1
|
Zhou Y, Wang T, Lu P, Wan Z, He H, Wang J, Li D, Li Y, Shu C. Exploring the Potential of MIM-Manufactured Porous NiTi as a Vascular Drug Delivery Material. Ann Biomed Eng 2024; 52:2958-2974. [PMID: 38880816 DOI: 10.1007/s10439-024-03558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Porous nickel-titanium (NiTi) manufactured using metal injection molding (MIM) has emerged as an innovative generation of drug-loaded stent materials. However, an increase in NiTi porosity may compromise its mechanical properties and cytocompatibility. This study aims to explore the potential of porous NiTi as a vascular drug delivery material and evaluate the impact of porosity on its drug loading and release, mechanical properties, and cytocompatibility. MIM, combined with the powder space-holder method, was used to fabricate porous NiTi alloys with three porosity levels. The mechanical properties of porous NiTi were assessed, as well as the surface cell growth capability. Furthermore, by loading rapamycin nanoparticles onto the surface and within the pores of porous NiTi, we evaluated the in vitro drug release behavior, inhibitory effect on cell proliferation, and inhibition of neointimal hyperplasia in vivo. The results demonstrated that an increase in porosity led to a decrease in the mechanical properties of porous NiTi, including hardness, tensile strength, and elastic modulus, and a decrease in the surface cell growth capability, affecting both cell proliferation and morphology. Concurrently, the loading capacity and release duration of rapamycin were extended with increasing porosity, resulting in enhanced inhibitory effects on cell proliferation in vitro and inhibition of neointimal hyperplasia in vivo. In conclusion, porous NiTi holds promise as a desirable vascular drug delivery material, but a balanced consideration of the influence of porosity on both mechanical properties and cytocompatibility is necessary to achieve an optimal balance among drug-loading and release performance, mechanical properties, and cytocompatibility.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Vascular Disease Institute of Central South University, Changsha, Hunan, China
| | - Tun Wang
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Vascular Disease Institute of Central South University, Changsha, Hunan, China
| | - Peng Lu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Vascular Disease Institute of Central South University, Changsha, Hunan, China
| | - Zicheng Wan
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Vascular Disease Institute of Central South University, Changsha, Hunan, China
| | - Hao He
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Vascular Disease Institute of Central South University, Changsha, Hunan, China
| | - Junwei Wang
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Vascular Disease Institute of Central South University, Changsha, Hunan, China
| | - Dongyang Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, China
| | - Yimin Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, China
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Vascular Disease Institute of Central South University, Changsha, Hunan, China.
- Department of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
- Department of Vascular Surgery, The Second Xiangya Hospital, No. 139 Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Chen K, Xu M, Lu F, He Y. Development of Matrix Metalloproteinases-Mediated Extracellular Matrix Remodeling in Regenerative Medicine: A Mini Review. Tissue Eng Regen Med 2023; 20:661-670. [PMID: 37160567 PMCID: PMC10352474 DOI: 10.1007/s13770-023-00536-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 05/11/2023] Open
Abstract
Extracellular matrix (ECM) components confer biomechanical properties, maintain cell phenotype and mediate tissue homeostasis. ECM remodeling is complex and plays a key role in both physiological and pathological processes. Matrix metalloproteinases (MMPs) are a group of enzymes responsible for ECM degradation and have been accepted as a key regulator in ECM remodeling. In this mini-review, we summarize MMPs categories, functions and the targeted substrates. We then discuss current understanding of the role of MMPs-mediated events, including inflammation reaction, angiogenesis, cellular activities, etc., in ECM remodeling in the context of regenerative medicine.
Collapse
Affiliation(s)
- Kaiqi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Mimi Xu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Smetanina MA, Korolenya VA, Kel AE, Sevostyanova KS, Gavrilov KA, Shevela AI, Filipenko ML. Epigenome-Wide Changes in the Cell Layers of the Vein Wall When Exposing the Venous Endothelium to Oscillatory Shear Stress. EPIGENOMES 2023; 7:epigenomes7010008. [PMID: 36975604 PMCID: PMC10048778 DOI: 10.3390/epigenomes7010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Epigenomic changes in the venous cells exerted by oscillatory shear stress towards the endothelium may result in consolidation of gene expression alterations upon vein wall remodeling during varicose transformation. We aimed to reveal such epigenome-wide methylation changes. Primary culture cells were obtained from non-varicose vein segments left after surgery of 3 patients by growing the cells in selective media after magnetic immunosorting. Endothelial cells were either exposed to oscillatory shear stress or left at the static condition. Then, other cell types were treated with preconditioned media from the adjacent layer's cells. DNA isolated from the harvested cells was subjected to epigenome-wide study using Illumina microarrays followed by data analysis with GenomeStudio (Illumina), Excel (Microsoft), and Genome Enhancer (geneXplain) software packages. Differential (hypo-/hyper-) methylation was revealed for each cell layer's DNA. The most targetable master regulators controlling the activity of certain transcription factors regulating the genes near the differentially methylated sites appeared to be the following: (1) HGS, PDGFB, and AR for endothelial cells; (2) HGS, CDH2, SPRY2, SMAD2, ZFYVE9, and P2RY1 for smooth muscle cells; and (3) WWOX, F8, IGF2R, NFKB1, RELA, SOCS1, and FXN for fibroblasts. Some of the identified master regulators may serve as promising druggable targets for treating varicose veins in the future.
Collapse
Affiliation(s)
- Mariya A Smetanina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Department of Fundamental Medicine, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Valeria A Korolenya
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Alexander E Kel
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Department of Research & Development, GeneXplain GmbH, D-38302 Wolfenbüttel, Germany
| | - Ksenia S Sevostyanova
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Laboratory of Invasive Medical Technologies, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Department of Surgical Diseases, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Konstantin A Gavrilov
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Department of Surgical Diseases, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Andrey I Shevela
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Laboratory of Invasive Medical Technologies, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
- Department of Surgical Diseases, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University (NSU), Novosibirsk 630090, Russia
| | - Maxim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Xie T, St Pierre SR, Olaranont N, Brown LE, Wu M, Sun Y. Condensation tendency and planar isotropic actin gradient induce radial alignment in confined monolayers. eLife 2021; 10:e60381. [PMID: 34542405 PMCID: PMC8478414 DOI: 10.7554/elife.60381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/09/2021] [Indexed: 02/01/2023] Open
Abstract
A monolayer of highly motile cells can establish long-range orientational order, which can be explained by hydrodynamic theory of active gels and fluids. However, it is less clear how cell shape changes and rearrangement are governed when the monolayer is in mechanical equilibrium states when cell motility diminishes. In this work, we report that rat embryonic fibroblasts (REF), when confined in circular mesoscale patterns on rigid substrates, can transition from the spindle shapes to more compact morphologies. Cells align radially only at the pattern boundary when they are in the mechanical equilibrium. This radial alignment disappears when cell contractility or cell-cell adhesion is reduced. Unlike monolayers of spindle-like cells such as NIH-3T3 fibroblasts with minimal intercellular interactions or epithelial cells like Madin-Darby canine kidney (MDCK) with strong cortical actin network, confined REF monolayers present an actin gradient with isotropic meshwork, suggesting the existence of a stiffness gradient. In addition, the REF cells tend to condense on soft substrates, a collective cell behavior we refer to as the 'condensation tendency'. This condensation tendency, together with geometrical confinement, induces tensile prestretch (i.e. an isotropic stretch that causes tissue to contract when released) to the confined monolayer. By developing a Voronoi-cell model, we demonstrate that the combined global tissue prestretch and cell stiffness differential between the inner and boundary cells can sufficiently define the cell radial alignment at the pattern boundary.
Collapse
Affiliation(s)
- Tianfa Xie
- Department of Mechanical and Industrial Engineering, University of MassachusettsAmherstUnited States
| | - Sarah R St Pierre
- Department of Mechanical and Industrial Engineering, University of MassachusettsAmherstUnited States
| | - Nonthakorn Olaranont
- Department of Mathematical Sciences, Worcester Polytechnic InstituteWorcesterUnited States
| | - Lauren E Brown
- Department of Biomedical Engineering, University of MassachusettsAmherstUnited States
| | - Min Wu
- Department of Mathematical Sciences, Worcester Polytechnic InstituteWorcesterUnited States
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of MassachusettsAmherstUnited States
- Department of Biomedical Engineering, University of MassachusettsAmherstUnited States
- Department of Chemical Engineering, University of MassachusettsAmherstUnited States
| |
Collapse
|
5
|
Ding X, Yan Y, Zhang C, Xu X, Yang F, Liu Y, Wang G, Qin Y. OCT4 regulated neointimal formation in injured mouse arteries by matrix metalloproteinase 2-mediated smooth muscle cells proliferation and migration. J Cell Physiol 2020; 236:5421-5431. [PMID: 33372301 DOI: 10.1002/jcp.30248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/09/2022]
Abstract
The excessive proliferation and migration of vascular smooth muscle cells (VSMCs) play vital roles in neointimal hyperplasia and vascular restenosis. In the present study, we aimed to investigate the function and mechanism of octamer-binding transcription factor 4 (OCT4, a key transcription factor for maintaining stem cells in de-differentiated state) on neointima formation in response to vascular injury. Quantitative reverse-transcription polymerase chain reaction and western blot results displayed a significant increase of OCT4 levels in injured carotid arteries. Immunohistochemistry and immunofluorescence assays confirmed that the increased OCT4 expression was primarily localized in α-SMA-positive VSMCs from neointima, and colocalized with PCNA in the nuclei of VSMCs. Adenovirus-mediated OCT4 overexpression in injured carotid arteries exacerbated intimal thickening, while OCT4 knockdown significantly inhibited intimal thickening. In-vitro experiments confirmed that the increased OCT4 expression in VMSCs could be induced by platelet-derived growth factor-BB (PDGF-BB) in a time-dependent manner. Overexpression of OCT4 greatly promoted VSMCs proliferation and migration, while OCT4 knockdown significantly retarded the PDGF-BB-induced excessive proliferation and migration of VSMCs. Bioinformatics analysis, dual-luciferase reporter assay, and chromatin immunoprecipitation assay confirmed that OCT4 could upregulate matrix metalloproteinases 2 (MMP2) expression through promoting its transcription. Moreover, knockdown of MMP2 significantly attenuated OCT4-mediated VSMCs proliferation and migration. These results indicated that OCT4 facilitated neointimal formation in response to vascular injury by MMP2-mediated VSMCs proliferation and migration, and targeting OCT4 in VSMCs might be a novel therapeutic strategy for vascular restenosis.
Collapse
Affiliation(s)
- Xueyan Ding
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.,Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Yan
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China.,Department of Cardiothoracic Surgery, No. 903 Hospital of Chinese People's Liberation Army, Hangzhou, Zhejiang, China
| | - Chengke Zhang
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xudong Xu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fan Yang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guokun Wang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongwen Qin
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Lou X, Zhao M, Fan C, Fast VG, Valarmathi MT, Zhu W, Zhang J. N-cadherin overexpression enhances the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes in infarcted mouse hearts. Cardiovasc Res 2020; 116:671-685. [PMID: 31350544 PMCID: PMC8204485 DOI: 10.1093/cvr/cvz179] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/29/2019] [Accepted: 07/19/2019] [Indexed: 12/30/2022] Open
Abstract
AIMS In regenerative medicine, cellular cardiomyoplasty is one of the promising options for treating myocardial infarction (MI); however, the efficacy of such treatment has shown to be limited due to poor survival and/or functional integration of implanted cells. Within the heart, the adhesion between cardiac myocytes (CMs) is mediated by N-cadherin (CDH2) and is critical for the heart to function as an electromechanical syncytium. In this study, we have investigated whether the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) can be enhanced through CDH2 overexpression. METHODS AND RESULTS CDH2-hiPSC-CMs and control wild-type (WT)-hiPSC-CMs were cultured in myogenic differentiation medium for 28 days. Using a mouse MI model, the cell survival/engraftment rate, infarct size, and cardiac functions were evaluated post-MI, at Day 7 or Day 28. In vitro, conduction velocities were significantly greater in CDH2-hiPSC-CMs than in WT-hiPSC-CMs. While, in vivo, measurements of cardiac functions: left ventricular (LV) ejection fraction, reduction in infarct size, and the cell engraftment rate were significantly higher in CDH2-hiPSC-CMs treated MI group than in WT-hiPSC-CMs treated MI group. Mechanistically, paracrine activation of ERK signal transduction pathway by CDH2-hiPSC-CMs, significantly induced neo-vasculogenesis, resulting in a higher survival of implanted cells. CONCLUSION Collectively, these data suggest that CDH2 overexpression enhances not only the survival/engraftment of cultured CDH2-hiPSC-CMs, but also the functional integration of these cells, consequently, the augmentation of the reparative properties of implanted CDH2-hiPSC-CMs in the failing hearts.
Collapse
MESH Headings
- Action Potentials
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis
- Cadherins/genetics
- Cadherins/metabolism
- Cell Differentiation
- Cell Line
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/transplantation
- Mice, Inbred NOD
- Mice, SCID
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardial Infarction/surgery
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/transplantation
- Neovascularization, Physiologic
- Paracrine Communication
- Proto-Oncogene Proteins c-akt/metabolism
- Recovery of Function
- Regeneration
- Signal Transduction
- Stroke Volume
- Up-Regulation
- Ventricular Function, Left
Collapse
Affiliation(s)
- Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Meng Zhao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Chengming Fan
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Vladimir G Fast
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Mani T Valarmathi
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Wuqiang Zhu
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, 1670 University Boulevard, Volker Hall G094J, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Medina Rangel PX, Moroni E, Merlier F, Gheber LA, Vago R, Tse Sum Bui B, Haupt K. Chemical Antibody Mimics Inhibit Cadherin‐Mediated Cell–Cell Adhesion: A Promising Strategy for Cancer Therapy. Angew Chem Int Ed Engl 2020; 59:2816-2822. [DOI: 10.1002/anie.201910373] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/02/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Paulina X. Medina Rangel
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Elena Moroni
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Franck Merlier
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Levi A. Gheber
- The Avram and Stella Goldstein-Goren Department of Biotechnology EngineeringBen-Gurion University of the Negev P.O. Box 653 Beer-Sheva 84105 Israel
| | - Razi Vago
- The Avram and Stella Goldstein-Goren Department of Biotechnology EngineeringBen-Gurion University of the Negev P.O. Box 653 Beer-Sheva 84105 Israel
| | - Bernadette Tse Sum Bui
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Karsten Haupt
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| |
Collapse
|
8
|
N-Cadherin Is Critical for the Survival of Germ Cells, the Formation of Steroidogenic Cells, and the Architecture of Developing Mouse Gonads. Cells 2019; 8:cells8121610. [PMID: 31835801 PMCID: PMC6952792 DOI: 10.3390/cells8121610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/10/2023] Open
Abstract
Normal gonad development assures the fertility of the individual. The properly functioning gonads must contain a sufficient number of the viable germ cells, possess a correct architecture and tissue structure, and assure the proper hormonal regulation. This is achieved by the interplay between the germ cells and different types of somatic cells. N-cadherin coded by the Cdh2 gene plays a critical role in this interplay. To gain an insight into the role of N-cadherin in the development of mouse gonads, we used the Cre-loxP system to knock out N-cadherin separately in two cell lines: the SF1+ somatic cells and the OCT4+ germ cells. We observed that N-cadherin plays a key role in the survival of both female and male germ cells. However, the N-cadherin is not necessary for the differentiation of the Sertoli cells or the initiation of the formation of testis cords or ovigerous cords. In the later stages of gonad development, N-cadherin is important for the maintenance of testis cord structure and is required for the formation of steroidogenic cells. In the ovaries, N-cadherin is necessary for the formation of the ovarian follicles. These results indicate that N-cadherin plays a major role in gonad differentiation, structuralization, and function.
Collapse
|
9
|
Medina Rangel PX, Moroni E, Merlier F, Gheber LA, Vago R, Tse Sum Bui B, Haupt K. Chemical Antibody Mimics Inhibit Cadherin‐Mediated Cell–Cell Adhesion: A Promising Strategy for Cancer Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910373] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Paulina X. Medina Rangel
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Elena Moroni
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Franck Merlier
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Levi A. Gheber
- The Avram and Stella Goldstein-Goren Department of Biotechnology EngineeringBen-Gurion University of the Negev P.O. Box 653 Beer-Sheva 84105 Israel
| | - Razi Vago
- The Avram and Stella Goldstein-Goren Department of Biotechnology EngineeringBen-Gurion University of the Negev P.O. Box 653 Beer-Sheva 84105 Israel
| | - Bernadette Tse Sum Bui
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| | - Karsten Haupt
- Sorbonne UniversitésUniversité de Technologie de CompiègneUMR CNRS 7025Enzyme and Cell Engineering Laboratory Rue Roger Couttolenc, CS 60319 60203 Compiègne France
| |
Collapse
|
10
|
Chen L, Qu H, Guo M, Zhang Y, Cui Y, Yang Q, Bai R, Shi D. ANRIL and atherosclerosis. J Clin Pharm Ther 2019; 45:240-248. [PMID: 31703157 DOI: 10.1111/jcpt.13060] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/26/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The 3.8-kb-long antisense non-coding RNA at the INK4 locus (ANRIL) is transcribed from the short arm of human chromosome 9 on P21 and is associated with malfunction of the vascular endothelium, vascular smooth muscle cell (VSMC) proliferation/migration/senescence/apoptosis, mononuclear cell adhesion and proliferation, glycolipid metabolism disorder and DNA damage. Hence, ANRIL plays an important role in atherogenesis. Moreover, genome-wide association studies (GWAS) have identified ANRIL as a biomarker that is closely related to coronary heart disease (CHD). The objective of this review was to discuss the pathological mechanism of ANRIL in atherosclerotic development and its significance as a predictor of cardiovascular disease. METHODS Review of the PubMed, EMBASE and Cochrane databases for articles demonstrating the roles of ANRIL in the development of atherosclerotic diseases. RESULTS AND DISCUSSION The abnormal expression of ANRIL is linked to vascular endothelium injury; the proliferation, migration, senescence and apoptosis of VSMCs; mononuclear cell adhesion and proliferation; glycolipid metabolism disorder; DNA damage; and competing endogenous RNAs. Moreover, ANRIL accelerates the progression of CHD by regulating its single nucleotide polymorphisms (SNPs). WHAT IS NEW AND CONCLUSION Considering that ANRIL accelerates atherosclerosis (AS) development and is a risk factor for CHD, it is reasonable for us to explore an efficacious ANRIL-based therapy for AS in CHD.
Collapse
Affiliation(s)
- Li Chen
- Peking University Traditional Chinese Medicine Clinical Medical School (Xi yuan), Beijing, China
| | - Hua Qu
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Guo
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Cui
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Desai A, Geraghty S, Dean D. Effects of blocking integrin β1 and N-cadherin cellular interactions on mechanical properties of vascular smooth muscle cells. J Biomech 2018; 82:337-345. [PMID: 30503562 DOI: 10.1016/j.jbiomech.2018.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/02/2018] [Accepted: 11/04/2018] [Indexed: 01/08/2023]
Abstract
Experimental measurements of cellular mechanical properties have shown large variability in whole-cell mechanical properties between cells from a single population. This heterogeneity has been observed in many cell populations and with several measurement techniques but the sources are not yet fully understood. Cell mechanical properties are directly related to the composition and organization of the cytoskeleton, which is physically coupled to neighboring cells through adherens junctions and to underlying matrix through focal adhesion complexes. This high level of heterogeneity may be attributed to varying cellular interactions throughout the sample. We tested the effect of cell-cell and cell-matrix interactions on the mechanical properties of vascular smooth muscle cells (VSMCs) in culture by using antibodies to block N-cadherin and integrin β1 interactions. VSMCs were cultured on substrates of varying stiffness with and without tension. Under each of these conditions, cellular mechanical properties were characterized by performing atomic force microscopy (AFM) and cellular structure was analyzed through immunofluorescence imaging. As expected, VSMC mechanical properties were greatly affected by the underlying culture substrate and applied tension. Interestingly, the cell-to-cell variation in mechanical properties within each sample decreased significantly in the antibody conditions. Thus, the cells grown with blocking antibodies were more homogeneous in their mechanical properties on both glass and soft substrates. This suggests that diversified adhesion binding between cells and the ECM is responsible for a significant amount of mechanical heterogeneity that is observed in 2D cell culture studies.
Collapse
Affiliation(s)
- Aesha Desai
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Sandra Geraghty
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Delphine Dean
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
12
|
Frismantiene A, Philippova M, Erne P, Resink TJ. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal 2018; 52:48-64. [PMID: 30172025 DOI: 10.1016/j.cellsig.2018.08.019] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are the major cell type in blood vessels. Unlike many other mature cell types in the adult body, VSMC do not terminally differentiate but retain a remarkable plasticity. Fully differentiated medial VSMCs of mature vessels maintain quiescence and express a range of genes and proteins important for contraction/dilation, which allows them to control systemic and local pressure through the regulation of vascular tone. In response to vascular injury or alterations in local environmental cues, differentiated/contractile VSMCs are capable of switching to a dedifferentiated phenotype characterized by increased proliferation, migration and extracellular matrix synthesis in concert with decreased expression of contractile markers. Imbalanced VSMC plasticity results in maladaptive phenotype alterations that ultimately lead to progression of a variety of VSMC-driven vascular diseases. The nature, extent and consequences of dysregulated VSMC phenotype alterations are diverse, reflecting the numerous environmental cues (e.g. biochemical factors, extracellular matrix components, physical) that prompt VSMC phenotype switching. In spite of decades of efforts to understand cues and processes that normally control VSMC differentiation and their disruption in VSMC-driven disease states, the crucial molecular mechanisms and signalling pathways that shape the VSMC phenotype programme have still not yet been precisely elucidated. In this article we introduce the physiological functions of vascular smooth muscle/VSMCs, outline VSMC-driven cardiovascular diseases and the concept of VSMC phenotype switching, and review molecular mechanisms that play crucial roles in the regulation of VSMC phenotypic plasticity.
Collapse
Affiliation(s)
- Agne Frismantiene
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Maria Philippova
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Paul Erne
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Therese J Resink
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Frismantiene A, Philippova M, Erne P, Resink TJ. Cadherins in vascular smooth muscle cell (patho)biology: Quid nos scimus? Cell Signal 2018; 45:23-42. [DOI: 10.1016/j.cellsig.2018.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/16/2022]
|
14
|
Aneurysm Severity is Increased by Combined Mmp-7 Deletion and N-cadherin Mimetic (EC4-Fc) Over-Expression. Sci Rep 2017; 7:17342. [PMID: 29229950 PMCID: PMC5725451 DOI: 10.1038/s41598-017-17700-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/28/2017] [Indexed: 11/24/2022] Open
Abstract
There is an unmet need for treatments to reduce abdominal aortic aneurysm (AAA) progression. Vascular smooth muscle cell (VSMC) apoptosis precipitates AAA formation, whereas VSMC proliferation repairs the vessel wall. We previously demonstrated that over-expression of EC4-Fc (truncated N-cadherin), or deletion of matrix-metalloproteinase-7 (Mmp-7) reduced VSMC apoptosis in mouse atherosclerotic plaques. Additionally, MMP-7 promotes VSMC apoptosis by cleavage of N-cadherin. We investigated their combined effect on AAA formation. Increased apoptosis and proliferation were observed in human AAA (HAAA) sections compared to normal aortae (HA). This coincided with increased MMP-7 activity and reduced N-cadherin protein levels in HAAA sections compared to HA. Using a mouse model of aneurysm formation, we showed that the combination of Mmp-7 deletion and EC4-Fc overexpression significantly increased AAA severity. Medial apoptosis and proliferation were both significantly reduced in these mice compared to control mice. In vitro, MMP-7 inhibition and EC4-Fc administration significantly supressed human aortic VSMC apoptosis (via activation of PI-3 kinase/Akt signalling) and proliferation. In conclusion, combined Mmp-7 deletion and systemic over-expression of EC4-Fc reduced both proliferation and apoptosis. Reduced proliferation-mediated repair over-rides any benefit of reduced apoptosis, increasing aneurysm severity. Future studies should therefore focus on retarding VSMC apoptosis whilst promoting VSMC proliferation.
Collapse
|
15
|
Barnes RH, Akama T, Öhman MK, Woo MS, Bahr J, Weiss SJ, Eitzman DT, Chun TH. Membrane-Tethered Metalloproteinase Expressed by Vascular Smooth Muscle Cells Limits the Progression of Proliferative Atherosclerotic Lesions. J Am Heart Assoc 2017; 6:e003693. [PMID: 28735290 PMCID: PMC5586255 DOI: 10.1161/jaha.116.003693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/08/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND The MMP (matrix metalloproteinase) family plays diverse and critical roles in directing vascular wall remodeling in atherosclerosis. Unlike secreted-type MMPs, a member of the membrane-type MMP family, MT1-MMP (membrane-type 1 MMP; MMP14), mediates pericellular extracellular matrix degradation that is indispensable for maintaining physiological extracellular matrix homeostasis. However, given the premature mortality exhibited by MT1-MMP-null mice, the potential role of the proteinase in atherogenesis remains elusive. We sought to determine the effects of both MT1-MMP heterozygosity and tissue-specific gene targeting on atherogenesis in APOE (apolipoprotein E)-null mice. METHODS AND RESULTS MT1-MMP heterozygosity in the APOE-null background (Mmp14+/-Apoe-/- ) significantly promoted atherogenesis relative to Mmp14+/+Apoe-/- mice. Furthermore, the tissue-specific deletion of MT1-MMP from vascular smooth muscle cells (VSMCs) in SM22α-Cre(+)Mmp14F/FApoe-/- (VSMC-knockout) mice likewise increased the severity of atherosclerotic lesions. Although VSMC-knockout mice also developed progressive atherosclerotic aneurysms in their iliac arteries, macrophage- and adipose-specific MT1-MMP-knockout mice did not display this sensitized phenotype. In VSMC-knockout mice, atherosclerotic lesions were populated by hyperproliferating VSMCs (smooth muscle actin- and Ki67-double-positive cells) that were characterized by a proinflammatory gene expression profile. Finally, MT1-MMP-null VSMCs cultured in a 3-dimensional spheroid model system designed to mimic in vivo-like cell-cell and cell-extracellular matrix interactions, likewise displayed markedly increased proliferative potential. CONCLUSIONS MT1-MMP expressed by VSMCs plays a key role in limiting the progression of atherosclerosis in APOE-null mice by regulating proliferative responses and inhibiting the deterioration of VSMC function in atherogenic vascular walls.
Collapse
MESH Headings
- Animals
- Aorta/enzymology
- Aorta/pathology
- Aortic Diseases/enzymology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Cell Communication
- Cell Proliferation
- Cell-Matrix Junctions/enzymology
- Cell-Matrix Junctions/pathology
- Cells, Cultured
- Disease Models, Animal
- Female
- Genetic Predisposition to Disease
- Heterozygote
- Iliac Artery/enzymology
- Iliac Artery/pathology
- Inflammation Mediators/metabolism
- Male
- Matrix Metalloproteinase 14/deficiency
- Matrix Metalloproteinase 14/genetics
- Matrix Metalloproteinase 14/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Plaque, Atherosclerotic
- Signal Transduction
- Vascular Remodeling
Collapse
Affiliation(s)
- Richard H Barnes
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Takeshi Akama
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Miina K Öhman
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI
| | - Moon-Sook Woo
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Julian Bahr
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Stephen J Weiss
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Daniel T Eitzman
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI
| | - Tae-Hwa Chun
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
16
|
Hulin-Curtis S, Williams H, Wadey KS, Sala-Newby GB, George SJ. Targeting Wnt/β-Catenin Activated Cells with Dominant-Negative N-cadherin to Reduce Neointima Formation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:191-199. [PMID: 28540322 PMCID: PMC5430493 DOI: 10.1016/j.omtm.2017.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/27/2017] [Indexed: 11/29/2022]
Abstract
Approximately 50% of coronary artery bypass grafts using the autologous saphenous vein fail within 10 years due to intimal thickening. This study examined whether a gene therapy approach that selectively kills Wnt/β-catenin/T cell factor (TCF) activated vascular smooth muscle cells (VSMCs) using dominant-negative N-cadherin (dn-N-cadherin) reduced intimal thickening. Cultured human VSMCs infected with an adenovirus (Ad) encoding dn-N-cadherin via the TCF promoter (Ad-TOP-dn-N-cadherin) specifically expressed dn-N-cadherin in response to activation of the Wnt/β-catenin/TCF pathway. Infection with Ad-TOP-dn-N-cadherin significantly increased VSMC apoptosis (3 ± 0.2% versus 9 ± 0.7%; p < 0.05, n = 6) and significantly inhibited VSMC migration by 83 ± 15% (p < 0.05, n = 6), but did not affect VSMC proliferation (p > 0.05, n = 5). In an ex vivo human saphenous vein organ culture model, luminal delivery of Ad-TOP-dn-N-cadherin significantly increased VSMC apoptosis after 7 days of culture (4 ± 1.4% versus 9 ± 1.6%; p < 0.01, n = 6) and suppressed intimal thickening by 75 ± 7% (p < 0.05, n = 5), without a detrimental effect on endothelial cell coverage. In vivo, Ad-TOP-dn-N-cadherin significantly reduced intimal thickening at day 21 (n = 10) in comparison to the Ad-β-galactosidase (Ad-β-gal) control virus (n = 12, p < 0.05) in the mouse carotid artery ligation model. In summary, we have developed a novel approach to selectively reduce intimal thickening, which may be beneficial in reducing late vein graft failure.
Collapse
Affiliation(s)
- Sarah Hulin-Curtis
- School of Clinical Sciences, University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin St., Bristol BS2 8HW, UK
| | - Helen Williams
- School of Clinical Sciences, University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin St., Bristol BS2 8HW, UK
| | - Kerry S Wadey
- School of Clinical Sciences, University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin St., Bristol BS2 8HW, UK
| | - Graciela B Sala-Newby
- School of Clinical Sciences, University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin St., Bristol BS2 8HW, UK
| | - Sarah J George
- School of Clinical Sciences, University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin St., Bristol BS2 8HW, UK
| |
Collapse
|
17
|
Lyon CA, Wadey KS, George SJ. Soluble N-cadherin: A novel inhibitor of VSMC proliferation and intimal thickening. Vascul Pharmacol 2016; 78:53-62. [PMID: 26586312 PMCID: PMC4749540 DOI: 10.1016/j.vph.2015.11.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/23/2015] [Accepted: 11/12/2015] [Indexed: 11/16/2022]
Abstract
Reoccurrence of symptoms occurs in 30-50% of coronary artery disease patients receiving vein grafts or bare-metal stents due to intimal thickening (restenosis). Restenosis is caused by vascular smooth muscle cell (VSMC) migration and proliferation. New therapeutic approaches that reduce VSMC migration and proliferation while promoting endothelial cell (EC) coverage are required. We assessed the effect of a soluble form of N-cadherin (SNC-Fc, a fusion of the extracellular portion of N-Cadherin to a mutated Fc fragment of IgG), a cell-cell junction molecule, on human saphenous VSMC proliferation and migration in vitro. We also assessed its effect on intimal thickening in a validated human ex vivo organ culture model. We observed that SNC-Fc significantly inhibited VSMC proliferation and to a lesser extent migration. The anti-proliferative effect of SNC-Fc was mediated by the interaction of SNC-Fc with the FGFR, rather than through inhibition of β-catenin signalling. SNC-Fc also significantly reduced intimal thickening by ~85% in the ex vivo organ culture model. SNC-Fc treatment inhibited proliferation of the intimal cells but did not affect migration. SNC-Fc reduced EC apoptosis, without detrimental effects on EC proliferation and migration in vitro. Importantly SNC-Fc increased EC coverage in the ex vivo model of intimal thickening. In conclusion, we suggest that SNC-Fc may have potential as an anti-proliferative therapeutic agent for reducing restenosis which has no detrimental effects on endothelial cells.
Collapse
Affiliation(s)
- Cressida A Lyon
- School of Clinical Sciences, Research Floor Level 7, Bristol Royal Infirmary, Upper Maudlin St, Bristol BS2 8HW, UK
| | - Kerry S Wadey
- School of Clinical Sciences, Research Floor Level 7, Bristol Royal Infirmary, Upper Maudlin St, Bristol BS2 8HW, UK
| | - Sarah J George
- School of Clinical Sciences, Research Floor Level 7, Bristol Royal Infirmary, Upper Maudlin St, Bristol BS2 8HW, UK.
| |
Collapse
|
18
|
|
19
|
Ye GJC, Nesmith AP, Parker KK. The role of mechanotransduction on vascular smooth muscle myocytes' [corrected] cytoskeleton and contractile function. Anat Rec (Hoboken) 2015; 297:1758-69. [PMID: 25125187 DOI: 10.1002/ar.22983] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 06/06/2014] [Indexed: 12/29/2022]
Abstract
Smooth muscle (SM) exhibits a highly organized structural hierarchy that extends over multiple spatial scales to perform a wide range of functions at the cellular, tissue, and organ levels. Early efforts primarily focused on understanding vascular SM (VSM) function through biochemical signaling. However, accumulating evidence suggests that mechanotransduction, the process through which cells convert mechanical stimuli into biochemical cues, is requisite for regulating contractility. Cytoskeletal proteins that comprise the extracellular, intercellular, and intracellular domains are mechanosensitive and can remodel their structure and function in response to external mechanical cues. Pathological stimuli such as malignant hypertension can act through the same mechanotransductive pathways to induce maladaptive remodeling, leading to changes in cellular shape and loss of contractile function. In both health and disease, the cytoskeletal architecture integrates the mechanical stimuli and mediates structural and functional remodeling in the VSM.
Collapse
Affiliation(s)
- George J C Ye
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and the School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | | | | |
Collapse
|
20
|
Soh BS, Buac K, Xu H, Li E, Ng SY, Wu H, Chmielowiec J, Jiang X, Bu L, Li RA, Cowan C, Chien KR. N-cadherin prevents the premature differentiation of anterior heart field progenitors in the pharyngeal mesodermal microenvironment. Cell Res 2014; 24:1420-32. [PMID: 25367124 PMCID: PMC4260345 DOI: 10.1038/cr.2014.142] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/04/2014] [Accepted: 09/23/2014] [Indexed: 11/09/2022] Open
Abstract
The cardiac progenitor cells (CPCs) in the anterior heart field (AHF) are located in the pharyngeal mesoderm (PM), where they expand, migrate and eventually differentiate into major cell types found in the heart, including cardiomyocytes. The mechanisms by which these progenitors are able to expand within the PM microenvironment without premature differentiation remain largely unknown. Through in silico data mining, genetic loss-of-function studies, and in vivo genetic rescue studies, we identified N-cadherin and interaction with canonical Wnt signals as a critical component of the microenvironment that facilitates the expansion of AHF-CPCs in the PM. CPCs in N-cadherin mutant embryos were observed to be less proliferative and undergo premature differentiation in the PM. Notably, the phenotype of N-cadherin deficiency could be partially rescued by activating Wnt signaling, suggesting a delicate functional interaction between the adhesion role of N-cadherin and Wnt signaling in the early PM microenvironment. This study suggests a new mechanism for the early renewal of AHF progenitors where N-cadherin provides additional adhesion for progenitor cells in the PM, thereby allowing Wnt paracrine signals to expand the cells without premature differentiation.
Collapse
Affiliation(s)
- Boon-Seng Soh
- 1] Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA [3] Stem Cell & Regenerative Medicine Consortium, and the Department of Physiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China [4] Department of Cell and Molecular Biology and Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Kristina Buac
- 1] Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA [3] Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Huansheng Xu
- 1] Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA [3] Stem Cell & Regenerative Medicine Consortium, and the Department of Physiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Edward Li
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Shi-Yan Ng
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Hao Wu
- 1] Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Jolanta Chmielowiec
- 1] Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Xin Jiang
- 1] Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Lei Bu
- 1] Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA [3] Stem Cell & Regenerative Medicine Consortium, and the Department of Physiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ronald A Li
- 1] Stem Cell & Regenerative Medicine Consortium, and the Department of Physiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China [2] Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Chad Cowan
- 1] Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Kenneth R Chien
- 1] Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA [3] Department of Cell and Molecular Biology and Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
21
|
Ye GJC, Aratyn-Schaus Y, Nesmith AP, Pasqualini FS, Alford PW, Parker KK. The contractile strength of vascular smooth muscle myocytes is shape dependent. Integr Biol (Camb) 2014; 6:152-63. [PMID: 24406783 DOI: 10.1039/c3ib40230d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular smooth muscle cells in muscular arteries are more elongated than those in elastic arteries. Previously, we reported changes in the contractility of engineered vascular smooth muscle tissue that appeared to be correlated with the shape of the constituent cells, supporting the commonly held belief that elongated muscle geometry may allow for the better contractile tone modulation required in response to changes in blood flow and pressure. To test this hypothesis more rigorously, we developed an in vitro model by engineering human vascular smooth muscle cells to take on the same shapes as those seen in elastic and muscular arteries and measured their contraction during stimulation with endothelin-1. We found that in the engineered cells, actin alignment and nuclear eccentricity increased as the shape of the cell elongated. Smooth muscle cells with elongated shapes exhibited lower contractile strength but greater percentage increase in contraction after endothelin-1 stimulation. We analysed the relationship between smooth muscle contractility and subcellular architecture and found that changes in contractility were correlated with actin alignment and nuclear shape. These results suggest that elongated smooth muscle cells facilitate muscular artery tone modulation by increasing its dynamic contractile range.
Collapse
Affiliation(s)
- George J C Ye
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and the School of Engineering and Applied Sciences, Harvard University, 29 Oxford St, Pierce Hall 321, Cambridge, MA 02138, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Musumeci G, Coleman R, Imbesi R, Magro G, Parenti R, Szychlinska MA, Scuderi R, Cinà CS, Castorina S, Castrogiovanni P. ADAM-10 could mediate cleavage of N-cadherin promoting apoptosis in human atherosclerotic lesions leading to vulnerable plaque: a morphological and immunohistochemical study. Acta Histochem 2014; 116:1148-58. [PMID: 24985126 DOI: 10.1016/j.acthis.2014.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 01/03/2023]
Abstract
Atherosclerosis remains a major cause of mortality. Whereas the histopathological progression of atherosclerotic lesions is well documented, much less is known about the development of unstable or vulnerable plaque, which can rupture leading to thrombus, luminal occlusion and infarct. Apoptosis in the fibrous cap, which is rich in vascular smooth muscle cells (VSMCs) and macrophages, and its subsequent weakening or erosion seems to be an important regulator of plaque stability. The aim of our study was to improve our knowledge on the biological mechanisms that cause plaque instability in order to develop new therapies to maintain atherosclerotic plaque stability and avoid its rupture. In our study, we collected surgical specimens from atherosclerotic plaques in the right or left internal carotid artery of 62 patients with evident clinical symptoms. Histopathology and histochemistry were performed on wax-embedded sections. Immunohistochemical localization of caspase-3, N-cadherin and ADAM-10 was undertaken in order to highlight links between apoptosis, as expressed by caspase-3 immunostaining, and possible roles of N-cadherin, a cell-cell junction protein in VSMCs and macrophages that provides a pro-survival signal reducing apoptosis, and ADAM-10, a "disintegrin and metalloproteases" that is able to cleave N-cadherin in glioblastomas. Our results showed that when apoptosis, expressed by caspase-3 immunostaining, increased in the fibrous cap, rich in VSMCs and macrophages, the expression of N-cadherin decreased. The decreased N-cadherin expression, in turn, was linked to increased ADAM-10 expression. This study shows that apoptotic events are probably involved in the vulnerability of atherosclerotic plaque.
Collapse
|
23
|
Lyon CA, Johnson JL, White S, Sala-Newby GB, George SJ. EC4, a truncation of soluble N-cadherin, reduces vascular smooth muscle cell apoptosis and markers of atherosclerotic plaque instability. Mol Ther Methods Clin Dev 2014; 1:14004. [PMID: 26015951 PMCID: PMC4362368 DOI: 10.1038/mtm.2014.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/05/2014] [Indexed: 11/21/2022]
Abstract
Atherosclerotic plaque instability is precipitated by vascular smooth muscle cell apoptosis in the fibrous cap, weakening it and leading to plaque rupture. We previously showed that reducing smooth muscle cell apoptosis with soluble N-cadherin (SNC) increased features of plaque stability. We have now identified the active site of SNC and examined whether a truncated form containing this site retains the antiapoptotic effect. SNC was mutated to prevent interaction with N-cadherin or fibroblast growth factor receptor (FGFR). Interaction with FGFR in the extracellular (EC) 4 domain of SNC was essential for the antiapoptotic effect. Therefore, we made a truncated form consisting of the EC4 domain. EC4 significantly reduced smooth muscle cell, macrophage, and endothelial cell apoptosis in vitro by ~70%, similar to SNC. Elevation of plasma levels of EC4 in male apolipoprotein E-deficient mice with existing atherosclerosis significantly reduced apoptosis in brachiocephalic artery plaques by ~50%. EC4 reduced plaque size and the incidence of buried fibrous layers and the macrophage:smooth muscle cell ratio (surrogate markers of plaque instability). Interaction of EC4 with FGFR induced potent antiapoptotic signaling in vitro and in vivo. EC4 modulates atherosclerosis in mice demonstrating its therapeutic potential for retarding plaque size and instability.
Collapse
Affiliation(s)
- Cressida A Lyon
- Bristol Heart Institute, Bristol Royal Infirmary, Bristol, UK
| | - Jason L Johnson
- Bristol Heart Institute, Bristol Royal Infirmary, Bristol, UK
| | - Stephen White
- Bristol Heart Institute, Bristol Royal Infirmary, Bristol, UK
| | | | - Sarah J George
- Bristol Heart Institute, Bristol Royal Infirmary, Bristol, UK
| |
Collapse
|
24
|
Abstract
Invasion of carcinoma cells is the result of a disequilibrium between invasion promoter and invasion suppressor gene products (Mareel and Van Roy, Anticancer Res 6:419-435, 1986). The E-cadherin/catenin complex is the most potent invasion suppressor at the cell membrane of epithelioid cells (Duffy et al., J Pathol 214:283-293, 2008). This complex consists of E-cadherin, a transmembrane glycoprotein of 120 kDa, which is linked to the actin cytoskeleton via the catenins (Behrens et al., J Cell Biol 108:2435-2447, 1989). Downregulation of the complex is a common feature in invasive carcinoma cells, and has been recognized at several levels, ranging from genomic mutations to functional deficiencies of an apparently intact complex (Ozawa et al., Proc Natl Acad Sci USA 87:4246-4250, 1990). Cell aggregation assays have been set up to test the functionality of the complex in epithelioid tumor cells. Functional integrity of the complex is a prerequisite for cell-cell adhesion between epithelial cells, and measuring cell aggregation in vitro has thus become another elegant tool to study differences between invasive and noninvasive cell types.
Collapse
Affiliation(s)
- Delphine Debruyne
- Department of Radiotherapy and Nuclear Medicine, Laboratory of Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | | | | |
Collapse
|
25
|
Lelièvre EC, Plestant C, Boscher C, Wolff E, Mège RM, Birbes H. N-cadherin mediates neuronal cell survival through Bim down-regulation. PLoS One 2012; 7:e33206. [PMID: 22427990 PMCID: PMC3299760 DOI: 10.1371/journal.pone.0033206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/11/2012] [Indexed: 01/22/2023] Open
Abstract
N-cadherin is a major adhesion molecule involved in the development and plasticity of the nervous system. N-cadherin-mediated cell adhesion regulates neuroepithelial cell polarity, neuronal precursor migration, growth cone migration and synaptic plasticity. In vitro, it has been involved in signaling events regulating processes such as cell mobility, proliferation and differentiation. N-cadherin has also been implicated in adhesion-dependent protection against apoptosis in non-neuronal cells. In this study, we investigated if the engagement of N-cadherin participates to the control of neuronal cells survival/death balance. We observed that plating either primary mouse spinal cord neurons or primary rat hippocampal neurons on N-cadherin recombinant substrate greatly enhances their survival compared to non-specific adhesion on poly-L-lysine. We show that N-cadherin engagement, in the absence of other survival factors (cell-matrix interactions and serum), protects GT1-7 neuronal cells against apoptosis. Using this cell line, we then searched for the signaling pathways involved in the survival effect of N-cadherin engagement. The PI3-kinase/Akt survival pathway and its downstream effector Bad are not involved, as no phosphorylation of Akt or Bad proteins in response to N-cadherin engagement was observed. In contrast, N-cadherin engagement activated the Erk1/2 MAP kinase pathway. Moreover, N-cadherin ligation mediated a 2-fold decrease in the level of the pro-apoptotic protein Bim-EL whereas the level of the anti-apoptotic protein Bcl-2 was unchanged. Inhibition of Mek1/2 kinases with U0126, and the resulting inhibition of Erk1/2 phosphorylation, induced the increase of both the level of Bim-EL and apoptosis of cells seeded on the N-cadherin substrate, suggesting that Erk phosphorylation is necessary for cell survival. Finally, the overexpression of a phosphorylation defective form of Bim-EL prevented N-cadherin-engagement induced cell survival. In conclusion, our results show that N-cadherin engagement mediates neuronal cell survival by enhancing the MAP kinase pathway and down-regulating the pro-apoptotic protein Bim-EL.
Collapse
Affiliation(s)
- Elise C. Lelièvre
- INSERM, UMRS-839, Paris, France
- Université Pierre et Marie Curie-Paris 6, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Charlotte Plestant
- INSERM, UMRS-839, Paris, France
- Université Pierre et Marie Curie-Paris 6, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Cécile Boscher
- INSERM, UMRS-839, Paris, France
- Université Pierre et Marie Curie-Paris 6, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Emeline Wolff
- INSERM, UMRS-839, Paris, France
- Université Pierre et Marie Curie-Paris 6, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - René-Marc Mège
- INSERM, UMRS-839, Paris, France
- Université Pierre et Marie Curie-Paris 6, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Hélène Birbes
- INSERM, UMRS-839, Paris, France
- Université Pierre et Marie Curie-Paris 6, Paris, France
- Institut du Fer à Moulin, Paris, France
| |
Collapse
|
26
|
Parnaud G, Gonelle-Gispert C, Morel P, Giovannoni L, Muller YD, Meier R, Borot S, Berney T, Bosco D. Cadherin engagement protects human β-cells from apoptosis. Endocrinology 2011; 152:4601-9. [PMID: 21990317 DOI: 10.1210/en.2011-1286] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study was to assess the expression of different types of cadherins in human islets and their role in human β-cell apoptosis. Expression of E-, N-, and P-cadherins was studied by immunofluorescence on pancreas sections and islet cells, and by Western blotting on protein extracts of isolated islets and islet cells. The effects of specific cadherins on cell adhesion and apoptosis were studied using chimeric proteins containing functional E-, N-, or P-cadherin ectodomains fused to Fc fragment of Ig (E-cad/Fc, N-cad/Fc, and P-cad/Fc) and immobilized on glass substrate. β-Cells were identified by immunofluorescence for insulin and apoptotic cells by terminal deoxynucleotide transferase-mediated 2'-deoxyuridine, 5'-triphosphate nick-end labeling. By immunofluorescence, we showed that E- and N-, and not P-, cadherins were expressed at the surface of islet cells. By triple staining, we showed that E-cadherin was expressed at similar extent in β- and α-cells, whereas N-cadherin was preferentially expressed in β-cells. These results were confirmed by Western blot analysis using protein extracts from fluorescence-activated cell sorting-sorted β- and non-β-cells. Adhesion tests showed that the affinity of islet cells for E-cad/Fc and N-cad/Fc and not for P-cad/Fc was increased compared with control. By terminal deoxynucleotide transferase-mediated 2'-deoxyuridine, 5'-triphosphate nick-end labeling, we showed that the percentage of apoptotic cells was lower in aggregated β-cells compared with single β-cells and that attachment to E-cad/Fc and N-cad/Fc and not to P-cad/Fc decreased apoptosis of single β-cells compared with control. Our results show that at least E- and N-cadherins are expressed at the surface of human β-cells and that these adhesion molecules are involved in the maintenance of β-cell viability.
Collapse
Affiliation(s)
- Géraldine Parnaud
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang Y, Hao Y, Alway SE. Suppression of GSK-3β activation by M-cadherin protects myoblasts against mitochondria-associated apoptosis during myogenic differentiation. J Cell Sci 2011; 124:3835-47. [PMID: 22114306 DOI: 10.1242/jcs.086686] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Apoptosis occurs concurrently with differentiation of muscle progenitor cells (MPCs) before they fuse to form myotubes. Dysregulated apoptosis in MPCs contributes to the low regeneration capability in aged muscle and decreases the survival rate of donor cells in stem cell-based therapies for muscular dystrophies. This study investigated the role of the M-cadherin/PI3K/Akt/GSK-3β signaling pathway in regulating apoptosis during differentiation of MPCs. Disruption of M-cadherin-dependent cell-cell adhesion by M-cadherin RNA interference in confluent C2C12 myoblasts sensitized the cells to mitochondria-associated intrinsic apoptosis induced by cell confluence or serum starvation. Further investigation of this pathway revealed that M-cadherin-mediated signaling suppressed GSK-3β activation by enhancing the PI3K/AKT-dependent inhibitory phosphorylation of Ser9 in GSK-3β. Overexpression of wild-type GSK-3β in confluent C2C12 myoblasts exacerbated the apoptosis, whereas chemical inhibition of GSK-3β using TDZD-8, or forced expression of constitutively active Akt (myrAkt), or a kinase-deficient GSK-3β mutant [GSK-3β(K85R)], attenuated apoptosis and rescued the impaired myogenic differentiation that is caused by M-cadherin RNA interference. These data suggest that M-cadherin-mediated signaling prevents acceleration of mitochondria-associated intrinsic apoptosis in MPCs by suppressing GSK-3β activation during myogenic differentiation.
Collapse
Affiliation(s)
- Yan Wang
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, and Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, West Virginia 26506, USA
| | | | | |
Collapse
|
28
|
Koh SWM. Corneal endothelial autocrine trophic factor VIP in a mechanism-based strategy to enhance human donor cornea preservation for transplantation. Exp Eye Res 2011; 95:48-53. [PMID: 22036689 DOI: 10.1016/j.exer.2011.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/03/2011] [Accepted: 10/14/2011] [Indexed: 12/13/2022]
Abstract
Vasoactive intestinal peptide (VIP) and ciliary neurotrophic factor (CNTF) are identified as autocrines of human corneal endothelial (CE) cells working in concert to maintain the differentiated state and promote the survival of the corneal endothelium. From VIP gene knockdown study, endogenous VIP is shown to maintain the level of the differentiation marker, the adhesion molecule N-cadherin, CE cell size, shape, and retention, in situ in the human donor corneoscleral explants. Exogenous VIP protects the corneal endothelium against the killing effect of oxidative stress, in part by upholding ATP levels in CE cells dying of oxidative stress-induced injury, allowing them to die of an apoptotic death instead of an acute necrotic one. The switch from the acute necrosis to the programmed cell death (apoptosis) may have allowed the injured CE cell to be rescued by the VIP-upregulated pathways, including those of Bcl-2 and N-cadherin, and resulted in long-term CE cell survival. The endogenous VIP in CE cells is upregulated by CNTF, which is released by CE cells surviving the oxidative stress. The CNTF receptor (CNTFRα) is expressed in CE cells in human donor corneoscleral explant and gradually becomes lost during corneal storage. VIP treatment (10(-8) M, 37 °C, 30 min) prior to storage of freshly dissected human donor corneoscleral explants increases their CE cell CNTFRα level and responsiveness to CNTF in upregulating the gap junctional protein connexin-43 expression. VIP treatment of both fresh and preserved corneoscleral explants reduces CE damage in the corneoscleral explants and in the corneal buttons trephined from them. CE cell loss is a critical risk factor in corneal graft failure at any time in the life of the graft, which can be as late as 5-10 years after an initially successful transplant. A new procedure, Descemet's stripping automated endothelial keratoplasty (DSAEK), which is superior to the traditional full thickness transplantation in many aspects, nevertheless subjects the corneal endothelium to extensive mechanical forces, resulting in even more pronounced CE cell loss than the traditional technique. Whereas it is known that cells transduce mechanical stress through N-cadherin, stimulation of the N-cadherin pathway increases the anti-apoptotic protein Bcl-2 expression. Since N-cadherin and Bcl-2 in the corneal endothelium are both upregulated by VIP, we aim to strengthen the CE sheet by VIP treatments of the corneoscleral explants for full thickness traditional corneal transplantation and pre-cut corneas for DSAEK.
Collapse
Affiliation(s)
- Shay-Whey Margaret Koh
- Department of Ophthalmology & Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Nuessle JM, Giehl K, Herzog R, Stracke S, Menke A. TGFβ1 suppresses vascular smooth muscle cell motility by expression of N-cadherin. Biol Chem 2011; 392:461-74. [PMID: 21375457 DOI: 10.1515/bc.2011.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neointimal formation in atheromatous blood vessels is associated with both growth factor-induced differentiation of smooth muscle cells and endothelial-to-mesenchymal transition. Transforming growth factor beta (TGFβ)-signaling is well known to play a critical role in the regulation of vessel remodeling as well as in atherosclerosis and restenosis. Here, we investigated the role of TGFβ1 and N-cadherin on the differentiation and migration of human vascular smooth muscle cells (VSMC). TGFβ1-treatment of cultured VSMC reduced their migratory activity as determined in cell migration assays. This reduced migration correlated with increased concentration of N-cadherin on mRNA and protein level. The TGFβ1-induced increase of N-cadherin was sensitive against pharmacological inhibition of the ALK5 TGFβ receptor and was accompanied by TGFβ1-induced expression of the transcription factor snail1. Activation of N-cadherin by using a HAV-containing peptide of N-cadherin also decreased the migration of VSMC. N-cadherin-mediated suppression of VSMC migration was associated with an increased activity of RhoA, which is activated by binding of the HAV peptide to N-cadherin. Our results demonstrate that TGFβ1 induces the differentiation of primary VSMC cells by Smad2/3-dependent up-regulation of the transcription factor snail1 and subsequently of N-cadherin, leading to inhibition of VSMC migration by RhoA-dependent modulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- Johannes M Nuessle
- Internal Medicine I, Nephrology, University of Ulm, Albert-Einstein-Allee, Germany
| | | | | | | | | |
Collapse
|
30
|
Bouchentouf M, Forner KA, Cuerquis J, Michaud V, Zheng J, Paradis P, Schiffrin EL, Galipeau J. Induction of cardiac angiogenesis requires killer cell lectin-like receptor 1 and α4β7 integrin expression by NK cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:7014-25. [PMID: 20971926 DOI: 10.4049/jimmunol.1001888] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent findings indicate that NK cells are involved in cardiac repair following myocardial infarction. The aim of this study is to investigate the role NK cells in infarct angiogenesis and cardiac remodeling. In normal C57BL/6 mice, myelomonocytic inflammatory cells invaded infarcted heart within 24 h followed by a lymphoid/NK cell infiltrate by day 6, accompanied by substantial expression of IL-2, TNF-α, and CCL2. In contrast, NOD SCID mice had virtually no lymphoid cells infiltrating the heart and did not upregulate IL-2 levels. In vitro and in vivo, IL-2-activated NK cells promoted TNF-α-stimulated endothelial cell proliferation, enhanced angiogenesis and reduced fibrosis within the infarcted myocardium. Adoptive transfer of IL-2-activated NK cells to NOD SCID mice improved post-myocardial infarction angiogenesis. RNA silencing technology and neutralizing Abs demonstrated that this process involved α4β7 integrin/VCAM-1 and killer cell lectin-like receptor 1/N-cadherin-specific binding. In this study, we show that IL-2-activated NK cells reduce myocardial collagen deposition along with an increase in neovascularization following acute cardiac ischemia through specific interaction with endothelial cells. These data define a potential role of activated NK cells in cardiac angiogenesis and open new perspectives for the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Manaf Bouchentouf
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lyon CA, Koutsouki E, Aguilera CM, Blaschuk OW, George SJ. Inhibition of N-cadherin retards smooth muscle cell migration and intimal thickening via induction of apoptosis. J Vasc Surg 2010; 52:1301-9. [PMID: 20630685 PMCID: PMC2977853 DOI: 10.1016/j.jvs.2010.05.096] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/21/2010] [Accepted: 05/22/2010] [Indexed: 01/06/2023]
Abstract
Objectives Inhibition of vascular smooth muscle cell (VSMC) migration is a potential strategy for reducing intimal thickening during in-stent restenosis and vein graft failure. In this study, we examined the effect of disrupting the function of the VSMC adhesion molecule, N-cadherin, using antagonists, neutralizing antibodies, and a dominant negative, on VSMC migration and intimal thickening. Migration was assessed by the scratch-wound assay of human saphenous vein VSMCs and in a human saphenous vein ex vivo organ culture model of intimal thickening. Results Inhibition of cadherin function using a pan-cadherin antagonist, significantly reduced migration by 53% ± 8% compared with the control peptide (n = 3; P < .05). Furthermore, inhibition of N-cadherin function with an N-cadherin antagonist, neutralizing antibodies, and adenoviral expression of dominant negative N-cadherin (RAd dn-N-cadherin), significantly reduced migration by 31% ± 2%, 23% ± 1% and 32% ± 7% compared with controls, respectively (n = 3; P < .05). Inhibition of cadherin function significantly increased apoptosis by between 1.5- and 3.3-fold at the wound edge. In an ex vivo model of intimal thickening, inhibition of N-cadherin function by infection of human saphenous vein segments with RAd dn-N-cadherin significantly reduced VSMC migration by 55% and increased VSMC apoptosis by 2.7-fold. As a result, intimal thickening was significantly suppressed by 54% ± 14%. Importantly, there was no detrimental effect of dn-N-cadherin on endothelial coverage; in fact, it was significantly increased, as was survival of cultured human saphenous vein endothelial cells. Conclusions Under the condition of this study, cell-cell adhesion mediated by N-cadherin regulates VSMC migration via modulation of viability. Interestingly, inhibition of N-cadherin function significantly retards intimal thickening via inhibition of VSMC migration and promotion of endothelial cell survival. We suggest that disruption of N-cadherin-mediated cell-cell contacts is a potential strategy for reducing VSMC migration and intimal thickening. Intimal thickening occurs in a large number of coronary artery vein grafts, lower extremity vein grafts, and stented arteries and is therefore a significant clinical problem. Intimal thickening is caused by migration of vascular smooth muscle cells (VSMC) from the intima to the media where they proliferate. In this study, we have shown that inhibition of the function of N-cadherin (a cell-cell contact protein) significantly retards VSMC migration and intimal thickening, while promoting endothelial coverage, and may therefore be clinically useful for treating intimal thickening.
Collapse
Affiliation(s)
- Cressida A Lyon
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Bristol, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Williams H, Johnson JL, Jackson CL, White SJ, George SJ. MMP-7 mediates cleavage of N-cadherin and promotes smooth muscle cell apoptosis. Cardiovasc Res 2010; 87:137-46. [PMID: 20139113 PMCID: PMC2883897 DOI: 10.1093/cvr/cvq042] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aims Vascular smooth muscle cell (VSMC) apoptosis can lead to thinning of the fibrous cap and plaque instability. We previously showed that cell–cell contacts mediated by N-cadherin reduce VSMC apoptosis. This study aimed to determine whether matrix-degrading metalloproteinase (MMP)-dependent N-cadherin cleavage causes VSMC apoptosis. Methods and results Induction of human VSMC apoptosis using different approaches, including 200 ng/mL Fas ligand (Fas-L) and culture in suspension, caused N-cadherin cleavage and resulted in the appearance of a C-terminal fragment of N-cadherin (∼35 kDa). Appearance of this fragment during apoptosis was inhibited by 47% with the broad-spectrum MMP inhibitor BB-94. We observed retarded cleavage of N-cadherin after treatment with Fas-L in aortic mouse VSMCs lacking MMP-7. Furthermore, VSMC apoptosis, measured by quantification of cleaved caspase-3, was 43% lower in MMP-7 knockout mouse VSMCs compared with wild-type VSMCs following treatment with Fas-L. Addition of recombinant active MMP-7 increased the amount of N-cadherin fragment by 82% and augmented apoptosis by 53%. The involvement of MMP-7 was corroborated using human cells, where a MMP-7 selective inhibitor reduced the amount of fragment formed by 51%. Importantly, we observed that treatment with Fas-L increased levels of active MMP-7 by 80%. Finally, we observed significantly increased cleavage of N-cadherin, MMP-7 activity, and apoptosis in human atherosclerotic plaques compared with control arteries, and a significant reduction in apoptosis in atherosclerotic plaques from MMP-7 knockout mice. Conclusion This study demonstrates that MMP-7 is involved in the cleavage of N-cadherin and modulates VSMC apoptosis, and may therefore contribute to plaque development and rupture.
Collapse
Affiliation(s)
- Helen Williams
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Research Floor Level 7, Upper Maudlin St., Bristol BS2 8HW, UK
| | | | | | | | | |
Collapse
|
33
|
Cell-cell bond modulates vascular smooth muscle cell responsiveness to Angiotensin II. Biochem Biophys Res Commun 2009; 388:523-8. [PMID: 19665992 DOI: 10.1016/j.bbrc.2009.08.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 08/05/2009] [Indexed: 11/21/2022]
Abstract
Cell attachment is provided by cell-matrix and cell-cell bonds, and acts as a regulator of vascular smooth muscle cell (VSMC) survival, activity and homeostasis, as well as of VSMCs response to pathogenic stimuli. In this work we elicited an exclusive cell-cell contact by culturing A7r5 VSMCs on agarose-coated wells to form floating cell clusters, and we demonstrated that a steady state with a reduced response to the vasoactive peptide Angiotensin II (ATII) was induced. We found that clustered VSMCs showed subcortical stabilization of beta-catenin and Caveolin 1 (Cav1), unlike adherent confluent counterparts. We demonstrated that beta-catenin and Cav1 stabilization at the membrane level hampers the molecular cross-talk induced by ATII-activated AT1 receptor (AT1R), thereby impeding the phosphorylation of Cav1 and IGF1R, the NADPH oxidase activity, and counteracting ATII-dependent hypertrophy. Thus, elective cell-cell bond might modulate the proatherogenic activity of ATII, reducing the adverse vascular remodelling associated with AT1R activation.
Collapse
|
34
|
Hartland SN, Murphy F, Aucott RL, Abergel A, Zhou X, Waung J, Patel N, Bradshaw C, Collins J, Mann D, Benyon RC, Iredale JP. Active matrix metalloproteinase-2 promotes apoptosis of hepatic stellate cells via the cleavage of cellular N-cadherin. Liver Int 2009; 29:966-78. [PMID: 19580633 DOI: 10.1111/j.1478-3231.2009.02070.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Hepatic stellate cells (HSC) are known to synthesise excess matrix that characterises liver fibrosis and cirrhosis. Activated HSC express the matrix-degrading matrix metalloproteinase enzymes (MMPs) and their tissue inhibitors (TIMPs). During spontaneous recovery from experimental liver fibrosis, the expression of TIMP-1 declines and hepatic collagenolytic activity increases. This is accompanied by HSC apoptosis. In this study, we examine a potential mechanism whereby MMP activity might induce HSC apoptosis by cleaving N-cadherin at the cell surface. RESULTS N-cadherin expression was upregulated in human HSC during activation in culture. Addition of function-blocking antibodies or a peptide targeting the extracellular domain of N-cadherin, to cultured HSC, promoted apoptosis. During apoptosis, there was cleavage of N-cadherin into 20-100 kDa fragments. MMP-2 became activated early during HSC apoptosis and directly cleaved N-cadherin in vitro. Addition of activated MMP-2 to HSCs in culture resulted in enhanced apoptosis and loss of N-cadherin. CONCLUSIONS Together, these studies identify a role for both N-cadherin and MMP-2 in mediating HSC apoptosis, where N-cadherin works to provide a cell survival stimulus and MMP-2 promotes HSC apoptosis concomitant with N-cadherin degradation.
Collapse
Affiliation(s)
- Stephen N Hartland
- MRC/University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Devemy E, Blaschuk OW. Identification of a novel dual E- and N-cadherin antagonist. Peptides 2009; 30:1539-47. [PMID: 19465078 DOI: 10.1016/j.peptides.2009.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/12/2009] [Accepted: 05/13/2009] [Indexed: 01/31/2023]
Abstract
E- and N-cadherin are related calcium-dependent cell adhesion molecules that exert an influence over multiple biological and disease processes. Antagonists of these cadherins can therefore be envisaged as therapeutically useful drugs. We have used phage display technology to discover such antagonists. A peptide phage library was screened against a chimeric protein composed of the human E-cadherin ectodomain fused to the Fc fragment of human immunoglobulin G1 (E-cad/Fc). All of the phage clones that were isolated also bound a chimeric protein composed of the human N-cadherin ectodomain fused to the Fc fragment of human immunoglobulin G1 (N-cad/Fc). A peptide displayed by several of the isolated phage clones was synthesized (H-SWELYYPLRANL-NH2) and found to bind both E- and N-cad/Fc chimeric proteins with affinities (K(D)) of 9.4 microM and 323 nM, respectively, as judged by surface plasmon resonance spectroscopy. This peptide was also capable of blocking the aggregation of E- and N-cad/Fc chimeric protein-coated beads, as well as the aggregation of MCF-7 and MDA-MB435 human breast cancer cells (these cells express E- and N-cadherin, respectively). Finally, we showed that the peptide disrupted MCF-7 and MDA-MB435 cell monolayers. The peptide, H-SWELYYPLRANL-NH(2) thus proved to be a biologically active, dual E- and N-cadherin antagonist. Such an antagonist has application in a wide variety of biological contexts.
Collapse
Affiliation(s)
- Emmanuelle Devemy
- Division of Urology, Department of Surgery, McGill University, Urology Research Laboratories, Royal Victoria Hospital, Room H6.15, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1.
| | | |
Collapse
|
36
|
Chan-Park MB, Shen JY, Cao Y, Xiong Y, Liu Y, Rayatpisheh S, Kang GCW, Greisler HP. Biomimetic control of vascular smooth muscle cell morphology and phenotype for functional tissue-engineered small-diameter blood vessels. J Biomed Mater Res A 2009; 88:1104-21. [PMID: 19097157 DOI: 10.1002/jbm.a.32318] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small-diameter blood vessel substitutes are urgently needed for patients requiring replacements of their coronary and below-the-knee vessels and for better arteriovenous dialysis shunts. Circulatory diseases, especially those arising from atherosclerosis, are the predominant cause of mortality and morbidity in the developed world. Current therapies include the use of autologous vessels or synthetic materials as vessel replacements. The limited availability of healthy vessels for use as bypass grafts and the failure of purely synthetic materials in small-diameter sites necessitate the development of a biological substitute. Tissue engineering is such an approach and has achieved promising results, but reconstruction of a functional vascular tunica media, with circumferentially oriented contractile smooth muscle cells (SMCs) and extracellular matrix, appropriate mechanical properties, and vasoactivity has yet to be demonstrated. This review focuses on strategies to effect the switch of SMC phenotype from synthetic to contractile, which is regarded as crucial for the engineering of a functional vascular media. The synthetic SMC phenotype is desired initially for cell proliferation and tissue remodeling, but the contractile phenotype is then necessary for sufficient vasoactivity and inhibition of neointima formation. The factors governing the switch to a more contractile phenotype with in vitro culture are reviewed.
Collapse
Affiliation(s)
- Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lyon CA, Johnson JL, Williams H, Sala-Newby GB, George SJ. Soluble N-cadherin overexpression reduces features of atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol 2009; 29:195-201. [PMID: 19008530 PMCID: PMC2853707 DOI: 10.1161/atvbaha.108.178087] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular smooth muscle cell (VSMC) apoptosis contributes to atherosclerotic plaque instability and myocardial infarction. Consequently, reducing VSMC apoptosis may be beneficial for reducing plaque instability and acute coronary events. We previously demonstrated that N-cadherin, a cell-cell adhesion molecule, reduces VSMC apoptosis in vitro. In this study, we examined whether a soluble form of N-cadherin (SNC) affected VSMC apoptosis and plaque stability. METHODS AND RESULTS SNC significantly inhibited VSMC apoptosis in vitro by approximately 50% via activation of fibroblast growth factor receptor, phosphoinositide-3 kinase, and Akt signaling. SNC also significantly reduced macrophage and foam cell-macrophage apoptosis in vitro by >50%, without affecting monocyte invasion or macrophage proliferation. Elevation of plasma levels of SNC in male apolipoprotein E-deficient mice with existing atherosclerosis via adenoviral delivery significantly reduced VSMC and macrophage apoptosis in brachiocephalic artery plaques by approximately 60%. Additionally, SNC promoted plaques of a more stable phenotype by elevating VSMC:macrophage ratio and presence of VSMC-rich fibrous cap, as well as attenuating macrophage number and incidence of buried fibrous caps (a surrogate plaque rupture marker). CONCLUSIONS In summary, this study demonstrates that SNC suppressed plaque instability by attenuation of apoptosis, suggesting that SNC may have a therapeutic potential for retarding plaque instability.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Apoptosis
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/therapy
- Brachiocephalic Trunk/metabolism
- Brachiocephalic Trunk/pathology
- CHO Cells
- Cadherins/biosynthesis
- Cadherins/genetics
- Cell Adhesion
- Cricetinae
- Cricetulus
- Disease Models, Animal
- Foam Cells/metabolism
- Foam Cells/pathology
- Genetic Therapy/methods
- Genetic Vectors
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/metabolism
- Monocytes/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Peptide Fragments/biosynthesis
- Signal Transduction
- Time Factors
- Transduction, Genetic
- Up-Regulation
Collapse
|
38
|
Devemy E, Blaschuk OW. Identification of a novel N-cadherin antagonist. Peptides 2008; 29:1853-61. [PMID: 18655820 DOI: 10.1016/j.peptides.2008.06.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 01/20/2023]
Abstract
The cell adhesion molecule, N-cadherin plays a pivotal role in many biological and disease processes. Drugs that modulate N-cadherin function should therefore be useful therapeutic agents. We have used phage display technology to identify amino acid sequences capable of binding to N-cadherin. All of these sequences harbor a Trp residue in the second position from the N-terminus. A synthetic linear peptide containing one of these sequences, H-SWTLYTPSGQSK-NH(2) was found to bind a chimeric protein composed of the N-cadherin ectodomain fused to the immunoglobulin G1 Fc fragment with an affinity (K(D)) of 10.7microM, as determined by surface plasmon resonance. It also blocked the aggregation of beads coated with this chimeric protein. Furthermore, this peptide disrupted adhesion and tube formation by N-cadherin-expressing human umbilical vein endothelial cells in vitro. These observations suggest that N-cadherin antagonists have the potential of serving as anti-angiogenic agents. The peptide, H-SWTLYTPSGQSK-NH(2) should prove useful for studies designed to evaluate N-cadherin function in various biological processes.
Collapse
Affiliation(s)
- Emmanuelle Devemy
- Division of Urology, Department of Surgery, McGill University, Urology Research Laboratories, Royal Victoria Hospital, Room H6.15, 687 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada.
| | | |
Collapse
|
39
|
Zoledronate inhibits the proliferation, adhesion and migration of vascular smooth muscle cells. Eur J Pharmacol 2008; 602:124-31. [PMID: 19000670 DOI: 10.1016/j.ejphar.2008.10.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 09/23/2008] [Accepted: 10/15/2008] [Indexed: 11/20/2022]
Abstract
Bisphosphonates, which are extensively used in bone-related disorders, have been reported to inhibit atherosclerosis and neointimal hyperplasia. In the present study, we investigated the effects of a bisphosphonate, zoledronate, on the proliferation, adhesion, migration and microstructure of vascular smooth muscle cells (VSMCs) from Sprague-Dawley rats. It was shown that zoledronate suppressed VSMCs proliferation after 48 h cultivation in a dose depend manner, most obviously at concentrations above 10 microM. Cell cycle analysis indicated that zoledronate inhibited the proliferation of VSMCs via cell cycle arrest at S/G2/M phase. This inhibition was not associated with cell death. In a modified Boyden chamber model, it was shown that zoledronate dose-dependently inhibited VSMCs adhesion to collagen and migration stimulated by platelet-derived growth factor-BB. Western blot analysis suggested that zoledronate significantly inhibited the phosphorylation of focal adhesion kinase. Furthermore, we observed that more and more VSMCs changed from a bipolar appearance to a globular shape under inverted light microscope as zoledronate concentration increased from 0.1 to 100 microM. Images under transmission electron microscope confirmed this morphological change, and many electron density bodies were observed in zoledronate-treated VSMCs. These findings indicated that bisphosphonates' effects of suppressing atherosclerosis and neointimal hyperplasia might be due to inhibition of VSMCs, at least for zoledronate.
Collapse
|
40
|
Jagadeesha DK, Miller FJ, Bhalla RC. Inhibition of apoptotic signaling and neointimal hyperplasia by tempol and nitric oxide synthase following vascular injury. J Vasc Res 2008; 46:109-18. [PMID: 18714161 DOI: 10.1159/000151444] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 01/21/2008] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES We hypothesized that redox-mediated apoptosis of medial smooth muscle cells (SMC) during the acute phase of vascular injury contributes to the pathophysiology of vascular disease. METHODS Apoptosis of medial SMC (1-14 days following balloon injury) was identified in rat carotid arteries by in situ DNA labeling. NADPH-derived superoxide and expression of Bcl-xL, Bax, caspase-3 and caspase-9 were assessed. The antioxidant tempol was administered in drinking water throughout the experimental period, and local adenoviral-mediated gene transfer of eNOS was performed prior to vascular injury. RESULTS Balloon injury increased NADPH-dependent superoxide production, medial SMC apoptosis, Bax-positive medial SMC index, Bax/Bcl-xL ratio, and caspase-3 and caspase-9 expression in the injured arteries. Treatment with tempol or eNOS gene transfer decreased superoxide levels and medial SMC apoptosis, with a concomitant increase in medial SMC density. Inhibition of superoxide was associated with a decreased Bax/Bcl-xL ratio, and caspase-3 and -9 expression. Tempol treatment and eNOS gene therapy significantly reduced neointima formation. CONCLUSION Vascular generation of reactive oxygen species participates in Bax activation and medial SMC apoptosis. These effects likely contribute to the shedding of cell-cell adhesion molecules and promote medial SMC migration and proliferation responsible for neointimal hyperplasia.
Collapse
Affiliation(s)
- Dammanahalli K Jagadeesha
- Department of Anatomy and Cell Biology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
41
|
Koh SWM, Chandrasekara K, Abbondandolo CJ, Coll TJ, Rutzen AR. VIP and VIP gene silencing modulation of differentiation marker N-cadherin and cell shape of corneal endothelium in human corneas ex vivo. Invest Ophthalmol Vis Sci 2008; 49:3491-8. [PMID: 18441300 DOI: 10.1167/iovs.07-1543] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Vasoactive intestinal peptide (VIP) is expressed by corneal endothelial (CE) cells and is present in the aqueous humor, which bathes CE cells in vivo. This study demonstrated the role of CE cell VIP in maintaining the expression level of a CE differentiation marker, N-cadherin, and the hexagonal cell shape. METHODS To determine the most effective VIP concentration, bovine corneoscleral explants were treated with 0 (control) and 10(-12) to 10(-6) M VIP. Paired human corneas (nine donors) from an eye bank were used as control; the other corneas were treated with VIP. To silence endogenous VIP, paired fresh human donor corneas (from seven cadavers) were transduced with VIP shRNA or the control lentiviral particles and then bisected/quartered for quantitative analysis by semiquantitative RT-PCR (for mRNA) and Western blot analysis/immunocytochemistry (for protein), whereas alizarin red S staining revealed CE cell shape. RESULTS VIP concentration dependently increased bovine CE cell N-cadherin mRNA levels, with the maximal effect observed between 10(-10) (1.47 +/- 0.06-fold; P = 0.002) and 10(-8) M VIP (1.48 +/- 0.18-fold; P = 0.012). VIP (10(-8) M) treatment increased N-cadherin protein levels in bovine and human CE cells to 1.98 +/- 0.28-fold (P = 0.005) and 1.17 +/- 0.10 (range, 0.91-1.87)-fold (P = 0.050) of their respective controls. VIP antagonist (SN)VIPhyb diminished the VIP effect. VIP silencing resulted in deterioration of the hexagonal cell shape and decreased levels of VIP protein and mRNA, N-cadherin (but not connexin-43) mRNA and protein, and the antiapoptotic Bcl-2 protein. CONCLUSIONS Through its autocrine VIP, CE cells play an active role in maintaining the differentiated state and suppressing apoptosis in the corneal endothelium in situ.
Collapse
Affiliation(s)
- Shay-Whey M Koh
- Department of Ophthalmology and Visual Sciences, University of Maryland, Baltimore, Maryland 21201, USA.
| | | | | | | | | |
Collapse
|
42
|
Regulation of cell-matrix contacts and beta-catenin signaling in VSMC by integrin-linked kinase: implications for intimal thickening. Basic Res Cardiol 2007; 103:244-56. [PMID: 18080083 DOI: 10.1007/s00395-007-0693-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration is responsible for intimal thickening that occurs in restenosis and atherosclerosis. Integrin-linked kinase (ILK) is a serine/threonine protein kinase implicated in signaling pathways involved in cell proliferation and migration. We studied the involvement of ILK in intimal thickening. ILK expression was significantly increased in two models of intimal thickening: balloon-injured rat carotid arteries and human saphenous vein organ cultures. Over-expression of a dominant negative ILK (DN-ILK) significantly reduced intimal thickening by approximately 50% in human saphenous vein organ cultures, demonstrating an important role in intimal thickening. ILK protein and activity was reduced on laminin and up-regulated on fibronectin, indicating ILK protein expression is modulated by extracellular matrix composition. Inhibition of ILK by siRNA knockdown and DN-ILK significantly decreased VSMC proliferation and migration while wild type ILK significantly increased proliferation and migration on laminin, confirming an essential role of ILK in both processes. Localization of paxillin and vinculin and protein levels of FAK and phospho-FAK indicated that inhibition of ILK reduced focal adhesion formation. Additionally, inhibition of ILK significantly attenuated the presence of the cell-cell complex proteins N-cadherin and beta-catenin, and beta-catenin signaling. We therefore suggest ILK modulates VSMC proliferation and migration at least in part by acting as a molecular scaffold in focal adhesions as well as modulating the stability of cell-cell contact proteins and beta-catenin signaling. In summary, ILK plays an important role in intimal thickening by modulating VSMC proliferation and migration via regulation of cell-matrix and cell-cell contacts and beta-catenin signaling.
Collapse
|
43
|
Wang T, Holt CM, Xu C, Ridley C, P O Jones R, Baron M, Trump D. Notch3 activation modulates cell growth behaviour and cross-talk to Wnt/TCF signalling pathway. Cell Signal 2007; 19:2458-67. [PMID: 17822871 DOI: 10.1016/j.cellsig.2007.07.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 07/23/2007] [Indexed: 01/07/2023]
Abstract
Notch3 is one of the four Notch receptors identified in mammal and expressed mainly in the arterial smooth muscle cells of human adult. Signalling via Notch3 is thought to be important in maintaining the phenotypic stability of the cells, but the nature of the signalling and its regulation to other signalling pathways are largely unknown. To understand further of the cellular function of Notch3 signalling, we generated cell lines stably expressing a constitutively active form of human Notch3 comprising of its soluble intracellular domain (N3IC). The N3IC expressing cells showed accelerated proliferation, decreased migration, increased cell surface N-cadherin, and growth in a colonised fashion that was reversible by N-cadherin blockade. N3IC expressing cells were also protected significantly against staurosporine-induced apoptosis and exhibited lower caspase 3/7 activity, accompanied by up-regulation of pAKT compared to control cells. We also found a complex cross-talk between Notch3 signalling and the Wnt pathway. N3IC stimulated Wnt-independent T-cell factor (TCF, the target transcription factor in the Wnt pathway) activation which was associated with increased Tyr-142 phosphorylation of beta-catenin. In contrast N3IC suppressed TCF activation in response to LiCl, which mimics the Wnt-dependent TCF activation mechanism. We conclude that Notch3 promotes cell growth and survival by activating PI3-kinase/AKT pathway; N-cadherin participates in the change of cell growth caused by Notch3 activation; and Notch3 signalling has dual-effects on the Wnt/TCF pathway suggesting a buffering role that Notch3 signalling may play in balancing these two important signalling pathways in regulating cell function.
Collapse
Affiliation(s)
- Tao Wang
- Medical Genetics Research Group and Centre for Molecular Medicine, Faculty of Medicine and Human Sciences, The University of Manchester, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
44
|
Johnson JL. Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Rev Cardiovasc Ther 2007; 5:265-82. [PMID: 17338671 DOI: 10.1586/14779072.5.2.265] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Atherosclerotic plaque rupture, with subsequent occlusive thrombosis, is the underlying cause of most cases of sudden cardiac death. Matrix metalloproteinases (MMPs) are thought to mediate the progression of stable atherosclerotic lesions to an unstable phenotype that is prone to rupture through the destruction of strength-giving extracellular matrix (ECM) proteins. Smooth muscle cells secrete and deposit ECM proteins and are, therefore, considered protective against atherosclerotic plaque destabilization. However, similar to inflammatory cells (e.g., macrophages), smooth muscle cells release numerous MMPs that are capable of digesting ECM proteins. Thus, the interaction of smooth muscle cells and MMPs in atherosclerotic plaques is complex and not fully understood. Recently, research into the roles of MMPs and their endogenous inhibitors (tissue inhibitors of metalloproteinases), and their effects on smooth muscle behavior during plaque destabilization has been aided by the development of reproducible animal models of plaque instability. A plethora of studies has demonstrated that MMPs directly modulate smooth muscle behavior with both beneficial and deleterious effects on atherosclerotic plaque stability, in addition to their canonical effects on ECM remodeling. Consequently, broad-spectrum MMP inhibition may inhibit plaque-stabilizing mechanisms, such as smooth muscle cell growth, while conversely retarding ECM destruction and subsequent rupture. Hence the development of selective MMP inhibitors, that spare inhibitory effects on smooth muscle cell function, may be useful therapies to prevent plaque rupture and in this regard MMP-12 appears to be a particularly attractive target.
Collapse
Affiliation(s)
- Jason Lee Johnson
- University of Bristol, Bristol Heart Institute, Level 7, Bristol Royal Infirmary, Marlborough Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
45
|
Quasnichka H, Slater SC, Beeching CA, Boehm M, Sala-Newby GB, George SJ. Regulation of Smooth Muscle Cell Proliferation by β-Catenin/T-Cell Factor Signaling Involves Modulation of Cyclin D1 and p21 Expression. Circ Res 2006; 99:1329-37. [PMID: 17122440 DOI: 10.1161/01.res.0000253533.65446.33] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously observed that stimulation of vascular smooth muscle cell (VSMC) proliferation with growth factors is associated with dismantling of cadherin junctions and nuclear translocation of β-catenin. In this study we demonstrate directly that growth factors stimulate β-catenin/T-cell factor (TCF) signaling in primary VSMCs. To determine whether β-catenin/TCF signaling regulates VSMC proliferation via modulation of the β-catenin/TCF responsive cell cycle genes, cyclin D1 and p21, we inhibited β-catenin/TCF signaling by adenoviral-mediated over-expression of N-Cadherin, ICAT (an endogenous inhibitor of β-catenin/TCF signaling), or a dominant negative (dn) mutant of TCF-4. N-cadherin, ICAT or dnTCF-4 over-expression significantly reduced proliferation of isolated human VSMCs by approximately 55%, 80%, and 45% respectively. Similar effects were observed in human saphenous vein medial segments where proliferation was reduced by approximately 55%. Transfection of dnTCF-4 in the ISS10 human VSMC line significantly lowered TCF and cyclin D1 reporter activity but significantly elevated p21 reporter activity, indicating regulation of these genes by β-catenin/TCF signaling. In support of this, over-expression of N-cadherin, ICAT or dnTCF-4 in isolated human VSMCs significantly lowered levels of cyclin D1 mRNA and protein levels. In contrast, over-expression of N-Cadherin, ICAT or dnTCF4 significantly elevated p21 mRNA and protein levels. In summary, we have demonstrated that increasing N-cadherin and inhibiting β-catenin/TCF signaling reduces VSMC proliferation, decreases the expression of cyclin D1 and increases levels of the cell cycle inhibitor, p21. We therefore suggest that the N-cadherin and β-catenin/TCF signaling pathway is a key modulator of VSMC proliferation via regulation of these 2 β-catenin/TCF responsive genes.
Collapse
Affiliation(s)
- Helen Quasnichka
- Bristol Heart Institute, Level 7, Bristol Royal Infirmary, Upper Maudlin St Bristol, UK
| | | | | | | | | | | |
Collapse
|
46
|
George SJ, Beeching CA. Cadherin:catenin complex: A novel regulator of vascular smooth muscle cell behaviour. Atherosclerosis 2006; 188:1-11. [PMID: 16438974 DOI: 10.1016/j.atherosclerosis.2005.12.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/07/2005] [Accepted: 12/12/2005] [Indexed: 12/17/2022]
Abstract
Dysfunctional vascular smooth muscle cell (VSMC) behaviour contributes to the pathogenesis of atherosclerosis and restenosis. Increased rates of VSMC apoptosis are thought to lead to thinning of the fibrous atherosclerotic plaque and thereby instability, while migration of VSMCs to the intima, and inappropriate VSMC proliferation, contribute to intimal thickening that occurs in atherosclerosis and restenosis. Studies, mainly in cancer and neuronal cells, have demonstrated that cell-cell adhesion by the cadherin:catenin complex modulates apoptosis, migration and proliferation. In contrast, until recently the involvement of this complex in the regulation of VSMC behaviour was relatively unstudied. In this review, evidence for the regulation of VSMC apoptosis, migration and proliferation by the cadherin:catenin complex will be discussed.
Collapse
Affiliation(s)
- S J George
- Bristol Heart Institute, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 9HW, UK.
| | | |
Collapse
|
47
|
Sala-Newby GB, George SJ, Bond M, Dhoot GK, Newby AC. Regulation of vascular smooth muscle cell proliferation, migration and death by heparan sulfate 6-O-endosulfatase1. FEBS Lett 2005; 579:6493-8. [PMID: 16289059 DOI: 10.1016/j.febslet.2005.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 10/14/2005] [Accepted: 10/14/2005] [Indexed: 12/16/2022]
Abstract
Migration, proliferation and death of vascular smooth muscle cells (VSMC) are important events in vascular pathology regulated by heparan sulfate proteoglycans and hence potentially by cell surface HS 6-O-endosulfatase1 (sulf1). Sulf1 mRNA expression was increased in cultured VSMC compared to rat aorta. Furthermore, adenovirus mediated overexpression of quail sulf1 decreased adhesion, and increased proliferation and apoptosis of VSMC. Overexpression of a dominant negative variant also decreased adhesion of VSMC and increased proliferation, apoptosis, migration and chemotaxis of VSMC. Our results imply that only normal levels of 6-O-sulfation maintained by sulf1 are optimal for several functions of VSMC.
Collapse
Affiliation(s)
- Graciela B Sala-Newby
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Bristol BS2 8HW, United Kingdom.
| | | | | | | | | |
Collapse
|