1
|
Gao H, Jorgensen R, Raghunath R, Ng PKW, Gangur V. An Adjuvant-Free Mouse Model Using Skin Sensitization Without Tape-Stripping Followed by Oral Elicitation of Anaphylaxis: A Novel Pre-Clinical Tool for Testing Intrinsic Wheat Allergenicity. FRONTIERS IN ALLERGY 2022; 3:926576. [PMID: 36238931 PMCID: PMC9552944 DOI: 10.3389/falgy.2022.926576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022] Open
Abstract
Wheat is a major food allergen per the regulatory bodies of various nations. Hypersensitivity reactions to wheat have been steadily increasing for reasons that are not completely understood. Wheat-allergy models typically use adjuvants to induce sensitization to wheat proteins followed by an intraperitoneal challenge to elicit anaphylaxis. Although these models are very useful, they lack the ability to reveal the intrinsic allergenicity potential of wheat. To improve the mouse model of wheat allergy, we tested the hypothesis that repeated skin application of salt-soluble protein extract (SSPE) from durum wheat will clinically sensitize the mice to oral anaphylaxis to SSPE. Balb/c mice were bred and maintained on a plant-protein-free diet and used in the experiments. Adult female mice were exposed to SSPE once a week for 9 weeks via a solution on intact skin. Sensitization was measured by SSPE-specific IgE (sIgE) antibody and total IgE (tIgE) levels. Oral anaphylaxis was quantified by hypothermic shock response (HSR), and mucosal mast cell response (MMCR) was quantified by measuring MMCP-1 after oral challenge. Using single mouse data, correlation analyses were performed to determine the relationship among the allergenicity readouts. Spleen cytokines were quantified using a protein microarray method. Our results show that (i) repeated skin exposures to SSPE elicited robust increases in the sIgE and tIgE levels; (ii) skin exposure to SSPE was sufficient to sensitize mice for oral anaphylaxis and MMCR; (iii) both HSR and MMCR showed a strong correlation with each other, as well as with sIgE, and a modest correlation with tIgE levels; (iv) selected Th2/Th17/Th1 cytokines were elevated in skin-sensitized mice; and (v) oral allergen-challenged mice showed selective elevation of IL-6 and a panel of chemokines compared to saline-challenged mice. Together, we report the development and characterization of a novel adjuvant-free wheat-allergy mouse model that uses skin sensitization without tape-stripping followed by oral elicitation of anaphylaxis. Furthermore, validation of quantifiable wheat allergenicity readouts makes this model particularly suitable as a pre-clinical testing tool to assess the intrinsic sensitization/oral-anaphylaxis elicitation potential of novel wheat proteins (e.g., processed wheat) and to develop hypo/non-allergenic wheat products.
Collapse
Affiliation(s)
- Haoran Gao
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Rick Jorgensen
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Rajsri Raghunath
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Perry K. W. Ng
- Cereal Science Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- *Correspondence: Venu Gangur
| |
Collapse
|
2
|
Jorgensen R, Raghunath R, Gao H, Olson E, Ng PKW, Gangur V. A Mouse-Based Method to Monitor Wheat Allergens in Novel Wheat Lines and Varieties Created by Crossbreeding: Proof-of-Concept Using Durum and A. tauschii Wheats. Int J Mol Sci 2022; 23:ijms23126505. [PMID: 35742949 PMCID: PMC9224339 DOI: 10.3390/ijms23126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
Wheat allergies are potentially life-threatening because of the high risk of anaphylaxis. Wheats belong to four genotypes represented in thousands of lines and varieties. Monitoring changes to wheat allergens is critical to prevent inadvertent ntroduction of hyper-allergenic varieties via breeding. However, validated methods for this purpose are unavailable at present. As a proof-of-concept study, we tested the hypothesis that salt-soluble wheat allergens in our mouse model will be identical to those reported for humans. Groups of Balb/cJ mice were rendered allergic to durum wheat salt-soluble protein extract (SSPE). Using blood from allergic mice, a mini hyper-IgE plasma bank was created and used in optimizing an IgE Western blotting (IEWB) to identify IgE binding allergens. The LC-MS/MS was used to sequence the allergenic bands. An ancient Aegilops tauschii wheat was grown in our greenhouse and extracted SSPE. Using the optimized IEWB method followed by sequencing, the cross-reacting allergens in A. tauschii wheat were identified. Database analysis showed all but 2 of the durum wheat allergens and all A. tauschii wheat allergens identified in this model had been reported as human allergens. Thus, this model may be used to identify and monitor potential changes to salt-soluble wheat allergens caused by breeding.
Collapse
Affiliation(s)
- Rick Jorgensen
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
| | - Rajsri Raghunath
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
| | - Haoran Gao
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
| | - Eric Olson
- Wheat Breeding & Genetics Laboratory, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Perry K. W. Ng
- Cereal Science Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| | - Venu Gangur
- Food Allergy & Immunology Laboratory, Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (R.J.); (R.R.); (H.G.)
- Correspondence: ; Tel.: +1-517-353-3330
| |
Collapse
|
3
|
Benedé S, Berin MC. Applications of Mouse Models to the Study of Food Allergy. Methods Mol Biol 2021; 2223:1-17. [PMID: 33226583 DOI: 10.1007/978-1-0716-1001-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mouse models of allergic disease offer numerous advantages when compared to the models of other animals. However, selection of appropriate mouse models is critical to advance the field of food allergy by revealing mechanisms of allergy and for testing novel therapeutic approaches. All current mouse models for food allergy have weaknesses that may limit their applicability to human disease. Aspects such as the genetic predisposition to allergy or tolerance from the strain of mouse used, allergen dose, route of exposure (oral, intranasal, intraperitoneal, or epicutaneous), damage of the epithelial barrier, use of adjuvants, food matrix effects, or composition of the microbiota should be considered prior to the selection of a specific murine model and contemplated according to the intended purpose of the study. This chapter reviews our current knowledge on the application of mouse models to food allergy research and the variables that may influence the successful development of each type of model.
Collapse
Affiliation(s)
- Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Jin Y, Gao H, Jorgensen R, Salloum J, Jian DI, Ng PK, Gangur V. Mechanisms of Wheat Allergenicity in Mice: Comparison of Adjuvant-Free vs. Alum-Adjuvant Models. Int J Mol Sci 2020; 21:ijms21093205. [PMID: 32369940 PMCID: PMC7247356 DOI: 10.3390/ijms21093205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Wheat protein is considered a major type of food allergen in many countries including the USA. The mechanisms of allergenicity of wheat proteins are not well understood at present. Both adjuvant-based and adjuvant-free mouse models are reported for this food allergy. However, it is unclear whether the mechanisms underlying wheat allergenicity in these two types of models are similar or different. Therefore, we compared the molecular mechanisms in a novel adjuvant-free (AF) model vs. a conventional alum-adjuvant (AA) model of wheat allergy using salt-soluble wheat protein (SSWP). In the AF model, Balb/cJ mice were sensitized with SSWP via skin exposure. In the AA model, mice were sensitized by an intraperitoneal injection of SSWP with alum. In both models, allergic reactions were elicited using an identical protocol. Robust IgE as well as mucosal mast cell protein-1 responses were elicited similarly in both models. However, an analysis of the spleen immune markers identified strikingly different molecular activation patterns in these two models. Furthermore, a number of immune markers associated with intrinsic allergenicity were also identified in both models. Since the AF model uses skin exposure without an adjuvant, the mechanisms in the AF model may more closely simulate the human wheat allergenicity mechanisms from skin exposure in occupational settings such as in the baking industry.
Collapse
Affiliation(s)
- Yining Jin
- Food Allergy & Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (Y.J.); (H.G.); (R.J.); (S.J.); (D.I.J.)
| | - Haoran Gao
- Food Allergy & Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (Y.J.); (H.G.); (R.J.); (S.J.); (D.I.J.)
| | - Rick Jorgensen
- Food Allergy & Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (Y.J.); (H.G.); (R.J.); (S.J.); (D.I.J.)
| | - Jillian Salloum
- Food Allergy & Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (Y.J.); (H.G.); (R.J.); (S.J.); (D.I.J.)
| | - Dan Ioan Jian
- Food Allergy & Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (Y.J.); (H.G.); (R.J.); (S.J.); (D.I.J.)
| | - Perry K.W. Ng
- Cereal Science Laboratory, Michigan State University, East Lansing, MI 48824, USA;
| | - Venugopal Gangur
- Food Allergy & Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (Y.J.); (H.G.); (R.J.); (S.J.); (D.I.J.)
- Correspondence:
| |
Collapse
|
5
|
Verhoeckx K, Bøgh KL, Dupont D, Egger L, Gadermaier G, Larré C, Mackie A, Menard O, Adel-Patient K, Picariello G, Portmann R, Smit J, Turner P, Untersmayr E, Epstein MM. The relevance of a digestibility evaluation in the allergenicity risk assessment of novel proteins. Opinion of a joint initiative of COST action ImpARAS and COST action INFOGEST. Food Chem Toxicol 2019; 129:405-423. [PMID: 31063834 DOI: 10.1016/j.fct.2019.04.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 01/09/2023]
Abstract
The current allergenicity assessment of novel proteins is based on the EFSA GMO guidance. Recently, EFSA launched a new guidance document on allergenicity assessment of GM plants (2017). This document describes, amongst other topics, the new scientific and regulatory developments on in vitro protein digestibility tests. The EFSA GMO Panel stated that for in vitro protein digestibility tests, additional investigations are needed before any additional recommendation in the form of guidance can be provided. To this end, an interim phase is considered necessary to evaluate the revisions to the in vitro gastrointestinal digestion test, proposed by EFSA. This prompted the establishment of a joint workshop through two COST Action networks: COST Action ImpARAS and COST Acton INFOGEST. In 2017, a workshop was organised to discuss the relevance of digestion in allergenicity risk assessment and how to potentially improve the current methods and readouts. The outcome of the workshop is that there is no rationale for a clear readout that is predictive for allergenicity and we suggest to omit the digestion test from the allergenicity assessment strategy for now, and put an effort into filling the knowledge gaps as summarized in this paper first.
Collapse
Affiliation(s)
| | - Katrine Lindholm Bøgh
- National Food Institute, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | | | - Lotti Egger
- Agroscope, Schwarzenburgstr. 161, 3003, Bern, Charlotte, Switzerland.
| | - Gabriele Gadermaier
- University of Salzburg, Department of Biosciences, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Colette Larré
- INRA UR1268 BIA, Rue de la Géraudière, BP 71627, 44316 Nantes, France.
| | - Alan Mackie
- School of Food Science and Nutrition, University of Leeds, LS2 9JT, UK.
| | | | - Karine Adel-Patient
- UMR Service de Pharmacologie et Immunoanalyse, Laboratoire d'Immuno-Allergie Alimentaire, CEA, INRA, Université Paris-Saclay, F-91191, Gif-sur-Yvette Cedex, France.
| | | | - Reto Portmann
- Agroscope, Schwarzenburgstr. 161, 3003 Bern, Switzerland.
| | - Joost Smit
- Institute of Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3584CM, Utrecht, the Netherlands.
| | - Paul Turner
- Section of Paediatrics, Imperial College London, London, United Kingdom.
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Michelle M Epstein
- Department of Dermatology, Experimental Allergy Laboratory, Medical University of Vienna, Waehringer Guertel 18-20 room 4P9.02, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Jin Y, Acharya HG, Acharya D, Jorgensen R, Gao H, Secord J, Ng PKW, Gangur V. Advances in Molecular Mechanisms of Wheat Allergenicity in Animal Models: A Comprehensive Review. Molecules 2019; 24:molecules24061142. [PMID: 30909404 PMCID: PMC6471126 DOI: 10.3390/molecules24061142] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/27/2022] Open
Abstract
The prevalence of wheat allergy has reached significant levels in many countries. Therefore, wheat is a major global food safety and public health issue. Animal models serve as critical tools to advance the understanding of the mechanisms of wheat allergenicity to develop preventive and control methods. A comprehensive review on the molecular mechanisms of wheat allergenicity using animal models is unavailable at present. There were two major objectives of this study: To identify the lessons that animal models have taught us regarding the molecular mechanisms of wheat allergenicity and to identify the strengths, challenges, and future prospects of animal models in basic and applied wheat allergy research. Using the PubMed and Google Scholar databases, we retrieved and critically analyzed the relevant articles and excluded celiac disease and non-celiac gluten sensitivity. Our analysis shows that animal models can provide insight into the IgE epitope structure of wheat allergens, effects of detergents and other chemicals on wheat allergenicity, and the role of genetics, microbiome, and food processing in wheat allergy. Although animal models have inherent limitations, they are critical to advance knowledge on the molecular mechanisms of wheat allergenicity. They can also serve as highly useful pre-clinical testing tools to develop safer genetically modified wheat, hypoallergenic wheat products, novel pharmaceuticals, and vaccines.
Collapse
Affiliation(s)
- Yining Jin
- Department of Food Science and Human Nutrition, Food Allergy & Immunology Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Harini G Acharya
- Department of Food Science and Human Nutrition, Food Allergy & Immunology Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Devansh Acharya
- Department of Food Science and Human Nutrition, Food Allergy & Immunology Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Rick Jorgensen
- Department of Food Science and Human Nutrition, Food Allergy & Immunology Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Haoran Gao
- Department of Food Science and Human Nutrition, Food Allergy & Immunology Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - James Secord
- Department of Food Science and Human Nutrition, Food Allergy & Immunology Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Perry K W Ng
- Cereal Science Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
| | - Venugopal Gangur
- Department of Food Science and Human Nutrition, Food Allergy & Immunology Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
7
|
Smole U, Schabussova I, Pickl WF, Wiedermann U. Murine models for mucosal tolerance in allergy. Semin Immunol 2017; 30:12-27. [PMID: 28807539 DOI: 10.1016/j.smim.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
Immunity is established by a fine balance to discriminate between self and non-self. In addition, mucosal surfaces have the unique ability to establish and maintain a state of tolerance also against non-self constituents such as those represented by the large numbers of commensals populating mucosal surfaces and food-derived or air-borne antigens. Recent years have seen a dramatic expansion in our understanding of the basic mechanisms and the involved cellular and molecular players orchestrating mucosal tolerance. As a direct outgrowth, promising prophylactic and therapeutic models for mucosal tolerance induction against usually innocuous antigens (derived from food and aeroallergen sources) have been developed. A major theme in the past years was the introduction of improved formulations and novel adjuvants into such allergy vaccines. This review article describes basic mechanisms of mucosal tolerance induction and contrasts the peculiarities but also the interdependence of the gut and respiratory tract associated lymphoid tissues in that context. Particular emphasis is put on delineating the current prophylactic and therapeutic strategies to study and improve mucosal tolerance induction in allergy.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Ortiz T, Para R, Gonipeta B, Reitmeyer M, He Y, Srkalovic I, Ng PKW, Gangur V. Effect of extrusion processing on immune activation properties of hazelnut protein in a mouse model. Int J Food Sci Nutr 2016; 67:660-9. [PMID: 27251648 DOI: 10.1080/09637486.2016.1191445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although food processing can alter food allergenicity, the impact of extrusion processing on in vivo hazelnut allergenicity is unknown. Here, we tested the hypothesis that extrusion processing will alter the immune activation properties of hazelnut protein (HNP) in mice. Soluble extrusion-processed HNP (EHNP) was prepared and evaluated for immune response using an established transdermal sensitization mouse model. Mice were sensitized with identical amounts of EHNP versus raw HNP. After confirming systemic IgE, IgG1 and IgG2a antibody responses, oral hypersensitivity reaction was quantified by hypothermia shock response (HSR). Mechanism was studied by measuring mucosal mast cell (MMC) degranulation. Compared to raw HNP, the EHNP elicited slower but similar IgE antibody (Ab) response, lower IgG1 but higher IgG2a Ab response. The EHNP exhibited significantly lower oral HSR as well as MMC degranulation capacity. These results demonstrate that the extrusion technology can be used to produce soluble HNP with altered immune activation properties.
Collapse
Affiliation(s)
- Tina Ortiz
- a Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition , Michigan State University , East Lansing , MI , USA
| | - Radhakrishna Para
- a Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition , Michigan State University , East Lansing , MI , USA
| | - Babu Gonipeta
- a Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition , Michigan State University , East Lansing , MI , USA
| | - Mike Reitmeyer
- a Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition , Michigan State University , East Lansing , MI , USA
| | - Yingli He
- a Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition , Michigan State University , East Lansing , MI , USA
| | - Ines Srkalovic
- a Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition , Michigan State University , East Lansing , MI , USA
| | - Perry K W Ng
- b Cereal Science Laboratory, Department of Food Science and Human Nutrition , Michigan State University , East Lansing , MI , USA
| | - Venu Gangur
- a Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition , Michigan State University , East Lansing , MI , USA
| |
Collapse
|
9
|
Parvataneni S, Gonipeta B, Acharya HG, Gangur V. An Adjuvant-Free Mouse Model of Transdermal Sensitization and Oral Elicitation of Anaphylaxis to Shellfish. Int Arch Allergy Immunol 2016; 168:269-76. [PMID: 26895004 DOI: 10.1159/000443736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/30/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Shellfish (SF) allergy is a leading cause of systemic anaphylaxis in humans. An adjuvant-free mouse model to evaluate allergenicity and oral anaphylaxis to SF is currently unavailable. Here, we tested the hypothesis that transdermal exposure (TDE) to SF protein extract (SFPE) not only elicits a systemic allergic immune response but also will clinically sensitize mice for oral anaphylaxis. METHODS Adult BALB/c female mice (6-8 weeks of age) were exposed to saline or SFPE once a week for 4 weeks using a transdermal sensitization method. Systemic SF-specific IgE, IgG1 and IgG2a and total (t)IgE responses were measured using ELISA. Systemic anaphylaxis upon oral SFPE administration was assessed according to clinical symptoms and the hypothermia shock response (HSR). Using individual mouse data, the correlation between the readouts of allergenicity was determined using Pearson's analysis. Spleen-cell IL-4 and IFN-x03B3; responses were determined using primary cell culture and ELISA. RESULTS TDE to SFPE resulted in marked systemic specific (s)IgE, tIgE, IgG1 and IgG2a responses. Oral challenge with SFPE in sensitized mice (but not controls) elicited systemic anaphylactic clinical reactions and HSR. A strong correlation was observed between sIgE, tIgE and HSR. Spleen cells isolated from allergic mice (but not controls) exhibited memory IL-4 and IFN-x03B3; cytokine responses. CONCLUSION We report a novel adjuvant-free mouse model of SF allergy with robust quantifiable and correlated readouts of allergenicity that may be used in basic biomedical, preclinical and applied food/nutrition research on SF allergy.
Collapse
Affiliation(s)
- Sitaram Parvataneni
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Mich., USA
| | | | | | | |
Collapse
|
10
|
Liu T, Navarro S, Lopata AL. Current advances of murine models for food allergy. Mol Immunol 2016; 70:104-17. [DOI: 10.1016/j.molimm.2015.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/21/2015] [Accepted: 11/28/2015] [Indexed: 12/16/2022]
|
11
|
Gonipeta B, Kim E, Gangur V. Mouse models of food allergy: how well do they simulate the human disorder? Crit Rev Food Sci Nutr 2016; 55:437-52. [PMID: 24915373 DOI: 10.1080/10408398.2012.657807] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Food allergy is a growing health problem with serious concerns due to high potential for fatality. Rapid advances in the knowledge on causes and mechanisms as well as in developing effective prevention/therapeutic strategies are needed. To meet these goals, mouse models that simulate the human disorder are highly desirable. During the past decade, several mouse models of food allergies have been reported. Here, we briefly reviewed the human disorder and then critically evaluated these models seeking answers to the following important questions: To what extent do they simulate the human disorder? What are the strengths and limitations of these models? What are the challenges facing this scientific area? Our analysis suggest that: (i) the mouse models, with inherent strengths and limitations, are available for many major food allergies; there is scope for additional model development and validation; (ii) models mostly simulate the severe forms of human disorder with similar immune and clinical features; (iii) the approaches used to develop some of the mouse models may be questionable; and (iv) the specific mechanisms of sensitization as wells as oral elicitation of fatal reactions in both humans and mice remains incompletely understood and therefore warrants further research.
Collapse
Affiliation(s)
- Babu Gonipeta
- a Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition , Michigan State University , East Lansing , Michigan , USA
| | | | | |
Collapse
|
12
|
Izadi N, Luu M, Ong PY, Tam JS. The Role of Skin Barrier in the Pathogenesis of Food Allergy. CHILDREN (BASEL, SWITZERLAND) 2015; 2:382-402. [PMID: 27417371 PMCID: PMC4928763 DOI: 10.3390/children2030382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 02/08/2023]
Abstract
Food allergy is a serious public health problem with an increasing prevalence. Current management is limited to food avoidance and emergency treatment. Research into the pathogenesis of food allergy has helped to shape our understanding of how patients become sensitized to an allergen. Classically, food sensitization was thought to occur through the gastrointestinal tract, but alternative routes of sensitization are being explored, specifically through the skin. Damaged skin barrier may play a crucial role in the development of food sensitization. Better understanding of how patients initially become sensitized may help lead to the development of a safe and effective treatment for food allergies or better prevention strategies.
Collapse
Affiliation(s)
- Neema Izadi
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.
| | - Minnelly Luu
- Department of Dermatology, Keck School of Medicine, University of Southern California.
| | - Peck Y Ong
- Division of Clinical Immunology and Allergy, Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California.
| | - Jonathan S Tam
- Division of Clinical Immunology and Allergy, Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California.
| |
Collapse
|
13
|
Gonipeta B, Para R, He Y, Srkalovic I, Ortiz T, Kim E, Parvataneni S, Gangur V. Cardiac mMCP-4+ mast cell expansion and elevation of IL-6, and CCR1/3 and CXCR2 signaling chemokines in an adjuvant-free mouse model of tree nut allergy. Immunobiology 2014; 220:663-72. [PMID: 25499102 DOI: 10.1016/j.imbio.2014.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nut allergy is a growing and potentially fatal public health problem. We have previously reported a novel mouse model of near-fatal hazelnut (HN) allergy that involves transdermal sensitization followed by oral elicitation of allergic reactions. Here we studied the cardiac mast cell and cardiac tissue responses during oral nut induced allergic reaction in this mouse model. METHODS Groups of mice were sensitized with HN and specific and total IgE were measured by ELISA. Oral allergic reaction was quantified by rectal thermometry and plasma mouse mast cell protease (mMCP)-1 by ELISA. Cardiovascular functions were determined by a non-invasive tail cuff method. Mucosal mast cells (MMC) and intestinal connective tissue MC (CTMC) were studied by immunohistochemistry (IHC) for mMCP-1 and mMCP-4 protein expression respectively. Cardiac MC were studied by toluidine blue (TB) as well as by the above IHC methods. Cytokines and chemokines in the tissues were quantified by a multiplex protein array method. RESULTS Oral allergen challenge (OAC) of transdermal sensitized mice results in hypothermia, hypotension, tachycardia and rapid elevation of circulating mMCP-1. The IHC analysis of small intestine found significant expansion of mMCP-1+ MMCs and mMCP-4+ CTMCs. The TB analysis of cardiac tissues showed degranulation of majority of cardiac MCs. The IHC analysis of cardiac tissues showed very little mMCP-1 expression, but marked mMCP-4 expression. Furthermore, repeated OAC resulted in significant expansion of mMCP-4+ cardiac MCs in both the pericardium and the myocardium. Protein array analysis revealed significant elevation of cardiac IL-6 and CCR1/3 and CXCR2 signaling chemokines upon oral elicitation compared to sensitization alone. CONCLUSION These results demonstrate that: (i) besides the intestine, cardiac mast cells and the cardiac tissue respond during oral nut induced allergic reaction; and (ii) repeated oral elicitation of reaction is associated with cardiac mMCP-4+ mast cell expansion and elevation of cardiac IL-6, and CCR1/3 and CXCR2 signaling chemokines.
Collapse
Affiliation(s)
- Babu Gonipeta
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Radhakrishna Para
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Yingli He
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Ines Srkalovic
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Tina Ortiz
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Eunjung Kim
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America; Division of Applied Life Science (BK 21 Program), Gyeongsang National University, Jinju, South Korea
| | - Sitaram Parvataneni
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America
| | - Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 United States of America.
| |
Collapse
|
14
|
Wavrin S, Bernard H, Wal JM, Adel-Patient K. Cutaneous or respiratory exposures to peanut allergens in mice and their impacts on subsequent oral exposure. Int Arch Allergy Immunol 2014; 164:189-99. [PMID: 25034179 DOI: 10.1159/000363444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent data suggested that non-gastrointestinal exposure can lead to sensitisation to food allergens. We thus assessed the immune impact of respiratory or cutaneous exposure to peanut proteins on non-altered epithelium and investigated the effect of such pre-exposure on subsequent oral administration of peanut. METHODS BALB/cJ mice were exposed to purified Ara h 1 or to a non-defatted roasted peanut extract (PE) by simple deposit of allergens solutions on non-altered skin or in the nostrils. Exposures were performed 6 times at weekly intervals. Pre-exposed mice then received intra-gastric administrations of PE alone or in the presence of the Th2 mucosal adjuvant cholera toxin (CT). The specific humoral and cellular immune response was assessed throughout the protocol. RESULTS Both cutaneous and respiratory exposures led to the production of specific IgG1. Local and systemic IL-5 and IL-13 production were also evidenced, demonstrating activation of specific Th2 cells. This effect was dose-dependent and most efficient via the respiratory route. Moreover, these pre-exposures led to the production of specific IgE antibodies after gavage with PE, whatever the presence of CT. CONCLUSIONS Cutaneous or respiratory exposures to peanut induce Th2 priming in mice. Moreover, pre-exposures promote further sensitisation via the oral route without the use of CT; this proposes a new adjuvant-free experimental model of sensitisation to food that may reflect a realistic exposure pattern in infants. These results also suggest that non-gastrointestinal peanut exposure should be minimised in high-risk infants, even those with non-altered skin, to potentially reduce allergic sensitisation to this major food allergen.
Collapse
Affiliation(s)
- Sophie Wavrin
- INRA, UR496 Immuno-Allergie Alimentaire, CEA/IBiTeC-S/SPI, CEA de Saclay, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
15
|
Oyoshi MK, Oettgen HC, Chatila TA, Geha RS, Bryce PJ. Food allergy: Insights into etiology, prevention, and treatment provided by murine models. J Allergy Clin Immunol 2014; 133:309-17. [PMID: 24636470 DOI: 10.1016/j.jaci.2013.12.1045] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 12/15/2022]
Abstract
Food allergy is a rapidly growing public health concern because of its increasing prevalence and life-threatening potential. Animal models of food allergy have emerged as a tool for identifying mechanisms involved in the development of sensitization to normally harmless food allergens, as well as delineating the critical immune components of the effector phase of allergic reactions to food. However, the role animal models might play in understanding human diseases remains contentious. This review summarizes how animal models have provided insights into the etiology of human food allergy, experimental corroboration for epidemiologic findings that might facilitate prevention strategies, and validation for the utility of new therapies for food allergy. Improved understanding of food allergy from the study of animal models together with human studies is likely to contribute to the development of novel strategies to prevent and treat food allergy.
Collapse
Affiliation(s)
- Michiko K Oyoshi
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass.
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass
| | - Paul J Bryce
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Ill.
| |
Collapse
|
16
|
Van Gramberg JL, de Veer MJ, O'Hehir RE, Meeusen ENT, Bischof RJ. Use of animal models to investigate major allergens associated with food allergy. J Allergy (Cairo) 2013; 2013:635695. [PMID: 23690797 PMCID: PMC3649177 DOI: 10.1155/2013/635695] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/24/2013] [Indexed: 12/17/2022] Open
Abstract
Food allergy is an emerging epidemic that affects all age groups, with the highest prevalence rates being reported amongst Western countries such as the United States (US), United Kingdom (UK), and Australia. The development of animal models to test various food allergies has been beneficial in allowing more rapid and extensive investigations into the mechanisms involved in the allergic pathway, such as predicting possible triggers as well as the testing of novel treatments for food allergy. Traditionally, small animal models have been used to characterise immunological pathways, providing the foundation for the development of numerous allergy models. Larger animals also merit consideration as models for food allergy as they are thought to more closely reflect the human allergic state due to their physiology and outbred nature. This paper will discuss the use of animal models for the investigation of the major food allergens; cow's milk, hen's egg, and peanut/other tree nuts, highlight the distinguishing features of each of these models, and provide an overview of how the results from these trials have improved our understanding of these specific allergens and food allergy in general.
Collapse
Affiliation(s)
- Jenna L. Van Gramberg
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Michael J. de Veer
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Robyn E. O'Hehir
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital and Monash University, Prahran, VIC 3181, Australia
| | - Els N. T. Meeusen
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Robert J. Bischof
- Biotechnology Research Laboratories, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
17
|
Identification of T- and B-Cell Subsets That Expand in the Central and Peripheral Lymphoid Organs during the Establishment of Nut Allergy in an Adjuvant-Free Mouse Model. ISRN ALLERGY 2013; 2013:509427. [PMID: 23724246 PMCID: PMC3658415 DOI: 10.1155/2013/509427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/15/2013] [Indexed: 11/17/2022]
Abstract
Nut allergies are potentially fatal and rarely outgrown for reasons that are not well understood. Phenotype of T- and B-cell subsets that expand during the early stages of nut allergy is largely unknown. Here we studied this problem using a novel mouse model of nut allergy. Mice were rendered hazelnut allergic by a transdermal sensitization/oral elicitation protocol. Using flow cytometry, the T- and B-cell phenotype in the bone marrow (BM), spleen, and the mesenteric lymph node (MLN) of allergic and control mice was analyzed. Nut allergic mice exhibited an expansion of CD4+ CD62L− T cells in BM and spleen; a similar trend was noted in the MLN. There was expansion of CD80+ B cells in BM and spleen and MLN and CD62L− cells in BM and spleen. Interestingly, among CD80+ B cells, significant proportion was CD73− particularly in the MLN. These data demonstrate that during the early establishment of hazelnut allergy there is (i) expansion of CD4+CD62L− T-cell subsets in both the BM and the periphery, (ii) expansion of CD80+ and CD62L− B-cell subsets in BM and the periphery, and (iii) a significant downregulation of CD73 on a subset of B cells in MLN.
Collapse
|
18
|
Xie J, Lotoski LC, Chooniedass R, Su RC, Simons FER, Liem J, Becker AB, Uzonna J, HayGlass KT. Elevated antigen-driven IL-9 responses are prominent in peanut allergic humans. PLoS One 2012; 7:e45377. [PMID: 23071516 PMCID: PMC3469559 DOI: 10.1371/journal.pone.0045377] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/17/2012] [Indexed: 01/14/2023] Open
Abstract
Food allergies, and peanut allergy in particular, are leading causes of anaphylactic fatalities worldwide. The immune mechanisms that underlie food allergy remain ill-defined and controversial, in part because studies in humans typically focus on analysis of a limited number of prototypical Th1/Th2 cytokines. Here we determine the kinetics and prevalence of a broad panel of peanut-driven cytokine and chemokine responses in humans with current peanut allergy vs those with stable, naturally occurring clinical tolerance to peanut. Our primary focus is identification of novel indicators of immune dysregulation. Antigen-specific cytokine mRNA and protein responses were elicited in primary culture via peanut or irrelevant antigen (Leishmania extract, milk antigens) mediated stimulation of fresh peripheral blood cells from 40 individuals. Peanut extract exposure in vitro induced a broad panel of responses associated with Th2/Th9-like, Th1-like and Th17-like immunity. Peanut-dependent Type 2 cytokine responses were frequently found in both peanut allergic individuals and those who exhibit clinical tolerance to peanut ingestion. Among Th2/Th9-associated cytokines, IL-9 responses discriminated between allergic and clinically tolerant populations better than did commonly used IL-4, IL-5 or IL-13 responses. Comparison with responses evoked by unrelated control antigen-mediated stimulation showed that these differences are antigen-dependent and allergen-specific. Conversely, the intensity of IL-12, IL-17, IL-23 and IFN-γ production was indistinguishable in peanut allergic and peanut tolerant populations. In summary, the ability to generate and maintain cytokine responses to peanut is not inherently distinct between allergic and peanut tolerant humans. Quantitative differences in the intensity of cytokine production better reflects clinical phenotype, with optimally useful indicators being IL-9, IL-5, IL-13 and IL-4. Equivalent, and minimal, Ag-dependent pro-inflammatory cytokine levels in both healthy and peanut allergic volunteers argues against a key role for such cytokines in maintenance of clinical tolerance to food antigens in humans.
Collapse
Affiliation(s)
- Jungang Xie
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | | | - Rishma Chooniedass
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| | - Ruey-Chyi Su
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - F. Estelle R. Simons
- Department of Immunology, University of Manitoba, Winnipeg, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| | - Joel Liem
- Windsor Allergy Asthma Education Centre, Ontario, Canada
| | - Allan B. Becker
- Department of Immunology, University of Manitoba, Winnipeg, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| | - Jude Uzonna
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Kent T. HayGlass
- Department of Immunology, University of Manitoba, Winnipeg, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
19
|
A shorter and more specific oral sensitization-based experimental model of food allergy in mice. J Immunol Methods 2012; 381:41-9. [PMID: 22542400 DOI: 10.1016/j.jim.2012.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 12/16/2022]
Abstract
Cow's milk protein allergy (CMPA) is one of the most prevalent human food-borne allergies, particularly in children. Experimental animal models have become critical tools with which to perform research on new therapeutic approaches and on the molecular mechanisms involved. However, oral food allergen sensitization in mice requires several weeks and is usually associated with unspecific immune responses. To overcome these inconveniences, we have developed a new food allergy model that takes only two weeks while retaining the main characters of allergic response to food antigens. The new model is characterized by oral sensitization of weaned Balb/c mice with 5 doses of purified cow's milk protein (CMP) plus cholera toxin (CT) for only two weeks and posterior challenge with an intraperitoneal administration of the allergen at the end of the sensitization period. In parallel, we studied a conventional protocol that lasts for seven weeks, and also the non-specific effects exerted by CT in both protocols. The shorter protocol achieves a similar clinical score as the original food allergy model without macroscopically affecting gut morphology or physiology. Moreover, the shorter protocol caused an increased IL-4 production and a more selective antigen-specific IgG1 response. Finally, the extended CT administration during the sensitization period of the conventional protocol is responsible for the exacerbated immune response observed in that model. Therefore, the new model presented here allows a reduction not only in experimental time but also in the number of animals required per experiment while maintaining the features of conventional allergy models. We propose that the new protocol reported will contribute to advancing allergy research.
Collapse
|
20
|
Chen XW, Lau KWK, Yang F, Sun SSM, Fung MC. An adjuvant free mouse model of oral allergenic sensitization to rice seeds protein. BMC Gastroenterol 2011; 11:62. [PMID: 21605393 PMCID: PMC3123647 DOI: 10.1186/1471-230x-11-62] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 05/23/2011] [Indexed: 12/11/2022] Open
Abstract
Background Rice is commonly known as a staple crop consumed worldwide, though with several rice proteins being reported for allergic properties in clinical studies. Thus, there is a growing need for the development of an animal model to better understand the allergenicity of rice proteins and the immunological and pathophysiological mechanisms underlying the development of food allergy. Methods Groups of BALB/c mice were sensitized daily with freshly homogenized rice flour (30 mg or 80 mg) without adjuvant by intragastric gavage. In addition, the mice were challenged with extracted rice flour proteins at several time points intragastrically. Hypersensitivity symptoms in mice were evaluated according to a scoring system. Vascular leakage, ELISA of rice protein-specific IgE, histopathology of small intestine, and passive cutaneous anaphylaxis were conducted on challenged mice. Results An adjuvant free mouse model of rice allergy was established with sensitized mice showing increased scratching behaviors and increased vascular permeability. Rice protein-specific IgE was detected after eighteen days of sensitization and from the fifth challenge onwards. Inflammatory damage to the epithelium in the small intestine of mice was observed beyond one month of sensitization. Passive cutaneous anaphylaxis results confirmed the positive rice allergy in the mouse model. Conclusions We introduced a BALB/c mouse model of rice allergy with simple oral sensitization without the use of adjuvant. This model would serve as a useful tool for further analysis on the immunopathogenic mechanisms of the various rice allergens, for the evaluation of the hypersensitivity of rice or other cereal grains, and to serve as a platform for the development of immunotherapies against rice allergens.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Biology Program, School of Science Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
21
|
AllerML: markup language for allergens. Regul Toxicol Pharmacol 2011; 60:151-60. [PMID: 21420460 DOI: 10.1016/j.yrtph.2011.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 02/01/2023]
Abstract
Many concerns have been raised about the potential allergenicity of novel, recombinant proteins into food crops. Guidelines, proposed by WHO/FAO and EFSA, include the use of bioinformatics screening to assess the risk of potential allergenicity or cross-reactivities of all proteins introduced, for example, to improve nutritional value or promote crop resistance. However, there are no universally accepted standards that can be used to encode data on the biology of allergens to facilitate using data from multiple databases in this screening. Therefore, we developed AllerML a markup language for allergens to assist in the automated exchange of information between databases and in the integration of the bioinformatics tools that are used to investigate allergenicity and cross-reactivity. As proof of concept, AllerML was implemented using the Structural Database of Allergenic Proteins (SDAP; http://fermi.utmb.edu/SDAP/) database. General implementation of AllerML will promote automatic flow of validated data that will aid in allergy research and regulatory analysis.
Collapse
|