1
|
Sirtori CR, Cincotto G, Castiglione S, Pavanello C. HDL-replacement therapy: From traditional to emerging clinical applications. ATHEROSCLEROSIS PLUS 2025; 59:68-79. [PMID: 40103705 PMCID: PMC11914826 DOI: 10.1016/j.athplu.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/27/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025]
Abstract
The unique and multifaceted properties of high-density lipoproteins (HDL)-ranging from cholesterol efflux to anti-inflammatory, anti-oxidant, and immunomodulatory effects-have prompted their direct use, particularly in cardiovascular ischemic conditions. Recent advances have extended the interest in HDL-based treatments to novel applications, from improving stent biocompatibility, to treatment of heart failure to central nervous system (CNS) disorders. Strategies to harness HDL's therapeutic potential have evolved from the direct use of isolated HDL in animal models to reconstituted HDL (rHDL) in humans. For these latter, the use of isolated apoA-I associated with different phospholipids has been the most frequent approach, also involving apparently beneficial mutants, such as the apo A-I Milano (AIM). From the initial very promising results, particularly with this mutant in coronary patients, later studies have mostly been non-confirmatory, although issues such as possible inadequate dose/response and unexpected immunological properties have come to light. Most recently a study on isolated plasma HDL in coronary patients (AEGIS-II) provided overall negative findings, but a clear fall of major cardiovascular events was recorded when restricting analysis to hypercholesterolemic patients. Emerging approaches, including gene therapy and plant-derived recombinant HDL formulations, hold promise for enhancing the accessibility and efficacy of HDL-based interventions. At this time, an improved approach to heart failure treatment also appears feasible, and a better understanding of the role played by HDL in the CNS may lead to significant improvements in the handling of some dramatic diseases at this level. While challenges persist, the evolving landscape of HDL replacement therapies offers hope for significant progress in addressing both cardiovascular and non-cardiovascular conditions.
Collapse
Affiliation(s)
- Cesare Riccardo Sirtori
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
- Dyslipidemia Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giulia Cincotto
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Sofia Castiglione
- Dyslipidemia Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Chiara Pavanello
- Dyslipidemia Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Tran TT, Lee G, Huh YH, Chung KH, Lee SY, Park KH, Kim JH, Kook MS, Ryu J, Kim OS, Lim HP, Koh JT, Ryu JH. Acceleration of HDL-Mediated Cholesterol Efflux Alleviates Periodontitis. J Dent Res 2024; 103:1109-1118. [PMID: 39311443 DOI: 10.1177/00220345241271075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Periodontitis (PD) is a common inflammatory disease known to be closely associated with metabolic disorders, particularly hyperlipidemia. In the current study, we demonstrated that hypercholesterolemia is a predisposing factor in the development of PD. Logistic regression analysis revealed a strong positive correlation between PD and dyslipidemia. Data from in vivo (PD mouse model subjected to a high cholesterol diet) and in vitro (cholesterol treatment of gingival fibroblasts [GFs]) experiments showed that excess cholesterol influx into GFs potentially contributes to periodontal inflammation and, subsequently, alveolar bone erosion. Additionally, we compared the protective efficacies of cholesterol-lowering drugs with their different modes of action against PD pathogenesis in mice. Among the cholesterol-lowering drugs we tested, fenofibrate exerted the most protective effect against PD pathogenesis due to an increased level of high-density lipoprotein cholesterol, a lipoprotein involved in cholesterol efflux from cells and reverse cholesterol transport. Indeed, cholesterol efflux was suppressed during PD progression by downregulation of the apoA-I binding protein (APOA1BP) expression in inflamed GFs. We also demonstrated that the overexpression of APOA1BP efficiently regulated periodontal inflammation and the subsequent alveolar bone loss by inducing cholesterol efflux. Our collective findings highlight the potential utility of currently available cholesterol-lowering medications for the mitigation of PD pathogenesis. By targeting the acceleration of high-density lipoprotein-mediated cellular cholesterol efflux, a new therapeutic approach for PD may become possible.
Collapse
Affiliation(s)
- T-T Tran
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - G Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Y H Huh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - K-H Chung
- Department of Preventive and Public Health Dentistry, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - S Y Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - K H Park
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - J-H Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - M-S Kook
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - J Ryu
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - O-S Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - H-P Lim
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - J-T Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - J-H Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Zuo X, Ding X, Zhang Y, Kang YJ. Reversal of atherosclerosis by restoration of vascular copper homeostasis. Exp Biol Med (Maywood) 2024; 249:10185. [PMID: 38978540 PMCID: PMC11228934 DOI: 10.3389/ebm.2024.10185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Atherosclerosis has traditionally been considered as a disorder characterized by the accumulation of cholesterol and thrombotic materials within the arterial wall. However, it is now understood to be a complex inflammatory disease involving multiple factors. Central to the pathogenesis of atherosclerosis are the interactions among monocytes, macrophages, and neutrophils, which play pivotal roles in the initiation, progression, and destabilization of atherosclerotic lesions. Recent advances in our understanding of atherosclerosis pathogenesis, coupled with results obtained from experimental interventions, lead us to propose the hypothesis that atherosclerosis may be reversible. This paper outlines the evolution of this hypothesis and presents corroborating evidence that supports the potential for atherosclerosis regression through the restoration of vascular copper homeostasis. We posit that these insights may pave the way for innovative therapeutic approaches aimed at the reversal of atherosclerosis.
Collapse
Affiliation(s)
- Xiao Zuo
- Tasly Stem Cell Biology Laboratory, Tasly Biopharmaceutical Co., Tianjin, China
| | - Xueqin Ding
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaya Zhang
- Tasly Stem Cell Biology Laboratory, Tasly Biopharmaceutical Co., Tianjin, China
| | - Y James Kang
- Tasly Stem Cell Biology Laboratory, Tasly Biopharmaceutical Co., Tianjin, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Fuenzalida B, Yañez MJ, Mueller M, Mistry HD, Leiva A, Albrecht C. Evidence for hypoxia-induced dysregulated cholesterol homeostasis in preeclampsia: Insights into the mechanisms from human placental cells and tissues. FASEB J 2024; 38:e23431. [PMID: 38265294 PMCID: PMC10953329 DOI: 10.1096/fj.202301708rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Preeclampsia (PE) poses a considerable risk to the long-term cardiovascular health of both mothers and their offspring due to a hypoxic environment in the placenta leading to reduced fetal oxygen supply. Cholesterol is vital for fetal development by influencing placental function. Recent findings suggest an association between hypoxia, disturbed cholesterol homeostasis, and PE. This study investigates the influence of hypoxia on placental cholesterol homeostasis. Using primary human trophoblast cells and placentae from women with PE, various aspects of cholesterol homeostasis were examined under hypoxic and hypoxia/reoxygenation (H/R) conditions. Under hypoxia and H/R, intracellular total and non-esterified cholesterol levels were significantly increased. This coincided with an upregulation of HMG-CoA-reductase and HMG-CoA-synthase (key genes regulating cholesterol biosynthesis), and a decrease in acetyl-CoA-acetyltransferase-1 (ACAT1), which mediates cholesterol esterification. Hypoxia and H/R also increased the intracellular levels of reactive oxygen species and elevated the expression of hypoxia-inducible factor (HIF)-2α and sterol-regulatory-element-binding-protein (SREBP) transcription factors. Additionally, exposure of trophoblasts to hypoxia and H/R resulted in enhanced cholesterol efflux to maternal and fetal serum. This was accompanied by an increased expression of proteins involved in cholesterol transport such as the scavenger receptor class B type I (SR-BI) and the ATP-binding cassette transporter G1 (ABCG1). Despite these metabolic alterations, mitogen-activated-protein-kinase (MAPK) signaling, a key regulator of cholesterol homeostasis, was largely unaffected. Our findings indicate dysregulation of cholesterol homeostasis at multiple metabolic points in both the trophoblast hypoxia model and placentae from women with PE. The increased cholesterol efflux and intracellular accumulation of non-esterified cholesterol may have critical implications for both the mother and the fetus during pregnancy, potentially contributing to an elevated cardiovascular risk later in life.
Collapse
Affiliation(s)
- Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
| | - Maria Jose Yañez
- School of Medical Technology, Faculty of Medicine and ScienceUniversidad San SebastiánSantiagoChile
| | - Martin Mueller
- Division of Gynecology and ObstetricsLindenhofgruppeBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Hiten D. Mistry
- Department of Women and Children's HealthSchool of Life Course and Population Health Sciences, King's College LondonLondonUK
| | - Andrea Leiva
- School of Medical Technology, Faculty of Medicine and ScienceUniversidad San SebastiánSantiagoChile
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
- Swiss National Center of Competence in Research, NCCR TransCureUniversity of BernBernSwitzerland
| |
Collapse
|
5
|
Wang Y, Guo M, Tang CK. History and Development of ABCA1. Curr Probl Cardiol 2024; 49:102036. [PMID: 37595859 DOI: 10.1016/j.cpcardiol.2023.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
ATP-binding cassette protein A1 (ABCA1) is a key protein in the transport of intracellular cholesterol to the extracellular and plays an important role in reducing cholesterol accumulation in surrounding tissues. Bibliometric analysis refers to the cross-science of quantitative analysis of a variety of documents by mathematical and statistical methods. It combines an analysis of structural and temporal patterns in scholarly publications with a description of topic concentration and types of uncertainty. This paper analyzes the history, hotspot, and development trend of ABCA1 through bibliometrics. It will provide readers with the research status and development trend of ABCA1 and help the hot research in this field explore new research directions. After screening, the research on ABCA1 is still in a hot phase in the past 20 years. ABCA1 is emerging in previously unrelated disciplines such as cancer. There were 551 keywords and 6888 breakout citations counted by CiteSpace. The relationship between cancer and cardiovascular disease has been linked by ABCA1. This review will guide readers who are not familiar with ABCA1 research to quickly understand the development process of ABCA1 and provide researchers with a possible future research focus on ABCA1.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Guo
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
6
|
Wang S, Zhang J, Zhou H, Lu YC, Jin X, Luo L, You J. The role of protein corona on nanodrugs for organ-targeting and its prospects of application. J Control Release 2023; 360:15-43. [PMID: 37328008 DOI: 10.1016/j.jconrel.2023.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, nanodrugs become a hotspot in the high-end medical field. They have the ability to deliver drugs to reach their destination more effectively due to their unique properties and flexible functionalization. However, the fate of nanodrugs in vivo is not the same as those presented in vitro, which indeed influenced their therapeutic efficacy in vivo. When entering the biological organism, nanodrugs will first come into contact with biological fluids and then be covered by some biomacromolecules, especially proteins. The proteins adsorbed on the surface of nanodrugs are known as protein corona (PC), which causes the loss of prospective organ-targeting abilities. Fortunately, the reasonable utilization of PC may determine the organ-targeting efficiency of systemically administered nanodrugs based on the diverse expression of receptors on cells in different organs. In addition, the nanodrugs for local administration targeting diverse lesion sites will also form unique PC, which plays an important role in the therapeutic effect of nanodrugs. This article introduced the formation of PC on the surface of nanodrugs and summarized the recent studies about the roles of diversified proteins adsorbed on nanodrugs and relevant protein for organ-targeting receptor through different administration pathways, which may deepen our understanding of the role that PC played on organ-targeting and improve the therapeutic efficacy of nanodrugs to promote their clinical translation.
Collapse
Affiliation(s)
- Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yi Chao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xizhi Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
7
|
Dib S, Loiola RA, Sevin E, Saint-Pol J, Shimizu F, Kanda T, Pahnke J, Gosselet F. TNFα Activates the Liver X Receptor Signaling Pathway and Promotes Cholesterol Efflux from Human Brain Pericytes Independently of ABCA1. Int J Mol Sci 2023; 24:ijms24065992. [PMID: 36983062 PMCID: PMC10056409 DOI: 10.3390/ijms24065992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Neuroinflammation and brain lipid imbalances are observed in Alzheimer's disease (AD). Tumor necrosis factor-α (TNFα) and the liver X receptor (LXR) signaling pathways are involved in both processes. However, limited information is currently available regarding their relationships in human brain pericytes (HBP) of the neurovascular unit. In cultivated HBP, TNFα activates the LXR pathway and increases the expression of one of its target genes, the transporter ATP-binding cassette family A member 1 (ABCA1), while ABCG1 is not expressed. Apolipoprotein E (APOE) synthesis and release are diminished. The cholesterol efflux is promoted, but is not inhibited, when ABCA1 or LXR are blocked. Moreover, as for TNFα, direct LXR activation by the agonist (T0901317) increases ABCA1 expression and the associated cholesterol efflux. However, this process is abolished when LXR/ABCA1 are both inhibited. Neither the other ABC transporters nor the SR-BI are involved in this TNFα-mediated lipid efflux regulation. We also report that inflammation increases ABCB1 expression and function. In conclusion, our data suggest that inflammation increases HBP protection against xenobiotics and triggers an LXR/ABCA1 independent cholesterol release. Understanding the molecular mechanisms regulating this efflux at the level of the neurovascular unit remains fundamental to the characterization of links between neuroinflammation, cholesterol and HBP function in neurodegenerative disorders.
Collapse
Affiliation(s)
- Shiraz Dib
- Blood-Brain Barrier Laboratory (LBHE), UR 2465, University of Artois, F-62300 Lens, France
| | - Rodrigo Azevedo Loiola
- Blood-Brain Barrier Laboratory (LBHE), UR 2465, University of Artois, F-62300 Lens, France
| | - Emmanuel Sevin
- Blood-Brain Barrier Laboratory (LBHE), UR 2465, University of Artois, F-62300 Lens, France
| | - Julien Saint-Pol
- Blood-Brain Barrier Laboratory (LBHE), UR 2465, University of Artois, F-62300 Lens, France
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Pahnke Lab (Drug Development and Chemical Biology), Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 3, 1004 Riga, Latvia
- Department of Neurobiology, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory (LBHE), UR 2465, University of Artois, F-62300 Lens, France
| |
Collapse
|
8
|
Schäfer-Somi S, Claaßen S, Lechner D. Inhibition of the cholesterol transporter ABCA1 by probucol decreases capacitation and tyrosine phosphorylation of dog spermatozoa, and is dose dependent. Theriogenology 2023; 197:159-166. [PMID: 36525855 DOI: 10.1016/j.theriogenology.2022.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/08/2022]
Abstract
The ATP binding cassette (ABC) transporter molecule ABCA1 participates in the cholesterol transport within and through cell membranes. We recently demonstrated that in dog spermatozoa, capacitation could be decreased with probucol (PRO), an ABCA1 specific antagonist. In this study, a dose-effect relationship of PRO on dog sperm capacitation, tyrosine phosphorylation and cholesterol efflux from the sperm plasma membrane was investigated. A total of 16 ejaculates from dogs of different breeds, aged 2-4 years were used. Sperm motility and membrane integrity in the main fraction was determined by CASA. Samples were stained with a boron dipyrromethene difluoride (BODIPY) fluorophore (P9672, Sigma- Aldrich, A) diluted in DMSO at a final concentration of 0.4 μM. All samples were divided into 5 aliquots, with 0, 100, 250, 500 and 1000 μM of PRO. After incubation at 37 °C for 2 h, PI was added and flow cytometry performed. All aliquots were examined for capacitation and acrosome reaction by using the CTC assay and tyrosine phosphorylation (TP). Membrane integrity was measured in all aliquots to investigate the effect of PRO on cell membranes. Membrane integrity did not differ between controls (0 μM), and 100, 250 and 500 μM PRO, but decreased with 1000 μM PRO (p < 0.05). Increasing PRO concentration decreased the percentage alive cells with cholesterol efflux per PRO group (0 μM: 77.8 ± 10.6%, 100 μM: 63.7 ± 11.7%, 250 μM: 52.1 ± 12.9%, 500 μM: 37.7 ± 11.6%, 1000 μM: 33.1 ± 14.4%; p < 0.05), decreased head and entire tail phosphorylated cells (0 μM: 34.6%, 1000 μM: 5.1% p < 0.05); and decreased the percentage capacitated cells (maximum with PRO 500 μM: capacitated vs. control: 54.2 ± 17% vs 25 ± 7.7%, p < 0.05). Conclusion: PRO decreased the cholesterol efflux, and decreased tyrosine phosphorylation and capacitation in a dose-dependent manner. This suggests a strong involvement of the ABCA1 transporter in different functional aspects of sperm capacitation in dogs.
Collapse
Affiliation(s)
- S Schäfer-Somi
- Platform for Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - S Claaßen
- Platform for Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - D Lechner
- Platform for Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|
9
|
Doolaanea AA, Alfatama M, Alkhatib H, Mawazi SM. Fucoxanthin. HANDBOOK OF FOOD BIOACTIVE INGREDIENTS 2023:1-27. [DOI: 10.1007/978-3-030-81404-5_55-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/01/2022] [Indexed: 09/01/2023]
|
10
|
Doolaanea AA, Alfatama M, Alkhatib H, Mawazi SM. Fucoxanthin. HANDBOOK OF FOOD BIOACTIVE INGREDIENTS 2023:729-755. [DOI: 10.1007/978-3-031-28109-9_55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Das O, Kundu J, Ghosh A, Gautam A, Ghosh S, Chakraborty M, Masid A, Gauri SS, Mitra D, Dutta M, Mukherjee B, Sinha S, Bhaumik M. AUF-1 knockdown in mice undermines gut microbial butyrate-driven hypocholesterolemia through AUF-1-Dicer-1-mir-122 hierarchy. Front Cell Infect Microbiol 2022; 12:1011386. [PMID: 36601302 PMCID: PMC9806232 DOI: 10.3389/fcimb.2022.1011386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction and objective Cholesterol homeostasis is a culmination of cellular synthesis, efflux, and catabolism to important physiological entities where short chain fatty acid, butyrate embodied as a key player. This discourse probes the mechanistic molecular details of butyrate action in maintaining host-cholesterol balance. Methods Hepatic mir-122 being the most indispensable regulator of cholesterol metabolic enzymes, we studied upstream players of mir-122 biogenesis in the presence and absence of butyrate in Huh7 cells and mice model. We synthesized unique self-transfecting GMO (guanidinium-morpholino-oligo) linked PMO (Phosphorodiamidate-Morpholino Oligo)-based antisense cell-penetrating reagent to selectively knock down the key player in butyrate mediated cholesterol regulation. Results We showed that butyrate treatment caused upregulation of RNA-binding protein, AUF1 resulting in RNase-III nuclease, Dicer1 instability, and significant diminution of mir-122. We proved the importance of AUF1 and sequential downstream players in AUF1-knock-down mice. Injection of GMO-PMO of AUF1 in mouse caused near absence of AUF1 coupled with increased Dicer1 and mir-122, and reduced serum cholesterol regardless of butyrate treatment indicating that butyrate acts through AUF1. Conclusion The roster of intracellular players was as follows: AUF1-Dicer1-mir-122 for triggering butyrate driven hypocholesterolemia. To our knowledge this is the first report linking AUF-1 with cholesterol biogenesis.
Collapse
Affiliation(s)
- Oishika Das
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Jayanta Kundu
- School of Applied and Interdisciplinary Sciences, Indian Associations for Cultivation of Science, Kolkata, India
| | - Atanu Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Associations for Cultivation of Science, Kolkata, India
| | - Anupam Gautam
- Department of Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany,International Max Planck Research School “From Molecules to Organisms”, Max Planck Institute for Biology Tübingen, Tübingen, Germany,Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | - Souradeepa Ghosh
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Mainak Chakraborty
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Aaheli Masid
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Samiran Sona Gauri
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Debmalya Mitra
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Moumita Dutta
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Associations for Cultivation of Science, Kolkata, India
| | - Moumita Bhaumik
- Department of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India,*Correspondence: Moumita Bhaumik,
| |
Collapse
|
12
|
Guan CL, Liu HT, Chen DH, Quan XQ, Gao WL, Duan XY. Is elevated triglyceride/high-density lipoprotein cholesterol ratio associated with poor prognosis of coronary heart disease? A meta-analysis of prospective studies. Medicine (Baltimore) 2022; 101:e31123. [PMID: 36397319 PMCID: PMC9666180 DOI: 10.1097/md.0000000000031123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Elevated triglycerides (TG) and reduced high-density lipoprotein cholesterol (HDL-C) are recognized as essential and independent hazard factors for total death and major adverse cardiovascular events (MACE) in patients with coronary heart disease (CHD). However, whether the increased TG/HDL-C forecasted the prognosis of CHD is still unknown. Therefore, we performed a meta-analysis to investigate the relationship between the elevated TG/HDL-C ratio and poor prognosis of CHD. METHODS A systematic literature search was conducted in PubMed, Web of Science, EMBASE, and The Cochrane Library, until August 30, 2021. Prospective observational studies regarding the association between TG/HDL-C and long-term mortality/MACEs in CHD patients were included. RESULTS In total, 6 independent prospective studies of 10,222 participants with CHD were enrolled in the systematic and meta-analysis. Our outcomes of the meta-analysis indicated that the elevated TG/HDL-C group had a significantly increased risk of long-term all-cause mortality (hazard ratio [HR] = 2.92, 95% confidence interval [CI]: 1.75-4.86, P < .05) and long-term MACEs (HR = 1.56, 95%CI 1.11-2.18, P < .05). CONCLUSION In patients with CHD, the present study showed that the high TG/HDL-C was associated with increased risk of long-term all-cause mortality and MACE.
Collapse
Affiliation(s)
- Chun-Li Guan
- Department of General Pratice, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Hong-Tao Liu
- Department of Cardiology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Dong-Hui Chen
- Department of General Pratice, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xiao-Qing Quan
- Department of General Pratice, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Wei-Liang Gao
- Department of General Pratice, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
- *Correspondence: Wei-Liang Gao and Xue-Yan Duan, Department of General Practice, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen 518110, China (e-mail: , )
| | - Xue-Yan Duan
- Department of General Pratice, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
- *Correspondence: Wei-Liang Gao and Xue-Yan Duan, Department of General Practice, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen 518110, China (e-mail: , )
| |
Collapse
|
13
|
Holzer M, Ljubojevic-Holzer S, Souza Junior DR, Stadler JT, Rani A, Scharnagl H, Ronsein GE, Marsche G. HDL Isolated by Immunoaffinity, Ultracentrifugation, or Precipitation is Compositionally and Functionally Distinct. J Lipid Res 2022; 63:100307. [PMID: 36511335 PMCID: PMC9720336 DOI: 10.1016/j.jlr.2022.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
The HDL proteome has been widely recognized as an important mediator of HDL function. While a variety of HDL isolation methods exist, their impact on the HDL proteome and its associated function remain largely unknown. Here, we compared three of the most common methods for HDL isolation, namely immunoaffinity (IA), density gradient ultracentrifugation (UC), and dextran-sulfate precipitation (DS), in terms of their effects on the HDL proteome and associated functionalities. We used state-of-the-art mass spectrometry to identify 171 proteins across all three isolation methods. IA-HDL contained higher levels of paraoxonase 1, apoB, clusterin, vitronectin, and fibronectin, while UC-HDL had higher levels of apoA2, apoC3, and α-1-antytrypsin. DS-HDL was enriched with apoA4 and complement proteins, while the apoA2 content was very low. Importantly, size-exclusion chromatography analysis showed that IA-HDL isolates contained subspecies in the size range above 12 nm, which were entirely absent in UC-HDL and DS-HDL isolates. Analysis of these subspecies indicated that they primarily consisted of apoA1, IGκC, apoC1, and clusterin. Functional analysis revealed that paraoxonase 1 activity was almost completely lost in IA-HDL, despite high paraoxonase content. We observed that the elution conditions, using 3M thiocyanate, during IA resulted in an almost complete loss of paraoxonase 1 activity. Notably, the cholesterol efflux capacity of UC-HDL and DS-HDL was significantly higher compared to IA-HDL. Together, our data clearly demonstrate that the isolation procedure has a substantial impact on the composition, subclass distribution, and functionality of HDL. In summary, our data show that the isolation procedure has a significant impact on the composition, subclass distribution and functionality of HDL. Our data can be helpful in the comparison, replication and analysis of proteomic datasets of HDL.
Collapse
Affiliation(s)
- Michael Holzer
- Division of Pharmacology, Otto-Loewi Research Centre, Medical University of Graz, Graz, Austria,BioTechMed Graz, Graz, Austria,For correspondence: Michael Holzer
| | - Senka Ljubojevic-Holzer
- BioTechMed Graz, Graz, Austria,Department of Cardiology, Medical University of Graz, Graz, Austria,Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | | | - Julia T. Stadler
- Division of Pharmacology, Otto-Loewi Research Centre, Medical University of Graz, Graz, Austria
| | - Alankrita Rani
- Division of Pharmacology, Otto-Loewi Research Centre, Medical University of Graz, Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Gunther Marsche
- Division of Pharmacology, Otto-Loewi Research Centre, Medical University of Graz, Graz, Austria,BioTechMed Graz, Graz, Austria
| |
Collapse
|
14
|
Vela-Vásquez DA, Sifuentes-Rincón AM, Delgado-Enciso I, Ordaz-Pichardo C, Arellano-Vera W, Treviño-Alvarado V. Effect of Consuming Beef with Varying Fatty Acid Compositions as a Major Source of Protein in Volunteers under a Personalized Nutritional Program. Nutrients 2022; 14:3711. [PMID: 36145087 PMCID: PMC9501318 DOI: 10.3390/nu14183711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Beef is an excellent source of nutrients; unfortunately, most nutritional recommendations suggest limiting or even avoiding it. Studies have shown that the fatty acid composition of meat influences weight loss. This randomized controlled clinical trial evaluated the anthropometric and serum lipid changes after a food intervention that included frequent beef consumption (120 g consumed four days/week for four weeks). Volunteers were randomly assigned to the commercial or Wagyu-Cross beef groups, with the latter beef possessing higher fat and MUFA contents. Both groups exhibited reductions in body measurements and lipid profiles; however, the Wagyu-Cross group exhibited greater changes in weight (-3.75 vs. -2.90 kg) and BMI (-1.49 vs. -1.03) than the commercial group, without a significant difference between them. No significant group differences in lipid profiles were observed; however, the Wagyu-Cross group exhibited a more favorable change in decreasing the TC concentration (-7.00 mg/dL) and LDL-C concentration (-12.5 mg/dL). We suggest that high MUFA beef could be included in weight-loss programs since it does not affect weight loss and hasn't a negative influence on lipid metabolism.
Collapse
Affiliation(s)
- Diana A. Vela-Vásquez
- Animal Biotechnology Laboratory, Center for Genomic Biotechnology, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Ana M. Sifuentes-Rincón
- Animal Biotechnology Laboratory, Center for Genomic Biotechnology, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Iván Delgado-Enciso
- Faculty of Medicine, University of Colima, Colima 28040, Mexico
- State Institute of Cancerology of the Health Services of the State of Colima, Colima 28085, Mexico
| | - Cynthia Ordaz-Pichardo
- National School of Medicine and Homeopathy, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Williams Arellano-Vera
- Animal Biotechnology Laboratory, Center for Genomic Biotechnology, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Víctor Treviño-Alvarado
- School of Medicine, Tecnológico de Monterrey, Monterrey 64710, Mexico
- The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey 64710, Mexico
| |
Collapse
|
15
|
Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 2022; 7:265. [PMID: 35918332 PMCID: PMC9344793 DOI: 10.1038/s41392-022-01125-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
Collapse
Affiliation(s)
- Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suowen Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
16
|
Cho KH. The Current Status of Research on High-Density Lipoproteins (HDL): A Paradigm Shift from HDL Quantity to HDL Quality and HDL Functionality. Int J Mol Sci 2022; 23:3967. [PMID: 35409326 PMCID: PMC8999423 DOI: 10.3390/ijms23073967] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
The quantity of high-density lipoproteins (HDL) is represented as the serum HDL-C concentration (mg/dL), while the HDL quality manifests as the diverse features of protein and lipid content, extent of oxidation, and extent of glycation. The HDL functionality represents several performance metrics of HDL, such as antioxidant, anti-inflammatory, and cholesterol efflux activities. The quantity and quality of HDL can change during one's lifetime, depending on infection, disease, and lifestyle, such as dietary habits, exercise, and smoking. The quantity of HDL can change according to age and gender, such as puberty, middle-aged symptoms, climacteric, and the menopause. HDL-C can decrease during disease states, such as acute infection, chronic inflammation, and autoimmune disease, while it can be increased by regular aerobic exercise and healthy food consumption. Generally, high HDL-C at the normal level is associated with good HDL quality and functionality. Nevertheless, high HDL quantity is not always accompanied by good HDL quality or functionality. The HDL quality concerns the morphology of the HDL, such as particle size, shape, and number. The HDL quality also depends on the composition of the HDL, such as apolipoproteins (apoA-I, apoA-II, apoC-III, serum amyloid A, and α-synuclein), cholesterol, and triglyceride. The HDL quality is also associated with the extent of HDL modification, such as glycation and oxidation, resulting in the multimerization of apoA-I, and the aggregation leads to amyloidogenesis. The HDL quality frequently determines the HDL functionality, which depends on the attached antioxidant enzyme activity, such as the paraoxonase and cholesterol efflux activity. Conventional HDL functionality is regression, the removal of cholesterol from atherosclerotic lesions, and the removal of oxidized species in low-density lipoproteins (LDL). Recently, HDL functionality was reported to expand the removal of β-amyloid plaque and inhibit α-synuclein aggregation in the brain to attenuate Alzheimer's disease and Parkinson's disease, respectively. More recently, HDL functionality has been associated with the susceptibility and recovery ability of coronavirus disease 2019 (COVID-19) by inhibiting the activity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The appearance of dysfunctional HDL is frequently associated with many acute infectious diseases and chronic aging-related diseases. An HDL can be a suitable biomarker to diagnose many diseases and their progression by monitoring the changes in its quantity and quality in terms of the antioxidant and anti-inflammatory abilities. An HDL can be a protein drug used for the removal of plaque and as a delivery vehicle for non-soluble drugs and genes. A dysfunctional HDL has poor HDL quality, such as a lower apoA-I content, lower antioxidant ability, smaller size, and ambiguous shape. The current review analyzes the recent advances in HDL quantity, quality, and functionality, depending on the health and disease state during one's lifetime.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- LipoLab, Yeungnam University, Gyeongsan 38541, Korea; ; Tel.: +82-53-964-1990; Fax: +82-53-965-1992
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Korea
| |
Collapse
|
17
|
Bedi S, Morris J, Shah A, Hart RC, Jerome WG, Aller SG, Tang C, Vaisar T, Bornfeldt KE, Segrest JP, Heinecke JW, Davidson WS. Conformational flexibility of apolipoprotein A-I amino- and carboxy-termini is necessary for lipid binding but not cholesterol efflux. J Lipid Res 2022; 63:100168. [PMID: 35051413 PMCID: PMC8953623 DOI: 10.1016/j.jlr.2022.100168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 11/25/2022] Open
Abstract
Because of its critical role in HDL formation, significant efforts have been devoted to studying apolipoprotein A-I (APOA1) structural transitions in response to lipid binding. To assess the requirements for the conformational freedom of its termini during HDL particle formation, we generated three dimeric APOA1 molecules with their termini covalently joined in different combinations. The dimeric (d)-APOA1C-N mutant coupled the C-terminus of one APOA1 molecule to the N-terminus of a second with a short alanine linker, whereas the d-APOA1C-C and d-APOA1N-N mutants coupled the C-termini and the N-termini of two APOA1 molecules, respectively, using introduced cysteine residues to form disulfide linkages. We then tested the ability of these constructs to generate reconstituted HDL by detergent-assisted and spontaneous phospholipid microsolubilization methods. Using cholate dialysis, we demonstrate WT and all APOA1 mutants generated reconstituted HDL particles of similar sizes, morphologies, compositions, and abilities to activate lecithin:cholesterol acyltransferase. Unlike WT, however, the mutants were incapable of spontaneously solubilizing short chain phospholipids into discoidal particles. We found lipid-free d-APOA1C-N and d-APOA1N-N retained most of WT APOA1's ability to promote cholesterol efflux via the ATP binding cassette transporter A1, whereas d-APOA1C-C exhibited impaired cholesterol efflux. Our data support the double belt model for a lipid-bound APOA1 structure in nascent HDL particles and refute other postulated arrangements like the "double super helix." Furthermore, we conclude the conformational freedom of both the N- and C-termini of APOA1 is important in spontaneous microsolubilization of bulk phospholipid but is not critical for ABCA1-mediated cholesterol efflux.
Collapse
Affiliation(s)
- Shimpi Bedi
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jamie Morris
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Amy Shah
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rachel C Hart
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - W Gray Jerome
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chongren Tang
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jere P Segrest
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
18
|
Dotan I, Yang J, Ikeda J, Roth Z, Pollock-Tahiri E, Desai H, Sivasubramaniyam T, Rehal S, Rapps J, Li YZ, Le H, Farber G, Alchami E, Xiao C, Karim S, Gronda M, Saikali MF, Tirosh A, Wagner KU, Genest J, Schimmer AD, Gupta V, Minden MD, Cummins CL, Lewis GF, Robbins C, Jongstra-Bilen J, Cybulsky M, Woo M. Macrophage Jak2 deficiency accelerates atherosclerosis through defects in cholesterol efflux. Commun Biol 2022; 5:132. [PMID: 35169231 PMCID: PMC8847578 DOI: 10.1038/s42003-022-03078-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory condition in which macrophages play a major role. Janus kinase 2 (JAK2) is a pivotal molecule in inflammatory and metabolic signaling, and Jak2V617F activating mutation has recently been implicated with enhancing clonal hematopoiesis and atherosclerosis. To determine the essential in vivo role of macrophage (M)-Jak2 in atherosclerosis, we generate atherosclerosis-prone ApoE-null mice deficient in M-Jak2. Contrary to our expectation, these mice exhibit increased plaque burden with no differences in macrophage proliferation, recruitment or bone marrow clonal expansion. Notably, M-Jak2-deficient bone marrow derived macrophages show a significant defect in cholesterol efflux. Pharmacologic JAK2 inhibition with ruxolitinib also leads to defects in cholesterol efflux and accelerates atherosclerosis. Liver X receptor agonist abolishes the efflux defect and attenuates the accelerated atherosclerosis that occurs with M-Jak2 deficiency. Macrophages of individuals with the Jak2V617F mutation show increased efflux which is normalized when treated with a JAK2 inhibitor. Together, M-Jak2-deficiency leads to accelerated atherosclerosis primarily through defects in cholesterol efflux from macrophages.
Collapse
Affiliation(s)
- Idit Dotan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Institute of Endocrinology, Beilinson Campus, Rabin Medical Center, Petach Tikva, Israel
| | - Jiaqi Yang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Jiro Ikeda
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Ziv Roth
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada
| | - Evan Pollock-Tahiri
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Harsh Desai
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | | | - Sonia Rehal
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Josh Rapps
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Yu Zhe Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Helen Le
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Gedaliah Farber
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Edouard Alchami
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Changting Xiao
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Saraf Karim
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Marcela Gronda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Amit Tirosh
- Endocrine Cancer Genomics Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Jacques Genest
- Research Institute of the McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Gary F Lewis
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Clinton Robbins
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Jenny Jongstra-Bilen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Myron Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada. .,Department of Immunology, University of Toronto, Toronto, Canada. .,Division of Endocrinology and Metabolism, Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Canada.
| |
Collapse
|
19
|
Li C, Qu L, Matz AJ, Murphy PA, Liu Y, Manichaikul AW, Aguiar D, Rich SS, Herrington DM, Vu D, Johnson WC, Rotter JI, Post WS, Vella AT, Rodriguez-Oquendo A, Zhou B. AtheroSpectrum Reveals Novel Macrophage Foam Cell Gene Signatures Associated With Atherosclerotic Cardiovascular Disease Risk. Circulation 2022; 145:206-218. [PMID: 34913723 PMCID: PMC8766929 DOI: 10.1161/circulationaha.121.054285] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Whereas several interventions can effectively lower lipid levels in people at risk for atherosclerotic cardiovascular disease (ASCVD), cardiovascular event risks remain, suggesting an unmet medical need to identify factors contributing to cardiovascular event risk. Monocytes and macrophages play central roles in atherosclerosis, but studies have yet to provide a detailed view of macrophage populations involved in increased ASCVD risk. METHODS A novel macrophage foaming analytics tool, AtheroSpectrum, was developed using 2 quantitative indices depicting lipid metabolism and the inflammatory status of macrophages. A machine learning algorithm was developed to analyze gene expression patterns in the peripheral monocyte transcriptome of MESA participants (Multi-Ethnic Study of Atherosclerosis; set 1; n=911). A list of 30 genes was generated and integrated with traditional risk factors to create an ASCVD risk prediction model (30-gene cardiovascular disease risk score [CR-30]), which was subsequently validated in the remaining MESA participants (set 2; n=228); performance of CR-30 was also tested in 2 independent human atherosclerotic tissue transcriptome data sets (GTEx [Genotype-Tissue Expression] and GSE43292). RESULTS Using single-cell transcriptomic profiles (GSE97310, GSE116240, GSE97941, and FR-FCM-Z23S), AtheroSpectrum detected 2 distinct programs in plaque macrophages-homeostatic foaming and inflammatory pathogenic foaming-the latter of which was positively associated with severity of atherosclerosis in multiple studies. A pool of 2209 pathogenic foaming genes was extracted and screened to select a subset of 30 genes correlated with cardiovascular event in MESA set 1. A cardiovascular disease risk score model (CR-30) was then developed by incorporating this gene set with traditional variables sensitive to cardiovascular event in MESA set 1 after cross-validation generalizability analysis. The performance of CR-30 was then tested in MESA set 2 (P=2.60×10-4; area under the receiver operating characteristic curve, 0.742) and 2 independent data sets (GTEx: P=7.32×10-17; area under the receiver operating characteristic curve, 0.664; GSE43292: P=7.04×10-2; area under the receiver operating characteristic curve, 0.633). Model sensitivity tests confirmed the contribution of the 30-gene panel to the prediction model (likelihood ratio test; df=31, P=0.03). CONCLUSIONS Our novel computational program (AtheroSpectrum) identified a specific gene expression profile associated with inflammatory macrophage foam cells. A subset of 30 genes expressed in circulating monocytes jointly contributed to prediction of symptomatic atherosclerotic vascular disease. Incorporating a pathogenic foaming gene set with known risk factors can significantly strengthen the power to predict ASCVD risk. Our programs may facilitate both mechanistic investigations and development of therapeutic and prognostic strategies for ASCVD risk.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
| | - Lili Qu
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
| | - Alyssa J. Matz
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
| | - Patrick A. Murphy
- Center for Vascular Biology, School of Medicine, University of Connecticut, Farmington, CT
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Yongmei Liu
- Department of Medicine, Divisions of Cardiology and Neurology, Duke University Medical Center, Durham, NC
| | - Ani W. Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Derek Aguiar
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - David M Herrington
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - David Vu
- Department of Biostatistics, University of Washington, Seattle, WA
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Wendy S. Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
- Institute for Systems Genomics, University of Connecticut, Farmington, CT
| | | | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
- Institute for Systems Genomics, University of Connecticut, Farmington, CT
| |
Collapse
|
20
|
Molecular Mechanisms of Sphingolipid Transport on Plasma Lipoproteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:57-65. [DOI: 10.1007/978-981-19-0394-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Pandey M, Cuddihy G, Gordon JA, Cox ME, Wasan KM. Inhibition of Scavenger Receptor Class B Type 1 (SR-B1) Expression and Activity as a Potential Novel Target to Disrupt Cholesterol Availability in Castration-Resistant Prostate Cancer. Pharmaceutics 2021; 13:1509. [PMID: 34575583 PMCID: PMC8467449 DOI: 10.3390/pharmaceutics13091509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
There have been several studies that have linked elevated scavenger receptor class b type 1 (SR-B1) expression and activity to the development and progression of castration-resistant prostate cancer (CRPC). SR-B1 facilitates the influx of cholesterol to the cell from lipoproteins in systemic circulation. This influx of cholesterol may be important for many cellular functions, including the synthesis of androgens. Castration-resistant prostate cancer tumors can synthesize androgens de novo to supplement the loss of exogenous sources often induced by androgen deprivation therapy. Silencing of SR-B1 may impact the ability of prostate cancer cells, particularly those of the castration-resistant state, to maintain the intracellular supply of androgens by removing a supply of cholesterol. SR-B1 expression is elevated in CRPC models and has been linked to poor survival of patients. The overarching belief has been that cholesterol modulation, through either synthesis or uptake inhibition, will impact essential signaling processes, impeding the proliferation of prostate cancer. The reduction in cellular cholesterol availability can impede prostate cancer proliferation through both decreased steroid synthesis and steroid-independent mechanisms, providing a potential therapeutic target for the treatment of prostate cancer. In this article, we discuss and highlight the work on SR-B1 as a potential novel drug target for CRPC management.
Collapse
Affiliation(s)
- Mitali Pandey
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Grace Cuddihy
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Jacob A. Gordon
- Oncology Bioscience, Oncology R&D, AstraZeneca, Boston, MA 02451, USA;
| | - Michael E. Cox
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Kishor M. Wasan
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| |
Collapse
|
22
|
Lipid accumulation and novel insight into vascular smooth muscle cells in atherosclerosis. J Mol Med (Berl) 2021; 99:1511-1526. [PMID: 34345929 DOI: 10.1007/s00109-021-02109-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/03/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is a chronic and progressive process. It is the most important pathological basis of cardiovascular disease and stroke. Vascular smooth muscle cells (VSMCs) are an essential cell type in atherosclerosis. Previous studies have revealed that VSMCs undergo phenotypic transformation in atherosclerosis to participate in the retention of atherogenic lipoproteins as well as the formation of the fibrous cap and the underlying necrotic core in plaques. The emergence of lineage-tracing studies indicates that the function and number of VSMCs in plaques have been greatly underestimated. In addition, recent studies have revealed that VSMCs make up at least 50% of the foam cell population in human and mouse atherosclerotic lesions. Therefore, understanding the formation of lipid-loaded VSMCs and their regulatory mechanisms is critical to elucidate the pathogenesis of atherosclerosis and to explore potential therapeutic targets. Moreover, combination of many complementary technologies such as lineage tracing, single-cell RNA sequencing (scRNA-seq), flow cytometry, and mass cytometry (CyTOF) with immunostaining has been performed to further understand the complex VSMC function. Correct identification of detrimental and beneficial processes may reveal successful therapeutic treatments targeting VSMCs and their derivatives during atherosclerosis. The purpose of this review is to summarize the process of lipid-loaded VSMC formation in atherosclerosis and to describe novel insight into VSMCs gained by using multiple advanced methods.
Collapse
|
23
|
Pedrelli M, Parini P, Kindberg J, Arnemo JM, Bjorkhem I, Aasa U, Westerståhl M, Walentinsson A, Pavanello C, Turri M, Calabresi L, Öörni K, Camejo G, Fröbert O, Hurt-Camejo E. Vasculoprotective properties of plasma lipoproteins from brown bears (Ursus arctos). J Lipid Res 2021; 62:100065. [PMID: 33713671 PMCID: PMC8131316 DOI: 10.1016/j.jlr.2021.100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
Plasma cholesterol and triglyceride (TG) levels are twice as high in hibernating brown bears (Ursus arctos) than healthy humans. Yet, bears display no signs of early stage atherosclerosis development when adult. To explore this apparent paradox, we analyzed plasma lipoproteins from the same 10 bears in winter (hibernation) and summer using size exclusion chromatography, ultracentrifugation, and electrophoresis. LDL binding to arterial proteoglycans (PGs) and plasma cholesterol efflux capacity (CEC) were also evaluated. The data collected and analyzed from bears were also compared with those from healthy humans. In bears, the cholesterol ester, unesterified cholesterol, TG, and phospholipid contents of VLDL and LDL were higher in winter than in summer. The percentage lipid composition of LDL differed between bears and humans but did not change seasonally in bears. Bear LDL was larger, richer in TGs, showed prebeta electrophoretic mobility, and had 5-10 times lower binding to arterial PGs than human LDL. Finally, plasma CEC was higher in bears than in humans, especially the HDL fraction when mediated by ABCA1. These results suggest that in brown bears the absence of early atherogenesis is likely associated with a lower affinity of LDL for arterial PGs and an elevated CEC of bear plasma.
Collapse
Affiliation(s)
- Matteo Pedrelli
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Metabolism Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Infection, Karolinska university Hospital, Stockholm, Sweden
| | - Jonas Kindberg
- Norwegian Institute for Nature Research, Trondheim, Norway; Swedish University of Agricultural Sciences, Department of Wildlife, Fish, and Environmental Studies, Umeå, Sweden
| | - Jon M Arnemo
- Swedish University of Agricultural Sciences, Department of Wildlife, Fish, and Environmental Studies, Umeå, Sweden; Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Koppang, Norway
| | - Ingemar Bjorkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Aasa
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| | - Maria Westerståhl
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Walentinsson
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Chiara Pavanello
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marta Turri
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Laura Calabresi
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Gérman Camejo
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ole Fröbert
- Swedish University of Agricultural Sciences, Department of Wildlife, Fish, and Environmental Studies, Umeå, Sweden; Örebro University, Faculty of Health, Department of Cardiology, Örebro, Sweden
| | - Eva Hurt-Camejo
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
24
|
Ahmed MO, Byrne RE, Pazderska A, Segurado R, Guo W, Gunness A, Frizelle I, Sherlock M, Ahmed KS, McGowan A, Moore K, Boran G, McGillicuddy FC, Gibney J. HDL particle size is increased and HDL-cholesterol efflux is enhanced in type 1 diabetes: a cross-sectional study. Diabetologia 2021; 64:656-667. [PMID: 33169205 DOI: 10.1007/s00125-020-05320-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 01/02/2023]
Abstract
AIMS/HYPOTHESIS The prevalence of atherosclerosis is increased in type 1 diabetes despite normal-to-high HDL-cholesterol levels. The cholesterol efflux capacity (CEC) of HDL is a better predictor of cardiovascular events than static HDL-cholesterol. This cross-sectional study addressed the hypothesis that impaired HDL function contributes to enhanced CVD risk within type 1 diabetes. METHODS We compared HDL particle size and concentration (by NMR), total CEC, ATP-binding cassette subfamily A, member 1 (ABCA1)-dependent CEC and ABCA1-independent CEC (by determining [3H]cholesterol efflux from J774-macrophages to ApoB-depleted serum), and carotid intima-media thickness (CIMT) in 100 individuals with type 1 diabetes (37.6 ± 1.2 years; BMI 26.9 ± 0.5 kg/m2) and 100 non-diabetic participants (37.7 ± 1.1 years; 27.1 ± 0.5 kg/m2). RESULTS Compared with non-diabetic participants, total HDL particle concentration was lower (mean ± SD 31.01 ± 8.66 vs 34.33 ± 8.04 μmol/l [mean difference (MD) -3.32 μmol/l]) in participants with type 1 diabetes. However, large HDL particle concentration was greater (9.36 ± 3.98 vs 6.99 ± 4.05 μmol/l [MD +2.37 μmol/l]), resulting in increased mean HDL particle size (9.82 ± 0.57 vs 9.44 ± 0.56 nm [MD +0.38 nm]) (p < 0.05 for all). Total CEC (14.57 ± 2.47%CEC/4 h vs 12.26 ± 3.81%CEC/4 h [MD +2.31%CEC/4 h]) was greater in participants with type 1 diabetes relative to non-diabetic participants. Increased HDL particle size was independently associated with increased total CEC; however, following adjustment for this in multivariable analysis, CEC remained greater in participants with type 1 diabetes. Both components of CEC, ABCA1-dependent (6.10 ± 2.41%CEC/4 h vs 5.22 ± 2.57%CEC/4 h [MD +0.88%CEC/4 h]) and ABCA1-independent (8.47 ± 1.79% CEC/4 h vs 7.05 ± 1.76% CEC/4 h [MD +1.42% CEC/4 h]) CEC, were greater in type 1 diabetes but the increase in ABCA1-dependent CEC was less marked and not statistically significant in multivariable analysis. CIMT was increased in participants with type 1 diabetes but in multivariable analysis it was only associated negatively with age and BMI. CONCLUSIONS/INTERPRETATION HDL particle size but not HDL-cholesterol level is independently associated with enhanced total CEC. HDL particle size is greater in individuals with type 1 diabetes but even after adjusting for this, total and ABCA1-independent CEC are enhanced in type 1 diabetes. Further studies are needed to understand the mechanisms underlying these effects, and whether they help attenuate progression of atherosclerosis in this high-risk group. Graphical abstract.
Collapse
Affiliation(s)
- Mohamad O Ahmed
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Rachel E Byrne
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Agnieszka Pazderska
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Ricardo Segurado
- School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Weili Guo
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Anjuli Gunness
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Isolda Frizelle
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Mark Sherlock
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Khalid S Ahmed
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Anne McGowan
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Kevin Moore
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Gerard Boran
- Department of Chemical Pathology, Tallaght University Hospital, Dublin, Ireland
| | - Fiona C McGillicuddy
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - James Gibney
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland.
| |
Collapse
|
25
|
Bernecic NC, de Graaf SP, Leahy T, Gadella BM. HDL mediates reverse cholesterol transport from ram spermatozoa and induces hyperactivated motility. Biol Reprod 2021; 104:1271-1281. [PMID: 33674849 PMCID: PMC8181994 DOI: 10.1093/biolre/ioab035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/05/2021] [Accepted: 02/21/2021] [Indexed: 01/10/2023] Open
Abstract
Reverse cholesterol transport or cholesterol efflux is part of an extensive plasma membrane remodeling process in spermatozoa that is imperative for fertilization. For ram spermatozoa, sheep serum is well known to support in vitro fertilization (IVF), but knowledge of its explicit role is limited. Though, it is postulated to elicit cholesterol efflux owing to the presence of high-density lipoproteins (HDLs) that interact with transmembrane cholesterol transporters, such as adenosinetriphosphate (ATP)-binding cassette transporter A1 (ABCA1) and scavenger receptor class B, type I (SR-BI). In this study, we report that both sheep serum and HDLs were able to elicit cholesterol efflux alone by up to 20–40% (as measured by the boron dipyrromethene (BODIPY)-cholesterol assay). Furthermore, when the antagonists glibenclamide and valspodar were used to inhibit the function of ABCA1 and SR-BI or ABCA1 alone, respectively, cholesterol efflux was only marginally reduced (8–15%). Nevertheless, it is likely that in ram spermatozoa, a specific facilitated pathway of cholesterol efflux is involved in the interaction between cholesterol acceptors and transporters. Interestingly, exposure to HDLs also induced hyperactivated motility, another critical event required for successful fertilization. Taken together, this study details the first report of the dual action of HDLs on ram spermatozoa, providing both an insight into the intricacy of events leading up to fertilization in vivo as well as demonstrating the possible application of HDL supplementation in media for IVF.
Collapse
Affiliation(s)
- Naomi C Bernecic
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Simon P de Graaf
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Tamara Leahy
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Bart M Gadella
- Department of Biochemistry & Cell Biology, Utrecht University, Utrecht, The Netherlands.,Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
26
|
Juan CC, Li LH, Hou SK, Liu PS, Kao WF, Chiu YH, How CK. Expression of ABC transporter and scavenger receptor mRNAs in PBMCs in 100-km ultramarathon runners. Eur J Clin Invest 2021; 51:e13365. [PMID: 32725886 DOI: 10.1111/eci.13365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Cholesterol metabolism is tightly regulated at the cellular level. This study was to measure the expression levels of ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1), scavenger receptor class B type I (SR-BI) and class A (SRA), and CD36 mRNAs in peripheral blood mononuclear cells (PBMCs) in response to 100-km ultramarathon event and determine any correlation between these ABC transporters/scavenger receptor expression levels and plasma cholesterol homeostasis. MATERIALS AND METHODS Twenty-six participants were enrolled. Blood was drawn from each individual 1 week prior, immediately after, and 24 hours after the race. The expression levels of ABCA1, ABCG1, SR-BI, SRA and CD36 in PBMCs were measured by using real-time quantitative reverse transcription polymerase chain reaction. RESULTS Plasma triglyceride levels were significantly increased immediately after the race and dropped at 24-hour post-race compared with pre-race values. The 100-km ultramarathon boosted high-density lipoprotein cholesterol (HDL-C) levels and decreased low-density lipoprotein cholesterol (LDL-C) levels 24-hour post-race. The expression levels of ABCA1, ABCG1 and SR-BI were markedly decreased, whereas that of CD36 was slightly but significantly upregulated in runners' PBMCs immediately after the race. Ultramarathon resulted in immediate large-scale stimulation of inflammatory cytokines with increased plasma interleukin-6 and tumour necrosis factor-alpha levels. Moreover, by using in vitro models with human monocytic cell lines, incubation of runners' plasma immediately after the race significantly downregulated ABCA1 and ABCG1, and upregulated CD36 expression in these cells. CONCLUSIONS ABCA1, ABCG1 and CD36 gene expressions in PBMCS might be associated with endurance exercise-induced plasma cholesterol homeostasis and systemic inflammatory response.
Collapse
Affiliation(s)
- Chi-Chang Juan
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Ph.D. Program of Medical Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Sen-Kuang Hou
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Emergency and Critical Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ping-Shiou Liu
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Fong Kao
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Emergency and Critical Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Hui Chiu
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chorng-Kuang How
- Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Kinmen Hospital, Ministry of Health and Welfare, Kinmen, Taiwan
| |
Collapse
|
27
|
Juhl AD, Lund FW, Jensen MLV, Szomek M, Heegaard CW, Guttmann P, Werner S, McNally J, Schneider G, Kapishnikov S, Wüstner D. Niemann Pick C2 protein enables cholesterol transfer from endo-lysosomes to the plasma membrane for efflux by shedding of extracellular vesicles. Chem Phys Lipids 2021; 235:105047. [PMID: 33422548 DOI: 10.1016/j.chemphyslip.2020.105047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
The Niemann-Pick C2 protein (NPC2) is a sterol transfer protein in the lumen of late endosomes and lysosomes (LE/LYSs). Absence of functional NPC2 leads to endo-lysosomal buildup of cholesterol and other lipids. How NPC2's known capacity to transport cholesterol between model membranes is linked to its function in living cells is not known. Using quantitative live-cell imaging combined with modeling of the efflux kinetics, we show that NPC2-deficient human fibroblasts can export the cholesterol analog dehydroergosterol (DHE) from LE/LYSs. Internalized NPC2 accelerated sterol efflux extensively, accompanied by reallocation of LE/LYSs containing fluorescent NPC2 and DHE to the cell periphery. Using quantitative fluorescence loss in photobleaching of TopFluor-cholesterol (TF-Chol), we estimate a residence time for a rapidly exchanging sterol pool in LE/LYSs localized in close proximity to the plasma membrane (PM), of less than one min and observed non-vesicular sterol exchange between LE/LYSs and the PM. Excess sterol was released from the PM by shedding of cholesterol-rich vesicles. The ultrastructure of such vesicles was analyzed by combined fluorescence and cryo soft X-ray tomography (SXT), revealing that they can contain lysosomal cargo and intraluminal vesicles. Treating cells with apoprotein A1 and with nuclear receptor liver X-receptor (LXR) agonists to upregulate expression of ABC transporters enhanced cholesterol efflux from the PM, at least partly by accelerating vesicle release. We conclude that NPC2 inside LE/LYSs facilitates non-vesicular sterol exchange with the PM for subsequent sterol efflux to acceptor proteins and for shedding of sterol-rich vesicles from the cell surface.
Collapse
Affiliation(s)
- Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Frederik W Lund
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Maria Louise V Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Christian W Heegaard
- Department of Molecular Biology and Genetics, University of Aarhus, DK-8000, Aarhus C, Denmark
| | - Peter Guttmann
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Stephan Werner
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - James McNally
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Gerd Schneider
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Sergey Kapishnikov
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark.
| |
Collapse
|
28
|
Zheng B, Duffy D, Tricoci P, Kastrissios H, Pfister M, Wright SD, Gille A, Tortorici MA. Pharmacometric analyses to characterize the effect of CSL112 on apolipoprotein A-I and cholesterol efflux capacity in acute myocardial infarction patients. Br J Clin Pharmacol 2020; 87:2558-2571. [PMID: 33217027 PMCID: PMC8247400 DOI: 10.1111/bcp.14666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/22/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022] Open
Abstract
AIMS To characterize relationships between apolipoprotein A-I (apoA-I) exposure and cholesterol efflux capacity (CEC) and covariate effects following CSL112 (apoA-I [human]) administration in an integrated population including acute myocardial infarction (AMI) patients. METHODS A pharmacometric analysis utilized data from seven clinical trials, including patients with AMI, subjects with renal impairment and healthy subjects. A population pharmacokinetic (PK) analysis was performed to relate CSL112 doses to changes in apoA-I plasma concentrations. Covariate analysis was conducted to identify sources of variability in apoA-I exposure. Exposure-response modeling was conducted to describe the relationship between apoA-I exposure and total or ATP binding cassette transporter A1-(ABCA1)-dependent CEC and to identify clinical predictors of CEC. RESULTS A two-compartment model described apoA-I PK. ApoA-I clearance was slightly lower in subjects with AMI, whereas baseline apoA-I was marginally higher in female and Japanese subjects. Covariate effects on apoA-I exposure were in the order of 10% and thus not clinically relevant. The relationships between apoA-I exposure and CECs were described by nonlinear models. Simulations showed CEC elevation resulting from apoA-I exposure increment was comparable in AMI and non-AMI subjects; no covariate had clinically meaningful effects on CEC. Simulations also demonstrated that CEC in patients with AMI post 6 g CSL112 dosing was substantially elevated compared to placebo and lower dose levels. CONCLUSIONS The model-based exposure-response analysis demonstrated, irrespective of body weight, sex and race, that fixed 6 g CSL112 dosing causes a desired CEC elevation, which may benefit AMI patients by potentially reducing early recurrent cardiovascular event risk.
Collapse
Affiliation(s)
- Bo Zheng
- CSL Behring, King of Prussia, PA, USA
| | | | | | | | - Marc Pfister
- Certara Strategic Consulting, Princeton, NJ, USA.,University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
29
|
Fasting blood glucose to HDL-C ratio as a novel predictor of clinical outcomes in non-diabetic patients after PCI. Biosci Rep 2020; 40:226885. [PMID: 33140818 PMCID: PMC7693187 DOI: 10.1042/bsr20202797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
Background The present study was to assess the prognostic value of fasting blood glucose to high-density lipoprotein cholesterol ratio (GHR) in non-diabetic patients with coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI). Methods and results A total of 6645 non-diabetic patients from two independent cohorts, the CORFCHD-PCI study (n=4282) and the CORFCHD-ZZ (n=2363) study, were enrolled in Clinical Outcomes and Risk Factors of Patients with Coronary Heart Disease after PCI. Patients were divided into two groups according to the GHR value. The primary outcome included all-cause mortality (ACM) and cardiac mortality (CM). The average follow-up time was 36.51 ± 22.50 months. We found that there were significant differences between the two groups in the incidences of ACM (P=0.013) and CM (P=0.038). Multivariate Cox regression analysis revealed GHR as an independent prognostic factor for ACM. The incidence of ACM increased 1.284-times in patients in the higher GHR group (hazard ratio [HR]: 1.284 [95% confidence interval [CI]: 1.010-1.631], P<0.05). Kaplan-Meier survival analysis suggested that patients with high GHR value tended to have an increased accumulated risk of ACM. However, we did not find significant differences in the incidence of major adverse cardiac events, main/major adverse cardiovascular and cerebrovascular events (MACCE), stroke, recurrent myocardial infarction (MI) and bleeding events. Conclusions The present study indicates that GHR index is an independent and novel predictor of ACM in non-diabetic CAD patients who underwent PCI.
Collapse
|
30
|
Current Understanding of the Relationship of HDL Composition, Structure and Function to Their Cardioprotective Properties in Chronic Kidney Disease. Biomolecules 2020; 10:biom10091348. [PMID: 32967334 PMCID: PMC7564231 DOI: 10.3390/biom10091348] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
In the general population, the ability of high-density lipoproteins (HDLs) to promote cholesterol efflux is a predictor of cardiovascular events, independently of HDL cholesterol levels. Although patients with chronic kidney disease (CKD) have a high burden of cardiovascular morbidity and mortality, neither serum levels of HDL cholesterol, nor cholesterol efflux capacity associate with cardiovascular events. Important for the following discussion on the role of HDL in CKD is the notion that traditional atherosclerotic cardiovascular risk factors only partially account for this increased incidence of cardiovascular disease in CKD. As a potential explanation, across the spectrum of cardiovascular disease, the relative contribution of atherosclerotic cardiovascular disease becomes less important with advanced CKD. Impaired renal function directly affects the metabolism, composition and functionality of HDL particles. HDLs themselves are a heterogeneous population of particles with distinct sizes and protein composition, all of them affecting the functionality of HDL. Therefore, a more specific approach investigating the functional and compositional features of HDL subclasses might be a valuable strategy to decipher the potential link between HDL, cardiovascular disease and CKD. This review summarizes the current understanding of the relationship of HDL composition, metabolism and function to their cardio-protective properties in CKD, with a focus on CKD-induced changes in the HDL proteome and reverse cholesterol transport capacity. We also will highlight the gaps in the current knowledge regarding important aspects of HDL biology.
Collapse
|
31
|
Sun X, Chen R, Yan G, Chen Z, Yuan H, Huang W, Lu Y. Gender-specific associations between apolipoprotein A1 and arterial stiffness in patients with nonalcoholic fatty liver disease. PeerJ 2020; 8:e9757. [PMID: 32874784 PMCID: PMC7441919 DOI: 10.7717/peerj.9757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background Lipid metabolism factors may play an important role in the progression of nonalcoholic fatty liver disease (NAFLD) and its related cardiovascular dysfunctions. The study aims to assess whether Apolipoprotein A-1 (ApoA1) was associated with vascular stiffness in NAFLD patients. Methods From 2012 to 2013, we included 2,295 non-alcohol users with fatty liver disease (1,306 male patients) and completely excluded subjects who drank any alcohol ever to eliminate the effect of alcohol intake. The serum ApoA1 levels and the brachial-ankle pulse wave velocity (baPWV) were measured. Results The baPWV in men was much higher than in female patients (1,412.79 cm/s vs. 1,358.69 cm/s, P < 0.001). ApoA1 level was positively associated with baPWV odd ratio (OR), 4.18; 95% confidence interval (CI) [1.16-15.1], P < 0.05) in patients with AST/ALT < 1 and (OR, 4.70; 95% CI [1.36-16.23], P < 0.05) in patients with AST/ALT ≥ 1 respectively. Only arterial stiffness in men was associated with ApoA1 (OR, 3.96; 95% CI [1.29-12.30], P < 0.05) in logistics regression models adjusted for age, gender, body mass index, education attainment, physical activity, smoking, history of hypertension and high-density lipoprotein. The relationship between ApoA1 and baPWV in male NAFLD patients remained significant (confidence, 156.42; 95% CI [49.34-263.50], P < 0.05) in the fully adjusted linear regression model. Conclusion The serum ApoA1 was associated with arterial stiffness in male NAFLD patients. Increased ApoA1 level should be considered as an independent risk factor for arterial stiffness in male NAFLD patients, suggesting that NAFLD may alter arterial stiffness by "ApoA1-related" mechanism in men.
Collapse
Affiliation(s)
- Xulong Sun
- Clinical Research Center, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ruifang Chen
- Clinical Research Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Guangyu Yan
- Clinical Research Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhiheng Chen
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hong Yuan
- Clinical Research Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Huang
- Clinical Research Center, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yao Lu
- Clinical Research Center, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Life Science and Medicine, King's College London, London, UK
| |
Collapse
|
32
|
Satta N, Frias MA, Vuilleumier N, Pagano S. Humoral Immunity Against HDL Particle: A New Perspective in Cardiovascular Diseases? Curr Pharm Des 2020; 25:3128-3146. [PMID: 31470782 DOI: 10.2174/1381612825666190830164917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Autoimmune diseases are closely associated with cardiovascular diseases (CVD). Over the last decades, the comprehension of atherosclerosis, the principal initiator of CVD, evolved from a lipidcentered disease to a predominant inflammatory and immune response-driven disease displaying features of autoimmunity against a broad range of auto-antigens, including lipoproteins. Among them, high density lipoproteins (HDL) are important actors of cholesterol transport and bear several anti-atherogenic properties, raising a growing interest as therapeutic targets to decrease atherosclerosis and CVD burden, with nevertheless rather disappointing results so far. Reflecting HDL composition complexity, autoimmune responses and autoantibodies against various HDL components have been reported. RESULTS In this review, we addressed the important complexity of humoral autoimmunity towards HDL and particularly how this autoimmune response could help improving our understanding of HDL biological implication in atherosclerosis and CVD. We also discussed several issues related to specific HDL autoantibody subclasses characteristics, including etiology, prognosis and pathological mechanisms according to Rose criteria. CONCLUSION Finally, we addressed the possible clinical value of using these antibodies not only as potential biomarkers of atherogenesis and CVD, but also as a factor potentially mitigating the benefit of HDL-raising therapies.
Collapse
Affiliation(s)
- Nathalie Satta
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Miguel A Frias
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
33
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
34
|
Lim TK, Lee HS, Lee YJ. Triglyceride to HDL-cholesterol ratio and the incidence risk of type 2 diabetes in community dwelling adults: A longitudinal 12-year analysis of the Korean Genome and Epidemiology Study. Diabetes Res Clin Pract 2020; 163:108150. [PMID: 32305400 DOI: 10.1016/j.diabres.2020.108150] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
AIMS Serum triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio is known to be associated with cardiometabolic diseases. This study is aimed to evaluate the association between the TG/HDL-C ratio and incident type 2 diabetes with a large-sample, community-based Korean cohort over 12 years. METHODS Among 10,038 participants, a total of 8655 participants aged 40 to 69 years without diabetes were selected from the Korean Genome and Epidemiology Study (KoGES). The baseline TG/HDL-C ratio was divided into quartiles. Newly developed type 2 diabetes was defined by any of the following: a fasting plasma glucose level ≥ 126 mg/dL; a glucose level ≥ 200 mg/dL 2-hours after a 75 g oral glucose tolerance test; an HbA1c ≥ 6.5%; or treatment with anti-diabetic therapy. The hazard ratios (HRs) with 95% confidence intervals (CIs) for incident type 2 diabetes were calculated using multivariate Cox proportional hazards regression models after adjusting for potentially confounding variables. RESULTS During the 12-year follow-up period, type 2 diabetes developed in 1437 subjects (16.6%, 1437/8655), with incidence rate of 2.8-5.0 (over 2 years). Compared to the reference first quartile, the HRs (95% CIs) of incident type 2 diabetes in the second, third, and fourth quartiles increased in a dose-response manner after adjusting for potentially confounding variables. CONCLUSIONS High TG/HDL-C ratio at baseline may be a useful surrogate indicator of future incident type 2 diabetes.
Collapse
Affiliation(s)
- Tae-Kyeong Lim
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Jae Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Bagheri R, Darroudi S, Hosseini SM, Nikkar H, khodadadi F, kasraee S, sazegar M, Rashidlamir A. Effects of High-Intensity Resistance Training and Aerobic Exercise on Expression of ABCG4, ABCG5 and ABCG8 Genes in Female Athletes. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.3.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
36
|
Hafiane A, Favari E, Daskalopoulou SS, Vuilleumier N, Frias MA. High-density lipoprotein cholesterol efflux capacity and cardiovascular risk in autoimmune and non-autoimmune diseases. Metabolism 2020; 104:154141. [PMID: 31923386 DOI: 10.1016/j.metabol.2020.154141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/22/2022]
Abstract
Functional assessment of cholesterol efflux capacity (CEC) to high-density lipoprotein (HDL) is an emerging tool for evaluating morbidity and mortality associated with cardiovascular disease (CVD). By promoting macrophage reverse cholesterol transport (RCT), HDL-mediated CEC is believed to play an important role in atherosclerotic lesion progression in the vessel wall. Furthermore, recent evidence indicates that the typical inverse associations between various forms of CEC and CV events may be strongly modulated by environmental systemic factors and traditional CV risk factors, in addition to autoimmune diseases. These factors influence the complex and dynamic composition of HDL particles, which in turn positively or negatively affect HDL-CEC. Herein, we review recent findings connecting HDL-CEC to traditional CV risk factors and cardiometabolic conditions (non-autoimmune diseases) as well as autoimmune diseases, with a specific focus on how these factors may influence the associations between HDL-CEC and CVD risk.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Bloc E01. 3370H, Montréal, Qc H4A 3J1, Canada.
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| | - Stella S Daskalopoulou
- Department of Medicine, Division of Internal Medicine, McGill University, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, EM1.2230, Montreal, Quebec H4A 3J1, Canada.
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| | - Miguel A Frias
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| |
Collapse
|
37
|
Shao D, Di Y, Lian Z, Zhu B, Xu X, Guo D, Huang Q, Jiang C, Kong J, Shi J. Grape seed proanthocyanidins suppressed macrophage foam cell formation by miRNA-9 via targeting ACAT1 in THP-1 cells. Food Funct 2020; 11:1258-1269. [PMID: 31967154 DOI: 10.1039/c9fo02352f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abnormal lipid metabolism in macrophages leads to atherosclerosis (AS). Excessive LDL cholesterol uptake by macrophages in the aortic endothelium leads to formation of foam cells. Previous studies suggested that proanthocyanidins effectively suppress this process, while the in-depth mechanism has not been elucidated. In mononuclear THP-1 cells, we found that the oligomeric fraction of proanthocyanidins was more effective in suppressing foam cell formation and 25 μg ml-1 for 48 h were the optimum conditions. Under these model conditions, we investigated gene expression and for the first time reported expression of regulatory microRNA (miRNA). It was found that the proanthocyanidins restrained macrophage foaming mainly by lowering the expression levels of cholesterol influx-related receptors CD36 and SR-A, and promoting the expression of cholesterol efflux-related receptor ABCA1. Further, it was latest revealed that proanthocyanidins could notably inhibit the expression of ACAT1, a key gene for intracellular cholesterol esterification. Further investigation was performed on the expression of regulatory miRNAs (miR-134 for CD36, miR-134, miR-155 for SR-A, miR-155, let-7g for LOX-1, miR-9 for ACAT1, miR-27a, miR-19b, miR-10b and miR-33a for ABCA1). The relative expression of miR-9, a miRNA targeting ACAT1, was decreased after the treatment of proanthocyanidins. It was most likely that proanthocyanidins suppressed the expression of ACAT1 via up-regulating the expression of miR-9, thus lessening the intracellular lipid accumulation and eventually inhibiting macrophage foam cell formation. This assumption was further verified by use of miR-9 mimic and its inhibitor.
Collapse
Affiliation(s)
- Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Heine GH, Eller K, Stadler JT, Rogacev KS, Marsche G. Lipid-modifying therapy in chronic kidney disease: Pathophysiological and clinical considerations. Pharmacol Ther 2019; 207:107459. [PMID: 31863818 DOI: 10.1016/j.pharmthera.2019.107459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022]
Abstract
Chronic kidney disease (CKD), which affects >10% of the population worldwide, is associated with a dramatically increased rate of cardiovascular disease (CVD). More people with CKD will die from CVD than develop end-stage renal disease with dialysis-dependency. However, the contribution of classical atherosclerotic cardiovascular risk factors is less evident than in the general population. Particularly, the relationship between dyslipidemia and CVD morbidity and mortality in CKD patients is not as evident as in the general population. While LDL cholesterol-lowering drugs such as statins significantly reduce the rate of cardiovascular events in the general population, their role in patients with end-stage renal disease has been questioned. This could be caused by a shift from atherosclerotic to non-atherosclerotic CVD in patients with advanced CKD, which cannot be effectively prevented by lipid-lowering drugs. In addition, many lines of evidence suggest that impaired renal function directly affects the metabolism, composition and functionality of lipoproteins, which may affect their responsiveness to pharmacological interventions. In this review, we highlight the challenges for the therapeutic application of lipid-lowering treatment strategies in CKD and discuss why treatment strategies used in the general population cannot be applied uncritically to CKD patients.
Collapse
Affiliation(s)
- Gunnar H Heine
- Agaplesion Markus Krankenhaus, Frankfurt, Germany; Saarland University Faculty of Medicine, Homburg, Germany.
| | - Kathrin Eller
- Department of Internal Medicine, Clinical Division of Nephrology, Medical University of Graz, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Austria
| | - Kyrill S Rogacev
- Internal Medicine II/Cardiology, Sana HANSE-Klinikum Wismar, Germany; Nephrology/Lipidology, B Braun - ViaMedis, MVZ Schwerin West, Germany
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Austria.
| |
Collapse
|
40
|
Abstract
Cholesterol homeostasis is of central importance for life. Therefore, cells have developed a divergent set of pathways to meet their cholesterol needs. In this review, we focus on the direct transfer of cholesterol from lipoprotein particles to the cell membrane. More molecular details on the transfer of lipoprotein-derived lipids were gained by recent studies using phospholipid bilayers. While amphiphilic lipids are transferred right after contact of the lipoprotein particle with the membrane, the transfer of core lipids is restricted. Amphiphilic lipid transfer gains special importance in genetic diseases impairing lipoprotein metabolism like familial hypercholesterolemia. Taken together, these data indicate that there is a constant exchange of amphiphilic lipids between lipoprotein particles and the cell membrane.
Collapse
|
41
|
BODIPY-cholesterol can be reliably used to monitor cholesterol efflux from capacitating mammalian spermatozoa. Sci Rep 2019; 9:9804. [PMID: 31285440 PMCID: PMC6614389 DOI: 10.1038/s41598-019-45831-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Capacitation is the final maturation step spermatozoa undergo prior to fertilisation. The efflux of cholesterol from the sperm membrane to the extracellular environment is a crucial step during capacitation but current methods to quantify this process are suboptimal. In this study, we validate the use of a BODIPY-cholesterol assay to quantify cholesterol efflux from spermatozoa during in vitro capacitation, using the boar as a model species. The novel flow cytometric BODIPY-cholesterol assay was validated with endogenous cholesterol loss as measured by mass spectrometry and compared to filipin labelling. Following exposure to a range of conditions, the BODIPY-cholesterol assay was able to detect and quantify cholesterol efflux akin to that measured with mass spectrometry. The ability to counterstain for viability is a unique feature of this assay that allowed us to highlight the importance of isolating viable cells only for a reliable measure of cholesterol efflux. Finally, the BODIPY-cholesterol assay proved to be the superior method to quantify cholesterol efflux relative to filipin labelling, though filipin remains useful for assessing cholesterol redistribution. Taken together, the BODIPY-cholesterol assay is a simple, inexpensive and reliable flow cytometric method for the measurement of cholesterol efflux from spermatozoa during in vitro capacitation.
Collapse
|
42
|
Sharma B, Agnihotri N. Role of cholesterol homeostasis and its efflux pathways in cancer progression. J Steroid Biochem Mol Biol 2019; 191:105377. [PMID: 31063804 DOI: 10.1016/j.jsbmb.2019.105377] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/09/2019] [Accepted: 05/04/2019] [Indexed: 12/27/2022]
Abstract
Tumor cells show high avidity for cholesterol in order to support their inherent nature to divide and proliferate. This results in the rewiring of cholesterol homeostatic pathways by influencing not only de novo synthesis but also uptake or efflux pathways of cholesterol. Recent findings have pointed towards the importance of cholesterol efflux in tumor pathogenesis. Cholesterol efflux is the first and foremost step in reverse cholesterol transport and any perturbation in this pathway may lead to the accumulation of intracellular cholesterol, thereby altering the cellular equilibrium. This review addresses the different mechanisms of cholesterol efflux from the cell and highlights their role and regulation in context to tumor development. There are four different routes by which cholesterol can be effluxed from the cell namely, 1) passive diffusion of cholesterol to mature HDL particles, 2) SR-B1 mediated facilitated diffusion, 3) Active efflux to apo A1 via ABCA1 and 4) ABCG1 mediated efflux to mature HDL. These molecular players facilitating cholesterol efflux are engaged in a complex interplay with different signaling pathways. Thus, an understanding of the efflux pathways, their regulation and cross-talk with signaling molecules may provide novel prognostic markers and therapeutic targets to combat the onset of carcinogenesis.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biochemistry, BMS-Block II, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - Navneet Agnihotri
- Department of Biochemistry, BMS-Block II, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
43
|
Sultani R, Tong DC, Peverelle M, Lee YS, Baradi A, Wilson AM. Elevated Triglycerides to High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio Predicts Long-Term Mortality in High-Risk Patients. Heart Lung Circ 2019; 29:414-421. [PMID: 31014557 DOI: 10.1016/j.hlc.2019.03.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 03/25/2019] [Accepted: 03/31/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Elevated triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) ratio has been utilised as a predictor of outcomes in patients with adverse cardiometabolic risk profiles. In this study, we examined the prognostic value of elevated TG/HDL-C level in an Australian population of patients with high clinical suspicion of coronary artery disease (CAD) presenting for coronary angiography. METHODS Follow-up data was collected for 482 patients who underwent coronary angiography in a prospective cohort study. The primary endpoint was all-cause mortality and the secondary endpoint was a major adverse cardiac event (MACE). Patients were stratified into two groups according to their baseline TG/HDL-C ratio, using a TG/HDL-C ratio cut point of 2.5. RESULTS The mean follow-up period was 5.1 ± 1.2 years, with 49 all-cause deaths. Coronary artery disease on coronary angiography was more prevalent in patients with TG/HDL-C ratio ≥2.5 (83.6% vs. 69.4%, p = 0.03). On the Kaplan-Meier analysis, patients with TG/HDL-C ratio ≥2.5 had worse long-term prognosis (p = 0.04). On multivariate Cox regression adjusting for established cardiovascular risk factors and CAD on coronary angiography, TG/HDL-C ratio ≥2.5 was an independent predictor of long-term all-cause mortality (hazard ratio [HR] 2.10, 95% confidence interval [CI] 1.04-4.20, p = 0.04). On multivariate logistic regression adjusting for known cardiovascular risk factors and CAD on coronary angiography, TG/HDL-C ratio ≥2.5 was strongly associated with an increased risk of long-term MACE (odds ratio [OR] 2.72, 95% CI 1.42-5.20, p = 0.002). CONCLUSIONS Elevated TG/HDL-C ratio is an independent predictor of long-term all-cause mortality and is strongly associated with an increased risk of MACE.
Collapse
Affiliation(s)
- Rohullah Sultani
- Department of Cardiology, St. Vincent's Hospital, Melbourne, Vic, Australia; University of Melbourne, Department of Medicine, St. Vincent's Hospital, Melbourne, Vic, Australia.
| | - David C Tong
- Department of Cardiology, St. Vincent's Hospital, Melbourne, Vic, Australia; Department of Cardiology, Peninsula Health, Melbourne, Vic, Australia
| | - Matthew Peverelle
- Department of Cardiology, St. Vincent's Hospital, Melbourne, Vic, Australia; University of Melbourne, Department of Medicine, St. Vincent's Hospital, Melbourne, Vic, Australia
| | - Yun Suk Lee
- Department of Cardiology, St. Vincent's Hospital, Melbourne, Vic, Australia; University of Melbourne, Department of Medicine, St. Vincent's Hospital, Melbourne, Vic, Australia
| | - Arul Baradi
- Department of Cardiology, Werribee Mercy Hospital, Melbourne, Vic, Australia; Department of Cardiology, St. Vincent's Private Hospital, Melbourne, Vic, Australia
| | - Andrew M Wilson
- Department of Cardiology, St. Vincent's Hospital, Melbourne, Vic, Australia; Department of Cardiology, St. Vincent's Private Hospital, Melbourne, Vic, Australia
| |
Collapse
|
44
|
Abstract
High-density lipoprotein cholesterol (HDL-c) has long been referred to as 'good cholesterol' due to its apparent inverse relationship with future CVD risk. More recent research has questioned a causal role for HDL-c in this relationship, however, as both genetic studies and numerous large-scale randomised controlled trials have found no evidence of a cardiovascular protective effect when HDL-c levels are raised. Instead, focus has switched to the functional properties of the HDL particle. Evidence suggests that both the composition and function of HDL may be significantly altered in the context of an inflammatory milieu, transforming the particle from a vasoprotective anti-atherogenic particle to a noxious pro-atherogenic equivalent. This review will summarise evidence relating HDL to CVD risk, explore recent evidence characterising changes in the composition and function of HDL that may occur in chronic inflammatory diseases, and discuss the potential for future HDL-modifying therapeutic interventions.
Collapse
Affiliation(s)
- Scott T Chiesa
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, 1 St. Martin's Le Grand, London, EC1A 4NP, UK.
| | - Marietta Charakida
- Vascular Physiology Unit, UCL Institute of Cardiovascular Science, 1 St. Martin's Le Grand, London, EC1A 4NP, UK
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
45
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
46
|
El Khoury P, Couvert P, Elbitar S, Ghaleb Y, Abou-Khalil Y, Azar Y, Ayoub C, Superville A, Guérin M, Rabès JP, Varret M, Boileau C, Jambart S, Giral P, Carrié A, Le Goff W, Abifadel M. Identification of the first Tangier disease patient in Lebanon carrying a new pathogenic variant in ABCA1. J Clin Lipidol 2018; 12:1374-1382. [DOI: 10.1016/j.jacl.2018.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 01/07/2023]
|
47
|
Untersteller K, Meissl S, Trieb M, Emrich IE, Zawada AM, Holzer M, Knuplez E, Fliser D, Heine GH, Marsche G. HDL functionality and cardiovascular outcome among nondialysis chronic kidney disease patients. J Lipid Res 2018; 59:1256-1265. [PMID: 29789355 PMCID: PMC6027904 DOI: 10.1194/jlr.p085076] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/07/2018] [Indexed: 01/11/2023] Open
Abstract
CVD remains the leading cause of morbidity and mortality in patients with chronic kidney disease (CKD). CKD profoundly affects HDL composition and functionality, but whether abnormal HDL independently contributes to cardiovascular events in CKD patients remains elusive. In the present study, we assessed whether compositional and functional properties of HDL predict cardiovascular outcome among 526 nondialysis CKD patients who participate in the CARE FOR HOMe study. We measured HDL cholesterol, the content of HDL-associated proinflammatory serum amyloid A (SAA), and activities of the HDL enzymes paraoxonase and lipoprotein-associated phospholipase A2 (Lp-PLA2). In addition, we assessed the antioxidative activity of apoB-depleted serum. During a mean follow-up of 5.1 ± 2.1 years, 153 patients reached the predefined primary endpoint, a composite of atherosclerotic cardiovascular events including cardiovascular mortality and death of any cause. In univariate Cox regression analyses, lower HDL-cholesterol levels, higher HDL-associated SAA content, and lower paraoxonase activity predicted cardiovascular outcome, while Lp-PLA2 activity and antioxidative capacity did not. HDL-cholesterol and HDL-paraoxonase activity lost their association with cardiovascular outcome after adjustment for traditional cardiovascular and renal risk factors, while SAA lost its association after further adjustment for C-reactive protein. In conclusion, our data suggest that neither HDL quantity nor HDL composition or function independently predict cardiovascular outcome among nondialysis CKD patients.
Collapse
Affiliation(s)
- Kathrin Untersteller
- Internal Medicine IV-Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | - Sabine Meissl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Markus Trieb
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Insa E Emrich
- Internal Medicine IV-Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | - Adam M Zawada
- Internal Medicine IV-Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | - Michael Holzer
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Eva Knuplez
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Danilo Fliser
- Internal Medicine IV-Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | - Gunnar H Heine
- Internal Medicine IV-Nephrology and Hypertension, Saarland University Medical Center, Homburg, Germany
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
48
|
Shen WJ, Asthana S, Kraemer FB, Azhar S. Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. J Lipid Res 2018; 59:1114-1131. [PMID: 29720388 DOI: 10.1194/jlr.r083121] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Cholesterol is required for maintenance of plasma membrane fluidity and integrity and for many cellular functions. Cellular cholesterol can be obtained from lipoproteins in a selective pathway of HDL-cholesteryl ester (CE) uptake without parallel apolipoprotein uptake. Scavenger receptor B type 1 (SR-B1) is a cell surface HDL receptor that mediates HDL-CE uptake. It is most abundantly expressed in liver, where it provides cholesterol for bile acid synthesis, and in steroidogenic tissues, where it delivers cholesterol needed for storage or steroidogenesis in rodents. SR-B1 transcription is regulated by trophic hormones in the adrenal gland, ovary, and testis; in the liver and elsewhere, SR-B1 is subject to posttranscriptional and posttranslational regulation. SR-B1 operates in several metabolic processes and contributes to pathogenesis of atherosclerosis, inflammation, hepatitis C virus infection, and other conditions. Here, we summarize characteristics of the selective uptake pathway and involvement of microvillar channels as facilitators of selective HDL-CE uptake. We also present the potential mechanisms of SR-B1-mediated selective cholesterol transport; the transcriptional, posttranscriptional, and posttranslational regulation of SR-B1; and the impact of gene variants on expression and function of human SR-B1. A better understanding of this unique pathway and SR-B1's role may yield improved therapies for a wide variety of conditions.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Shailendra Asthana
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Fredric B Kraemer
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| | - Salman Azhar
- Geriatric Research, Education, and Clinical Research Center (GRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 and Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
49
|
Cholesterol Efflux: Does It Contribute to Aortic Stiffening? J Cardiovasc Dev Dis 2018; 5:jcdd5020023. [PMID: 29724005 PMCID: PMC6023341 DOI: 10.3390/jcdd5020023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
Aortic stiffness during cardiac contraction is defined by the rigidity of the aorta and the elastic resistance to deformation. Recent studies suggest that aortic stiffness may be associated with changes in cholesterol efflux in endothelial cells. This alteration in cholesterol efflux may directly affect endothelial function, extracellular matrix composition, and vascular smooth muscle cell function and behavior. These pathological changes favor an aortic stiffness phenotype. Among all of the proteins participating in the cholesterol efflux process, ATP binding cassette transporter A1 (ABCA1) appears to be the main contributor to arterial stiffness changes in terms of structural and cellular function. ABCA1 is also associated with vascular inflammation mediators implicated in aortic stiffness. The goal of this mini review is to provide a conceptual hypothesis of the recent advancements in the understanding of ABCA1 in cholesterol efflux and its role and association in the development of aortic stiffness, with a particular emphasis on the potential mechanisms and pathways involved.
Collapse
|
50
|
May-Zhang LS, Yermalitsky V, Huang J, Pleasent T, Borja MS, Oda MN, Jerome WG, Yancey PG, Linton MF, Davies SS. Modification by isolevuglandins, highly reactive γ-ketoaldehydes, deleteriously alters high-density lipoprotein structure and function. J Biol Chem 2018; 293:9176-9187. [PMID: 29712723 DOI: 10.1074/jbc.ra117.001099] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/30/2018] [Indexed: 01/17/2023] Open
Abstract
Cardiovascular disease risk depends on high-density lipoprotein (HDL) function, not HDL-cholesterol. Isolevuglandins (IsoLGs) are lipid dicarbonyls that react with lysine residues of proteins and phosphatidylethanolamine. IsoLG adducts are elevated in atherosclerosis. The consequences of IsoLG modification of HDL have not been studied. We hypothesized that IsoLG modification of apoA-I deleteriously alters HDL function. We determined the effect of IsoLG on HDL structure-function and whether pentylpyridoxamine (PPM), a dicarbonyl scavenger, can preserve HDL function. IsoLG adducts in HDL derived from patients with familial hypercholesterolemia (n = 10, 233.4 ± 158.3 ng/mg) were found to be significantly higher than in healthy controls (n = 7, 90.1 ± 33.4 pg/mg protein). Further, HDL exposed to myeloperoxidase had elevated IsoLG-lysine adducts (5.7 ng/mg protein) compared with unexposed HDL (0.5 ng/mg protein). Preincubation with PPM reduced IsoLG-lysine adducts by 67%, whereas its inactive analogue pentylpyridoxine did not. The addition of IsoLG produced apoA-I and apoA-II cross-links beginning at 0.3 molar eq of IsoLG/mol of apoA-I (0.3 eq), whereas succinylaldehyde and 4-hydroxynonenal required 10 and 30 eq. IsoLG increased HDL size, generating a subpopulation of 16-23 nm. 1 eq of IsoLG decreased HDL-mediated [3H]cholesterol efflux from macrophages via ABCA1, which corresponded to a decrease in HDL-apoA-I exchange from 47.4% to only 24.8%. This suggests that IsoLG inhibits apoA-I from disassociating from HDL to interact with ABCA1. The addition of 0.3 eq of IsoLG ablated HDL's ability to inhibit LPS-stimulated cytokine expression by macrophages and increased IL-1β expression by 3.5-fold. The structural-functional effects were partially rescued with PPM scavenging.
Collapse
Affiliation(s)
- Linda S May-Zhang
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602
| | - Valery Yermalitsky
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602
| | - Jiansheng Huang
- the Division of Cardiovascular Medicine, Department of Medicine, and
| | | | - Mark S Borja
- the Department of Chemistry and Biochemistry, California State University East Bay, Hayward, California 94542, and
| | - Michael N Oda
- the Children's Hospital Oakland Research Institute, Oakland, California 94609
| | - W Gray Jerome
- the Department of Pathology, Vanderbilt Medical Center, Nashville, Tennessee 37232
| | - Patricia G Yancey
- the Division of Cardiovascular Medicine, Department of Medicine, and
| | - MacRae F Linton
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602.,the Division of Cardiovascular Medicine, Department of Medicine, and
| | - Sean S Davies
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602,
| |
Collapse
|