1
|
García-Domínguez M. The Role of TNF-α in Neuropathic Pain: An Immunotherapeutic Perspective. Life (Basel) 2025; 15:785. [PMID: 40430212 PMCID: PMC12113436 DOI: 10.3390/life15050785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
TNF-α is a pro-inflammatory cytokine that plays a pivotal role in the regulation of immune responses. It is predominantly produced by activated macrophages, although other cell types, such as T lymphocytes and NK cells, also contribute to its secretion. TNF-α participates in various physiological processes, including cell proliferation and differentiation. Moreover, TNF-α has been implicated in the pathogenesis of numerous inflammatory and autoimmune disorders. Recent studies have highlighted the important role of TNF-α in neuropathic pain, a complex and frequently disabling condition caused by nerve injury or dysfunction. Increased TNF-α levels in the nervous system have been associated with the onset of neuropathic pain, contributing to neuronal sensitization and alterations in pain signaling pathways. This study supports the idea that TNF-α connects the immune system with the nervous system, thereby supporting our understanding of the neuroimmune interface of pain and bringing a potential treatment against neuropathic pain: targeting TNF-α. Anti-TNF-α antibody administration reduces pain behaviors and neuroinflammation in preclinical animal models. Simultaneously, clinical trials are evaluating the safety and efficacy of anti-TNF-α treatments, with preliminary results indicating promising outcomes in patients experiencing neuropathic pain. Here, targeting TNF-α goes beyond its conventional spectrum of inflammatory pathologies and initiates a new mechanism-based approach to defining neuropathic pain, thereby improving the quality of life of the individuals affected and bringing together an area of colossal unmet clinical need.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain;
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
2
|
Guo Y, Xie F, Liu X, Ke S, Chen J, Zhao Y, Li N, Wang Z, Yi G, Shen Y, Li D, Zhu C, Zhang Z, Zhao G, Lu H, Li B, Zhao W. Blockade of TNF-α/TNFR2 signalling suppresses colorectal cancer and enhances the efficacy of anti-PD1 immunotherapy by decreasing CCR8+T regulatory cells. J Mol Cell Biol 2024; 16:mjad067. [PMID: 37935468 PMCID: PMC11587560 DOI: 10.1093/jmcb/mjad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 05/05/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
The enrichment of regulatory T cells (Tregs) in the tumour microenvironment (TME) has been recognized as one of the major factors in the initiation and development of resistance to immune checkpoint inhibitors. C-C motif chemokine receptor 8 (CCR8), a marker of activated suppressive Tregs, has a significant impact on the functions of Tregs in the TME. However, the regulatory mechanism of CCR8 in Tregs remains unclear. Here, we revealed that a high level of TNF-α in the colorectal cancer (CRC) microenvironment upregulated CCR8 expression in Tregs via the TNFR2/NF-κB signalling pathway and the FOXP3 transcription factor. Furthermore, in both anti-programmed cell death protein 1 (anti-PD1)-responsive and anti-PD1-unresponsive tumour models, PD1 blockade induced CCR8+ Treg infiltration. In both models, Tnfr2 depletion or TNFR2 blockade suppressed tumour progression by reducing CCR8+ Treg infiltration and thus augmented the efficacy of anti-PD1 therapy. Finally, we identified that TNFR2+CCR8+ Tregs but not total Tregs were positively correlated with adverse prognosis in patients with CRC and gastric cancer. Our work reveals the regulatory mechanisms of CCR8 in Tregs and identifies TNFR2 as a promising target for immunotherapy.
Collapse
Affiliation(s)
- Yixian Guo
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feng Xie
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xu Liu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shouyu Ke
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieqiong Chen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ning Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine Shanghai 200025, China
| | - Zeyu Wang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gang Yi
- Biotheus Inc., Zhuhai 519080, China
| | - Yanying Shen
- Department of Pathology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Lu
- GI Division, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenyi Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Williams RO, Clanchy FI, Huang YS, Tseng WY, Stone TW. TNFR2 signalling in inflammatory diseases. Best Pract Res Clin Rheumatol 2024; 38:101941. [PMID: 38538489 DOI: 10.1016/j.berh.2024.101941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 09/02/2024]
Abstract
TNF signals via two receptors, TNFR1 and TNFR2, which play contrasting roles in immunity. Most of the pro-inflammatory effects of TNF are mediated by TNFR1, whereas TNFR2 is mainly involved in immune homeostasis and tissue healing, but also contributes to tumour progression. However, all currently available anti-TNF biologics inhibit signalling via both receptors and there is increasing interest in the development of selective inhibitors; TNFR1 inhibitors for autoimmune disease and TNFR2 inhibitors for cancer. It is hypothesised that selective inhibition of TNFR1 in autoimmune disease would alleviate inflammation and promote homeostasis by allowing TNFR2 signalling to proceed unimpeded. Validation of this concept would pave the way for the development and testing of TNF specific antagonists. Another therapeutic approach being explored is the use of TNFR2 specific agonists, which could be administered alone or in combination with a TNFR1 antagonist.
Collapse
Affiliation(s)
- Richard O Williams
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| | - Felix Il Clanchy
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| | - Yi-Shu Huang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| | - Wen-Yi Tseng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| | - Trevor W Stone
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.
| |
Collapse
|
4
|
Cammarata I, Pinna V, Pacella I, Rotella I, Soresina A, Badolato R, Plebani A, Pignata C, Cirillo E, Zicari AM, Violi F, Carnevale R, Loffredo L, Piconese S. In adult X-CGD patients, regulatory T cells are expanded while activated T cells display a NOX2-independent ROS increase. Immunol Lett 2024; 266:106839. [PMID: 38309375 DOI: 10.1016/j.imlet.2024.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
The X-linked chronic granulomatous disease (X-CGD), a rare genetic disease characterised by recurrent infections, is caused by mutations of NOX2. Significant proportions of X-CGD patients display signs of immune dysregulation. Regulatory T cells (Tregs) are CD4+T lymphocytes that expand in active inflammation and prevent autoimmune disorders. Here we asked whether X-CGD is associated to Treg dysfunctions in adult patients. To this aim, the frequency of Tregs was analysed through intracellular flow cytometry in a cohort of adult X-CGD patients, carriers and controls. We found that Tregs were significantly expanded and activated in blood of adult X-CGD patients, and this was associated with activation of conventional CD4+T cells (Tconvs). T cell activation was characterised by accumulation of intracellular ROS, not derived from NOX2 but likely produced by cellular metabolism. The higher TNF production by Tconvs in X-CGD patients might contribute to the expansion of Tregs through the TNFR2 receptor. In summary, our data indicate that Tregs expand in adult X-CGD in response to immune activation, and that the increase of NOX2-independent ROS content is a feature of activated T cells.
Collapse
Affiliation(s)
- Ilenia Cammarata
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy; Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Valeria Pinna
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ilenia Pacella
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ivano Rotella
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Annarosa Soresina
- Department of Clinical and Experimental Sciences, Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, ASST-Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, ASST-Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Department of Clinical and Experimental Sciences, Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, ASST-Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Violi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy; Mediterranea Cardiocentro-Napoli, Naples, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; IRCCS Neuromed, Località Camerelle, Pozzilli, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Piconese
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy; Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy; Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|
5
|
Yang HM, Lee C, Min J, Ha N, Bae D, Nam G, Park HJ. Development of a tetrahydroindazolone-based HDAC6 inhibitor with in-vivo anti-arthritic activity. Bioorg Med Chem 2024; 99:117587. [PMID: 38237257 DOI: 10.1016/j.bmc.2024.117587] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
Histone deacetylase 6 (HDAC6) induces the expression of pro-inflammatory cytokines in macrophages; therefore, HDAC inhibitors may be beneficial for the treatment of macrophage-associated immune disorders and chronic inflammatory diseases, including atherosclerosis and rheumatoid arthritis. Structure-activity relationship studies were conducted on various phenyl hydroxamate HDAC6 inhibitors with indolone/indazolone-based bi- or tricyclic ring moieties as the cap group aiming to develop novel anti-arthritic drug candidates. Several compounds exhibited nanomolar activity and HDAC6 selectivity greater than 500-fold over HDAC1. Compound 21, a derivative with the tetrahydroindazolone cap group, is a potent HDAC6 inhibitor with an IC50 of 18 nM and 217-fold selectivity over HDAC1 and showed favorable oral bioavailability in animals. Compound 21 increases the acetylation level of tubulin without affecting histone acetylation in cutaneous T-cell lymphoma cells and inhibits TNF-α secretion in LPS-stimulated macrophage cells. The anti-arthritic effects of compound 21 were evaluated using a rat adjuvant-induced arthritis (AIA) model. Treatment with compound 21 significantly reduced the arthritis score, and combination treatment with methotrexate showed a synergistic effect in AIA models. We identified a novel HDAC6 inhibitor, compound 21, with excellent in vivo anti-arthritic efficacy, which can lead to the development of oral anti-arthritic drugs.
Collapse
Affiliation(s)
- Hyun-Mo Yang
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea; Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, South Korea
| | - Changsik Lee
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, South Korea
| | - Jaeki Min
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea; Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, South Korea
| | - Nina Ha
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, South Korea
| | - Daekwon Bae
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, South Korea
| | - Gibeom Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea.
| |
Collapse
|
6
|
Nowag B, Schäfer D, Hengl T, Corduff N, Goldie K. Biostimulating fillers and induction of inflammatory pathways: A preclinical investigation of macrophage response to calcium hydroxylapatite and poly-L lactic acid. J Cosmet Dermatol 2024; 23:99-106. [PMID: 37593832 DOI: 10.1111/jocd.15928] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION Initial macrophage response to biostimulatory substances is key in determining the subsequent behavior of fibroblasts and the organization of newly synthesized collagen. Though histological studies suggest that calcium hydroxylapatite (CaHA) filler initiates a regenerative healing response with collagen and elastin deposition similar to natural, healthy tissue rather than an inflammatory response with fibrosis, the relative activity of macrophages stimulated by CaHA, as well as how this activity compares to that induced by other biostimulatory fillers, has not been explored. The aim of the study is to characterize the in vitro macrophage response to two biostimulory fillers, CaHA and PLLA (poly-L lactic acid), and to evaluate their inflammatory potential. METHODS Primary human macrophages were incubated with two dilutions (1:50 and 1:100) of commercially available CaHA or PLLA. After 24 h incubation, an inflammation array was used to screen for the expression of 40 cytokines, released by macrophages. ELISA was used to confirm array results. RESULTS Four cytokines were significantly upregulated in M1 macrophages incubated with PLLA compared to both unstimulated controls and CaHA: CCL1 (p < 0.001), TNFRII (p < 0.01), MIP-1α (p < 0.05), and IL-8 (p < 0.001). In M2 macrophages, MIP-1α (p < 0.01) and MIP-1β (p < 0.01) were significantly upregulated by PLLA compared to CaHA and unstimulated controls. CONCLUSION Together, these findings indicate that the CaHA mode of action is a non-inflammatory response while PLLA initiates expression of several cytokines known to play a role in inflammation. Our study supports the concept that these two "biostimulatory" fillers follow distinct pathways and should be considered individually with regard to mechanism of action.
Collapse
Affiliation(s)
| | | | - Thomas Hengl
- R&D, Merz Aesthetics GmbH, Frankfurt am Main, Germany
| | | | | |
Collapse
|
7
|
Kaukinen AP, Harvima RJ, Harvima IT. FoxP3-Positive Cells and Their Contacts with Mast Cells Are Highly Increased in Basal Cell Carcinoma. Int Arch Allergy Immunol 2023; 185:167-169. [PMID: 37989104 PMCID: PMC10836921 DOI: 10.1159/000534986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023] Open
Abstract
INTRODUCTION The cells of the immune system are thought to contribute to the development of skin cancers, such as basal cell carcinoma (BCC). One possible mechanism may be the interaction between mast cells and regulatory T cells (Tregs), resulting in immunosuppression. METHODS Fresh-frozen biopsies from the lesional and nonlesional skin of 16 patients with BCC were processed for the enzymehistochemical staining of mast cell tryptase, immunohistochemical staining of FoxP3 (a marker of Tregs) as well as for the double-staining method to label tryptase+ cells and FoxP3+ cells on the same cryosection. The cell numbers and apparent morphological contacts (AMCs) between these cell types were counted. RESULTS There was a high increase in the number of tryptase+ cells, FoxP3+ cells, and AMCs between them in the lesional compared to corresponding nonlesional skin (p < 0.0001) in all cases. CONCLUSION A morphological basis is theoretically present in BCC, suggesting an immune evasive microenvironment.
Collapse
Affiliation(s)
- Antti P Kaukinen
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Rauno J Harvima
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Ilkka T Harvima
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
8
|
Engku Abd Rahman ENS, Irekeola AA, Shueb RH, Mat Lazim N, Mohamud R, Chen X, Ghazali L, Awang NMSH, Haron A, Chan YY. Aberrant frequency of TNFR2-expressing CD4+ FoxP3+ regulatory T cells in nasopharyngeal carcinoma patients. Cytokine 2023; 170:156341. [PMID: 37657236 DOI: 10.1016/j.cyto.2023.156341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
TNFR2 is a surface marker of highly suppressive subset of CD4+ FoxP3+ regulatory T cells (Tregs) in humans and mice. This study examined the TNFR2 expression by Tregs of nasopharyngeal carcinoma (NPC) patients and healthy controls. The proliferation, migration, survival of TNFR2+ Tregs, and association with clinicopathological characteristics were assessed. The expression levels of selected cytokines were also determined. The results demonstrated that in both peripheral blood (PB) (10.45 ± 5.71%) and tumour microenvironment (TME) (54.38 ± 16.15%) of NPC patients, Tregs expressed TNFR2 at noticeably greater levels than conventional T cells (Tconvs) (3.91 ± 2.62%, p < 0.0001), akin to healthy controls. Expression of TNFR2 (1.06 ± 0.99%) was correlated better than CD25+ (0.40 ± 0.46%) and CD127-/low (1.00 ± 0.83% ) with FoxP3 expression in NPC PB (p = 0.0005). Though there was no significant association between TNFR2 expression with the functional capacity (proliferation, migration and survival) of Tregs (p > 0.05), the proportions of PB and TME TNFR2+ Tregs in NPC patients showed more proliferative, higher migration capacity, and better survival ability, as compared to those in healthy controls. Furthermore, TNFR2+ Tregs from NPC patients expressed significantly higher amounts of IL-6 (p = 0.0077), IL-10 (p = 0.0001), IFN-γ (p = 0.0105) and TNF-α (p < 0.0001) than those from healthy controls. Most significantly, TNFR2 expression in maximally suppressive Tregs population were linked to WHO Type III histological type, distant metastasis, progressive disease status, and poor prognosis for NPC patients. Hence, our research implies that TNFR2 expression by PB and TME Tregs may be a useful predictive indicator in NPC patients.
Collapse
Affiliation(s)
- Engku Nur Syafirah Engku Abd Rahman
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, PMB 4412, Offa Kwara State, Nigeria
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078 Macau
| | - Liyana Ghazali
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nik Mohd Syahrul Hafizzi Awang
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ali Haron
- Department of Otorhinolaryngology, Hospital Raja Perempuan Zainab II, Jalan Hospital, 15200 Kota Bharu, Kelantan, Malaysia
| | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
9
|
Chen X, Plebanski M. Editorial: The role of TNF-TNFR2 signal in immunosuppressive cells and its therapeutic implications, volume II. Front Immunol 2023; 14:1227003. [PMID: 37600778 PMCID: PMC10432281 DOI: 10.3389/fimmu.2023.1227003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
- Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
10
|
Zhao R, Cao G, Zhang B, Wei L, Zhang X, Jin M, He B, Zhang B, He Z, Bie Q. TNF+ regulatory T cells regulate the stemness of gastric cancer cells through the IL13/STAT3 pathway. Front Oncol 2023; 13:1162938. [PMID: 37534250 PMCID: PMC10392945 DOI: 10.3389/fonc.2023.1162938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Regulatory T cells (Tregs) are an important component of the tumor microenvironment; however, the interaction between Tregs and gastric cancer cells is not completely understood. Recent studies have shown that Tregs participate in cancer cell stemness maintenance. In this study, we performed single-cell RNA sequencing of gastric cancer and adjacent tissues and found that Tregs with high TNF expression were recruited to gastric cancer tissues and were significantly correlated with patient survival. TNF+ Tregs significantly contribute to tumor growth and progression. Our studies have further demonstrated that TNF+ Tregs promote the stemness of gastric cancer cells through the IL13/STAT3 pathway. Therefore, blocking the interaction between TNF+ Tregs and gastric cancer cells may be a new approach in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Rou Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Guanjie Cao
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Baogui Zhang
- Colorectal Ward, Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Li Wei
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xiaobei Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Meng Jin
- Hernia and Abdominal Wall Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Zhun He
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
11
|
Microscopic lesions and modulation of gene expression in cervical medulla during BoAHV-1and BoAHV-5 infection: A mini-review. Res Vet Sci 2023; 156:81-87. [PMID: 36791580 DOI: 10.1016/j.rvsc.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Bovine herpesvirus (BoAHV) types 1 and 5 are closely-related neurotropic alpha-herpesviruses. BoAHV-1 generally causes respiratory and genital disease but can occasionally cause encephalitis. BoAHV-5 is the causative agent of non suppurative meningoencephalitis in calves. During neuroinvasion, both viruses reach the central and peripheral nervous system. While brain alterations are well-described, the changes that occur in the medulla have not been fully detailed. In this work, we integrated and analyzed the virological findings, the microscopic lesions and the changes that occur in the expression of genes related to the innate immunity, cell cycle and apoptosis in the cervical medulla of calves experimentally-infected with BoAHV-1 and BoAHV-5. This will contribute to the understanding of the differential neuropathogenesis of these alpha-herpesviruses of cattle.
Collapse
|
12
|
Xu R, Jacques LC, Khandaker S, Beentjes D, Leon-Rios M, Wei X, French N, Neill DR, Kadioglu A. TNFR2 + regulatory T cells protect against bacteremic pneumococcal pneumonia by suppressing IL-17A-producing γδ T cells in the lung. Cell Rep 2023; 42:112054. [PMID: 36724074 DOI: 10.1016/j.celrep.2023.112054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/09/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae is a pathogen of global morbidity and mortality. Pneumococcal pneumonia can lead to systemic infections associated with high rates of mortality. We find that, upon pneumococcal infection, pulmonary Treg cells are activated and have upregulated TNFR2 expression. TNFR2-deficient mice have compromised Treg cell responses and highly activated IL-17A-producing γδ T cell (γδT17) responses, resulting in significantly enhanced neutrophil infiltration, tissue damage, and rapid development of bacteremia, mirroring responses in Treg cell-depleted mice. Deletion of total Treg cells predominantly activate IFNγ-T cell responses, whereas adoptive transfer of TNFR2+ Treg cells specifically suppress the γδT17 response, suggesting a targeted control of γδT17 activation by TNFR2+ Treg cells. Blocking IL-17A at early stage of infection significantly reduces bacterial blood dissemination and improves survival in TNFR2-deficient mice. Our results demonstrate that TNFR2 is critical for Treg cell-mediated regulation of pulmonary γδT17-neutrophil axis, with impaired TNFR2+ Treg cell responses increasing susceptibility to disease.
Collapse
Affiliation(s)
- Rong Xu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Laura C Jacques
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Shadia Khandaker
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Daan Beentjes
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Miguel Leon-Rios
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Xiaoqing Wei
- Institute of Tissue Engineering and Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Neil French
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK.
| |
Collapse
|
13
|
The Immunosuppressive Effect of TNFR2 Expression in the Colorectal Cancer Microenvironment. Biomedicines 2023; 11:biomedicines11010173. [PMID: 36672682 PMCID: PMC9856189 DOI: 10.3390/biomedicines11010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common causes of death among cancers worldwide. Its incidence has been increasing among the young population. Many risk factors contribute to the development and progression of CRC and about 70% of them are sporadic. The CRC microenvironment is highly heterogeneous and represents a very complex immunosuppressive platform. Many cytokines and their receptors are vital participants in this immunosuppressive microenvironment. Tumor necrosis factors (TNFs) and TNF receptor 2 (TNFR2) are critical players in the development of CRC. TNFR2 was observed to have increased the immunosuppressive activity of CRC cells via regulatory T cells (T regs) and myeloid-derived suppressor cells (MDSC) in the CRC microenvironment. However, the exact mechanism of TNFR2 in regulating the CRC prognosis remains elusive. Here, we discuss the role of TNFR2 in immune escape mechanism of CRC in the immunosuppressive cells, including Tregs and MDSCs, and the complex signaling pathways that facilitate the development of CRC. It is suggested that extensive studies on TNFR2 downstream signaling must be done, since TNFR2 has a high potential to be developed into a therapeutic agent and cancer biomarker in the future.
Collapse
|
14
|
Wang X, Yang C, Körner H, Ge C. Tumor Necrosis Factor: What Is in a Name? Cancers (Basel) 2022; 14:5270. [PMID: 36358688 PMCID: PMC9656125 DOI: 10.3390/cancers14215270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/18/2024] Open
Abstract
Tumor Necrosis Factor was one of the first cytokines described in the literature as a soluble mediator of cytotoxicity to tumors. Over the years, more extensive research that tried to employ Tumor Necrosis Factor in cancer treatments showed nevertheless that it mainly functioned as a proinflammatory cytokine. However, this did not stop the search for the holy grail of cancer research: A cytokine that could act as a one-stop treatment for solid tumors and lymphomas. This review will summarize the long experimental history of Tumor Necrosis Factor that caused the initial observations of a tumor necrotizing cytokine that could serve as a potential cancer treatment and discuss the current state of research into this side of the activities of Tumor Necrosis Factor.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chunlan Yang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Heinrich Körner
- Menzies Institute for Medical Research, Liverpool Street, Hobart, TAS 7000, Australia
| | - Chaoliang Ge
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
15
|
Mensink M, Tran TNM, Zaal EA, Schrama E, Berkers CR, Borst J, de Kivit S. TNFR2 Costimulation Differentially Impacts Regulatory and Conventional CD4 + T-Cell Metabolism. Front Immunol 2022; 13:881166. [PMID: 35844585 PMCID: PMC9282886 DOI: 10.3389/fimmu.2022.881166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
CD4+ conventional T cells (Tconvs) mediate adaptive immune responses, whereas regulatory T cells (Tregs) suppress those responses to safeguard the body from autoimmunity and inflammatory diseases. The opposing activities of Tconvs and Tregs depend on the stage of the immune response and their environment, with an orchestrating role for cytokine- and costimulatory receptors. Nutrient availability also impacts T-cell functionality via metabolic and biosynthetic processes that are largely unexplored. Many data argue that costimulation by Tumor Necrosis Factor Receptor 2 (TNFR2) favors support of Treg over Tconv responses and therefore TNFR2 is a key clinical target. Here, we review the pertinent literature on this topic and highlight the newly identified role of TNFR2 as a metabolic regulator for thymus-derived (t)Tregs. We present novel transcriptomic and metabolomic data that show the differential impact of TNFR2 on Tconv and tTreg gene expression and reveal distinct metabolic impact on both cell types.
Collapse
Affiliation(s)
- Mark Mensink
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Thi Ngoc Minh Tran
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Esther A. Zaal
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ellen Schrama
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Celia R. Berkers
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Sander de Kivit
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
16
|
Kawano S, Mitoma H, Inokuchi S, Yamauchi Y, Yokoyama K, Nogami J, Semba Y, Ayano M, Kimoto Y, Akahoshi M, Ono N, Arinobu Y, Akashi K, Horiuchi T, Niiro H. TNFR2 Signaling Enhances Suppressive Abilities of Human Circulating T Follicular Regulatory Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1057-1065. [PMID: 35149531 DOI: 10.4049/jimmunol.2100323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
T follicular regulatory (Tfr) cells are a subset of CD4+ T cells that express CXCR5 and migrate into germinal centers (GCs). They regulate GC reactions by communicating with T follicular helper (Tfh) and B cells. TNF inhibitors are used in inflammatory diseases; however, the generation of autoantibodies or anti-drug Abs sometimes causes problems. Because TNFR2 signaling is important for suppressive functions of regulatory T cells, we investigated the role of TNFR2 on human Tfr cells. Tfr cells stimulated with MR2-1 (an anti-TNFR2 agonistic Ab) were analyzed for cell proliferation, Foxp3 expression, and surface molecules. Tfh/B cell proliferation, IgM production, and differentiation in cocultures with MR2-1-stimulated Tfr cells were examined. Tfr cells express a high level of TNFR2. MR2-1 stimulation altered the gene expression profile of Tfr cells. Cell proliferation and Foxp3 expression of Tfr cells were enhanced by MR2-1. MR2-1-stimulated Tfr cells expressed ICOS and Programmed cell death protein 1 and significantly suppressed Tfh/B cell proliferation, IgM production, and B cell differentiation. TNFR2-stimulated Tfr cells retained the migration function according to the CXCL13 gradient. In conclusion, we showed that TNFR2-stiumulated Tfr cells can regulate Tfh and B cells. Aberrant antibody production during TNF inhibitor treatment might be, at least in part, associated with TNFR2 signaling inhibition in Tfr cells. In addition, expansion and maturation of Tfr cells via TNFR2 stimulation in vitro may be useful for a cell-based therapy in inflammatory and autoimmune diseases to control GC reactions.
Collapse
Affiliation(s)
- Shotaro Kawano
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Hiroki Mitoma
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan;
| | | | - Yusuke Yamauchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kana Yokoyama
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jumpei Nogami
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masahiro Ayano
- Department of Cancer Stem Cell Research, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasutaka Kimoto
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Mitsuteru Akahoshi
- Division of Rheumatology, Faculty of Medicine, Saga University, Saga, Japan; and
| | - Nobuyuki Ono
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Yojiro Arinobu
- Department of Clinical Immunology and Rheumatology/Infectious Disease, Kyushu University Hospital, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Faculty of Medical Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
17
|
Blinova VG, Gladilina YA, Eliseeva DD, Lobaeva TA, Zhdanov DD. [Increased suppressor activity of transformed ex vivo regulatory T-cells in comparison with unstimulated cells of the same donor]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:55-67. [PMID: 35221297 DOI: 10.18097/pbmc20226801055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Regulatory T-cells CD4⁺CD25⁺FoxP3⁺CD127low (Tregs) play a key role in the maintenance of tolerance to auto antigens, inhibit function of effector T and B lymphocytes, and provide a balance between effector and regulatory arms of immunity. Patients with autoimmune diseases have decreased Treg numbers and impaired suppressive activity. Transformed ex vivo autologous Tregs could restore destroyed balance of the immune system. We developed a method for Treg precursor cell cultivation. Following the method, we were able to grown up 300-400 million of Tregs cells from 50 ml of peripheral blood during a week. Transformed ex vivo Tregs are 90-95% CD4⁺CD25⁺FoxP3⁺CD127low and have increased expression of transcription genes FoxP3 and Helios. Transformed ex vivo Tregs have increased demethylation of FoxP3 promoter and activated genes of proliferation markers Cycline B1, Ki67 and LGALS 1. Transformed ex vivo Tregs have increased suppressive activity and up to 80-90% these cells secrete cytokines TNFα и IFNγ. Our data suggest transformed ex vivo autologous Tregs have genetic, immunophenotypic and functional characteristics for regulatory T-cells and further can be used for adoptive immunotherapy autoimmune diseases and inhibition of transplantation immunity.
Collapse
Affiliation(s)
- V G Blinova
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - T A Lobaeva
- Department of Biochemistry, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia; Department of Biochemistry, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
18
|
Jiang M, Liu J, Yang D, Tross D, Li P, Chen F, Alam MM, Faustman DL, Oppenheim JJ, Chen X. A TNFR2 antibody by countering immunosuppression cooperates with HMGN1 and R848 immune stimulants to inhibit murine colon cancer. Int Immunopharmacol 2021; 101:108345. [PMID: 34794079 DOI: 10.1016/j.intimp.2021.108345] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022]
Abstract
Immunosuppressive CD4+Foxp3+ regulatory T cells (Tregs) promote tumor immune evasion and thus targeting of Tregs has become an strategy in cancer immunotherapy. Tumor necrosis factor receptor 2 (TNFR2) is highly expressed and important for the immunosuppressive function of Tregs in humans and mice. Thus, the benefit of targeting TNFR2 in cancer immunotherapy merits more investigation. A previous report identified a new murine monoclonal anti-TNFR2 antibody (designated TY101), which showed therapeutic efficacy in murine cancer models, but its mechanism of action was less understood. In this study, the capacity of a combination of immunostimulants to enhance the effect of this inhibitor of Tregs was investigated. We examined the efficacy of TY101 as an anti-tumor immune reagent combined with HMGN1 (N1, a dendritic cell activating TLR4 agonist) and R848 (a synthetic TLR7/8 agonist). This immunotherapeutic combination exerted synergistic antitumor effects as compared with any single treatment. The antitumor response was mainly mediated by the depletion of Tregs and stimulation of cytotoxic CD8 T cell activation. The result also suggested that the effect of TY101 was similar to that of anti-PD-L1 when used in combination with these immunostimulants. Therefore, we propose that treatment strategies of antagonizing TNFR2 on Tregs would behave as potent checkpoint inhibitors and can potentially be utilized to develop a novel antitumor immunotherapy.
Collapse
Affiliation(s)
- Mengmeng Jiang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR 999078, China
| | - Jia Liu
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD, USA; Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - De Yang
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD, USA
| | - Debra Tross
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD, USA
| | - Ping Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR 999078, China
| | - Fengyang Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR 999078, China
| | - Md Masud Alam
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD, USA
| | - Denise L Faustman
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joost J Oppenheim
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, NIH, Frederick, MD, USA.
| | - Xin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR 999078, China; Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, China.
| |
Collapse
|
19
|
Qu Y, Wang X, Bai S, Niu L, Zhao G, Yao Y, Li B, Li H. The effects of TNF-α/TNFR2 in regulatory T cells on the microenvironment and progression of gastric cancer. Int J Cancer 2021; 150:1373-1391. [PMID: 34766338 PMCID: PMC9298834 DOI: 10.1002/ijc.33873] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 12/16/2022]
Abstract
TNFR2+ regulatory T cells preferentially accumulate in the tumor microenvironment, express high levels of immunosuppressive molecules and possess strong suppressive activity. Our study aimed to explore the characteristics and role of TNFR2+ Tregs in the microenvironment and progression of gastric cancer via polychromatic immunofluorescence, single-cell RNA sequencing and flow cytometry assays. The TNFR2+ Treg infiltration level in the tumor microenvironment increased significantly as gastric cancer progressed and was demonstrated to be a prognostic marker. Single-cell RNA sequencing revealed high levels of TNFR2 in tumor-infiltrating Tregs. The TNF-α/TNFR2 signaling pathway was activated, accompanied by the upregulation of costimulatory molecules. Unlike blood Tregs, tumor-infiltrating Tregs existed in activated and effector states. In addition to expressing costimulatory molecules such as TNFR2, 4-1BB, OX40 and GITR, tumor-infiltrating Tregs were also characterized by high expression levels of immune checkpoints such as CTLA-4 and TIGIT and chemokines such as CCR6. In vitro studies showed that the TNF-α/TNFR2 pathway increased the Foxp3 expression in CD4+ CD25+ T cells and the latent TGF-β production in Tregs as well as enhanced the immunosuppressive function of Tregs. In summary, our study revealed high infiltration levels of TNFR2+ Tregs that were in activated and effector states in the tumor microenvironment. The infiltration level of TNFR2+ Tregs is a prognostic marker and an independent risk factor for gastric cancer. Activation of the TNF-α/TNFR2 pathway promotes the immunosuppressive phenotype and function of Tregs. Our study provides a new theoretical basis for TNFR2+ Tregs as a therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Yang Qu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Xianhao Wang
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Shuai Bai
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Liling Niu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Gang Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Yuan Yao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Bin Li
- National Clinical Research Center for Cancer, Tianjin, China.,Gastric Surgery Department, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
20
|
Nonaka K, Saio M, Umemura N, Kikuchi A, Takahashi T, Osada S, Yoshida K. Th1 polarization in the tumor microenvironment upregulates the myeloid-derived suppressor-like function of macrophages. Cell Immunol 2021; 369:104437. [PMID: 34530344 DOI: 10.1016/j.cellimm.2021.104437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/10/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Here, we investigated the effect of Th1 polarization in the tumor microenvironment (TME) on tumor-associated macrophage (TAM) maturation and activation. In our immunotherapy mouse model, with a Th1-dominant TME, tumors regressed in all cases, with complete regression in 80% of the cases. Monocyte-derived dendritic cells and activated CD4+ and CD8+T-cells increased in the tumor-draining lymph node, and correlated with each other in the therapeutic model. However, the cytotoxicity of tumor-infiltrating CD8+T-cells was slightly inhibited, whereas the number of T-cells significantly increased. Moreover, the number of TAMs increased; their maturation was inhibited; and nitrotyrosine (NT) production, as well as iNOS and arginase I expression, was increased, suggestive of the myeloid-derived suppressor cell-like immunosuppressive function of TAMs. IFN-γ knockout in the therapeutic model decreased NT production and induced macrophage maturation. Hence, Th1 polarization in the IFN-γ-dominant condition induces T-cell immune responses; however, it also enhances the immunosuppressive activity of TAMs.
Collapse
Affiliation(s)
- Kenichi Nonaka
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Yanagido 1-1 Gifu City 501-1194, Japan.
| | - Masanao Saio
- Laboratory of Histopathology and Cytopathology, Department of Laboratory Sciences, Gunma University Graduate School of Health Science, 3 Chome 39-15, Showacho Maebashi City 371-8511, Japan
| | - Naoki Umemura
- Department of Oral and Maxillofacial Sciences, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu City 501-1194, Japan
| | - Arizumi Kikuchi
- Daiyukai Research Institute for Medical Science, Aza Nijikkenya 25, Nishiazai Azai Cho 491-0113, Japan
| | - Takao Takahashi
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Yanagido 1-1 Gifu City 501-1194, Japan
| | - Shinji Osada
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Yanagido 1-1 Gifu City 501-1194, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University Graduate School of Medicine, Yanagido 1-1 Gifu City 501-1194, Japan
| |
Collapse
|
21
|
Chen S, Lin Z, Xi L, Zheng Y, Zhou Q, Chen X. Differential role of TNFR1 and TNFR2 in the development of imiquimod-induced mouse psoriasis. J Leukoc Biol 2021; 110:1047-1055. [PMID: 34494306 DOI: 10.1002/jlb.2ma0121-082r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor alpha (TNF) has been implicated in the pathogenesis of psoriasis and anti-TNF therapeutics are used in the treatment of psoriasis in the clinic. However, considerable proportion of patients fail to respond to anti-TNF treatment. Furthermore, anti-TNF therapy induces de novo development of psoriasis in some patients with other type of autoimmune disorders. Therefore, further understanding of the role of TNF-TNFR signaling in pathogenesis of psoriasis remains a critical to devise safer and more effective treatment. In this study, it is shown that in imiquimod-induced mouse psoriasis model, TNF receptor type 1 (TNFR1) deficiency inhibited the development of skin diseases. In sharp contrast, TNF receptor type 2 (TNFR2) deficiency led to more severe psoriasis that was associated with increased Th1 and Th17 responses and reduced number of CD4+ Foxp3+ regulatory T cells (Tregs). Importantly, adoptive transfer of WT Tregs was able to attenuate inflammatory responses in imiquimod-treated TNFR2-/- mice, suggestive of a role of malfunctioned Tregs in mice deficient in TNFR2. RNA sequencing data revealed that Tregs deficient in TNFR2 exhibited down-regulation of different biological processes linked to proliferative expansion. Taken together, our study clearly indicated that TNFR1 was pathogenic in mouse psoriasis. In contrast, through boosting the proliferative expansion of Tregs, TNFR2 was protective in this model. The data thus suggest that TNFR1-specific antagonist or TNFR2-specific agonist may be useful in the treatment of patients with psoriasis.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Female
- Imiquimod/toxicity
- Interferon Inducers/toxicity
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Psoriasis/chemically induced
- Psoriasis/immunology
- Psoriasis/metabolism
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Shaokui Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zibei Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Long Xi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
22
|
Liang CL, Lu W, Qiu F, Li D, Liu H, Zheng F, Zhang Q, Chen Y, Lu C, Li B, Dai Z. Paeoniflorin ameliorates murine lupus nephritis by increasing CD4 +Foxp3 + Treg cells via enhancing mTNFα-TNFR2 pathway. Biochem Pharmacol 2021; 185:114434. [PMID: 33513343 DOI: 10.1016/j.bcp.2021.114434] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022]
Abstract
Treg cells are essential for re-establishing self-tolerance in lupus. However, given that direct Treg therapies may be inadequate to control autoimmunity and inflammation, a strategy of inducing or expanding endogenous Treg cells in vivo may be a good option. Macrophages are main tissue-infiltrating cells and play a role in promoting Treg differentiation while paeoniflorin (PF), a monoterpene glycoside, exhibits anti-inflammatory and immunoregulatory effects. Here, we studied the effects of PF on CD4+FoxP3+ Treg frequency and the potential mechanisms involving M2 macrophages. We demonstrated that PF ameliorated lupus nephritis in lupus-prone B6/gld mice by reducing urinary protein, serum creatinine and anti-dsDNA levels, diminishing renal cellular infiltration, improving renal immunopathology and downregulating renal gene and protein expressions of key cytokines, including IFN-γ, IL-6, IL-12 and IL-23. PF also lowered the percentage of CD44highCD62Llow effector T cells while augmenting CD4+FoxP3+ Treg frequency in B6/gld mice. Importantly, PF increased TNFR2 expression on CD4+FoxP3+ Tregs, but not CD4+FoxP3- T cells, in vivo and in vitro. Furthermore, we found that CD206+ subset of F4/80+CD11b+ macrophages expressed a higher level of mTNF-α than their CD206- counterparts while PF increased mTNF-α expression on CD206+ macrophages in vitro and in vivo. In vitro studies showed that mTNF-α+ M2 macrophages were more potent in inducing Treg differentiation and proliferation than their mTNF-α- counterparts, whereas the effects of mTNF-α+ M2 macrophages were largely reversed by separation of M2 macrophages using a transwell or TNFR2-blocking Ab in the culture. Finally, PF also promoted in vitro Treg generation induced by M2 macrophages. Thus, we demonstrated that mTNFα-TNFR2 interaction is a new mechanism responsible for Treg differentiation mediated by M2 macrophages. We provided the first evidence that PF may be used to treat lupus nephritis.
Collapse
Affiliation(s)
- Chun-Ling Liang
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Weihui Lu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Feifei Qiu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Dan Li
- Department of Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huazhen Liu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fang Zheng
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Qunfang Zhang
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuchao Chen
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Chuanjian Lu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Bin Li
- Department of Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenhua Dai
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
23
|
TNF-TNFR2 Signal Plays a Decisive Role in the Activation of CD4 +Foxp3 + Regulatory T Cells: Implications in the Treatment of Autoimmune Diseases and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:257-272. [PMID: 33523452 DOI: 10.1007/978-981-15-6407-9_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The puzzling biphasic or dual roles of tumor necrosis factor α (TNF) in the inflammatory and immune responses are likely to be mediated by distinct signaling pathways transduced by one of its two receptors, e.g., TNF receptor type I (TNFR1) and TNF receptor type II (TNFR2). Unlike TNFR1 that is ubiquitously expressed on almost all types of cells, the expression of TNFR2 is rather restricted to certain types of cells, such as T lymphocytes. There is now compelling evidence that TNFR2 is preferentially expressed by CD4+Foxp3+ regulatory T cells (Tregs), and TNFR2 plays a decisive role in the activation, expansion, in vivo function, and phenotypical stability of Tregs. In this chapter, the current understanding of the molecular basis and signaling pathway of TNF-TNFRs signal is introduced. Latest studies that have further supported and substantiated the pivotal role of TNF-TNFR2 interaction in Tregs biology and its molecular basis are discussed. The research progress regarding TNFR2-targeting treatment for autoimmune diseases and cancer is analyzed. Future study should focus on the further understanding of molecular mechanism underlying Treg-stimulatory effect of TNFR2 signal, as well as on the translation of research findings into therapeutic benefits of human patients with autoimmune diseases, allergy, allograft rejection, and cancer.
Collapse
|
24
|
Uribe-Herranz M, Kuguel SG, Casós K, Costa C. Characterization of putative regulatory isoforms of porcine tumor necrosis factor receptor 2 in endothelial cells. Xenotransplantation 2020; 27:e12635. [PMID: 32783288 DOI: 10.1111/xen.12635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 01/28/2023]
Abstract
Tumor necrosis factor α (TNFα) and its receptors contribute to rejection of transplanted cells and organs. To elucidate how TNFα affects xenograft rejection, we previously cloned the cDNA of pig TNF-receptor 2 (pTNFR2) and found four isoforms: one comprising the full receptor with four cysteine-rich domains (CRD), a shorter variant (pTNFR2ΔE7-10) encoding for a soluble isoform, another lacking exon 4 (pTNFR2ΔE4) displaying only 3 CRD and poor ligand binding, and the smallest one generated by the two alternative splicings. All isoforms contained the pre-ligand assembly domain (PLAD) responsible for receptor trimerization. We now investigated their roles by structural, expression, and subcellular localization studies. Structural in silico analyses identified four amino acids potentially involved in TNFα binding and lacking in pTNFR2ΔE4. Quantitative RT-PCR determined regulated expression affecting the two pTNFR2 alternative splicings in cytokine-stimulated porcine aortic endothelial cells (PAEC). Particularly, human IL-1α and TNFα produced a strong mRNA upregulation of all isoforms, being the full receptor the predominant one. However, expression of pTNFR2 on PAEC did not correlate with mRNA and decreased after 24-hour exposure to IL-1α or TNFα. Notably, confocal microscopy confirmed the presence of pTNFR2 inside and on the plasma membrane, whereas pTNFR2ΔE4 located only intracellularly. Most interestingly, FRET analyses showed that membrane-bound isoforms pTNFR2 and pTNFR2ΔE4 colocalized intracellularly and associated through the PLAD. Our data show that pTNFR2ΔE4 bind and may retain the full receptor intracellularly. This mechanism has not been described in other species and represents a particularity that may affect the pathophysiology of pig xenografts.
Collapse
Affiliation(s)
- Mireia Uribe-Herranz
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sebastián G Kuguel
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Kelly Casós
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Costa
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
25
|
Pievani A, Biondi M, Tomasoni C, Biondi A, Serafini M. Location First: Targeting Acute Myeloid Leukemia Within Its Niche. J Clin Med 2020; 9:E1513. [PMID: 32443460 PMCID: PMC7290711 DOI: 10.3390/jcm9051513] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Despite extensive research and development of new treatments, acute myeloid leukemia (AML)-backbone therapy has remained essentially unchanged over the last decades and is frequently associated with poor outcomes. Eradicating the leukemic stem cells (LSCs) is the ultimate challenge in the treatment of AML. Emerging evidence suggests that AML remodels the bone marrow (BM) niche into a leukemia-permissive microenvironment while suppressing normal hematopoiesis. The mechanism of stromal-mediated protection of leukemic cells in the BM is complex and involves many adhesion molecules, chemokines, and cytokines. Targeting these factors may represent a valuable approach to complement existing therapies and overcome microenvironment-mediated drug resistance. Some strategies for dislodging LSCs and leukemic blasts from their protective niche have already been tested in patients and are in different phases of the process of clinical development. Other strategies, such as targeting the stromal cells remodeling processes, remain at pre-clinical stages. Development of humanized xenograft mouse models, which overcome the mismatch between human leukemia cells and the mouse BM niche, is required to generate physiologically relevant, patient-specific human niches in mice that can be used to unravel the role of human AML microenvironment and to carry out preclinical studies for the development of new targeted therapies.
Collapse
Affiliation(s)
- Alice Pievani
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Marta Biondi
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Chiara Tomasoni
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Andrea Biondi
- Department of Pediatrics, Pediatric Hematology-Oncology Unit, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy;
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| |
Collapse
|
26
|
Inoue M, Tsuji Y, Yoshimine C, Enomoto S, Morita Y, Osaki N, Kunishige M, Miki M, Amano S, Yamashita K, Kamada H, Tsutsumi Y, Tsunoda SI. Structural optimization of a TNFR1-selective antagonistic TNFα mutant to create new-modality TNF-regulating biologics. J Biol Chem 2020; 295:9379-9391. [PMID: 32398258 DOI: 10.1074/jbc.ra120.012723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/08/2020] [Indexed: 02/05/2023] Open
Abstract
Excessive activation of the proinflammatory cytokine tumor necrosis factor-α (TNFα) is a major cause of autoimmune diseases, including rheumatoid arthritis. TNFα induces immune responses via TNF receptor 1 (TNFR1) and TNFR2. Signaling via TNFR1 induces proinflammatory responses, whereas TNFR2 signaling is suggested to suppress the pathophysiology of inflammatory diseases. Therefore, selective inhibition of TNFR1 signaling and preservation of TNFR2 signaling activities may be beneficial for managing autoimmune diseases. To this end, we developed a TNFR1-selective, antagonistic TNFα mutant (R1antTNF). Here, we developed an R1antTNF derivative, scR1antTNF-Fc, which represents a single-chain form of trimeric R1antTNF with a human IgG-Fc domain. scR1antTNF-Fc had properties similar to those of R1antTNF, including TNFR1-selective binding avidity, TNFR1 antagonistic activity, and thermal stability, and had a significantly extended plasma t 1/2 in vivo In a murine rheumatoid arthritis model, scR1antTNF-Fc and 40-kDa PEG-scR1antTNF (a previously reported PEGylated form) delayed the onset of collagen-induced arthritis, suppressed arthritis progression in mice, and required a reduced frequency of administration. Interestingly, with these biologic treatments, we observed an increased ratio of regulatory T cells to conventional T cells in lymph nodes compared with etanercept, a commonly used TNF inhibitor. Therefore, scR1antTNF-Fc and 40-kDa PEG-scR1antTNF indirectly induced immunosuppression. These results suggest that selective TNFR1 inhibition benefits the management of autoimmune diseases and that R1antTNF derivatives hold promise as new-modality TNF-regulating biologics.
Collapse
Affiliation(s)
- Masaki Inoue
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan.,Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Yuta Tsuji
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan
| | - Chinatsu Yoshimine
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan
| | - Shota Enomoto
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan
| | - Yuki Morita
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan
| | - Natsuki Osaki
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan
| | - Masahiro Kunishige
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan
| | - Midori Miki
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan
| | - Shota Amano
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan
| | - Kanako Yamashita
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| | - Yasuo Tsutsumi
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan.,Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Shin-Ichi Tsunoda
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan .,Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
27
|
Preferential Expansion of CD4 +Foxp3 + Regulatory T Cells (Tregs) In Vitro by Tumor Necrosis Factor. Methods Mol Biol 2020. [PMID: 31933199 DOI: 10.1007/978-1-0716-0266-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
CD4+Foxp3+ regulatory T cells (Tregs) are a distinct subset of CD4 T cells that play indispensable role in the maintenance of immune homeostasis and prevention of deleterious immune responses to self-antigens. Tumor necrosis factor (TNF) is a key cytokine in the autoimmune inflammatory responses. The effect of TNF on Treg activity was extensively studied in the past decade. We for the first time reported that TNF through TNFR2 preferentially activates and expands Tregs. Our discovery is increasingly supported by the research community; however, some controversial results were reported. The differential results are likely caused by different experimental condition. A standard experiment protocol can help researchers to obtain more consistent results. In this chapter, we detail methods used to examine in vitro effect of exogenous TNF on the proliferative expansion of Tregs in unfractionated mouse CD4+ T cells. The related technic issues are analyzed and discussed.
Collapse
|
28
|
Horwitz DA, Fahmy TM, Piccirillo CA, La Cava A. Rebalancing Immune Homeostasis to Treat Autoimmune Diseases. Trends Immunol 2019; 40:888-908. [PMID: 31601519 DOI: 10.1016/j.it.2019.08.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
During homeostasis, interactions between tolerogenic dendritic cells (DCs), self-reactive T cells, and T regulatory cells (Tregs) contribute to maintaining mammalian immune tolerance. In response to infection, immunogenic DCs promote the generation of proinflammatory effector T cell subsets. When complex homeostatic mechanisms maintaining the balance between regulatory and effector functions become impaired, autoimmune diseases can develop. We discuss some of the newest advances on the mechanisms of physiopathologic homeostasis that can be employed to develop strategies to restore a dysregulated immune equilibrium. Some of these designs are based on selectively activating regulators of immunity and inflammation instead of broadly suppressing these processes. Promising approaches include the use of nanoparticles (NPs) to restore Treg control over self-reactive cells, aiming to achieve long-term disease remission, and potentially to prevent autoimmunity in susceptible individuals.
Collapse
Affiliation(s)
- David A Horwitz
- General Nanotherapeutics, LLC, Santa Monica, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Tarek M Fahmy
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA; Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT, USA; Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada; Program in Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Centre of Excellence in Translational Immunology (CETI), Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Antonio La Cava
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
29
|
|
30
|
Inhibition of transmembrane TNF-α shedding by a specific antibody protects against septic shock. Cell Death Dis 2019; 10:586. [PMID: 31383857 PMCID: PMC6683172 DOI: 10.1038/s41419-019-1808-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 01/21/2023]
Abstract
Transmembrane TNF-α (tmTNF-α) and secretory TNF-α (sTNF-α) display opposite effects in septic shock. Reducing tmTNF-α shedding can offset the detrimental effects of sTNF-α and increase the beneficial effect of tmTNF-α. We previously developed a monoclonal antibody that is specific for tmTNF-α and does not cross-react with sTNF-α. In this study, we show that this antibody can specifically suppress tmTNF-α shedding by competing with a TNF-α converting enzyme that cleaves the tmTNF-α ectodomain to release sTNF-α. This tmTNF-α antibody significantly inhibited LPS-induced secretion of interleukin (IL)-1β, IL-6, interferon-β, and nitric oxide by monocytes/macrophages, and protected mice from septic shock induced by lipopolysaccharide (LPS) or cecal ligation and puncture, while reducing the bacterial load. The mechanism associated with the protective effect of this tmTNF-α antibody involved promotion of LPS-induced toll-like receptor 4 (TLR4) internalization and degradation by recruiting Triad3A to TLR4. Moreover, the tmTNF-α antibody inhibited LPS-induced activation of nuclear factor-κB and interferon regulatory factor 3 pathways by upregulating expression of A20 and monocyte chemotactic protein-induced protein 1. Similarly, treatment of macrophages with exogenous tmTNF-α suppressed LPS/TLR4 signaling and release of proinflammatory cytokines, indicating that increased levels of tmTNF-α promoted by the antibody contributed to its inhibitory effect. Thus, use of this tmTNF-α antibody for specific suppression of tmTNF-α shedding may be a promising strategy to treat septic shock.
Collapse
|
31
|
Castillo J, Wu E, Lowe C, Srinivasan S, McCord R, Wagle MC, Jayakar S, Edick MG, Eastham-Anderson J, Liu B, Hutchinson KE, Jones W, Stokes MP, Tarighat SS, Holcomb T, Glibicky A, Romero FA, Magnuson S, Huang SMA, Plaks V, Giltnane JM, Lackner MR, Mounir Z. CBP/p300 Drives the Differentiation of Regulatory T Cells through Transcriptional and Non-Transcriptional Mechanisms. Cancer Res 2019; 79:3916-3927. [PMID: 31182547 DOI: 10.1158/0008-5472.can-18-3622] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/21/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022]
Abstract
Regulatory T cells (Treg) are immunosuppressive and negatively impact response to cancer immunotherapies. CREB-binding protein (CBP) and p300 are closely related acetyltransferases and transcriptional coactivators. Here, we evaluate the mechanisms by which CBP/p300 regulate Treg differentiation and the consequences of CBP/p300 loss-of-function mutations in follicular lymphoma. Transcriptional and epigenetic profiling identified a cascade of transcription factors essential for Treg differentiation. Mass spectrometry analysis showed that CBP/p300 acetylates prostacyclin synthase, which regulates Treg differentiation by altering proinflammatory cytokine secretion by T and B cells. Reduced Treg presence in tissues harboring CBP/p300 loss-of-function mutations was observed in follicular lymphoma. Our findings provide novel insights into the regulation of Treg differentiation by CBP/p300, with potential clinical implications on alteration of the immune landscape. SIGNIFICANCE: This study provides insights into the dynamic role of CBP/p300 in the differentiation of Tregs, with potential clinical implications in the alteration of the immune landscape in follicular lymphoma.
Collapse
Affiliation(s)
- Joseph Castillo
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Esther Wu
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Christopher Lowe
- Department of Bioanalytical Sciences, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Shrividhya Srinivasan
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Ron McCord
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Marie-Claire Wagle
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Sangeeta Jayakar
- Department of Research Pathology, Genentech, Inc., South San Francisco, California
| | | | | | - Bonnie Liu
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Katherine E Hutchinson
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Wendell Jones
- Q Solutions-EA Genomics, Morrisville, North Carolina
| | | | - Somayeh S Tarighat
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Thomas Holcomb
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Andrew Glibicky
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - F Anthony Romero
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California
| | - Steven Magnuson
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California
| | - Shih-Min A Huang
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Vicki Plaks
- Department of Bioanalytical Sciences, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Jennifer M Giltnane
- Department of Research Pathology, Genentech, Inc., South San Francisco, California
| | - Mark R Lackner
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California
| | - Zineb Mounir
- Department of Oncology Biomarker Development, Development Sciences, Genentech, Inc., South San Francisco, California.
| |
Collapse
|
32
|
Neagu M, Constantin C, Caruntu C, Dumitru C, Surcel M, Zurac S. Inflammation: A key process in skin tumorigenesis. Oncol Lett 2019; 17:4068-4084. [PMID: 30944600 PMCID: PMC6444305 DOI: 10.3892/ol.2018.9735] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023] Open
Abstract
The extremely delicate shift from an inflammatory process to tumorigenesis is a field of major scientific interest. While the inflammation induced by environmental agents has well known underlying mechanisms, less is known concerning the oncogenic changes that follow an inflammatory chronic status in the tissue microenvironment that can lead to pro-tumorigenic processes. Regardless of the origin of the environmental factors, the maintenance of an inflammatory microenvironment is a clear condition that favors tumorigenesis. Inflammation sustains the proliferation and survival of malignant transformed cells, can promote angiogenesis and metastatic processes, can negatively regulate the antitumoral adaptive and innate immune responses and may alter the efficacy of therapeutic agents. There is an abundance of studies focusing on molecular pathways that trigger inflammation-mediated tumorigenesis, and these data have revealed a series of biomarkers that can improve the diagnosis and prognosis in oncology. In skin there is a clear connection between tissue destruction, inflammation and tumor onset. Inflammation is a self-limiting process in normal physiological conditions, while tumor is a constitutive process activating new pro-tumor mechanisms. Among skin cancers, the most commonly diagnosed skin cancers, squamous cell carcinoma and basal cell carcinoma (BCC) have important inflammatory components. The most aggressive skin cancer, melanoma, is extensively research in regards to the new context of novel developed immune-therapies. In skin cancers, inflammatory markers can find their place in the biomarker set for improvement of diagnosis and prognosis.
Collapse
Affiliation(s)
- Monica Neagu
- Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050107 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Carolina Constantin
- Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carmen Dumitru
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Mihaela Surcel
- Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 050107 Bucharest, Romania
| | - Sabina Zurac
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
33
|
He J, Li R, Chen Y, Hu Y, Chen X. TNFR2-expressing CD4 +Foxp3 + regulatory T cells in cancer immunology and immunotherapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:101-117. [PMID: 31383403 DOI: 10.1016/bs.pmbts.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD4+Foxp3+ regulatory T cells (Tregs) represent a major cellular mechanism in tumor immune evasion. Elimination of Treg activity has become a strategy to devise an effective tumor immunotherapy. We reported that TNF receptor type II (TNFR2), one of two receptors transducing TNF biological activity, is preferentially expressed by the most suppressive subset of Tregs. By interaction with TNFR2, TNF plays a decisive role in the activation, expansion and phenotype stability of Tregs. We also found that highly suppressive TNFR2-expressing Tregs appear to be tumor-associated Tregs. This finding has been supported by recent studies in mouse tumor models and in cancer patients. In this chapter, published data revealing the important role of TNFR2+ Tregs in tumor development and metastasis in different tumor types are reviewed and analyzed. The therapeutic potential of targeting TNF-TNFR2 interaction as means to eliminate Treg activity, and consequently to enhance anti-tumor immune responses, also is discussed.
Collapse
Affiliation(s)
- Jiang He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Investment Banking, Shenzhen Rhino Star Information Co. Ltd., Shenzhen, China
| | - Ruixin Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yibo Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
34
|
Peng J, Li XM, Zhang GR, Cheng Y, Chen X, Gu W, Guo XJ. TNF-TNFR2 Signaling Inhibits Th2 and Th17 Polarization and Alleviates Allergic Airway Inflammation. Int Arch Allergy Immunol 2019; 178:281-290. [PMID: 30763933 DOI: 10.1159/000493583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/07/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND TNF-TNFR2 signaling has been indicated to be involved in CD4+ T lymphocyte differentiation. However, its role in allergic airway inflammation is not well understood. OBJECTIVES The aim of this study was to investigate the role of TNF-TNFR2 signaling in allergic airway inflammation. METHODS AND RESULTS In this study, we used an allergen-induced asthma model to show that TNF-TNFR2 signaling alleviated allergic airway inflammation by reducing the airway infiltration of eosinophils and neutrophils. Activated TNF-TNFR2 signaling decreased the expression of Th2 and Th17 cytokines in serum and bronchoalveolar lavage fluid. Furthermore, TNF-TNFR2 signaling inhibited Th2 and Th17 polarization but promoted Th1 and CD4+CD25+ T cell differentiation in vivo. CONCLUSIONS Our study indicates that TNF-TNFR2 signaling alleviates allergic airway inflammation through inhibition of Th2 and Th17 cell differentiation.
Collapse
Affiliation(s)
- Juan Peng
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,
| | - Xiao-Ming Li
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Rui Zhang
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Cheng
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Chen
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Gu
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Jun Guo
- Department of Respiratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Jung MK, Lee JS, Kwak JE, Shin EC. Tumor Necrosis Factor and Regulatory T Cells. Yonsei Med J 2019; 60:126-131. [PMID: 30666833 PMCID: PMC6342721 DOI: 10.3349/ymj.2019.60.2.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 12/13/2022] Open
Abstract
CD4⁺CD25⁺FoxP3⁺ regulatory T (Treg) cells play major roles in the maintenance of immune homeostasis. In this review, we comprehensively describe the relationship between tumor necrosis factor (TNF) and Treg cells, focusing on the effects of TNF on Treg cells and on TNF-producing Treg cells. Contradictory results have been reported for the effect of TNF on the suppressive activity of Treg cells. In patients with rheumatoid arthritis, TNF has been shown to reduce the suppressive activity of Treg cells. Meanwhile, however, TNF has also been reported to maintain the suppressive activity of Treg cells via a TNFR2-mediated mechanism. In addition, Treg cells have been found to acquire the ability to produce TNF under inflammatory conditions, such as acute viral hepatitis. These TNF-producing Treg cells exhibit T helper 17-like features and hold significance in various human diseases.
Collapse
Affiliation(s)
- Min Kyung Jung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jeong Seok Lee
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jeong Eun Kwak
- BioMedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Eui Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- BioMedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| |
Collapse
|
36
|
Xiao R, Allen CT, Tran L, Patel P, Park SJ, Chen Z, Van Waes C, Schmitt NC. Antagonist of cIAP1/2 and XIAP enhances anti-tumor immunity when combined with radiation and PD-1 blockade in a syngeneic model of head and neck cancer. Oncoimmunology 2018; 7:e1471440. [PMID: 30393585 DOI: 10.1080/2162402x.2018.1471440] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/02/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) frequently harbor genomic mutations in cell death pathways. Nearly 30% of HNSCCs overexpress Fas-Associated Death Domain (FADD), with or without BIRC2/3 genes encoding cellular Inhibitor of Apoptosis Proteins 1/2 (cIAP1/2), critical components of the Tumor Necrosis Factor (TNF) Receptor signaling pathways. ASTX660 is a novel non-peptidomimetic antagonist of cIAP1/2 and XIAP under evaluation in a clinical trial for advanced solid tumors and lymphomas. Herein, we show that ASTX660, at nanomolar concentrations, sensitized Murine Oral Cancer (MOC1) cells to TNFα. Using syngeneic mouse models, ASTX660 showed additive anti-tumor activity with radiation therapy (XRT), cisplatin chemotherapy, and PD-1 blockade to significantly delay or eradicate MOC1 tumors. These combinations significantly increased CD8 + T cells and dendritic cells, as well as T cell activity. ASTX660 stimulated cytotoxic T lymphocyte (CTL) killing of MOC1 cells expressing ovalbumin. Early stages of CTL killing were predominantly mediated by perforin/granzyme B, whereas later stages were mediated by death ligands TNFα, TRAIL, and FasL. Correspondingly, depletion of CD8 + T cells and NK cells in vivo revealed both types of immune cells to be important components of the complete anti-tumor response enhanced by ASTX660+XRT. These findings serve to inform future studies of IAP inhibitors and support the potential for future clinical trials investigating ASTX660 with XRT and immunotherapies like PD-1/PD-L1 blockade in HNSCC.
Collapse
Affiliation(s)
- Roy Xiao
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, USA.,Medical Research Scholars Program, National Institutes of Health, Bethesda, MD, USA.,Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Linda Tran
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Priya Patel
- Medical Research Scholars Program, National Institutes of Health, Bethesda, MD, USA.,Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - So-Jin Park
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Zhong Chen
- Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Carter Van Waes
- Tumor Biology Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Nicole C Schmitt
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
37
|
Yang S, Wang J, Brand DD, Zheng SG. Role of TNF-TNF Receptor 2 Signal in Regulatory T Cells and Its Therapeutic Implications. Front Immunol 2018; 9:784. [PMID: 29725328 PMCID: PMC5916970 DOI: 10.3389/fimmu.2018.00784] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/28/2018] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor α (TNFα) is a pleiotropic cytokine which signals through TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). Emerging evidence has demonstrated that TNFR1 is ubiquitously expressed on almost all cells, while TNFR2 exhibits a limited expression, predominantly on regulatory T cells (Tregs). In addition, the signaling pathway by sTNF via TNFR1 mainly triggers pro-inflammatory pathways, and mTNF binding to TNFR2 usually initiates immune modulation and tissue regeneration. TNFα plays a critical role in upregulation or downregulation of Treg activity. Deficiency in TNFR2 signaling is significant in various autoimmune diseases. An ideal therapeutic strategy for autoimmune diseases would be to selectively block the sTNF/TNFR1 signal through the administration of sTNF inhibitors, or using TNFR1 antagonists while keeping the TNFR2 signaling pathway intact. Another promising strategy would be to rely on TNFR2 agonists which could drive the expansion of Tregs and promote tissue regeneration. Design of these therapeutic strategies targeting the TNFR1 or TNFR2 signaling pathways holds promise for the treatment of diverse inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Sujuan Yang
- Department of Clinical Immunology, Third Hospital at Sun Yat-sen University, Guangzhou, China.,Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Julie Wang
- Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | | | - Song Guo Zheng
- Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| |
Collapse
|
38
|
Ye LL, Wei XS, Zhang M, Niu YR, Zhou Q. The Significance of Tumor Necrosis Factor Receptor Type II in CD8 + Regulatory T Cells and CD8 + Effector T Cells. Front Immunol 2018; 9:583. [PMID: 29623079 PMCID: PMC5874323 DOI: 10.3389/fimmu.2018.00583] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/08/2018] [Indexed: 01/03/2023] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine that has both pro-inflammatory and anti-inflammatory functions. The biological functions of TNF are mediated by two receptors, TNF receptor type I (TNFR1) and TNF receptor type II (TNFR2). TNFR1 is expressed universally on almost all cell types and has been extensively studied, whereas TNFR2 is mainly restricted to immune cells and some tumor cells and its role is far from clarified. Studies have shown that TNFR2 mediates the stimulatory activity of TNF on CD4+Foxp3+ regulatory T cells (Tregs) and CD8+Foxp3+ Tregs, and is involved in the phenotypic stability, proliferation, activation, and suppressive activity of Tregs. TNFR2 can also be expressed on CD8+ effector T cells (Teffs), which delivers an activation signal and cytotoxic ability to CD8+ Teffs during the early immune response, as well as an apoptosis signal to terminate the immune response. TNFR2-induced abolition of TNF receptor-associated factor 2 (TRAF2) degradation may play an important role in these processes. Consequently, due to the distribution of TNFR2 and its pleiotropic effects, TNFR2 appears to be critical to keeping the balance between Tregs and Teffs, and may be an efficient therapeutic target for tumor and autoimmune diseases. In this review, we summarize the biological functions of TNFR2 expressed on CD8+Foxp3+ Tregs and CD8+ Teffs, and highlight how TNF uses TNFR2 to coordinate the complex events that ultimately lead to efficient CD8+ T cell-mediated immune responses.
Collapse
Affiliation(s)
- Lin-Lin Ye
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Shan Wei
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Ran Niu
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhou
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Nie Y, He J, Shirota H, Trivett AL, Yang D, Klinman DM, Oppenheim JJ, Chen X. Blockade of TNFR2 signaling enhances the immunotherapeutic effect of CpG ODN in a mouse model of colon cancer. Sci Signal 2018; 11:11/511/eaan0790. [PMID: 29295954 DOI: 10.1126/scisignal.aan0790] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Through the tumor necrosis factor (TNF) receptor type II (TNFR2), TNF preferentially activates, expands, and promotes the phenotypic stability of CD4+Foxp3+ regulatory T (Treg) cells. Those Treg cells that have a high abundance of TNFR2 have the maximal immunosuppressive capacity. We investigated whether targeting TNFR2 could effectively suppress the activity of Treg cells and consequently enhance the efficacy of cancer immunotherapy. We found that, relative to a suboptimal dose of the immunostimulatory Toll-like receptor 9 ligand CpG oligodeoxynucleotide (ODN), the combination of the suboptimal dose of CpG ODN with the TNFR2-blocking antibody M861 more markedly inhibited the growth of subcutaneously grafted mouse CT26 colon tumor cells. This resulted in markedly fewer TNFR2+ Treg cells and more interferon-γ-positive (IFN-γ+) CD8+ cytotoxic T lymphocytes infiltrating the tumor and improved long-term tumor-free survival in the mouse cohort. Tumor-free mice were resistant to rechallenge by the same but not unrelated (4T1 breast cancer) cells. Treatment with the combination of TNFR2-blocking antibody and a CD25-targeted antibody also resulted in enhanced inhibition of tumor growth in a syngeneic 4T1 mouse model of breast cancer. Thus, the combination of a TNFR2 inhibitor and an immunotherapeutic stimulant may represent a more effective treatment strategy for various cancers.
Collapse
Affiliation(s)
- Yingjie Nie
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.,Department of Research, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Jiang He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hidekazu Shirota
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Anna L Trivett
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - De Yang
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Dennis M Klinman
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Joost J Oppenheim
- Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China. .,Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
40
|
Madireddi S, Eun SY, Mehta AK, Birta A, Zajonc DM, Niki T, Hirashima M, Podack ER, Schreiber TH, Croft M. Regulatory T Cell-Mediated Suppression of Inflammation Induced by DR3 Signaling Is Dependent on Galectin-9. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2721-2728. [PMID: 28877989 PMCID: PMC5659314 DOI: 10.4049/jimmunol.1700575] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/08/2017] [Indexed: 01/01/2023]
Abstract
Stimulation of several TNF receptor family proteins has been shown to dampen inflammatory disease in murine models through augmenting the number and/or activity of regulatory T cells (Tregs). We recently found that one molecule, 4-1BB, used binding to Galectin-9 to exert its immunosuppressive effects and drive expansion of CD8+Foxp3- Tregs. We now show that ligation of another TNFR family molecule, DR3, which has previously been found to strongly expand CD4+Foxp3+ Tregs and suppress inflammation, also requires Galectin-9. We found that the extracellular region of DR3 directly binds to Galectin-9, and that Galectin-9 associates with DR3 in Tregs. From studies in vitro with Galectin-9-/- CD4+ T cells and Tregs, we found that stimulatory activity induced by ligating DR3 was in part dependent on Galectin-9. In vivo, in a model of experimental autoimmune encephalomyelitis, we show that an agonist of DR3 suppressed disease, correlating with expansion of CD4+Foxp3+ Tregs, and this protective effect was lost in Galectin-9-/- mice. Similar results were seen in an allergic lung inflammation model. Thus, we demonstrate a novel function of Galectin-9 in facilitating activity of DR3 related to Treg-mediated suppression.
Collapse
Affiliation(s)
- Shravan Madireddi
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - So-Young Eun
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Amit K Mehta
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Aruna Birta
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
- GalPharma, Co., Ltd., Takamatsu, Kagawa 761-8071, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
- GalPharma, Co., Ltd., Takamatsu, Kagawa 761-8071, Japan
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136; and
| | - Taylor H Schreiber
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136; and
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037;
- Department of Medicine, University of California, San Diego, LA Jolla, CA 92093
| |
Collapse
|
41
|
He X, Koenen HJ, Slaats JH, Joosten I. Stabilizing human regulatory T cells for tolerance inducing immunotherapy. Immunotherapy 2017; 9:735-751. [PMID: 28771099 DOI: 10.2217/imt-2017-0017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many autoimmune diseases develop as a consequence of an altered balance between autoreactive immune cells and suppressive FOXP3+ Treg. Restoring this balance through amplification of Treg represents a promising strategy to treat disease. However, FOXP3+ Treg might become unstable especially under certain inflammatory conditions, and might transform into proinflammatory cytokine-producing cells. The issue of heterogeneity and instability of Treg has caused considerable debate in the field and has important implications for Treg-based immunotherapy. In this review, we discuss how Treg stability is defined and what the molecular mechanisms underlying the maintenance of FOXP3 expression and the regulation of Treg stability are. Also, we elaborate on current strategies used to stabilize human Treg for clinical purposes. This review focuses on human Treg, but considering that cell-intrinsic mechanisms to regulate Treg stability in mice and in humans might be similar, data derived from mice studies are also discussed in this paper.
Collapse
Affiliation(s)
- Xuehui He
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,College of Computer Science, Qinghai Normal University, Xining, Qinghai, China
| | - Hans Jpm Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen Hr Slaats
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
42
|
Fischer R, Marsal J, Guttà C, Eisler SA, Peters N, Bethea JR, Pfizenmaier K, Kontermann RE. Novel strategies to mimic transmembrane tumor necrosis factor-dependent activation of tumor necrosis factor receptor 2. Sci Rep 2017; 7:6607. [PMID: 28747780 PMCID: PMC5529482 DOI: 10.1038/s41598-017-06993-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022] Open
Abstract
Tumor necrosis factor receptor 2 (TNFR2) is known to mediate immune suppression and tissue regeneration. Interestingly, the transmembrane form of tumor necrosis factor (tmTNF) is necessary to robustly activate TNFR2. To characterize the stoichiometry and composition of tmTNF during TNFR2 activation, we constructed differently oligomerized single chain TNF ligands (scTNF) comprised of three TNF homology domain (THD) protomers that mimic tmTNF. Using a variety of cellular and in vivo assays, we can show that higher oligomerization of the scTNF trimers results in more efficient TNF/TNFR2 clustering and subsequent signal transduction. Importantly, the three-dimensional orientation of the scTNF trimers impacts the bioactivity of the oligomerized scTNF ligands. Our data unravel the organization of tmTNF-mimetic scTNF ligands capable of robustly activating TNFR2 and introduce novel TNFR2 agonists that hold promise as therapeutics to treat a variety of diseases.
Collapse
Affiliation(s)
- Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany. .,Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA, 19104, USA.
| | - Jessica Marsal
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Cristiano Guttà
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Stephan A Eisler
- Stuttgart Research Center Systems Biology, Nobelstraße 15, University of Stuttgart, Stuttgart, Germany
| | - Nathalie Peters
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - John R Bethea
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
43
|
Li XM, Chen X, Gu W, Guo YJ, Cheng Y, Peng J, Guo XJ. Impaired TNF/TNFR2 signaling enhances Th2 and Th17 polarization and aggravates allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2017; 313:L592-L601. [PMID: 28619762 DOI: 10.1152/ajplung.00409.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 12/11/2022] Open
Abstract
CD4+ T-cell differentiation plays an important role in allergic airway diseases. Tumor necrosis factor receptor 2 (TNFR2) has been shown to regulate CD4+ T-lymphocyte differentiation, but its role in allergic airway inflammation is not clear. Here, we investigated the role of TNFR2 in allergic airway inflammation. The mouse model was generated by immunization with ovalbumin and intranasal administration of TNFR2 antibody. Airway inflammation and CD4+ T-cell differentiation were measured in vivo and in vitro. Inhibited TNFR2 signaling aggravated airway inflammation and increased the expression of inflammatory cytokines (IL-4, IL-5, IL-17, and TNF-α) in serum and bronchoalveolar lavage fluid. Impaired TNFR2 signaling promoted Th2 and Th17 polarization but inhibited Th1 and CD4+CD25+ T-cell differentiation in vivo. Furthermore, TNFR2 signaling inhibition promoted Th2 and Th17 polarization in vitro, which may occur through the activation of TNF receptor-associated factor 2 and NF-κB signaling. Therefore, our findings indicate that impaired TNF/TNFR2 signaling enhances Th2 and Th17 polarization and aggravates allergic airway inflammation.
Collapse
Affiliation(s)
- Xiao-Ming Li
- Department of Respiratory Medicine, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| | - Xi Chen
- Department of Respiratory Medicine, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| | - Wen Gu
- Department of Respiratory Medicine, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| | - Yi-Jia Guo
- Shanghai XiangMing High School, Shanghai, China
| | - Yi Cheng
- Department of Respiratory Medicine, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| | - Juan Peng
- Department of Respiratory Medicine, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| | - Xue-Jun Guo
- Department of Respiratory Medicine, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| |
Collapse
|
44
|
Gao H, Danzi MC, Choi CS, Taherian M, Dalby-Hansen C, Ellman DG, Madsen PM, Bixby JL, Lemmon VP, Lambertsen KL, Brambilla R. Opposing Functions of Microglial and Macrophagic TNFR2 in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Cell Rep 2017; 18:198-212. [PMID: 28052249 PMCID: PMC5218601 DOI: 10.1016/j.celrep.2016.11.083] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/30/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022] Open
Abstract
In multiple sclerosis (MS), soluble tumor necrosis factor (TNF) is detrimental via activation of TNF receptor 1 (TNFR1), whereas transmembrane TNF is beneficial primarily by activating TNF receptor 2 (TNFR2). Here, we investigate the role of TNFR2 in microglia and monocytes/macrophages in experimental autoimmune encephalomyelitis (EAE), a model of MS, by cell-specific gene targeting. We show that TNFR2 ablation in microglia leads to early onset of EAE with increased leukocyte infiltration, T cell activation, and demyelination in the central nervous system (CNS). Conversely, TNFR2 ablation in monocytes/macrophages results in EAE suppression with impaired peripheral T cell activation and reduced CNS T cell infiltration and demyelination. Our work uncovers a dichotomy of function for TNFR2 in myeloid cells, with microglial TNFR2 providing protective signals to contain disease and monocyte/macrophagic TNFR2 driving immune activation and EAE initiation. This must be taken into account when targeting TNFR2 for therapeutic purposes in neuroinflammatory diseases.
Collapse
MESH Headings
- Animals
- CX3C Chemokine Receptor 1/metabolism
- Cell Proliferation
- Chronic Disease
- Demyelinating Diseases/genetics
- Demyelinating Diseases/metabolism
- Demyelinating Diseases/pathology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Deletion
- Gene Expression Regulation
- Homeostasis/genetics
- Inflammation/pathology
- Macrophages/metabolism
- Mice, Inbred C57BL
- Microglia/metabolism
- Myelin Sheath/metabolism
- Neuroprotection
- Phenotype
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Sequence Analysis, RNA
- Spinal Cord/pathology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Transcriptome/genetics
Collapse
Affiliation(s)
- Han Gao
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matt C Danzi
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Mehran Taherian
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Camilla Dalby-Hansen
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C 5000, Denmark
| | - Ditte G Ellman
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C 5000, Denmark
| | - Pernille M Madsen
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C 5000, Denmark
| | - John L Bixby
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cellular and Molecular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vance P Lemmon
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kate L Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C 5000, Denmark; Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense C 5000, Denmark; Department of Neurology, Odense University Hospital, Odense C 5000, Denmark
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
45
|
Wu YH, Liu W, Xue B, Zhang L, Liu XY, Liu B, Wang Y, Cai Y, Duan R. Upregulated Expression of microRNA-16 Correlates with Th17/Treg Cell Imbalance in Patients with Rheumatoid Arthritis. DNA Cell Biol 2016; 35:853-860. [PMID: 27875659 DOI: 10.1089/dna.2016.3349] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yuan-Hao Wu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Rheumatology and Immunology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Liu
- Department of Rheumatology and Immunology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Xue
- Department of Rheumatology and Immunology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lei Zhang
- Department of Rheumatology and Immunology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Ya Liu
- Department of Rheumatology and Immunology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Liu
- Department of Rheumatology and Immunology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Wang
- Department of Rheumatology and Immunology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Cai
- Department of Rheumatology and Immunology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ran Duan
- Department of Rheumatology and Immunology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
46
|
Tumor necrosis factor α in the onset and progression of leukemia. Exp Hematol 2016; 45:17-26. [PMID: 27833035 DOI: 10.1016/j.exphem.2016.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor alpha (TNF-α), originally described as an anti-neoplastic cytokine, has been found, in apparent contradiction to its name, to play an important role in promoting the development and progression of malignant disease. Targeting TNF-α with TNF antagonists has elicited an objective response in certain solid tumors in phase I and II clinical trials. This review focuses on the relationship of TNF-α expressed by leukemia cells and adverse clinical features of leukemia. TNF-α is involved in all steps of leukemogenesis, including cellular transformation, proliferation, angiogenesis, and extramedullary infiltration. TNF-α is also an important factor in the tumor microenvironment and assists leukemia cells in immune evasion, survival, and resistance to chemotherapy. TNF-α may be a potent target for leukemia therapy.
Collapse
|
47
|
Li L, Yang SH, Yao Y, Xie YQ, Yang YQ, Wang YH, Yin XY, Ma HD, Gershwin ME, Lian ZX. Block of both TGF-β and IL-2 signaling impedes Neurophilin-1 + regulatory T cell and follicular regulatory T cell development. Cell Death Dis 2016; 7:e2439. [PMID: 27787514 PMCID: PMC5134002 DOI: 10.1038/cddis.2016.348] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/11/2016] [Accepted: 09/26/2016] [Indexed: 12/26/2022]
Abstract
Understanding the mechanisms that lead to autoimmunity is critical for defining potential therapeutic pathways. In this regard there have been considerable efforts in investigating the interacting roles of TGF-β and IL-2 on the function regulatory T cells. We have taken advantage of dnTGF-βRII Il2ra-/- (abbreviated as Il2ra-/-Tg) mouse model, which allows a direct mechanistic approach to define the relative roles of TGF-β and IL-2 on Treg development. Il2ra-/-Tg mice spontaneously developed multi-organ autoimmune diseases with expansion of pathogenic T cells and enhanced germinal center response at 3-4 weeks of age. Importantly, peripheral Treg cells from Il2ra-/-Tg mice demonstrated an activated Th1-like stable phenotype and normal in vitro suppressive function, while thymus Treg increased but manifested decreased suppressive function. Interestingly, neither thymus nor peripheral Treg cells of Il2ra-/-Tg mice contained Neuropilin-1+ or PD-1hi phenotype, resulting in defective follicular regulatory T (Tfr) cell development. Such defective Tfr development led to elevated follicular T helper cells, enhanced germinal center responses and increased plasma cell infiltration. These data demonstrate an important synergetic role of TGF-β and IL-2 in the generation, activation and stability of Treg cells, as well as their subsequent development into Tfr cells.
Collapse
Affiliation(s)
- Liang Li
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu-Han Yang
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yuan Yao
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yu-Qing Xie
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yan-Qing Yang
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yin-Hu Wang
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xue-Ying Yin
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - MEric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Innovation Center for Cell Signaling Network, Hefei National Laboratory for Physical Sciences at Microscale, Hefei 230027, China
| |
Collapse
|
48
|
Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration. Proc Natl Acad Sci U S A 2016; 113:12304-12309. [PMID: 27791020 DOI: 10.1073/pnas.1605195113] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the recognized role of tumor necrosis factor (TNF) in inflammation and neuronal degeneration, anti-TNF therapeutics failed to treat neurodegenerative diseases. Animal disease models had revealed the antithetic effects of the two TNF receptors (TNFR) in the central nervous system, whereby TNFR1 has been associated with inflammatory degeneration and TNFR2 with neuroprotection. We here show the therapeutic potential of selective inhibition of TNFR1 and activation of TNFR2 by ATROSAB, a TNFR1-selective antagonistic antibody, and EHD2-scTNFR2, an agonistic TNFR2-selective TNF, respectively, in a mouse model of NMDA-induced acute neurodegeneration. Coadministration of either ATROSAB or EHD2-scTNFR2 into the magnocellular nucleus basalis significantly protected cholinergic neurons and their cortical projections against cell death, and reverted the neurodegeneration-associated memory impairment in a passive avoidance paradigm. Simultaneous blocking of TNFR1 and TNFR2 signaling, however, abrogated the therapeutic effect. Our results uncover an essential role of TNFR2 in neuroprotection. Accordingly, the therapeutic activity of ATROSAB is mediated by shifting the balance of the antithetic activity of endogenous TNF toward TNFR2, which appears essential for neuroprotection. Our data also explain earlier results showing that complete blocking of TNF activity by anti-TNF drugs was detrimental rather than protective and argue for the use of next-generation TNFR-selective TNF therapeutics as an effective approach in treating neurodegenerative diseases.
Collapse
|
49
|
Cinetto F, Agostini C. Advances in understanding the immunopathology of sarcoidosis and implications on therapy. Expert Rev Clin Immunol 2016; 12:973-88. [DOI: 10.1080/1744666x.2016.1181541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Xing YL, Wang YC. Influence of autologous and homologous blood transfusion on interleukins and tumor necrosis factor-α in peri-operative patients with esophageal cancer. Asian Pac J Cancer Prev 2015; 15:7831-4. [PMID: 25292072 DOI: 10.7314/apjcp.2014.15.18.7831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To explore the influence of different ways of blood transfusion on the expression levels of interleukins (IL) and tumor necrosis factor-α (TNF-α) inperi-operative patients with esophageal cancer. MATERIALS AND METHODS A total of 80 patients with esophageal cancer who underwent radical operations were selected as study patients and randomly divided into an observation group (treated with autologous blood transfusion) and control group (with homologous blood transfusion). Changes of intra-operative indexes and peri-operative blood indexes, from hemoglobin (Hb) and hematocrit value (Hct), to levels of inflammatory factors like interleukins-6 (IL-6), IL-8, IL-10 and tumor necrosis factor-α (TNF-α) were compared. RESULTS Operations for patients in both groups were successfully conducted, and no significant differences in mean surgical duration and intra-operative hemorrhage volume, fluid infusion volume and blood transfusion volume were detected (p>0.05). Compared with values before surgery, Hb and Hct levels decreased significantly while white blood cell count (WBC) increased 1, 5 and 7 d after operation (p<0.05, p<0.01). In addition, WBC was apparently higher in observation group than in control group 5 and 7 d after operation (p<0.01). Compared with before surgery, in the observation group, levels of IL-6, IL-8 and IL-10 had no significant differences after operation (P>0.05), but TNF-α level increased y (p<0.01), whereas in control group, IL-6 level had no significant difference (p>0.05), IL-8 level decreased obviously (p<0.05), IL-10 level increased markedly first and then decreased gradually as time passed but its level remained elevated (p<0.01), and TNF-α level increased first and then decreased, and there was no significant difference 7 d after operation (p>0.05). CONCLUSIONS Decreased IL-8 and increased IL-10 levels are two important reasons forimmunosuppression after homologous blood transfusion, whereas autologous blood transfusion can alleviate this while increasing the TNF-α level, which also has potential to improve anti-tumor immunity in the human body.
Collapse
Affiliation(s)
- Yue-Li Xing
- Department of Blood Transfusion, Binzhou Medical University Hospital, Binzhou, China E-mail :
| | | |
Collapse
|