1
|
Acharya B, McGlade CA, Yin H, Kawano T, Haar L, Mackman N, Sellers RS, Tan X, Bhatt AP, Lawrence DS, Vickerman BM. Photothrombolytics: A light-driven technology for the targeted lysis of thrombi. J Control Release 2025; 378:281-293. [PMID: 39615753 PMCID: PMC11830540 DOI: 10.1016/j.jconrel.2024.11.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
Occlusive blood clots remain a significant global health challenge and result in emergencies that are main causes of death and disability worldwide. Thrombolytic agents (including tissue plasminogen activator, tPA) are the only pharmacological means to dissolve blood clots. However, these drugs have modest efficacy and severe safety concerns persist. We have developed light-responsive tPA-loaded red blood cells (tPA-RBCsPhoto) to target thrombolytic activity at the site of a blood clot. Herein, we describe the use of light to control the release of tPA from engineered RBCs and the subsequent degradation of a blood clot ex vivo. Furthermore, we have employed this technology to restore blood flow to an occluded mouse artery in vivo using a targeted dose that is 25 times lower than conventional systemic tPA treatment.
Collapse
Affiliation(s)
- Basanta Acharya
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Caylie A McGlade
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Haifeng Yin
- McAllister Heart Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Tomohiro Kawano
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Lauren Haar
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Rani S Sellers
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Xianming Tan
- Department of Biostatistics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Aadra P Bhatt
- Division of Gastroenterology & Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - David S Lawrence
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Brianna M Vickerman
- Eshelman Innovation, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
2
|
Tran MD, Yasamanova AN, Avakian GG, Nikonova AA, Kamchatnov PR. [The multidirectional effects of thrombin and the possibility of their control in neurology]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:42-48. [PMID: 38512094 DOI: 10.17116/jnevro202412403242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The review presents the main physiological functions of thrombin. The procoagulant and anticoagulant activities of the key serine protease are discussed in both physiological and pathological conditions of hemostasis. The involvement of thrombin in atherogenesis, as well as its role as a mediator of vascular dysfunction and inflammation in both the peripheral and central nervous system, is highlighted. A pronounced imbalance between the pro- and anticoagulant systems leads to an increase in thrombin formation and creates conditions for the development of thrombosis. Tests that allow direct or indirect assessment of thrombin's functional activity are presented. The potential applications of direct thrombin inhibitors and direct blockers of thrombin PAR receptors in vascular neurology are also considered.
Collapse
Affiliation(s)
- M D Tran
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A N Yasamanova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - G G Avakian
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A A Nikonova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - P R Kamchatnov
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
3
|
Yang CC, Lee IT, Lin YJ, Wu WB, Hsiao LD, Yang CM. Thrombin-Induced COX-2 Expression and PGE 2 Synthesis in Human Tracheal Smooth Muscle Cells: Role of PKCδ/Pyk2-Dependent AP-1 Pathway Modulation. Int J Mol Sci 2023; 24:15130. [PMID: 37894811 PMCID: PMC10606820 DOI: 10.3390/ijms242015130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, we confirmed that thrombin significantly increases the production of COX-2 and PGE2 in human tracheal smooth muscle cells (HTSMCs), leading to inflammation in the airways and lungs. These molecules are well-known contributors to various inflammatory diseases. Here, we investigated in detail the involved signaling pathways using specific inhibitors and small interfering RNAs (siRNAs). Our results demonstrated that inhibitors targeting proteins such as protein kinase C (PKC)δ, proline-rich tyrosine kinase 2 (Pyk2), c-Src, epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), or activator protein-1 (AP-1) effectively reduced thrombin-induced COX-2 and PGE2 production. Additionally, transfection with siRNAs against PKCδ, Pyk2, c-Src, EGFR, protein kinase B (Akt), or c-Jun mitigated these responses. Furthermore, our observations revealed that thrombin stimulated the phosphorylation of key components of the signaling cascade, including PKCδ, Pyk2, c-Src, EGFR, Akt, and c-Jun. Thrombin activated COX-2 promoter activity through AP-1 activation, a process that was disrupted by a point-mutated AP-1 site within the COX-2 promoter. Finally, resveratrol (one of the most researched natural polyphenols) was found to effectively inhibit thrombin-induced COX-2 expression and PGE2 release in HTSMCs through blocking the activation of Pyk2, c-Src, EGFR, Akt, and c-Jun. In summary, our findings demonstrate that thrombin-induced COX-2 and PGE2 generation involves a PKCδ/Pyk2/c-Src/EGFR/PI3K/Akt-dependent AP-1 activation pathway. This study also suggests the potential use of resveratrol as an intervention for managing airway inflammation.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taoyuan 333008, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Yan-Jyun Lin
- Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung 406040, Taiwan;
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| |
Collapse
|
4
|
Farrugia BL, Melrose J. The Glycosaminoglycan Side Chains and Modular Core Proteins of Heparan Sulphate Proteoglycans and the Varied Ways They Provide Tissue Protection by Regulating Physiological Processes and Cellular Behaviour. Int J Mol Sci 2023; 24:14101. [PMID: 37762403 PMCID: PMC10531531 DOI: 10.3390/ijms241814101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This review examines the roles of HS-proteoglycans (HS-PGs) in general, and, in particular, perlecan and syndecan as representative examples and their interactive ligands, which regulate physiological processes and cellular behavior in health and disease. HS-PGs are essential for the functional properties of tissues both in development and in the extracellular matrix (ECM) remodeling that occurs in response to trauma or disease. HS-PGs interact with a biodiverse range of chemokines, chemokine receptors, protease inhibitors, and growth factors in immune regulation, inflammation, ECM stabilization, and tissue protection. Some cell regulatory proteoglycan receptors are dually modified hybrid HS/CS proteoglycans (betaglycan, CD47). Neurexins provide synaptic stabilization, plasticity, and specificity of interaction, promoting neurotransduction, neurogenesis, and differentiation. Ternary complexes of glypican-1 and Robbo-Slit neuroregulatory proteins direct axonogenesis and neural network formation. Specific neurexin-neuroligin complexes stabilize synaptic interactions and neural activity. Disruption in these interactions leads to neurological deficits in disorders of functional cognitive decline. Interactions with HS-PGs also promote or inhibit tumor development. Thus, HS-PGs have complex and diverse regulatory roles in the physiological processes that regulate cellular behavior and the functional properties of normal and pathological tissues. Specialized HS-PGs, such as the neurexins, pikachurin, and Eyes-shut, provide synaptic stabilization and specificity of neural transduction and also stabilize the axenome primary cilium of phototoreceptors and ribbon synapse interactions with bipolar neurons of retinal neural networks, which are essential in ocular vision. Pikachurin and Eyes-Shut interactions with an α-dystroglycan stabilize the photoreceptor synapse. Novel regulatory roles for HS-PGs controlling cell behavior and tissue function are expected to continue to be uncovered in this fascinating class of proteoglycan.
Collapse
Affiliation(s)
- Brooke L. Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School (Northern), University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
5
|
Thrombin Induces COX-2 and PGE2 Expression via PAR1/PKCalpha/MAPK-Dependent NF-kappaB Activation in Human Tracheal Smooth Muscle Cells. Mediators Inflamm 2022; 2022:4600029. [PMID: 35497094 PMCID: PMC9042634 DOI: 10.1155/2022/4600029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
The inflammation of the airway and lung could be triggered by upregulation cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) induced by various proinflammatory factors. COX-2 induction by thrombin has been shown to play a vital role in various inflammatory diseases. However, in human tracheal smooth muscle cells (HTSMCs), how thrombin enhanced the levels of COX-2/PGE2 is not completely characterized. Thus, in this study, the levels of COX-2 expression and PGE2 synthesis induced by thrombin were determined by Western blot, promoter-reporter assay, real-time PCR, and ELISA kit. The various signaling components involved in the thrombin-mediated responses were differentiated by transfection with siRNAs and selective pharmacological inhibitors. The role of NF-κB was assessed by a chromatin immunoprecipitation (ChIP) assay, immunofluorescent staining, as well as Western blot. Our results verified that thrombin markedly triggered PGE2 secretion via COX-2 upregulation which were diminished by the inhibitor of thrombin (PPACK), PAR1 (SCH79797), Gi/o protein (GPA2), Gq protein (GPA2A), PKCα (Gö6976), p38 MAPK (SB202190), JNK1/2 (SP600125), MEK1/2 (U0126), or NF-κB (helenalin) and transfection with siRNA of PAR1, Gqα, Giα, PKCα, JNK2, p38, p42, or p65. Moreover, thrombin induced PAR1-dependent PKCα phosphorylation in HTSMCs. We also observed that thrombin induced p38 MAPK, JNK1/2, and p42/p44 MAPK activation through a PAR1/PKCα pathway. Thrombin promoted phosphorylation of NF-κB p65, leading to nuclear translocation and binding to the COX-2 promoter element to enhance promoter activity, which was reduced by Gö6976, SP600125, SB202190, or U0126. These findings supported that COX-2/PGE2 expression triggered by thrombin was engaged in PAR1/Gq or Gi/o/PKCα/MAPK-dependent NF-κB activation in HTSMCs.
Collapse
|
6
|
Gorzelak-Pabiś P, Broncel M, Pawlos A, Wojdan K, Gajewski A, Chałubiński M, Woźniak E. Dabigatran: its protective effect against endothelial cell damage by oxysterol. Biomed Pharmacother 2022; 147:112679. [PMID: 35121342 DOI: 10.1016/j.biopha.2022.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Recent data showed that dabigatran can reduce not only procoagulatory effects but also block proinflammatory stimuli by inhibiting the expression of cytokines and chemokines and reducing thrombin-induced endothelial permeability. The aim of our study was to assess the effect of dabigatran on the integrity and inflammatory properties of endothelial cells stimulated by 25-hydroxycholesterol (25-OHC, oxysterol). HUVECs (Human Umbilical Vein Endothelial Cells) were stimulated with 25-hydroxycholesterol 10 µg/ml, dabigatran 100 ng/ml or 500 ng/ml and 25-hydroxycholesterol + dabigatran (100 ng/ml, 500 ng/ml). HUVEC integrity and permeability was measured in the RTCA-DP xCELLigence system and by the paracellular flux system. The mRNA expression of ICAM-1, VEGF, IL-33, MCP-1 and TNF-α was analyzed by Real-time PCR. Cell apoptosis and viability was measured by flow cytometry. VEGF protein concentration was assessed in supernatants by ELISA. VE-cadherin expression in endothelial cells was evaluated by confocal microscopy. Pre-stimulation of HUVECs with 25-OHC decreased endothelial cell integrity (p < 0.001) and increased the expression of IL-33, ICAM-1, MCP-1, VEGF, TNF-α mRNA (p < 0.01) compared to unstimulated controls. Following stimulation of HUVECs with dabigatran 100 ng/ml or 500 ng/ml restored HUVEC integrity interrupted by 25-OHC (p < 0.001). In HUVECs pre-stimulated with oxysterol, dabigatran stimulation decreased mRNA expression of the proinflammatory cytokines IL-33 and TNF-α, chemokines MCP-1 ICAM-1 and VEGF (p < 0.01). Dabigatran 500 mg/ml+ 25-OHC increased the endothelial expression of VE-cadherin as compared to 25-OHC (p < 0.01). Our findings suggest that dabigatran stabilizes the endothelial barrier and inhibits the inflammation caused by oxysterol.
Collapse
Affiliation(s)
- Paulina Gorzelak-Pabiś
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland.
| | - Marlena Broncel
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Agnieszka Pawlos
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Katarzyna Wojdan
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Maciej Chałubiński
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Ewelina Woźniak
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| |
Collapse
|
7
|
Baicalin Alleviates Thrombin-Induced Inflammation in Vascular Smooth Muscle Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5799308. [PMID: 35097121 PMCID: PMC8799346 DOI: 10.1155/2022/5799308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/27/2021] [Indexed: 11/26/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of the arterial intima. As AS represents the most common type of vascular disease, it affects millions of individuals and is a source of high morbidity and mortality rates worldwide. Overwhelming evidence indicates that AS-related inflammation is mediated by proinflammatory cytokines, chemokines, adhesion molecules and inflammatory signaling pathways, with each of these factors being shown to play critical roles during the entire progression of AS. While a number of drugs have been approved for use in the treatment of AS, their benefits are modest, which underscores the urgency for the development of new drug therapies. In part, these deficits in effective drugs can be attributable to the lack of a clear understanding of the molecular mechanisms of AS. In this study, we investigate the capacity for thrombin to trigger inflammation and induce cell proliferation in vascular smooth muscle cells (VSMCs). We then assessed the effects of baicalin and its potential mechanisms on VSMC inflammation as induced by thrombin. Baicalin, which is a natural bioactive compound of S. baicalensis Georgi (SBG), exerted a protective effect against thrombin-induced VSMC inflammation as resulting from the upregulation of PAR-1. This protection as exerted by baicalin appears to reside in its capacity to produce an inhibitory effect on the thrombin-induced activation of the ERK1/2 pathway. These findings suggest that baicalin may be a promising candidate for the treatment of atherosclerosis.
Collapse
|
8
|
rDromaserpin: A Novel Anti-Hemostatic Serpin, from the Salivary Glands of the Hard Tick Hyalomma dromedarii. Toxins (Basel) 2021; 13:toxins13120913. [PMID: 34941750 PMCID: PMC8703697 DOI: 10.3390/toxins13120913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 01/17/2023] Open
Abstract
Hemostatic disorders are caused either by platelet-related dysfunctions, defective blood coagulation, or by a combination of both, leading to an increased susceptibility to cardiovascular diseases (CVD) and other related illnesses. The unique specificity of anticoagulants from hematophagous arthropods, such as ticks, suggests that tick saliva holds great promise for discovering new treatments for these life-threatening diseases. In this study, we combined in silico and in vitro analyses to characterize the first recombinant serpin, herein called Dromaserpin, from the sialotranscriptome of the Hyalomma dromedarii tick. Our in silico data described Dromaserpin as a secreted protein of ~43 kDa with high similarities to previously characterized inhibitory serpins. The recombinant protein (rDromaserpin) was obtained as a well-structured monomer, which was tested using global blood coagulation and platelet aggregation assays. With this approach, we confirmed rDromaserpin anticoagulant activity as it significantly delayed plasma clotting in activated partial thromboplastin time and thrombin time assays. The profiling of proteolytic activity shows its capacity to inhibit thrombin in the micromolar range (0.2 to 1 μM) and in the presence of heparin this inhibition was clearly increased. It was also able to inhibit Kallikrein, FXIa and slightly FXIIa, with no significant effect on other factors. In addition, the rDromaserpin inhibited thrombin-induced platelet aggregation. Taken together, our data suggest that rDromaserpin deserves to be further investigated as a potential candidate for developing therapeutic compounds targeting disorders related to blood clotting and/or platelet aggregation.
Collapse
|
9
|
Dekker NAM, van Leeuwen ALI, van Meurs M, Moser J, Pankras JE, van der Wel NN, Niessen HW, Vervloet MG, Vonk ABA, Hordijk PL, Boer C, van den Brom CE. Preservation of renal endothelial integrity and reduction of renal edema by aprotinin does not preserve renal perfusion and function following experimental cardiopulmonary bypass. Intensive Care Med Exp 2021; 9:30. [PMID: 34169407 PMCID: PMC8225734 DOI: 10.1186/s40635-021-00393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute kidney injury is a severe complication following cardiopulmonary bypass (CPB) and is associated with capillary leakage and microcirculatory perfusion disturbances. CPB-induced thrombin release results in capillary hyperpermeability via activation of protease-activated receptor 1 (PAR1). We investigated whether aprotinin, which is thought to prevent thrombin from activating PAR1, preserves renal endothelial structure, reduces renal edema and preserves renal perfusion and reduces renal injury following CPB. METHODS Rats were subjected to CPB after treatment with 33.000 KIU/kg aprotinin (n = 15) or PBS (n = 15) as control. A secondary dose of 33.000 KIU/kg aprotinin was given 60 min after initiation of CPB. Cremaster and renal microcirculatory perfusion were assessed using intravital microscopy and contrast echography before CPB and 10 and 60 min after weaning from CPB. Renal edema was determined by wet/dry weight ratio and renal endothelial structure by electron microscopy. Renal PAR1 gene and protein expression and markers of renal injury were determined. RESULTS CPB reduced cremaster microcirculatory perfusion by 2.5-fold (15 (10-16) to 6 (2-10) perfused microvessels, p < 0.0001) and renal perfusion by 1.6-fold (202 (67-599) to 129 (31-292) au/sec, p = 0.03) in control animals. Both did not restore 60 min post-CPB. This was paralleled by increased plasma creatinine (p < 0.01), neutrophil gelatinase-associated lipocalin (NGAL; p = 0.003) and kidney injury molecule-1 (KIM-1; p < 0.01). Aprotinin treatment preserved cremaster microcirculatory perfusion following CPB (12 (7-15) vs. 6 (2-10) perfused microvessels, p = 0.002), but not renal perfusion (96 (35-313) vs. 129 (31-292) au/s, p > 0.9) compared to untreated rats. Aprotinin treatment reduced endothelial gap formation (0.5 ± 0.5 vs. 3.1 ± 1.4 gaps, p < 0.0001), kidney wet/dry weight ratio (4.6 ± 0.2 vs. 4.4 ± 0.2, p = 0.046), and fluid requirements (3.9 ± 3.3 vs. 7.5 ± 3.0 ml, p = 0.006) compared to untreated rats. In addition, aprotinin treatment reduced tubulointerstitial neutrophil influx by 1.7-fold compared to untreated rats (30.7 ± 22.1 vs. 53.2 ± 17.2 neutrophil influx/section, p = 0.009). No differences were observed in renal PAR1 expression and plasma creatinine, NGAL or KIM-1 between groups. CONCLUSIONS Aprotinin did not improve renal perfusion nor reduce renal injury during the first hour following experimental CPB despite preservation of renal endothelial integrity and reduction of renal edema.
Collapse
Affiliation(s)
- Nicole A M Dekker
- Department of Anesthesiology, Experimental Laboratory for Vital Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands. .,Department of Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands. .,Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Anoek L I van Leeuwen
- Department of Anesthesiology, Experimental Laboratory for Vital Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Matijs van Meurs
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands.,Department of Critical Care Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Jill Moser
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands.,Department of Critical Care Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeannette E Pankras
- Department of Medical Biology, Electron Microscopy Centre Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole N van der Wel
- Department of Medical Biology, Electron Microscopy Centre Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans W Niessen
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marc G Vervloet
- Department of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Alexander B A Vonk
- Department of Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Christa Boer
- Department of Anesthesiology, Experimental Laboratory for Vital Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology, Experimental Laboratory for Vital Signs, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Wang Y, Xu M, Yang N, Gao S, Li S, Zhang J, Bi Y, Ren S, Hou Y, Jiang M, Liu J, Hu Y, Gao L, Cao F. A Thrombin-Responsive Nanoprobe for In Vivo Visualization of Thrombus Formation through Three-Dimensional Optical/Computed Tomography Hybrid Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27814-27824. [PMID: 34102839 DOI: 10.1021/acsami.1c04065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Early spontaneous detection of thrombin activation benefits precise theranostics for thrombotic vascular disease. Herein, a thrombin-responsive nanoprobe conjugated by a FITC dye, PEGylated Fe3O4 nanoparticles, and a thrombin-sensitive peptide (LASG) was constructed to visualize thrombin activation and subsequent thrombosis in vivo. The FITC dye was linked to the LASG coated on the Fe3O4 nanoparticles for sensing the thrombin activity via the Förster resonance energy transfer effect. In vitro fluorescence imaging showed that the fluorescence signal intensity increased significantly after incubation with thrombin in contrast to that of the control group (p < 0.05), and the signal intensity was enhanced with the increase in thrombin concentration. Further in vivo fluorescence imaging also revealed that the signal elevated markedly in the left common carotid artery (LCCA) lesion of the mice thrombosis model after nanoprobe injection, in contrast to that of the control + nanoprobe group (p < 0.05). Moreover, the thrombin inhibitor bivalirudin could decrease the filling defect of the LCCA. Three-dimensional fusion images of micro-CT and fluorescence confirmed that filling defects in the LCCA were nicely colocalized with fluorescence signal caused by nanoprobes. The nanoplatform based on a thrombin-activatable visualization system could provide smart responsive and dynamic imaging of thrombosis in vivo.
Collapse
Affiliation(s)
- Yabin Wang
- Department of Cardiology &National Clinical Research Center of Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Mengqi Xu
- Department of Cardiology &National Clinical Research Center of Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Ning Yang
- Department of Cardiology &National Clinical Research Center of Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Shan Gao
- Department of Cardiology &National Clinical Research Center of Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Sulei Li
- Department of Cardiology &National Clinical Research Center of Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jibin Zhang
- Department of Cardiology &National Clinical Research Center of Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yiming Bi
- Department of Cardiology &National Clinical Research Center of Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Shenghan Ren
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yi Hou
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Jiang
- Department of Cardiology &National Clinical Research Center of Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Junsong Liu
- Department of Cardiology &National Clinical Research Center of Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yazhuo Hu
- Department of Cardiology &National Clinical Research Center of Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Gao
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
- Department of Cardiology, 1st Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Feng Cao
- Department of Cardiology &National Clinical Research Center of Geriatric Disease, 2nd Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
11
|
Shlobin NA, Har-Even M, Itsekson-Hayosh Z, Harnof S, Pick CG. Role of Thrombin in Central Nervous System Injury and Disease. Biomolecules 2021; 11:562. [PMID: 33921354 PMCID: PMC8070021 DOI: 10.3390/biom11040562] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Thrombin is a Na+-activated allosteric serine protease of the chymotrypsin family involved in coagulation, inflammation, cell protection, and apoptosis. Increasingly, the role of thrombin in the brain has been explored. Low concentrations of thrombin are neuroprotective, while high concentrations exert pathological effects. However, greater attention regarding the involvement of thrombin in normal and pathological processes in the central nervous system is warranted. In this review, we explore the mechanisms of thrombin action, localization, and functions in the central nervous system and describe the involvement of thrombin in stroke and intracerebral hemorrhage, neurodegenerative diseases, epilepsy, traumatic brain injury, and primary central nervous system tumors. We aim to comprehensively characterize the role of thrombin in neurological disease and injury.
Collapse
Affiliation(s)
- Nathan A. Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ze’ev Itsekson-Hayosh
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer 5262000, Israel
| | - Sagi Harnof
- Department of Neurosurgery, Beilinson Hospital, Rabin Medical Center, Tel Aviv University, Petah Tikva 4941492, Israel;
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Serna-García M, Peiró R, Serna E, Santacreu MA. Ovarian Transcriptomic Analysis Reveals Differential Expression Genes Associated with Cell Death Process after Selection for Ovulation Rate in Rabbits. Animals (Basel) 2020; 10:ani10101924. [PMID: 33092110 PMCID: PMC7593938 DOI: 10.3390/ani10101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Transcriptomic analysis showed nineteen potential biomarkers in ovarian tissue from females belonged to a rabbit line selected for ovulation rate for 10 generations and the control line. These females differed not only in ovulation rate but also in prenatal survival since similar litter size were observed. Abstract Litter size is an essential trait in rabbit meat production but with low heritability. A selection experiment for ovulation rate has been performed for 10 generations to improve litter size in rabbits. The selected line increased two ova more than the control line but nevertheless a negative correlation was observed with prenatal survival. A transcriptomic study was performed, using microarrays, in ovarian tissue from females belonging to the selected line and the control line. Our results showed 1357 differential expressed genes and nineteen potential biomarkers associated with prenatal mortality, which could explain differences between litter size in rabbits. Cell death was the most relevant process.
Collapse
Affiliation(s)
- Marta Serna-García
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain;
- Faculty of Agricultural and Veterinary Sciences, São Paulo State University, FCAV/UNESP, Jaboticabal 14884-900, São Paulo, Brazil
| | - Rosa Peiró
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Eva Serna
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- Correspondence: (E.S.); (M.A.S.); Tel.: +34-963864100 (ext. 83171) (E.S.); +34-963879436 (M.A.S.)
| | - María Antonia Santacreu
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain;
- Correspondence: (E.S.); (M.A.S.); Tel.: +34-963864100 (ext. 83171) (E.S.); +34-963879436 (M.A.S.)
| |
Collapse
|
13
|
Duarte RCF, Rios DRA, Figueiredo EL, Caiaffa JRS, Silveira FR, Lanna R, Alves LCV, Martins GL, Reis HJ, Reis EA, Ferreira CN, Sternick EB, Campos FMF, das Graças Carvalho M. Thrombin Generation and other hemostatic parameters in patients with atrial fibrillation in use of warfarin or rivaroxaban. J Thromb Thrombolysis 2020; 51:47-57. [PMID: 32377955 DOI: 10.1007/s11239-020-02126-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Patients with atrial fibrillation (AF) present hyperactivation of both platelets and coagulation leading to a hypercoagulable state which contributes to an increased risk of thromboembolism. Therefore, one of the main strategies for treatment of AF is prevention of these events through the use of oral anticoagulants (OAC). The aim of this study was to evaluate hemostasis as a whole in patients with non-valvular AF undergoing warfarin or rivaroxaban by thrombin generation test (TGT), in addition to monocyte-platelet aggregates (MPA), glycoprotein IIb/IIIa (GPIIb/IIIa), and platelet (PMP) and endothelium (EMP) microparticles, compared to age and sex matched controls. PT/INR for OAC use was also determined. In patients taking OAC, compared to control group, a decrease in TGT (p = 0.000 for all parameters) were observed. Patients taking warfarin showed to be more hypocoagulable, presenting lower levels of ETP (p = 0.000) and peak (p = 0.002) than patients using rivaroxaban. Patients on warfarin use with INR > 3 had also lower levels of ETP (p = 0.01) and peak (p = 0.006). A decrease in ETP (p = 0.03) and peak (p = 0.02) values was also observed in patients using rivaroxaban with PT > 21.4 s. Patients using warfarin (p = 0.000) and rivaroxaban (p = 0.000) presented lower levels of MPA in relation to control group. It was also observed in patients using warfarin, lower GPIIb/IIIa levels in relation to control group (p = 0.011). Patients taking rivaroxaban (p = 0.003) and warfarin (p = 0.001) had higher PMP levels compared to control group. There was no difference in levels of EMP between the groups (p = 0.0536). The present study reinforces the usefulness of OAC in AF, which decisively contribute to a better management of the disease preventing possible complications.
Collapse
Affiliation(s)
- Rita Carolina Figueiredo Duarte
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy - Federal, University of Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, 31270-910, Brazil
| | | | | | | | | | | | - Luan Carlos Vieira Alves
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy - Federal, University of Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, 31270-910, Brazil
| | - Gabriela Lopes Martins
- Institute of Biological Sciences of Federal, University of Minas Gerais, Belo Horizonte, Brazil
| | - Helton José Reis
- Institute of Biological Sciences of Federal, University of Minas Gerais, Belo Horizonte, Brazil
| | - Edna Afonso Reis
- Institute of Exact Sciences of Federal, University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Fernanda Magalhães Freire Campos
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy - Federal, University of Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, 31270-910, Brazil
| | - Maria das Graças Carvalho
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy - Federal, University of Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, 31270-910, Brazil.
| |
Collapse
|
14
|
Thrombin Upregulates PAI-1 and Mesothelial-Mesenchymal Transition Through PAR-1 and Contributes to Tuberculous Pleural Fibrosis. Int J Mol Sci 2019; 20:ijms20205076. [PMID: 31614900 PMCID: PMC6834128 DOI: 10.3390/ijms20205076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/19/2023] Open
Abstract
Thrombin is an essential procoagulant and profibrotic mediator. However, its implication in tuberculous pleural effusion (TBPE) remains unknown. The effusion thrombin and plasminogen activator inhibitor-1 (PAI-1) levels were measured among transudative pleural effusion (TPE, n = 22) and TBPE (n = 24) patients. Pleural fibrosis, identified as radiological residual pleural thickening (RPT) and shadowing, was measured at 12-month follow-up. Moreover, in vivo and in vitro effects of thrombin on PAI-1 expression and mesothelial-mesenchymal transition (MMT) were assessed. We demonstrated the effusion thrombin levels were significantly higher in TBPE than TPE, especially greater in TBPE patients with RPT > 10mm than those without, and correlated positively with PAI-1 and pleural fibrosis area. In carbon black/bleomycin-treated mice, knockdown of protease-activated receptor-1 (PAR-1) markedly downregulated α-smooth muscle actin (α-SMA) and fibronectin, and attenuated pleural fibrosis. In pleural mesothelial cells (PMCs), thrombin concentration-dependently increased PAI-1, α-SMA, and collagen I expression. Specifically, Mycobacterium tuberculosis H37Ra (MTBRa) induced thrombin production by PMCs via upregulating tissue factor and prothrombin, and PAR-1 silencing considerably abrogated MTBRa-stimulated PAI-1 expression and MMT. Consistently, prothrombin/PAR-1 expression was evident in the pleural mesothelium of TBPE patients. Conclusively, thrombin upregulates PAI-1 and MMT and may contribute to tuberculous pleural fibrosis. Thrombin/PAR-1 inhibition may confer potential therapy for pleural fibrosis.
Collapse
|
15
|
Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nat Commun 2019; 10:3224. [PMID: 31324782 PMCID: PMC6642099 DOI: 10.1038/s41467-019-11140-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Proteolytic homeostasis is important at mucosal surfaces, but its actors and their precise role in physiology are poorly understood. Here we report that healthy human and mouse colon epithelia are a major source of active thrombin. We show that mucosal thrombin is directly regulated by the presence of commensal microbiota. Specific inhibition of luminal thrombin activity causes macroscopic and microscopic damage as well as transcriptomic alterations of genes involved in host-microbiota interactions. Further, luminal thrombin inhibition impairs the spatial segregation of microbiota biofilms, allowing bacteria to invade the mucus layer and to translocate across the epithelium. Thrombin cleaves the biofilm matrix of reconstituted mucosa-associated human microbiota. Our results indicate that thrombin constrains biofilms at the intestinal mucosa. Further work is needed to test whether thrombin plays similar roles in other mucosal surfaces, given that lung, bladder and skin epithelia also express thrombin. The roles played by thrombin in the human intestinal mucosa are unclear. Here, the authors show that the commensal microbiota modulates epithelial production of active thrombin, which controls biofilm growth and contributes to protection of the mucosa from bacterial invasion.
Collapse
|
16
|
Jung HS, Gu J, Kim JE, Nam Y, Song JW, Kim HK. Cancer cell-induced neutrophil extracellular traps promote both hypercoagulability and cancer progression. PLoS One 2019; 14:e0216055. [PMID: 31034495 PMCID: PMC6488070 DOI: 10.1371/journal.pone.0216055] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction Neutrophils can generate extracellular net-like structures by releasing their DNA–histone complexes and antimicrobial peptides, which is called neutrophil extracellular traps (NETs). Various stimuli can induce NET formation. In particular, neutrophils and NET formation are abundant in tumor tissue. This study investigated how cancer cells induce NET formation and whether this NET formation promotes plasma thrombin generation and cancer progression. Methods Induction of NET formation by a pancreatic cancer cell line (AsPC-1) was assessed by measuring the histone–DNA complex level. The endogenous thrombin potential (ETP) was measured by thrombin generation assay. In vitro migration, invasion, and tubule formation assays were performed. The circulating levels of NET markers and hypercoagulability markers were assessed in 62 patients with pancreatobiliary malignancy and 30 healthy controls. Results AsPC-1 significantly induced NET formation in a dose-dependent manner. Conditioned medium (CM) from AsPC-1 also induced NETs. Interestingly, NET-formation was abolished by heat-inactivated CM, but not by lipid-extracted CM, suggesting an important role of protein components. A reactive oxygen species inhibitor did not inhibit cancer cell–induced NET formation, but prostaglandin E1 (PGE1, cyclic adenosine monophosphate inducer) and antithrombin did. NETs significantly increased ETP of normal plasma. Of note, NETs promoted cancer cell migration and invasion as well as angiogenesis, which were inhibited by histone-binding agents (heparin, polysialic acid), a DNA-degrading enzyme, and Toll-like receptor neutralizing antibodies. In patients with pancreatobiliary malignancy, elevated NET markers correlated well with hypercoagulability makers. Conclusion Our findings indicate that cancer cell–induced NET formation enhances both hypercoagulability and cancer progression and suggest that inhibitors of NET formation such as PGE1 and antithrombin can be potential therapeutics to reduce both hypercoagulability and cancer progression.
Collapse
Affiliation(s)
- Hye Soo Jung
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - JaYoon Gu
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Eun Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngwon Nam
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Woo Song
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
17
|
Dai Y, Dai S, Xie X, Ning J. Immobilizing argatroban and mPEG-NH2 on a polyethersulfone membrane surface to prepare an effective nonthrombogenic biointerface. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:608-628. [PMID: 30907698 DOI: 10.1080/09205063.2019.1595891] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yanling Dai
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Siyuan Dai
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaohui Xie
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jianping Ning
- Department of Nephrology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Tsai CC, Kuo FT, Lee SB, Chang YT, Fu HW. Endocytosis-dependent lysosomal degradation of Src induced by protease-activated receptor 1. FEBS Lett 2019; 593:504-517. [PMID: 30758841 DOI: 10.1002/1873-3468.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 11/08/2022]
Abstract
Src plays a critical role in regulating cellular responses induced by protease-activated receptor 1 (PAR1). Here, we found that PAR1 activation induces lysosomal degradation of Src. Src is associated and trafficked together with activated PAR1 to early endosomes and then sorted to lysosomes for degradation. Blocking agonist-induced endocytosis of PAR1 by inhibition of dynamin activity suppresses PAR1-induced degradation of Src. However, Src activity is neither required for agonist-induced PAR1 internalization nor required for Src degradation upon PAR1 activation. We show that PAR1 activation triggers endocytosis-dependent lysosomal degradation of Src in both human embryonic kidney 293 and human umbilical vein endothelial cells. Our finding provides a new paradigm for how an irreversibly activated receptor regulates its downstream signalling.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Fang-Ting Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Sung-Bau Lee
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.,College of Pharmacy, Taipei Medical University, Taiwan, Republic of China
| | - Yu-Ting Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Hua-Wen Fu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.,Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| |
Collapse
|
19
|
Kazakova OA, Khapchaev AY, Ragimov AA, Salimov EL, Shirinsky VP. Western Blotting-Based Quantitative Measurement of Myosin II Regulatory Light Chain Phosphorylation in Small Amounts of Non-muscle Cells. BIOCHEMISTRY (MOSCOW) 2019; 84:11-19. [DOI: 10.1134/s0006297919010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Ning Q. Main Complications of AECHB and Severe Hepatitis B (Liver Failure). ACUTE EXACERBATION OF CHRONIC HEPATITIS B 2019. [PMCID: PMC7498917 DOI: 10.1007/978-94-024-1603-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qin Ning
- Department of Infectious Disease, Tongji Hospital, Wuhan, China
| |
Collapse
|
21
|
Székely O, Miyazawa K, Lip GYH. Current and emerging pharmacotherapy for ischemic stroke prevention in patients with atrial fibrillation. Expert Opin Pharmacother 2018; 19:1999-2009. [PMID: 30359142 DOI: 10.1080/14656566.2018.1537368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Introduction: Atrial fibrillation (AF) is associated with high morbidity and mortality rates due to thromboembolic complications, and anticoagulation is central to the management of this common arrhythmia to prevent acute thromboembolic events. The traditional anticoagulants: heparin, fondaparinux, and vitamin K antagonists (VKA, e.g. warfarin, acenocoumarol or phenprocoumin) have long served as pharmacotherapy for ischemic stroke prophylaxis. Areas covered: In this review article, the authors provide an overview on current and emerging pharmacotherapy for ischemic stroke prevention. Furthermore, they review the data from novel therapeutic targets in the coagulation cascade, and investigational anticoagulant drugs currently assessed in preclinical and clinical studies. Expert opinion: The introduction of nonvitamin K antagonist oral anticoagulants (NOACs) was an important milestone, as these drugs show relative efficacy, safety, and convenience compared to the VKAs. Nevertheless, their clinical use still has some limitations with, for example, patients with severe renal impairment and those with mechanical heart valves, high bleeding risks, lack of standard laboratory monitoring and (some) reversal agents. To overcome some of these limitations, various attempts are now underway to discover new strategies and targets via the hemostatic pathway in order to develop new coagulation inhibiting drugs.
Collapse
Affiliation(s)
- Orsolya Székely
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK
| | - Kazuo Miyazawa
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK
| | - Gregory Yoke Hong Lip
- a Institute of Cardiovascular Sciences , University of Birmingham , Birmingham , UK.,b Liverpool Centre for Cardiovascular Science , University of Liverpool and Liverpool Heart & Chest Hospital , Liverpool , UK.,c Aalborg Thrombosis Research Unit , Aalborg University , Aalborg , Denmark
| |
Collapse
|
22
|
Storch AS, Rocha HNM, Garcia VP, Batista GMDS, Mattos JD, Campos MO, Fuly AL, Nóbrega ACLD, Fernandes IA, Rocha NG. Oscillatory shear stress induces hemostatic imbalance in healthy men. Thromb Res 2018; 170:119-125. [DOI: 10.1016/j.thromres.2018.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/28/2018] [Accepted: 08/24/2018] [Indexed: 01/27/2023]
|
23
|
Lee S, Ay C, Kopp CW, Panzer S, Gremmel T. Impaired glucose metabolism is associated with increased thrombin generation potential in patients undergoing angioplasty and stenting. Cardiovasc Diabetol 2018; 17:131. [PMID: 30268122 PMCID: PMC6162876 DOI: 10.1186/s12933-018-0774-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022] Open
Abstract
Background As a strong platelet agonist on the one hand and key molecule in plasmatic coagulation on the other hand, thrombin connects primary and secondary hemostasis. Thrombin generation potential reflects the individual capacity to generate thrombin, and has been associated with the occurrence of thromboembolic events. In the current study, we sought to identify predictors of thrombin generation potential in patients undergoing angioplasty and stenting for atherosclerotic cardiovascular disease. Methods Peak thrombin generation potential and area under the curve (AUC) of thrombin generation potential were determined with a commercially available assay in 315 patients on dual antiplatelet therapy 1 day after percutaneous intervention, and in 100 healthy individuals without cardiovascular disease. Results Median (interquartile range) peak thrombin generation potential and AUC of thrombin generation potential in the study cohort (n = 315) were significantly higher than in healthy individuals (n = 100) without cardiovascular disease (peak thrombin generation potential: 445.4 nM [354.5–551.8 nM] vs. 174.5 nM [141.2–261.2 nM]; AUC of thrombin generation potential: 5262.7 nM thrombin [4806.6–5756.9 nM thrombin] vs. 3405.2 nM thrombin [3043.6–3747.3 nM thrombin]; both p < 0.001). In patients undergoing angioplasty and stenting, hemoglobin A1c (HbA1c) was the only variable that was independently associated with both, peak thrombin generation potential and AUC of thrombin generation potential (both p ≤ 0.007). In contrast, platelet count and high-sensitivity C-reactive protein were only associated with peak thrombin generation potential, and body mass index and serum creatinine were only associated with AUC of thrombin generation potential after adjustment for covariates by multivariate linear regression analyses (all p < 0.05). Patients with HbA1c ≥ 6% had significantly higher peak thrombin generation potential and AUC of thrombin generation potential than patients with HbA1c < 6% (peak thrombin generation potential: 476.9 nM [385.8–577.9 nM] vs. 423.9 nM [335.8–529.5 nM], p = 0.002; AUC of thrombin generation potential: 5371.8 nM thrombin [4903 – 5899 nM thrombin] vs. 5172.5 nM thrombin [4731.8–5664.7 nM thrombin], p = 0.01). HbA1c ≥ 6% remained independently associated with both parameters of thrombin generation potential after multivariate linear regression analyses (both p ≤ 0.02). Conclusions Impaired glucose metabolism is associated with increased thrombin generation potential in patients undergoing angioplasty and stenting for cardiovascular disease.
Collapse
Affiliation(s)
- Silvia Lee
- Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Cihan Ay
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Christoph W Kopp
- Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Simon Panzer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Gremmel
- Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria. .,Department of Internal Medicine, Cardiology and Nephrology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria.
| |
Collapse
|
24
|
Fu X, Ning JP. Synthesis and biocompatibility of an argatroban-modified polysulfone membrane that directly inhibits thrombosis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:66. [PMID: 29744595 DOI: 10.1007/s10856-018-6054-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Anticoagulation therapy plays a vital role in the prevention of blood clot formation during hemodialysis and hemofiltration, especially for critical care patients. Here, we synthesized a novel argatroban (Arg)-modified polysulfone (PSf) membrane for anticoagulation. Arg was grafted onto the PSF membrane via chemical modification to increase membrane hydrophilicity. Protein adsorption, coagulation, as well as activation of platelets and complement systems were greatly reduced on the Arg-modified PSf membrane. Thus, the recalcification time and the activated partial thrombin time (APTT) were increased after the modification. In comparison with the pristine PSf membrane, the Arg-modified PSf membrane showed better hemocompatibility and anticoagulation properties, indicating its potential for applications in hemodialysis and hemofiltration. Modification of the PSf membrane has been investigated in attempts to further enhance the anticoagulation properties of the hemodialysis membranes, including a heparin-modified PSf membrane. However, heparin can inhibit plasma-free thrombin, and cause the occurrence of heparin-induced thrombocytopenia (HIT), which increases the risk of bleeding during dialysis in critical care patients. To address this problem, we modified PSf membrane with as a novel direct thrombin inhibitors, argatroban (Arg). It can reversibly bind to thrombin, inhibiting not only the plasma-free thrombin in the blood, but also clot-bound thrombin.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jian-Ping Ning
- Department of Nephropathy, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
25
|
Nam H, Kim E, Kim S, Kim Y, Kim J, Lee H, Nam C, Heo J. Prediction of thrombus resolution after intravenous thrombolysis assessed by CT-based thrombus imaging. Thromb Haemost 2017; 107:786-94. [DOI: 10.1160/th11-08-0585] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 01/05/2012] [Indexed: 11/05/2022]
Abstract
SummaryThe degree of thrombus resolution directly indicates the effectiveness of a thrombolytic drug. We investigated the degree of thrombus resolution and factors associated with thrombus resolution after intravenous (IV) recombinant tissue plasminogen activator (rt-PA) using thin-section noncontrast computed tomography (NCT). Thin-section NCTs were performed before and immediately after IV rt-PA infusion in acute stroke patients. The thrombus volume and Hounsfield unit were measured using three-dimensional imaging software. Immediate recanalisation was assessed immediately after IV rt-PA infusion using CT angiography. During a three-year study period, 130 patients were prospectively enrolled. On baseline thin-section NCT, no thrombi were found in 30 patients (23%). Among the 100 patients with confirmed thrombus, the median volume decreased by 20% on the follow-up NCT. The thrombus was completely resolved in 8%. Of note, an increase in thrombus volume was observed in 20 patients. Independent predictors of thrombus resolution were total rt-PA dose, thrombus location in the M2 segment of the middle cerebral artery, and time from baseline to follow-up NCT. Thrombus resolution increased by 9% per each 10-mg increase in rt-PA (p = 0.045). Immediate complete recanalisation was achieved in 12% of patients. Total dose of rt-PA was independently associated with complete recanalisation [odds ratio [OR] 4.52, 95% confidence interval [CI] 1.345–15.184) and good functional outcome at three months (modified Rankin scale score <3, OR 2.34, 95% CI 1.104–4.962). In conclusion, rt-PA dose was associated with the degree of thrombus resolution, immediate complete recanalisation, and good outcome at three months. CT-based thrombus imaging may be helpful in determining thrombolysis effectiveness.
Collapse
|
26
|
Tatour M, Shapira M, Axelman E, Ghanem S, Keren-Politansky A, Bonstein L, Brenner B, Nadir Y. Thrombin is a selective inducer of heparanase release from platelets and granulocytes via protease-activated receptor-1. Thromb Haemost 2017; 117:1391-1401. [DOI: 10.1160/th16-10-0766] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/09/2017] [Indexed: 12/23/2022]
Abstract
SummaryHeparanase, known to be involved in angiogenesis and metastasis, was shown to form a complex with tissue factor (TF) and to enhance the generation of factor Xa. Platelets and granulocytes contain abundant amounts of heparanase that may enhance the coagulation system upon discharge. It was the aim of this study to identify the inducer and pathway of heparanase release from these cells. Platelets and granulocytes were purified from pooled normal plasma and were incubated with ATP, ADP, epinephrine, collagen, ristocetin, arachidonic acid, serotonin, LPS and thrombin. Heparanase levels were assessed by ELISA, heparanase procoagulant activity assay and western blot analysis. The effects of selective protease-activated receptor (PAR)-1 and 2 inhibitors and PAR-1 and 4 activators were studied. An in-house synthesised inhibitory peptide to heparanase was used to evaluate platelet heparanase involvement in activation of the coagulation system. Heparanase was released from platelets only by thrombin induction while other inducers exerted no such effect. The heparanase level in a platelet was found to be 40 % higher than in a granulocyte. Heparanase released from platelets or granulocytes increased factor Xa generation by three-fold. PAR-1 activation via ERK intracellular pathway was found to induce heparanase release. In conclusion, heparanase is selectively released from platelets and granulocytes by thrombin interacting with PAR-1. Heparanase derived from platelets and granulocytes is involved in activation of the extrinsic coagulation pathway. The present study implies on a potential anticoagulant effect, in addition to anti-platelet effect, of the new clinically studied PAR-1 inhibitors.
Collapse
|
27
|
Low dose of alcohol attenuates pro-atherosclerotic activity of thrombin. Atherosclerosis 2017; 265:215-224. [DOI: 10.1016/j.atherosclerosis.2017.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/29/2017] [Accepted: 09/01/2017] [Indexed: 01/11/2023]
|
28
|
Iqbal A, Goldfeder MB, Marques-Porto R, Asif H, Souza JGD, Faria F, Chudzinski-Tavassi AM. Revisiting antithrombotic therapeutics; sculptin, a novel specific, competitive, reversible, scissile and tight binding inhibitor of thrombin. Sci Rep 2017; 7:1431. [PMID: 28469161 PMCID: PMC5431157 DOI: 10.1038/s41598-017-01486-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/30/2017] [Indexed: 02/01/2023] Open
Abstract
Thrombin is a multifunctional enzyme with a key role in the coagulation cascade. Its functional modulation can culminate into normal blood coagulation or thrombosis. Thus, the identification of novel potent inhibitors of thrombin are of immense importance. Sculptin is the first specific thrombin inhibitor identified in the transcriptomics analysis of tick’s salivary glands. It consists of 168 residues having four similar repeats and evolutionary diverged from hirudin. Sculptin is a competitive, specific and reversible inhibitor of thrombin with a Ki of 18.3 ± 1.9 pM (kon 4.04 ± 0.03 × 107 M−1 s−1 and koff 0.65 ± 0.04 × 10−3 s−1). It is slowly consumed by thrombin eventually losing its activity. Contrary, sculptin is hydrolyzed by factor Xa and each polypeptide fragment is able to inhibit thrombin independently. A single domain of sculptin alone retains ~45% of inhibitory activity, which could bind thrombin in a bivalent fashion. The formation of a small turn/helical-like structure by active site binding residues of sculptin might have made it a more potent thrombin inhibitor. In addition, sculptin prolongs global coagulation parameters. In conclusion, sculptin and its independent domain(s) have strong potential to become novel antithrombotic therapeutics.
Collapse
Affiliation(s)
- Asif Iqbal
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Mauricio Barbugiani Goldfeder
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Rafael Marques-Porto
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Huma Asif
- Laboratory of Gene Expression in Eukaryotes, Butantan Institute, São Paulo, SP, Brazil
| | - Jean Gabriel de Souza
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Fernanda Faria
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil. .,Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil.
| |
Collapse
|
29
|
Claushuis TAM, de Stoppelaar SF, Stroo I, Roelofs JJTH, Ottenhoff R, van der Poll T, Van't Veer C. Thrombin contributes to protective immunity in pneumonia-derived sepsis via fibrin polymerization and platelet-neutrophil interactions. J Thromb Haemost 2017; 15:744-757. [PMID: 28092405 DOI: 10.1111/jth.13625] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 01/20/2023]
Abstract
Essentials Immunity and coagulation are linked during sepsis but the role of thrombin is not fully elucidated. We investigated the effect of thrombin inhibition on murine Klebsiella pneumosepsis outcome. Thrombin is crucial for survival and limiting bacterial growth in pneumonia derived sepsis. Thrombin improves host defense via fibrin and enhancement of platelet-neutrophil interactions. SUMMARY Background Innate immunity and coagulation are closely linked during sepsis. Their interaction can be detrimental to the outcome because of microvascular failure but can also enhance host defense. The role of thrombin therein has not been fully elucidated. Objective We aimed to investigate the contribution of thrombin to the host response during pneumonia-derived sepsis. Methods Mice treated with the specific thrombin inhibitor dabigatran or control chow were infected with the common human sepsis pathogen Klebsiella (K.) pneumoniae via the airways. In subsequent infection experiments, mice were additionally treated with ancrod to deplete fibrinogen. Ex vivo Klebsiella growth was assessed by incubating human whole blood or specific blood components in various conditions with Klebsiella. Results Thrombin inhibition by dabigatran enhanced bacterial outgrowth and spreading, and accelerated mortality. Thrombin inhibition did not influence neutrophil recruitment to the lung or activation or neutrophil extracellular trap formation. Dabigatran reduced D-dimer formation and fibrin deposition in the lung. Fibrin depletion also enhanced bacterial outgrowth and spreading, and thrombin inhibition had no additional effect. Both thrombin and fibrin polymerization inhibited ex vivo Klebsiella outgrowth in human whole blood, which was neutrophil dependent, and the effect of thrombin required the presence of platelets and platelet protease activated receptor-1. In vivo thrombin inhibition reduced platelet-neutrophil complex formation and endothelial cell activation, but did not prevent sepsis-induced thrombocytopenia or organ damage. Conclusions These results suggest that thrombin plays an important role in protective immunity during pneumonia-derived sepsis by fibrin polymerization and enhancement of platelet-neutrophil interactions.
Collapse
Affiliation(s)
- T A M Claushuis
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - S F de Stoppelaar
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - I Stroo
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - J J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - R Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - T van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - C Van't Veer
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Megia-Fernandez A, Mills B, Michels C, Chankeshwara SV, Dhaliwal K, Bradley M. Highly selective and rapidly activatable fluorogenic Thrombin sensors and application in human lung tissue. Org Biomol Chem 2017; 15:4344-4350. [DOI: 10.1039/c7ob00663b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A fast and selective fluorogenic probe for Thrombin is reported and applied in ex vivo fibrotic human lung tissue.
Collapse
Affiliation(s)
| | - Bethany Mills
- EPSRC IRC Hub. Pulmonary Optical Molecular Imaging Group
- MRC/Centre of Inflammation Research
- Queen's Medical Research Institute
- University of Edinburgh
- Edinburgh
| | - Chesney Michels
- EPSRC IRC Hub. Pulmonary Optical Molecular Imaging Group
- MRC/Centre of Inflammation Research
- Queen's Medical Research Institute
- University of Edinburgh
- Edinburgh
| | | | - Kevin Dhaliwal
- EPSRC IRC Hub. Pulmonary Optical Molecular Imaging Group
- MRC/Centre of Inflammation Research
- Queen's Medical Research Institute
- University of Edinburgh
- Edinburgh
| | - Mark Bradley
- EaStChem
- School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
| |
Collapse
|
31
|
Brailoiu E, Shipsky MM, Yan G, Abood ME, Brailoiu GC. Mechanisms of modulation of brain microvascular endothelial cells function by thrombin. Brain Res 2016; 1657:167-175. [PMID: 27998795 DOI: 10.1016/j.brainres.2016.12.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/22/2016] [Accepted: 12/10/2016] [Indexed: 01/08/2023]
Abstract
Brain microvascular endothelial cells are a critical component of the blood-brain barrier. They form a tight monolayer which is essential for maintaining the brain homeostasis. Blood-derived proteases such as thrombin may enter the brain during pathological conditions like trauma, stroke, and inflammation and further disrupts the permeability of the blood-brain barrier, via incompletely characterized mechanisms. We examined the underlying mechanisms evoked by thrombin in rat brain microvascular endothelial cells (RBMVEC). Our results indicate that thrombin, acting on protease-activated receptor 1 (PAR1) increases cytosolic Ca2+ concentration in RBMVEC via Ca2+ release from endoplasmic reticulum through inositol 1,4,5-trisphosphate receptors and Ca2+ influx from extracellular space. Thrombin increases nitric oxide production; the effect is abolished by inhibition of the nitric oxide synthase or by antagonism of PAR1 receptors. In addition, thrombin increases mitochondrial and cytosolic reactive oxygen species production via PAR1-dependent mechanisms. Immunocytochemistry studies indicate that thrombin increases F-actin stress fibers, and disrupts the tight junctions. Thrombin increased the RBMVEC permeability assessed by a fluorescent flux assay. Taken together, our results indicate multiple mechanisms by which thrombin modulates the function of RBMVEC and may contribute to the blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Eugen Brailoiu
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Megan M Shipsky
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States
| | - Guang Yan
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States
| | - Mary E Abood
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States.
| |
Collapse
|
32
|
Abstract
BACKGROUND Increased thrombin generation in injured patients possibly contributes to early consumption of coagulation factors, exacerbating hemorrhage. Identifying optimal resuscitation products for restoring plasma homeostasis following injury is important for improving management of these patients. OBJECTIVES To determine the effects of crystalloid versus plasma resuscitation on thrombin generation in a rat model of trauma and hemorrhagic shock (HS). PATIENTS/METHODS Rats were subjected to trauma and HS followed by resuscitation with Lactated Ringer's solution (LR) or fresh frozen plasma (FFP). Blood was collected at baseline, decompensation, and 3-h post-resuscitation. Thrombin generation was measured by calibrated automated thrombogram and antithrombin III (AT) by ELISA. In a prospective observational study, admission blood samples were collected on highest-level activation trauma patients and diluted with LR or FFP for thrombin generation analysis. RESULTS Resuscitation with LR resulted in persistent hypercoagulability; however, FFP resuscitation reversed this hypercoagulability to baseline thrombin generation or below. Plasma AT levels decreased following HS and remained low in rats receiving LR, but were corrected in rats receiving FFP. Similarly, in trauma patient plasma LR increased thrombin generation while FFP reduced it. However, results with AT-deficient plasma dilution were similar to LR. In patients with admission hypocoagulability, FFP slightly increased thrombin generation. CONCLUSIONS HS in rats is associated with increased thrombin generation and resuscitation with FFP, not LR, reverses hypercoagulability. Dilution of trauma patient plasma with LR or FFP yielded similar results; however, the modulatory effects of FFP were attenuated when AT was absent. Importantly, FFP reduced thrombin generation in hypercoagulable patient plasma, but slightly increased thrombin generation in hypocoagulable patient plasma. Thus, FFP restores hemostatic balance following trauma and HS which is, in part, by delivering AT.
Collapse
|
33
|
Streng AS, de Boer D, van Doorn WP, Kocken JM, Bekers O, Wodzig WK. Cardiac troponin T degradation in serum is catalysed by human thrombin. Biochem Biophys Res Commun 2016; 481:165-168. [DOI: 10.1016/j.bbrc.2016.10.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
|
34
|
Abstract
The characterization and development of highly specific aptamers requires the analysis of the interaction strength between aptamer and target. MicroScale Thermophoresis (MST) is a rapid and precise method to quantify biomolecular interactions in solution at microliter scale. The basis of this technology is a physical effect referred to as thermophoresis, which describes the directed movement of molecules through temperature gradients. The thermophoretic properties of a molecule depend on its size, charge, and hydration shell. Since at least one of these parameters is altered upon binding of a ligand, this method can be used to analyze virtually any biomolecular interaction in any buffer or complex bioliquid. This section provides a detailed protocol describing how MST is used to obtain quantitative binding parameters for aptamer-target interactions. The two DNA-aptamers HD1 and HD22, which are targeted against human thrombin, are used as model systems to demonstrate a rapid and straightforward screening approach to determine optimal buffer conditions.
Collapse
|
35
|
Jumeau C, Rupin A, Chieng-Yane P, Mougenot N, Zahr N, David-Dufilho M, Hatem SN. Direct Thrombin Inhibitors Prevent Left Atrial Remodeling Associated With Heart Failure in Rats. JACC Basic Transl Sci 2016; 1:328-339. [PMID: 27642643 PMCID: PMC5012373 DOI: 10.1016/j.jacbts.2016.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 01/31/2023]
Abstract
The present study tested the hypothesis that thrombin participates in formation of left atrial remodeling and that direct oral anticoagulants, such as direct thrombin inhibitors (DTIs), can prevent its progression. In a rat model of heart failure associated with left atrial dilation, we found that chronic treatment with DTIs reduces the atrial remodeling and the duration of atrial fibrillation (AF) episodes induced by burst pacing by inhibiting myocardial hypertrophy and fibrosis. In addition to the prevention of thromboembolism complicating AF, DTIs may be of interest to slow down the progression of the arrhythmogenic substrate.
Collapse
Key Words
- AF, atrial fibrillation
- ANP, atrial natriuretic peptide
- BNP, brain natriuretic peptide
- CTGF, connective tissue growth factor
- DTI, direct thrombin inhibitor
- MHC, myosin heavy chain
- MI, myocardial infarction
- NFATc3, nuclear factor of activated T cells 3
- PAI, plasminogen activator inhibitor
- PAR, protease-activated receptor
- anticoagulant
- atrial arrhythmia
- direct thrombin inhibitor
- heart failure
- remodeling
Collapse
Affiliation(s)
- Céline Jumeau
- Sorbonne University, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche 1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Servier Research Institute, Suresnes, France
| | - Alain Rupin
- Servier Research Institute, Suresnes, France
| | | | - Nathalie Mougenot
- Inserm-Sorbonnes-Universités, Unité Mixte de Service 28 Université Pierre et Marie Curie, Paris, France
| | - Noël Zahr
- INSERM Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière Department of Pharmacology and Centre d'Investigation Clinique 1421, Paris, France
| | - Monique David-Dufilho
- Sorbonne University, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche 1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Stéphane N. Hatem
- Sorbonne University, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche 1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Cardiology Department, ICAN, Paris, France
| |
Collapse
|
36
|
Nafamostat mesilate improves function recovery after stroke by inhibiting neuroinflammation in rats. Brain Behav Immun 2016; 56:230-45. [PMID: 27033633 DOI: 10.1016/j.bbi.2016.03.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 01/20/2023] Open
Abstract
Inflammation plays an important role in stroke pathology, making it a promising target for stroke intervention. Nafamostat mesilate (NM), a wide-spectrum serine protease inhibitor, is commonly used for treating inflammatory diseases, such as pancreatitis. However, its effect on neuroinflammation after stroke was unknown. Hence, the effects of NM on the inflammatory response post stroke were characterized. After transient middle cerebral artery occlusion (tMCAO) in rats, NM reduced the infarct size, improved behavioral functions, decreased the expression of proinflammatory mediators (TNF-α, IL-1β, iNOS and COX-2) in a time-dependent manner and promoted the expression of different anti-inflammatory factors (CD206, TGF-β, IL-10 and IL-4) at different time points. Furthermore, NM could inhibit the expression of proinflammatory mediators and promote anti-inflammatory mediators expression in rat primary microglia following exposure to thrombin combined with oxygen-glucose deprivation (OGD). The immune-modulatory effect of NM might be partly due to its inhibition of the NF-κB signaling pathway and inflammasome activation after tMCAO. In addition, NM significantly inhibited the infiltration of macrophage, neutrophil and T lymphocytes, which was partly mediated by the inhibition of monocyte chemotactic protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Taken together, our results indicated that NM can provide long-term protection of the brain against tMCAO by modulating a broad components of the inflammatory response.
Collapse
|
37
|
Patella F, Neilson LJ, Athineos D, Erami Z, Anderson KI, Blyth K, Ryan KM, Zanivan S. In-Depth Proteomics Identifies a Role for Autophagy in Controlling Reactive Oxygen Species Mediated Endothelial Permeability. J Proteome Res 2016; 15:2187-97. [PMID: 27246970 DOI: 10.1021/acs.jproteome.6b00166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Endothelial cells (ECs) form the inner layer of blood vessels and physically separate the blood from the surrounding tissue. To support tissues with nutrients and oxygen, the endothelial monolayer is semipermeable. When EC permeability is altered, blood vessels are not functional, and this is associated with disease. A comprehensive knowledge of the mechanisms regulating EC permeability is key in developing strategies to target this mechanism in pathologies. Here we have used an in vitro model of human umbilical vein endothelial cells mimicking the formation of a physiologically permeable vessel and performed time-resolved in-depth molecular profiling using stable isotope labeling by amino acids in cell culture mass spectrometry (MS)-proteomics. Autophagy is induced when ECs are assembled into a physiologically permeable monolayer. By using siRNA and drug treatment to block autophagy in combination with functional assays and MS proteomics, we show that ECs require autophagy flux to maintain intracellular reactive oxygen species levels, and this is required to maintain the physiological permeability of the cells.
Collapse
Affiliation(s)
| | - Lisa J Neilson
- Cancer Research UK, Beatson Institute , Glasgow G611BD, U.K
| | | | - Zahra Erami
- Cancer Research UK, Beatson Institute , Glasgow G611BD, U.K
| | | | - Karen Blyth
- Cancer Research UK, Beatson Institute , Glasgow G611BD, U.K
| | - Kevin M Ryan
- Cancer Research UK, Beatson Institute , Glasgow G611BD, U.K
| | - Sara Zanivan
- Cancer Research UK, Beatson Institute , Glasgow G611BD, U.K
| |
Collapse
|
38
|
Effects on fibrinogen, fibrin, and blood coagulation of proteolytic extracts from fruits of Pseudananas macrodontes, Bromelia balansae, and B. hieronymi (Bromeliaceae) in comparison with bromelain. Blood Coagul Fibrinolysis 2016; 27:441-9. [DOI: 10.1097/mbc.0000000000000531] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin. Sci Rep 2016; 6:24043. [PMID: 27053426 PMCID: PMC4823711 DOI: 10.1038/srep24043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/14/2016] [Indexed: 11/26/2022] Open
Abstract
Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (<500 nM) and high selectivity for thrombin (>150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding.
Collapse
|
40
|
Novel pharmaceutical treatments for minimal traumatic brain injury and evaluation of animal models and methodologies supporting their development. J Neurosci Methods 2016; 272:69-76. [PMID: 26868733 DOI: 10.1016/j.jneumeth.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The need for effective pharmaceuticals within animal models of traumatic brain injury (TBI) continues to be paramount, as TBI remains the major cause of brain damage for children and young adults. While preventative measures may act to reduce the incidence of initial blunt trauma, well-tolerated drugs are needed to target the neurologically damaging internal cascade of molecular mechanisms that follow. Such processes, known collectively as the secondary injury phase, include inflammation, excitotoxicity, and apoptosis among other changes still subject to research. In this article positive treatment findings to mitigate this secondary injury in rodent TBI models will be overviewed, and include recent studies on Exendin-4, N-Acetyl-l-cycteine, Salubrinal and Thrombin. CONCLUSIONS These studies provide representative examples of methodologies that can be combined with widely available in vivo rodent models to evaluate therapeutic approaches of translational relevance, as well as drug targets and biochemical cascades that may slow or accelerate the degenerative processes induced by TBI. They employ well-characterized tests such as the novel object recognition task for assessing cognitive deficits. The application of such methodologies provides both decision points and a gateway for implementation of further translational studies to establish the feasibility of clinical efficacy of potential therapeutic interventions.
Collapse
|
41
|
Rühl H, Berens C, Winterhagen A, Müller J, Oldenburg J, Pötzsch B. Label-Free Kinetic Studies of Hemostasis-Related Biomarkers Including D-Dimer Using Autologous Serum Transfusion. PLoS One 2015; 10:e0145012. [PMID: 26658824 PMCID: PMC4684386 DOI: 10.1371/journal.pone.0145012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/25/2015] [Indexed: 12/29/2022] Open
Abstract
The objective of this study was to evaluate the elimination kinetics of hemostasis-related biomarkers including the prothrombin activation fragment F1+2, thrombin-antithrombin complex (TAT), plasmin-α2-antiplasmin complex (PAP), and D-dimer in humans. Autologous serum was used as a biomarker source and infused into 15 healthy volunteers. Serum was prepared from whole blood in the presence of recombinant tissue-type plasminogen activator (final concentration 20 μg/mL) to induce plasmin generation required for PAP and D-dimer formation. Serum transfusions (50 mL/30 min) were well tolerated by all subjects. Endogenous thrombin formation was not induced by serum infusions as measured using a highly sensitive oligonucleotide-based enzyme capture assay. Median peak levels (x-fold increase over baseline) of F1+2, TAT, PAP, and D-dimer of 3.7 nmol/L (28.9), 393 ng/mL (189.6), 3,829 ng/mL (7.0), and 13.4 mg/L (34.2) were achieved at the end of serum infusions. During a 48 h lasting follow-up period all biomarkers showed elimination kinetics of a two-compartment model. Median (interquartile range) terminal half-lives were 1.9 (1.3–3.6) h for F1+2, 0.7 (0.7–2.6) h for TAT, and 10.8 (8.8–11.4) h for PAP. With 15.8 (13.1–23.1) h the D-dimer half-life was about twice as long as previously estimated from radiolabeling studies in animals and small numbers of human subjects. The serum approach presented here allows label-free and simultaneous analysis of the elimination kinetics of various hemostasis-related biomarkers. Based on these data changes in biomarker levels could more precisely used to estimate the activity level of the hemostatic system.
Collapse
Affiliation(s)
- Heiko Rühl
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
- * E-mail:
| | - Christina Berens
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Anna Winterhagen
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Jens Müller
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Bernd Pötzsch
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
42
|
Lunko OO, Isaev DS, Krishtal OO, Isaeva EV. Thrombin modulates persistent sodium current in CA1 pyramidal neurons of young and adult rat hippocampus. ACTA ACUST UNITED AC 2015; 61:5-10. [PMID: 26552299 DOI: 10.15407/fz61.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Serine protease thrombin, a key factor of blood coagulation, participates in many neuronal processes important for normal brain functioning and during pathological conditions involving abnormal neuronal synchronization, neurodegeneration and inflammation. Our previous study on CA3 pyramidal neurons showed that application ofthrombin through the activation of specific protease-activated receptor 1 (PAR1) produces a significant hyperpolarizing shift of the activation of the TTX-sensitive persistent voltage-gated Na+ current (I(Nap)) thereby affecting membrane potential and seizure threshold at the network level. It was shown that PAR1 is also expressed in CA1 area of hippocampus and can be implicated in neuronal damage in this area after status epilepticus. The aim of the present study was to evaluate the effect of thrombin on I(NaP) in CA1 pyramidal neurons from adult and young rats. Using whole cell patch-clamp technique we demonstrate that thrombin application results in the hyperpolarization shift of I(NaP) activation as well as increase in the I(NaP) amplitude in both age groups. We have found that I(NaP) in pyramidal neurons of hippocampal CA 1 region is more vulnerable to the thrombin action than I(NaP) in pyramidal neurons of hippocampal CA3 region. We have also found that the immature hippocampus is more sensitive to thrombin action which emphasizes the contribution of thrombin-dependent pathway to the regulation of neuronal activity in immature brain.
Collapse
|
43
|
Trapaidze A, Hérault JP, Herbert JM, Bancaud A, Gué AM. Investigation of the selectivity of thrombin-binding aptamers for thrombin titration in murine plasma. Biosens Bioelectron 2015; 78:58-66. [PMID: 26594887 DOI: 10.1016/j.bios.2015.11.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/26/2015] [Accepted: 11/08/2015] [Indexed: 11/26/2022]
Abstract
Detection of thrombin in plasma raises timely challenges to enable therapeutic management of thrombosis in patients under vital threat. Thrombin binding aptamers represent promising candidates as sensing elements for the development of real-time thrombin biosensors; however implementation of such biosensor requires the clear understanding of thrombin-aptamer interaction properties in real-like environment. In this study, we used Surface Plasmon Resonance technique to answer the questions of specificity and sensitivity of thrombin detection by the thrombin-binding aptamers HD1, NU172 and HD22. We systematically characterized their properties in the presence of thrombin, as well as interfering molecular species such as the thrombin precursor prothrombin, thrombin in complex with some of its natural inhibitors, nonspecific serum proteins, and diluted plasma. Kinetic experiments show the multiple binding modes of HD1 and NU172, which both interact with multiple sites of thrombin with low nanomolar affinities and show little specificity of interaction for prothrombin vs. thrombin. HD22, on the other hand, binds specifically to thrombin exosite II and has no affinity to prothrombin at all. While thrombin in complex with some of its inhibitors could not be recognized by any aptamer, the binding of HD1 and NU172 properties is compromised by thrombin inhibitors alone, as well as with serum albumin. Finally, the complex nature of plasma was overwhelming for HD1, but we define conditions for the thrombin detection at 10nM range in 100-fold diluted plasma by HD22. Consequently HD22 showed key advantage over HD1 and NU172, and appears as the only alternative to design an aptasensor.
Collapse
Affiliation(s)
- Ana Trapaidze
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France; Université de Toulouse, LAAS, F-31400 Toulouse, France.
| | | | | | - Aurélien Bancaud
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France; Université de Toulouse, LAAS, F-31400 Toulouse, France.
| | - Anne-Marie Gué
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France; Université de Toulouse, LAAS, F-31400 Toulouse, France
| |
Collapse
|
44
|
Song JH, Jeong GH, Park SL, Won SY, Paek NS, Lee BH, Moon SK. Inhibitory effects of fermented extract of Ophiopogon japonicas on thrombin-induced vascular smooth muscle cells. Mol Med Rep 2015; 13:426-32. [PMID: 26530246 DOI: 10.3892/mmr.2015.4499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 09/03/2015] [Indexed: 11/06/2022] Open
Abstract
Ophiopogon japonicus is known to have various pharmacological effects. The present study investigated the effects of an extract of fermented Ophiopogon japonicas (FEOJ) on thrombin‑treated vascular smooth muscle cells (VSMCs). FEOJ treatment inhibited the proliferation of VSMCs treated with thrombin as indicated by an MTT assay. These inhibitory effects were associated with decreased phosphorylation of AKT, reduced expression of cyclin D1 and increased expression of p27KIP1 in thrombin‑induced VSMCs. In addition, FEOJ treatment suppressed the thrombin‑stimulated migration of VSMCs as demonstrated by a wound‑healing migration assay. Furthermore, zymographic analyses demonstrated that treatment of FEOJ with VSMCs suppressed the thrombin‑induced expression of matrix metalloproteinase (MMP)‑2, which was attributed to the reduction of nuclear factor (NF)‑κB binding activity. Collectively, these results demonstrated that FEOJ induced p27KIP1 expression, reduced cyclin D1 expression and AKT phosphorylation, and inhibited MMP‑2 expression mediated by downregulation of NF‑κB binding activity in thrombin‑treated VSMCs, which led to growth inhibition and repression of migration. These results supported the use of FEOJ for the prevention of vascular diseases and provided novel insight into the underlying mechanism of action.
Collapse
Affiliation(s)
- Jun-Hui Song
- Department of Food and Nutrition, Chung‑Ang University, Anseong‑si, Gyeonggi‑do 456‑756, Republic of Korea
| | - Gi Hee Jeong
- Department of Food and Nutrition, Chung‑Ang University, Anseong‑si, Gyeonggi‑do 456‑756, Republic of Korea
| | - Sung Lyea Park
- Department of Food and Nutrition, Chung‑Ang University, Anseong‑si, Gyeonggi‑do 456‑756, Republic of Korea
| | - Se Yeon Won
- Department of Food and Nutrition, Chung‑Ang University, Anseong‑si, Gyeonggi‑do 456‑756, Republic of Korea
| | - Nam Soo Paek
- Mediogen, Jecheon‑si, Chungcheongbuk‑do 390‑250, Republic of Korea
| | - Bog-Hieu Lee
- Department of Food and Nutrition, Chung‑Ang University, Anseong‑si, Gyeonggi‑do 456‑756, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung‑Ang University, Anseong‑si, Gyeonggi‑do 456‑756, Republic of Korea
| |
Collapse
|
45
|
Chen Y, Zhu W, Zhang W, Libal N, Murphy SJ, Offner H, Alkayed NJ. A novel mouse model of thromboembolic stroke. J Neurosci Methods 2015; 256:203-11. [PMID: 26386284 DOI: 10.1016/j.jneumeth.2015.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/28/2015] [Accepted: 09/10/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND We previously demonstrated that tissue plasminogen activator (tPA) reduces infarct size after mechanical middle cerebral artery occlusion (MCAO) in wild-type (WT) mice and transgenic mice expressing human leukocyte antigen DR2 (DR2-Tg). Clinically, tPA limits ischemic damage by dissolving the clot blocking blood flow through a cerebral artery. To mimic the clinical situation, we developed a new mouse model of thromboembolic stroke, and tested the efficacy of tPA in WT and DR2-Tg mice. New Method Autologous blood is withdrawn into a PE-8 catheter filled with 2 IU α-thrombin. After exposing the catheter briefly to air, the catheter is reintroduced into the external (ECA) and advanced into the internal carotid artery (ICA) to allow for intravascular injection of thrombin at the MCA bifurcation. To validate the model, we tested the effect of tPA on laser-Doppler perfusion (LDP) over the MCA territory and infarct size in WT and DR2-Tg mice. RESULTS The procedure results in a consistent drop in LDP, and leads to a highly reproducible ischemic lesion. When administered at 15min after thrombosis, tPA restored LDP and resulted in a significant reduction in infarct size at 24h after thrombosis in both WT and DR2-Tg. COMPARISON WITH EXISTING METHODS Our model significantly reduces surgery time, requires a single anesthesia exposure, and produces a consistent and predictable infarction, with low variability and mortality. CONCLUSION We validated the efficacy of tPA in restoring blood flow and reducing infarct in a new model of endovascular thromboembolic stroke in the mouse.
Collapse
Affiliation(s)
- Yingxin Chen
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Wenbin Zhu
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Wenri Zhang
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Nicole Libal
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Stephanie J Murphy
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Neuroimmunology Research, Portland VA Medical Center, Portland, OR, USA
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
46
|
Kell DB, Pretorius E. The simultaneous occurrence of both hypercoagulability and hypofibrinolysis in blood and serum during systemic inflammation, and the roles of iron and fibrin(ogen). Integr Biol (Camb) 2015; 7:24-52. [PMID: 25335120 DOI: 10.1039/c4ib00173g] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the two phenomena are usually studied separately, we summarise a considerable body of literature to the effect that a great many diseases involve (or are accompanied by) both an increased tendency for blood to clot (hypercoagulability) and the resistance of the clots so formed (hypofibrinolysis) to the typical, 'healthy' or physiological lysis. We concentrate here on the terminal stages of fibrin formation from fibrinogen, as catalysed by thrombin. Hypercoagulability goes hand in hand with inflammation, and is strongly influenced by the fibrinogen concentration (and vice versa); this can be mediated via interleukin-6. Poorly liganded iron is a significant feature of inflammatory diseases, and hypofibrinolysis may change as a result of changes in the structure and morphology of the clot, which may be mimicked in vitro, and may be caused in vivo, by the presence of unliganded iron interacting with fibrin(ogen) during clot formation. Many of these phenomena are probably caused by electrostatic changes in the iron-fibrinogen system, though hydroxyl radical (OH˙) formation can also contribute under both acute and (more especially) chronic conditions. Many substances are known to affect the nature of fibrin polymerised from fibrinogen, such that this might be seen as a kind of bellwether for human or plasma health. Overall, our analysis demonstrates the commonalities underpinning a variety of pathologies as seen in both hypercoagulability and hypofibrinolysis, and offers opportunities for both diagnostics and therapies.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | | |
Collapse
|
47
|
Adams GN, Rosenfeldt L, Frederick M, Miller W, Waltz D, Kombrinck K, McElhinney KE, Flick MJ, Monia BP, Revenko AS, Palumbo JS. Colon Cancer Growth and Dissemination Relies upon Thrombin, Stromal PAR-1, and Fibrinogen. Cancer Res 2015; 75:4235-43. [PMID: 26238780 DOI: 10.1158/0008-5472.can-15-0964] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/01/2015] [Indexed: 12/13/2022]
Abstract
Thrombin-mediated proteolysis is a major determinant of metastasis, but is not universally important for primary tumor growth. Here, we report that colorectal adenocarcinoma represents one important exception whereby thrombin-mediated functions support both primary tumor growth and metastasis. In contrast with studies of multiple nongastrointestinal cancers, we found that the growth of primary tumors formed by murine and human colon cancer cells was reduced in mice by genetic or pharmacologic reduction of circulating prothrombin. Reduced prothrombin expression was associated with lower mitotic indices and invasion of surrounding tissue. Mechanistic investigations revealed that thrombin-driven colonic adenocarcinoma growth relied upon at least two targets of thrombin-mediated proteolysis, protease-activated receptor-1 (PAR-1) expressed by stromal cells and the extracellular matrix protein, fibrinogen. Colonic adenocarcinoma growth was reduced in PAR-1-deficient mice, implicating stromal cell-associated PAR-1 as one thrombin target important for tumor outgrowth. Furthermore, tumor growth was dramatically impeded in fibrinogen-deficient mice, offering the first direct evidence of a critical functional role for fibrinogen in malignant tumor growth. Tumors harvested from fibrinogen-deficient mice displayed a relative reduction in cell proliferative indices, as well as increased tumor necrosis and decreased tumor vascular density. Collectively, our findings established a functional role for thrombin and its targets PAR-1 and fibrinogen in the pathogenesis of colonic adenocarcinoma, supporting tumor growth as well as local invasion and metastasis.
Collapse
Affiliation(s)
- Gregory N Adams
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Leah Rosenfeldt
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Malinda Frederick
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Whitney Miller
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dusty Waltz
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Keith Kombrinck
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kathryn E McElhinney
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Matthew J Flick
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Brett P Monia
- Department of Antisense Drug Discovery, ISIS Pharmaceuticals, Inc., Carlsbad, California
| | - Alexey S Revenko
- Department of Antisense Drug Discovery, ISIS Pharmaceuticals, Inc., Carlsbad, California
| | - Joseph S Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
48
|
Kaplan ZS, Zarpellon A, Alwis I, Yuan Y, McFadyen J, Ghasemzadeh M, Schoenwaelder SM, Ruggeri ZM, Jackson SP. Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4. Nat Commun 2015. [PMID: 26204458 DOI: 10.1038/ncomms8835] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thrombin is a central regulator of leukocyte recruitment and inflammation at sites of vascular injury, a function thought to involve primarily endothelial PAR cleavage. Here we demonstrate the existence of a distinct leukocyte-trafficking mechanism regulated by components of the haemostatic system, including platelet PAR4, GPIbα and fibrin. Utilizing a mouse endothelial injury model we show that thrombin cleavage of platelet PAR4 promotes leukocyte recruitment to sites of vascular injury. This process is negatively regulated by GPIbα, as seen in mice with abrogated thrombin-platelet GPIbα binding (hGPIbα(D277N)). In addition, we demonstrate that fibrin limits leukocyte trafficking by forming a physical barrier to intravascular leukocyte migration. These studies demonstrate a distinct 'checkpoint' mechanism of leukocyte trafficking involving balanced thrombin interactions with PAR4, GPIbα and fibrin. Dysregulation of this checkpoint mechanism is likely to contribute to the development of thromboinflammatory disorders.
Collapse
Affiliation(s)
- Zane S Kaplan
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Alessandro Zarpellon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Imala Alwis
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Heart Research Institute &Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yuping Yuan
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - James McFadyen
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Mehran Ghasemzadeh
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Simone M Schoenwaelder
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Heart Research Institute &Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaverio M Ruggeri
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Shaun P Jackson
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.,Heart Research Institute &Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
49
|
Hawkins BT, Gu YH, Izawa Y, del Zoppo GJ. Dabigatran abrogates brain endothelial cell permeability in response to thrombin. J Cereb Blood Flow Metab 2015; 35:985-92. [PMID: 25669912 PMCID: PMC4640263 DOI: 10.1038/jcbfm.2015.9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation (AF) increases the risk and severity of thromboembolic stroke. Generally, antithrombotic agents increase the hemorrhagic risk of thromboembolic stroke. However, significant reductions in thromboembolism and intracerebral hemorrhage have been shown with the antithrombin dabigatran compared with warfarin. As thrombin has been implicated in microvessel injury during cerebral ischemia, we hypothesized that dabigatran decreases the risk of intracerebral hemorrhage by direct inhibition of the thrombin-mediated increase in cerebral endothelial cell permeability. Primary murine brain endothelial cells (mBECs) were exposed to murine thrombin before measuring permeability to 4-kDa fluorescein isothiocyanate-dextran. Thrombin increased mBEC permeability in a concentration-dependent manner, without significant endothelial cell death. Pretreatment of mBECs with dabigatran completely abrogated the effect of thrombin on permeability. Neither the expressions of the endothelial cell β1-integrins nor the tight junction protein claudin-5 were affected by thrombin exposure. Oxygen-glucose deprivation (OGD) also increased permeability; this effect was abrogated by treatment with dabigatran, as was the additive effect of thrombin and OGD on permeability. Taken together, these results indicate that dabigatran could contribute to a lower risk of intracerebral hemorrhage during embolism-associated ischemia from AF by protection of the microvessel permeability barrier from local thrombin challenge.
Collapse
Affiliation(s)
- Brian Thomas Hawkins
- Department of Medicine (Hematology), Division of Hematology, Seattle, Washington, USA
| | - Yu-Huan Gu
- Department of Medicine (Hematology), Division of Hematology, Seattle, Washington, USA
| | - Yoshikane Izawa
- Department of Medicine (Hematology), Division of Hematology, Seattle, Washington, USA
| | - Gregory John del Zoppo
- 1] Department of Medicine (Hematology), Division of Hematology, Seattle, Washington, USA [2] Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
50
|
Ben Shimon M, Lenz M, Ikenberg B, Becker D, Shavit Stein E, Chapman J, Tanne D, Pick CG, Blatt I, Neufeld M, Vlachos A, Maggio N. Thrombin regulation of synaptic transmission and plasticity: implications for health and disease. Front Cell Neurosci 2015; 9:151. [PMID: 25954157 PMCID: PMC4404867 DOI: 10.3389/fncel.2015.00151] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/01/2015] [Indexed: 11/13/2022] Open
Abstract
Thrombin, a serine protease involved in the blood coagulation cascade has been shown to affect neural function following blood-brain barrier breakdown. However, several lines of evidence exist that thrombin is also expressed in the brain under physiological conditions, suggesting an involvement of thrombin in the regulation of normal brain functions. Here, we review ours’ as well as others’ recent work on the role of thrombin in synaptic transmission and plasticity through direct or indirect activation of Protease-Activated Receptor-1 (PAR1). These studies propose a novel role of thrombin in synaptic plasticity, both in physiology as well as in neurological diseases associated with increased brain thrombin/PAR1 levels.
Collapse
Affiliation(s)
- Marina Ben Shimon
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Maximilian Lenz
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Benno Ikenberg
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Denise Becker
- Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Efrat Shavit Stein
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel
| | - Joab Chapman
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - David Tanne
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Ilan Blatt
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Miri Neufeld
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Department of Neurology, The Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel ; Department of Neurology and Epilepsy Unit, The Tel Aviv Sourasky Medical Center Tel Aviv, Israel
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center Frankfurt, Goethe-University Frankfurt Frankfurt, Germany
| | - Nicola Maggio
- Department of Neurology, The J. Sagol Neuroscience Center, The Chaim Sheba Medical Center Tel HaShomer, Israel ; Talpiot Medical Leadership Program, The Chaim Sheba Medical Center Tel HaShomer, Israel
| |
Collapse
|