1
|
Santos M, Maurício T, Domingues R, Domingues P. Impact of oxidized phosphatidylcholine supplementation on the lipidome of RAW264.7 macrophages. Arch Biochem Biophys 2025; 768:110384. [PMID: 40090440 DOI: 10.1016/j.abb.2025.110384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/24/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Oxidized phospholipids (OxPLs) have emerged as critical damage-associated molecular patterns (DAMPs) and modulators of numerous biological processes, including inflammation, playing a significant role in health and disease. Despite their recognized influence on macrophage polarization, the precise mechanisms by which distinct OxPL species shape macrophage behavior remains poorly understood. The present study investigates the impact of two oxidized phosphatidylcholines (OxPC): omega 3 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphatidylcholine (OxPC22:6), and omega 6 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (OxPC18:2), on the lipidomic profile of RAW264.7 macrophages, through an LC-MS lipidomic analysis. Our findings demonstrate that the OxPCs under study modulate macrophage lipidome differently, highlighting the significance of the sn-2 acyl chain composition for their biological function. When administered alone, neither of the OxPCs induced a pro-inflammatory phenotype in macrophages. OxPC22:6 appears to induce a preparatory pro-inflammatory state in macrophages, improving their subsequent inflammatory responses, while OxPC18:2 seems to induce a resting state on macrophages. Under LPS stimulation, both OxPCs were found to selectively attenuate certain LPS-driven lipidomic changes (PC.O, PC.P, PI.P, PE.P) while amplifying others (DG, Cer, LPC, PE.O, PI.O, TG, PC, PI) and introducing unique alterations to the macrophage lipidome (SM, PE, LPE). Core lipidomic changes, crucial for macrophages' LPS response, were identified, with sustained elevation of TG, DG, Cer, PC, LPC, and PI.O and reduction of PE.O, PI, and CAR. These observations suggest that, in the presence of LPS, mainly OxPC22:6 amplifies the pro-inflammatory lipidomic signature of macrophages. Further research is needed to clarify whether the observed lipidomic adaptations improve, impair, or inhibit macrophages' inflammatory capacities and response.
Collapse
Affiliation(s)
- Matilde Santos
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Tatiana Maurício
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Mursalin MH, Coburn PS, Longoria-Gonzalez L, Astley R, Fischetti VA, Callegan MC. Novel Anti-Microbial/Anti-Inflammatory Combination Improves Clinical Outcome of Bacillus cereus Endophthalmitis. Invest Ophthalmol Vis Sci 2025; 66:39. [PMID: 39813055 PMCID: PMC11741065 DOI: 10.1167/iovs.66.1.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose The purpose of this study was to explore the therapeutic potential of the novel combination of Bacillus bacteriophage lysin (PlyB) and a synthetic TLR2/4 inhibitor (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, OxPAPC) in the treatment of experimental Bacillus cereus endophthalmitis. Methods C57BL/6J mice were injected with 100 colony forming units (CFUs) Bacillus cereus to induce endophthalmitis. Two hours postinfection, groups of mice were treated with either PlyB, PlyB with OxPAPC, or the groups were left untreated to serve as a control. A group of uninfected mice was injected with only PlyB to serve as a treatment control. Eight hours post-treatment, infected/treated mice were analyzed for bacterial counts, retinal function, histology, and inflammation. Results Groups treated with PlyB alone or PlyB/OxPAPC showed significantly reduced bacterial loads compared with untreated eyes. Compared with untreated eyes, PlyB and PlyB/OxPAPC-treated eyes retained significant A-wave and B-wave function. PlyB/OxPAPC-treated eyes retained greater A- and B-wave function compared with eyes treated with PlyB alone. Histology showed that retinal structures were well preserved, and retinal layers were distinguishable in eyes treated with PlyB and PlyB/OxPAPC. Ninety-five percent of infiltrating CD45+ cells in infected untreated eyes were Ly6G+/Ly6C+ neutrophils. Infected eyes treated with PlyB and PlyB/OxPAPC had significantly reduced numbers of CD45+ immune cells compared with untreated eyes. Eyes treated with PlyB/OxPAPC had a significantly lower number of neutrophils than eyes treated with PlyB alone. Conclusions These results demonstrated that the novel combination of bacteriophage lysin and TLR2/4 inhibitor was a successful treatment option for treating experimental Bacillus cereus endophthalmitis.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Luis Longoria-Gonzalez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Roger Astley
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York, United States
| | - Michelle C. Callegan
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Dean McGee Eye Institute, Oklahoma City, Oklahoma, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
3
|
Baranova IN, Bocharov AV, Vishnyakova TG, Chen Z, Ke Y, Birukova AA, Yuen PST, Tsuji T, Star RA, Birukov KG, Patterson AP, Eggerman TL. Class B Scavenger Receptor CD36 as a Potential Therapeutic Target in Inflammation Induced by Danger-Associated Molecular Patterns. Cells 2024; 13:1992. [PMID: 39682740 PMCID: PMC11640246 DOI: 10.3390/cells13231992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The class B scavenger receptor CD36 is known to bind and mediate the transport of lipid-related ligands and it functions as a pattern recognition receptor (PRR) for a variety of pathogens, including bacteria and viruses. In this study, we assessed CD36's role as a PRR mediating pro-inflammatory effects of several known Danger-Associated Molecular Patterns (DAMPs) used either as a single preparation or as a combination of DAMPs in the form of total cell/skeletal muscle tissue lysates. Our data demonstrated that multiple DAMPs, including HMGB1, HSPs, histone H3, SAA, and oxPAPC, as well as cell/tissue lysate preparations, induced substantially higher (~7-10-fold) IL-8 cytokine responses in HEK293 cells overexpressing CD36 compared to control WT cells. At the same time, DAMP-induced secretion of IL-6 in bone marrow-derived macrophages (BMDM) from CD36-/- mice was markedly (~2-3 times) reduced, as compared to macrophages from normal mice. Synthetic amphipathic helical peptides (SAHPs), known CD36 ligands, efficiently blocked CD36-dependent inflammatory responses induced by both cell and tissue lysates, HMGB1 and histone H3 in CD36+ cells. IP injection of total cellular lysate preparation induced inflammatory responses that were assessed by the expression of liver and lung pro-inflammatory markers, including IL-6, TNF-α, CD68, and CXCL1, and was reduced by ~50% in CD36-deficient mice compared to normal mice. Our findings demonstrate that CD36 is a PRR contributing to the innate immune response via mediating DAMP-induced inflammatory signaling and highlight the importance of this receptor as a potential therapeutic target in DAMP-associated inflammatory conditions.
Collapse
Affiliation(s)
- Irina N. Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (A.V.B.); (T.G.V.); (Z.C.); (A.P.P.); (T.L.E.)
| | - Alexander V. Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (A.V.B.); (T.G.V.); (Z.C.); (A.P.P.); (T.L.E.)
| | - Tatyana G. Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (A.V.B.); (T.G.V.); (Z.C.); (A.P.P.); (T.L.E.)
| | - Zhigang Chen
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (A.V.B.); (T.G.V.); (Z.C.); (A.P.P.); (T.L.E.)
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.K.); (K.G.B.)
| | - Anna A. Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Peter S. T. Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (P.S.T.Y.); (T.T.); (R.A.S.)
| | - Takayuki Tsuji
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (P.S.T.Y.); (T.T.); (R.A.S.)
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (P.S.T.Y.); (T.T.); (R.A.S.)
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (Y.K.); (K.G.B.)
| | - Amy P. Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (A.V.B.); (T.G.V.); (Z.C.); (A.P.P.); (T.L.E.)
- Office of the Director, Division of Program Coordination, Planning and Strategic Initiatives, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas L. Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; (A.V.B.); (T.G.V.); (Z.C.); (A.P.P.); (T.L.E.)
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Virk R, Cook K, Cavazos A, Wassall SR, Gowdy KM, Shaikh SR. How Membrane Phospholipids Containing Long-Chain Polyunsaturated Fatty Acids and Their Oxidation Products Orchestrate Lipid Raft Dynamics to Control Inflammation. J Nutr 2024; 154:2862-2870. [PMID: 39025329 PMCID: PMC11393169 DOI: 10.1016/j.tjnut.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Long-chain PUFA (LC-PUFA) influence varying aspects of inflammation. One mechanism by which they regulate inflammation is by controlling the size and molecular composition of lipid rafts. Lipid rafts are sphingolipid/cholesterol-enriched plasma membrane microdomains that compartmentalize signaling proteins and thereby control downstream inflammatory gene expression and cytokine production. OBJECTIVES This review summarizes developments in our understanding of how LC-PUFA acyl chains of phospholipids, in addition to oxidized derivatives of LC-PUFAs such as oxidized 1-palmitoyl-2-arachidonyl-phosphatidylcholine (oxPAPC), manipulate formation of lipid rafts and thereby inflammation. METHODS We reviewed the literature, largely from the past 2 decades, on the impact of LC-PUFA acyl chains and oxidized products of LC-PUFAs on lipid raft biophysical organization of myeloid and lymphoid cells. The majority of the studies are based on rodent or cellular experiments with supporting mechanistic studies using biomimetic membranes and molecular dynamic simulations. These studies have focused largely on the LC-PUFA docosahexaenoic acid, with some studies addressing eicosapentaenoic acid. A few studies have investigated the role of oxidized phospholipids on rafts. RESULTS The biophysical literature suggests a model in which n-3 LC-PUFAs, in addition to oxPAPC, localize predominately to nonraft regions and impart a disordering effect in this environment. Rafts become larger because of the ensuing increase in the difference in order between raft and nonrafts. Biochemical studies suggest that some n-3 LC-PUFAs can be found within rafts. This deviation from homeostasis is a potential trigger for controlling aspects of innate and adaptive immunity. CONCLUSION Overall, select LC-PUFA acyl chains and oxidized acyl chains of phospholipids control lipid raft dynamics and downstream inflammation. Gaps in knowledge remain, particularly on underlying molecular mechanisms by which plasma membrane receptor organization is controlled in response to oxidized LC-PUFA acyl chains of membrane phospholipids. Validation in humans is also an area for future study.
Collapse
Affiliation(s)
- Rafia Virk
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Katie Cook
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Andres Cavazos
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
5
|
Yordanova V, Hazarosova R, Vitkova V, Momchilova A, Robev B, Nikolova B, Krastev P, Nuss P, Angelova MI, Staneva G. Impact of Truncated Oxidized Phosphatidylcholines on Phospholipase A 2 Activity in Mono- and Polyunsaturated Biomimetic Vesicles. Int J Mol Sci 2023; 24:11166. [PMID: 37446342 DOI: 10.3390/ijms241311166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
The interplay between inflammatory and redox processes is a ubiquitous and critical phenomenon in cell biology that involves numerous biological factors. Among them, secretory phospholipases A2 (sPLA2) that catalyze the hydrolysis of the sn-2 ester bond of phospholipids are key players. They can interact or be modulated by the presence of truncated oxidized phosphatidylcholines (OxPCs) produced under oxidative stress from phosphatidylcholine (PC) species. The present study examined this important, but rarely considered, sPLA2 modulation induced by the changes in biophysical properties of PC vesicles comprising various OxPC ratios in mono- or poly-unsaturated PCs. Being the most physiologically active OxPCs, 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) have been selected for our study. Using fluorescence spectroscopy methods, we compared the effect of OxPCs on the lipid order as well as sPLA2 activity in large unilamellar vesicles (LUVs) made of the heteroacid PC, either monounsaturated [1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)], or polyunsaturated [1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PDPC)] at a physiological temperature. The effect of OxPCs on vesicle size was also assessed in both the mono- and polyunsaturated PC matrices. Results: OxPCs decrease the membrane lipid order of POPC and PDPC mixtures with PGPC inducing a much larger decrease in comparison with POVPC, indicative that the difference takes place at the glycerol level. Compared with POPC, PDPC was able to inhibit sPLA2 activity showing a protective effect of PDPC against enzyme hydrolysis. Furthermore, sPLA2 activity on its PC substrates was modulated by the OxPC membrane content. POVPC down-regulated sPLA2 activity, suggesting anti-inflammatory properties of this truncated oxidized lipid. Interestingly, PGPC had a dual and opposite effect, either inhibitory or enhancing on sPLA2 activity, depending on the protocol of lipid mixing. This difference may result from the chemical properties of the shortened sn-2-acyl chain residues (aldehyde group for POVPC, and carboxyl for PGPC), being, respectively, zwitterionic or anionic under hydration at physiological conditions.
Collapse
Affiliation(s)
- Vesela Yordanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Rusina Hazarosova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Victoria Vitkova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Bozhil Robev
- Department of Medical Oncology, University Hospital "Sv. Ivan Rilski", 15 Acad. Ivan Geshov Blvd., 1431 Sofia, Bulgaria
| | - Biliana Nikolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Plamen Krastev
- Cardiology Clinic, University Hospital "St. Ekaterina", 52 Pencho Slaveikov Blvd., 1431 Sofia, Bulgaria
| | - Philippe Nuss
- Centre de Recherche Saint-Antoine, INSERM UMRS 938, Sorbonne Université, 75012 Paris, France
- Department of Psychiatry, Saint-Antoine Hospital, DMU Neuroscience, Sorbonne University, Assistance Publique-Hôpitaux de Paris (AP-HP), 75012 Paris, France
| | - Miglena I Angelova
- Department of Physics, Faculty of Sciences and Engineering, Sorbonne University, 75005 Paris, France
- Matière et Systèmes Complexes (MSC), CNRS UMR 7057, University Paris Cite-Diderot, 75013 Paris, France
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
6
|
Mechanism of oxidized phospholipid-related inflammatory response in vascular ageing. Ageing Res Rev 2023; 86:101888. [PMID: 36806379 DOI: 10.1016/j.arr.2023.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/20/2023]
Abstract
Vascular ageing is an important factor in the morbidity and mortality of the elderly. Atherosclerosis is a characteristic disease of vascular ageing, which is closely related to the enhancement of vascular inflammation. Phospholipid oxidation products are important factors in inducing cellular inflammation. Through interactions with vascular cells and immune cells, they regulate intracellular signaling pathways, activate the expression of various cytokines, and affect cell behavior, such as metabolic level, proliferation, apoptosis, etc. Intervention in lipid metabolism and anti-inflammation are the two key pathways of drugs for the treatment of atherosclerosis. This review aims to sort out the signaling pathway of oxidized phospholipids-induced inflammatory factors in vascular cells and immune cells and the mechanism leading to changes in cell behavior, and summarize the therapeutic targets in the inflammatory signaling pathway for the development of atherosclerosis drugs.
Collapse
|
7
|
Cavazos AT, Pennington ER, Dadoo S, Gowdy KM, Wassall SR, Shaikh SR. OxPAPC stabilizes liquid-ordered domains in biomimetic membranes. Biophys J 2023; 122:1130-1139. [PMID: 36840353 PMCID: PMC10111260 DOI: 10.1016/j.bpj.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/16/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Long-chain polyunsaturated fatty acids (PUFAs) are prone to nonenzymatic oxidation in response to differing environmental stressors and endogenous cellular sources. There is increasing evidence that phospholipids containing oxidized PUFA acyl chains control the inflammatory response. However, the underlying mechanism(s) of action by which oxidized PUFAs exert their functional effects remain unclear. Herein, we tested the hypothesis that replacement of 1-palmitoyl-2-arachidonyl-phosphatidylcholine (PAPC) with oxidized 1-palmitoyl-2-arachidonyl-phosphatidylcholine (oxPAPC) regulates membrane architecture. Specifically, with solid-state 2H NMR of biomimetic membranes, we investigated how substituting oxPAPC for PAPC modulates the molecular organization of liquid-ordered (Lo) domains. 2H NMR spectra for bilayer mixtures of 1,2-dipalmitoylphosphatidylcholine-d62 (an analog of DPPC deuterated throughout sn-1 and -2 chains) and cholesterol to which PAPC or oxPAPC was added revealed that replacing PAPC with oxPAPC disrupted molecular organization, indicating that oxPAPC does not mix favorably in a tightly packed Lo phase. Furthermore, unlike PAPC, adding oxPAPC stabilized 1,2-dipalmitoylphosphatidylcholine-d6-rich/cholesterol-rich Lo domains formed in mixtures with 1,2-dioleoylphosphatidylcholine while decreasing the molecular order within 1,2-dioleoylphosphatidylcholine-rich liquid-disordered regions of the membrane. Collectively, these results suggest a mechanism in which oxPAPC stabilizes Lo domains-by disordering the surrounding liquid-disordered region. Changes in the structure, and thereby functionality, of Lo domains may underly regulation of plasma membrane-based inflammatory signaling by oxPAPC.
Collapse
Affiliation(s)
- Andres T Cavazos
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis Indiana
| | - Edward Ross Pennington
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill North Carolina
| | - Sahil Dadoo
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill North Carolina
| | - Kymberly M Gowdy
- Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis Indiana.
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill North Carolina.
| |
Collapse
|
8
|
Ahamad Bustamam MS, Pantami HA, Shaari K, Min CC, Mediani A, Ismail IS. Immunomodulatory effects of Isochrysis galbana incorporated diet on Oreochromis sp. (red hybrid tilapia) via Sera- 1H NMR metabolomics study. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108455. [PMID: 36464078 DOI: 10.1016/j.fsi.2022.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Tilapia is one of the most common fish species that is intensively produced all over the world. However, significant measures at improving aquaculture health must be taken since disease outbreaks are often encountered in the rapidly developing aquaculture industry. Therefore, the objective of the study was designed to evaluate the metabolite changes in tilapia' sera through 1H NMR metabolomics in identifying the potential biomarkers responsible for immunomodulatory effect by the indigenous species of Malaysian microalgae Isochrysis galbana (IG). The results showed that IG-incorporated diet mainly at 5.0% has improved the immune response of innate immunity as observed in serum bactericidal activity (SBA) and serum lysozyme activity (SLA). The orthogonal partial least squares (OPLS) analysis indicated 5 important metabolites significantly upregulated namely as ethanol, lipoprotein, lipid, α-glucose and unsaturated fatty acid (UFA) in the 5.0% IG-incorporated diet compared to control. In conclusion, this study had successfully determined IG in improving aquaculture health through its potential use as an immune modulator. This work also demonstrated the effective use of metabolomics approach in the development of alternative nutritious diet from microalgae species to boost fish health in fulfilling the aquaculture's long-term goals.
Collapse
Affiliation(s)
- Muhammad Safwan Ahamad Bustamam
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Hamza Ahmed Pantami
- Department of Chemistry, Faculty of Science, P.M.B 127, Gombe State University, Nigeria
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Chong Chou Min
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Intan Safinar Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Abstract
Oxidized phospholipids that result from tissue injury operate as immunomodulatory signals that, depending on the context, lead to proinflammatory or anti-inflammatory responses. In this Perspective, we posit that cells of the innate immune system use the presence of oxidized lipids as a generic indicator of threat to the host. Similarly to how pathogen-associated molecular patterns represent general indicators of microbial encounters, oxidized lipids may be the most common molecular feature of an injured tissue. Therefore, microbial detection in the absence of oxidized lipids may indicate encounters with avirulent microorganisms. By contrast, microbial detection and detection of oxidized lipids would indicate encounters with replicating microorganisms, thereby inducing a heightened inflammatory and defensive response. Here we review recent studies supporting this idea. We focus on the biology of oxidized phosphocholines, which have emerged as context-dependent regulators of immunity. We highlight emerging functions of oxidized phosphocholines in dendritic cells and macrophages that drive unique inflammasome and migratory activities and hypermetabolic states. We describe how these lipids hyperactivate dendritic cells to stimulate antitumour CD8+ T cell immunity and discuss the potential implications of the newly described activities of oxidized phosphocholines in host defence.
Collapse
Affiliation(s)
- Dania Zhivaki
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Baxter AM, Jordan LR, Kullappan M, Wittenberg NJ. Tubulation of Supported Lipid Bilayer Membranes Induced by Photosensitized Lipid Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5753-5762. [PMID: 33939441 DOI: 10.1021/acs.langmuir.0c03363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We show that photosensitized phospholipid oxidation, initiated by the lipid-conjugated fluorophore TopFluor-PC, causes defects, namely, membrane tubes and vesicle-like structures, in supported lipid bilayers (SLBs). Lipid oxidation is detrimental to the integrity of the lipid molecules; when oxidized, they undergo a conformational expansion, which causes membrane tubes to protrude from the SLB. Lipid oxidation is verified by FT-IR spectroscopy, and area expansion is observed in Langmuir trough experiments. Upon growing to a critical length, the membrane tubes arising from SLBs rapidly undergo transition to vesicle-like structures. We find a correlation between the maximum tube length and the diameter of the resulting vesicle, suggesting the conservation of the surface area between these features. We use geometric modeling and the measured tube length and vesicle radius to calculate the tube radius; our calculated mean tube diameter of 243 nm is comparable to other groups' experimental findings. In the presence of fluid flow, membrane tubes can be extended to tens to hundreds of microns in length. SLBs composed of saturated lipids resist light-induced tubulation, and the inclusion of the lipophilic antioxidant α-tocopherol attenuates the tubulation process and increases the light intensity threshold for tubulation.
Collapse
Affiliation(s)
- Ashley M Baxter
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Luke R Jordan
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Monicka Kullappan
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
11
|
Chi Y, Liu X, Chai J. A narrative review of changes in microvascular permeability after burn. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:719. [PMID: 33987417 PMCID: PMC8106041 DOI: 10.21037/atm-21-1267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We aimed to review and discuss some of the latest research results related to post-burn pathophysiological changes and provide some clues for future study. BACKGROUND Burns are one of the most common and serious traumas and consist of a series of pathophysiological changes of thermal injury. Accompanied by thermal damage to skin and soft tissues, inflammatory mediators are released in large quantities. Changes in histamine, bradykinin, and cytokines such as vascular endothelial growth factor (VEGF), metabolic factors such as adenosine triphosphate (ATP), and activated neutrophils all affect the body's vascular permeability. METHODS We searched articles with subject words "microvascular permeability", "burn" "endothelium", and "endothelial barrier" in PubMed in English published from the beginning of database to Dec, 2020. CONCLUSIONS The essence of burn shock is the rapid and extensive fluid transfer in burn and non-burn tissue. After severe burns, the local and systemic vascular permeability increase, causing intravascular fluid extravasation, leading to a progressive decrease in effective circulation volume, an increase in systemic vascular resistance, a decrease in cardiac output, peripheral tissue edema, multiple organ failure, and even death. There are many cells, tissues, mediators and structures involved in the pathophysiological process of the damage to vascular permeability. Ulinastatin is a promising agent for this problem.
Collapse
Affiliation(s)
- Yunfei Chi
- Burn Institute, The Fourth Medical Center of the PLA General Hospital, Beijing, China
| | - Xiangyu Liu
- Burn Institute, The Fourth Medical Center of the PLA General Hospital, Beijing, China
| | - Jiake Chai
- Burn Institute, The Fourth Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Nogieć A, Bzowska M, Demczuk A, Varol C, Guzik K. Phenotype and Response to PAMPs of Human Monocyte-Derived Foam Cells Obtained by Long-Term Culture in the Presence of oxLDLs. Front Immunol 2020; 11:1592. [PMID: 32849539 PMCID: PMC7417357 DOI: 10.3389/fimmu.2020.01592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
Cholesterol-laden, foam macrophages constitute the most characteristic component of human atherosclerotic plaques. Persistent uptake of oxLDLs results in accumulation of lipid bodies inside the cells and determines their phenotype and subsequent functions. In this work, we describe the phenotype of human monocyte-derived foam cells obtained by differentiation in the constant presence of oxLDLs for 30 days (prolonged-hMDFCs). Although neither the total cellular nor the cell surface expression of Toll-like receptors (TLR) was regulated by oxLDLs, the prolonged-hMDFCs changed dramatically their responsiveness to TLR ligands and inactivated bacteria. Using multiplex technology, we observed an acute decline in cytokine and chemokine production after surface and endosomal TLR stimulation with the exception of TLR2/6 triggering with agonists Pam2CSK4 and MALP-2. We also noted significant reduction of some surface receptors which can have accessory function in recognition of particulate antigens (CD47, CD81, and CD11b). In contrast, the prolonged-hMDFCs responded to inflammasome activation by LPS/nigericin with extensive, necrotic type cell death, which was partially independent of caspase-1. This pyroptosis-like cell death was aggravated by necrostatin-1 and rapamycin. These findings identify a potential contribution of mature foam cells to inflammatory status by increasing the immunogenic cell death burden. The observed cross-talk between foam cell death pathways may lead to recognition of a potential new marker for atherosclerosis disease severity. Overall, our study demonstrates that, in contrast to other cellular models of foam cells, the prolonged-hMDFCs acquire a functional phenotype which may help understanding the role of foam cells in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Anna Nogieć
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Demczuk
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Chen Varol
- The Research Center for Digestive Tract & Liver Diseases, The Tel Aviv Souraski Medical Center, Tel Aviv, Israel
| | - Krzysztof Guzik
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
13
|
Karki P, Birukov KG. Oxidized Phospholipids in Healthy and Diseased Lung Endothelium. Cells 2020; 9:cells9040981. [PMID: 32326516 PMCID: PMC7226969 DOI: 10.3390/cells9040981] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Circulating and cell membrane phospholipids undergo oxidation caused by enzymatic and non-enzymatic mechanisms. As a result, a diverse group of bioactive oxidized phospholipids generated in these conditions have both beneficial and harmful effects on the human body. Increased production of oxidized phospholipid products with deleterious effects is linked to the pathogenesis of various cardiopulmonary disorders such as atherosclerosis, thrombosis, acute lung injury (ALI), and inflammation. It has been determined that the contrasting biological effects of lipid oxidation products are governed by their structural variations. For example, full-length products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine oxidation (OxPAPC) have prominent endothelial barrier protective and anti-inflammatory activities while most of the truncated oxidized phospholipids induce vascular leak and exacerbate inflammation. The extensive studies from our group and other groups have demonstrated a strong potential of OxPAPC in mitigating a wide range of agonist-induced lung injuries and inflammation in pulmonary endothelial cell culture and rodent models of ALI. Concurrently, elevated levels of truncated oxidized phospholipids are present in aged mice lungs that potentiate the inflammatory agents-induced lung injury. On the other hand, increased levels of full length OxPAPC products accelerate ALI recovery by facilitating production of anti-inflammatory lipid mediator, lipoxin A4, and other molecules with anti-inflammatory properties. These findings suggest that OxPAPC-assisted lipid program switch may be a promising therapeutic strategy for treatment of acute inflammatory syndromes. In this review, we will summarize the vascular-protective and deleterious aspects of oxidized phospholipids and discuss their therapeutic potential including engineering of stable analogs of oxidized phospholipids with improved anti-inflammatory and barrier-protective properties.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-(410)-706-2578; Fax: +1-(410)-706-6952
| |
Collapse
|
14
|
Mursalin MH, Coburn PS, Livingston E, Miller FC, Astley R, Flores-Mireles AL, Callegan MC. Bacillus S-Layer-Mediated Innate Interactions During Endophthalmitis. Front Immunol 2020; 11:215. [PMID: 32117322 PMCID: PMC7028758 DOI: 10.3389/fimmu.2020.00215] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Bacillus endophthalmitis is a severe intraocular infection. Hallmarks of Bacillus endophthalmitis include robust inflammation and rapid loss of vision. We reported that the absence of Bacillus surface layer protein (SLP) significantly blunted endophthalmitis severity. Here, we further investigated SLP in the context of Bacillus-retinal cell interactions and innate immune pathways to explore the mechanisms by which SLP contributes to intraocular inflammation. We compared phenotypes of Wild-type (WT) and SLP deficient (ΔslpA) Bacillus thuringiensis by analyzing bacterial adherence to and phagocytosis by human retinal Muller cells and phagocytosis by mouse neutrophils. Innate immune receptor activation by the Bacillus envelope and purified SLP was analyzed using TLR2/4 reporter cell lines. A synthetic TLR2/4 inhibitor was used as a control for this receptor activation. To induce endophthalmitis, mouse eyes were injected intravitreally with 100 CFU WT or ΔslpA B. thuringiensis. A group of WT infected mice was treated intravitreally with a TLR2/4 inhibitor at 4 h postinfection. At 10 h postinfection, infected eyes were analyzed for viable bacteria, inflammation, and retinal function. We observed that B. thuringiensis SLPs contributed to retinal Muller cell adherence, and protected this pathogen from Muller cell- and neutrophil-mediated phagocytosis. We found that B. thuringiensis envelope activated TLR2 and, surprisingly, TLR4, suggesting the presence of a surface-associated TLR4 agonist in Bacillus. Further investigation showed that purified SLP from B. thuringiensis activated TLR4, as well as TLR2 in vitro. Growth of WT B. thuringiensis was significantly higher and caused greater inflammation in untreated eyes than in eyes treated with the TLR2/4 inhibitor. Retinal function analysis also showed greater retention of A-wave and B-wave function in infected eyes treated with the TLR2/4 inhibitor. The TLR2/4 inhibitor was not antibacterial in vitro, and did not cause inflammation when injected into uninfected eyes. Taken together, these results suggest a potential role for Bacillus SLP in host-bacterial interactions, as well as in endophthalmitis pathogenesis via TLR2- and TLR4-mediated pathways.
Collapse
Affiliation(s)
- Md Huzzatul Mursalin
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Phillip S. Coburn
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| | - Erin Livingston
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Frederick C. Miller
- Department of Cell Biology and Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Roger Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, United States
| | - Michelle C. Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Dean McGee Eye Institute, Oklahoma City, OK, United States
| |
Collapse
|
15
|
Kerstholt M, Netea MG, Joosten LAB. Borrelia burgdorferi hijacks cellular metabolism of immune cells: Consequences for host defense. Ticks Tick Borne Dis 2020; 11:101386. [PMID: 32035898 DOI: 10.1016/j.ttbdis.2020.101386] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Changes in cellular metabolism have proven to be important factors in driving cell behavior. It has been shown that cellular metabolism of immune cells changes when exposed to or infected by several pathogens: while this is often an adaptation of the host cells to the infection, sometimes it represents a mechanism through which the pathogens evade immune activation. Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, is a pathogen that highly depends on the host to survive, as the bacterium lacks many central metabolic pathways to generate its own nutrients. It is therefore quite likely that the bacterium interacts with host cells to obtain these metabolites and thereby affects metabolism in the host. Previously, several studies have assessed metabolic pathways in B. burgdorferi s.l. and how it adapts to its different host species. However, few studies have looked into how the interaction with the bacterium might affect the host cell metabolism. In this review we present the major metabolic pathways activated during Lyme borreliosis, viewed from both bacterium and host metabolism, and we discuss how these pathways interact with each other, and how they influence pathogenesis of Lyme borreliosis.
Collapse
Affiliation(s)
- Mariska Kerstholt
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
16
|
Birukov KG, Oskolkova OV. The Good and Bad Faces of Oxidized Phospholipids: Friends or Foes of Vascular Endothelium? EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Konstantin G. Birukov
- Department of AnesthesiologyUMSOM Lung Biology ProgramUniversity of MarylandSchool of Medicine20 Penn Street, HSF‐2, Room S145Baltimore, MD21201USA
| | - Olga V. Oskolkova
- Institute of Pharmaceutical SciencesDepartment of Pharmaceutical ChemistryUniversity of Graz8020 GrazAustria
| |
Collapse
|
17
|
Faraj TA, Stover C, Erridge C. Dietary Toll-Like Receptor Stimulants Promote Hepatic Inflammation and Impair Reverse Cholesterol Transport in Mice via Macrophage-Dependent Interleukin-1 Production. Front Immunol 2019; 10:1404. [PMID: 31316501 PMCID: PMC6611433 DOI: 10.3389/fimmu.2019.01404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/04/2019] [Indexed: 01/21/2023] Open
Abstract
Background: The mechanisms connecting dietary intake of processed foods with systemic inflammatory markers and cardiovascular risk remain poorly defined. We sought to compare the abundance of pro-inflammatory stimulants of innate immune receptors in processed foods with those produced by the murine ileal and caecal microbiota, and to explore the impact of their ingestion on systemic inflammation and lipid metabolism in vivo. Methods and results: Calibrated receptor-dependent reporter assays revealed that many processed foods, particularly those based on minced meats, contain pro-inflammatory stimulants of Toll-like receptor (TLR)-2 and TLR4 at concentrations which greatly exceed those produced by the endogenous murine ileal microbiota. Chronic dietary supplementation with these stimulants, at concentrations relevant to those measured in the Western diet, promoted hepatic inflammation and reduced several markers of reverse cholesterol transport (RCT) in mice. Hepatocytes were found to be insensitive to TLR2- and TLR4-stimulants directly, but their secretion of functional cholesterol acceptors was impaired by interleukin (IL)-1β released by TLR-responsive hepatic macrophages. Hepatic macrophage priming by high-fat diet enhanced the impairment of RCT by ingested endotoxin, and this was reversed by macrophage depletion via clodronate liposome treatment, or genetic deficiency in the IL-1 receptor. Conclusion: These findings reveal an unexpected mechanism connecting processed food consumption with cardiovascular risk factors, and introduce the food microbiota as a potential target for therapeutic regulation of lipid metabolism.
Collapse
Affiliation(s)
- Tola A. Faraj
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
- Department of Pharmacognosy, Hawler Medical University, Erbil, Iraq
| | - Cordula Stover
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Clett Erridge
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
18
|
Modulation of the inflammatory response of immune cells in human peripheral blood by oxidized arachidonoyl aminophospholipids. Arch Biochem Biophys 2018; 660:64-71. [PMID: 30315768 DOI: 10.1016/j.abb.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/18/2018] [Accepted: 10/09/2018] [Indexed: 01/06/2023]
Abstract
Aminophospholipids (APL), phosphatidylethanolamine (PE) and phosphatidylserine (PS), can be oxidized upon oxidative stress. Oxidized PE and PS have been detected in clinical samples of different pathologies and may act as modulators of the inflammatory response. However, few studies have focused on the effects of oxidized APL (ox-APL) esterified with arachidonic acid, even though a considerable number of studies have assessed the modulation of the immune system by oxidized 1-palmitoyl-2-arachidonoyl-sn-3-glycerophosphocholine (OxPAPC). In the present study, we have used flow cytometry to evaluate the ability of oxidized PAPE (OxPAPE) and PAPS (OxPAPS) to promote or suppress an inflammatory phenotype on monocytes subsets and myeloid dendritic cells (mDCs). The results indicate that OxPAPE increases the frequency of all monocyte subpopulations expressing TNF-α, which promotes an inflammatory response. However, immune cell stimulation with OxPAPE in the presence of LPS results in a decrease of TNF-α expressed by classical monocytes. Incubation with OxPAPS and LPS induces a decrease in TNF-α produced by monocytes, and a significant decrease in IL-1β expressed by monocytes and mDCs, indicating that OxPAPS reduces the LPS-induced pro-inflammatory expression in these populations. These results show the importance of OxPAPE and OxPAPS as modulators of the inflammatory response and demonstrate their possible contribution to the onset and resolution of human diseases related to oxidative stress and inflammation.
Collapse
|
19
|
Gibson MS, Domingues N, Vieira OV. Lipid and Non-lipid Factors Affecting Macrophage Dysfunction and Inflammation in Atherosclerosis. Front Physiol 2018; 9:654. [PMID: 29997514 PMCID: PMC6029489 DOI: 10.3389/fphys.2018.00654] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease and a leading cause of human mortality. The lesional microenvironment contains a complex accumulation of variably oxidized lipids and cytokines. Infiltrating monocytes become polarized in response to these stimuli, resulting in a broad spectrum of macrophage phenotypes. The extent of lipid loading in macrophages influences their phenotype and consequently their inflammatory status. In response to excess atherogenic ligands, many normal cell processes become aberrant following a loss of homeostasis. This can have a direct impact upon the inflammatory response, and conversely inflammation can lead to cell dysfunction. Clear evidence for this exists in the lysosomes, endoplasmic reticulum and mitochondria of atherosclerotic macrophages, the principal lesional cell type. Furthermore, several intrinsic cell processes become dysregulated under lipidotic conditions. Therapeutic strategies aimed at restoring cell function under disease conditions are an ongoing coveted aim. Macrophages play a central role in promoting lesional inflammation, with plaque progression and stability being directly proportional to macrophage abundance. Understanding how mixtures or individual lipid species regulate macrophage biology is therefore a major area of atherosclerosis research. In this review, we will discuss how the myriad of lipid and lipoprotein classes and products used to model atherogenic, proinflammatory immune responses has facilitated a greater understanding of some of the intricacies of chronic inflammation and cell function. Despite this, lipid oxidation produces a complex mixture of products and with no single or standard method of derivatization, there exists some variation in the reported effects of certain oxidized lipids. Likewise, differences in the methods used to generate macrophages in vitro may also lead to variable responses when apparently identical lipid ligands are used. Consequently, the complexity of reported macrophage phenotypes has implications for our understanding of the metabolic pathways, processes and shifts underpinning their activation and inflammatory status. Using oxidized low density lipoproteins and its oxidized cholesteryl esters and phospholipid constituents to stimulate macrophage has been hugely valuable, however there is now an argument that only working with low complexity lipid species can deliver the most useful information to guide therapies aimed at controlling atherosclerosis and cardiovascular complications.
Collapse
Affiliation(s)
- Mark S Gibson
- Lysosomes in Chronic Human Pathologies and Infection, Faculdade de Ciências Médicas, Centro de Estudos de Doenças Crónicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Neuza Domingues
- Lysosomes in Chronic Human Pathologies and Infection, Faculdade de Ciências Médicas, Centro de Estudos de Doenças Crónicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Otilia V Vieira
- Lysosomes in Chronic Human Pathologies and Infection, Faculdade de Ciências Médicas, Centro de Estudos de Doenças Crónicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Bochkov V, Gesslbauer B, Mauerhofer C, Philippova M, Erne P, Oskolkova OV. Pleiotropic effects of oxidized phospholipids. Free Radic Biol Med 2017; 111:6-24. [PMID: 28027924 DOI: 10.1016/j.freeradbiomed.2016.12.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Oxidized phospholipids (OxPLs) are increasingly recognized to play a role in a variety of normal and pathological states. OxPLs were implicated in regulation of inflammation, thrombosis, angiogenesis, endothelial barrier function, immune tolerance and other important processes. Rapidly accumulating evidence suggests that OxPLs are biomarkers of atherosclerosis and other pathologies. In addition, successful application of experimental drugs based on structural scaffold of OxPLs in animal models of inflammation was recently reported. This review briefly summarizes current knowledge on generation, methods of quantification and biological activities of OxPLs. Furthermore, receptor and cellular mechanisms of these effects are discussed. The goal of the review is to give a broad overview of this class of lipid mediators inducing pleiotropic biological effects.
Collapse
Affiliation(s)
- Valery Bochkov
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria.
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria
| | - Christina Mauerhofer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria
| | - Maria Philippova
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Paul Erne
- Signaling Laboratory, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Olga V Oskolkova
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Austria.
| |
Collapse
|
21
|
Serbulea V, DeWeese D, Leitinger N. The effect of oxidized phospholipids on phenotypic polarization and function of macrophages. Free Radic Biol Med 2017; 111:156-168. [PMID: 28232205 PMCID: PMC5511074 DOI: 10.1016/j.freeradbiomed.2017.02.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/26/2022]
Abstract
Oxidized phospholipids are products of lipid oxidation that are found on oxidized low-density lipoproteins and apoptotic cell membranes. These biologically active lipids were shown to affect a variety of cell types and attributed pro-as well as anti-inflammatory effects. In particular, macrophages exposed to oxidized phospholipids drastically change their gene expression pattern and function. These 'Mox,'macrophages were identified in atherosclerotic lesions, however, it remains unclear how lipid oxidation products are sensed by macrophages and how they influence their biological function. Here, we review recent developments in the field that provide insight into the structure, recognition, and downstream signaling of oxidized phospholipids in macrophages.
Collapse
Affiliation(s)
- Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| | - Dory DeWeese
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center and Department of Pharmacology, University of Virginia, USA
| |
Collapse
|
22
|
Jongstra-Bilen J, Zhang CX, Wisnicki T, Li MK, White-Alfred S, Ilaalagan R, Ferri DM, Deonarain A, Wan MH, Hyduk SJ, Cummins CL, Cybulsky MI. Oxidized Low-Density Lipoprotein Loading of Macrophages Downregulates TLR-Induced Proinflammatory Responses in a Gene-Specific and Temporal Manner through Transcriptional Control. THE JOURNAL OF IMMUNOLOGY 2017; 199:2149-2157. [PMID: 28784845 DOI: 10.4049/jimmunol.1601363] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 07/16/2017] [Indexed: 01/08/2023]
Abstract
Hypercholesterolemia is a key risk factor for atherosclerosis and leads to the uptake of native and oxidized low-density lipoprotein (oxLDL) by macrophages (Mϕs) and foam cell formation. Inflammatory processes accompany Mϕ foam cell formation in the artery wall, yet the relationship between Mϕ lipid loading and their response to inflammatory stimuli remains elusive. We investigated proinflammatory gene expression in thioglycollate-elicited peritoneal Mϕs, bone marrow-derived Mϕs and dendritic cells, and RAW264.7 cells. Loading with oxLDL did not induce peritoneal Mϕ apoptosis or modulate basal-level expression of proinflammatory genes. Upon stimulation of TLR4, the rapid induction of IFN-β was inhibited in cells loaded with oxLDL, whereas the induction of other proinflammatory genes by TLR4 (LPS), TLR3 (polyriboinosinic-polyribocytidylic acid), TLR2 (Pam3CSK4), and TLR9 (CpG) remained comparable within the first 2 h. Subsequently, the expression of a subset of proinflammatory genes (e.g., IL-1β, IL-6, CCL5) was reduced in oxLDL-loaded cells at the level of transcription. This phenomenon was partially dependent on NF erythroid 2-related factor 2 (NRF2) but not on nuclear liver X receptors α and β (LXRα,β), peroxisome proliferator-activated receptor-γ (PPARγ), and activating transcription factor 3 (ATF3). LPS-induced NF-κB reporter activity and intracellular signaling by NF-κB and MAPK pathways were comparable in oxLDL-loaded Mϕs, yet the binding of p65/RelA (the prototypic NF-κB family member) was reduced at IL-6 and CCL5 promoters. This study revealed that oxLDL loading of Mϕs negatively regulates transcription at late stages of TLR-induced proinflammatory gene expression and implicates epigenetic mechanisms such as histone deacetylase activity.
Collapse
Affiliation(s)
- Jenny Jongstra-Bilen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Cindy X Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Timothy Wisnicki
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Mengyi K Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Samantha White-Alfred
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ragave Ilaalagan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dario M Ferri
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Ashley Deonarain
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Mark H Wan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Carolyn L Cummins
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| |
Collapse
|
23
|
Fessler MB, Summer RS. Surfactant Lipids at the Host-Environment Interface. Metabolic Sensors, Suppressors, and Effectors of Inflammatory Lung Disease. Am J Respir Cell Mol Biol 2017; 54:624-35. [PMID: 26859434 DOI: 10.1165/rcmb.2016-0011ps] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lipid composition of pulmonary surfactant is unlike that of any other body fluid. This extracellular lipid reservoir is also uniquely susceptible by virtue of its direct and continuous exposure to environmental oxidants, inflammatory agents, and pathogens. Historically, the greatest attention has been focused on those biophysical features of surfactant that serve to reduce surface tension at the air-liquid interface. More recently, surfactant lipids have also been recognized as bioactive molecules that maintain immune quiescence in the lung but can also be remodeled by the inhaled environment into neolipids that mediate key roles in inflammation, immunity, and fibrosis. This review focuses on the roles in inflammatory and infectious lung disease of two classes of native surfactant lipids, glycerophospholipids and sterols, and their corresponding oxidized species, oxidized glycerophospholipids and oxysterols. We highlight evidence that surfactant composition is sensitive to circulating lipoproteins and that the lipid milieu of the alveolus should thus be recognized as susceptible to diet and common systemic metabolic disorders. We also discuss intriguing evidence suggesting that oxidized surfactant lipids may represent an evolutionary link between immunity and tissue homeostasis that arose in the primordial lung. Taken together, the emerging picture is one in which the unique environmental susceptibility of the lung, together with its unique extracellular lipid requirements, may have made this organ both an evolutionary hub and an engine for lipid-immune cross-talk.
Collapse
Affiliation(s)
- Michael B Fessler
- 1 Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Ross S Summer
- 2 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Ke Y, Zebda N, Oskolkova O, Afonyushkin T, Berdyshev E, Tian Y, Meng F, Sarich N, Bochkov VN, Wang JM, Birukova AA, Birukov KG. Anti-Inflammatory Effects of OxPAPC Involve Endothelial Cell-Mediated Generation of LXA4. Circ Res 2017; 121:244-257. [PMID: 28522438 DOI: 10.1161/circresaha.116.310308] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 12/23/2022]
Abstract
RATIONALE Oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) generates a group of bioactive oxidized phospholipid products with a broad range of biological activities. Barrier-enhancing and anti-inflammatory effects of OxPAPC on pulmonary endothelial cells are critical for prevention of acute lung injury caused by bacterial pathogens or excessive mechanical ventilation. Anti-inflammatory properties of OxPAPC are associated with its antagonistic effects on Toll-like receptors and suppression of RhoA GTPase signaling. OBJECTIVE Because OxPAPC exhibits long-lasting anti-inflammatory and lung-protective effects even after single administration in vivo, we tested the hypothesis that these effects may be mediated by additional mechanisms, such as OxPAPC-dependent production of anti-inflammatory and proresolving lipid mediator, lipoxin A4 (LXA4). METHODS AND RESULTS Mass spectrometry and ELISA assays detected significant accumulation of LXA4 in the lungs of OxPAPC-treated mice and in conditioned medium of OxPAPC-exposed pulmonary endothelial cells. Administration of LXA4 reproduced anti-inflammatory effect of OxPAPC against tumor necrosis factor-α in vitro and in the animal model of lipopolysaccharide-induced lung injury. The potent barrier-protective and anti-inflammatory effects of OxPAPC against tumor necrosis factor-α and lipopolysaccharide challenge were suppressed in human pulmonary endothelial cells with small interfering RNA-induced knockdown of LXA4 formyl peptide receptor-2 (FPR2/ALX) and in mFPR2-/- (mouse formyl peptide receptor 2) mice lacking the mouse homolog of human FPR2/ALX. CONCLUSIONS This is the first demonstration that inflammation- and injury-associated phospholipid oxidation triggers production of anti-inflammatory and proresolution molecules, such as LXA4. This lipid mediator switch represents a novel mechanism of OxPAPC-assisted recovery of inflamed lung endothelium.
Collapse
Affiliation(s)
- Yunbo Ke
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Noureddine Zebda
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Olga Oskolkova
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Taras Afonyushkin
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Evgeny Berdyshev
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Yufeng Tian
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Fanyong Meng
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Nicolene Sarich
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Valery N Bochkov
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Ji Ming Wang
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Anna A Birukova
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Konstantin G Birukov
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.).
| |
Collapse
|
25
|
Zemski Berry KA, Murphy RC. Phospholipid Ozonation Products Activate the 5-Lipoxygenase Pathway in Macrophages. Chem Res Toxicol 2016; 29:1355-64. [PMID: 27448436 DOI: 10.1021/acs.chemrestox.6b00193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ozone is a highly reactive environmental toxicant that can react with the double bonds of lipids in pulmonary surfactant. This study was undertaken to investigate the proinflammatory properties of the major lipid-ozone product in pulmonary surfactant, 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (16:0/9al-PC), with respect to eicosanoid production. A dose-dependent increase in the formation of 5-lipoxygenase (5-LO) products was observed in murine resident peritoneal macrophages (RPM) and alveolar macrophages (AM) upon treatment with 16:0/9al-PC. In contrast, the production of cyclooxygenase (COX) derived eicosanoids did not change from basal levels in the presence of 16:0/9al-PC. When 16:0/9al-PC and the TLR2 ligand, zymosan, were added to RPM or AM, an enhancement of 5-LO product formation along with a concomitant decrease in COX product formation was observed. Neither intracellular calcium levels nor arachidonic acid release was influenced by the addition of 16:0/9al-PC to RPM. Results from mitogen-activated protein kinase (MAPK) inhibitor studies and direct measurement of phosphorylation of MAPKs revealed that 16:0/9al-PC activates the p38 MAPK pathway in RPM, which results in the activation of 5-LO. Our results indicate that 16:0/9al-PC has a profound effect on the eicosanoid pathway, which may have implications in inflammatory pulmonary disease states where eicosanoids have been shown to play a role.
Collapse
Affiliation(s)
- Karin A Zemski Berry
- Department of Pharmacology, University of Colorado Denver , 12801 E. 17th Avenue, Mail Stop 8303, Aurora, Colorado 80045, United States
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver , 12801 E. 17th Avenue, Mail Stop 8303, Aurora, Colorado 80045, United States
| |
Collapse
|
26
|
Jacob SP, Lakshmikanth CL, Chaithra VH, Kumari TRS, Chen CH, McIntyre TM, Marathe GK. Lipopolysaccharide Cross-Tolerance Delays Platelet-Activating Factor-Induced Sudden Death in Swiss Albino Mice: Involvement of Cyclooxygenase in Cross-Tolerance. PLoS One 2016; 11:e0153282. [PMID: 27064683 PMCID: PMC4827832 DOI: 10.1371/journal.pone.0153282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/04/2016] [Indexed: 12/22/2022] Open
Abstract
Lipopolysaccharide (LPS) signaling through Toll-like receptor-4 (TLR-4) has been implicated in the pathogenesis of many infectious diseases. Some believe that TLR-mediated pathogenicity is due, in part, to the lipid pro-inflammatory mediator platelet-activating factor (PAF), but this has been questioned. To test the direct contribution of PAF in endotoxemia in murine models, we injected PAF intraperitoneally into Swiss albino mice in the presence and absence of LPS. PAF alone (5 μg/mouse) caused death within 15-20 min, but this could be prevented by pretreating mice with PAF-receptor (PAF-R) antagonists or PAF-acetylhydrolase (PAF-AH). A low dose of LPS (5 mg/kg body wt) did not impair PAF-induced death, whereas higher doses (10 or 20 mg/kg body wt) delayed death, probably via LPS cross-tolerance. Cross-tolerance occurred only when PAF was injected simultaneously with LPS or within 30 min of LPS injection. Tolerance does not appear to be due to an abundant soluble mediator. Histologic examination of lungs and liver and measurement of circulating TNF-α and IL-10 levels suggested that the inflammatory response is not diminished during cross-tolerance. Interestingly, aspirin, a non-specific cyclooxygenase (COX) inhibitor, partially blocked PAF-induced sudden death, whereas NS-398, a specific COX-2 inhibitor, completely protected mice from the lethal effects of PAF. Both COX inhibitors (at 20 mg/kg body wt) independently amplified the cross-tolerance exerted by higher dose of LPS, suggesting that COX-derived eicosanoids may be involved in these events. Thus, PAF does not seem to have a protective role in endotoxemia, but its effects are delayed by LPS in a COX-sensitive way. These findings are likely to shed light on basic aspects of the endotoxin cross-tolerance occurring in many disease conditions and may offer new opportunities for clinical intervention.
Collapse
Affiliation(s)
- Shancy Petsel Jacob
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India
| | | | | | | | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, Texas, 77225–0345, United States of America
| | - Thomas M. McIntyre
- Department of Cellular and Molecular Medicine (NC10), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio, 44195, United States of America
| | - Gopal Kedihitlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India
- * E-mail:
| |
Collapse
|
27
|
Novel phosphatidylethanolamine derivatives accumulate in circulation in hyperlipidemic ApoE-/- mice and activate platelets via TLR2. Blood 2016; 127:2618-29. [PMID: 27015965 DOI: 10.1182/blood-2015-08-664300] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/17/2016] [Indexed: 02/07/2023] Open
Abstract
A prothrombotic state and increased platelet reactivity are common in dyslipidemia and oxidative stress. Lipid peroxidation, a major consequence of oxidative stress, generates highly reactive products, including hydroxy-ω-oxoalkenoic acids that modify autologous proteins generating biologically active derivatives. Phosphatidylethanolamine, the second most abundant eukaryotic phospholipid, can also be modified by hydroxy-ω-oxoalkenoic acids. However, the conditions leading to accumulation of such derivatives in circulation and their biological activities remain poorly understood. We now show that carboxyalkylpyrrole-phosphatidylethanolamine derivatives (CAP-PEs) are present in the plasma of hyperlipidemic ApoE(-/-) mice. CAP-PEs directly bind to TLR2 and induces platelet integrin αIIbβ3 activation and P-selectin expression in a Toll-like receptor 2 (TLR2)-dependent manner. Platelet activation by CAP-PEs includes assembly of TLR2/TLR1 receptor complex, induction of downstream signaling via MyD88/TIRAP, phosphorylation of IRAK4, and subsequent activation of tumor necrosis factor receptor-associated factor 6. This in turn activates the Src family kinases, spleen tyrosine kinase and PLCγ2, and platelet integrins. Murine intravital thrombosis studies demonstrated that CAP-PEs accelerate thrombosis in TLR2-dependent manner and that TLR2 contributes to accelerate thrombosis in mice in the settings of hyperlipidemia. Our study identified the novel end-products of lipid peroxidation, accumulating in circulation in hyperlipidemia and inducing platelet activation by promoting cross-talk between innate immunity and integrin activation signaling pathways.
Collapse
|
28
|
Suica VI, Uyy E, Boteanu RM, Ivan L, Antohe F. Alteration of actin dependent signaling pathways associated with membrane microdomains in hyperlipidemia. Proteome Sci 2015; 13:30. [PMID: 26628893 PMCID: PMC4666118 DOI: 10.1186/s12953-015-0087-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/24/2015] [Indexed: 01/05/2023] Open
Abstract
Background Membrane microdomains represent dynamic membrane nano-assemblies enriched in signaling molecules suggesting their active involvement in not only physiological but also pathological molecular processes. The hyperlipidemic stress is a major risk factor of atherosclerosis, but its exact mechanisms of action at the membrane microdomains level remain elusive. The aim of the present study was to determine whether membrane-cytoskeleton proteome in the pulmonary tissue could be modulated by the hyperlipidemic stress, a major risk factor of atherosclerosis. Results High resolution mass spectrometry based proteomics analysis was performed for detergent resistant membrane microdomains isolated from lung homogenates of control, ApoE deficient and statin treated ApoE deficient mice. The findings of the study allowed the identification with high confidence of 1925 proteins, 291 of which were found significantly altered by the modified genetic background, by the statin treatment or both conditions. Principal component analysis revealed a proximal partitioning of the biological replicates, but also a distinct spatial scattering of the sample groups, highlighting different quantitative profiles. The statistical significant over-representation of Regulation of actin cytoskeleton, Focal adhesion and Adherens junction Kyoto Encyclopedia of Genes and Genomes signaling pathways was demonstrated through bioinformatics analysis. The three inter-relation maps comprised 29 of regulated proteins, proving membrane-cytoskeleton coupling targeting and alteration by hyperlipidemia and/or statin treatment. Conclusions The findings of the study allowed the identification with high confidence of the main proteins modulated by the hyperlipidemic stress involved in the actin-dependent pathways. Our study provides the basis for future work probing how the protein activities at the membrane-cytoskeleton interface are dependent upon genetic induced hyperlipidemia. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0087-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Viorel-Iulian Suica
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 BP Hasdeu Street, PO Box 35-14, 050568 Bucharest, Romania
| | - Elena Uyy
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 BP Hasdeu Street, PO Box 35-14, 050568 Bucharest, Romania
| | - Raluca Maria Boteanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 BP Hasdeu Street, PO Box 35-14, 050568 Bucharest, Romania
| | - Luminita Ivan
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 BP Hasdeu Street, PO Box 35-14, 050568 Bucharest, Romania
| | - Felicia Antohe
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8 BP Hasdeu Street, PO Box 35-14, 050568 Bucharest, Romania
| |
Collapse
|
29
|
Gargiulo S, Gamba P, Testa G, Rossin D, Biasi F, Poli G, Leonarduzzi G. Relation between TLR4/NF-κB signaling pathway activation by 27-hydroxycholesterol and 4-hydroxynonenal, and atherosclerotic plaque instability. Aging Cell 2015; 14:569-81. [PMID: 25757594 PMCID: PMC4531071 DOI: 10.1111/acel.12322] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2015] [Indexed: 01/22/2023] Open
Abstract
It is now thought that atherosclerosis, although due to increased plasma lipids, is mainly the consequence of a complicated inflammatory process, with immune responses at the different stages of plaque development. Increasing evidence points to a significant role of Toll-like receptor 4 (TLR4), a key player in innate immunity, in the pathogenesis of atherosclerosis. This study aimed to determine the effects on TLR4 activation of two reactive oxidized lipids carried by oxidized low-density lipoproteins, the oxysterol 27-hydroxycholesterol (27-OH) and the aldehyde 4-hydroxynonenal (HNE), both of which accumulate in atherosclerotic plaques and play a key role in the pathogenesis of atherosclerosis. Secondarily, it examined their potential involvement in mediating inflammation and extracellular matrix degradation, the hallmarks of high-risk atherosclerotic unstable plaques. In human promonocytic U937 cells, both 27-OH and HNE were found to enhance cell release of IL-8, IL-1β, and TNF-α and to upregulate matrix metalloproteinase-9 (MMP-9) via TLR4/NF-κB-dependent pathway; these actions may sustain the inflammatory response and matrix degradation that lead to atherosclerotic plaque instability and to their rupture. Using specific antibodies, it was also demonstrated that these inflammatory cytokines increase MMP-9 upregulation, thus enhancing the release of this matrix-degrading enzyme by macrophage cells and contributing to plaque instability. These innovative results suggest that, by accumulating in atherosclerotic plaques, the two oxidized lipids may contribute to plaque instability and rupture. They appear to do so by sustaining the release of inflammatory molecules and MMP-9 by inflammatory and immune cells, for example, macrophages, through activation of TLR4 and its NF-κB downstream signaling.
Collapse
Affiliation(s)
- Simona Gargiulo
- Department of Clinical and Biological Sciences School of Medicine University of Turin, Orbassano Turin Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences School of Medicine University of Turin, Orbassano Turin Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences School of Medicine University of Turin, Orbassano Turin Italy
| | - Daniela Rossin
- Department of Clinical and Biological Sciences School of Medicine University of Turin, Orbassano Turin Italy
| | - Fiorella Biasi
- Department of Clinical and Biological Sciences School of Medicine University of Turin, Orbassano Turin Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences School of Medicine University of Turin, Orbassano Turin Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences School of Medicine University of Turin, Orbassano Turin Italy
| |
Collapse
|
30
|
Wang Y, Li Y, Shen Q, Li X, Lu J, Li X, Yin D, Peng Y. Valsartan blocked alcohol-induced, Toll-like receptor 2 signaling-mediated inflammation in human vascular endothelial cells. Alcohol Clin Exp Res 2015; 38:2529-40. [PMID: 25346502 DOI: 10.1111/acer.12532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 07/22/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alcohol consumption induces inflammatory damage in vessels, and the underlying mechanism is unclear. Valsartan, as one of the angiotensin receptor blockers (ARBs), plays a role in the inhibition of inflammatory reactions in vascular dysfunction. This study is to investigate the role of Toll-like receptor 2 (TLR2) in alcohol-induced inflammatory damage in vascular endothelial cells in vitro and to explore the protective effect of valsartan on alcohol-induced and TLR2-mediated inflammatory damage. METHODS The human umbilical vein cell line (EA.hy926) were exposed to alcohol at 0 to 80 mM for 0 to 48 hours with or without valsartan pretreatment. The expression of TLR2 signaling, including TLR2, tumor necrosis factor receptor associated factor 6 (TRAF-6) and nuclear factor kappa B (NF-κB) p65 were detected by Western blot. The levels of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were determined by ELISA. To confirm the role of TLR2, we functionally up-regulated or down-regulated TLR2 by using TLR2 agonist or TLR2 small interfering RNA (siRNA), respectively. To further investigate the mechanism of alcohol on renin-angiotensin system, we detected the expression of angiotensin II receptor type 1 (AGTR1) in protein levels. RESULTS The expression of TLR2, TRAF-6, NF-κB p65, and the proinflammatory cytokines, TNF-α and IL-6, were significantly increased after alcohol exposure in EA.hy926 endothelial cells. This was enhanced by TLR2 agonist, and was inhibited by TLR2 siRNA transfection. The pretreatment of valsartan resulted in an inhibition of TLR2 signaling and proinflammatory cytokines. The expression of AGTR1 was up-regulated after alcohol exposure, and was blocked by valsartan pretreatment. CONCLUSIONS TLR2 signaling-mediated alcohol induced inflammatory response in human vascular epithelial cells in vitro, which was inhibited by valsartan.
Collapse
Affiliation(s)
- Yushu Wang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
CD36/SR-B2-TLR2 Dependent Pathways Enhance Porphyromonas gingivalis Mediated Atherosclerosis in the Ldlr KO Mouse Model. PLoS One 2015; 10:e0125126. [PMID: 25938460 PMCID: PMC4418723 DOI: 10.1371/journal.pone.0125126] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/25/2015] [Indexed: 12/11/2022] Open
Abstract
There is strong epidemiological association between periodontal disease and cardiovascular disease but underlying mechanisms remain ill-defined. Because the human periodontal disease pathogen, Porphyromonas gingivalis (Pg), interacts with innate immune receptors Toll-like Receptor (TLR) 2 and CD36/scavenger receptor-B2 (SR-B2), we studied how CD36/SR-B2 and TLR pathways promote Pg-mediated atherosclerosis. Western diet fed low density lipoprotein receptor knockout (Ldlr°) mice infected orally with Pg had a significant increase in lesion burden compared with uninfected controls. This increase was entirely CD36/SR-B2-dependent, as there was no significant change in lesion burden between infected and uninfected Ldlr° mice. Western diet feeding promoted enhanced CD36/SR-B2-dependent IL1β generation and foam cell formation as a result of Pg lipopolysaccharide (PgLPS) exposure. CD36/SR-B2 and TLR2 were necessary for inflammasome activation and optimal IL1ß generation, but also resulted in LPS induced lethality (pyroptosis). Modified forms of LDL inhibited Pg-mediated IL1ß generation in a CD36/SR-B2-dependent manner and prevented pyroptosis, but promoted foam cell formation. Our data show that Pg infection in the oral cavity can lead to significant TLR2-CD36/SR-B2 dependent IL1ß release. In the vessel wall, macrophages encountering systemic release of IL1ß, PgLPS and modified LDL have increased lipid uptake, foam cell formation, and release of IL1ß, but because pyroptosis is inhibited, this enables macrophage survival and promotes increased plaque development. These studies may explain increased lesion burden as a result of periodontal disease, and suggest strategies for development of therapeutics.
Collapse
|
32
|
Spickett C, Fedorova M, Hoffmann R, Forman H. An Introduction to Redox Balance and Lipid Oxidation. OXIDATIVE STRESS AND DISEASE 2015. [DOI: 10.1201/b18138-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Nikolaeva S, Bayunova L, Sokolova T, Vlasova Y, Bachteeva V, Avrova N, Parnova R. GM1 and GD1a gangliosides modulate toxic and inflammatory effects of E. coli lipopolysaccharide by preventing TLR4 translocation into lipid rafts. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:239-47. [PMID: 25499607 DOI: 10.1016/j.bbalip.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022]
Abstract
Exogenous gangliosides are known to inhibit the effects of Escherichia coli lipopolysaccharide (LPS) in different cells exhibiting anti-inflammatory and immunosuppressive activities. The mechanisms underlying ganglioside action are not fully understood. Because LPS recognition and receptor complex formation occur in lipid rafts, and gangliosides play a key role in their maintenance, we hypothesize that protective effects of exogenous gangliosides would depend on inhibition of LPS signaling via prevention of TLR4 translocation into lipid rafts. The effect of GM1 and GD1a gangliosides on LPS-induced toxic and inflammatory reactions in PC12 cells, and in epithelial cells isolated from the frog urinary bladder, was studied. In PC12 cells, GD1a and GM1 significantly reduced the effect of LPS on the decrease of cell survival and on stimulation of reactive oxygen species production. In epithelial cells, gangliosides decreased LPS-stimulated iNOS expression, NO, and PGE2 production. Subcellular fractionation, in combination with immunoblotting, showed that pretreatment of cells with GM1, GD1a, or methyl-β-cyclodextrin, completely eliminated the effect of LPS on translocation of TLR4 into lipid rafts. The results are consistent with the hypothesis that ganglioside-induced prevention of TLR4 translocation into lipid rafts could be a mechanism of protection against LPS in various cells.
Collapse
Affiliation(s)
- Svetlana Nikolaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Lubov Bayunova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Tatyana Sokolova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Yulia Vlasova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Vera Bachteeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Natalia Avrova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Rimma Parnova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint Petersburg, Russia.
| |
Collapse
|
34
|
Li X, Gu X, Boyce TM, Zheng M, Reagan AM, Qi H, Mandal N, Cohen AW, Callegan MC, Carr DJJ, Elliott MH. Caveolin-1 increases proinflammatory chemoattractants and blood-retinal barrier breakdown but decreases leukocyte recruitment in inflammation. Invest Ophthalmol Vis Sci 2014; 55:6224-34. [PMID: 25159208 DOI: 10.1167/iovs.14-14613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Caveolin-1 (Cav-1), the signature protein of caveolae, modulates inflammatory responses, and innate immunity. However, Cav-1's role in retinal inflammation has not been rigorously tested. In this study, we examined the effect of Cav-1 ablation on the sensitivity of the retina to inflammation. METHODS Cav-1 knockout (KO) mice were challenged by intravitreal injection of lipopolysaccharide (LPS) and inflammatory cell recruitment was assessed by flow cytometry and immunohistochemistry. Leukostasis was assessed in retinal flatmounts after perfusion with FITC-labeled Concanavalin A (FITC-ConA). Chemoattractants were measured by multiplex immunoassays. Blood-retinal barrier (BRB) breakdown was assessed quantitatively by a FITC-dextran permeability assay. The ratio of extravascular to total immune cells was determined by CD45 immunohistochemistry of retinal flatmounts. RESULTS Inflammatory challenge resulted in significant blunting of proinflammatory cytokine (monocyte chemoattractant protein-1 [MCP-1/CCL2], CXCL1/KC, IL-6, and IL-1β) responses as well as reduced inflammatory BRB breakdown in Cav-1 KO retinas. Paradoxically, Cav-1 deficiency resulted in significantly increased recruitment of immune cells compared with controls as well as increased leukostasis. A similar ratio of extravascular/total leukocytes were found in Cav-1 KO and wild-type (WT) retinas suggesting that Cav-1 deficient leukocytes were as competent to extravasate as those from WT mice. We found increased levels of circulating immune cells in naïve (not challenged with LPS) Cav-1 KO mice compared with controls. CONCLUSIONS Caveolin-1 paradoxically modulates inflammatory signaling and leukocyte infiltration through distinct mechanisms. We hypothesize that Cav-1 expression may enhance inflammatory signaling while at the same time supporting the physical properties of the BRB.
Collapse
Affiliation(s)
- Xiaoman Li
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Xiaowu Gu
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Timothy M Boyce
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Min Zheng
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Alaina M Reagan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Hui Qi
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Nawajes Mandal
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Alex W Cohen
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michelle C Callegan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Daniel J J Carr
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michael H Elliott
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
35
|
Egg intake during carbohydrate restriction alters peripheral blood mononuclear cell inflammation and cholesterol homeostasis in metabolic syndrome. Nutrients 2014; 6:2650-67. [PMID: 25045936 PMCID: PMC4113762 DOI: 10.3390/nu6072650] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 01/14/2023] Open
Abstract
Egg yolk contains bioactive components that improve plasma inflammatory markers and HDL profiles in metabolic syndrome (MetS) under carbohydrate restriction. We further sought to determine whether egg yolk intake affects peripheral blood mononuclear cell (PBMC) inflammation and cholesterol homeostasis in MetS, as HDL and its associated lipid transporter ATP-binding cassette transporter A1 (ABCA1) reduce the inflammatory potential of leukocytes through modulation of cellular cholesterol content and distribution. Thirty-seven men and women classified with MetS consumed a moderate carbohydrate-restricted diet (25%–30% of energy) for 12 weeks, in addition to consuming either three whole eggs per day (EGG) or the equivalent amount of yolk-free egg substitute (SUB). Interestingly, lipopolysaccharide-induced PBMC IL-1β and TNFα secretion increased from baseline to week 12 in the SUB group only, despite increases in PBMC toll-like receptor 4 (TLR4) mRNA expression in the EGG group. Compared to baseline, ABCA1 and 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase mRNA expression increased by week 12 in the EGG group only, whereas changes in PBMC total cholesterol positively correlated with changes in lipid raft content. Together, these findings suggest that intake of whole eggs during carbohydrate restriction alters PBMC inflammation and cholesterol homeostasis in MetS.
Collapse
|
36
|
Zhang X, Xie Y, Zhou H, Xu Y, Liu J, Xie H, Yan J. Involvement of TLR4 in oxidized LDL/β2GPI/anti-β2GPI-induced transformation of macrophages to foam cells. J Atheroscler Thromb 2014; 21:1140-51. [PMID: 24998486 DOI: 10.5551/jat.24372] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM It has been reported that oxidized low-density lipoprotein (oxLDL) forms a stable and non-dissociable complex with β2-glycoprotein I (β2GPI) and that IgG anti-β2GPI autoantibodies are able to recognize this complex, thus facilitating macrophage-derived foam cell formation in patients with antiphospholipid syndrome (APS). However, the immunopathological mechanisms of oxLDL/β2GPI complexes in promoting foam cell formation are not fully understood. In this study, we examined the role of toll-like receptor 4 (TLR4) in the oxLDL/β2GPI/anti-β2GPI complex-induced transformation of mouse peritoneal macrophages to foam cells. METHODS Oil red O staining and optical density (OD) measurements of intracellular stained oil red O solution were used to monitor the transformation of peritoneal macrophages to foam cells in TLR4-competent C3H/HeN and TLR4-mutant C3H/HeJ mice. During foam cell formation induced by the oxLDL/β2GPI/anti-β2GPI complex, the expression of TLR4 and activation of nuclear factor kappa B (NF-κB) were confirmed by analyzing the protein and mRNA levels of these compounds. Furthermore, the related active molecule expression during foam cell formation induced by the oxLDL/β2GPI/anti-β2GPI complex was examined in the presence or absence of TLR4. RESULTS The data showed that treatment with the oxLDL/β2GPI/anti-β2GPI complex markedly increased foam cell formation, the TLR4 expression, NF-κB activation, the tissue factor (TF) expression and tumor necrosis factor-α (TNF-α) and monocyte chemotactic protein-1 (MCP-1) secretion in the C3H/HeN mice. However, the transformation of macrophages to foam cells and the expression levels of phosphorylated NF-κB, TF, TNF-α and MCP-1 were significantly reduced in the C3H/HeJ mice treated with the oxLDL/β2GPI/anti-β2GPI complex. In addition, compared with that achieved by oxLDL alone, the oxLDL/β2GPI complex decreased foam cell formation and the related signaling molecule expression in the C3H/HeN mice. CONCLUSIONS Our results indicate that TLR4 plays an important role in the process of oxLDL/β2GPI/anti-β2GPI complex-induced transformation of macrophages to foam cells, which may accelerate the development of atherosclerosis in the setting of APS. However, β2GPI alone functions as an antiatherogenic protein by preventing the foam cell formation induced by oxLDL.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University
| | | | | | | | | | | | | |
Collapse
|
37
|
Birukova AA, Singleton PA, Gawlak G, Tian X, Mirzapoiazova T, Mambetsariev B, Dubrovskyi O, Oskolkova OV, Bochkov VN, Birukov KG. GRP78 is a novel receptor initiating a vascular barrier protective response to oxidized phospholipids. Mol Biol Cell 2014; 25:2006-16. [PMID: 24829380 PMCID: PMC4072574 DOI: 10.1091/mbc.e13-12-0743] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vascular integrity and the maintenance of blood vessel continuity are fundamental features of the circulatory system maintained through endothelial cell-cell junctions. Defects in the endothelial barrier become an initiating factor in several pathologies, including ischemia/reperfusion, tumor angiogenesis, pulmonary edema, sepsis, and acute lung injury. Better understanding of mechanisms stimulating endothelial barrier enhancement may provide novel therapeutic strategies. We previously reported that oxidized phospholipids (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine [OxPAPC]) promote endothelial cell (EC) barrier enhancement both in vitro and in vivo. This study examines the initiating mechanistic events triggered by OxPAPC to increase vascular integrity. Our data demonstrate that OxPAPC directly binds the cell membrane-localized chaperone protein, GRP78, associated with its cofactor, HTJ-1. OxPAPC binding to plasma membrane-localized GRP78 leads to GRP78 trafficking to caveolin-enriched microdomains (CEMs) on the cell surface and consequent activation of sphingosine 1-phosphate receptor 1, Src and Fyn tyrosine kinases, and Rac1 GTPase, processes essential for cytoskeletal reorganization and EC barrier enhancement. Using animal models of acute lung injury with vascular hyperpermeability, we observed that HTJ-1 knockdown blocked OxPAPC protection from interleukin-6 and ventilator-induced lung injury. Our data indicate for the first time an essential role of GRP78 and HTJ-1 in OxPAPC-mediated CEM dynamics and enhancement of vascular integrity.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637
| | - Patrick A Singleton
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637
| | - Grzegorz Gawlak
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637
| | - Xinyong Tian
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637
| | - Tamara Mirzapoiazova
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637
| | - Bolot Mambetsariev
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637
| | - Oleksii Dubrovskyi
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637
| | - Olga V Oskolkova
- Lung Injury Center, Section of Pulmonary and Critical Care, Department of Medicine, Division of Biomedical Sciences, University of Chicago, Chicago, IL 60637Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Valery N Bochkov
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Konstantin G Birukov
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
38
|
Zimman A, Titz B, Komisopoulou E, Biswas S, Graeber TG, Podrez EA. Phosphoproteomic analysis of platelets activated by pro-thrombotic oxidized phospholipids and thrombin. PLoS One 2014; 9:e84488. [PMID: 24400094 PMCID: PMC3882224 DOI: 10.1371/journal.pone.0084488] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Specific oxidized phospholipids (oxPCCD36) promote platelet hyper-reactivity and thrombosis in hyperlipidemia via the scavenger receptor CD36, however the signaling pathway(s) induced in platelets by oxPCCD36 are not well defined. We have employed mass spectrometry-based tyrosine, serine, and threonine phosphoproteomics for the unbiased analysis of platelet signaling pathways induced by oxPCCD36 as well as by the strong physiological agonist thrombin. oxPCCD36 and thrombin induced differential phosphorylation of 115 proteins (162 phosphorylation sites) and 181 proteins (334 phosphorylation sites) respectively. Most of the phosphoproteome changes induced by either agonist have never been reported in platelets; thus they provide candidates in the study of platelet signaling. Bioinformatic analyses of protein phosphorylation dependent responses were used to categorize preferential motifs for (de)phosphorylation, predict pathways and kinase activity, and construct a phosphoproteome network regulating integrin activation. A putative signaling pathway involving Src-family kinases, SYK, and PLCγ2 was identified in platelets activated by oxPCCD36. Subsequent ex vivo studies in human platelets demonstrated that this pathway is downstream of the scavenger receptor CD36 and is critical for platelet activation by oxPCCD36. Our results provide multiple insights into the mechanism of platelet activation and specifically in platelet regulation by oxPCCD36.
Collapse
Affiliation(s)
- Alejandro Zimman
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Bjoern Titz
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, Institute for Molecular Medicine, Jonsson Comprehensive Cancer Center and California NanoSystems Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Evangelia Komisopoulou
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, Institute for Molecular Medicine, Jonsson Comprehensive Cancer Center and California NanoSystems Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sudipta Biswas
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Thomas G. Graeber
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, Institute for Molecular Medicine, Jonsson Comprehensive Cancer Center and California NanoSystems Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Eugene A. Podrez
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
39
|
Masood R, Hochstim C, Cervenka B, Zu S, Baniwal SK, Patel V, Kobielak A, Sinha UK. A novel orthotopic mouse model of head and neck cancer and lymph node metastasis. Oncogenesis 2013; 2:e68. [PMID: 24018643 PMCID: PMC3816223 DOI: 10.1038/oncsis.2013.33] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/29/2013] [Indexed: 12/13/2022] Open
Abstract
Prognosis of head and neck squamous cell carcinoma (HNSCC) is largely determined by the extent of lymph node (LN) metastasis at diagnosis, and this appears to be controlled by cancer cell genetics. To examine the role of these genes in LN metastasis, we created a human-in-mouse orthotopic model of HNSCC and performed comparative microarray analysis of gene expression between populations of HNSCC cell lines derived before and after serial transplantation and in vivo metastasis in mice. Microarray analysis comparing the USC-HN3-GFP, USC-HN3-GFP-G1 and USC-HN3-GFP-G2 cell lines identified overexpression of genes implicated in epithelial-to- mesenchymal transition and the formation of cancer stem cells, including CAV-1, TLR-4 (Toll-like receptor 4), MMP-7 (matrix metalloproteinase 7), ALDH1A3, OCT-4 and TRIM-29. Ingenuity Pathway Analysis confirmed upregulation of respective gene signaling pathways in the USC-HN1-GFP-G2 cell line. Patient HNSCC samples from advanced stages overexpressed ALDH1A3, CAV-1 and MMP-7. Our results show that CAV-1, TLR-4, MMP-7, ALDH1A3, OCT-4 and TRIM-29 have increased expression in HNSCC cells selected for an enhanced metastatic phenotype and suggest that these genes may have an important role in the metastatic potential of HNSCC cells. Inhibition of these genes may therefore have prognostic and therapeutic utility in HNSCC.
Collapse
Affiliation(s)
- R Masood
- Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Electronegative LDL: a circulating modified LDL with a role in inflammation. Mediators Inflamm 2013; 2013:181324. [PMID: 24062611 PMCID: PMC3766570 DOI: 10.1155/2013/181324] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/19/2013] [Indexed: 12/13/2022] Open
Abstract
Electronegative low density lipoprotein (LDL(−)) is a minor modified fraction of LDL found in blood. It comprises a heterogeneous population of LDL particles modified by various mechanisms sharing as a common feature increased electronegativity. Modification by oxidation is one of these mechanisms. LDL(−) has inflammatory properties similar to those of oxidized LDL (oxLDL), such as inflammatory cytokine release in leukocytes and endothelial cells. However, in contrast with oxLDL, LDL(−) also has some anti-inflammatory effects on cultured cells. The inflammatory and anti-inflammatory properties ascribed to LDL(−) suggest that it could have a dual biological effect.
Collapse
|
41
|
Witztum JL, Lichtman AH. The influence of innate and adaptive immune responses on atherosclerosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:73-102. [PMID: 23937439 DOI: 10.1146/annurev-pathol-020712-163936] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Both the chronic development of atherosclerotic lesions and the acute changes in lesion phenotype that lead to clinical cardiovascular events are significantly influenced by the innate and adaptive immune responses to lipoprotein deposition and oxidation in the arterial wall. The rapid pace of discovery of mechanisms of immunologic recognition, effector functions, and regulation has significantly influenced the study of atherosclerosis, and our new knowledge is beginning to affect how we treat this ubiquitous disease. In this review, we discuss recent advances in our understanding of how innate and adaptive immunity contribute to atherosclerosis, as well as therapeutic opportunities that arise from this knowledge.
Collapse
Affiliation(s)
- Joseph L Witztum
- Department of Medicine, University of California, San Diego, La Jolla, California 92093;
| | | |
Collapse
|
42
|
De Guzman JM, Ku G, Fahey R, Youm YH, Kass I, Ingram DK, Dixit VD, Kheterpal I. Chronic caloric restriction partially protects against age-related alteration in serum metabolome. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1091-1104. [PMID: 22661299 PMCID: PMC3705111 DOI: 10.1007/s11357-012-9430-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
Calorie restriction (CR) remains the most robust metabolic intervention to extend lifespan and improve healthspan in several species. Using global and targeted mass spectrometry-based metabolomics approaches, here we show that chronic CR prevents age-related changes in specific metabolic signatures. Global metabolomic analysis using ultra-performance liquid chromatography-tandem mass spectrometry detected more than 7,000 metabolites in sera from ad-libitum-fed young, aged, and aged C57BL/6 mice maintained on 40 % CR. Multivariate statistical analysis of mass spectrometry data revealed a clear separation among the young, aged, and aged-CR mice demonstrating the potential of this approach for producing reliable metabolic profiles that discriminate based on age and diet. We have identified 168 discriminating features with high statistical significance (p ≤ 0.001) and validated and quantified three of these metabolites using targeted metabolite analysis. Calorie restriction prevented the age-related alteration in specific metabolites, namely lysophosphatidylcholines (16:1 and 18:4), sphingomyelin (d18:1/12:0), tetracosahexaenoic acid, and 7α-dihydroxy-4-cholesten-3-one, in the serum. Pathway analysis revealed that CR impacted the age-related changes in metabolic byproducts of lipid metabolism, fatty acid metabolism, and bile acid biosynthesis. Our data suggest that metabolomics approach has the potential to elucidate the metabolic mechanism of CR's potential anti-aging effects in larger-scale investigations.
Collapse
Affiliation(s)
- Jennifer M. De Guzman
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| | - Ginger Ku
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| | - Ryan Fahey
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| | - Yun-Hee Youm
- />Immunobiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA USA
| | | | - Donald K. Ingram
- />Nutritional Neuroscience and Aging, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA USA
| | - Vishwa Deep Dixit
- />Immunobiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA USA
| | - Indu Kheterpal
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| |
Collapse
|
43
|
Abstract
Toll-like receptors (TLRs) serve to initiate inflammatory signalling in response to the detection of conserved microbial molecules or products of host tissue damage. Recent evidence suggests that TLR-signalling plays a considerable role in a number of inflammatory diseases, including atherosclerosis and arthritis. Agents which modulate TLR-signalling are, therefore, receiving interest in terms of their potential to modify inflammatory disease processes. One such family of molecules, the oxidised phospholipids (OxPLs), which are formed as a result of inflammatory events and accumulate at sites of chronic inflammation, have been shown to modulate TLR-signalling in both in vitro and in vivo systems. As the interaction between OxPLs and TLRs may play a significant role in chronic inflammatory disease processes, consideration is given in this review to the potential role of OxPLs in the regulation of TLR-signalling.
Collapse
Affiliation(s)
- Clett Erridge
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | |
Collapse
|
44
|
Matt U, Sharif O, Martins R, Furtner T, Langeberg L, Gawish R, Elbau I, Zivkovic A, Lakovits K, Oskolkova O, Doninger B, Vychytil A, Perkmann T, Schabbauer G, Binder CJ, Bochkov VN, Scott JD, Knapp S. WAVE1 mediates suppression of phagocytosis by phospholipid-derived DAMPs. J Clin Invest 2013; 123:3014-24. [PMID: 23934128 DOI: 10.1172/jci60681] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 05/02/2013] [Indexed: 01/20/2023] Open
Abstract
Clearance of invading pathogens is essential to preventing overwhelming inflammation and sepsis that are symptomatic of bacterial peritonitis. Macrophages participate in this innate immune response by engulfing and digesting pathogens, a process called phagocytosis. Oxidized phospholipids (OxPL) are danger-associated molecular patterns (DAMPs) generated in response to infection that can prevent the phagocytic clearance of bacteria. We investigated the mechanism underlying OxPL action in macrophages. Exposure to OxPL induced alterations in actin polymerization, resulting in spreading of peritoneal macrophages and diminished uptake of E. coli. Pharmacological and cell-based studies showed that an anchored pool of PKA mediates the effects of OxPL. Gene silencing approaches identified the A-kinase anchoring protein (AKAP) WAVE1 as an effector of OxPL action in vitro. Chimeric Wave1(-/-) mice survived significantly longer after infection with E. coli and OxPL treatment in vivo. Moreover, we found that endogenously generated OxPL in human peritoneal dialysis fluid from end-stage renal failure patients inhibited phagocytosis via WAVE1. Collectively, these data uncover an unanticipated role for WAVE1 as a critical modulator of the innate immune response to severe bacterial infections.
Collapse
Affiliation(s)
- Ulrich Matt
- Research Center for Molecular Medicine of Austrian Academy of Sciences, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Peroxidized unsaturated fatty acids stimulate Toll-like receptor 4 signaling in endothelial cells. Life Sci 2013; 92:984-92. [PMID: 23583568 DOI: 10.1016/j.lfs.2013.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 11/23/2022]
Abstract
AIM Although unsaturated fatty acids are assumed to be protective against inflammatory disorders that include a pathway involving Toll-like receptor 4 (TLR4) activation, they might actually be toxic because of their high susceptibility to lipid peroxidation. Here we studied the effects of peroxidized unsaturated fatty acids on the TLR4-nuclear factor (NF)-κB pathway in endothelial cells. MAIN METHODS Confluent cultured endothelial cells from bovine aorta were incubated for 1h with fatty acids integrated into phosphatidylcholine vesicles. Lipopolysaccharide (LPS) or phosphatidylcholine vesicles without fatty acids were also applied as a positive control or a control for fatty acid groups, respectively. Activation of TLR4 and downstream signaling was assessed by membrane fractionation and Western blotting or immunofluorescent staining. KEY FINDINGS In the same way as LPS, application of sufficiently peroxidized unsaturated fatty acids like oleic acid or docosahexaenoic acid, acutely caused TLR4 translocation to caveolae/raft membranes, leading to activation of NF-κB signaling in endothelial cells. In contrast, saturated fatty acids did not show such effects. Applying well-peroxidized unsaturated fatty acids, but not saturated fatty acids, acutely activates the TLR4/NF-κB pathway. SIGNIFICANCE Peroxidation of unsaturated fatty acid is essential for the acute activation of TLR4 by the fatty acids that follow the same pathway as the activation by LPS. Unsaturated fatty acids have been assumed to be protective against inflammatory disorders, and drugs containing unsaturated fatty acids are now developed and provided. Our result suggests that, for inflammatory disorders involving TLR4 signaling, using unsaturated fatty acids as anti-inflammatory drugs may cause contrary effects.
Collapse
|
46
|
Miller YI, Choi SH, Wiesner P, Bae YS. The SYK side of TLR4: signalling mechanisms in response to LPS and minimally oxidized LDL. Br J Pharmacol 2013; 167:990-9. [PMID: 22776094 DOI: 10.1111/j.1476-5381.2012.02097.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is the best known for its involvement in immune receptor signalling, mediated by binding of SYK tandem Src-homology 2 domains to tandem phosphotyrosine in immunoreceptor tyrosine-based activation motifs (ITAMs). ITAM adaptors or ITAM-containing receptor tails mediate signalling from B- and T-cell receptors, Fc receptors and many C-type lectins, including dectin-1. Recent data point to constitutive binding of SYK to the cytoplasmic domain of toll-like receptor-4 (TLR4). This SYK-TLR4 binding increases upon TLR4 dimerization and phosphorylation, and SYK plays a prominent role in TLR4 signalling in response to LPS in neutrophils and monocytes. SYK also plays an important role in TLR4-mediated macrophage responses to minimally oxidized low-density lipoprotein (mmLDL), which is a form of oxidized LDL relevant to development of human atherosclerosis. Interestingly, mmLDL-induced effects in macrophages, which occur via TLR4, are predominantly MyD88 independent. This unmasks the role of the SYK branch of TLR4 signalling, which mediates modest cytokine release via activation of AP-1 transcription and robust reactive oxygen species generation and cytoskeletal rearrangements. The latter results in extensive membrane ruffling and macropinocytosis, leading to lipoprotein uptake and foam cell formation, a hallmark of atherosclerotic lesions. Because inhibitors of SYK activity, such as fostamatinib, are in advanced clinical trials for rheumatoid arthritis and other autoimmune diseases, understanding the role of SYK in signalling via TLR4 is of immediate importance. This signalling pathway seems to be particularly important in TLR4 activation by host-derived, damage-associated molecular pattern ligands, such as mmLDL, relevant to development of atherosclerosis and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
47
|
Kim MJ, Choi NY, Koo JE, Kim SY, Joung SM, Jeong E, Lee JY. Suppression of Toll-like receptor 4 activation by endogenous oxidized phosphatidylcholine, KOdiA-PC by inhibiting LPS binding to MD2. Inflamm Res 2013; 62:571-80. [PMID: 23474920 DOI: 10.1007/s00011-013-0609-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/30/2013] [Accepted: 02/20/2013] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Activation of Toll-like receptor 4 (TLR4) triggers immune and inflammatory events by sensing endogenous danger signals as well as invading pathogens and contributes to the development of chronic inflammatory diseases. In this study, we investigated effect of 1-palmitoyl-2-(5-keto-6-octenedioyl)-sn-glycero-3-phosphocholine (KOdiA-PC), an oxidized phosphatidylcholine, on TLR4 activation and the underlying regulatory mechanism. METHODS RAW264.7 macrophages were used for the study. The levels of TNF-α, IFN-β, and COX-2 mRNA and protein were determined by quantitative PCR and ELISA, respectively. Activation of TLR4-signaling was examined by immunoblot and luciferase reporter assays. In vitro binding assay was performed to determine LPS binding to MD2. Macrophage migration was analyzed using a transwell-culture system. RESULTS KOdiA-PC prevented the activation of TLR4-signaling components including ERK, JNK, p38, NF-κB, and IRF3 leading to decrease of TNF-α, IFN-β, and COX-2 expression. In vitro binding assay revealed that KOdiA-PC interrupted LPS binding to MD2, a TLR4 co-receptor. Consistently, KOdiA-PC suppressed LPS-induced macrophage migration. CONCLUSION The results demonstrate that KOdiA-PC can modulate TLR4 activation by regulating ligand-receptor interaction. Therefore, endogenously generated, oxidized phospholipids may play a role in resolving inflammation by terminating TLR activation and macrophage recruitment to the inflamed site.
Collapse
Affiliation(s)
- Min Jin Kim
- College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Rios FJ, Koga MM, Pecenin M, Ferracini M, Gidlund M, Jancar S. Oxidized LDL induces alternative macrophage phenotype through activation of CD36 and PAFR. Mediators Inflamm 2013; 2013:198193. [PMID: 24062612 PMCID: PMC3767076 DOI: 10.1155/2013/198193] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 07/22/2013] [Indexed: 12/14/2022] Open
Abstract
OxLDL is recognized by macrophage scavenger receptors, including CD36; we have recently found that Platelet-Activating Factor Receptor (PAFR) is also involved. Since PAFR in macrophages is associated with suppressor function, we examined the effect of oxLDL on macrophage phenotype. It was found that the presence of oxLDL during macrophage differentiation induced high mRNA levels to IL-10, mannose receptor, PPAR γ and arginase-1 and low levels of IL-12 and iNOS. When human THP-1 macrophages were pre-treated with oxLDL then stimulated with LPS, the production of IL-10 and TGF- β significantly increased, whereas that of IL-6 and IL-8 decreased. In murine TG-elicited macrophages, this protocol significantly reduced NO, iNOS and COX2 expression. Thus, oxLDL induced macrophage differentiation and activation towards the alternatively activated M2-phenotype. In murine macrophages, oxLDL induced TGF- β , arginase-1 and IL-10 mRNA expression, which were significantly reduced by pre-treatment with PAFR antagonists (WEB and CV) or with antibodies to CD36. The mRNA expression of IL-12, RANTES and CXCL2 were not affected. We showed that this profile of macrophage activation is dependent on the engagement of both CD36 and PAFR. We conclude that oxLDL induces alternative macrophage activation by mechanisms involving CD36 and PAFR.
Collapse
Affiliation(s)
- Francisco J Rios
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes 1730, ICB IV-Sala 140/146, 05508-900 Sao Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
49
|
Moutzouri E, Tellis CC, Rousouli K, Liberopoulos EN, Milionis HJ, Elisaf MS, Tselepis AD. Effect of simvastatin or its combination with ezetimibe on Toll-like receptor expression and lipopolysaccharide – Induced cytokine production in monocytes of hypercholesterolemic patients. Atherosclerosis 2012; 225:381-7. [PMID: 23062767 DOI: 10.1016/j.atherosclerosis.2012.08.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/25/2012] [Accepted: 08/25/2012] [Indexed: 02/07/2023]
|
50
|
Panigrahi S, Ma Y, Hong L, Gao D, West XZ, Salomon RG, Byzova TV, Podrez EA. Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis. Circ Res 2012; 112:103-12. [PMID: 23071157 DOI: 10.1161/circresaha.112.274241] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE A prothrombotic state and increased platelet reactivity are common in pathophysiological conditions associated with oxidative stress and infections. Such conditions are associated with an appearance of altered-self ligands in circulation that can be recognized by Toll-like receptors (TLRs). Platelets express a number of TLRs, including TLR9; however, the role of TLR in platelet function and thrombosis is poorly understood. OBJECTIVE To investigate the biological activities of carboxy(alkylpyrrole) protein adducts, an altered-self ligand generated in oxidative stress, on platelet function and thrombosis. METHODS AND RESULTS In this study we show that carboxy(alkylpyrrole) protein adducts represent novel unconventional ligands for TLR9. Furthermore, using human and murine platelets, we demonstrate that carboxy(alkylpyrrole) protein adducts promote platelet activation, granule secretion, and aggregation in vitro and thrombosis in vivo via the TLR9/MyD88 pathway. Platelet activation by TLR9 ligands induces IRAK1 and AKT phosphorylation, and it is Src kinase-dependent. Physiological platelet agonists act synergistically with TLR9 ligands by inducing TLR9 expression on the platelet surface. CONCLUSIONS Our study demonstrates that platelet TLR9 is a functional platelet receptor that links oxidative stress, innate immunity, and thrombosis.
Collapse
Affiliation(s)
- Soumya Panigrahi
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, NB-5, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|