1
|
Son YL, Meddle SL, Tobari Y. Metabolic Regulation by the Hypothalamic Neuropeptide, Gonadotropin-Inhibitory Hormone at Both the Central and Peripheral Levels. Cells 2025; 14:267. [PMID: 39996740 PMCID: PMC11853802 DOI: 10.3390/cells14040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is well-established as a negative regulator of reproductive physiology and behavior across vertebrates, acting on the hypothalamic-pituitary-gonadal (HPG) axis; however, recent data have also demonstrated its involvement in the control of metabolic processes. GnIH neurons and fibers have been identified in hypothalamic regions associated with feeding behavior and energy homeostasis, with GnIH receptors being expressed throughout the hypothalamus. GnIH does not act alone in the hypothalamus, but rather interacts with the melanocortin system, as well as with other neuropeptides. GnIH and its receptors are also expressed in peripheral tissues involved in important metabolic functions. Therefore, the local action of GnIH in peripheral organs, including the pancreas, gastrointestinal tract, gonad, and adipose tissue, is also suggested. This review aims to provide a comprehensive summary of the emerging role of GnIH in metabolic regulation at both the central and peripheral levels.
Collapse
Affiliation(s)
- You Lee Son
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Simone L. Meddle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK;
| | - Yasuko Tobari
- Center for Human and Animal Symbiosis Science, Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara 252-5201, Japan;
| |
Collapse
|
2
|
Hazlerigg DG, Simonneaux V, Dardente H. Melatonin and Seasonal Synchrony in Mammals. J Pineal Res 2024; 76:e12996. [PMID: 39129720 DOI: 10.1111/jpi.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
In mammals, seasonal opportunities and challenges are anticipated through programmed changes in physiology and behavior. Appropriate anticipatory timing depends on synchronization to the external solar year, achieved through the use of day length (photoperiod) as a synchronizing signal. In mammals, nocturnal production of melatonin by the pineal gland is the key hormonal mediator of photoperiodic change, exerting its effects via the hypothalamopituitary axis. In this review/perspective, we consider the key developments during the history of research into the seasonal synchronizer effect of melatonin, highlighting the role that the pars tuberalis-tanycyte module plays in this process. We go on to consider downstream pathways, which include discrete hypothalamic neuronal populations. Neurons that express the neuropeptides kisspeptin and (Arg)(Phe)-related peptide-3 (RFRP-3) govern seasonal reproductive function while neurons that express somatostatin may be involved in seasonal metabolic adaptations. Finally, we identify several outstanding questions, which need to be addressed to provide a much thorough understanding of the deep impact of melatonin upon seasonal synchronization.
Collapse
Affiliation(s)
- David G Hazlerigg
- Department of Arctic and Marine Biology, Arctic Chronobiology and Physiology Research Group, Arctic Seasonal Timekeeping Initiative (ASTI), UiT-The Arctic University of Norway, Tromsø, Norway
| | - Valérie Simonneaux
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
3
|
Song X, Xu W, Li Z, Zhang X, Liu C, Han K, Chen L, Shi Y, Xu C, Han D, Luo R, Cao Y, Li Q, Yang H, Lu Q, Qin J, Wang X, Hu C, Li X. Peripheral 5-HT Mediates Gonadotropin-Inhibitory Hormone-Induced Feeding Behavior and Energy Metabolism Disorder in Chickens via the 5-HT2C Receptor. Neuroendocrinology 2024; 114:749-774. [PMID: 38718758 DOI: 10.1159/000539238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/11/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Since the discovery of gonadotropin-inhibitory hormone (GnIH), it has been found to play a critical role in reproduction in vertebrates. Recently, a regulatory role of GnIH in appetite and energy metabolism has emerged, although its precise physiological mechanisms remain unknown. METHODS Thus, the present study evaluated the effects of a single or long-term intraperitoneal GnIH treatment on the food intake, weight, and glucolipid metabolism of chickens, as well as investigating the possible neuroendocrinology factors and mechanisms involved in GnIH-induced obesity and glucolipid metabolism disorder. RESULTS Our results show that the intraperitoneal administration of GnIH to chickens resulted in a marked body mass increase, hyperlipidemia, hyperglycemia, and glucose intolerance. Subsequently, the results of metabolomics studies and the pharmacological inhibition of the 5-HT2C receptor revealed that blocking the 5-HT2C receptor reinforced the effects of GnIH on food intake, body weight, and blood glucose and lipid levels, resulting in even worse cases of GnIH-induced hyperglycemia, hyperlipidemia, and hepatic lipid deposition. This suggests that, via the 5-HT2C receptor, peripheral 5-HT may act as a negative feedback regulator to interplay with GnIH and jointly control energy balance homeostasis in chickens. DISCUSSION Our present study provides evidence of cross-talk between GnIH and 5-HT in food intake and energy metabolism at the in vivo pharmacological level, and it proposes a molecular basis for these interactions, suggesting that functional interactions between GnIH and 5-HT may open new avenues for understanding the mechanism of the neuroendocrine network involved in appetite and energy metabolism, as well as providing a new therapeutic strategy to prevent obesity, diabetes, and metabolic disorders.
Collapse
Affiliation(s)
- Xingxing Song
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Wenhao Xu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Zixin Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Xin Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Chengcheng Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Kaiou Han
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Lei Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Yan Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Changlin Xu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Dongyang Han
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Rongrong Luo
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Yajie Cao
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Qingwen Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Huihua Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Qiucheng Lu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Jin Qin
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Xiaoye Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| |
Collapse
|
4
|
Dai T, Yang L, Wei S, Chu Y, Dan X. The effect of gonadotropin-inhibitory hormone on steroidogenesis and spermatogenesis by acting through the hypothalamic-pituitary-testis axis in mice. Endocrine 2024; 84:745-756. [PMID: 38285410 DOI: 10.1007/s12020-024-03690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2024] [Indexed: 01/30/2024]
Abstract
Gonadotropin inhibitory hormone (GnIH) is essential for regulating the reproduction of mammals and inhibiting testicular activities in mice. This study aimed to explore the mechanism of GnIH on spermatogenesis and steroidogenesis by acting through the hypothalamus-pituitary-testis axis of mice. Mice were subcutaneously injected with different doses of GnIH (1 μg/150 μL, 3 μg/150 μL, 6 μg/150 μL, 150 μL saline, twice daily) for 11 days. Subsequently, luteinizing hormone (LH), testosterone (T), and inhibin B (INH B) levels of peripheral blood were determined, and the expression of GnRH synthesis-related genes (GnRH-1, Kiss-1, NPY) and gonadotropin synthesis-related genes (FSH β, LH β, GnRH receptor) in the hypothalamus and pituitary gland were respectively detected. Additionally, the expression of steroidogenesis-related genes/proteins (P450scc, StAR and 3β-HSD) and spermatogenesis-related proteins/genes including LH receptor (LHR), androgen receptor (AR), heat shock factor-2 (HSF-2) and INH B were analyzed using western blot and q-PCR. Results showed that GnIH treatment significantly reduced the concentration of LH in the peripheral blood. Further analysis revealed that GnIH treatment markedly reduced the expression of GnRHImRNA and Kiss-1 mRNA in the hypothalamus, and mRNA levels of FSH β, LH β, and GnRHR genes in the pituitary. We also observed that GnIH treatment significantly decreased T levels and expression of the P450scc, StAR, and 3β-HSD proteins in the testis. Furthermore, GnIH treatment down-regulated LHR, AR proteins, and HSF-2 gene in the testis. Importantly, the INH B concentration of and INH βb mRNA levels significantly declined following GnIH treatment. Additionally, GnIH treatment may induce germ cell apoptosis in the testis of mice. In conclusion, GnIH may suppress spermatogenesis and steroidogenesis by acting through the hypothalamus-pituitary-testis axis in mice.
Collapse
Affiliation(s)
- Tianshu Dai
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Li Yang
- The Center of Laboratory Animals of Ningxia Medical University, Yinchuan, China
| | - Shihao Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yuankui Chu
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Xingang Dan
- College of Animal Science and Technology, Ningxia University, Yinchuan, China.
- Ningxia Province's Key Laboratory of Animal Cell and Molecular Breeding, Yinchuan, China.
| |
Collapse
|
5
|
McGrath BM, Norman ST, Gaspardis CA, Rose JL, Scott CJ. Characterizing the relationship between gonadotropin releasing hormone (GnRH), kisspeptin, and RFamide related peptide 3 (RFRP-3) neurons in the equine hypothalamus across the estrous cycle and in the anovulatory seasons. Theriogenology 2024; 219:157-166. [PMID: 38432143 DOI: 10.1016/j.theriogenology.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
To understand better the role that kisspeptin plays in regulating seasonal and estrous cycle changes in the mare, this study investigated the number, location and interactions between GnRH, kisspeptin and RFRP-3 neurons in the equine hypothalamus. Hypothalami were collected from mares during the non-breeding season, vernal transition and various stages of the breeding season. Fluorescent immunohistochemistry was used to label the neuropeptides of interest. GnRH cells were observed primarily in the arcuate nucleus (ARC), while very few labeled cells were identified in the pre-optic area (POA). Kisspeptin cells were identified primarily in the ARC, with a small number of cells observed dorsal to the ARC, surrounding the third ventricle (3V). The mean number of kisspeptin cells varied between animals and typically showed no pattern associated with season or stage of estrous cycle, but a seasonal difference was identified in the ARC population. Small numbers of RFRP-3 cells were observed in the ARC, ventromedial hypothalamus (VMH) and dorsomedial hypothalamus (DMH). The mean number of RFRP-3 cells appeared higher in pre-ovulatory animals compared to all other stages. The percentage of GnRH cell bodies with kisspeptin appositions did not change with season or stage of estrous cycle. The percentage of kisspeptin cells receiving inputs from RFRP-3 fibers did not vary with season or stage of estrous cycle. These interactions suggest the possibility of the presence of an ultra-short loop feedback system between these three peptides. The changes in RFRP-3 neurons suggest the possibility of a role in the regulation of reproduction in the horse, but it is unlikely to be as a gonadotropin inhibitory factor.
Collapse
Affiliation(s)
- B M McGrath
- School of Dentistry & Medical Sciences, Locked bag 588, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - S T Norman
- School of Animal and Veterinary Sciences, Locked bag 588, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - C A Gaspardis
- School of Animal and Veterinary Sciences, Locked bag 588, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - J L Rose
- School of Dentistry & Medical Sciences, Locked bag 588, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - C J Scott
- School of Dentistry & Medical Sciences, Locked bag 588, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| |
Collapse
|
6
|
Evans MC, Anderson GM. The Role of RFRP Neurons in the Allostatic Control of Reproductive Function. Int J Mol Sci 2023; 24:15851. [PMID: 37958834 PMCID: PMC10648169 DOI: 10.3390/ijms242115851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Reproductive function is critical for species survival; however, it is energetically costly and physically demanding. Reproductive suppression is therefore a physiologically appropriate adaptation to certain ecological, environmental, and/or temporal conditions. This 'allostatic' suppression of fertility enables individuals to accommodate unfavorable reproductive circumstances and safeguard survival. The mechanisms underpinning this reproductive suppression are complex, yet culminate with the reduced secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus, which in turn suppresses gonadotropin release from the pituitary, thereby impairing gonadal function. The focus of this review will be on the role of RFamide-related peptide (RFRP) neurons in different examples of allostatic reproductive suppression. RFRP neurons release the RFRP-3 peptide, which negatively regulates GnRH neurons and thus appears to act as a 'brake' on the neuroendocrine reproductive axis. In a multitude of predictable (e.g., pre-puberty, reproductive senescence, and seasonal or lactational reproductive quiescence) and unpredictable (e.g., metabolic, immune and/or psychosocial stress) situations in which GnRH secretion is suppressed, the RFRP neurons have been suggested to act as modulators. This review examines evidence for and against these roles.
Collapse
Affiliation(s)
| | - Greg M. Anderson
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
7
|
Ding Y, Jiang X, Jing H, Liu G, Cheng J. Recombinant HBsAg-S and RFRP-3 DNA vaccine promotes reproduction hormone secretion in sheep. Theriogenology 2023; 201:68-75. [PMID: 36842263 DOI: 10.1016/j.theriogenology.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
RF-amide related peptides (RFRP) have been proposed as critical regulators of gonadotropin secretion in mammals. This study was designed to construct a DNA vaccine and investigate the effect of vaccine encoding RFRP-3 on reproduction physiology in ewe. A recombinant vaccine was constructed using two copies of the RFRP-3 gene and HBsAg-S that generate a fusion protein to induce an immunology response. Results showed this recombinant vaccine could produce a significant antibody titer in the treated animals (P < 0.05). The specific RFRP-3 antibody response induced by the vaccine was detected at week 2 with a peak at week 6 after the initial immunization. Furthermore, we found that ewes inoculated with pVAX-tPA-HBsAg-S-2RFRP-asd vaccine significantly raised the concentration of GnRH, LH and E2 in serum compared to the control group. LH and E2 concentration in the treated ewes (Group T) was significantly higher than that in control ewes (Group C) at weeks 10, 12 and 14 after the initial immunization, respectively (P < 0.05). Therefore, RFRP-3 can be used as a target for DNA immunization to promote reproductive hormone secretion in ewes and RFRP-3 gene immunization might be a candidate tool to regulate mammal reproduction.
Collapse
Affiliation(s)
- Yi Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Haijing Jing
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guiqiong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Junjun Cheng
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
8
|
Xiong X, Hu Y, Pan B, Zhu Y, Fei X, Yang Q, Xie Y, Xiong Y, Lan D, Fu W, Li J. RFRP-3 Influences Apoptosis and Steroidogenesis of Yak Cumulus Cells and Compromises Oocyte Meiotic Maturation and Subsequent Developmental Competence. Int J Mol Sci 2023; 24:ijms24087000. [PMID: 37108163 PMCID: PMC10138887 DOI: 10.3390/ijms24087000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
RF amide-related peptide 3 (RFRP-3), a mammalian ortholog of gonadotropin-inhibitory hormone (GnIH), is identified to be a novel inhibitory endogenous neurohormonal peptide that regulates mammalian reproduction by binding with specific G protein-coupled receptors (GPRs) in various species. Herein, our objectives were to explore the biological functions of exogenous RFRP-3 on the apoptosis and steroidogenesis of yak cumulus cells (CCs) and the developmental potential of yak oocytes. The spatiotemporal expression pattern and localization of GnIH/RFRP-3 and its receptor GPR147 were determined in follicles and CCs. The effects of RFRP-3 on the proliferation and apoptosis of yak CCs were initially estimated by EdU assay and TUNEL staining. We confirmed that high-dose (10-6 mol/L) RFRP-3 suppressed viability and increased the apoptotic rates, implying that RFRP-3 could repress proliferation and induce apoptosis. Subsequently, the concentrations of E2 and P4 were significantly lower with 10-6 mol/L RFRP-3 treatment than that of the control counterparts, which indicated that the steroidogenesis of CCs was impaired after RFRP-3 treatment. Compared with the control group, 10-6 mol/L RFRP-3 treatment decreased the maturation of yak oocytes efficiently and subsequent developmental potential. We sought to explore the potential mechanism of RFRP-3-induced apoptosis and steroidogenesis, so we observed the levels of apoptotic regulatory factors and hormone synthesis-related factors in yak CCs after RFRP-3 treatment. Our results indicated that RFRP-3 dose-dependently elevated the expression of apoptosis markers (Caspase and Bax), whereas the expression levels of steroidogenesis-related factors (LHR, StAR, 3β-HSD) were downregulated in a dose-dependent manner. However, all these effects were moderated by cotreatment with inhibitory RF9 of GPR147. These results demonstrated that RFRP-3 adjusted the expression of apoptotic and steroidogenic regulatory factors to induce apoptosis of CCs, probably through binding with its receptor GPR147, as well as compromised oocyte maturation and developmental potential. This research revealed the expression profiles of GnIH/RFRP-3 and GPR147 in yak CCs and supported a conserved inhibitory action on oocyte developmental competence.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yulei Hu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Bangting Pan
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Qinhui Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yumian Xie
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
9
|
Wang B, Cui A, Xu Y, Zhang Y, Jiang Y, Liu X. Food deprivation differentially modulates gene expression of LPXRFa and kisspeptin systems in the brain-pituitary axis of half-smooth tongue sole ( Cynoglossus semilaevis). Front Endocrinol (Lausanne) 2023; 14:1099832. [PMID: 37033260 PMCID: PMC10081681 DOI: 10.3389/fendo.2023.1099832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
LPXRFa, also known as gonadotropin-inhibitory hormone (GnIH), and kisspeptin (Kiss) are two major hypothalamic peptides that modulate the reproductive axis of vertebrates, including teleosts. However, little information is available regarding the actions of nutritional status on the regulation of these two neuroendocrine systems in fish. Herein, we assessed the effects of starvation and refeeding on the expression of lpxrfa, kiss2 and their receptors (lpxrfa-r and kiss2r respectively) at the brain-pituitary level of half-smooth tongue sole (Cynoglossus semilaevis). Food deprivation for 4 weeks induced a rise in brain lpxrfa as well as brain and pituitary lpxrfa-r mRNA levels, and refeeding restored brain lpxrfa and lpxrfa-r expression back to normal. However, pituitary lpxrfa-r mRNA levels still remained high after 1 week of refeeding. Neither lpxrfa nor kiss2 transcripts in the pituitary were altered by fasting, but their mRNA levels increased significantly after 1 week of refeeding, and declined back to the control levels after 2 weeks of refeeding. None of brain kiss2 and kiss2r along with pituitary kiss2r transcripts were modified by the nutritional status. In summary, our results revealed an interaction between energy status and the elements of LPXRFa and Kiss systems in the brain-pituitary axis of half-smooth tongue sole. Food deprivation and refeeding differentially regulated the two systems, which provided additional evidence for the involvement of the LPXRFa and Kiss systems in the regulation of reproduction by energy balance in non-mammalian species.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Aijun Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yongjiang Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Yongjiang Xu,
| | - Yaxing Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yan Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xuezhou Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
10
|
Iwasa T, Noguchi H, Aoki H, Tamura K, Maeda T, Takeda A, Uchishiba M, Arakaki R, Minato S, Kamada S, Yamamoto S, Imaizumi J, Kagawa T, Yoshida A, Fukui R, Daizumoto K, Kon M, Shinohara N, Yoshida K, Yamamoto Y. Effects of undernutrition and low energy availability on reproductive functions and their underlying neuroendocrine mechanisms. Endocr J 2022; 69:1363-1372. [PMID: 36372440 DOI: 10.1507/endocrj.ej22-0426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been well established that undernutrition and low energy availability disturb female reproductive functions in humans and many animal species. These reproductive dysfunctions are mainly caused by alterations of some hypothalamic factors, and consequent reduction of gonadotrophin-releasing hormone (GnRH) secretion. Evidence from literature suggests that increased activity of orexigenic factors and decreased activity of anorexigenic/satiety-related factors in undernourished conditions attenuate GnRH secretion in an integrated manner. Likewise, the activity of kisspeptin neurons, which is a potent stimulator of GnRH, is also reduced in undernourished conditions. In addition, it has been suggested that gonadotrophin-inhibitory hormone, which has anti-GnRH and gonadotrophic effects, may be involved in reproductive dysfunctions under several kinds of stress conditions. It should be remembered that these alterations, i.e., promotion of feeding behavior and temporary suppression of reproductive functions, are induced to prioritize the survival of individual over that of species, and that improvements in metabolic and nutritional conditions should be considered with the highest priority.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hidenori Aoki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kou Tamura
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takaaki Maeda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Asuka Takeda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Maimi Uchishiba
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Ryosuke Arakaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Shuhei Kamada
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Shota Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Junki Imaizumi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tomohiro Kagawa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Rijin Fukui
- Department of Obstetrics & Gynecology, Tokushima Municipal Hospital, Tokushima 770-0812, Japan
| | - Kei Daizumoto
- Department of Urology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Masafumi Kon
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
11
|
Zhao X, Si L, Niu L, Wei M, Wang F, Liu X, Chen Z, Qiao Y, Cheng L, Yang S. Effects of RFRP‑3 on an ovariectomized estrogen‑primed rat model and HEC‑1A human endometrial carcinoma cells. Exp Ther Med 2022; 25:76. [PMID: 36684658 PMCID: PMC9842939 DOI: 10.3892/etm.2022.11775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The hypothalamic peptide gonadotropin inhibitory hormone (GnIH) is a relatively novel hypothalamic neuropeptide, identified in 2000. It can influence the hypothalamic-pituitary-gonadal axis and reproductive function through various neuroendocrine systems. The present study aimed to explore the effects and potential underlying molecular mechanism of RFamide-related peptide-3 (RFRP-3) injection on the uterine fluid protein profile of ovariectomized estrogen-primed (OEP) rats using proteomics. In addition, the possible effects of RFRP-3 on the viability and apoptosis of the human endometrial cancer cell line HEC-1A and associated molecular mechanism were investigated. The OEP rat model was established through injection with GnIH/RFRP-3 through the lateral ventricle. At 6 h after injection, the protein components of uterine fluid of rats in the experimental and control groups were analyzed using liquid chromatography (LC)-tandem mass spectrometry (MS/MS). Differentially expressed proteins (DEPs) were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Protein-protein interactions (PPI) were investigated using the STRING database. PPI networks were then established before hub proteins were selected using OmicsBean software. The expression of one of the hub proteins, Kras, was then detected using western blot analysis. Cell Counting Kit-8, Annexin V-FITC/PI, reverse transcription-quantitative PCR and western blotting were also performed to analyze cell viability and apoptosis. In total, 417 DEPs were obtained using LC-MS/MS, including 279 upregulated and 138 downregulated proteins. GO analysis revealed that the majority of the DEPs were secretory proteins. According to KEGG enrichment analysis, the DEPs found were generally involved in tumor-associated pathways. In particular, five hub proteins, namely G protein subunit α (Gna)13, Gnaq, Gnai3, Kras and MMP9, were obtained following PPI network analysis. Western blot analysis showed that expression of the hub protein Kras was downregulated following treatment with 10,000 ng/ml RFRP-3. RFRP-3 treatment (10,000 ng/ml) also suppressed HEC-1A cell viability, induced apoptosis, downregulated Bcl-2 and upregulated Bax protein expression, compared with those in the control group. In addition, compared with those in the control group, RFRP-3 significantly reduced the mRNA expression levels of PI3K, AKT and mTOR, while upregulating those of LC3-II. Compared with those in the control group, RFRP-3 significantly decreased the protein expression levels of PI3K, AKT, mTOR and p62, in addition to decreasing AKT phosphorylation. By contrast, RFRP-3 significantly increased the LC3-II/I ratio and G protein-coupled receptor 147 (GPR147) protein expression. In conclusion, the present data suggest that RFRP-3 can alter the protein expression profile of the uterine fluid of OEP rats by upregulating MMP9 expression whilst downregulating that of key hub proteins Gna13, GnaQ, Gnai3 and Kras. Furthermore, RFRP-3 can inhibit HEC-1A cell viability while promoting apoptosis. The underlying molecular mechanism may involve activation of GPR147 receptor by the direct binding of RFRP-3, which further downregulates the hub protein Kras to switch on the PI3K/AKT/mTOR pathway. This subsequently reduces the Bcl-2 expression and promotes Bax expression to induce autophagy.
Collapse
Affiliation(s)
- Xueying Zhao
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lina Si
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lin Niu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Meng Wei
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Fengxia Wang
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiaochao Liu
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zhihong Chen
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yuebing Qiao
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Luyang Cheng
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China,Correspondence to: Mrs. Luyang Cheng, Department of Immunology, Chengde Medical University, Anyuan Road, Shuangqiao, Chengde, Hebei 067000, P.R. China
| | - Songhe Yang
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China,Correspondence to: Mrs. Luyang Cheng, Department of Immunology, Chengde Medical University, Anyuan Road, Shuangqiao, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
12
|
Tonissen S, Tetel V, Fraley GS. Transportation Stress Increases Fos Immunoreactivity in the Paraventricular Nucleus, but Not in the Nucleus of the Hippocampal Commissure in the Pekin Duck, Anas platyrhynchos domesticus. Animals (Basel) 2022; 12:ani12223213. [PMID: 36428440 PMCID: PMC9686473 DOI: 10.3390/ani12223213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Commercial poultry undergo transportation during their life, and the effects of transportation can negatively impact poultry production and welfare. In order to maintain physiological homeostasis, the hypothalamic−pituitary−adrenal axis (HPA) works to respond to stressors. Previous studies by others have shown contradictory effects of transportation on corticosterone release. However, recent studies from our lab and by others have shown that cortisol may also be an important hormone in the avian HPA. The purpose of our current study was to determine the effects of transportation stress on the stimulation of brain nuclei that regulate the HPA in birds, and on glucocorticoid (GC) secretion. To test this hypothesis, we collected blood and brain samples from developer drakes and hens (N = 10 per sex/time point): 24 h prior to transportation, immediately after transportation, 24 h after transportation, and 1 week after transportation. Serum GC levels and fos immunocytochemistry (ICC) within the nucleus of the hippocampal commissure (NHpC) and paraventricular nucleus (PVN) were measured. Data were analyzed using a two-way ANOVA. Post hoc analysis was completed using a Fisher’s PLSD with a p < 0.05 considered significant. We observed a sex difference (p < 0.05) in both corticosterone and cortisol secretion in Pekin ducks, although neither GC showed a significant increase in secretion associated with transportation. However, we did observe a significant (p < 0.05) increase in fos-like immunoreactivity for 24 h in the PVN, but not in the NHpC. Further studies are required to determine the specific role that GCs play in the avian stress response and the short-term stressors that could have long-term physiological effects on birds.
Collapse
|
13
|
Exogenous Melatonin Regulates Puberty and the Hypothalamic GnRH-GnIH System in Female Mice. Brain Sci 2022; 12:brainsci12111550. [PMID: 36421874 PMCID: PMC9688274 DOI: 10.3390/brainsci12111550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, the age of children entering puberty is getting lower and the incidence of central precocious puberty is increasing. It is known that melatonin plays an increasingly important role in regulating animal reproduction, but the specific role and mechanism of melatonin in regulating the initiation of puberty remain unclear. The purpose of the current study was to investigate the effect of subcutaneous melatonin injection on pubertal development in female mice and its mechanism of action. Female mice that were 22 days old received 1 mg/kg doses of melatonin subcutaneously every day for 10, 15 and 20 days. The vaginal opening was checked daily. Hematoxylin and eosin (HE) stain was used to determine the growth of the uterus and ovaries. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of follicle-stimulating hormone (FSH), gonadotropin-inhibiting hormone (GnIH), and gonadotropin-releasing hormone (GnRH) in serum. By using RT-PCR and Western blotting, the mRNA and protein expression of the hypothalamus GnRH, GnIH, Kisspeptin (Kp), Proopiomelanocortin (POMC), Neuropeptide Y (NPY), as well as G protein-coupled receptor 147 (GPR147) were identified. The findings demonstrated that melatonin could suppress ovarian follicle and uterine wall growth as well as delay vaginal opening, decrease serum levels of GnRH and FSH and increase levels of GnIH. Melatonin increased GnIH and GPR147 expression in the hypothalamus in comparison to the saline group, while decreasing the expression of GnRH, Kisspeptin, POMC, and NPY. In conclusion, exogenous melatonin can inhibit the onset of puberty in female mice by modulating the expression of hypothalamic GnRH, GnIH, Kisspeptin, POMC and NPY neurons and suppressing the hypothalamic–pituitary–gonadal axis.
Collapse
|
14
|
Chen L, Zhang X, Song X, Han D, Han K, Xu W, Luo R, Cao Y, Shi Y, Liu C, Xu C, Li Z, Li Y, Li X. Peripheral Gonadotropin-Inhibitory Hormone (GnIH) Acting as a Novel Modulator Involved in Hyperphagia-Induced Obesity and Associated Disorders of Metabolism in an In Vivo Female Piglet Model. Int J Mol Sci 2022; 23:ijms232213956. [PMID: 36430435 PMCID: PMC9692342 DOI: 10.3390/ijms232213956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Apart from the well-established role of the gonadotropin-inhibitory hormone (GnIH) in the regulation of the reproductive functions, much less is known about the peripheral role of the GnIH and its receptor in the metabolic processes. On account of pig being an excellent model for studies of food intake and obesity in humans, we investigated the peripheral effects of the GnIH on food intake and energy homeostasis and revealed the underlying mechanism(s) in female piglets in vivo. Compared to the vehicle-treated group, intraperitoneally injected GnIH significantly increased the food intake and altered the meal microstructure both in the fasting and ad libitum female piglet. GnIH-triggered hyperphagia induced female piglet obesity and altered islet hormone secretion in the pancreas, accompanied with dyslipidemia and hyperglycemia. Interestingly, GnIH decreased the glucose transport capacity and glycogen synthesis, whereas it increased the gluconeogenesis in the liver, while it also induced an insulin resistance in white adipose tissue (WAT) via inhibiting the activity of AKT-GSK3-β signaling. In terms of the lipid metabolism, GnIH reduced the oxidation of fatty acids, whereas the elevated fat synthesis ability in the liver and WAT was developed though the inhibited AMPK phosphorylation. Our findings demonstrate that peripheral GnIH could trigger hyperphagia-induced obesity and an associated glycolipid metabolism disorder in female piglets, suggesting that GnIH may act as a potential therapeutic agent for metabolic syndrome, obesity and diabetes.
Collapse
Affiliation(s)
- Lei Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Xin Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Xingxing Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Dongyang Han
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Kaiou Han
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Wenhao Xu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Rongrong Luo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yajie Cao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yan Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Chengcheng Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Changlin Xu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Zixin Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yinan Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
- Correspondence: ; Tel.: +86-(07)-7132-35635
| |
Collapse
|
15
|
Dardente H, Lomet D, Desmarchais A, Téteau O, Lasserre O, Gonzalez AA, Dubois E, Beltramo M, Elis S. Impact of food restriction on the medio-basal hypothalamus of intact ewes as revealed by a large-scale transcriptomics study. J Neuroendocrinol 2022; 34:e13198. [PMID: 36168278 DOI: 10.1111/jne.13198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/27/2022]
Abstract
In mammals, the medio-basal hypothalamus (MBH) integrates photoperiodic and food-related cues to ensure timely phasing of physiological functions, including seasonal reproduction. The current human epidemics of obesity and associated reproductive disorders exemplifies the tight link between metabolism and reproduction. Yet, how food-related cues impact breeding at the level of the MBH remains unclear. In this respect, the sheep, which is a large diurnal mammal with a marked dual photoperiodic/metabolic control of seasonal breeding, is a relevant model. Here, we present a large-scale study in ewes (n = 120), which investigated the impact of food restriction (FRes) on the MBH transcriptome using unbiased RNAseq, followed by RT-qPCR. Few genes (~100) were impacted by FRes and the transcriptional impact was very modest (<2-fold increase or < 50% decrease for most genes). As anticipated, FRes increased expression of Npy/AgRP/LepR and decreased expression of Pomc/Cartpt, while Kiss1 expression was not impacted. Of particular interest, Eya3, Nmu and Dio2, genes involved in photoperiodic decoding within the MBH, were also affected by FRes. Finally, we also identified a handful of genes not known to be regulated by food-related cues (e.g., RNase6, HspA6, Arrdc2). In conclusion, our transcriptomics study provides insights into the impact of metabolism on the MBH in sheep, which may be relevant to human, and identifies possible molecular links between metabolism and (seasonal) reproduction.
Collapse
Affiliation(s)
- Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Didier Lomet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | - Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, Université Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Sébastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
16
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
17
|
Luo R, Chen L, Song X, Zhang X, Xu W, Han D, Zuo J, Hu W, Shi Y, Cao Y, Ma R, Liu C, Xu C, Li Z, Li X. Possible Role of GnIH as a Novel Link between Hyperphagia-Induced Obesity-Related Metabolic Derangements and Hypogonadism in Male Mice. Int J Mol Sci 2022; 23:ijms23158066. [PMID: 35897643 PMCID: PMC9332143 DOI: 10.3390/ijms23158066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a reproductive inhibitor and an endogenous orexigenic neuropeptide that may be involved in energy homeostasis and reproduction. However, whether GnIH is a molecular signal link of metabolism and the reproductive system, and thus, regulates reproductive activity as a function of the energy state, is still unknown. In the present study, we investigated the involvement of GnIH in glycolipid metabolism and reproduction in vivo, and in the coupling between these two processes in the testis level. Our results showed that chronic intraperitoneal injection of GnIH into male mice not only increased food intake and altered meal microstructure but also significantly elevated body mass due to the increased mass of liver and epididymal white adipose tissue (eWAT), despite the loss of testicular weight. Furthermore, chronic intraperitoneal administration of GnIH to male mice resulted in obesity-related glycolipid metabolic derangements, showing hyperlipidemia, hyperglycemia, glucose intolerance, and insulin resistance through changes in the expression of glucose and lipid metabolism-related genes in the pancreas and eWAT, respectively. Interestingly, the expression of GnIH and GPR147 was markedly increased in the testis of mice under conditions of energy imbalance, such as fasting, acute hypoglycemia, and hyperglycemia. In addition, chronic GnIH injection markedly inhibited glucose and lipid metabolism of mice testis while significantly decreasing testosterone synthesis and sperm quality, inducing hypogonadism. These observations indicated that orexigenic GnIH triggers hyperphagia-induced obesity-related metabolic derangements and hypogonadism in male mice, suggesting that GnIH is an emerging candidate for coupling metabolism and fertility by involvement in obesity and metabolic disorder-induced reproductive dysfunction of the testes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xun Li
- Correspondence: ; Tel.: +86-0771-3235635
| |
Collapse
|
18
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|
19
|
Singh P, Anjum S, Srivastava RK, Tsutsui K, Krishna A. Central and peripheral neuropeptide RFRP-3: A bridge linking reproduction, nutrition, and stress response. Front Neuroendocrinol 2022; 65:100979. [PMID: 35122778 DOI: 10.1016/j.yfrne.2022.100979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
This article is an amalgamation of the current status of RFRP-3 (GnIH) in reproduction and its association with the nutrition and stress-mediated changes in the reproductive activities. GnIH has been demonstrated in the hypothalamus of all the vertebrates studied so far and is a well-known inhibitor of GnRH mediated reproduction. The RFRP-3 neurons interact with the other hypothalamic neurons and the hormonal signals from peripheral organs for coordinating the nutritional, stress, and environmental associated changes to regulate reproduction. RFRP-3 has also been shown to regulate puberty, reproductive cyclicity and senescence depending upon the nutritional status. A favourable nutritional status and the environmental cues which are permissive for the successful breeding and pregnancy outcome keep RFRP-3 level low, whereas unfavourable nutritional status and stressful conditions increase the expression of RFRP-3 which impairs the reproduction. Still our knowledge about RFRP-3 is incomplete regarding its therapeutic application for nutritional or stress-related reproductive disorders.
Collapse
Affiliation(s)
- Padmasana Singh
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Shabana Anjum
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Kagamiyama 1-7-1, Higashi-Hiroshima University 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
20
|
Neuropeptidergic control of neurosteroids biosynthesis. Front Neuroendocrinol 2022; 65:100976. [PMID: 34999057 DOI: 10.1016/j.yfrne.2021.100976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 01/14/2023]
Abstract
Neurosteroids are steroids synthesized within the central nervous system either from cholesterol or by metabolic reactions of circulating steroid hormone precursors. It has been suggested that neurosteroids exert pleiotropic activities within the central nervous system, such as organization and activation of the central nervous system and behavioral regulation. It is also increasingly becoming clear that neuropeptides exert pleiotropic activities within the central nervous system, such as modulation of neuronal functions and regulation of behavior, besides traditional neuroendocrinological functions. It was hypothesized that some of the physiological functions of neuropeptides acting within the central nervous system may be through the regulation of neurosteroids biosynthesis. Various neuropeptides reviewed in this study possibly regulate neurosteroids biosynthesis by controlling the activities of enzymes that catalyze the production of neurosteroids. It is now required to thoroughly investigate the neuropeptidergic control mechanisms of neurosteroids biosynthesis to characterize the physiological significance of this new neuroendocrinological phenomenon.
Collapse
|
21
|
Hudson AD, Kauffman AS. Metabolic actions of kisspeptin signaling: Effects on body weight, energy expenditure, and feeding. Pharmacol Ther 2022; 231:107974. [PMID: 34530008 PMCID: PMC8884343 DOI: 10.1016/j.pharmthera.2021.107974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Kisspeptin (encoded by the Kiss1 gene) and its receptor, KISS1R (encoded by the Kiss1r gene), have well-established roles in stimulating reproduction via central actions on reproductive neural circuits, but recent evidence suggests that kisspeptin signaling also influences metabolism and energy balance. Indeed, both Kiss1 and Kiss1r are expressed in many metabolically-relevant peripheral tissues, including both white and brown adipose tissue, the liver, and the pancreas, suggesting possible actions on these tissues or involvement in their physiology. In addition, there may be central actions of kisspeptin signaling, or factors co-released from kisspeptin neurons, that modulate metabolic, feeding, or thermoregulatory processes. Accumulating data from animal models suggests that kisspeptin signaling regulates a wide variety of metabolic parameters, including body weight and energy expenditure, adiposity and adipose tissue function, food intake, glucose metabolism, respiratory rates, locomotor activity, and thermoregulation. Herein, the current evidence for the involvement of kisspeptin signaling in each of these physiological parameters is reviewed, gaps in knowledge identified, and future avenues of important research highlighted. Collectively, the discussed findings highlight emerging non-reproductive actions of kisspeptin signaling in metabolism and energy balance, in addition to previously documented roles in reproductive control, but also emphasize the need for more research to resolve current controversies and uncover underlying molecular and physiological mechanisms.
Collapse
Affiliation(s)
- Alexandra D Hudson
- Dept. of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Alexander S Kauffman
- Dept. of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
22
|
Iwasa T, Yamamoto Y, Noguchi H, Takeda A, Minato S, Kamada S, Imaizumi J, Kagawa T, Yoshida A, Kawakita T, Yoshida K. Neuroendocrine mechanisms of reproductive dysfunctions in undernourished condition. J Obstet Gynaecol Res 2022; 48:568-575. [PMID: 34979587 DOI: 10.1111/jog.15144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022]
Abstract
It is well known that undernourished conditions disturb female reproductive functions in many species, including humans. These alterations are mainly caused by a reduction in gonadotrophin-releasing hormone (GnRH) secretion from the hypothalamus. Evidence from the literature suggests that some hypothalamic factors play pivotal roles in the coordination of reproductive functions and energy homeostasis in response to environmental cues and internal nutritional status. Generally, anorexigenic/satiety-related factors, such as leptin, alpha-melanocyte-stimulating hormone, and proopiomelanocortin, promote GnRH secretion, whereas orexigenic factors, such as neuropeptide Y, agouti-related protein, orexin, and ghrelin, attenuate GnRH secretion. Conversely, gonadotrophin-inhibitory hormone, which exerts anti-GnRH and gonadotrophic effects, promotes feeding behavior in many species. In addition, the activity of kisspeptin, which is a potent stimulator of GnRH, is reduced by undernourished conditions. Under normal nutritional conditions, these factors are coordinated to maintain both feeding behavior and reproductive functions. However, in undernourished conditions their activity levels are markedly altered to promote feeding behavior and temporarily suppress reproductive functions, in order to prioritize the survival of the individual over that of the species.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Asuka Takeda
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shuhei Kamada
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Junki Imaizumi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomohiro Kagawa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
23
|
Advancing reproductive neuroendocrinology through research on the regulation of GnIH and on its diverse actions on reproductive physiology and behavior. Front Neuroendocrinol 2022; 64:100955. [PMID: 34767778 DOI: 10.1016/j.yfrne.2021.100955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
The discovery of gonadotropin-inhibitory hormone (GnIH) in 2000 has led to a new research era of reproductive neuroendocrinology because, for a long time, researchers believed that only gonadotropin-releasing hormone (GnRH) regulated reproduction as a neurohormone. Later studies on GnIH demonstrated that it acts as a new key neurohormone inhibiting reproduction in vertebrates. GnIH reduces gonadotropin release andsynthesis via the GnIH receptor GPR147 on gonadotropes and GnRH neurons. Furthermore, GnIH inhibits reproductive behavior, in addition to reproductive neuroendocrine function. The modification of the synthesis of GnIH and its release by the neuroendocrine integration of environmental and internal factors has also been demonstrated. Thus, the discovery of GnIH has facilitated advances in reproductive neuroendocrinology. Here, we describe the advances in reproductive neuroendocrinology driven by the discovery of GnIH, research on the effects of GnIH on reproductive physiology and behavior, and the regulatory mechanisms underlying GnIH synthesis and release.
Collapse
|
24
|
Regulation of stress response on the hypothalamic-pituitary-gonadal axis via gonadotropin-inhibitory hormone. Front Neuroendocrinol 2022; 64:100953. [PMID: 34757094 DOI: 10.1016/j.yfrne.2021.100953] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/16/2021] [Accepted: 10/24/2021] [Indexed: 11/21/2022]
Abstract
Under stressful condition, reproductive function is impaired due to the activation of various components of the hypothalamic-pituitaryadrenal (HPA) axis, which can suppress the activity of the hypothalamic-pituitary-gonadal (HPG) axis at multiple levels. A hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH) is a key negative regulator of reproduction that governs the HPG axis. Converging lines of evidence have suggested that different stress types and their duration, such as physical or psychological, and acute or chronic, can modulate the GnIH system. To clarify the sensitivity and reactivity of the GnIH system in response to stress, we summarize and critically review the available studies that investigated the effects of various stressors, such as restraint, nutritional/metabolic and social stress, on GnIH expression and/or its neuronal activity leading to altered HPG action. In this review, we focus on GnIH as the potential novel mediator responsible for stress-induced reproductive dysfunction.
Collapse
|
25
|
Koller J, Herzog H, Zhang L. The distribution of Neuropeptide FF and Neuropeptide VF in central and peripheral tissues and their role in energy homeostasis control. Neuropeptides 2021; 90:102198. [PMID: 34534716 DOI: 10.1016/j.npep.2021.102198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
Neuropeptide FF (NPFF) and Neuropeptide VF (NPVF) are part of the extended RFamide peptide family characterized by their common arginine (R) and amidated phenylalanine (F)-motif at the carboxyl terminus. Both peptides signal through their respective high affinity G-protein coupled receptors, NPFFR2 and NPFFR1, but also show binding affinity for the other receptor due to their sequence similarity. NPFF and NPVF are highly conserved throughout evolution and can be found across the whole animal kingdom. Both have been implicated in a variety of biological mechanisms, including nociception, locomotion, reproduction, and response to pain and stress. However, more recently a new major functional role in the control of energy homeostasis has been discovered. In this article we will summarise the current knowledge on the distribution of NPFF, NPVF, and their receptors in central and peripheral tissues, as well as how this relates to the regulation of food intake and energy balance, which will help to better understand their role in these processes and thus might help finding treatments for impaired energy homeostasis disorders, such as obesity or anorexia.
Collapse
Affiliation(s)
- Julia Koller
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Herbert Herzog
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; School of Medical Sciences, UNSW Sydney, NSW, Australia; Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Lei Zhang
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
26
|
Cheng L, Yang S, Si L, Wei M, Guo S, Chen Z, Wang S, Qiao Y. Direct effect of RFRP-3 microinjection into the lateral ventricle on the hypothalamic kisspeptin neurons in ovariectomized estrogen-primed rats. Exp Ther Med 2021; 23:24. [PMID: 34815776 PMCID: PMC8593914 DOI: 10.3892/etm.2021.10946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/21/2021] [Indexed: 11/29/2022] Open
Abstract
RFamide-related peptide-3 (RFRP-3) may be involved in the inhibition of kisspeptin, but there is no direct evidence that RFRP-3 can directly act on kisspeptin neurons. The present study aimed to investigate the role and mechanism of RFRP-3 and kisspeptin in the hypothalamic-pituitary reproductive axis. In order to detect the expression and localization of RFRP-3 and kisspeptin in dorsomedial hypothalamic nucleus, double immunofluorescence method combined with confocal microscopy were performed. RFRP-3 was injected into the lateral ventricle of ovariectomized estrogen primed rats. Blood and brain tissues were collected at 60-, 120-, 240- and 360-min. Serum levels of gonadotropin-releasing hormone, luteinizing hormone and follicle-stimulating hormone were detected by ELISA. Kisspeptin expression in hypothalamus was detected by western blotting. Finally, surface plasmon resonance was used to verify whether RFRP-3 can directly interact with kisspeptin. Confocal images indicated that RFRP-3 and kisspeptin were co-expressed in the same neurons in the hypothalamus of ovariectomized estrogen-primed rats. Serum concentrations of gonadotropin-releasing hormone, luteinizing hormone and follicle-stimulating hormone were demonstrated to be significantly reduced following microinjection of RFRP-3 into the lateral ventricle for 60, 120, 240 and 360 min compared with the corresponding saline groups. The expression levels of kisspeptin in hypothalamus were gradually decreased following microinjection of RFRP-3 into the lateral ventricle. In addition, the affinity constant (KD) of RFRP-3 binding to kisspeptin was 6.005x10-5 M, indicating that RFRP-3 bound directly to kisspeptin in the range of protein-protein binding strength (KD, 10-3-10-6 M). In conclusion, RFRP-3 may regulate the hypothalamic-pituitary reproductive axis by inhibiting the expression of hypothalamic kisspeptin and direct binding.
Collapse
Affiliation(s)
- Luyang Cheng
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Songhe Yang
- Graduate School, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lina Si
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Meng Wei
- Department of Human Anatomy, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Sen Guo
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zhihong Chen
- Graduate School, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Shusong Wang
- Hebei Provincial Key Laboratory of Reproductive Medicine, Family Planning Science and Technology Research Institute of Hebei Province, Shijiazhuang, Hebei 050000, P.R. China
| | - Yuebing Qiao
- Graduate School, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
27
|
Mohapatra SS, Mukherjee J, Banerjee D, Das PK, Ghosh PR, Das K. RFamide peptides, the novel regulators of mammalian HPG axis: A review. Vet World 2021; 14:1867-1873. [PMID: 34475710 PMCID: PMC8404114 DOI: 10.14202/vetworld.2021.1867-1873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/10/2021] [Indexed: 01/04/2023] Open
Abstract
The RFamide-related peptides (RFRPs) are the group of neuropeptides synthesized predominantly from the hypothalamus that negatively affects the hypothalamo-hypophyseal-gonadal (hypothalamic–pituitary–gonadal [HPG]) axis. These peptides are first identified in quail brains and emerged as the mammalian orthologs of avian gonadotropin inhibitory hormones. The RFRP-3 neurons in the hypothalamus are present in several mammalian species. The action of RFRP-3 is mediated through a G-protein-coupled receptor called OT7T022. The predominant role of RFRP-3 is the inhibition of HPG axis with several other effects such as the regulation of metabolic activity, stress regulation, controlling of non-sexual motivated behavior, and sexual photoperiodicity in concert with other neuropeptides such as kisspeptin, neuropeptide-Y (NPY), pro-opiomelanocortin, orexin, and melanin. RFamide peptides synthesized in the granulosa cells, interstitial cells, and seminiferous tubule regulate steroidogenesis and gametogenesis in the gonads. The present review is intended to provide the recent findings that explore the role of RFRP-3 in regulating HPG axis and its potential applications in the synchronization of reproduction and its therapeutic interventions to prevent stress-induced amenorrhea.
Collapse
Affiliation(s)
- Smruti Smita Mohapatra
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Joydip Mukherjee
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Dipak Banerjee
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Pradip Kumar Das
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Prabal Ranjan Ghosh
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Kinsuk Das
- Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| |
Collapse
|
28
|
Ayub M, Lange AB, Orchard I. Identification and characterization of the SIFamide receptor in the hemimetabolous Chagas disease vector, Rhodnius prolixus Stål, 1859, (Hemiptera, Reduviidae, Triatominae). Peptides 2021; 143:170600. [PMID: 34175354 DOI: 10.1016/j.peptides.2021.170600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Within arthropods, the SIFamide family of neuropeptides appears to be involved in the modulation of a range of physiological and behavioral events. In Rhodnius prolixus, we have previously shown the presence of SIFamidergic-like processes in neurohemal release sites and provided evidence for a role for Rhopr-SIFa in modulating heartbeat frequency and feeding behaviors. Here, the R. prolixus SIFamide receptor (RhoprSIFR) has been identified, cloned, and sequenced. Sequence analyses show high similarity and identity between the RhoprSIFR and other cloned SIFamide receptors. Quantitative PCR shows that the RhoprSIFR transcript is found in a variety of tissues, including those involved in feeding and reproduction. In unfed insects, high transcript expression is observed in the central nervous system and midgut, suggesting a role of Rhopr-SIFa in various processes related to feeding and digestion. Expression of the RhoprSIFR transcript changes between unfed, 24 h post-fed, and 7 d post-fed conditions. Expression of the RhoprSIFR transcript significantly increases in the anterior midgut and posterior midgut 7 d post-feeding and knockdown of the RhoprSIFR transcript significantly reduces the size of blood meal consumed. This data suggests a possible role for Rhopr-SIFa in regulating long-term post-feeding osmotic balance and digestion of the blood meal. Lastly, transcript expression of Rhopr-SIFa and RhoprSIFR also varies temporally in relation to the reproductive stage, suggesting an involvement of this signaling pathway in reproductive activities. Identification of the RhoprSIFR and its expression profile now provide tools for a more detailed understanding into the precise coordination of feeding and other physiological processes in R. prolixus.
Collapse
Affiliation(s)
- Mahnoor Ayub
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
29
|
Cázarez‐Márquez F, Eliveld J, Ritsema WIGR, Foppen E, Bossenbroek Y, Pelizzari S, Simonneaux V, Kalsbeek A. Role of central kisspeptin and RFRP-3 in energy metabolism in the male Wistar rat. J Neuroendocrinol 2021; 33:e12973. [PMID: 33960524 PMCID: PMC8365661 DOI: 10.1111/jne.12973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 02/01/2023]
Abstract
Kisspeptin (Kp) and (Arg)(Phe) related peptide 3 (RFRP-3) are two RF-amides acting in the hypothalamus to control reproduction. In the past 10 years, it has become clear that, apart from their role in reproductive physiology, both neuropeptides are also involved in the control of food intake, as well as glucose and energy metabolism. To investigate further the neural mechanisms responsible for these metabolic actions, we assessed the effect of acute i.c.v. administration of Kp or RFRP-3 in ad lib. fed male Wistar rats on feeding behaviour, glucose and energy metabolism, circulating hormones (luteinising hormone, testosterone, insulin and corticosterone) and hypothalamic neuronal activity. Kp increased plasma testosterone levels, had an anorexigenic effect and increased lipid catabolism, as attested by a decreased respiratory exchange ratio (RER). RFRP-3 also increased plasma testosterone levels but did not modify food intake or energy metabolism. Both RF-amides increased endogenous glucose production, yet with no change in plasma glucose levels, suggesting that these peptides provoke not only a release of hepatic glucose, but also a change in glucose utilisation. Finally, plasma insulin and corticosterone levels did not change after the RF-amide treatment. The Kp effects were associated with an increased c-Fos expression in the median preoptic area and a reduction in pro-opiomelanocortin immunostaining in the arcuate nucleus. No effects on neuronal activation were found for RFRP-3. Our results provide further evidence that Kp is not only a very potent hypothalamic activator of reproduction, but also part of the hypothalamic circuit controlling energy metabolism.
Collapse
Affiliation(s)
- Fernando Cázarez‐Márquez
- Institute of Cellular and Integrative Neurosciences (INCI)StrasbourgFrance
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jitske Eliveld
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Wayne I. G. R. Ritsema
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ewout Foppen
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Yvonne Bossenbroek
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Simone Pelizzari
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
| | - Valérie Simonneaux
- Institute of Cellular and Integrative Neurosciences (INCI)StrasbourgFrance
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
30
|
Tsutsui K, Ubuka T. Gonadotropin-inhibitory hormone (GnIH): A new key neurohormone controlling reproductive physiology and behavior. Front Neuroendocrinol 2021; 61:100900. [PMID: 33450199 DOI: 10.1016/j.yfrne.2021.100900] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 11/17/2022]
Abstract
The discovery of novel neurohormones is important for the advancement of neuroendocrinology. In early 1970s, gonadotropin-releasing hormone (GnRH), a hypothalamic neuropeptide that promotes gonadotropin release, was identified to be an endogenous neurohormone in mammals. In 2000, thirty years later, another hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH), that inhibits gonadotropin release, was found in quail. GnIH acts via GPR147 and inhibits gonadotropin release and synthesis and reproductive function in birds through actions on GnRH neurons in the hypothalamus and pituitary gonadotrophs. Later, GnIH was found in other vertebrates including humans. GnIH studies have advanced the progress of reproductive neuroendocrinology. Furthermore, recent GnIH studies have indicated that abnormal changes in GnIH expression may cause pubertal disorder and reproductive dysfunction. Here, we describe GnIH discovery and its impact on the progress of reproductive neuroendocrinology. This review also highlights advancement and perspective of GnIH studies on drug development for pubertal disorder and reproductive dysfunction. (149/150).
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan.
| | - Takayoshi Ubuka
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
31
|
Anjum S, Khattak MNK, Tsutsui K, Krishna A. RF-amide related peptide-3 (RFRP-3): a novel neuroendocrine regulator of energy homeostasis, metabolism, and reproduction. Mol Biol Rep 2021; 48:1837-1852. [PMID: 33566226 DOI: 10.1007/s11033-021-06198-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
A hypothalamic neuropeptide, RF-amide related peptide-3 (RFRP-3), the mammalian ortholog of the avian gonadotropin-inhibitory hormone (GnIH) has inhibitory signals for reproductive axis via G-protein coupled receptor 147 in mammals. Moreover, RFRP-3 has orexigenic action but the mechanism involved in energy homeostasis and glucose metabolism is not yet known. Though, the RFRP-3 modulates orexigenic action in co-operation with other neuropeptides, which regulates metabolic cues in the hypothalamus. Administration of GnIH/RFRP-3 suppresses plasma luteinizing hormone, at the same time stimulates feeding behavior in birds and mammals. Likewise, in the metabolically deficient conditions, its expression is up-regulated suggests that RFRP-3 contributes to the integration of energy balance and reproduction. However, in many other metabolic conditions like induced diabetes and high-fat diet obesity, etc. its role is still not clear while, RFRP-3 induces the glucose homeostasis by adipocytes is reported. The physiological role of RFRP-3 in metabolic homeostasis and the metabolic effects of RFRP-3 signaling in pharmacological studies need a detailed discussion. Further studies are required to find out whether RFRP-3 is associated with restricted neuroendocrine function observed in type II diabetes mellitus, aging, or sub-fertility. In this context, the current review is focused on the role of RFRP-3 in the above-mentioned mechanisms. Studies from search engines including PubMed, Google Scholar, and science.gov are included after following set inclusion/exclusion criteria. As a developing field few mechanisms are still inconclusive, however, based on the available information RFRP-3 seems to be a putative tool in future treatment strategies towards metabolic disease.
Collapse
Affiliation(s)
- Shabana Anjum
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Kazuyoshi Tsutsui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
32
|
Li Q, Smith JT, Henry B, Rao A, Pereira A, Clarke IJ. Expression of genes for Kisspeptin (KISS1), Neurokinin B (TAC3), Prodynorphin (PDYN), and gonadotropin inhibitory hormone (RFRP) across natural puberty in ewes. Physiol Rep 2021; 8:e14399. [PMID: 32170819 PMCID: PMC7070159 DOI: 10.14814/phy2.14399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
Expression of particular genes in hypothami of ewes was measured across the natural pubertal transition by in situ hybridization. The ewes were allocated to three groups (n = 4); prepubertal, postpubertal and postpubertally gonadectomized (GDX). Prepubertal sheep were euthanized at 20 weeks of age and postpubertal animals at 32 weeks. GDX sheep were also euthanized at 32 weeks, 1 week after surgery. Expression of KISS1, TAC3, PDYN in the arcuate nucleus (ARC), RFRP in the dorsomedial hypothalamus and GNRH1 in the preoptic area was quantified on a cellular basis. KISS1R expression by GNRH1 cells was quantified by double-label in situ hybridization. Across puberty, detectable KISS1 cell number increased in the caudal ARC and whilst PDYN cell numbers were low, numbers increased in the rostral ARC. TAC3 expression did not change but RFRP expression/cell was reduced across puberty. There was no change across puberty in the number of GNRH1 cells that expressed the kisspeptin receptor (KISS1R). GDX shortly after puberty did not increase expression of any of the genes of interest. We conclude that KISS1 expression in the ARC increases during puberty in ewes and this may be a causative factor in the pubertal activation of the reproductive axis. A reduction in expression of RFRP may be a factor in the onset of puberty, removing negative tone on GNRH1 cells. The lack of changes in expression of genes following GDX suggest that the effects of gonadal hormones may differ in young and mature animals.
Collapse
Affiliation(s)
- Qun Li
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jeremy T Smith
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Belinda Henry
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Alexandra Rao
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Alda Pereira
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Iain J Clarke
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Bédécarrats GY, Hanlon C, Tsutsui K. Gonadotropin Inhibitory Hormone and Its Receptor: Potential Key to the Integration and Coordination of Metabolic Status and Reproduction. Front Endocrinol (Lausanne) 2021; 12:781543. [PMID: 35095760 PMCID: PMC8792613 DOI: 10.3389/fendo.2021.781543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Since its discovery as a novel gonadotropin inhibitory peptide in 2000, the central and peripheral roles played by gonadotropin-inhibiting hormone (GnIH) have been significantly expanded. This is highlighted by the wide distribution of its receptor (GnIH-R) within the brain and throughout multiple peripheral organs and tissues. Furthermore, as GnIH is part of the wider RF-amide peptides family, many orthologues have been characterized across vertebrate species, and due to the promiscuity between ligands and receptors within this family, confusion over the nomenclature and function has arisen. In this review, we intend to first clarify the nomenclature, prevalence, and distribution of the GnIH-Rs, and by reviewing specific localization and ligand availability, we propose an integrative role for GnIH in the coordination of reproductive and metabolic processes. Specifically, we propose that GnIH participates in the central regulation of feed intake while modulating the impact of thyroid hormones and the stress axis to allow active reproduction to proceed depending on the availability of resources. Furthermore, beyond the central nervous system, we also propose a peripheral role for GnIH in the control of glucose and lipid metabolism at the level of the liver, pancreas, and adipose tissue. Taken together, evidence from the literature strongly suggests that, in fact, the inhibitory effect of GnIH on the reproductive axis is based on the integration of environmental cues and internal metabolic status.
Collapse
Affiliation(s)
- Grégoy Y. Bédécarrats
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Grégoy Y. Bédécarrats,
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Kazuyoshi Tsutsui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
34
|
Teo CH, Phon B, Parhar I. The Role of GnIH in Biological Rhythms and Social Behaviors. Front Endocrinol (Lausanne) 2021; 12:728862. [PMID: 34566893 PMCID: PMC8461181 DOI: 10.3389/fendo.2021.728862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) was first discovered in the Japanese quail, and peptides with a C-terminal LPXRFamide sequence, the signature protein structure defining GnIH orthologs, are well conserved across vertebrate species, including fish, reptiles, amphibians, avians, and mammals. In the mammalian brain, three RFamide-related proteins (RFRP-1, RFRP-2, RFRP-3 = GnIH) have been identified as orthologs to the avian GnIH. GnIH is found primarily in the hypothalamus of all vertebrate species, while its receptors are distributed throughout the brain including the hypothalamus and the pituitary. The primary role of GnIH as an inhibitor of gonadotropin-releasing hormone (GnRH) and pituitary gonadotropin release is well conserved in mammalian and non-mammalian species. Circadian rhythmicity of GnIH, regulated by light and seasons, can influence reproductive activity, mating behavior, aggressive behavior, and feeding behavior. There is a potential link between circadian rhythms of GnIH, anxiety-like behavior, sleep, stress, and infertility. Therefore, in this review, we highlight the functions of GnIH in biological rhythms, social behaviors, and reproductive and non-reproductive activities across a variety of mammalian and non-mammalian vertebrate species.
Collapse
|
35
|
Moriwaki S, Narimatsu Y, Fukumura K, Iwakoshi-Ukena E, Furumitsu M, Ukena K. Effects of Chronic Intracerebroventricular Infusion of RFamide-Related Peptide-3 on Energy Metabolism in Male Mice. Int J Mol Sci 2020; 21:ijms21228606. [PMID: 33203104 PMCID: PMC7698077 DOI: 10.3390/ijms21228606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
RFamide-related peptide-3 (RFRP-3), the mammalian ortholog of avian gonadotropin-inhibitory hormone (GnIH), plays a crucial role in reproduction. In the present study, we explored the other functions of RFRP-3 by investigating the effects of chronic intracerebroventricular infusion of RFRP-3 (6 nmol/day) for 13 days on energy homeostasis in lean male C57BL/6J mice. The infusion of RFRP-3 increased cumulative food intake and body mass. In addition, the masses of brown adipose tissue (BAT) and the liver were increased by the administration of RFRP-3, although the mass of white adipose tissue was unchanged. On the other hand, RFRP-3 decreased O2 consumption, CO2 production, energy expenditure, and core body temperature during a short time period in the dark phase. These results suggest that the increase in food intake and the decrease in energy expenditure contributed to the gain of body mass, including the masses of BAT and the liver. The present study shows that RFRP-3 regulates not only reproductive function, but also energy metabolism, in mice.
Collapse
|
36
|
Patel R, Smith JT. Novel actions of kisspeptin signaling outside of GnRH-mediated fertility: a potential role in energy balance. Domest Anim Endocrinol 2020; 73:106467. [PMID: 32278499 DOI: 10.1016/j.domaniend.2020.106467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
Abstract
Kisspeptin, encoded by Kiss1 gene expressing neurons in the hypothalamus, is a requisite for fertility and now appears critical in the regulation of energy balance. Kisspeptin neurons, particularly those in the arcuate nucleus (ARC), receive information directly and indirectly from a diverse array of brain regions including the bed nucleus of the stria terminalis, amygdala, interpeduncular nucleus, hippocampus, and cortex. On the other hand, kisspeptin neuron projections clearly extend to GnRH neuron cell bodies in rodents, sheep, and primates and beyond to other-non-GnRH-brain areas. Kiss1r, the kisspeptin receptor, is expressed on GnRH neurons and also in additional brain areas and peripheral tissues, indicating a nonreproductive role. Kisspeptin neurons clearly receive signals pertinent to deviations in energy balance but are now recognized as a novel neuroendocrine player in the fine balance of energy intake and expenditure. Mice that have a dysfunctional gene for Kiss1r develop an obese and diabetic phenotype. The mechanism behind this altered metabolic state is still mostly unknown; however, Kiss1r expression in the pancreas and brown adipose tissue is clearly functional and required for normal glucose tolerance and energy expenditure, respectively. Kisspeptin neurons in the ARC also participate in the generation of circadian rhythms, specifically those concerning food intake and metabolism, offering a potential explanation for the obesity in Kiss1r knockout mice. Overall, the discoveries of new mechanistic roles for kisspeptin in both normal and pathophysiologic states of energy balance may lead to further understating of obesity prevalence and novel therapeutic targets and interventions.
Collapse
Affiliation(s)
- R Patel
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway Crawley, Perth, Western Australia, Australia 6009
| | - J T Smith
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway Crawley, Perth, Western Australia, Australia 6009.
| |
Collapse
|
37
|
Lents CA, Lindo AN, Hileman SM, Nonneman DJ. Physiological and genomic insight into neuroendocrine regulation of puberty in gilts. Domest Anim Endocrinol 2020; 73:106446. [PMID: 32199704 DOI: 10.1016/j.domaniend.2020.106446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
The timing of pubertal attainment in gilts is a critical factor for pork production and is an early indicator of future reproductive potential. Puberty, defined as age at first standing estrus in the presence of a boar, is brought about by an escape from estrogen inhibition of the GnRH pulse generator, which allows for increasing LH pulses leading to the onset of cyclicity. The biological mechanisms that control the timing of these events is related to decreasing inhibitory signals with a concomitant increase in stimulatory signals within the hypothalamus. The roles of gamma-aminobutyric acid, endogenous opioid peptides, and gonadotropin-inhibitory hormone in negatively regulating gonadotropin secretion in gilts is explored. Developmental changes in stimulatory mechanisms of glutamatergic and kisspeptin neurons are important for increased LH pulsatility required for the occurrence of puberty in pigs. Age at first estrus of gilts is metabolically gated, and numerous metabolites, metabolic hormones, and appetite-regulating neurotransmitters have been implicated in the nutritional regulation of gonadotropin secretion. Leptin is an important metabolic signal linking body energy reserves with age at puberty in gilts. Leptin acting through neuropeptide Y and proopiomelanocortin neurons in the hypothalamus has important impacts on the function of the reproductive neurosecretory axis of gilts. Age at puberty in swine is heritable, and genomic analyses reveal it to be a polygenic trait. Genome-wide association studies for pubertal age in gilts have revealed several genomic regions in common with those identified for age at menarche in humans. Candidate genes have been identified that have important functions in growth and adiposity. Numerous genes regulating hypothalamic neuronal function, gonadotropes in the adenohypophysis, and ovarian follicular development have been identified and illustrate the complex maturational changes occurring in the hypothalamic-pituitary-ovarian axis during puberty in gilts.
Collapse
Affiliation(s)
- C A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Reproduction Research Unit, Clay Center, NE 68966-0166, USA.
| | - A N Lindo
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506-9600, USA
| | - S M Hileman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506-9600, USA
| | - D J Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Reproduction Research Unit, Clay Center, NE 68966-0166, USA
| |
Collapse
|
38
|
Lee CY, Li S, Li XF, Stalker DAE, Cooke C, Shao B, Kelestimur H, Henry BA, Conductier G, O Byrne KT, Clarke IJ. Lipopolysaccharide reduces gonadotrophin-releasing hormone (GnRH) gene expression: role of RFamide-related peptide-3 and kisspeptin. Reprod Fertil Dev 2020; 31:1134-1143. [PMID: 30922440 DOI: 10.1071/rd18277] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
RFamide-related peptide (RFRP)-3 reduces luteinising hormone (LH) secretion in rodents. Stress has been shown to upregulate the expression of the RFRP gene (Rfrp) with a concomitant reduction in LH secretion, but an effect on expression of the gonadotrophin-releasing hormone (GnRH) gene (Gnrh1) has not been shown. We hypothesised that lipopolysaccharide (LPS)-induced stress affects expression of Rfrp, the gene for kisspeptin (Kiss1) and/or Gnrh1, leading to suppression of LH levels in rats. Intracerebroventricular injections of RFRP-3 (0.1, 1, 5 nmol) or i.v. LPS (15μgkg-1) reduced LH levels. Doses of 1 and 5 nmol RFRP-3 were then administered to analyse gene expression by in situ hybridisation. RFRP-3 (5 nmol) had no effect on Gnrh1 or Kiss1 expression. LPS stress reduced GnRH and Kiss1 expression, without affecting Rfrp1 expression. These data indicate that LPS stress directly or indirectly reduces Gnrh1 expression, but this is unlikely to be due to a change in Rfrp1 expression.
Collapse
Affiliation(s)
- Chooi Yeng Lee
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - ShengYun Li
- Division of Women's Health, Women's Health Academic Centre, Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London, WC2R 2LS, UK
| | - Xiao Feng Li
- Division of Women's Health, Women's Health Academic Centre, Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London, WC2R 2LS, UK
| | - Daniel A E Stalker
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Vic. 3800, Australia
| | - Claire Cooke
- Division of Women's Health, Women's Health Academic Centre, Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London, WC2R 2LS, UK
| | - Bei Shao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Haluk Kelestimur
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, 90424, Turkey
| | - Belinda A Henry
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Vic. 3800, Australia
| | - Gregory Conductier
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Vic. 3800, Australia
| | - Kevin T O Byrne
- Division of Women's Health, Women's Health Academic Centre, Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London, WC2R 2LS, UK
| | - Iain J Clarke
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Vic. 3800, Australia; and Corresponding author.
| |
Collapse
|
39
|
Cázarez-Márquez F, Laran-Chich MP, Klosen P, Kalsbeek A, Simonneaux V. RFRP3 increases food intake in a sex-dependent manner in the seasonal hamster Phodopus sungorus. J Neuroendocrinol 2020; 32:e12845. [PMID: 32291844 DOI: 10.1111/jne.12845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022]
Abstract
In addition to its regulatory role in luteinising hormone secretion, Rfamide-related peptide 3 (RFRP3) has also been reported to modulate food intake in several mammalian species. Djungarian hamsters (Phodopus sungorus), similar to other seasonal mammals, display a remarkable inhibition of RFRP3 expression in winter short-day conditions, associated with decreased food intake and bodyweight. This species is therefore a valuable model for assessing whether RFRP3 might be involved in the seasonal control of feeding behaviour and investigating its possible brain targets. We found that, although both male and female animals exhibit the same robust reduction in Rfrp expression in short- (SD) compared to long-day (LD) conditions, acute central administration of RFRP3 displays sex-dependent effects on food intake. RFRP3 increased food intake in female hamsters in SD or in LD dioestrus, but not in LD pro-oestrus, indicating that the orexigenic effect of RFRP3 is observed in conditions of low circulating oestradiol levels. In male hamsters, food intake was not changed by acute injections of RFRP3, regardless of whether animals were in SD or LD conditions. Analysing the gene expression of various metabolic neuropeptides in the brain of RFRP3-injected Djungarian hamsters revealed that Npy expression was increased in female but not in male animals. The present study suggests that, in Djungarian hamsters, RFRP3 exhibits a sex-dependent orexigenic effect possibly by inducing increased Npy expression.
Collapse
Affiliation(s)
- Fernando Cázarez-Márquez
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
- Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Paul Klosen
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam UMC, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Valérie Simonneaux
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| |
Collapse
|
40
|
Chung-Davidson YW, Bussy U, Fissette SD, Huerta B, Li W. Waterborne pheromones modulate gonadotropin-inhibitory hormone levels in sea lamprey (Petromyzon marinus). Gen Comp Endocrinol 2020; 288:113358. [PMID: 31837303 DOI: 10.1016/j.ygcen.2019.113358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/31/2022]
Abstract
The relationships between pheromone stimuli and neuropeptides are not well established in vertebrates due to the limited number of unequivocally identified pheromone molecules. The sea lamprey (Petromyzon marinus) is an advantageous vertebrate model to study the effects of pheromone exposure on neuropeptides since many pheromone molecules and neuropeptides have been identified in this species. Sexually mature male sea lamprey release pheromones 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3 keto-petromyzonol sulfate, 3kPZS) and 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3-keto allocholic acid, 3kACA) that differentially regulate gonadotropin-releasing hormone (lGnRH) and steroid levels in sexually immature sea lamprey. However, the effects of these pheromones on gonadotropin-inhibitory hormones (GnIHs), hypothalamic neuropeptides that regulate lGnRH release, are still elusive. In this report, we sought to examine the effects of waterborne pheromones on lamprey GnIH-related neuropeptide levels in sexually immature sea lamprey. Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analyses revealed sex differences in GnIH-related neuropeptide levels in the brain and plasma of immature sea lamprey. Exposure to 3kPZS and 3kACA exerted differential effects on GnIH-related neuropeptide levels in both sexes, but the effects were more prominent in female brains. We conclude that sea lamprey pheromones regulate GnIH-related neuropeptide levels in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Ugo Bussy
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA
| | - Skye Daniel Fissette
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Belinda Huerta
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, Natural Resources Building, Rm. 13, 480 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
41
|
Ayub M, Hermiz M, Lange AB, Orchard I. SIFamide Influences Feeding in the Chagas Disease Vector, Rhodnius prolixus. Front Neurosci 2020; 14:134. [PMID: 32153356 PMCID: PMC7047498 DOI: 10.3389/fnins.2020.00134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/03/2020] [Indexed: 11/13/2022] Open
Abstract
SIFamides are a family of highly conserved neuropeptides in arthropods, and in insects are mainly expressed in four medial neurons in the pars intercerebralis of the brain. Although SIFamide has been shown to influence sexual behavior, feeding, and sleep regulation in holometabolous insects such as Drosophila melanogaster, little is known about its role in hemimetabolous insects, including the blood-sucking bug, Rhodnius prolixus. In this study, we confirm the nucleotide sequence for R. prolixus SIFamide (Rhopr-SIFa) and find characteristic phenotypic expression of SIFamide in four cells of the pars intercerebralis in the brain. In addition to extensive SIFa projections throughout the entire central nervous system, SIFamidergic processes also enter into the corpus cardiacum, and project along the dorsal vessel, suggestive of Rhopr-SIFa acting as a neurohormone. Physiologically, Rhopr-SIFamide induces dose-dependent increases in heartbeat frequency in vitro suggesting the presence of peripheral receptors, and thereby indicating Rhopr-SIFa is released to act upon peripheral targets. We also explore the function of Rhopr-SIFa in R. prolixus, specifically in relation to feeding, since R. prolixus is a blood-gorging insect and a vector for Chagas disease. The intensity of SIFamide-like staining in the neurons in the brain is diminished 2 h following feeding, and restocking of those cells is finished 24 h later, indicating Rhopr-SIFa may be released at feeding. The results of temporal qPCR analysis were consistent with the immunohistochemical findings, showing an increase in Rhopr-SIFa transcript expression in the brain 2 h after feeding. We also observed enhanced feeding (size of meal) in insects injected with Rhopr-SIFa whereas insects with RNAi-mediated knockdown of the Rhopr-SIFa transcript consumed a significantly smaller blood meal relative to controls. These data suggest that the four SIFamidergic neurons and associated arborizations may play an important function in the neuronal circuitry controlling R. prolixus feeding, with Rhopr-SIFa acting as a central and peripheral neuromodulator/neurohormone.
Collapse
Affiliation(s)
- Mahnoor Ayub
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Mariam Hermiz
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
42
|
Barabás K, Szabó-Meleg E, Ábrahám IM. Effect of Inflammation on Female Gonadotropin-Releasing Hormone (GnRH) Neurons: Mechanisms and Consequences. Int J Mol Sci 2020; 21:ijms21020529. [PMID: 31947687 PMCID: PMC7014424 DOI: 10.3390/ijms21020529] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
: Inflammation has a well-known suppressive effect on fertility. The function of gonadotropin-releasing hormone (GnRH) neurons, the central regulator of fertility is substantially altered during inflammation in females. In our review we discuss the latest results on how the function of GnRH neurons is modified by inflammation in females. We first address the various effects of inflammation on GnRH neurons and their functional consequences. Second, we survey the possible mechanisms underlying the inflammation-induced actions on GnRH neurons. The role of several factors will be discerned in transmitting inflammatory signals to the GnRH neurons: cytokines, kisspeptin, RFamide-related peptides, estradiol and the anti-inflammatory cholinergic pathway. Since aging and obesity are both characterized by reproductive decline our review also focuses on the mechanisms and pathophysiological consequences of the impact of inflammation on GnRH neurons in aging and obesity.
Collapse
Affiliation(s)
- Klaudia Barabás
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, H-7624 Pécs, Hungary;
| | - Edina Szabó-Meleg
- Departement of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary;
| | - István M. Ábrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, H-7624 Pécs, Hungary;
- Correspondence:
| |
Collapse
|
43
|
Huo K, Li X, Hu W, Song X, Zhang D, Zhang X, Chen X, Yuan J, Zuo J, Wang X. RFRP-3, the Mammalian Ortholog of GnIH, Is a Novel Modulator Involved in Food Intake and Glucose Homeostasis. Front Endocrinol (Lausanne) 2020; 11:194. [PMID: 32328034 PMCID: PMC7160250 DOI: 10.3389/fendo.2020.00194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Abstract
RF amide-related peptide 3 (RFRP-3) is a reproductive inhibitor and an endogenous orexigenic neuropeptide that may be involved in energy homeostasis. In this study, we evaluated the effect of acute or chronic RFRP-3 treatment (administered via intraperitoneal injection) on the food intake, meal microstructure and weight of rats, as well as the mechanism through which RFRP-3 is involved in glucose metabolism in the pancreas and glucose disposal tissues of rat in vivo. Our results showed that the intraperitoneal administration of RFRP-3 to rats resulted in marked body mass increased, hyperphagia, hyperlipidemia, hyperglycemia, glucose intolerance, hypoinsulinism, hyperglucagon, and insulin resistance, as well as significant increases in the size of pancreatic islets and the inflammatory reaction. Thus, we strongly assert that RFRP-3 as a novel neuroendocrine regulator involved in blood glucose homeostasis.
Collapse
|
44
|
Khamis T, Abdelalim AF, Abdallah SH, Saeed AA, Edress NM, Arisha AH. Early intervention with breast milk mesenchymal stem cells attenuates the development of diabetic-induced testicular dysfunction via hypothalamic Kisspeptin/Kiss1r-GnRH/GnIH system in male rats. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165577. [DOI: 10.1016/j.bbadis.2019.165577] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
|
45
|
Van Blois L, Bentley A, Porter L, Prihoda N, Potter H, Van Wyk B, Shafer D, Fraley S, Fraley G. Feed Restriction Can Alter Gait but Does not Reduce Welfare in Meat Ducks. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
46
|
London S, Volkoff H. Effects of fasting on the central expression of appetite-regulating and reproductive hormones in wild-type and Casper zebrafish (Danio rerio). Gen Comp Endocrinol 2019; 282:113207. [PMID: 31202720 DOI: 10.1016/j.ygcen.2019.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Appetite and reproduction are closely related functions that are both regulated by brain hormones. Appetite stimulators include orexin and neuropeptide Y (NPY), and reproductive hormones include gonadotropin-releasing hormone (GnRH), gonadotropin-inhibitory hormone (GnIH), kisspeptin, and neurokinin B (NKB). GnRH stimulates the secretion of pituitary gonadotropes, and kisspeptin and GnIH modulate this action. Kisspeptin secretion is further controlled by neurokinin B (NKB) and dynorphin A (Dyn). To better understand the mechanisms regulating appetite and reproduction in fish, we examined the effects of fasting, reproductive stage, gender, and strain on the brain mRNA expression of appetite (orexin and NPY) and reproductive (GnRH, kisspeptin, GnIH, and NKB) hormones in zebrafish. In order to compare strains, we used both wild-type and transparent Casper zebrafish. In female wild-type zebrafish, fasting increased the expression of all hormones investigated, with the exception of Kiss2. Only NPY and Kiss2 were increased in male wild-type zebrafish during fasting. In Casper zebrafish, only GnIH and NKB in males were affected by fasting, suggesting that Casper fish may be more resistant to fasting than wild fish. Fasting increased expressions of orexin, GnRH2, Kiss1, GnIH and NKB in wild-type females with more eggs or larger eggs relative to body weight, compared to those with fewer or smaller eggs, suggesting that more mature females are more affected by fasting. No significant interactions of fasting and reproductive stage were noted in female Casper fish. To investigate whether differences between Casper and wild-type fish were due to genes involved in pigmentation, we compared the brain mRNA expressions of enzymes involved in melanin synthesis (tyrosinase and tyrosine hydroxylase - TH), melanocortin receptors (MC3R and MC4R), and the melanocortin precursor (proopiomelanocortin - POMC) between the two strains. Casper zebrafish had lower levels of MC3R, tyrosinase, TH1, TH2, and POMC than wild-type fish. Overall, our results suggest the existence of gender- and reproductive stage-specific, as well as strain-specific variations in the mechanisms regulating feeding and reproduction in zebrafish, and that the melanocortin system and melanin pathways may be in part responsible for these differences between strains.
Collapse
Affiliation(s)
- Sydney London
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
47
|
Valle S, Das C, Meddle SL, Deviche P. The effect of food restriction on the regulation of gonadotropin-releasing hormone in male house finches (Haemorhous mexicanus). Gen Comp Endocrinol 2019; 282:113196. [PMID: 31163182 DOI: 10.1016/j.ygcen.2019.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/15/2019] [Accepted: 05/31/2019] [Indexed: 01/02/2023]
Abstract
Seasonal activation of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis and gonadal development is initiated by gonadotropin-releasing hormone-I (GnRH) release from the hypothalamus. In photoperiodic species, the consistent annual change in photoperiod is the primary environmental signal affecting GnRH cell activity, including changes in the synthesis and secretion of this neuropeptide. Non-photoperiodic environmental cues such as energy availability also influence HPG axis activity, but the mechanisms mediating this influence, in particular on the GnRH system, are unclear. Understanding how the neuroendocrine system integrates environmental information is critical in determining the plasticity and adaptability of physiological responses to changing environments. The primary objective of this study was to investigate GnRH-mediated changes in HPG axis activity and gonadal development in response to energy availability in a wild bird. We hypothesized that negative energy balance inhibits HPG axis activity by affecting GnRH secretion. Moderate food restriction for several weeks in male house finches, Haemorhous mexicanus, decreased body condition and inhibited photoinduced testicular growth compared to birds fed ad libitum. Food restriction did not affect plasma luteinizing hormone (LH; a correlate of GnRH release) or plasma testosterone, but it enhanced the plasma LH response to an injection of the glutamatergic agonist, N-methyl-D-aspartate (NMDA). Thus, food restriction may decrease photoinduced HPG axis activation by acting centrally, in particular by attenuating the release of accumulated GnRH stores.
Collapse
Affiliation(s)
- Shelley Valle
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | - Chandrima Das
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
48
|
Ubuka T, Tsutsui K. Reproductive neuroendocrinology of mammalian gonadotropin-inhibitory hormone. Reprod Med Biol 2019; 18:225-233. [PMID: 31312100 PMCID: PMC6613023 DOI: 10.1002/rmb2.12272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Gonadotropin-inhibitory hormone (GnIH) was discovered in the Japanese quail brain in 2000 as a hypothalamic neuropeptide that suppresses luteinizing hormone release from cultured quail anterior pituitary. METHODS The authors investigated the existence of mammalian orthologous peptides to GnIH and their physiological functions in the following 19 years of research. MAIN FINDINGS Mammals have orthologous peptide to GnIH, often described RFamide-related peptide, expressed in the hypothalamus and gonads. Mammalian GnIH may also suppress gonadotropin synthesis and release by suppressing gonadotropin-releasing hormone (GnRH) synthesis and release in addition to directly suppressing gonadotropin synthesis and release from the pituitary. Mammalian GnIH may also suppress kisspeptin, a stimulator of GnRH, release. Mammalian GnIH is also expressed in the testis and ovary and suppresses gametogenesis and sex steroid production acting in an autocrine/paracrine manner. Thus, mammalian GnIH may act at all levels of the hypothalamic-pituitary-gonadal axis to suppress reproduction. GnIH may be involved in the regulation of puberty, estrous or menstrual cycle, seasonal reproduction, and stress responses. CONCLUSION Studies suggest that mammalian GnIH is an important neuroendocrine suppressor of reproduction in mammals.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life ScienceWaseda UniversityShinjukuJapan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life ScienceWaseda UniversityShinjukuJapan
| |
Collapse
|
49
|
Dardente H, Wood S, Ebling F, Sáenz de Miera C. An integrative view of mammalian seasonal neuroendocrinology. J Neuroendocrinol 2019; 31:e12729. [PMID: 31059174 DOI: 10.1111/jne.12729] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022]
Abstract
Seasonal neuroendocrine cycles that govern annual changes in reproductive activity, energy metabolism and hair growth are almost ubiquitous in mammals that have evolved at temperate and polar latitudes. Changes in nocturnal melatonin secretion regulating gene expression in the pars tuberalis (PT) of the pituitary stalk are a critical common feature in seasonal mammals. The PT sends signal(s) to the pars distalis of the pituitary to regulate prolactin secretion and thus the annual moult cycle. The PT also signals in a retrograde manner via thyroid-stimulating hormone to tanycytes, which line the ventral wall of the third ventricle in the hypothalamus. Tanycytes show seasonal plasticity in gene expression and play a pivotal role in regulating local thyroid hormone (TH) availability. Within the mediobasal hypothalamus, the cellular and molecular targets of TH remain elusive. However, two populations of hypothalamic neurones, which produce the RF-amide neuropeptides kisspeptin and RFRP3 (RF-amide related peptide 3), are plausible relays between TH and the gonadotrophin-releasing hormone-pituitary-gonadal axis. By contrast, the ways by which TH also impinges on hypothalamic systems regulating energy intake and expenditure remain unknown. Here, we review the neuroendocrine underpinnings of seasonality and identify several areas that warrant further research.
Collapse
Affiliation(s)
- Hugues Dardente
- Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Shona Wood
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, Norway
| | - Francis Ebling
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
50
|
Cázarez-Márquez F, Milesi S, Laran-Chich MP, Klosen P, Kalsbeek A, Simonneaux V. Kisspeptin and RFRP3 modulate body mass in Phodopus sungorus via two different neuroendocrine pathways. J Neuroendocrinol 2019; 31:e12710. [PMID: 30887598 DOI: 10.1111/jne.12710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 01/15/2023]
Abstract
Many animals exhibit remarkable metabolic and reproductive adaptations to seasonal changes in their environment. When day length shortens, Djungarian hamsters (Phodopus sungorus) reduce their body weight and inhibit their reproductive activity, whereas the opposite occurs in springtime. These physiological adaptations are considered to depend on photoperiodic changes in hypothalamic genes encoding the peptides kisspeptin (Kp) and RFamide-related peptide 3 (RFRP3) for the control of reproduction, as well as pro-opiomelanocortin and somatostatin for metabolic regulation. The present study investigates the effect of Kp and RFRP3 on long-term body weight regulation, aiming to establish whether metabolic and reproductive hypothalamic networks may interact during adaptation to seasonal physiology. We found that chronic central administration of both Kp and RFRP3 in short photoperiod-adapted male Djungarian hamsters increased body weight, although via different pathways. The effect of Kp was dependent on testicular activity because castration prevented the body weight increase and was associated with an increase in pro-opiomelanocortin and neuropeptide Y expression. On the other hand, the orexigenic effect of RFRP3 was associated with an increase in circulating insulin and leptin levels, although it had no effect on any of the hypothalamic metabolic genes investigated, and did not change circulating levels of sex steroids. Notably, neither Kp, nor RFRP3 altered female hamster metabolic parameters. Thus, using a rodent model exhibiting seasonal changes in reproduction and metabolism, the present study demonstrates that, in addition to its role in the central control of reproduction, Kp also participates in body weight control in a sex-dependent manner via an anabolic action of testosterone. Conversely, RFRP3 affects body weight control in males mostly by acting on adiposity, with no overt effect on the reproductive system in both sexes.
Collapse
Affiliation(s)
- Fernando Cázarez-Márquez
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
- Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastien Milesi
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| | | | - Paul Klosen
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Valérie Simonneaux
- Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| |
Collapse
|