 27.2 mL/min) during the occlusion phase, which recovered and was not different after balloon deflation. AKI was more severe in the 25-mmHg group, as evidenced by circulating creatinine, blood urea nitrogen, and urinary neutrophil gelatinase-associated lipocalin. The 25-mmHg group had increased tubular necrosis, lower renal citrate synthase activity, increased tissue and circulating syndecan-1, and elevated systemic inflammatory cytokines. The extent of renal ischemia-induced AKI is associated with the magnitude of mitochondrial biomass and systemic inflammation, highlighting potential mechanistic targets to combine with partial REBOA strategies to prevent AKI.NEW & NOTEWORTHY Large animal models of ischemia-reperfusion acute kidney injury (IR-AKI) are lacking. This report establishes a titratable IR-AKI model in swine in which a balloon catheter can be used to alter distal pressures experienced by the kidney, thus controlling renal blood flow. Lower blood flow results in greater renal dysfunction and structural damage, as well as lower mitochondrial biomass, elevated systemic inflammation, and vascular dysfunction.
Collapse
Affiliation(s)
- Biebele Abel
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Incorporated, Bethesda, Maryland, United States
- Department of Surgery, Uniformed Services University of the Health Science, Bethesda, Maryland, United States
| | - John Mares
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Incorporated, Bethesda, Maryland, United States
- Department of Surgery, Uniformed Services University of the Health Science, Bethesda, Maryland, United States
| | - Justin Hutzler
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Incorporated, Bethesda, Maryland, United States
- Department of Surgery, Uniformed Services University of the Health Science, Bethesda, Maryland, United States
| | - Babita Parajuli
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States
| | - Lalitha Kurada
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Incorporated, Bethesda, Maryland, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States
| | - Joseph M White
- Division of Vascular Surgery and Endovascular Therapy, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Brandon W Propper
- Department of Surgery, Uniformed Services University of the Health Science, Bethesda, Maryland, United States
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Ian J Stewart
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States
| | - David M Burmeister
- Department of Surgery, Uniformed Services University of the Health Science, Bethesda, Maryland, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States
| |
Collapse
|
9
|
González-Nicolás MÁ, González-Guerrero C, Goicoechea M, Boscá L, Valiño-Rivas L, Lázaro A. Biomarkers in Contrast-Induced Acute Kidney Injury: Towards A New Perspective. Int J Mol Sci 2024; 25:3438. [PMID: 38542410 PMCID: PMC10970772 DOI: 10.3390/ijms25063438] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 01/09/2025] Open
Abstract
Contrast-Induced Acute Kidney Injury (CI-AKI) remains a frequent iatrogenic condition since radiological procedures using intra-vascular iodinated contrast media (CM) are being widely administered for diagnostic and therapeutic purposes. Despite the improvement of the medical healthcare system worldwide, CI-AKI is still associated with direct short-term and indirect long-term outcomes including increased morbidity and mortality, especially in patients with underlying pre-existing renal function impairment, cardiovascular disease, or diabetes that could rapidly progress into Chronic Kidney Disease. Although the RIFLE (Risk, Injury, Failure, Loss, End-Stage Kidney Disease), AKIN (Acute Kidney Injury Network), and KDIGO (Kidney Disease Improving Global Outcomes) clinical criteria and recommendation guidelines are based on traditional "gold standard" biomarkers known as serum creatinine, glomerular filtration rate, and urinary output, new reliable serum and urinary biomarkers are still needed for an effective unified diagnostic strategy for AKI. Starting from previous and recent publications on the benefits and limitations of validated biomarkers responding to kidney injury, glomerular filtration, and inflammation among others, this review unravels the role of new emerging biomarkers used alone or in combination as reliable tools for early diagnosis and prognosis of CI-AKI, taking into account patients and procedures-risk factors towards a new clinical perspective.
Collapse
Affiliation(s)
- María Ángeles González-Nicolás
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain; (M.Á.G.-N.); (C.G.-G.)
| | - Cristian González-Guerrero
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain; (M.Á.G.-N.); (C.G.-G.)
| | - Marian Goicoechea
- Department of Nephrology, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain;
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), 28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| | - Lara Valiño-Rivas
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain; (M.Á.G.-N.); (C.G.-G.)
| | - Alberto Lázaro
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28009 Madrid, Spain; (M.Á.G.-N.); (C.G.-G.)
- Department of Physiology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
10
|
Swolinsky JS, Hinz RM, Markus CE, Singer E, Bachmann F, Halleck F, Kron S, Naik MG, Schmidt D, Obermeier M, Gebert P, Rauch G, Kropf S, Haase M, Budde K, Eckardt KU, Westhoff TH, Schmidt-Ott KM. Plasma NGAL levels in stable kidney transplant recipients and the risk of allograft loss. Nephrol Dial Transplant 2024; 39:483-495. [PMID: 37858309 PMCID: PMC11024820 DOI: 10.1093/ndt/gfad226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND The objective of this study was to investigate the utility of neutrophil gelatinase-associated lipocalin (NGAL) and calprotectin (CPT) to predict long-term graft survival in stable kidney transplant recipients (KTR). METHODS A total of 709 stable outpatient KTR were enrolled >2 months post-transplant. The utility of plasma and urinary NGAL (pNGAL, uNGAL) and plasma and urinary CPT at enrollment to predict death-censored graft loss was evaluated during a 58-month follow-up. RESULTS Among biomarkers, pNGAL showed the best predictive ability for graft loss and was the only biomarker with an area under the curve (AUC) > 0.7 for graft loss within 5 years. Patients with graft loss within 5 years (n = 49) had a median pNGAL of 304 [interquartile range (IQR) 235-358] versus 182 (IQR 128-246) ng/mL with surviving grafts (P < .001). Time-dependent receiver operating characteristic analyses at 58 months indicated an AUC for pNGAL of 0.795, serum creatinine-based Chronic Kidney Disease Epidemiology Collaboration estimated glomerular filtration rate (eGFR) had an AUC of 0.866. pNGAL added to a model based on conventional risk factors for graft loss with death as competing risk (age, transplant age, presence of donor-specific antibodies, presence of proteinuria, history of delayed graft function) had a strong independent association with graft loss {subdistribution hazard ratio (sHR) for binary log-transformed pNGAL [log2(pNGAL)] 3.4, 95% confidence interval (CI) 2.24-5.15, P < .0001}. This association was substantially attenuated when eGFR was added to the model [sHR for log2(pNGAL) 1.63, 95% CI 0.92-2.88, P = .095]. Category-free net reclassification improvement of a risk model including log2(pNGAL) in addition to conventional risk factors and eGFR was 54.3% (95% CI 9.2%-99.3%) but C-statistic did not improve significantly. CONCLUSIONS pNGAL was an independent predictor of renal allograft loss in stable KTR from one transplant center but did not show consistent added value when compared with baseline predictors including the conventional marker eGFR. Future studies in larger cohorts are warranted.
Collapse
Affiliation(s)
- Jutta S Swolinsky
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ricarda M Hinz
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Carolin E Markus
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Eugenia Singer
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Friederike Bachmann
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Susanne Kron
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Marcel G Naik
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin
| | - Danilo Schmidt
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | | | - Pimrapat Gebert
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology
| | - Geraldine Rauch
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology
| | - Siegfried Kropf
- Institute of Biometry and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Michael Haase
- Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
- Diaverum Renal Services, MVZ Potsdam, Potsdam, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Timm H Westhoff
- Medical Department I, Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, Bochum, Germany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Stojanović NM, Mitić KV, Nešić M, Stanković M, Petrović V, Baralić M, Randjelović PJ, Sokolović D, Radulović N. Oregano ( Origanum vulgare) Essential Oil and Its Constituents Prevent Rat Kidney Tissue Injury and Inflammation Induced by a High Dose of L-Arginine. Int J Mol Sci 2024; 25:941. [PMID: 38256015 PMCID: PMC10815453 DOI: 10.3390/ijms25020941] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to evaluate the protective action of oregano (Origanum vulgare) essential oil and its monoterpene constituents (thymol and carvacrol) in L-arginine-induced kidney damage by studying inflammatory and tissue damage parameters. The determination of biochemical markers that reflect kidney function, i.e., serum levels of urea and creatinine, tissue levels of neutrophil-gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1), as well as a panel of oxidative-stress-related and inflammatory biomarkers, was performed. Furthermore, histopathological and immunohistochemical analyses of kidneys obtained from different experimental groups were conducted. Pre-treatment with the investigated compounds prevented an L-arginine-induced increase in serum and tissue kidney damage markers and, additionally, decreased the levels of inflammation-related parameters (TNF-α and nitric oxide concentrations and myeloperoxidase activity). Micromorphological kidney tissue changes correlate with the alterations observed in the biochemical parameters, as well as the expression of CD95 in tubule cells and CD68 in inflammatory infiltrate cells. The present results revealed that oregano essential oil, thymol, and carvacrol exert nephroprotective activity, which could be, to a great extent, associated with their anti-inflammatory, antiradical scavenging, and antiapoptotic action and, above all, due to their ability to lessen the disturbances arising from acute pancreatic damage. Further in-depth studies are needed in order to provide more detailed explanations of the observed activities.
Collapse
Affiliation(s)
- Nikola M. Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Katarina V. Mitić
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milica Nešić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (M.N.); (N.R.)
| | - Milica Stanković
- Department of Pathology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Vladimir Petrović
- Department of Histology and Embryology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Marko Baralić
- School of Medicine, University of Belgrade, 11080 Belgrade, Serbia;
- Department of Nephrology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Pavle J. Randjelović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Dušan Sokolović
- Institute for Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Niko Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (M.N.); (N.R.)
| |
Collapse
|
12
|
Fan F, Xu P. Global biomarkers trends in acute kidney injury: a bibliometric analysis. Ren Fail 2023; 45:2278300. [PMID: 37994407 PMCID: PMC11001340 DOI: 10.1080/0886022x.2023.2278300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/28/2023] [Indexed: 11/24/2023] Open
Abstract
OBJECTIVES Acute kidney injury (AKI) is a common global condition with high morbidity and mortality rates. Biomarkers can aid in the diagnosis, prediction, intervention, and outcome assessment of AKI. This study aimed to summarize the current research status and identify research hotspots for AKI biomarkers using bibliometric analysis. METHODS Relevant original English language articles were retrieved from the Science Citation Index Expanded of the Web of Science Core Collection database, from inception to 31 December 2022. Full records and related cited references from all the documents were collected and analyzed. RESULTS A total of 16368 authors from 3379 institutions in 83 countries/regions contributed to 2916 documents that were published in 712 academic journals. Annual publication output followed exponential growth since 2008. The United States, the University of Pittsburgh, and the American Journal of Physiology-Renal Physiology were the most productive countries, institutions, and journals in terms of research outputs, respectively. The area of interest has shifted from neutrophil gelatinase-associated lipocalin, cell cycle, and tubular damage toward sepsis and COVID-19. Apoptosis, inflammation, and chronic kidney disease have become popular in recent years, and studies on ferroptosis, machine learning, COVID-19, and renal fibrosis will be the focus of future research. IMPLICATIONS This bibliometric study suggests that future research on AKI biomarkers would focus on ferroptosis, renal fibrosis and COVID-19. Artificial intelligence, such as machine learning, maybe the most promising direction for the discovery and validation of AKI biomarkers.
Collapse
Affiliation(s)
- Fan Fan
- Department of General Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Peifeng Xu
- Department of General Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Alkhaleq HA, Karram T, Fokra A, Hamoud S, Kabala A, Abassi Z. The Protective Pathways Activated in Kidneys of αMUPA Transgenic Mice Following Ischemia\Reperfusion-Induced Acute Kidney Injury. Cells 2023; 12:2497. [PMID: 37887341 PMCID: PMC10605904 DOI: 10.3390/cells12202497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Despite the high prevalence of acute kidney injury (AKI), the therapeutic approaches for AKI are disappointing. This deficiency stems from the poor understanding of the pathogenesis of AKI. Recent studies demonstrate that αMUPA, alpha murine urokinase-type plasminogen activator (uPA) transgenic mice, display a cardioprotective pathway following myocardial ischemia. We hypothesize that these mice also possess protective renal pathways. Male and female αMUPA mice and their wild type were subjected to 30 min of bilateral ischemic AKI. Blood samples and kidneys were harvested 48 h following AKI for biomarkers of kidney function, renal injury, inflammatory response, and intracellular pathways sensing or responding to AKI. αMUPA mice, especially females, exhibited attenuated renal damage in response to AKI, as was evident from lower SCr and BUN, normal renal histology, and attenuated expression of NGAL and KIM-1. Notably, αMUPA females did not show a significant change in renal inflammatory and fibrotic markers following AKI as compared with wild-type (WT) mice and αMUPA males. Moreover, αMUPA female mice exhibited the lowest levels of renal apoptotic and autophagy markers during normal conditions and following AKI. αMUPA mice, especially the females, showed remarkable expression of PGC1α and eNOS following AKI. Furthermore, MUPA mice showed a significant elevation in renal leptin expression before and following AKI. Pretreatment of αMUPA with leptin-neutralizing antibodies prior to AKI abolished their resistance to AKI. Collectively, the kidneys of αMUPA mice, especially those of females, are less susceptible to ischemic I/R injury compared to WT mice, and this is due to nephroprotective actions mediated by the upregulation of leptin, eNOS, ACE2, and PGC1α along with impaired inflammatory, fibrotic, and autophagy processes.
Collapse
Affiliation(s)
- Heba Abd Alkhaleq
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Tony Karram
- Department of Vascular Surgery, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Ahmad Fokra
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Shadi Hamoud
- Internal Medicine, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Aviva Kabala
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
| | - Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (H.A.A.); (A.F.); (A.K.)
- Laboratory Medicine, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
14
|
Lofgren L, Silverton N, Kuck K. Combining Machine Learning and Urine Oximetry: Towards an Intraoperative AKI Risk Prediction Algorithm. J Clin Med 2023; 12:5567. [PMID: 37685632 PMCID: PMC10488092 DOI: 10.3390/jcm12175567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Acute kidney injury (AKI) affects up to 50% of cardiac surgery patients. The definition of AKI is based on changes in serum creatinine relative to a baseline measurement or a decrease in urine output. These monitoring methods lead to a delayed diagnosis. Monitoring the partial pressure of oxygen in urine (PuO2) may provide a method to assess the patient's AKI risk status dynamically. This study aimed to assess the predictive capability of two machine learning algorithms for AKI in cardiac surgery patients. One algorithm incorporated a feature derived from PuO2 monitoring, while the other algorithm solely relied on preoperative risk factors. The hypothesis was that the model incorporating PuO2 information would exhibit a higher area under the receiver operator characteristic curve (AUROC). An automated forward variable selection method was used to identify the best preoperative features. The AUROC for individual features derived from the PuO2 monitor was used to pick the single best PuO2-based feature. The AUROC for the preoperative plus PuO2 model vs. the preoperative-only model was 0.78 vs. 0.66 (p-value < 0.01). In summary, a model that includes an intraoperative PuO2 feature better predicts AKI than one that only includes preoperative patient data.
Collapse
Affiliation(s)
- Lars Lofgren
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| | - Natalie Silverton
- Department of Anesthesiology, University of Utah, Salt Lake City, UT 84112, USA;
- Geriatric Research, Education and Clinical Centre, Veteran Affairs Medical Center, Salt Lake City, UT 84112, USA
| | - Kai Kuck
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA;
- Department of Anesthesiology, University of Utah, Salt Lake City, UT 84112, USA;
| |
Collapse
|
15
|
Tabernero G, Pescador M, Ruiz Ferreras E, Morales AI, Prieto M. Evaluation of NAG, NGAL, and KIM-1 as Prognostic Markers of the Initial Evolution of Kidney Transplantation. Diagnostics (Basel) 2023; 13:diagnostics13111843. [PMID: 37296695 DOI: 10.3390/diagnostics13111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Kidney transplantation is the best option for end-stage chronic kidney disease. Transplant viability is conditioned by drugs' nephrotoxicity, ischemia-reperfusion damage, or acute rejection. An approach to improve graft survival is the identification of post-transplant renal function prognostic biomarkers. Our objective was to study three early kidney damage biomarkers (N-acetyl-d-glucosaminidase, NAG; neutrophil gelatinase-associated lipocalin, NGAL; and kidney injury molecule-1, KIM-1) in the initial period after transplantation and to identify possible correlations with main complications. We analysed those biomarkers in urine samples from 70 kidney transplant patients. Samples were taken on days 1, 3, 5, and 7 after intervention, as well as on the day that renal function stabilised (based on serum creatinine). During the first week after transplant, renal function improved based on serum creatinine evolution. However, increasing levels of biomarkers at different times during that first week could indicate tubular damage or other renal pathology. A relationship was found between NGAL values in the first week after transplantation and delayed graft function. In addition, higher NAG and NGAL, and lower KIM-1 values predicted a longer renal function stabilisation time. Therefore, urinary NAG, NGAL, and KIM-1 could constitute a predictive tool for kidney transplant complications, contributing to improve graft survival rates.
Collapse
Affiliation(s)
- Guadalupe Tabernero
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
- Department of Nephrology, University Hospital, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Moisés Pescador
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- RICORS2040-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Ana I Morales
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- RICORS2040-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Prieto
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- RICORS2040-Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
16
|
Catanese L, Siwy J, Mischak H, Wendt R, Beige J, Rupprecht H. Recent Advances in Urinary Peptide and Proteomic Biomarkers in Chronic Kidney Disease: A Systematic Review. Int J Mol Sci 2023; 24:9156. [PMID: 37298105 PMCID: PMC10252389 DOI: 10.3390/ijms24119156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Biomarker development, improvement, and clinical implementation in the context of kidney disease have been a central focus of biomedical research for decades. To this point, only serum creatinine and urinary albumin excretion are well-accepted biomarkers in kidney disease. With their known blind spot in the early stages of kidney impairment and their diagnostic limitations, there is a need for better and more specific biomarkers. With the rise in large-scale analyses of the thousands of peptides in serum or urine samples using mass spectrometry techniques, hopes for biomarker development are high. Advances in proteomic research have led to the discovery of an increasing amount of potential proteomic biomarkers and the identification of candidate biomarkers for clinical implementation in the context of kidney disease management. In this review that strictly follows the PRISMA guidelines, we focus on urinary peptide and especially peptidomic biomarkers emerging from recent research and underline the role of those with the highest potential for clinical implementation. The Web of Science database (all databases) was searched on 17 October 2022, using the search terms "marker *" OR biomarker * AND "renal disease" OR "kidney disease" AND "proteome *" OR "peptid *" AND "urin *". English, full-text, original articles on humans published within the last 5 years were included, which had been cited at least five times per year. Studies based on animal models, renal transplant studies, metabolite studies, studies on miRNA, and studies on exosomal vesicles were excluded, focusing on urinary peptide biomarkers. The described search led to the identification of 3668 articles and the application of inclusion and exclusion criteria, as well as abstract and consecutive full-text analyses of three independent authors to reach a final number of 62 studies for this manuscript. The 62 manuscripts encompassed eight established single peptide biomarkers and several proteomic classifiers, including CKD273 and IgAN237. This review provides a summary of the recent evidence on single peptide urinary biomarkers in CKD, while emphasizing the increasing role of proteomic biomarker research with new research on established and new proteomic biomarkers. Lessons learned from the last 5 years in this review might encourage future studies, hopefully resulting in the routine clinical applicability of new biomarkers.
Collapse
Affiliation(s)
- Lorenzo Catanese
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95447 Bayreuth, Germany; (L.C.); (H.R.)
- Kuratorium for Dialysis and Transplantation (KfH), 95445 Bayreuth, Germany
- Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany;
| | | | - Ralph Wendt
- Department of Nephrology, St. Georg Hospital Leipzig, 04129 Leipzig, Germany; (R.W.); (J.B.)
| | - Joachim Beige
- Department of Nephrology, St. Georg Hospital Leipzig, 04129 Leipzig, Germany; (R.W.); (J.B.)
- Department of Internal Medicine II, Martin-Luther-University Halle/Wittenberg, 06108 Halle/Saale, Germany
- Kuratorium for Dialysis and Transplantation (KfH), 04129 Leipzig, Germany
| | - Harald Rupprecht
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95447 Bayreuth, Germany; (L.C.); (H.R.)
- Kuratorium for Dialysis and Transplantation (KfH), 95445 Bayreuth, Germany
- Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
17
|
Akhtar M, Trombetta LD. Low Level Mancozeb Exposure Causes Copper Bioaccumulation in the Renal Cortex of Rats Leading to Tubular Injury. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104148. [PMID: 37182728 DOI: 10.1016/j.etap.2023.104148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Mancozeb is a widely-used, broad-spectrum contact dithiocarbamate fungicide. Dithiocarbamates are known to trans-chelate metals. This study was designed to evaluate the potential of Mancozeb to mobilize and bioaccumulate essential trace metals in various tissues. Long-Evans rats were orally gavaged with 0, 50, or 100mg/kg/day of Mancozeb for 28 days. Mancozeb caused a significant increase in copper and manganese in the hippocampus and manganese in the liver. Exceedingly higher level of copper was detected in the renal cortex using ICP-OES in both dose groups. This was confirmed histologically in the tubular epithelial cells. In addition, copper-associated protein levels were also increased. Copper bioaccumulation in the renal cortex was accompanied by oxidative damage and tubular insult indicated by increased 4-HNE, KIM-1, and NGAL immunoreactivity. These findings demonstrate that low-dose Mancozeb exposure is a potential risk for kidney injury due to copper overload and warrants further in vivo and human population-based investigations.
Collapse
Affiliation(s)
- Mumtaz Akhtar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Louis D Trombetta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA.
| |
Collapse
|
18
|
Dahiya K, Prashant P, Dhankhar R, Dhankhar K, Kumar S, Vashist S. Lipocalin-2 as a biomarker for diabetic nephropathy. World J Meta-Anal 2023; 11:92-101. [DOI: 10.13105/wjma.v11.i4.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/11/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Diabetes is a major global public health issue. The prevalence of type 1 diabetes is comparatively static, as hereditary and genetic causes are involved, while type 2 diabetes (T2D) prevalence is increasing day by day. T2D is associated with chronic complications, including diabetic neuropathy (DN), nephropathy, retinopathy, and other complications like diabetic foot. DN is the main complication of both types of diabetes. DN can be diagnosed by routine laboratory tests, microalbuminuria > 300 mg/24 h, and a gradual decrease in glomerular filtration rate. As the appearance of microalbuminuria is a late manifestation, an early marker for renal damage is needed. Lipocalin-2, also known as neutrophil gelatinase-associated lipocalin (NGAL), is a small protein purified from neutrophil granules and a good marker for kidney disease. NGAL is a transporter protein responsible for many physiological processes, such as inflammation, generation of the immune response, and metabolic homeostasis. NGAL has been reported to depict the early changes in renal damage when urine microalbumin is still undetecable. Therefore, elucidating the role of NGAL in detecting DN and understanding its mechanism can help establish it as a potential early marker for DN.
Collapse
Affiliation(s)
- Kiran Dahiya
- Department of Biochemistry, Pt BD Sharma Post Graduate Institute of Medical Sciences, Rohtak 124001, Haryana, India
| | - Praveen Prashant
- Department of Biochemistry, Pt BD Sharma Post Graduate Institute of Medical Sciences, Rohtak 124001, Haryana, India
| | - Rakesh Dhankhar
- Department of Radiation Oncology, Pt BD Sharma Post Graduate Institute of Medical Sciences, Rohtak 124001, India
| | - Kumud Dhankhar
- Phase III, JSS Medical College, Mysuru 570015, Karnataka, India
| | | | - Sonia Vashist
- Department of Dermatology, Dr Sonia’s Dermatology Clinic, Rewari 123401, Haryana, India
| |
Collapse
|
19
|
Groves AM, Johnston CJ, Beutner GG, Dahlstrom JE, Koina M, O'Reilly MA, Porter G, Brophy PD, Kent AL. Neonatal hypoxic ischemic encephalopathy increases acute kidney injury urinary biomarkers in a rat model. Physiol Rep 2022; 10:e15533. [PMID: 36541220 PMCID: PMC9768655 DOI: 10.14814/phy2.15533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) is associated with acute kidney injury (AKI) in neonates with birth asphyxia. This study aimed to utilize urinary biomarkers to characterize AKI in an established neonatal rat model of HIE. Day 7 Sprague-Dawley rat pups underwent HIE using the Rice-Vannucci model (unilateral carotid ligation followed by 120 mins of 8% oxygen). Controls included no surgery and sham surgery. Weights and urine for biomarkers (NGAL, osteopontin, KIM-1, albumin) were collected the day prior, daily for 3 days post-intervention, and at sacrifice day 14. Kidneys and brains were processed for histology. HIE pups displayed histological evidence of kidney injury including damage to the proximal tubules, consistent with resolving acute tubular necrosis, and had significantly elevated urinary levels of NGAL and albumin compared to sham or controls 1-day post-insult that elevated for 3 days. KIM-1 significantly increased for 2 days post-HIE. HIE did not significantly alter osteopontin levels. Seven days post-start of experiment, controls were 81.2% above starting weight compared to 52.1% in HIE pups. NGAL and albumin levels inversely correlated with body weight following HIE injury. The AKI produced by the Rice-Vannucci HIE model is detectable by urinary biomarkers, which can be used for future studies of treatments to reduce kidney injury.
Collapse
Affiliation(s)
- Angela M. Groves
- Department of PediatricsUniversity of Rochester School of Medicine and DentistryNew YorkRochesterUSA
- Department of Radiation OncologyUniversity of Rochester School of Medicine and DentistryNew YorkRochesterUSA
| | - Carl J. Johnston
- Department of PediatricsUniversity of Rochester School of Medicine and DentistryNew YorkRochesterUSA
| | - Gisela G. Beutner
- Division of CardiologyUniversity of Rochester School of Medicine and DentistryNew YorkRochesterUSA
| | - Jane E. Dahlstrom
- Department of Anatomical Pathology, ACT PathologyCanberra Health ServicesCanberraAustralia
- College of Health and MedicineAustralian National UniversityCanberraAustralia
| | - Mark Koina
- Department of Anatomical Pathology, ACT PathologyCanberra Health ServicesCanberraAustralia
- College of Health and MedicineAustralian National UniversityCanberraAustralia
| | - Michael A. O'Reilly
- Department of PediatricsUniversity of Rochester School of Medicine and DentistryNew YorkRochesterUSA
| | - George Porter
- Division of CardiologyUniversity of Rochester School of Medicine and DentistryNew YorkRochesterUSA
| | - Patrick D. Brophy
- Department of PediatricsUniversity of Rochester School of Medicine and DentistryNew YorkRochesterUSA
- Division of Nephrology, University of Rochester School of Medicine and DentistryGolisano Children's Hospital at University of Rochester Medical CenterNew YorkRochesterUSA
| | - Alison L. Kent
- Department of PediatricsUniversity of Rochester School of Medicine and DentistryNew YorkRochesterUSA
- College of Health and MedicineAustralian National UniversityCanberraAustralia
| |
Collapse
|
20
|
Parasher N, Kaushik P, Singh NK, Sweta, Yadav L, Bhurer Yadav B, Suri A. Association of neutrophil gelatinase associated lipocalin, ischemia modified albumin with uric acid in the etiopathogenesis of preeclampsia. Horm Mol Biol Clin Investig 2022; 44:39-43. [PMID: 36284500 DOI: 10.1515/hmbci-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/21/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Preeclampsia is a multisystem illness that manifests in the third trimester of pregnancy after 20 weeks of gestation and is marked by proteinuria and hypertension (PE). Changes in lifestyle, such as eating a high-calorie diet and delaying delivery, have raised the likelihood of developing PE. Eclampsia, abrupt renal failure, thromboembolic episodes leading to cardiac and brain problems, pulmonary embolism, and coagulopathy associated with HELLP syndrome are a few of the complications that might follow preeclampsia in pregnant moms. The objects of this study is to estimate and correlate the levels of NGAL (neutrophil gelatinase associated lipocalin), IMA (ischemia modified albumin) and Uric acid in prreclampsia.
Methods
40 diagnosed cases of preeclampsia and 40 healthy age and gestational age matched healthy controls were included in the study. Blood samples were collected from them and serum NGAL, IMA and Uric acid levels were estimated. Estimation of NGAL (neutrophil gelatinase associated lipocalin), IMA (ischemia modified albumin) was done by commercially available ELISA kits standard spectrophotometry methods in autoanalyzer Mind ray BS300 using commercially available kits.
Results
The parameters of NGAL and IMA were significantly increased in patients with PE (p<0.001) when compared with the healthy control subjects. γ-glutamyl transferases and OPN were found in patients with ALD (p<0.001) when compared with the control subjects. OPN showed significant positive correlations with AST (r=0.76, p<0.001), ALT (r=0.64 p<0.001), ALP (r=0.68, p<0.001), and GGT (r=0.61, p<0.001).
Conclusions
The current study focuses on the roles of NGAL and IMA, two sensitive markers of kidney injury that are particularly useful in identifying widespread endothelial dysfunction. As a result, the pattern of elevated NGAL and IMA levels can be useful for diagnosis.
Collapse
Affiliation(s)
- Nitin Parasher
- Department of Biochemistry, Faculty of Medicine & Health Sciences , SGT University , Gurugram , Haryana , India
| | - Priya Kaushik
- Department of Biochemistry, Faculty of Medicine & Health Sciences , SGT University , Gurugram , Haryana , India
| | - Naveen Kumar Singh
- Department of Biochemistry, Faculty of Medicine & Health Sciences , SGT University , Gurugram , Haryana , India
| | - Sweta
- Department of Pathology, Faculty of Medicine & Health Sciences , SGT University , Gurugram , Haryana , India
| | - Lalit Yadav
- Department of Biochemistry, Faculty of Medicine & Health Sciences , SGT University , Gurugram , Haryana , India
| | - Bibek Bhurer Yadav
- Department of Biochemistry, Faculty of Medicine & Health Sciences , SGT University , Gurugram , Haryana , India
| | - Arpita Suri
- Department of Biochemistry, Faculty of Medicine & Health Sciences , SGT University , Gurugram , Haryana , India
| |
Collapse
|
21
|
Arslan E, Saygili S, Celkan TT, Kurugoglu S, Elicevik M, Camcioglu AE, Konukoglu D, Apak H, Caliskan S, Sever L, Canpolat N. Increased risk for kidney sequelae surrogates in survivors of Wilms tumor. Pediatr Nephrol 2022; 37:2415-2426. [PMID: 35118543 DOI: 10.1007/s00467-022-05460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND There is evidence of increased risk of hypertension, albuminuria, and development of chronic kidney disease (CKD) in long-term follow-up of survivors of Wilms tumor (WT). However, most studies were conducted in heterogeneous groups, including patients with solitary kidney. In addition, little is known about tubular dysfunction. This study aimed to investigate kidney sequelae, including CKD development, hypertension, and glomerular and tubular damage in WT survivors. METHODS This cross-sectional, single-center study included 61 patients treated for WT. Surrogates for kidney sequelae were defined as presence of at least one of the following: decrease in GFR for CKD, hypertension detected by ambulatory blood pressure monitoring, albuminuria (albumin-to-creatinine ratio [ACR] > 30 mg/g), or increase in at least one tubular biomarker (beta-2-microglobulin, neutrophil gelatinase-associated lipocalin, kidney injury marker-1, and liver fatty acid-binding protein) in 24-h urine. RESULTS Median age of patients was 11.7 years, with median follow-up of 8.8 years. Thirty-eight patients (62%) had at least one surrogate for kidney sequelae. Twenty-four patients (39%) had CKD, 14 patients (23%) had albuminuria, 12 patients (21%) had hypertension, and 11 patients (18%) had tubular damage. Urine ACR was significantly higher in patients with advanced tumor stage and patients with nephrotoxic therapy than their counterparts (p < 0.05), but neither eGFR nor tubular biomarkers showed any association with tumor- or treatment-related factors. CONCLUSIONS A considerable number of patients with WT have kidney sequelae, especially early-stage CKD with a high prevalence. Albuminuria emerges as a marker associated with tumor stages and nephrotoxic treatment. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Emrullah Arslan
- Department of Pediatrics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Seha Saygili
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Tülin Tiraje Celkan
- Department of Pediatric Hematology Oncology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sebuh Kurugoglu
- Department of Radiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mehmet Elicevik
- Department of Pediatric Surgery, Division of Pediatric Urology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Abdulhamit Enes Camcioglu
- Department of Public Health, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Dildar Konukoglu
- Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hilmi Apak
- Department of Pediatric Hematology Oncology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Salim Caliskan
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Lale Sever
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nur Canpolat
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
22
|
Xie D, Hu G, Chen C, Ahmadinejad F, Wang W, Li PL, Gewirtz DA, Li N. Loss of sphingosine kinase 2 protects against cisplatin-induced kidney injury. Am J Physiol Renal Physiol 2022; 323:F322-F334. [PMID: 35834271 PMCID: PMC9394771 DOI: 10.1152/ajprenal.00229.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 01/01/2023] Open
Abstract
Cisplatin is an established chemotherapeutic drug for treatment of solid-organ cancers and is the primary drug used in the treatment of head and neck cancer; however, cisplatin-induced nephrotoxicity largely limits its clinical use. Inhibition of sphingosine kinase 2 (SphK2) has been demonstrated to alleviate various kidney diseases. Therefore, we hypothesized that inhibition of SphK2 could also protect against cisplatin-induced nephrotoxicity. Results from the present study showed that the SphK2 inhibitor ABC294640 or knockdown of SphK2 by siRNA blocked the cisplatin-induced increase of cellular injury markers (neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, and cleaved caspase-3) by Western blot analysis in HK-2 cells, a human renal tubular cell line. In addition, SphK2 inhibition blocked cisplatin-induced activation of NF-κB by Western blot analysis and immunostaining analysis. Furthermore, SphK2 inhibition suppressed cisplatin-induced increases of proinflammatory markers (NLR family pyrin domain containing 3, interleukin-1β, and interleukin-6). Genetic deletion of the SphK2 gene in mice further confirmed that inhibition of SphK2 protected against cisplatin-induced kidney damage in vivo. Compared with wild-type mice, SphK2 knockout mice exhibited less renal dysfunction and reduced promotion of kidney injury markers, inflammatory factors, tubular morphology damage, and fibrotic staining. At the same time, the SphK2 inhibitor ABC294640 failed to interfere with the activity of cisplatin or radiation in two cell culture models of head and neck cancer. It is concluded that inhibition of Sphk2 protects against cisplatin-induced kidney injury. SphK2 may be used as a potential therapeutic target for the prevention or treatment of cisplatin-induced kidney injury.NEW & NOTEWORTHY The present study provides new findings that sphingosine kinase 2 (SphK2) is highly expressed in renal tubules, cisplatin treatment increases the expression of SphK2 in proximal tubular cells and kidneys, and inhibition of SphK2 alleviates cisplatin-induced kidney injury by suppressing the activation of NF-κB, production of inflammatory factors, and apoptosis. SphK2 may serve as a potential therapeutic target for the prevention or treatment of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Dengpiao Xie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gaizun Hu
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Chaoling Chen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Fereshteh Ahmadinejad
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Weili Wang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
23
|
Valashedi MR, Roushandeh AM, Tomita K, Kuwahara Y, Pourmohammadi-Bejarpasi Z, Kozani PS, Sato T, Roudkenar MH. CRISPR/Cas9-mediated knockout of Lcn2 in human breast cancer cell line MDA-MB-231 ameliorates erastin-mediated ferroptosis and increases cisplatin vulnerability. Life Sci 2022; 304:120704. [PMID: 35714703 DOI: 10.1016/j.lfs.2022.120704] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 01/16/2023]
Abstract
AIMS Lipocalin 2 (Lcn2) is an antioxidant-related protein upregulated in various cellular stress conditions, especially cancer. In this study, we abrogated Lcn2 expression in MDA-MB-231 breast cancer cells using the CRISPR/Cas9 technology and evaluated its effect on cellular proliferation, migration, and ferroptotic cell death. MAIN METHODS Validated human Lcn2 CRISPR/Cas9 knockout (KO) and homology-directed repair (HDR) plasmids were co-transfected into MDA-MB-231 breast cancer cells. Lcn2 gene knockout was confirmed at the transcriptional and protein levels using reverse transcription (RT)-PCR and enzyme-linked immunosorbent assay (ELISA). Cell proliferation was measured using Cell Counting Kit-8 (CCK-8) and colony formation assays. Cytotoxicity assay was performed in the presence or absence of erastin, cisplatin (CDDP), and ferrostatin-1 using the CCK-8 method. Ferroptosis level was measured using the malondialdehyde assay lipid peroxidation kit. The migration capacity of the cells was also evaluated using the scratch assay. KEY FINDINGS Targeting Lcn2 using CRISPR/Cas9 reduced cellular proliferation and migration capability, and elevated the vulnerability of MDA-MB-231 cells to cisplatin. Furthermore, Lcn2 expression loss effectively promoted erastin-mediated ferroptosis in MDA-MB-231 cells. SIGNIFICANCE Inhibition of Lcn2 is a potentially useful strategy for sensitizing MDA-MB-231 tumor cells to ferroptotic cell death.
Collapse
Affiliation(s)
- Mehdi Rabiee Valashedi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
24
|
Potential Protective Effects of Antioxidants against Cyclophosphamide-Induced Nephrotoxicity. Int J Nephrol 2022; 2022:5096825. [PMID: 35469319 PMCID: PMC9034963 DOI: 10.1155/2022/5096825] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
Cyclophosphamide is an alkylating antineoplastic agent, and it is one of the most successful drugs with wide arrays of clinical activity. It has been in use for several types of cancer treatments and as an immunosuppressive agent for the management of autoimmune and immune-mediated diseases. Nowadays, its clinical use is limited due to various toxicities, including nephrotoxicity. Even though the mechanisms are not well understood, cyclophosphamide-induced nephrotoxicity is reported to be mediated through oxidative stress. This review focuses on the potential role of natural and plant-derived antioxidants in preventing cyclophosphamide-induced nephrotoxicity.
Collapse
|
25
|
Chebotareva N, Grechukhina K, Mcdonnell V, Zhukova L, Krasnova T. Early biomarkers of nephrotoxicity associated with the use of anti‑VEGF drugs. Biomed Rep 2022; 16:46. [DOI: 10.3892/br.2022.1529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/18/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Natalia Chebotareva
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia
| | | | - Valerie Mcdonnell
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia
| | - Lyudmila Zhukova
- Loginov Moscow Clinical Scientific Center, Moscow 111123, Russia
| | | |
Collapse
|
26
|
Sancho-Martínez SM, Herrero M, Fontecha-Barriuso M, Mercado-Hernández J, López-Hernández FJ. The Urinary Level of Injury Biomarkers Is Not Univocally Reflective of the Extent of Toxic Renal Tubular Injury in Rats. Int J Mol Sci 2022; 23:ijms23073494. [PMID: 35408856 PMCID: PMC8998362 DOI: 10.3390/ijms23073494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
Nephrotoxicity is a major cause of intrinsic acute kidney injury (AKI). Because renal tissue damage may occur independently of a reduction in glomerular filtration rate and of elevations in plasma creatinine concentration, so-called injury biomarkers have been proposed to form part of diagnostic criteria as reflective of tubular damage independently of renal function status. We studied whether the urinary level of NGAL, KIM-1, GM2AP, t-gelsolin, and REGIIIb informed on the extent of tubular damage in rat models of nephrotoxicity, regardless of the etiology, moment of observation, and underlying pathophysiology. At a time of overt AKI, urinary biomarkers were measured by Western blot or ELISA, and tubular necrosis was scored from histological specimens stained with hematoxylin and eosin. Correlation and regression studies revealed that only weak relations existed between biomarkers and tubular damage. Due to high interindividual variability in the extent of damage for any given biomarker level, urinary injury biomarkers did not necessarily reflect the extent of the underlying tissue injury in individual rats. We contended, in this work, that further pathophysiological contextualization is necessary to understand the diagnostic significance of injury biomarkers before they can be used for renal tubular damage severity stratification in the context of nephrotoxic and, in general, intrinsic AKI.
Collapse
Affiliation(s)
- Sandra M. Sancho-Martínez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (S.M.S.-M.); (J.M.-H.)
- Departamento de Fisiología y Farmacología, Universidad de Salamanca (USAL), 37007 Salamanca, Spain; (M.H.); (M.F.-B.)
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Herrero
- Departamento de Fisiología y Farmacología, Universidad de Salamanca (USAL), 37007 Salamanca, Spain; (M.H.); (M.F.-B.)
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
| | - Miguel Fontecha-Barriuso
- Departamento de Fisiología y Farmacología, Universidad de Salamanca (USAL), 37007 Salamanca, Spain; (M.H.); (M.F.-B.)
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
| | - Joana Mercado-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (S.M.S.-M.); (J.M.-H.)
- Departamento de Fisiología y Farmacología, Universidad de Salamanca (USAL), 37007 Salamanca, Spain; (M.H.); (M.F.-B.)
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
| | - Francisco J. López-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (S.M.S.-M.); (J.M.-H.)
- Departamento de Fisiología y Farmacología, Universidad de Salamanca (USAL), 37007 Salamanca, Spain; (M.H.); (M.F.-B.)
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), 42002 Soria, Spain
- Group of Biomedical Research on Critical Care (BioCritic), 47003 Valladolid, Spain
- Correspondence:
| |
Collapse
|
27
|
Zhao Y, Lang Y, Zhang M, Liang S, Zhu X, Liu Z. miR-125b Disrupts Mitochondrial Dynamics via Targeting Mitofusin 1 in Cisplatin-Induced Acute Kidney Injury. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:137-147. [PMID: 35527986 DOI: 10.1159/000520140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/10/2021] [Indexed: 12/12/2022]
Abstract
Background Mitochondria are dynamic organelles whose structure are maintained by continuous fusion and fission. During acute kidney injury (AKI) progression, mitochondrial fission in renal tubular cells was elevated, characterized by mitochondrial fragmentation. It is tightly associated with mitochondrial dysfunction, which has been proven as a critical mechanism responsible for AKI. However, the initiating factor for the disruption of mitochondrial dynamics in AKI was not well understood. Objectives To explore the molecular mechanisms of mitochondrial disorders and kidney damage. Methods We established cisplatin-induced AKI model in C57BL/6 mice and proximal tubular cells, and detected the expression of miR-125b by qPCR. Then we delivered miR-125b antagomir after cisplatin treatment in mice via hydrodynamic-based gene transfer technique. Subsequently, we performed luciferase reporter and immunoblotting -assays to prove miR-125b could directly modulate mitofusin1 (MFN1) expression. We also tested the role of miR-125b in mitochondrial and renal injury through immunofluorescent staining, qPCR, and immunoblotting assays. Results miR-125b levels were induced in cisplatin-challenged mice and cultured tubular cells. Anti-miR-125b could effectively alleviate cisplatin-induced mitochondrial fragmentation and kidney injury both in vitro and in vivo. Furthermore, miR-125b could directly regulate MFN1, which is a key regulator of mitochondrial fusion. Our study indicated that miR-125b is upregulated during cisplatin-induced AKI. Inhibition of miR-125b may suppress mitochondrial and renal damage through upregulating MFN1. This study suggests that miR-125b could be a potential therapeutic target in AKI.
Collapse
Affiliation(s)
- Yue Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yue Lang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shaoshan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Kongtasai T, Paepe D, Meyer E, Mortier F, Marynissen S, Stammeleer L, Defauw P, Daminet S. Renal biomarkers in cats: A review of the current status in chronic kidney disease. J Vet Intern Med 2022; 36:379-396. [PMID: 35218249 PMCID: PMC8965260 DOI: 10.1111/jvim.16377] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/22/2022] Open
Abstract
Serum creatinine concentration, the classical biomarker of chronic kidney disease (CKD) in cats, has important limitations that decrease its value as a biomarker of early CKD. Recently, serum symmetric dimethylarginine concentration was introduced as a novel glomerular filtration rate biomarker for the early detection of CKD in cats. However, data on its specificity are still limited. The limitations of conventional biomarkers and the desire for early therapeutic intervention in cats with CKD to improve outcomes have prompted the discovery and validation of novel renal biomarkers to detect glomerular or tubular dysfunction. Changes in the serum or urinary concentrations of these biomarkers may indicate early kidney damage or predict the progression of kidney before changes in conventional biomarkers are detectable. This review summarizes current knowledge on renal biomarkers in CKD in cats, a field that has progressed substantially over the last 5 years.
Collapse
Affiliation(s)
- Thirawut Kongtasai
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium.,Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Dominique Paepe
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Femke Mortier
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Sofie Marynissen
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Lisa Stammeleer
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| | - Pieter Defauw
- Lumbry Park Veterinary Specialists, Alton, United Kingdom
| | - Sylvie Daminet
- Small Animal Department, Faculty of Veterinary Science, Ghent University, Merelbeke, Belgium
| |
Collapse
|
29
|
Rumpel J, Spray BJ, Chock VY, Kirkley MJ, Slagle CL, Frymoyer A, Cho SH, Gist KM, Blaszak R, Poindexter B, Courtney SE. Urine Biomarkers for the Assessment of Acute Kidney Injury in Neonates with Hypoxic Ischemic Encephalopathy Receiving Therapeutic Hypothermia. J Pediatr 2022; 241:133-140.e3. [PMID: 34547334 DOI: 10.1016/j.jpeds.2021.08.090] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the predictive performance of urine biomarkers for acute kidney injury (AKI) in neonates with hypoxic ischemic encephalopathy (HIE) receiving therapeutic hypothermia. STUDY DESIGN We performed a multicenter prospective observational study of 64 neonates. Urine specimens were obtained at 12, 24, 48, and 72 hours of life and evaluated for neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), cystatin C, interleukin-18 (IL-18), tissue inhibitor of metalloproteinases 2 (TIMP2), and insulin-like growth factor-binding protein 7 (IGFBP7). Logistic regression models with receiver operating characteristics for area under the curve (AUC) were used to assess associations with neonatal modified KDIGO (Kidney Disease: Improving Global Outcomes) AKI criteria. RESULTS AKI occurred in 16 of 64 infants (25%). Neonates with AKI had more days of vasopressor drug use compared with those without AKI (median [IQR], 2 [0-5] days vs 0 [0-2] days; P = .026). Mortality was greater in neonates with AKI (25% vs 2%; P = .012). Although NGAL, KIM-1, and IL-18 were significantly associated with AKI, the AUCs yielded only a fair prediction. KIM-1 had the best predictive performance across time points, with an AUC (SE) of 0.79 (0.11) at 48 hours of life. NGAL and IL-18 had AUCs (SE) of 0.78 (0.09) and 0.73 (0.10), respectively, at 48 hours of life. CONCLUSIONS Urine NGAL, KIM-1, and IL-18 levels were elevated in neonates with HIE receiving therapeutic hypothermia who developed AKI. However, wide variability and unclear cutoff levels make their clinical utility unclear.
Collapse
Affiliation(s)
- Jennifer Rumpel
- Section of Neonatology, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR.
| | | | - Valerie Y Chock
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Megan J Kirkley
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Pediatrics, Denver Health Medical Center, Denver, CO
| | - Cara L Slagle
- Division of Neonatal and Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Adam Frymoyer
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Seo-Ho Cho
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Katja M Gist
- Division of Cardiology, Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH
| | - Richard Blaszak
- Section of Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Brenda Poindexter
- Division of Neonatal and Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, OH; Division of Neonatology, Emory University and Children's Healthcare of Atlanta, Atlanta, GA
| | - Sherry E Courtney
- Section of Neonatology, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR
| |
Collapse
|
30
|
Novel PHD2/HDACs hybrid inhibitors protect against cisplatin-induced acute kidney injury. Eur J Med Chem 2022; 230:114115. [PMID: 35033824 DOI: 10.1016/j.ejmech.2022.114115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/21/2021] [Accepted: 01/09/2022] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is associated with high morbidity and mortality. Cisplatin is a common chemotherapeutic, but its nephrotoxicity-driven AKI limits its clinical application. Currently, there are no specific and satisfactory therapies in the clinic for AKI. Inhibitors of hypoxia-inducible factor prolyl hydroxylase 2 (HIF-PHD2) or histone deacetylase (HDACs) had shown renoprotective effects against AKI in preclinical studies. This study aimed to develop a novel therapeutic to prevent AKI progression by targeting PHD2 and HDACs simultaneously. We designed and synthesized a series of PHD2/HDACs hybrid inhibitors. The initial drug activity screening identified a candidate compound 31c, which exhibited potent inhibitory activities against PHD2 and HDAC1/2/6. Cellular analyses further showed that 31c did not affect cisplatin's antitumor activity in cancer cells but strongly protected cisplatin-induced toxicity on HK-2 cells. In vivo studies with the cisplatin-induced AKI mouse model demonstrated that 31c remarkably alleviated kidney dysfunction with suppressed plasma BUN/SCr and increased EPO levels. The potent renoprotective effects of 31c on AKI were confirmed by significant improvements in pathological kidney conditions in the mouse model. These results suggest that the novel PHD2/HDACs hybrid inhibitor, 31c, has a clinical potential as the renoprotective agent for the treatment/prevention of cisplatin-induced AKI for various cancers.
Collapse
|
31
|
Abstract
BACKGROUND The major increase in the survival rate among children with cancer is due to improvement in the diagnosis and treatment. Despite this increase, childhood cancer survivors (CCS) are at high risk of developing late complications such as nephrotoxicity due to chemotherapy. So, we aimed to detect early subclinical kidney dysfunction among CCS. METHODS This cross-sectional study was implemented on 52 survivors of childhood cancer recruited from Pediatric Oncology Unit, Menoufia University. Laboratory evaluations for each participant, including complete blood count, serum urea, creatinine, urinary protein, urinary calcium, uric acid, and serum cystatin C and urinary Neutrophil Gelatinase Associated Lipocalin (UrNGAL) by ELISA were obtained. RESULTS Estimated GFR was decreased in 23.1% of cases, with elevated serum cystatin C, UrNGAL and UrNGAL/Cr. There was a significant increase of Uprotein/Cr, UCa/Cr, UACR (p = 0.02), UrNGAL and UrNGAL/Cr (P < 0.001) in patients with tubular dysfunction compared without tubular dysfunction. There was a significant difference between two groups regarding cisplatin (P = 0.03) and high-dose methotrexate chemotherapy (p = 0.04). The AUCs for detecting kidney tubular dysfunction by UrNGAL and UrNGAL/Cr were 0.807 and 0.747. CONCLUSION A significant tubular dysfunction among childhood cancer survivors receiving chemotherapy as cisplatin and high-dose methotrexate. IMPACT Detection of kidney dysfunction mainly tubular in childhood cancer survivors after finishing chemotherapy. Urinary NGAL is a good predictor for detection of tubular dysfunction in childhood cancer survivors after finishing chemotherapy.
Collapse
|
32
|
|
33
|
Moreno-Gordaliza E, Marazuela MD, Pastor Ó, Lázaro A, Gómez-Gómez MM. Lipidomics Reveals Cisplatin-Induced Renal Lipid Alterations during Acute Kidney Injury and Their Attenuation by Cilastatin. Int J Mol Sci 2021; 22:ijms222212521. [PMID: 34830406 PMCID: PMC8622622 DOI: 10.3390/ijms222212521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Nephrotoxicity is a major complication of cisplatin-based chemotherapy, leading to acute kidney injury in ca. 30% of patients, with no preventive intervention or treatment available for clinical use. Cilastatin has proved to exert a nephroprotective effect for cisplatin therapies in in vitro and in vivo models, having recently entered clinical trials. A deeper understanding at the molecular level of cisplatin-induced renal damage and the effect of potential protective agents could be key to develop successful nephroprotective therapies and to establish new biomarkers of renal damage and nephroprotection. A targeted lipidomics approach, using LC-MS/MS, was employed for the quantification of 108 lipid species (comprising phospholipids, sphingolipids, and free and esterified cholesterol) in kidney cortex and medulla extracts from rats treated with cisplatin and/or cilastatin. Up to 56 and 63 lipid species were found to be altered in the cortex and medulla, respectively, after cisplatin treatment. Co-treatment with cilastatin attenuated many of these lipid changes, either totally or partially with respect to control levels. Multivariate analysis revealed that lipid species can be used to discriminate renal damage and nephroprotection, with cholesterol esters being the most discriminating species, along with sulfatides and phospholipids. Potential diagnostic biomarkers of cisplatin-induced renal damage and cilastatin nephroprotection were also found.
Collapse
Affiliation(s)
- Estefanía Moreno-Gordaliza
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.D.M.); (M.M.G.-G.)
- Correspondence:
| | - Maria Dolores Marazuela
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.D.M.); (M.M.G.-G.)
| | - Óscar Pastor
- Servicio de Bioquímica Clínica, UCA-CCM, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| | - Alberto Lázaro
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
- Department of Physiology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Milagros Gómez-Gómez
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.D.M.); (M.M.G.-G.)
| |
Collapse
|
34
|
McMahon KR, Chui H, Rassekh SR, Schultz KR, Blydt-Hansen TD, Mammen C, Pinsk M, Cuvelier GDE, Carleton BC, Tsuyuki RT, Ross CJ, Devarajan P, Huynh L, Yordanova M, Crépeau-Hubert F, Wang S, Cockovski V, Palijan A, Zappitelli M. Urine Neutrophil Gelatinase-Associated Lipocalin and Kidney Injury Molecule-1 to Detect Pediatric Cisplatin-Associated Acute Kidney Injury. KIDNEY360 2021; 3:37-50. [PMID: 35368557 PMCID: PMC8967607 DOI: 10.34067/kid.0004802021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/29/2021] [Indexed: 01/12/2023]
Abstract
Background Few studies have described associations between the AKI biomarkers urinary neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) with AKI in cisplatin-treated children. We aimed to describe excretion patterns of urine NGAL and KIM-1 and associations with AKI in children receiving cisplatin. Methods Participants (n=159) were enrolled between 2013 and 2017 in a prospective cohort study conducted in 12 Canadian pediatric hospitals. Participants were evaluated at early cisplatin infusions (at first or second cisplatin cycle) and late cisplatin infusions (last or second-to-last cycle). Urine NGAL and KIM-1 were measured (1) pre-cisplatin infusion, (2) post-infusion (morning after), and (3) at hospital discharge at early and late cisplatin infusions. Primary outcome: AKI defined by serum creatinine rise within 10 days post-cisplatin, on the basis of Kidney Disease Improving Global Outcomes guidelines criteria (stage 1 or higher). Results Of 159 children, 156 (median [interquartile range (IQR)] age: 5.8 [2.4-12.0] years; 78 [50%] female) had biomarker data available at early cisplatin infusions and 127 had data at late infusions. Forty six of the 156 (29%) and 22 of the 127 (17%) children developed AKI within 10 days of cisplatin administration after early and late infusions, respectively. Urine NGAL and KIM-1 concentrations were significantly higher in patients with versus without AKI (near hospital discharge of late cisplatin infusion, median [IQR] NGAL levels were 76.1 [10.0-232.7] versus 14.9 [5.4-29.7] ng/mg creatinine; KIM-1 levels were 4415 [2083-9077] versus 1049 [358-3326] pg/mg creatinine; P<0.01). These markers modestly discriminated for AKI (area under receiver operating characteristic curve [AUC-ROC] range: NGAL, 0.56-0.72; KIM-1, 0.48-0.75). Biomarker concentrations were higher and better discriminated for AKI at late cisplatin infusions (AUC-ROC range, 0.54-0.75) versus early infusions (AUC-ROC range, 0.48-0.65). Conclusions Urine NGAL and KIM-1 were modest at discriminating for cisplatin-associated AKI. Further research is needed to determine clinical utility and applicability of these markers and associations with late kidney outcomes.
Collapse
Affiliation(s)
- Kelly R. McMahon
- Division of Nephrology, Department of Pediatrics, Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal Children’s Hospital, Montreal, Quebec, Canada,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Hayton Chui
- Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada,Faculty of Health Sciences, McMaster Health Sciences Centre, McMaster University, Hamilton, Ontario, Canada
| | - Shahrad Rod Rassekh
- Division of Hematology/Oncology/Bone Marrow Transplantation, Department of Pediatrics, University of British Columbia, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Kirk R. Schultz
- Division of Hematology/Oncology/Bone Marrow Transplantation, Department of Pediatrics, University of British Columbia, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Tom D. Blydt-Hansen
- Division of Pediatric Nephrology, Department of Pediatrics, University of British Columbia, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Cherry Mammen
- Division of Pediatric Nephrology, Department of Pediatrics, University of British Columbia, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Maury Pinsk
- Department of Pediatrics and Child Health, Section of Pediatric Nephrology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Geoffrey D. E. Cuvelier
- Division of Pediatric Oncology-Hematology-BMT, Department of Pediatrics and Child Health, University of Manitoba, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Bruce C. Carleton
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia and BC Children’s Hospital and Research Institute, Vancouver, British Columbia, Canada
| | - Ross T. Tsuyuki
- EPICORE Centre, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Colin J.D. Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Louis Huynh
- Faculty of Health Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Mariya Yordanova
- Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Quebec, Canada
| | - Frédérik Crépeau-Hubert
- Division of Nephrology, Department of Pediatrics, Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal Children’s Hospital, Montreal, Quebec, Canada
| | - Stella Wang
- Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Vedran Cockovski
- Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Ana Palijan
- Division of Nephrology, Department of Pediatrics, Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal Children’s Hospital, Montreal, Quebec, Canada
| | - Michael Zappitelli
- Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada,Department of Pediatrics, Division of Nephrology, Toronto Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
A plug, print & play inkjet printing and impedance-based biosensing technology operating through a smartphone for clinical diagnostics. Biosens Bioelectron 2021; 196:113737. [PMID: 34740116 DOI: 10.1016/j.bios.2021.113737] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 01/29/2023]
Abstract
Simplicity is one of the key feature for the spread of any successful technological product. Here, a method for rapid and low-cost fabrication of electrochemical biosensors is presented. This "plug, print & play" method involves inkjet-printing even in an office-like environment, without the need of highly specialized expertise or equipment, guaranteeing an ultra-fast idea to (scaled) prototype production time. The printed biosensors can be connected to a smartphone through its audio input for their impedance readout, demonstrating the validity of the system for point-of-care biosensing. Proper electrodes layout guarantees high sensitivity and is validated by finite element simulations. The introduction of a passivation method (wax printing) allowed to complete the devices fabrication process, increasing their sensitivity. Indeed, the wax allowed reducing the interference related to the parasitic currents flowing through the permeable coating of the employed substrates, which was used for the chemical sintering, thus avoiding the common thermal treatment after printing. As a case study, we used the devices to develop an electrochemical aptamer-based sensor for the rapid detection of neutrophil gelatinase-associated lipocalin (NGAL) in urine - a clinically important marker of acute kidney injury. The aptasensor platform is capable of detecting clinically relevant concentrations of NGAL with a simple and rapid smartphone readout. The developed technology may be extended in the future to continuous monitoring, taking advantage of its flexibility to integrate it in tubes, or to other diagnostic applications where cost/efficiency and rapidity of the research, development and implementation of point of care devices is a must.
Collapse
|
36
|
Abstract
High salt intake is associated with hypertension, which is a leading modifiable risk factor for cardiovascular disease (CVD) and chronic kidney disease (CKD). International Guidelines recommend a large reduction in the consumption of sodium to reduce blood pressure, organ damage, and mortality. In its early stages, the symptoms of CKD are generally not apparent. CKD proceeds in a "silent" manner, necessitating the need for urinary biomarkers to detect kidney damage at an early stage. Since traditional renal biomarkers, such as serum creatinine, are not sufficiently sensitive, difficulties are associated with detecting kidney damage induced by a high salt intake, particularly in normotensive individuals. Several new biomarkers for renal tubular damage, such as neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), vanin-1, liver-type fatty acid-binding protein (L-FABP), and monocyte chemotactic protein-1 (MCP-1), have recently been identified. However, few studies have investigated early biomarkers for CKD progression associated with a high salt diet. This chapter provides insights into novel biomarkers for CKD in normo- and hypertensive individuals with a high salt intake. Recent studies using spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) fed a high salt diet identified urinary vanin-1 and NGAL as early biomarkers for renal tubular damage in SHR and WKY, whereas urinary KIM-1 was a useful biomarker for salt-induced renal injury in SHR only. Clinical studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Keiko Hosohata
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan.
| |
Collapse
|
37
|
Walls AB, Bengaard AK, Iversen E, Nguyen CN, Kallemose T, Juul-Larsen HG, Jawad BN, Hornum M, Andersen O, Eugen-Olsen J, Houlind MB. Utility of suPAR and NGAL for AKI Risk Stratification and Early Optimization of Renal Risk Medications among Older Patients in the Emergency Department. Pharmaceuticals (Basel) 2021; 14:843. [PMID: 34577543 PMCID: PMC8471084 DOI: 10.3390/ph14090843] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022] Open
Abstract
Diagnosis of acute kidney injury (AKI) based on plasma creatinine often lags behind actual changes in renal function. Here, we investigated early detection of AKI using the plasma soluble urokinase plasminogen activator receptor (suPAR) and neutrophil gelatinase-sssociated lipocalin (NGAL) and observed the impact of early detection on prescribing recommendations for renally-eliminated medications. This study is a secondary analysis of data from the DISABLMENT cohort on acutely admitted older (≥65 years) medical patients (n = 339). Presence of AKI according to kidney disease: improving global outcomes (KDIGO) criteria was identified from inclusion to 48 h after inclusion. Discriminatory power of suPAR and NGAL was determined by receiver-operating characteristic (ROC). Selected medications that are contraindicated in AKI were identified in Renbase®. A total of 33 (9.7%) patients developed AKI. Discriminatory power for suPAR and NGAL was 0.69 and 0.78, respectively, at a cutoff of 4.26 ng/mL and 139.5 ng/mL, respectively. The interaction of suPAR and NGAL yielded a discriminatory power of 0.80, which was significantly higher than for suPAR alone (p = 0.0059). Among patients with AKI, 22 (60.6%) used at least one medication that should be avoided in AKI. Overall, suPAR and NGAL levels were independently associated with incident AKI and their combination yielded excellent discriminatory power for risk determination of AKI.
Collapse
Affiliation(s)
- Anne Byriel Walls
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (A.B.W.); (A.K.B.); (C.N.N.)
- The Capital Region Pharmacy, 2730 Herlev, Denmark
| | - Anne Kathrine Bengaard
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (A.B.W.); (A.K.B.); (C.N.N.)
- Department of Clinical Research, Copenhagen University Hospital—Amager and Hvidovre, 2650 Copenhagen, Denmark; (E.I.); (T.K.); (H.G.J.-L.); (B.N.J.); (O.A.); (J.E.-O.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Esben Iversen
- Department of Clinical Research, Copenhagen University Hospital—Amager and Hvidovre, 2650 Copenhagen, Denmark; (E.I.); (T.K.); (H.G.J.-L.); (B.N.J.); (O.A.); (J.E.-O.)
| | - Camilla Ngoc Nguyen
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (A.B.W.); (A.K.B.); (C.N.N.)
- The Capital Region Pharmacy, 2730 Herlev, Denmark
- Department of Clinical Research, Copenhagen University Hospital—Amager and Hvidovre, 2650 Copenhagen, Denmark; (E.I.); (T.K.); (H.G.J.-L.); (B.N.J.); (O.A.); (J.E.-O.)
| | - Thomas Kallemose
- Department of Clinical Research, Copenhagen University Hospital—Amager and Hvidovre, 2650 Copenhagen, Denmark; (E.I.); (T.K.); (H.G.J.-L.); (B.N.J.); (O.A.); (J.E.-O.)
| | - Helle Gybel Juul-Larsen
- Department of Clinical Research, Copenhagen University Hospital—Amager and Hvidovre, 2650 Copenhagen, Denmark; (E.I.); (T.K.); (H.G.J.-L.); (B.N.J.); (O.A.); (J.E.-O.)
| | - Baker Nawfal Jawad
- Department of Clinical Research, Copenhagen University Hospital—Amager and Hvidovre, 2650 Copenhagen, Denmark; (E.I.); (T.K.); (H.G.J.-L.); (B.N.J.); (O.A.); (J.E.-O.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
- Emergency Department, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Mads Hornum
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
- Department of Nephrology, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Ove Andersen
- Department of Clinical Research, Copenhagen University Hospital—Amager and Hvidovre, 2650 Copenhagen, Denmark; (E.I.); (T.K.); (H.G.J.-L.); (B.N.J.); (O.A.); (J.E.-O.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
- Emergency Department, Copenhagen University Hospital—Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Jesper Eugen-Olsen
- Department of Clinical Research, Copenhagen University Hospital—Amager and Hvidovre, 2650 Copenhagen, Denmark; (E.I.); (T.K.); (H.G.J.-L.); (B.N.J.); (O.A.); (J.E.-O.)
| | - Morten Baltzer Houlind
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (A.B.W.); (A.K.B.); (C.N.N.)
- The Capital Region Pharmacy, 2730 Herlev, Denmark
- Department of Clinical Research, Copenhagen University Hospital—Amager and Hvidovre, 2650 Copenhagen, Denmark; (E.I.); (T.K.); (H.G.J.-L.); (B.N.J.); (O.A.); (J.E.-O.)
| |
Collapse
|
38
|
Lebel A, Chui H, McMahon KR, Lim YJ, Macri J, Wang S, Devarajan P, Blydt-Hansen TD, Zappitelli M, Urquhart BL. Association of Urine Platinum With Acute Kidney Injury in Children Treated With Cisplatin for Cancer. J Clin Pharmacol 2021; 61:871-880. [PMID: 33599997 PMCID: PMC8283690 DOI: 10.1002/jcph.1839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/15/2021] [Indexed: 01/19/2023]
Abstract
Cisplatin is a chemotherapeutic agent highly excreted in urine and known to cause acute kidney injury (AKI). As AKI diagnosis by serum creatinine (SCr) is usually delayed, endeavors for finding early AKI biomarkers continue. This study aims to determine if urine platinum (UP) concentration 24 hours after cisplatin infusion is associated with AKI, and to evaluate the association between urine platinum and tubular damage biomarkers: neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1). Children treated with cisplatin in 12 Canadian centers (April 2013 to December 2017) were included. Urine from the morning after the first cisplatin infusion of the first or second cisplatin cycle was measured for urine platinum, NGAL, and KIM-1. SCr and serum electrolytes were used to detect AKI by either SCr elevation or urinary electrolyte wasting (potassium, magnesium, phosphate). The associations of urine platinum with AKI, NGAL, and KIM-1 were assessed. A total of 115 participants (54% boys, median age, 8.5 years; interquartile range, 4.0-13.4) were included, of which 29 (25%) and 105 (91%) developed AKI defined by SCr and electrolyte criteria, respectively. Higher urine platinum was associated with higher cisplatin dose (Spearman rho, 0.21) and with younger age (Spearman rho, -0.33). Urine platinum was not associated with postinfusion AKIor KIM-1, but was weakly associated with NGAL, particularly in participants without SCr AKI (Pearson's r, 0.22). Urine platinum may be a marker of mild tubular injury but is not likely to be a useful biomarker of clinically evident AKI.
Collapse
Affiliation(s)
- Asaf Lebel
- Department of Pediatrics, Division of Nephrology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Hayton Chui
- Department of Pediatrics, Division of Nephrology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kelly R. McMahon
- Division of Nephrology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Yong Jin Lim
- Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Joseph Macri
- Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
| | - Stella Wang
- Department of Pediatrics, Division of Nephrology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Prasad Devarajan
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Tom D. Blydt-Hansen
- British Columbia Children's Hospital, Division of Pediatric Nephrology, Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Zappitelli
- Department of Pediatrics, Division of Nephrology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Bradley L. Urquhart
- Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
39
|
Chen JJ, Lee TH, Lee CC, Chang CH. Using lipocalin as a prognostic biomarker in acute kidney injury. Expert Rev Mol Diagn 2021; 21:455-464. [PMID: 33874823 DOI: 10.1080/14737159.2021.1917384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Human lipocalin-2, known as neutrophil gelatinase-associated lipocalin (NGAL), is a widely studied biomarker of acute kidney injury (AKI).Areas covered: NGAL can serve as a predictor of AKI, disease progression, and mortality and can help in differentiating between AKI etiologies. We conducted a systematic review in the PubMed and Medline databases involving the clinical application of NGAL in patients with AKI.Expert opinion: In this review, we explored the usefulness of NGAL for AKI or clinical outcome prediction. The use of urine or blood NGAL levels alone or in combination with a clinical prediction model may facilitate AKI prediction, severity prediction, AKI etiological differentiation, and mortality prediction. For AKI prediction, urine and plasma NGAL levels have an area under the curve (AUC) ranging from 0.71 to 0.90 and from 0.71 to 0.89, respectively, in different populations. The diagnostic performance of NGAL alone for renal replacement therapy or successful discontinuation prediction is suboptimal (AUC range: 0.65-0.81). Sepsis limits the application of NGAL as a clinical predictor, and the prediction performance of NGAL is affected by baseline renal function, timing of sample collection, and underlying comorbidities. The lack of internationally approved reference material also limits the usefulness of NGAL.
Collapse
Affiliation(s)
- Jia-Jin Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tao-Han Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Cheng-Chia Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chih-Hsiang Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
40
|
Hasan HF, Rashed LA, El Bakary NM. Concerted outcome of metformin and low dose of radiation in modulation of cisplatin induced uremic encephalopathy via renal and neural preservation. Life Sci 2021; 276:119429. [PMID: 33785333 DOI: 10.1016/j.lfs.2021.119429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
AIM The therapeutic expediency of cisplatin was limited due to its nephrotoxic side effects, so this study planned to assess the nephrotic and neuroprotective impact of metformin (MET) and low-dose radiation (LDR) in cisplatin-prompted kidney injury and uremic encephalopathy (UE). METHODS The effect of the 10-day MET treatment (200 mg/kg, orally) and/or fractionated LDR (0.25 Gy, of the total dose of 0.5 Gy, 1st and 7th day, respectively) on (5 mg/kg, intraperitoneally) cisplatin as a single dose was administered at the 5th day. Serum urea, creatinine and renal kidney injury molecule-1 were measured for the assessment of kidney function. Furthermore, the antioxidant potential in the renal and brain tissues was evaluated through, malondialdehyde and reduced glutathione estimation. Moreover, renal apoptotic markers: AMP-activated protein kinase, lipocalin, B-cell lymphoma 2 associated X protein, B-cell lymphoma 2, P53 and beclin 1 were estimated. UE was evaluated through the determination of serum inflammatory markers: nuclear factor kappa B, tumor-necrosis factor-α and interleukin 1 beta likewise, the cognitive deficits were assessed via forced swimming test, gamma-aminobutyric acid, n-methyl-d-aspartate and neuronal nitric oxide synthases besides AMP-activated protein kinase, light chain 3 and caspase3 levels in rats' cerebella. KEY FINDINGS The obtained results revealed a noticeable improvement in the previously mentioned biochemical factors and behavioral tasks that was reinforced by histopathological examination when using the present remedy. SIGNIFICANCE metformin and low doses of radiation afforded renoprotection and neuroprotection against cisplatin-induced acute uremic encephalopathy.
Collapse
Affiliation(s)
- Hesham Farouk Hasan
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen M El Bakary
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
41
|
Kongtasai T, Meyer E, Paepe D, Marynissen S, Smets P, Mortier F, Demeyere K, Vandermeulen E, Stock E, Buresova E, Defauw P, Duchateau L, Daminet S. Liver-type fatty acid-binding protein and neutrophil gelatinase-associated lipocalin in cats with chronic kidney disease and hyperthyroidism. J Vet Intern Med 2021; 35:1376-1388. [PMID: 33723886 PMCID: PMC8162613 DOI: 10.1111/jvim.16074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Liver-type fatty acid-binding protein (L-FABP) and neutrophil gelatinase-associated lipocalin (NGAL) are candidate biomarkers for the detection of early chronic kidney disease (CKD) in cats. OBJECTIVE To evaluate urinary and serum L-FABP and NGAL concentrations in CKD cats and in hyperthyroid cats before and after radioiodine (131 I) treatment. ANIMALS Nine CKD cats, 45 healthy cats and hyperthyroid cats at 3 time points including before (T0, n = 49), 1 month (T1, n = 49), and 11 to 29 months after (T2, n = 26) 131 I treatment. METHODS Cross-sectional and longitudinal study. Serum L-FABP (sL-FABP), serum NGAL (sNGAL), urinary L-FABP (uL-FABP), and urinary NGAL (uNGAL) were compared between the 3 groups and between hyperthyroid cats before and after treatment. Data are reported as median (min-max). RESULTS CKD cats had significantly higher sL-FABP (13.50 [3.40-75.60] ng/ml) and uL-FABP/Cr (4.90 [0.97-2139.44] µg/g) than healthy cats (4.25 [1.34-23.25] ng/ml; P = .01 and 0.46 [0.18-9.13] µg/g; P < .001, respectively). Hyperthyroid cats at T0 had significantly higher uL-FABP/Cr (0.94 [0.15-896.00] µg/g) than healthy cats (P < .001), thereafter uL-FABP/Cr significantly decreased at T2 (0.54 [0.10-76.41] µg/g, P = .002). For the detection of CKD, uL-FABP/Cr had 100% (95% confidence interval [CI], 66.4-100.0) sensitivity and 93.2% (95% CI, 81.3-98.6) specificity. There were no significant differences in sNGAL and uNGAL/Cr between the 3 groups. CONCLUSIONS AND CLINICAL IMPORTANCE L-FABP, but not NGAL, is a potential biomarker for the detection of early CKD in cats. Utility of uL-FABP to predict azotemia after treatment in hyperthyroid cats remains unknown.
Collapse
Affiliation(s)
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dominique Paepe
- Small Animal Department, Ghent University, Merelbeke, Belgium
| | | | - Pascale Smets
- Small Animal Department, Ghent University, Merelbeke, Belgium
| | - Femke Mortier
- Small Animal Department, Ghent University, Merelbeke, Belgium
| | - Kristel Demeyere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eva Vandermeulen
- Department of Medical Imaging of Domestic Animals, Ghent University, Merelbeke, Belgium
| | - Emmelie Stock
- Department of Medical Imaging of Domestic Animals, Ghent University, Merelbeke, Belgium
| | - Eva Buresova
- Davies Veterinary Specialists, Higham Gobion, United Kingdom
| | - Pieter Defauw
- Lumbry Park Veterinary Specialists, Alton, United Kingdom
| | - Luc Duchateau
- Biometrics Research Group, Ghent University, Merelbeke, Belgium
| | - Sylvie Daminet
- Small Animal Department, Ghent University, Merelbeke, Belgium
| |
Collapse
|
42
|
Urinary Exosomes Identify Inflammatory Pathways in Vancomycin Associated Acute Kidney Injury. Int J Mol Sci 2021; 22:ijms22062784. [PMID: 33801801 PMCID: PMC7999309 DOI: 10.3390/ijms22062784] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Vancomycin is commonly used as a first line therapy for gram positive organisms such as methicillin resistant Staphylococcusaureus. Vancomycin-induced acute kidney injury (V-AKI) has been reported in up to 43% of patients, especially in those with higher targeted trough concentrations. The precise mechanism of injury in humans remains elusive, with recent evidence directed towards proximal tubule cell apoptosis. In this study, we investigated the protein contents of urinary exosomes in patients with V-AKI to further elucidate biomarkers of mechanisms of injury and potential responses. Methods: Urine samples from patients with V-AKI who were enrolled in the DIRECT study and matched healthy controls from the UAB-UCSD O’Brien Center Biorepository were included in the analysis. Exosomes were extracted using solvent exclusion principle and polyethylene glycol induced precipitation. Protein identity and quantification was determined by label-free liquid chromatography mass spectrometry (LC/MS). The mean peak serum creatinine was 3.7 ± 1.4 mg/dL and time to kidney injury was 4.0 ± 3.0 days. At discharge, 90% of patients demonstrated partial recovery; 33% experienced full recovery by day 28. Proteomic analyses on five V-AKI and 7 control samples revealed 2009 proteins in all samples and 251 proteins significantly associated with V-AKI (Pi-score > 1). The top discriminatory proteins were complement C3, complement C4, galectin-3-binding protein, fibrinogen, alpha-2 macroglobulin, immunoglobulin heavy constant mu and serotransferrin. Conclusion: Urinary exosomes reveal up-regulation of inflammatory proteins after nephrotoxic injury in V-AKI. Further studies are necessary in a large patient sample to confirm these findings for elucidation of pathophysiologic mechanisms and validation of potential injury biomarkers.
Collapse
|
43
|
Cabral M, Garçon G, Touré A, Bah F, Dewaele D, Bouhsina S, Cazier F, Faye A, Fall M, Courcot D, Verdin A. Renal impairment assessment on adults living nearby a landfill: Early kidney dysfunction biomarkers linked to the environmental exposure to heavy metals. Toxicol Rep 2021; 8:386-394. [PMID: 33717991 PMCID: PMC7932908 DOI: 10.1016/j.toxrep.2021.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/05/2022] Open
Abstract
Health risk of the neighboring population of the Mbeubeuss landfill (Senegal). Assessment of the impact of Cd/Pb exposure through dysfunction renal biomarkers. Specific increases of a set of early dysfunction renal biomarkers in exposed subjects. Glomerular and tubular dysfunction in exposed subjects.
The aim of this study was to assess the integrity and kidney overall functional capacity of subjects exposed to landfill emissions. Urine and blood levels of Pb and Cd, and several of the newly biomarkers of nephrotoxicity (Kim Injury Molecule 1 (KIM-1), alpha-1 Microglobulin (α1 M), beta-2 Microglobulin (β2 M), Cystatin-C (Cyst C), Clusterin, alpha-glutathione S-transferase (GSTα), pi-glutathione S-transferase (GSTπ), Tissue Inhibitor of Metalloproteinase-1 (TIMP1), Calbindin, Neutrophil Gelatinase-Associated Lipocalin (NGAL), Osteopontin (OPN), (Retinol Binding Protein(RBP), Liver-type Fatty Acid-Binding Protein (FABP-1), Trefoil Factor 3 (TFF3), Collagen VI) were measured in order to assess glomerular and tubule damage in adults living near a landfill. Our results indicate glomerular dysfunction in exposed subjects, and supported evidence of necrosis of proximal and distal tubule epithelial cells as specific biomarkers began to appear in the urine. Positive correlation by Pearson test were obtained between : blood Pb and B-OPN, B-Cyst C, Calbindin, U-KIM-1, TIMP1, U-OPN, and U-Clusterin; and also, between urinary Cd and TIMP1, B-Clusterin, U-OPN, FABP-1, Albumin, and U-Clusterin. The relation between biomarkers of Cd/Pb exposure and early effect biomarkers in this study clearly predicts the future risk of severe kidney injury in subjects living close to the landfill.
Collapse
Affiliation(s)
- Mathilde Cabral
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-59140, Dunkerque, France.,Laboratoire de Toxicologie et d'Hydrologie, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Guillaume Garçon
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-59140, Dunkerque, France.,CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé Humaine (IMPECS), Université Lille, Lille, France
| | - Aminata Touré
- Laboratoire de Toxicologie et d'Hydrologie, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Fatoumata Bah
- Laboratoire de Toxicologie et d'Hydrologie, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Dorothée Dewaele
- Univ. Littoral Côte d'Opale, CCM, Centre Commun de Mesures, F-59140, Dunkerque, France
| | - Saâd Bouhsina
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-59140, Dunkerque, France
| | - Fabrice Cazier
- Univ. Littoral Côte d'Opale, CCM, Centre Commun de Mesures, F-59140, Dunkerque, France
| | - Adama Faye
- Institut de Santé et Développement, Université Cheikh Anta Diop, Dakar, Senegal
| | - Mamadou Fall
- Laboratoire de Toxicologie et d'Hydrologie, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Dominique Courcot
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-59140, Dunkerque, France
| | - Anthony Verdin
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-59140, Dunkerque, France
| |
Collapse
|
44
|
Obert LA, Elmore SA, Ennulat D, Frazier KS. A Review of Specific Biomarkers of Chronic Renal Injury and Their Potential Application in Nonclinical Safety Assessment Studies. Toxicol Pathol 2021; 49:996-1023. [PMID: 33576319 DOI: 10.1177/0192623320985045] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A host of novel renal biomarkers have been developed over the past few decades which have enhanced monitoring of renal disease and drug-induced kidney injury in both preclinical studies and in humans. Since chronic kidney disease (CKD) and acute kidney injury (AKI) share similar underlying mechanisms and the tubulointerstitial compartment has a functional role in the progression of CKD, urinary biomarkers of AKI may provide predictive information in chronic renal disease. Numerous studies have explored whether the recent AKI biomarkers could improve upon the standard clinical biomarkers, estimated glomerular filtration rate (eGFR), and urinary albumin to creatinine ratio, for predicting outcomes in CKD patients. This review is an introduction to alternative assays that can be utilized in chronic (>3 months duration) nonclinical safety studies to provide information on renal dysfunction and to demonstrate specific situations where these assays could be utilized in nonclinical drug development. Novel biomarkers such as symmetrical dimethyl arginine, dickkopf homolog 3, and cystatin C predict chronic renal injury in animals, act as surrogates for GFR, and may predict changes in GFR in patients over time, ultimately providing a bridge from preclinical to clinical renal monitoring.
Collapse
Affiliation(s)
- Leslie A Obert
- 549350GlaxoSmithKline (GSK), Nonclinical Safety, Collegeville, PA, USA
| | - Susan A Elmore
- Cellular and Molecular Pathology Branch, National Toxicology Program (NTP), 6857National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Daniela Ennulat
- 549350GlaxoSmithKline (GSK), Nonclinical Safety, Collegeville, PA, USA
| | | |
Collapse
|
45
|
Yi A, Lee CH, Yun YM, Kim H, Moon HW, Hur M. Effectiveness of Plasma and Urine Neutrophil Gelatinase-Associated Lipocalin for Predicting Acute Kidney Injury in High-Risk Patients. Ann Lab Med 2021; 41:60-67. [PMID: 32829580 PMCID: PMC7443531 DOI: 10.3343/alm.2021.41.1.60] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/10/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neutrophil gelatinase-associated lipocalin (NGAL) is a useful biomarker for acute kidney injury (AKI) prediction. However, studies on whether using both plasma NGAL (PNGAL) and urine NGAL (UNGAL) can improve AKI prediction are limited. We investigated the best approach to predict AKI in high-risk patients when using PNGAL and UNGAL together. METHODS We enrolled 151 AKI suspected patients with one or more AKI risk factors. We assessed the diagnostic performance of PNGAL and UNGAL for predicting AKI according to chronic kidney disease (CKD) status by determining the areas under the receiver operating curve (AuROC). Independent predictors of AKI were assessed using univariate and multivariate logistic regression analyses. RESULTS In the multivariate logistic regression analysis for all patients (N=151), Model 2 and 3, including PNGAL (P=0.012) with initial serum creatinine (S-Cr), showed a better AKI prediction power (R2=0.435, both) than Model 0, including S-Cr only (R2=0.390). In the non-CKD group (N=135), the AuROC of PNGAL for AKI prediction was larger than that of UNGAL (0.79 vs 0.66, P=0.010), whereas in the CKD group (N=16), the opposite was true (0.94 vs 0.76, P=0.049). CONCLUSIONS PNGAL may serve as a useful biomarker for AKI prediction in high-risk patients. However, UNGAL predicted AKI better than PNGAL in CKD patients. Our findings provide guidance for selecting appropriate specimens for NGAL testing according to the presence of CKD in AKI high-risk patients.
Collapse
Affiliation(s)
- Ahram Yi
- Department of Laboratory Medicine, Green Cross Laboratories, Yongin,
Korea
| | - Chang-Hoon Lee
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul,
Korea
| | - Yeo-Min Yun
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul,
Korea
| | - Hanah Kim
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul,
Korea
| | - Hee-Won Moon
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul,
Korea
| | - Mina Hur
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul,
Korea
| |
Collapse
|
46
|
Thongnuanjan P, Soodvilai S, Fongsupa S, Chabang N, Vivithanaporn P, Tuchinda P, Soodvilai S. Protective Effect of Panduratin A on Cisplatin-Induced Apoptosis of Human Renal Proximal Tubular Cells and Acute Kidney Injury in Mice. Biol Pharm Bull 2021; 44:830-837. [PMID: 34078815 DOI: 10.1248/bpb.b21-00036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cisplatin is an effective chemotherapy but its main side effect, acute kidney injury, limits its use. Panduratin A, a bioactive compound extracted from Boesenbergia rotunda, shows several biological activities such as anti-oxidative effects. The present study investigated the nephroprotective effect of panduratin A on cisplatin-induced renal injury. METHODS We investigated the effect of panduratin A on the toxicity of cisplatin in both mice and human renal cell cultures using RPTEC/TERT1 cells. RESULTS The results demonstrated that panduratin A ameliorates cisplatin-induced renal toxicity in both mice and RPTEC/TERT1 cells by reducing apoptosis. Mice treated with a single intraperitoneal (i.p.) injection of cisplatin (20 mg/kg body weight (BW)) exhibited renal tubule injury and impaired kidney function as shown by histological examination and increased serum creatinine. Co-administration of panduratin A (50 mg/kg BW) orally improved kidney function and ameliorated renal tubule injury of cisplatin by inhibiting activation of extracellular signal-regulated kinase (ERK)1/2 and caspase 3. In human renal proximal tubular cells, cisplatin induced cell apoptosis by activating pro-apoptotic proteins (ERK1/2 and caspase 3), and reducing the anti-apoptotic protein (Bcl-2). These effects were significantly ameliorated by co-treatment with panduratin A. Interestingly, panduratin A did not alter intracellular accumulation of cisplatin. It did not alter the anti-cancer efficacy of cisplatin in either human colon or non-small cell lung cancer cell lines. CONCLUSIONS The present study highlights panduratin A has a potential protective effect on cisplatin's nephrotoxicity.
Collapse
Affiliation(s)
- Penjai Thongnuanjan
- Toxicology Graduate Program, Multidisciplinary Unit, Faculty of Science, Mahidol University
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Mahidol University
| | - Sirima Soodvilai
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University
| | - Somsak Fongsupa
- Department of Medical Technology, Faculty of Allied Health Science, Thammasat University Rangsit Campus
| | - Napason Chabang
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University
| | | | - Sunhapas Soodvilai
- Toxicology Graduate Program, Multidisciplinary Unit, Faculty of Science, Mahidol University
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Mahidol University
- Excellent Center for Drug Discovery, Mahidol University
| |
Collapse
|
47
|
Al-ghareebaw AM, Al-Okaily BN, Ibrahim OMS, Mohammed AD. Role of Olive leaves Zinc Oxide Nanoparticles in Alleviating The Molecular and Histological Changes of Kidney in Female Goats-Induced by Gentamicin (Part III). THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i(e0).1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study aimed to investigate the protective influence of olive leave extract zinc oxide nanoparticles (OLEZnONPs) complex against gentamicin–induced kidney dysfunctions in goats. Twenty five adult female goats were randomly divided into five equal groups and treated as follows: control group (C) administered sterile distilled water (IM) for 10 days, group G administered 25 mg/kg BW gentamicin (IM) for 7 days, group Z administered 10 ìg/kg BW of OLEZnONPs (IP) for 3 days, group GTZ administered 25 mg/kg BW gentamicin (IM) for 7 days and then 10 ìg/kg BW of OLEZnONPs (IP) for 3 days, group GWZ administered 25 mg/kg BWs gentamicin (IM) and 10 ìg/kg BW of OLEZnONPs (IP) together for first 3 days and then followed by gentamicin only for 4 days. After seven days of the experiment, the gene expression of kidney injury molcule-1(KIM-1) and neutrophil gelatinase-association lipocalin (NGAL) gene expression of kidney tissue were measured. In addition, samples of kidney were obtained for histopathological examination. Gentamicin medication induced a marked elevation in kidney tissue KIM-1 and NGAL gene expression in G and GTZ groups compared to control and other groups. Intraperitoneal treatment of goats with OLEZnONPs did not significantly affect NGAL and KIM-1 gene expression in Z, GWZ, and control groups. Histologically, in contrast to control, gentamicin induced more extensive kidney damages such as necrotized glomeruli, atrophic glomeruli, and renal tubular epithelial necrosis, while it was found that these alterations in kidney tissues wereimproved in goats given OLEZnONPs with gentamicin compared to group G. In conclusion, our results demonstrate that OLEZnONPs reduce the deleterious effects of gentamicin with significantly decreasing of KIM-1 and NGAL gene expression and remodeling the histological changes of kidney in goats.
Collapse
|
48
|
Mertens C, Kuchler L, Sola A, Guiteras R, Grein S, Brüne B, von Knethen A, Jung M. Macrophage-Derived Iron-Bound Lipocalin-2 Correlates with Renal Recovery Markers Following Sepsis-Induced Kidney Damage. Int J Mol Sci 2020; 21:ijms21207527. [PMID: 33065981 PMCID: PMC7589935 DOI: 10.3390/ijms21207527] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
During the course of sepsis in critically ill patients, kidney dysfunction and damage are among the first events of a complex scenario toward multi-organ failure and patient death. Acute kidney injury triggers the release of lipocalin-2 (Lcn-2), which is involved in both renal injury and recovery. Taking into account that Lcn-2 binds and transports iron with high affinity, we aimed at clarifying if Lcn-2 fulfills different biological functions according to its iron-loading status and its cellular source during sepsis-induced kidney failure. We assessed Lcn-2 levels both in serum and in the supernatant of short-term cultured renal macrophages (MΦ) as well as renal tubular epithelial cells (TEC) isolated from either Sham-operated or cecal ligation and puncture (CLP)-treated septic mice. Total kidney iron content was analyzed by Perls’ staining, while Lcn-2-bound iron in the supernatants of short-term cultured cells was determined by atomic absorption spectroscopy. Lcn-2 protein in serum was rapidly up-regulated at 6 h after sepsis induction and subsequently increased up to 48 h. Lcn-2-levels in the supernatant of TEC peaked at 24 h and were low at 48 h with no change in its iron-loading. In contrast, in renal MΦ Lcn-2 was low at 24 h, but increased at 48 h, where it mainly appeared in its iron-bound form. Whereas TEC-secreted, iron-free Lcn-2 was associated with renal injury, increased MΦ-released iron-bound Lcn-2 was linked to renal recovery. Therefore, we hypothesized that both the cellular source of Lcn-2 as well as its iron-load crucially adds to its biological function during sepsis-induced renal injury.
Collapse
Affiliation(s)
- Christina Mertens
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.M.); (L.K.); (B.B.); (A.v.K.)
| | - Laura Kuchler
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.M.); (L.K.); (B.B.); (A.v.K.)
| | - Anna Sola
- Department of Experimental Nephrology, IDIBELL, 08908 L’Hospitalet del Llobregat, Barcelona, Spain; (A.S.); (R.G.)
| | - Roser Guiteras
- Department of Experimental Nephrology, IDIBELL, 08908 L’Hospitalet del Llobregat, Barcelona, Spain; (A.S.); (R.G.)
| | - Stephan Grein
- Department of Mathematics, Temple University, Philadelphia, PA 19122, USA;
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.M.); (L.K.); (B.B.); (A.v.K.)
- Project Group Translational Medicine & Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 60590 Frankfurt am Main, Germany
| | - Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.M.); (L.K.); (B.B.); (A.v.K.)
- Project Group Translational Medicine & Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 60590 Frankfurt am Main, Germany
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.M.); (L.K.); (B.B.); (A.v.K.)
- Correspondence:
| |
Collapse
|
49
|
Sahin M, Neumann JM, Riefke B, Bednarz H, Gutberlet K, Giampà M, Niehaus K, Fatangare A. Spatial evaluation of long-term metabolic changes induced by cisplatin nephrotoxicity. Toxicol Lett 2020; 334:36-43. [PMID: 32941993 DOI: 10.1016/j.toxlet.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent. However, it is causing nephrotoxic side effects including a reduced glomerular filtration rate and acute kidney injury. Although kidneys can recover to an extent from the treatment, long-term damage is possible. While a lot of research is focusing on short-term effects, little is known about adverse metabolic effects in the process of recovery. In this study, male Han Wistar rats were dosed with a single intraperitoneal injection of 3 mg/kg cisplatin. Urine and kidney samples were harvested 3, 8 and 26 days after administration. Tubular injury was demonstrated through urinary biomarkers. Complementing this, mass spectrometry imaging gives insight on molecular alterations on a spatial level, thus making it well suited to analyze short- and long-term disturbances. Various metabolic pathways seem to be affected, as changes in a wide range of metabolites were observed between treated and control animals. Besides previously reported early changes in kidney metabolism, unprecedented long-term effects were detected including deviation in nucleotides, antioxidants, and phospholipids.
Collapse
Affiliation(s)
- Mikail Sahin
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Judith M Neumann
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Bjoern Riefke
- Toxicology, Translational Science, Pharmaceuticals Division, Bayer AG, Berlin, Germany
| | - Hanna Bednarz
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Katrin Gutberlet
- Toxicology, Translational Science, Pharmaceuticals Division, Bayer AG, Berlin, Germany
| | - Marco Giampà
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Amol Fatangare
- Toxicology, Translational Science, Pharmaceuticals Division, Bayer AG, Berlin, Germany.
| |
Collapse
|
50
|
Udgirkar S, Rathi P, Sonthalia N, Chandnani S, Contractor Q, Thanage R, Jain S. Urinary neutrophil gelatinase-associated lipocalin determines short-term mortality and type of acute kidney injury in cirrhosis. JGH OPEN 2020; 4:970-977. [PMID: 33102772 PMCID: PMC7578274 DOI: 10.1002/jgh3.12377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023]
Abstract
Background and Aim Acute kidney injury increases mortality in cirrhotic patients by four fold. This study aimed to determine the usefulness of urinary neutrophil gelatinase-associated lipocalin (uNGAL) for differential diagnosis for acute kidney injury and for predicting short-term mortality in cirrhotic patients. Methods We enrolled 94 patients of decompensated cirrhosis. uNGAL was measured upon hospital admission in all patients. Patients with urinary tract infection and anuria were excluded. Patients were followed for 30 days or until death. Results Ten (9%) patients had normal kidney function, 9 (11.37%) stable chronic kidney disease, 32 (29.50%) prerenal azotemia, 33 (36.37%) hepatorenal syndrome (HRS), and 10 (13.64%) intrinsic acute kidney injury (iAKI). Prerenal azotemia had lower median uNGAL values compared to HRS and iAKI (95.50 vs 465.00 vs 1217.50, P < 0.001). uNGAL levels were significantly higher in patients who died within 30 days (717.17 ± 494.26 vs 331.65 ± 313.65 ng/mL, P -0.0017). On univariate analysis, serum creatinine (sCr), uNGAL, Model for End-Stage Liver Disease (MELD) score on admission, and length of stay were significant, and on multivariate analysis, uNGAL and hepatic encephalopathy (HE) were significant in predicting mortality. Conclusions uNGAL at baseline serves as an early marker in differentiating HRS, prerenal AKI, and iAKI in cirrhotic patients, where sCr values are not useful. Patients with higher uNGAL levels had higher transplant-free mortality at 30 days.
Collapse
Affiliation(s)
- Suhas Udgirkar
- Department of Gastroenterology & Hepatology Topiwala National Medical College and B.Y.L Nair hospital Mumbai Mumbai Maharashtra India
| | - Pravin Rathi
- Department of Gastroenterology & Hepatology Topiwala National Medical College and B.Y.L Nair hospital Mumbai Mumbai Maharashtra India.,Department of Gastroenterology and Hepatology Bombay Hospital Institute of Medical Sciences (BHIMS) & Topiwala National Medical College and B.Y.L Nair hospital Mumbai Maharashtra India
| | - Nikhil Sonthalia
- Department of Gastroenterology & Hepatology Topiwala National Medical College and B.Y.L Nair hospital Mumbai Mumbai Maharashtra India
| | - Sanjay Chandnani
- Department of Gastroenterology & Hepatology Topiwala National Medical College and B.Y.L Nair hospital Mumbai Mumbai Maharashtra India
| | - Qais Contractor
- Department of Gastroenterology & Hepatology Topiwala National Medical College and B.Y.L Nair hospital Mumbai Mumbai Maharashtra India
| | - Ravi Thanage
- Department of Gastroenterology & Hepatology Topiwala National Medical College and B.Y.L Nair hospital Mumbai Mumbai Maharashtra India
| | - Samit Jain
- Department of Gastroenterology & Hepatology Topiwala National Medical College and B.Y.L Nair hospital Mumbai Mumbai Maharashtra India
| |
Collapse
|