1
|
Stuttgen GM, Bobek J, Penoske R, Wadding-Lee C, Lam M, Hader SN, Owens AP, Sahoo D. FFAR4 Deficiency Increases Necrotic Cores in Advanced Lesions of ApoE -/- Mice-Brief Report. Arterioscler Thromb Vasc Biol 2025; 45:675-682. [PMID: 40047073 PMCID: PMC12018153 DOI: 10.1161/atvbaha.124.322371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/20/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND FFAR4 (free fatty acid receptor 4) has emerged as a target for preventing cardiovascular disease through its ability to control macrophage inflammation and foam cell formation. Previous studies have shown that FFAR4 activation can protect against the accumulation of arterial plaque buildup in atherosclerotic animal models. The goal of our study is to test the hypothesis that FFAR4 deficiency will increase atherosclerotic plaque development in apoE-/- mice. METHODS Male and female apoE-/-/Ffar4-/- mice and their apoE-/- controls were fed a Western diet for 8 or 16 weeks to assess early and advanced atherosclerotic lesions, respectively. At the end of each study, atherosclerotic plaque severity was determined by analyzing the aortic sinus lesion area of the heart and the en face lesion area of the aortic arch. RESULTS Following 8 weeks of Western diet feeding, lesions from apoE-/-/Ffar4-/- male and female mice had 33% and 22% decreases, respectively, in the aortic sinus lesion area with no changes in the aortic arch lesion area. After 16 weeks of Western diet feeding, the lesions showed no changes in the area or volume of the aortic sinus between apoE-/-/Ffar4-/- mice and apoE-/- controls. However, male apoE-/-/Ffar4-/- mice had a 27% increase in the plaque lesion area in the aortic arch compared with apoE-/- controls. Despite similar sizes of lesions in the aortic sinus, apoE-/-/Ffar4-/- mice had larger necrotic cores compared with the apoE-/- control mice. In fact, male and female mice had 43% and 37% increases in the necrotic lesion area, respectively. CONCLUSIONS These data suggest a novel role for FFAR4 in reducing necrotic core lesion formation and support a protective role for FFAR4 in stabilizing atherosclerotic plaques.
Collapse
MESH Headings
- Animals
- Female
- Male
- Plaque, Atherosclerotic
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Necrosis
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Disease Models, Animal
- Mice, Knockout, ApoE
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Diet, Western
- Aorta, Thoracic/pathology
- Aorta, Thoracic/metabolism
- Mice, Inbred C57BL
- Apolipoproteins E/genetics
- Apolipoproteins E/deficiency
- Mice
- Sinus of Valsalva/pathology
- Sinus of Valsalva/metabolism
- Mice, Knockout
- Severity of Illness Index
Collapse
Affiliation(s)
- Gage M. Stuttgen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jordan Bobek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Renee Penoske
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Caris Wadding-Lee
- Department of Internal Medicine, Division of Cardiovascular Health & Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Lam
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shelby N. Hader
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - A. Phillip Owens
- Department of Internal Medicine, Division of Cardiovascular Health & Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - Daisy Sahoo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Medicine, Division of Endocrinology & Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Yang X, Zhang X, Tian Y, Yang J, Jia Y, Xie Y, Cheng L, Chen S, Wu L, Qin Y, Zhao Z, Zhao D, Wei Y. Srsf3-Dependent APA Drives Macrophage Maturation and Limits Atherosclerosis. Circ Res 2025; 136:985-1009. [PMID: 40160097 DOI: 10.1161/circresaha.124.326111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Circulating monocytes largely contribute to macrophage buildup in atheromata, which is crucial for clearing subendothelial LDLs (low-density lipoproteins) and dead cells; however, the transitional trajectory from monocytes to macrophages in atherosclerotic plaques and the underlying regulatory mechanism remain unclear. Moreover, the role of alternative polyadenylation, a posttranscriptional regulator of cell fate, in monocyte/macrophage fate decisions during atherogenesis is not entirely understood. METHODS To identify monocyte/macrophage subtypes in atherosclerotic lesions and the effect of alternative polyadenylation on these subtypes and atherogenesis, single-cell RNA sequencing, 3'-end sequencing, flow cytometric, and histopathologic analyses were performed on plaques obtained from Apoe-/- mouse arteries with or without myeloid deletion of Srsf3 (serine/arginine-rich splicing factor 3). Cell fractionation, polysome profiling, L-azidohomoalanine metabolic labeling assay, and metabolomic profiling were conducted to disclose the underlying mechanisms. Reprogramming of widespread alternative polyadenylation patterns was estimated in human plaques via bulk RNA sequencing. RESULTS We identified a subset of lesional cells in a monocyte-to-macrophage transitional state, which exhibited high expression of chemokines in mice. Srsf3 deletion caused a maturation delay of these transitional cells and phagocytic impairment of lesional macrophages, aggravating atherosclerosis. Mechanistically, Srsf3 deficiency shortened 3' untranslated regions of mitochondria-associated Aars2 (alanyl-tRNA synthetase 2), disrupting its translation. The resultant impairment of protein synthesis in mitochondria led to mitochondrial dysfunction with declined NAD+ (nicotinamide adenine dinucleotide, oxidized form) levels, activation of the integrated stress response, and metabolic reprogramming in macrophages. Administering an NAD+ precursor nicotinamide mononucleotide or the integrated stress response inhibitor partially restored Srsf3-deficient macrophage maturation, and nicotinamide mononucleotide treatment mitigated the proatherosclerotic effects of Srsf3 deficiency. Consistently, Srsf3 downregulation, global 3' untranslated region shortening, and accumulation of these transitional macrophages were associated with atherosclerosis progression in humans. CONCLUSIONS Our study reveals that Srsf3-dependent generation of long 3' untranslated region is required for efficient mitochondrial translation, which promotes mature phagocytic macrophage formation, thereby playing a protective role in atherosclerosis.
Collapse
Affiliation(s)
- Xian Yang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yaru Tian
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Jiaxuan Yang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yunhui Jia
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yuhuai Xie
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Lianping Cheng
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Shenglai Chen
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Linfeng Wu
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yihong Qin
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, China (Z.Z.)
- Vascular Center of Shanghai Jiao Tong University, China (Z.Z.)
| | - Dejian Zhao
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT (D.Z.)
| | - Yuanyuan Wei
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences (Y.W.), Fudan University, Shanghai, China
| |
Collapse
|
3
|
Wiyono AV, Ardinal AP, Raharjo PP. Unraveling the significance of innate inflammation in vascular disease. Int Rev Immunol 2025:1-16. [PMID: 40255209 DOI: 10.1080/08830185.2025.2489346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 02/06/2025] [Accepted: 03/31/2025] [Indexed: 04/22/2025]
Abstract
Atheroma formation is initiated by the activation of endothelial and smooth muscle cells, as well as immune cells, including neutrophils, lymphocytes, monocytes, macrophages, and dendritic cells. Monocytes, macrophages, and neutrophils are the innate immune cells that provide a rapid initial line of defence against vascular disease. These cells have a short lifespan and cannot retain memories, making them potential therapeutic targets for the inflammatory process associated with atherosclerosis. In addition, macrophages comprise the majority of vessel wall infiltrates and are, therefore, implicated in all stages of atherosclerosis progression. Neutrophils are the most common type of leukocyte found in circulation, and their high levels of matrix-degrading protease explain their significance in fibrous cap destabilization. However, the activation of immune cells becomes more complex by various microenvironmental stimuli and cytokines, which ultimately transform immune cells into their pro-inflammatory state. Different types of macrophage subsets with distinct functions in inflammation, such as M1 macrophages, cause an increase in pro-inflammatory cytokines and produce reactive oxygen species and nitric oxide, further worsening the disease. This review aims to shed light on immune-mediated inflammation in cardiovascular disease by focusing on the role of macrophage subsets in vascular inflammation and plaque stability, as well as the interaction between neutrophils and monocyte-macrophages.
Collapse
Affiliation(s)
- Alice Valeria Wiyono
- Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Padjadjaran, Rumah Sakit Umum Pusat Hasan Sadikin, Bandung, Indonesia
| | | | - Pradana Pratomo Raharjo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Padjadjaran, Rumah Sakit Umum Pusat Hasan Sadikin, Bandung, Indonesia
| |
Collapse
|
4
|
Kanuri B, Maremanda KP, Chattopadhyay D, Essop MF, Lee MKS, Murphy AJ, Nagareddy PR. Redefining Macrophage Heterogeneity in Atherosclerosis: A Focus on Possible Therapeutic Implications. Compr Physiol 2025; 15:e70008. [PMID: 40108774 DOI: 10.1002/cph4.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/20/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Atherosclerosis is a lipid disorder where modified lipids (especially oxidized LDL) induce macrophage foam cell formation in the aorta. Its pathogenesis involves a continuum of persistent inflammation accompanied by dysregulated anti-inflammatory responses. Changes in the immune cell status due to differences in the lesional microenvironment are crucial in terms of plaque development, its progression, and plaque rupture. Ly6Chi monocytes generated through both medullary and extramedullary cascades act as one of the major sources of plaque macrophages and thereby foam cells. Both monocytes and monocyte-derived macrophages also participate in pathological events in atherosclerosis-associated multiple organ systems through inter-organ communications. For years, macrophage phenotypes M1 and M2 have been shown to perpetuate inflammatory and resolution responses; nevertheless, such a dualistic classification is too simplistic and contains severe drawbacks. As the lesion microenvironment is enriched with multiple mediators that possess the ability to activate macrophages to diverse phenotypes, it is obvious that such cells should demonstrate substantial heterogeneity. Considerable research in this regard has indicated the presence of additional macrophage phenotypes that are exclusive to atherosclerotic plaques, namely Mox, M4, Mhem, and M(Hb) type. Furthermore, although the concept of macrophage clusters has come to the fore in recent years with the evolution of high-dimensional techniques, classifications based on such 'OMICS' approaches require extensive functional validation as well as metabolic phenotyping. Bearing this in mind, the current review provides an overview of the status of different macrophage populations and their role during atherosclerosis and also outlines possible therapeutic implications.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - Krishna P Maremanda
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - Dipanjan Chattopadhyay
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| | - M Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Man Kit Sam Lee
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, USA
| |
Collapse
|
5
|
Rodríguez-Fernández MA, Tristán-Flores FE, Casique-Aguirre D, Negrete-Rodríguez MDLLX, Cervantes-Montelongo JA, Conde-Barajas E, Acosta-García G, Silva-Martínez GA. Virtual Screening and Molecular Dynamics of Cytokine-Drug Complexes for Atherosclerosis Therapy. Int J Mol Sci 2025; 26:2931. [PMID: 40243563 PMCID: PMC11988346 DOI: 10.3390/ijms26072931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular disease remains the leading global cause of mortality, largely driven by atherosclerosis, a chronic inflammatory condition characterized by lipid accumulation and immune-cell infiltration in arterial walls. Macrophages play a central role by forming foam cells and secreting pro-atherogenic cytokines, such as TNF-α, IFN-γ, and IL-1β, which destabilize atherosclerotic plaques, expanding the lipid core and increasing the risk of thrombosis and ischemia. Despite the significant health burden of subclinical atherosclerosis, few targeted therapies exist. Current treatments, including monoclonal antibodies, are limited by high costs and immunosuppressive side effects, underscoring the urgent need for alternative therapeutic strategies. In this study, we employed in silico drug repositioning to identify multitarget inhibitors against TNF-α, IFN-γ, and IL-1β, leveraging a virtual screening of 2750 FDA-approved drugs followed by molecular dynamics simulations to assess the stability of selected cytokine-ligand complexes. This computational approach provides structural insights into potential inhibitors. Additionally, we highlight nutraceutical options, such as fatty acids (oleic, linoleic and eicosapentaenoic acid), which exhibited strong and stable interactions with key cytokine targets. Our study suggests that these bioactive compounds could serve as effective new therapeutic approaches for atherosclerosis.
Collapse
Affiliation(s)
- María Angélica Rodríguez-Fernández
- Posgrado de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico; (M.A.R.-F.); (F.E.T.-F.); (M.d.l.L.X.N.-R.); (E.C.-B.); (G.A.-G.)
| | - Fabiola Estefanía Tristán-Flores
- Posgrado de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico; (M.A.R.-F.); (F.E.T.-F.); (M.d.l.L.X.N.-R.); (E.C.-B.); (G.A.-G.)
- Departamento de Ciencias Básicas, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico
| | - Diana Casique-Aguirre
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Delegación Puebla, Puebla 06600, Mexico;
- Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI), Ciudad de México 03940, Mexico
| | - María de la Luz Xochilt Negrete-Rodríguez
- Posgrado de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico; (M.A.R.-F.); (F.E.T.-F.); (M.d.l.L.X.N.-R.); (E.C.-B.); (G.A.-G.)
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico;
| | - Juan Antonio Cervantes-Montelongo
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico;
- Escuela de Medicina, Universidad de Celaya, Celaya 38080, Guanajuato, Mexico
| | - Eloy Conde-Barajas
- Posgrado de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico; (M.A.R.-F.); (F.E.T.-F.); (M.d.l.L.X.N.-R.); (E.C.-B.); (G.A.-G.)
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico;
| | - Gerardo Acosta-García
- Posgrado de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico; (M.A.R.-F.); (F.E.T.-F.); (M.d.l.L.X.N.-R.); (E.C.-B.); (G.A.-G.)
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico;
| | - Guillermo Antonio Silva-Martínez
- Posgrado de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico; (M.A.R.-F.); (F.E.T.-F.); (M.d.l.L.X.N.-R.); (E.C.-B.); (G.A.-G.)
- Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI), Ciudad de México 03940, Mexico
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico;
| |
Collapse
|
6
|
Zhao F, Shao M, Li M, Li T, Zheng Y, Sun W, Ni C, Li L. Sphingolipid metabolites involved in the pathogenesis of atherosclerosis: perspectives on sphingolipids in atherosclerosis. Cell Mol Biol Lett 2025; 30:18. [PMID: 39920588 PMCID: PMC11804087 DOI: 10.1186/s11658-024-00679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/17/2024] [Indexed: 02/09/2025] Open
Abstract
Atherosclerosis, with its complex pathogenesis, is a leading underlying cause of many cardiovascular diseases, which are increasingly prevalent in the population. Sphingolipids play an important role in the development of atherosclerosis. Key metabolites and enzymes in sphingolipid metabolism influence the pathogenesis of atherosclerosis in a variety of ways, including inflammatory responses and oxidative stress. Thus, an investigation of sphingolipid metabolism-related metabolites and key enzymes may provide novel insights and treatment targets for atherosclerosis. This review discusses various mechanisms and research progress on the relationship between various sphingolipid metabolites, related enzymes, and atherosclerosis. Finally, we look into the future research direction of phytosphingolipids.
Collapse
Affiliation(s)
- Fufangyu Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mingyan Shao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mingrui Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China.
| | - Cheng Ni
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
7
|
Mao J, Wu C, Zheng L, Li Y, Yang R, Yuan P, Jiang J, Li C, Zhou X. Advances in stimulus-responsive nanomedicine for treatment and diagnosis of atherosclerosis. Colloids Surf B Biointerfaces 2025; 245:114298. [PMID: 39378703 DOI: 10.1016/j.colsurfb.2024.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Atherosclerosis (AS), an inflammatory cardiovascular disease driven by lipid deposition, presents global prevalence with high mortality. Effective anti-inflammatory or lipid removal is a promising strategy. However, current conventional drug delivery methods may face challenges in targeting disease sites and are deficient in the treatment of AS because of the nonspecific tissue distribution and uncontrollable release of the drug. In contrast, stimulus-responsive nanodrug delivery systems (NDDSs) can respond to stimulation and achieve controlled drug release rates at specific disease sites owing to the abnormal pathological microenvironment in plaques with low pH, excessive reactive oxygen species (ROS) and enzymes, and high shear stress. As a consequence, the efficacy of treatment is improved, and adverse reactions are reduced. On the other hand, NDDSs can combine exogenous stimulus responses (photothermal, ultrasound, etc.) to precisely control their function in time and space. This review for the first time focuses on the application of stimulus-responsive NDDSs in the treatment and diagnosis of AS in the last five years. In addition, its pivotal challenges and prospects are emphasized, aiming to facilitate its application for AS.
Collapse
Affiliation(s)
- Jingying Mao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China
| | - Chengxi Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lixin Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yaoyao Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ronghao Yang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ping Yuan
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Xiangyu Zhou
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
8
|
Abstract
Cardiovascular disease is the leading cause of death worldwide, and it commonly results from atherosclerotic plaque progression. One of the increasingly recognized drivers of atherosclerosis is dysfunctional efferocytosis, a homeostatic mechanism responsible for the clearance of dead cells and the resolution of inflammation. In atherosclerosis, the capacity of phagocytes to participate in efferocytosis is hampered, leading to the accumulation of apoptotic and necrotic tissue within the plaque, which results in enlargement of the necrotic core, increased luminal stenosis and plaque inflammation, and predisposition to plaque rupture or erosion. In this Review, we describe the different forms of programmed cell death that can occur in the atherosclerotic plaque and highlight the efferocytic machinery that is normally implicated in cardiovascular physiology. We then discuss the mechanisms by which efferocytosis fails in atherosclerosis and other cardiovascular and cardiometabolic diseases, including myocardial infarction and diabetes mellitus, and discuss therapeutic approaches that might reverse this pathological process.
Collapse
Affiliation(s)
- Shaunak S Adkar
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Nicholas J Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
9
|
Lee SH, Kim TK, Yoo JH, Park HJ, Kim JH, Lee JH. Analysis of the Association between Telomere Length and Neurological Disability in Stroke Types. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1657. [PMID: 39459444 PMCID: PMC11509859 DOI: 10.3390/medicina60101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: The association between neurological disability, prognosis, and telomere length (TL) in patients with stroke has been investigated in various ways. However, analysis of the type of stroke and ischemic stroke subgroups is limited. In this study, we aimed to determine the association between TL and neurological disability according to stroke type. Materials and Methods: This prospective study included patients with stroke who visited a single-center emergency department (ED) between January 2022 and December 2023. The association between TL and neurological disabilities, using the Modified Rankin Scale (mRS) and National Institutes of Health Stroke Scale (NIHSS), was evaluated according to the patient's stroke type and subgroup of ischemic stroke. Multivariate analysis was performed to determine the association between neurological disabilities in patients with ischemic stroke and the subgroups. Results: A total of 271 patients with stroke were enrolled. The NIHSS score was found to be higher at the time of ED visit (adjusted odds ratio [OR], 5.23; 95% confidence interval [CI], 1.59-17.2, p < 0.01) and 1 day later (adjusted OR, 7.78; 95% CI, 1.97-30.70, p < 0.01) in the ischemic stroke group with a short TL. In the other determined etiology (OD) or undetermined etiology (UD) group, the NIHSS was higher in the short TL group at the ED visit (adjusted OR, 7.89; 95% CI, 1.32-47.25, p = 0.02) and 1 day after (adjusted OR, 7.02; 95% CI, 1.14-43.47, p = 0.04). Conclusions: TL is associated with neurological disability in early ischemic stroke and is prominent in the UD and OD subgroups.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Department of Emergency Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea; (T.-K.K.); (J.-H.Y.)
| | - Tae-Kwon Kim
- Department of Emergency Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea; (T.-K.K.); (J.-H.Y.)
| | - Jong-Hoon Yoo
- Department of Emergency Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea; (T.-K.K.); (J.-H.Y.)
| | - Hyung-Jong Park
- Department of Neurology, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea;
| | - Jae-Hyun Kim
- Department of Neurosurgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea;
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, Daegu 42601, Republic of Korea;
| |
Collapse
|
10
|
Williams H, Simmonds S, Bond A, Somos A, Li Z, Forbes T, Bianco R, Dugdale C, Brown Z, Rice H, Herman A, Johnson J, George S. CCN4 (WISP-1) reduces apoptosis and atherosclerotic plaque burden in an ApoE mouse model. Atherosclerosis 2024; 397:118570. [PMID: 39276419 PMCID: PMC7617386 DOI: 10.1016/j.atherosclerosis.2024.118570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND AND AIMS CCN4/WISP-1 regulates various cell behaviours that contribute to atherosclerosis progression, including cell adhesion, migration, proliferation and survival. We therefore hypothesised that CCN4 regulates the development and progression of atherosclerotic plaques. METHODS We used a high fat fed ApoE-/- mouse model to study atherosclerotic plaque progression in the brachiocephalic artery and aortic root. In protocol 1, male ApoE-/- mice with established plaques were given a CCN4 helper-dependent adenovirus to see the effect of treatment with CCN4, while in protocol 2 male CCN4-/-ApoE-/- were compared to CCN4+/+ApoE-/- mice to assess the effect of CCN4 deletion on plaque progression. RESULTS CCN4 overexpression resulted in reduced occlusion of the brachiocephalic artery with less apoptosis, fewer macrophages, and attenuated lipid core size. The amount of plaque found on the aortic root was also reduced. CCN4 deficiency resulted in increased apoptosis and occlusion of the brachiocephalic artery as well as increased plaque in the aortic root. Additionally, in vitro cells from CCN4-/-ApoE-/- mice had higher apoptotic levels. CCN4 deficiency did not significantly affect blood cholesterol levels or circulating myeloid cell populations. CONCLUSIONS We conclude that in an atherosclerosis model the most important action of CCN4 is the effect on cell apoptosis. CCN4 provides pro-survival signals and leads to reduced cell death, lower macrophage number, smaller lipid core size and reduced atherosclerotic plaque burden. As such, the pro-survival effect of CCN4 is worthy of further investigation, in a bid to find a therapeutic for atherosclerosis.
Collapse
Affiliation(s)
- Helen Williams
- Bristol Heart Institute, Bristol Medical School, University of Bristol, UK.
| | | | - Andrew Bond
- Bristol Heart Institute, Bristol Medical School, University of Bristol, UK
| | - Alexandros Somos
- Bristol Heart Institute, Bristol Medical School, University of Bristol, UK
| | - Ze Li
- Bristol Heart Institute, Bristol Medical School, University of Bristol, UK
| | - Tessa Forbes
- Bristol Heart Institute, Bristol Medical School, University of Bristol, UK
| | - Rosaria Bianco
- Bristol Heart Institute, Bristol Medical School, University of Bristol, UK
| | - Celyn Dugdale
- Flow Cytometry Facility, School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Zoe Brown
- Flow Cytometry Facility, School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Helen Rice
- Flow Cytometry Facility, School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Andrew Herman
- Flow Cytometry Facility, School of Cellular & Molecular Medicine, University of Bristol, UK
| | - Jason Johnson
- Bristol Heart Institute, Bristol Medical School, University of Bristol, UK
| | - Sarah George
- Bristol Heart Institute, Bristol Medical School, University of Bristol, UK
| |
Collapse
|
11
|
Patterson MT, Xu Y, Hillman H, Osinski V, Schrank PR, Kennedy AE, Barrow F, Zhu A, Tollison S, Shekhar S, Stromnes IM, Tassi I, Wu D, Revelo XS, Binstadt BA, Williams JW. Trem2 Agonist Reprograms Foamy Macrophages to Promote Atherosclerotic Plaque Stability-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44:1646-1657. [PMID: 38695172 PMCID: PMC11208052 DOI: 10.1161/atvbaha.124.320797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/18/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Trem2 (triggering receptor on myeloid cells 2), a surface lipid receptor, is expressed on foamy macrophages within atherosclerotic lesions and regulates cell survival, proliferation, and anti-inflammatory responses. Studies examining the role of Trem2 in atherosclerosis have shown that deletion of Trem2 leads to impaired foamy macrophage lipid uptake, proliferation, survival, and cholesterol efflux. Thus, we tested the hypothesis that administration of a Trem2 agonist antibody (AL002a) to atherogenic mice would enhance macrophage survival and decrease necrotic core formation to improve plaque stability. METHODS To model a therapeutic intervention approach, atherosclerosis-prone mice (Ldlr [low-density lipoprotein receptor]-/-) were fed a high-fat diet for 8 weeks, then transitioned to treatment with AL002a or isotype control for an additional 8 weeks while continuing on a high-fat diet. RESULTS AL002a-treated mice had increased lesion size in both the aortic root and whole mount aorta, which correlated with an expansion of plaque macrophage area. This expansion was due to increased macrophage survival and proliferation in plaques. Importantly, plaques from AL002a-treated mice showed improved features of plaque stability, including smaller necrotic cores, increased fibrous caps, and greater collagen deposition. Single-cell RNA sequencing of whole aorta suspensions from isotype- and AL002a-treated atherosclerotic mice revealed that Trem2 agonism dramatically altered foamy macrophage transcriptome. This included upregulation of oxidative phosphorylation and increased expression of collagen genes. In vitro studies validated that Trem2 agonism with AL002a promoted foamy macrophage oxidized low-density lipoprotein uptake, survival, and cholesterol efflux. CONCLUSIONS Trem2 agonism expands atherosclerotic plaque macrophages by promoting cell survival and proliferation but improves features of plaque stability by rewiring foamy macrophage function to enhance cholesterol efflux and collagen deposition.
Collapse
MESH Headings
- Animals
- Plaque, Atherosclerotic
- Receptors, Immunologic/agonists
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Membrane Glycoproteins/agonists
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Disease Models, Animal
- Mice
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/drug therapy
- Atherosclerosis/prevention & control
- Foam Cells/metabolism
- Foam Cells/pathology
- Foam Cells/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Male
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Receptors, LDL/deficiency
- Cell Proliferation/drug effects
- Diet, High-Fat
- Cell Survival/drug effects
- Necrosis
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/prevention & control
Collapse
Affiliation(s)
- Michael T. Patterson
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Yingzheng Xu
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Hannah Hillman
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Victoria Osinski
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Pediatrics (V.O., B.A.B.), University of Minnesota, Minneapolis
| | - Patricia R. Schrank
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Ainsley E. Kennedy
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Fanta Barrow
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Alisha Zhu
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Samuel Tollison
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Sia Shekhar
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Ingunn M. Stromnes
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Microbiology and Immunology (I.M.S.), University of Minnesota, Minneapolis
| | - Ilaria Tassi
- Alector, Inc, South San Francisco, CA (I.T., D.W.)
- Now with Deep Apple Therapeutics, South San Francisco, CA (I.T.)
| | - Dick Wu
- Alector, Inc, South San Francisco, CA (I.T., D.W.)
| | - Xavier S. Revelo
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| | - Bryce A. Binstadt
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Pediatrics (V.O., B.A.B.), University of Minnesota, Minneapolis
| | - Jesse W. Williams
- Center for Immunology (M.T.P., Y.X., H.H., V.O., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., I.M.S., X.S.R., B.A.B., J.W.W.), University of Minnesota, Minneapolis
- Department of Integrative Biology and Physiology (M.T.P., Y.X., H.H., P.R.S., A.E.K., F.B., A.Z., S.T., S.S., X.S.R., J.W.W.), University of Minnesota, Minneapolis
| |
Collapse
|
12
|
Huang X, Jiang F, Ma Y, Zhu K, Wang Z, Hua Z, Yu J, Zhang L. A bibliometric analysis of endoplasmic reticulum stress and atherosclerosis. Front Physiol 2024; 15:1392454. [PMID: 38938744 PMCID: PMC11210825 DOI: 10.3389/fphys.2024.1392454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The mechanisms underlying the occurrence and development of atherosclerosis (AS) are diverse, among which endoplasmic reticulum stress (ERS) is an important mechanism that should not be overlooked. However, up to now, there has been no bibliometric study on the relationship between ERS and AS. To understand the research progress in ERS and AS, this paper conducted a statistical analysis of publications in this field using bibliometrics. A total of 1,035 records were retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, and the R package "bibliometric" were used to analyze the spatiotemporal distribution, countries, authors, institutions, journals, references, and keywords of the literature, and to present the basic information of this field through visualized maps, as well as determine the collaboration relationships among researchers in this field. This field has gradually developed and stabilized over the past 20 years. The current research hotspots in this field mainly include the relationship between ERS and AS-related cells, the mechanisms by which ERS promotes AS, related diseases, and associated cytokines, etc. Vascular calcification, endothelial dysfunction, NLRP3 inflammasome, and heart failure represent the frontier research in this field and are becoming new research hotspots. It is hoped that this study will provide new insights for research and clinical work in the field of ERS and AS.
Collapse
Affiliation(s)
- Xinyu Huang
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Feng Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Yongbo Ma
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Kunpeng Zhu
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Zhenyuan Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Zhen Hua
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Jie Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| |
Collapse
|
13
|
Chen Y, Wei Y, Tang W. The role of hydrogen in the prevention and treatment of coronary atherosclerotic heart disease. Eur J Pharmacol 2024; 972:176586. [PMID: 38615891 DOI: 10.1016/j.ejphar.2024.176586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Coronary atherosclerotic heart disease (CHD) is a primary cardiovascular disease caused by atherosclerosis (AS), which is characterized by chronic inflammation and lipid oxidative deposition. Molecular hydrogen (H2) is an effective anti-inflammatory agent and has potential to ameliorate glycolipid metabolism disorders, which is believed to exert beneficial effects on the prevention and treatment of CHD. It is suggested that H2 reduces inflammation in CHD by regulating multiple pathways, including NF-κB inflammatory pathway, pyroptosis, mitophagy, endoplasmic reticulum (ER) stress, and Nrf2 antioxidant pathway. Additionally, H2 may improve glycolipid metabolism by mediation of PI3K and AMPK signalling pathways, contributing to inhibition of the occurrence and development of CHD. This review elaborates pathogenesis of CHD and evaluates the role of H2 in CHD. Moreover, possible molecular mechanisms have been discussed and speculated, aiming to provide more strategies and directions for subsequent studies of H2 in CHD.
Collapse
Affiliation(s)
- Yunxi Chen
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, PR China
| | - Youzhen Wei
- Hydrogen Medicine Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, PR China; Research Center for Translational Medicine, Jinan People's Hospital, Shandong First Medical University, Jinan, Shandong, 271100, PR China.
| | - Wenjie Tang
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, PR China; Research Institute of Regenerative Medicine, East Hospital, Tongji University, 1800 Yuntai Road, Shanghai, 200123, PR China.
| |
Collapse
|
14
|
De Meyer GRY, Zurek M, Puylaert P, Martinet W. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Rev Cardiol 2024; 21:312-325. [PMID: 38163815 DOI: 10.1038/s41569-023-00957-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is a progressive inflammatory disorder of the arterial vessel wall characterized by substantial infiltration of macrophages, which exert both favourable and detrimental functions. Early in atherogenesis, macrophages can clear cytotoxic lipoproteins and dead cells, preventing cytotoxicity. Efferocytosis - the efficient clearance of dead cells by macrophages - is crucial for preventing secondary necrosis and stimulating the release of anti-inflammatory cytokines. In addition, macrophages can promote tissue repair and proliferation of vascular smooth muscle cells, thereby increasing plaque stability. However, advanced atherosclerotic plaques contain large numbers of pro-inflammatory macrophages that secrete matrix-degrading enzymes, induce death in surrounding cells and contribute to plaque destabilization and rupture. Importantly, macrophages in the plaque can undergo apoptosis and several forms of regulated necrosis, including necroptosis, pyroptosis and ferroptosis. Regulated necrosis has an important role in the formation and expansion of the necrotic core during plaque progression, and several triggers for necrosis are present within atherosclerotic plaques. This Review focuses on the various forms of programmed macrophage death in atherosclerosis and the pharmacological interventions that target them as a potential means of stabilizing vulnerable plaques and improving the efficacy of currently available anti-atherosclerotic therapies.
Collapse
Affiliation(s)
- Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Michelle Zurek
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
15
|
McMaster MW, Shah A, Kangarlu J, Cheikhali R, Frishman WH, Aronow WS. The Impact of the Apolipoprotein E Genotype on Cardiovascular Disease and Cognitive Disorders. Cardiol Rev 2024:00045415-990000000-00250. [PMID: 38661359 DOI: 10.1097/crd.0000000000000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Apolipoprotein E (ApoE) plays a critical role in cholesterol transport and protection against the development of atherosclerotic cardiovascular disease (ASCVD). Humans have 3 prevalent isoforms of ApoE: apolipoprotein E2 (ApoE2), apolipoprotein E3 (ApoE3), and apolipoprotein E4 (ApoE4). The E4 allele has been associated with higher ASCVD risk. While E4 patients do have higher cholesterol levels, they do not have enough to account for the substantially elevated ASCVD risk relative to E2 and E3 patients. ASCVD risk calculators would underestimate the true effect of E4 if the difference was caused entirely by a difference in cholesterol level. This article reviews the function of ApoE in atherosclerosis, and how each isoform functions differently. We review what is known about the molecular mechanisms through which ApoE prevents endothelial dysfunction and damage, how ApoE stimulates macrophage efflux of cholesterol from atherogenic lesions, and the ways in which ApoE decreases inflammation throughout atherosclerosis. The impact of ApoE on Alzheimer's disease and a discussion of why it is possibly unrelated to ASCVD prevention are included. Clinical applications to hyperlipidemia management and ASCVD prevention in specific patient populations are discussed.
Collapse
Affiliation(s)
- Matthew W McMaster
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
| | - Avisha Shah
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
- Department of Cardiology, New York Medical College, Valhalla, NY
| | - John Kangarlu
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
| | - Ryan Cheikhali
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
| | - William H Frishman
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
| | - Wilbert S Aronow
- From the Department of Medicine, Westchester Medical Center, Valhalla, NY
- Department of Cardiology, New York Medical College, Valhalla, NY
| |
Collapse
|
16
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
17
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
18
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
19
|
Ravi S, Martin LC, Krishnan M, Kumaresan M, Manikandan B, Ramar M. Interactions between macrophage membrane and lipid mediators during cardiovascular diseases with the implications of scavenger receptors. Chem Phys Lipids 2024; 258:105362. [PMID: 38006924 DOI: 10.1016/j.chemphyslip.2023.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The onset and progression of cardiovascular diseases with the major underlying cause being atherosclerosis, occur during chronic inflammatory persistence in the vascular system, especially within the arterial wall. Such prolonged maladaptive inflammation is driven by macrophages and their key mediators are generally attributed to a disparity in lipid metabolism. Macrophages are the primary cells of innate immunity, endowed with expansive membrane domains involved in immune responses with their signalling systems. During atherosclerosis, the membrane domains and receptors control various active organisations of macrophages. Their scavenger/endocytic receptors regulate the trafficking of intracellular and extracellular cargo. Corresponding influence on lipid metabolism is mediated by their dynamic interaction with scavenger membrane receptors and their integrated mechanisms such as pinocytosis, phagocytosis, cholesterol export/import, etc. This interaction not only results in the functional differentiation of macrophages but also modifies their structural configurations. Here, we reviewed the association of macrophage membrane biomechanics and their scavenger receptor families with lipid metabolites during the event of atherogenesis. In addition, the membrane structure of macrophages and the signalling pathways involved in endocytosis integrated with lipid metabolism are detailed. This article establishes future insights into the scavenger receptors as potential targets for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Kumaresan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai 600 015, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
20
|
Jia Y, Cheng L, Yang J, Mao J, Xie Y, Yang X, Zhang X, Wang D, Zhao Z, Schober A, Wei Y. miR-223-3p Prevents Necroptotic Macrophage Death by Targeting Ripk3 in a Negative Feedback Loop and Consequently Ameliorates Advanced Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:218-237. [PMID: 37970714 DOI: 10.1161/atvbaha.123.319776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND The formation of large necrotic cores results in vulnerable atherosclerotic plaques, which can lead to severe cardiovascular diseases. However, the specific regulatory mechanisms underlying the development of necrotic cores remain unclear. METHODS To evaluate how the modes of lesional cell death are reprogrammed during the development of atherosclerosis, the expression levels of key proteins that are involved in the necroptotic, apoptotic, and pyroptotic pathways were compared between different stages of plaques in humans and mice. Luciferase assays and loss-of-function studies were performed to identify the microRNA-mediated regulatory mechanism that protects foamy macrophages from necroptotic cell death. The role of this mechanism in atherosclerosis was determined by using a knockout mouse model with perivascular drug administration and tail vein injection of microRNA inhibitors in Apoe-/- mice. RESULTS Here, we demonstrate that the necroptotic, rather than the apoptotic or pyroptotic, pathway is more activated in advanced unstable plaques compared with stable plaques in both humans and mice, which closely correlates with necrotic core formation. The upregulated expression of Ripk3 (receptor-interacting protein kinase 3) promotes the C/EBPβ (CCAAT/enhancer binding protein beta)-dependent transcription of the microRNA miR-223-3p, which conversely inhibits Ripk3 expression and forms a negative feedback loop to regulate the necroptosis of foamy macrophages. The knockout of the Mir223 gene in bone marrow cells accelerates atherosclerosis in Apoe-/- mice, but this effect can be rescued by Ripk3 deficiency or treatment with the necroptosis inhibitors necrostatin-1 and GSK-872. Like the Mir223 knockout, treating Apoe-/- mice with miR-223-3p inhibitors increases atherosclerosis. CONCLUSIONS Our study suggests that miR-223-3p expression in macrophages protects against atherosclerotic plaque rupture by limiting the formation of necrotic cores, thus providing a potential microRNA therapeutic candidate for atherosclerosis.
Collapse
Affiliation(s)
- Yunhui Jia
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Lianping Cheng
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Jiaxuan Yang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Jiaqi Mao
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Yuhuai Xie
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Xian Yang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Xin Zhang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Dingxin Wang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
| | - Zhen Zhao
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, China (Z.Z.)
- Vascular Center of Shanghai Jiaotong University, China (Z.Z.)
| | - Andreas Schober
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
- Experimental Vascular Medicine (EVM), Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Germany (A.S.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany (A.S.)
| | - Yuanyuan Wei
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (Y.J., L.C., J.Y., J.M., Y.X., X.Y., X.Z., D.W., Y.W.), Fudan University, China
- Shanghai Key Laboratory of Bioactive Small Molecules and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences (Y.W.), Fudan University, China
| |
Collapse
|
21
|
Starodubtseva I, Meshkova M, Zuikova A. Pathogenetic mechanisms of repeated adverse cardiovascular events development in patients with coronary heart disease: the role of chronic inflammation. Folia Med (Plovdiv) 2023; 65:863-870. [PMID: 38351773 DOI: 10.3897/folmed.65.e109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 02/16/2024] Open
Abstract
Stent restenosis is the most unfavorable complication of interventional treatment for coronary heart disease. We already know from various literature sources that the causes for stent restenosis in patients are both mechanical damage (partial opening, stent breakage, extended stented area, calcification, incomplete stent coverage of atherosclerotic plaque, weak radial stiffness of the stent metal frame, lack of stent drug coating), and the neointimal hyperplasia formation which is closely related to the de novo atherosclerosis development, being a predictor of the recurrent cardiovascular event.
Collapse
Affiliation(s)
| | - Maria Meshkova
- NN Burdenko Voronezh State Medical University, Voronezh, Russia
| | - Anna Zuikova
- NN Burdenko Voronezh State Medical University, Voronezh, Russia
| |
Collapse
|
22
|
Ngai D, Schilperoort M, Tabas I. Efferocytosis-induced lactate enables the proliferation of pro-resolving macrophages to mediate tissue repair. Nat Metab 2023; 5:2206-2219. [PMID: 38012414 PMCID: PMC10782856 DOI: 10.1038/s42255-023-00921-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
The clearance of apoptotic cells by macrophages (efferocytosis) prevents necrosis and inflammation and activates pro-resolving pathways, including continual efferocytosis. A key resolution process in vivo is efferocytosis-induced macrophage proliferation (EIMP), in which apoptotic cell-derived nucleotides trigger Myc-mediated proliferation of pro-resolving macrophages. Here we show that EIMP requires a second input that is integrated with cellular metabolism, notably efferocytosis-induced lactate production. Lactate signalling via GPR132 promotes Myc protein stabilization and subsequent macrophage proliferation. This mechanism is validated in vivo using a mouse model of dexamethasone-induced thymocyte apoptosis, which elevates apoptotic cell burden and requires efferocytosis to prevent inflammation and necrosis. Thus, EIMP, a key process in tissue resolution, requires inputs from two independent processes: a signalling pathway induced by apoptotic cell-derived nucleotides and a cellular metabolism pathway involving lactate production. These findings illustrate how seemingly distinct pathways in efferocytosing macrophages are integrated to carry out a key process in tissue resolution.
Collapse
Affiliation(s)
- David Ngai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Maaike Schilperoort
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Departments of Physiology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
23
|
Liao G, Liu W, Dai Y, Shi X, Liu Y, Li D, Xu T. Beneficial effects of flavonoids on animal models of atherosclerosis: A systematic review and meta-analysis. iScience 2023; 26:108337. [PMID: 38026172 PMCID: PMC10665821 DOI: 10.1016/j.isci.2023.108337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the main cause of cardiovascular diseases that seriously endanger human health. The existing treatment drugs are effective, but they have some side effects. Accumulating evidence suggests that flavonoids have attracted wide attention due to their multiple cardioprotective effects and fewer side effects. PubMed, Web of Science database, Embase, and Cochrane Library were searched for studies evaluating the effects of flavonoids against atherosclerosis. 119 studies published from August 1954 to April 2023 were included. Random-effects models were performed for synthesis. Compared with the control group, flavonoids significantly reduced longitudinal and cross-sectional plaque area. The findings indicated that flavonoids significantly reduced the concentrations of serum TC, TG, and LDL-C and increased serum HDL-C concentrations. Besides, flavonoids reduced the levels of circulating pro-inflammatory factors, including TNF-α, IL-1β, and IL-6, and increased the serum IL-10 level. This study provides evidence for the potential cardiovascular benefits of flavonoids.
Collapse
Affiliation(s)
- Gege Liao
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Wanlu Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Yiming Dai
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Xiangxiang Shi
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Tongda Xu
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
24
|
Hu L, Lv Z, Gu Y, Zheng T, Kong Y, Mao W. A bibliometric analysis of efferocytosis in cardiovascular diseases from 2001 to 2022. Medicine (Baltimore) 2023; 102:e34366. [PMID: 37773819 PMCID: PMC10545234 DOI: 10.1097/md.0000000000034366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2023] [Indexed: 10/01/2023] Open
Abstract
INTRODUCTION In recent years, efferocytosis in cardiovascular diseases has become an intense area of research. However, only a few bibliometric analyses have been conducted in this area. In this review, we used CiteSpace 5.7. R2 and VOSviewer 1.6.17 software to perform text mining and knowledge map analysis. This study summarizes the latest progress, development paths, frontier research hotspots, and future research trends in this field. MATERIALS AND METHODS Studies on efferocytosis in cardiovascular diseases were downloaded from the Web of Science Core Collection. RESULTS In total, 327 studies published by 506 institutions across 42 countries and regions were identified. The number of studies on efferocytosis in cardiovascular diseases has increased over time. Arteriosclerosis Thrombosis and Vascular Biology published the highest number of articles and was the top co-cited journal. Tabas Ira. was the most prolific researcher and co-cited the most. The most productive countries were the United States and China. Columbia University, Harvard Medical School, and Brigham Women's Hospital were the 3 most productive institutions in the field of research. Keyword Co-occurrence, Clusters, and Burst analyses showed that inflammation, atherosclerosis, macrophages, and phagocytosis appeared with the highest frequency in these studies. CONCLUSION Multinational cooperation and multidisciplinary intersections are characteristic trends of development in the field, and the immune microenvironment, glycolysis, and lipid metabolism will be the focus of future research.
Collapse
Affiliation(s)
- Luoxia Hu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Zhengtian Lv
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Yangyang Gu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Tiantian Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Youjin Kong
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Wei Mao
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
- Department of Cardiology, Zhengjiang Hospital, Hangzhou, China
| |
Collapse
|
25
|
Wang M, Gong K, Zhu X, Chen S, Zhou J, Zhang H, Han J, Ma L, Duan Y. Identification of circulating T-cell immunoglobulin and mucin domain 4 as a potential biomarker for coronary heart disease. MedComm (Beijing) 2023; 4:e320. [PMID: 37426678 PMCID: PMC10329472 DOI: 10.1002/mco2.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Efferocytosis, the process of engulfing and removing apoptotic cells, is attenuated in vulnerable plaques of advanced atherosclerosis. T-cell immunoglobulin and mucin domain 4 (TIMD4) is a recognition receptor protein for efferocytosis that has been implicated in atherosclerosis mouse models. However, the role of serum-soluble TIMD4 (sTIMD4) in coronary heart disease (CHD) remains unknown. In this study, we analyzed serum samples collected from two groups: Group 1 (36 healthy controls and 70 CHD patients) and Group 2 (44 chronic coronary syndrome [CCS]) and 81 acute coronary syndrome [ACS] patients). We found that sTIMD4 levels in patients with CHD were significantly higher than those in healthy controls and were also higher in ACS than in CCS patients. The area under the receiver operating characteristic curve was 0.787. Furthermore, our in vitro results showed that low-density lipoprotein/lipopolysaccharide activated p38 mitogen-activated protein kinase, which in turn enhanced a disintegrin and metalloproteinase 17, resulting in increased secretion of sTIMD4. This impairment of macrophage efferocytosis promoted inflammation. Thus, this study is not only the first identification of a potential novel biomarker of CHD, sTIMD4, but also demonstrated its pathogenesis mechanism, providing a new direction for the diagnosis and treatment of CHD.
Collapse
Affiliation(s)
- Mengyao Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Xinran Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Shasha Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Jie Zhou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Hui Zhang
- Department of CardiologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological EngineeringHefei University of TechnologyHefeiChina
- Key Laboratory of Bioactive Materials of Ministry of EducationCollege of Life SciencesState Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Likun Ma
- Department of CardiologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yajun Duan
- Department of CardiologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
26
|
Neels JG, Gollentz C, Chinetti G. Macrophage death in atherosclerosis: potential role in calcification. Front Immunol 2023; 14:1215612. [PMID: 37469518 PMCID: PMC10352763 DOI: 10.3389/fimmu.2023.1215612] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Cell death is an important aspect of atherosclerotic plaque development. Insufficient efferocytosis of death cells by phagocytic macrophages leads to the buildup of a necrotic core that impacts stability of the plaque. Furthermore, in the presence of calcium and phosphate, apoptotic bodies resulting from death cells can act as nucleation sites for the formation of calcium phosphate crystals, mostly in the form of hydroxyapatite, which leads to calcification of the atherosclerotic plaque, further impacting plaque stability. Excessive uptake of cholesterol-loaded oxidized LDL particles by macrophages present in atherosclerotic plaques leads to foam cell formation, which not only reduces their efferocytosis capacity, but also can induce apoptosis in these cells. The resulting apoptotic bodies can contribute to calcification of the atherosclerotic plaque. Moreover, other forms of macrophage cell death, such as pyroptosis, necroptosis, parthanatos, and ferroptosis can also contribute by similar mechanisms to plaque calcification. This review focuses on macrophage death in atherosclerosis, and its potential role in calcification. Reducing macrophage cell death and/or increasing their efferocytosis capacity could be a novel therapeutic strategy to reduce the formation of a necrotic core and calcification and thereby improving atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Jaap G. Neels
- Université Côte d’Azur, Institut national de la santé et de la recherche médicale (INSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Claire Gollentz
- Université Côte d’Azur, Centre Hospitalier Universitaire (CHU), Institut national de la santé et de la recherche médicale (NSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Giulia Chinetti
- Université Côte d’Azur, Centre Hospitalier Universitaire (CHU), Institut national de la santé et de la recherche médicale (NSERM), Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| |
Collapse
|
27
|
Tian Z, Li X, Jiang D. Analysis of immunogenic cell death in atherosclerosis based on scRNA-seq and bulk RNA-seq data. Int Immunopharmacol 2023; 119:110130. [PMID: 37075670 DOI: 10.1016/j.intimp.2023.110130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Regulated cell death plays a very important role in atherosclerosis (AS). Despite a large number of studies, there is a lack of literature on immunogenic cell death (ICD) in AS. METHOD Carotid atherosclerotic plaque single-cell RNA (scRNA) sequencing data were analyzed to define involved cells and determine their transcriptomic characteristics. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, CIBERSORT, ESTIMATE and ssGSEA (Gene Set Enrichment Analysis), consensus clustering analysis, random forest (RF), Decision Curve Analysis (DCA), and the Drug-Gene Interaction and DrugBank databases were applied for bulk sequencing data. All data were downloaded from Gene Expression Omnibus (GEO). RESULT mDCs and CTLs correlated obviously with AS occurrence and development (k2(mDCs) = 48.333, P < 0.001; k2(CTL) = 130.56, P < 0.001). In total, 21 differentially expressed genes were obtained for the bulk transcriptome; KEGG enrichment analysis results were similar to those for differentially expressed genes in endothelial cells. Eleven genes with a gene importance score > 1.5 were obtained in the training set and validated in the test set, resulting in 8 differentially expressed genes for ICD. A model to predict occurrence of AS and 56 drugs that may be used to treat AS were obtained with these 8 genes. CONCLUSION Immunogenic cell death occurs mainly in endothelial cells in AS. ICD maintains chronic inflammation in AS and plays a crucial role in its occurrence and development. ICD related genes may become drug-targeted genes for AS treatment.
Collapse
Affiliation(s)
- Zemin Tian
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xinyang Li
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Delong Jiang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
28
|
Li Q, Liu X, Du Y, Zhang X, Xiang P, Chen G, Ling W, Wang D. Protocatechuic acid boosts continual efferocytosis in macrophages by derepressing KLF4 to transcriptionally activate MerTK. Sci Signal 2023; 16:eabn1372. [PMID: 37220181 DOI: 10.1126/scisignal.abn1372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Macrophages clear apoptotic cells through a process called continual efferocytosis. We found that protocatechuic acid (PCA), a polyphenolic compound abundant in fruits and vegetables, increased the continual efferocytic capacity of macrophages and inhibited the progression of advanced atherosclerosis. PCA reduced the intracellular amounts of microRNA-10b (miR-10b) by promoting its secretion in extracellular vesicles, which led to an increase in the abundance of the miR-10b target Krüppel-like factor 4 (KLF4). In turn, KLF4 transcriptionally induced the gene encoding Mer proto-oncogene tyrosine kinase (MerTK), an efferocytic receptor for the recognition of apoptotic cells, resulting in increased continual efferocytic capacity. However, in naive macrophages, the PCA-induced secretion of miR-10b did not affect KLF4 and MerTK protein abundance or efferocytic capacity. In mice, oral administration of PCA increased continual efferocytosis in macrophages residing in the peritoneal cavities, thymi, and advanced atherosclerotic plaques through the miR-10b-KLF4-MerTK pathway. In addition, pharmacological inhibition of miR-10b with antagomiR-10b also increased the efferocytic capacity of efferocytic but not naive macrophages in vitro and in vivo. Together, these data describe a pathway that promotes continual efferocytosis in macrophages through miR-10b secretion and a KLF4-dependent increase in MerTK abundance, which can be activated by dietary PCA and which has implications for understanding the regulation of continual efferocytosis in macrophages.
Collapse
Affiliation(s)
- Qing Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Xiuping Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Yushi Du
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Xu Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Panyin Xiang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Guanyu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Dongliang Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| |
Collapse
|
29
|
Wiśniewska A, Czepiel K, Stachowicz A, Pomierny B, Kuś K, Kiepura A, Stachyra K, Surmiak M, Madej J, Olszanecki R, Suski M. The antiatherosclerotic action of 1G244 - An inhibitor of dipeptidyl peptidases 8/9 - is mediated by the induction of macrophage death. Eur J Pharmacol 2023; 944:175566. [PMID: 36739078 DOI: 10.1016/j.ejphar.2023.175566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Targeting cell death to induce favorable functional and morphological changes within atherosclerotic plaques has long been postulated as a promising anti-atherosclerotic strategy. In this regard, inhibition of dipeptidyl peptidases 8/9 has received special attention in the context of chronic inflammatory diseases due to its regulatory role in macrophage death in vivo. METHODS The present study investigates the influence of prolonged treatment with 1G244 - an inhibitor of dipeptidyl peptidases 8/9 - on the development of the advanced atherosclerosis plaque in apoE-knockout mice, using morphometric and molecular methods. RESULTS 1G244 administration has led to a reduction in atherosclerotic plaque size in an apoE-knockout mice model. Moreover, it reduced the content of in-plaque macrophages, attributed by immunohistochemical phenotyping to the pro-inflammatory M1-like activation state of these cells. Inhibition of dipeptidyl peptidases 8/9 augmented the lytic form of death response of activated macrophages in-vitro. CONCLUSIONS In summary, inhibition of DPP 8/9 elicited an anti-atherosclerotic effect in apoE-/- mice, which can be attributed to the lytic form of death induction in activated macrophages, as assessed by the in vitro BMDM model. This, in turn, results in a reduction of the plaque area without its transformation towards a rupture-prone morphology.
Collapse
Affiliation(s)
- Anna Wiśniewska
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Klaudia Czepiel
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Aneta Stachowicz
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Bartosz Pomierny
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna str., 30-688, Krakow, Poland
| | - Katarzyna Kuś
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Anna Kiepura
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Kamila Stachyra
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, 8 Skawinska str., 31-066, Krakow, Poland
| | - Józef Madej
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Rafał Olszanecki
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland
| | - Maciej Suski
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka str., 31-531, Krakow, Poland.
| |
Collapse
|
30
|
Neels JG, Leftheriotis G, Chinetti G. Atherosclerosis Calcification: Focus on Lipoproteins. Metabolites 2023; 13:metabo13030457. [PMID: 36984897 PMCID: PMC10056669 DOI: 10.3390/metabo13030457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids in the vessel wall, leading to the formation of an atheroma and eventually to the development of vascular calcification (VC). Lipoproteins play a central role in the development of atherosclerosis and VC. Both low- and very low-density lipoproteins (LDL and VLDL) and lipoprotein (a) (Lp(a)) stimulate, while high-density lipoproteins (HDL) reduce VC. Apolipoproteins, the protein component of lipoproteins, influence the development of VC in multiple ways. Apolipoprotein AI (apoAI), the main protein component of HDL, has anti-calcific properties, while apoB and apoCIII, the main protein components of LDL and VLDL, respectively, promote VC. The role of lipoproteins in VC is also related to their metabolism and modifications. Oxidized LDL (OxLDL) are more pro-calcific than native LDL. Oxidation also converts HDL from anti- to pro-calcific. Additionally, enzymes such as autotaxin (ATX) and proprotein convertase subtilisin/kexin type 9 (PCSK9), involved in lipoprotein metabolism, have a stimulatory role in VC. In summary, a better understanding of the mechanisms by which lipoproteins and apolipoproteins contribute to VC will be crucial in the development of effective preventive and therapeutic strategies for VC and its associated cardiovascular disease.
Collapse
Affiliation(s)
- Jaap G Neels
- Université Côte d'Azur, INSERM, C3M, 06200 Nice, France
| | | | - Giulia Chinetti
- Université Côte d'Azur, CHU, INSERM, C3M, 06200 Nice, France
| |
Collapse
|
31
|
Jing J, Zhu C, Gong R, Qi X, Zhang Y, Zhang Z. Research progress on the active ingredients of traditional Chinese medicine in the intervention of atherosclerosis: A promising natural immunotherapeutic adjuvant. Biomed Pharmacother 2023; 159:114201. [PMID: 36610225 DOI: 10.1016/j.biopha.2022.114201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease caused by disorders of lipid metabolism. Abnormal deposition of low-density lipoproteins in the arterial wall stimulates the activation of immune cells, including the adhesion and infiltration of monocytes, the proliferation and differentiation of macrophages and lymphocytes, and the activation of their functions. The complex interplay between immune cells coordinates the balance between pro- and anti-inflammation and plays a key role in the progression of AS. Therefore, targeting immune cell activity may lead to the development of more selective drugs with fewer side effects to treat AS without compromising host defense mechanisms. At present, an increasing number of studies have found that the active ingredients of traditional Chinese medicine (TCM) can regulate the function of immune cells in multiple ways to against AS, showing great potential for the treatment of AS and promising clinical applications. In this paper, we review the mechanisms of immune cell action in AS lesions and the potential targets and/or pathways for immune cell regulation by the active ingredients of TCM to promote the understanding of the immune system interactions of AS and provide a relevant basis for the use of active ingredients of TCM as natural adjuvants for AS immunotherapy.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chaojun Zhu
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Rui Gong
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xue Qi
- Department of General Surgery, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China.
| | - Yue Zhang
- Peripheral Vascular Disease Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhaohui Zhang
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
32
|
Wang W, Liang M, Wang L, Bei W, Rong X, Xu J, Guo J. Role of prostaglandin E2 in macrophage polarization: Insights into atherosclerosis. Biochem Pharmacol 2023; 207:115357. [PMID: 36455672 DOI: 10.1016/j.bcp.2022.115357] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis, a trigger of cardiovascular disease, poses grave threats to human health. Although atherosclerosis depends on lipid accumulation and vascular wall inflammation, abnormal phenotypic regulation of macrophages is considered the pathological basis of atherosclerosis. Macrophage polarization mainly refers to the transformation of macrophages into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, which has recently become a much-discussed topic. Increasing evidence has shown that M2 macrophage polarization can alleviate atherosclerosis progression. PGE2 is a bioactive lipid that has been observed to be elevated in atherosclerosis and to play a pro-inflammatory role, yet recent studies have reported that PGE2 promotes anti-inflammatory M2 macrophage polarization and mitigates atherosclerosis progression. However, the mechanisms by which PGE2 acts remain unclear. This review summarizes current knowledge of PGE2 and macrophages in atherosclerosis. Additionally, we discuss potential PGE2 mechanisms of macrophage polarization, including CREB, NF-κB, and STAT signaling pathways, which may provide important therapeutic strategies based on targeting PGE2 pathways to modulate macrophage polarization for atherosclerosis treatment.
Collapse
Affiliation(s)
- Weixuan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Mingjie Liang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Weijian Bei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Jianqin Xu
- Department of Endocrinology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi Province, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China.
| |
Collapse
|
33
|
Wang Y, Huang X, Yang D, He J, Chen Z, Li K, Liu J, Zhang W. A green-inspired method to prepare non-split high-density lipoprotein (HDL) carrier with anti-dysfunctional activities superior to reconstituted HDL. Eur J Pharm Biopharm 2023; 182:115-127. [PMID: 36529255 DOI: 10.1016/j.ejpb.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Numerous studies have demonstrated that dysfunctional high-density lipoprotein (HDL), especially oxidized HDL (OxHDL), could generate multifaceted in vivo proatherogenic effects that run counter to the antiatherogenic activities of HDL. It thereby reminded us that the in vitro reconstituted HDL (rHDL) might encountered with oxidation-induced dysfunction. Accordingly, a green-inspired method was employed to recycle non-split HDL from human plasma fraction IV. Then it was compared with rHDL formulated by an ethanol-injection method in terms of physicochemical properties and anti-dysfunctional activities. Results exhibited that rHDL oxidation extent exceeded that of non-split HDL evidenced by higher malondialdehy content, weaker inhibition on low-density lipoprotein (LDL) oxidation and more superoxide anion. The reserved paraoxonase-1 activity on non-split HDL could partially explain for above experimental results. In the targeted transport mechanism experiment, upon SR-BI receptor inhibition and/or CD36 receptor blockage, the almost unchanged non-split HDL uptake in lipid-laden macrophage indicated its negligible oxidation modification profile with regard to rHDL again. Furthermore, compared to rHDL, better macrophage biofunctions were observed for non-split HDL as illustrated by accelerated cholesterol efflux, inhibited oxidized LDL uptake and lessened cellular lipid accumulation. Along with decreased ROS secretion, obviously weakened oxidative stress damage was also detected under treatment with non-split HDL. More importantly, foam cells with non-split HDL-intervention inspired an enhanced inflammation repression and apoptosis inhibition effect. Collectively, the anti-dysfunctional activities of non-split HDL make it suitable as a potential nanocarrier platform for cardiovascular drug payload and delivery.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Xinya Huang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Danni Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Zhaoan Chen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Kexuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China.
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
34
|
Banu S, Sur D. Role of Macrophage in Type 2 Diabetes Mellitus: Macrophage Polarization a New Paradigm for Treatment of Type 2 Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2023; 23:2-11. [PMID: 35786198 DOI: 10.2174/1871530322666220630093359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
Metabolic diseases such as type 2 diabetes mellitus are usually associated with meta-inflammation. β-cell failure is a marked feature observed in the pathogenesis of type 2 diabetes mellitus. Type 2 diabetes mellitus (T2DM) is a heterogeneous situation that is accompanied by not only defective insulin secretion but also peripheral insulin resistance. β-cells are the primary organ for insulin secretion; hence, it is crucial to maintain a significant β-cell mass in response to a variety of changes. Insulin resistance is a chief cause of T2DM, leading to increased free fatty acid (FFA) levels, which in turn elevates β-cell mass and insulin secretion as compensation for insulin insensitivity. It has recently been established that amplified numbers of innate immune cells, cytokines, and chemokines result in detrimental effects on islets in chronic conditions. Macrophage migration inhibitory factor (MIF) is the lymphokine that prevents arbitrary migration of macrophages and assembles macrophages at inflammatory loci. Inflammation is known to trigger monocytes to differentiate into macrophages. Progress of complications associated with type 2 diabetes mellitus, as indicated through recent findings, is also dependent on the buildup of macrophages in tissues vulnerable to diabetic injury. The present article scientifically evaluates the present knowledge concerning the mechanisms of monocyte and macrophage-mediated injury recruitment in complications associated with type 2 diabetes mellitus. It also describes some of the established and experimental therapies that might bring about a reduction in these inflammatory complications. Recent discoveries in the field of drug delivery have facilitated phenotype-specific targeting of macrophages. This review highlights the pathophysiology of type 2 diabetes mellitus, how macrophage induces type 2 diabetes mellitus and potential therapeutics for type 2 diabetes mellitus via macrophage-specific delivery.
Collapse
Affiliation(s)
- Sarmin Banu
- Division of Pharmacology, Guru Nanak College of Pharmaceutical Science and Technology, 157/F Nilgunaj Road, Panihati, Kolkata 700114, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak College of Pharmaceutical Science and Technology, 157/F Nilgunaj Road, Panihati, Kolkata 700114, India
| |
Collapse
|
35
|
Wang X, Sun Z, Yuan R, Zhang W, Shen Y, Yin A, Li Y, Ji Q, Wang X, Li Y, Zhang M, Pan X, Shen L, He B. K-80003 Inhibition of Macrophage Apoptosis and Necrotic Core Development in Atherosclerotic Vulnerable Plaques. Cardiovasc Drugs Ther 2022; 36:1061-1073. [PMID: 34410548 PMCID: PMC9652240 DOI: 10.1007/s10557-021-07237-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Macrophage apoptosis coupled with a defective phagocytic clearance of the apoptotic cells promotes plaque necrosis in advanced atherosclerosis, which causes acute atherothrombotic vascular disease. Nonsteroidal anti-inflammatory drug sulindac derivative K-80003 treatment was previously reported to dramatically attenuate atherosclerotic plaque progression and destabilization. However, the underlying mechanisms are not fully understood. This study aimed to determine the role of K-80003 on macrophage apoptosis and elucidate the underlying mechanism. METHODS The mouse model of vulnerable carotid plaque in ApoE-/- mice was developed in vivo. Consequently, mice were randomly grouped into two study groups: the control group and the K-80003 group (30 mg/kg/day). Samples of carotid arteries were collected to determine atherosclerotic necrotic core area, cellular apoptosis, and oxidative stress. The effects of K-80003 on RAW264.7 macrophage apoptosis, oxidative stress, and autophagic flux were also examined in vitro. RESULTS K-80003 significantly suppressed necrotic core formation and inhibited cellular apoptosis of vulnerable plaques. K-80003 can also inhibit 7-ketocholesterol-induced macrophage apoptosis in vitro. Furthermore, K-80003 inhibited intraplaque cellular apoptosis mainly through the suppression of oxidative stress, which is a key cause of advanced lesional macrophage apoptosis. Mechanistically, K-80003 prevented 7-ketocholesterol-induced impairment of autophagic flux in macrophages, evidenced by the decreased LC3II and SQSTM1/p62 expression, GFP-RFP-LC3 cancellation upon K-80003 treatment. CONCLUSION Inhibition of macrophage apoptosis and necrotic core formation by autophagy-mediated reduction of oxidative stress is one mechanism of the suppression of plaque progression and destabilization by K-80003.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Zhe Sun
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Ruosen Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Weifeng Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Yejiao Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Anwen Yin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Yanjie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Qingqi Ji
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Xin Pan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China.
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| |
Collapse
|
36
|
Ketone Bodies as Metabolites and Signalling Molecules at the Crossroad between Inflammation and Epigenetic Control of Cardiometabolic Disorders. Int J Mol Sci 2022; 23:ijms232314564. [PMID: 36498891 PMCID: PMC9740056 DOI: 10.3390/ijms232314564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
For many years, it has been clear that a Western diet rich in saturated fats and sugars promotes an inflammatory environment predisposing a person to chronic cardiometabolic diseases. In parallel, the emergence of ketogenic diets, deprived of carbohydrates and promoting the synthesis of ketone bodies imitating the metabolic effects of fasting, has been shown to provide a possible nutritional solution to alleviating diseases triggered by an inflammatory environment. The main ketone body, β-hydroxybutyrate (BHB), acts as an alternative fuel, and also as a substrate for a novel histone post-translational modification, β-hydroxybutyrylation. β-hydroxybutyrylation influences the state of chromatin architecture and promotes the transcription of multiple genes. BHB has also been shown to modulate inflammation in chronic diseases. In this review, we discuss, in the pathological context of cardiovascular risks, the current understanding of how ketone bodies, or a ketogenic diet, are able to modulate, trigger, or inhibit inflammation and how the epigenome and chromatin remodeling may be a key contributor.
Collapse
|
37
|
Parry R, Majeed K, Pixley F, Hillis GS, Francis RJ, Schultz CJ. Unravelling the role of macrophages in cardiovascular inflammation through imaging: a state-of-the-art review. Eur Heart J Cardiovasc Imaging 2022; 23:e504-e525. [PMID: 35993316 PMCID: PMC9671294 DOI: 10.1093/ehjci/jeac167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death and disability for patients across the world. Our understanding of atherosclerosis as a primary cholesterol issue has diversified, with a significant dysregulated inflammatory component that largely remains untreated and continues to drive persistent cardiovascular risk. Macrophages are central to atherosclerotic inflammation, and they exist along a functional spectrum between pro-inflammatory and anti-inflammatory extremes. Recent clinical trials have demonstrated a reduction in major cardiovascular events with some, but not all, anti-inflammatory therapies. The recent addition of colchicine to societal guidelines for the prevention of recurrent cardiovascular events in high-risk patients with chronic coronary syndromes highlights the real-world utility of this class of therapies. A highly targeted approach to modification of interleukin-1-dependent pathways shows promise with several novel agents in development, although excessive immunosuppression and resulting serious infection have proven a barrier to implementation into clinical practice. Current risk stratification tools to identify high-risk patients for secondary prevention are either inadequately robust or prohibitively expensive and invasive. A non-invasive and relatively inexpensive method to identify patients who will benefit most from novel anti-inflammatory therapies is required, a role likely to be fulfilled by functional imaging methods. This review article outlines our current understanding of the inflammatory biology of atherosclerosis, upcoming therapies and recent landmark clinical trials, imaging modalities (both invasive and non-invasive) and the current landscape surrounding functional imaging including through targeted nuclear and nanobody tracer development and their application.
Collapse
Affiliation(s)
- Reece Parry
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| | - Kamran Majeed
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Waikato District Health Board, Hamilton 3204, New Zealand
| | - Fiona Pixley
- School of Biomedical Sciences, Pharmacology and Toxicology, University of Western Australia, Perth 6009, Australia
| | - Graham Scott Hillis
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| | - Roslyn Jane Francis
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth 6009, Australia
| | - Carl Johann Schultz
- School of Medicine, University of Western Australia, Perth 6009, Australia
- Department of Cardiology, Royal Perth Hospital, 197 Wellington Street, Perth, WA 6000, Australia
| |
Collapse
|
38
|
Puylaert P, Zurek M, Rayner KJ, De Meyer GRY, Martinet W. Regulated Necrosis in Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:1283-1306. [PMID: 36134566 DOI: 10.1161/atvbaha.122.318177] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During atherosclerosis, lipid-rich plaques are formed in large- and medium-sized arteries, which can reduce blood flow to tissues. This situation becomes particularly precarious when a plaque develops an unstable phenotype and becomes prone to rupture. Despite advances in identifying and treating vulnerable plaques, the mortality rate and disability caused by such lesions remains the number one health threat in developed countries. Vulnerable, unstable plaques are characterized by a large necrotic core, implying a prominent role for necrotic cell death in atherosclerosis and plaque destabilization. Necrosis can occur accidentally or can be induced by tightly regulated pathways. Over the past decades, different forms of regulated necrosis, including necroptosis, ferroptosis, pyroptosis, and secondary necrosis, have been identified, and these may play an important role during atherogenesis. In this review, we describe several forms of necrosis that may occur in atherosclerosis and how pharmacological modulation of these pathways can stabilize vulnerable plaques. Moreover, some challenges of targeting necrosis in atherosclerosis such as the presence of multiple death-inducing stimuli in plaques and extensive cross-talk between necrosis pathways are discussed. A better understanding of the role of (regulated) necrosis in atherosclerosis and the mechanisms contributing to plaque destabilization may open doors to novel pharmacological strategies and will enable clinicians to tackle the residual cardiovascular risk that remains in many atherosclerosis patients.
Collapse
Affiliation(s)
- Pauline Puylaert
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| | - Michelle Zurek
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology and Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, ON, Canada (K.J.R.).,University of Ottawa Heart Institute, ON, Canada (K.J.R.)
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| | - Wim Martinet
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| |
Collapse
|
39
|
Dai T, He W, Tu S, Han J, Yuan B, Yao C, Ren W, Wu A. Black TiO2 nanoprobe-mediated mild phototherapy reduces intracellular lipid levels in atherosclerotic foam cells via cholesterol regulation pathways instead of apoptosis. Bioact Mater 2022; 17:18-28. [PMID: 35386468 PMCID: PMC8958315 DOI: 10.1016/j.bioactmat.2022.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Given that apoptosis increases the risk of plaque rupture, strategies that reduce intracellular lipid levels without killing foam cells are warranted for safe and effective treatment of atherosclerosis. In this study, a mild phototherapy strategy is carried out to achieve the hypothesis. Foam cell-targeted nanoprobes that allow photothermal therapy (PTT) and/or photodynamic therapy (PDT) were prepared by loading hyaluronan and porphine onto black TiO2 nanoparticles. The results showed that when temperatures below 45 °C, PTT alone and PTT + PDT significantly reduced the intracellular lipid burden without inducing evidently apoptosis or necrosis. In contrast, the use of PDT alone resulted in only a slight reduction in lipid levels and induced massive apoptosis or necrosis. The protective effect against apoptosis or necrosis after mild-temperature PTT and PTT + PDT was correlated with the upregulation of heat shock protein 27. Further, mild-temperature PTT and PTT + PDT attenuated intracellular cholesterol biosynthesis and excess cholesterol uptake via the SREBP2/LDLR pathway, and also triggered ABCA1-mediated cholesterol efflux, ultimately inhibiting lipid accumulation in foam cells. Our results offer new insights into the mechanism of lipid regulation in foam cells and indicate that the black TiO2 nanoprobes could allow safer and more effective phototherapy of atherosclerosis. Mild phototherapy reduced the intracellular lipid in foam cells without inducing obvious apoptosis or necrosis. HSP27 was upregulated in foam cells treated by mild phototherapy, which could protect cells against apoptosis or necrosis. Mild phototherapy attenuated intracellular cholesterol biosynthesis and excess uptake, also boosted cholesterol efflux.
Collapse
Affiliation(s)
- Ting Dai
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province, 315020, China
| | - Wenming He
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province, 315020, China
| | - Shuangshuang Tu
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province, 315020, China
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Jinru Han
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing, 101408, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Bo Yuan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Chenyang Yao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Wenzhi Ren
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
- Corresponding author. Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
- Corresponding author. Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China.
| |
Collapse
|
40
|
Functional Association of miR-133b and miR-21 Through Novel Gene Targets ATG5, LRP6 and SGPP1 in Coronary Artery Disease. Mol Diagn Ther 2022; 26:655-664. [PMID: 36197604 DOI: 10.1007/s40291-022-00615-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Atherosclerosis, a progressive manifestation of coronary artery disease, has been observed to be regulated by microRNAs (miRNAs) targeting various protein-coding genes involved in several pathophysiological events of coronary artery disease. OBJECTIVE In our previous report, we identified differential expression profiles of candidate miRNAs, miR-133b and miR-21, in patients with coronary artery disease as compared with controls, suggesting their possible implication in the pathophysiology of coronary artery disease. To better understand the functional role of these miRNAs, we sought to predict and validate their target genes while assessing the expression pattern of these genes in patients with coronary artery disease, as well as in macrophages. METHODS Potential target genes of miR-133b and miR-21 were predicted bioinformatically followed by validation through the identification of their expression at the protein level in patients with coronary artery disease (n-30), as well as in macrophages treated with respective miRNA inhibitors (antagomiRs), through immunoblotting. RESULTS SGPP1, a gene associated with the sphingolipid pathway, was predicted to be a potential target gene of miR-133b while ATG5 and LRP6 were target genes of miR-21 while being associated with autophagy and Wnt signalling pathways, respectively. SGPP1 was observed to be upregulated significantly (p = 0.019) by 2.07-fold, whereas ATG5 and LRP6 were found to be downregulated (p = 0.026 and 0.007, respectively) by 3.28-fold and 8.46-fold, respectively, in patients with coronary artery disease as compared with controls. Expression patterns of all the genes were also found to be modulated when cells were treated with respective miRNA inhibitors. CONCLUSIONS Results from the present study suggest that SGPP1, ATG5 and LRP6, target genes of miR-133b and miR-21, may serve as potential therapeutic hotspots in the management of coronary artery disease, which undoubtedly merit further experimental confirmation.
Collapse
|
41
|
Tajbakhsh A, Gheibihayat SM, Askari H, Savardashtaki A, Pirro M, Johnston TP, Sahebkar A. Statin-regulated phagocytosis and efferocytosis in physiological and pathological conditions. Pharmacol Ther 2022; 238:108282. [DOI: 10.1016/j.pharmthera.2022.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
42
|
Hu PP, Luo SX, Fan XQ, Li D, Tong XY. Macrophage-targeted nanomedicine for the diagnosis and management of atherosclerosis. Front Pharmacol 2022; 13:1000316. [PMID: 36160452 PMCID: PMC9501673 DOI: 10.3389/fphar.2022.1000316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Atherosclerosis is the primary cause of cardiovascular diseases, such as myocardial infarction and stroke, which account for the highest death toll worldwide. Macrophage is the major contributor to atherosclerosis progression, and therefore, macrophage-associated pathological process is considered an extremely important target for the diagnosis and treatment of atherosclerosis. However, the existing clinical strategies still have many bottlenecks and challenges in atherosclerosis’s early detection and management. Nanomedicine, using various nanoparticles/nanocarriers for medical purposes, can effectively load therapeutic agents, significantly improve their stability and accurately deliver them to the atherosclerotic plaques. In this review, we summarized the latest progress of the macrophage-targeted nanomedicine in the diagnosis and treatment of atherosclerosis, and their potential applications and clinical benefits are also discussed.
Collapse
Affiliation(s)
- Ping Ping Hu
- Chongqing Engineering Research Center for Pharmacodynamics Evaluation, College of Pharmacy, Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ping Hu, ; Xiao Yong Tong,
| | - Shuang Xue Luo
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiao Qing Fan
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Di Li
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Yong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
- *Correspondence: Ping Ping Hu, ; Xiao Yong Tong,
| |
Collapse
|
43
|
Jin G, Liu Y, Xu W, Li Y, Zhang H, Qiu S, Gao C, Liu S. Tnfaip2 promotes atherogenesis by enhancing oxidative stress induced inflammation. Mol Immunol 2022; 151:41-51. [PMID: 36084515 DOI: 10.1016/j.molimm.2022.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
The inflammation is considered to be the crucial determinants of lesion progression and plaque stability during atherogenesis. Tnfaip2 appears to be a regulator for carcinogenesis and infectious diseases. But its role in atherosclerosis is not clear. Here we first report that Tnfaip2 promotes the formation of atherosclerosis through enhancing the inflammation under oxidative stress condition. Although the endogenous expression of Tnfaip2 was upregulated under oxidative stress condition, the overexpressed Tnfaip2 could promote cells proliferation. This might result from the ability of promoting cells entering G2/M phase. Conversely, the cells proliferation and migration were significantly reduced in Tnfaip2 knockdown cells through inhibiting the activation of NF-κB/MAPK/Akt signaling pathways. However, the efferocytosis increased markedly due to the upregulation of "eat me" receptors, such as CD36, SR-A, and SR-B1, and the downregulation of "don't eat me" signal CD47. As a consequence, Tnfaip2 deficiency in bone marrow-derived cells inhibited atherosclerosis development in Ldlr-/- mice fed a high-fat diet accompanied by decreased inflammatory cytokines and shTnfaip2 could reduce the plaque lesions in ApoE-/- mice. These results indicate that Tnfaip2 might play an important role during atherogenesis.
Collapse
Affiliation(s)
- Guiyuan Jin
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, PR China; Medical Research Centre, Affiliated Hospital of Ji'ning Medical University, Ji'ning, Shandong Province, PR China
| | - Ying Liu
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, PR China
| | - Wenwen Xu
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, PR China
| | - Yan Li
- Department of Blood Transfusion, Qilu Hospital of Shandong University, Ji'nan, PR China
| | - Heng Zhang
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, PR China
| | - Shuoke Qiu
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, PR China
| | - Chengjiang Gao
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, PR China
| | - Suxia Liu
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Ji'nan, PR China.
| |
Collapse
|
44
|
Apolipoprotein E in Cardiometabolic and Neurological Health and Diseases. Int J Mol Sci 2022; 23:ijms23179892. [PMID: 36077289 PMCID: PMC9456500 DOI: 10.3390/ijms23179892] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
A preponderance of evidence obtained from genetically modified mice and human population studies reveals the association of apolipoprotein E (apoE) deficiency and polymorphisms with pathogenesis of numerous chronic diseases, including atherosclerosis, obesity/diabetes, and Alzheimer’s disease. The human APOE gene is polymorphic with three major alleles, ε2, ε3 and ε4, encoding apoE2, apoE3, and apoE4, respectively. The APOE gene is expressed in many cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, and in the brain. ApoE is present in subclasses of plasma lipoproteins, and it mediates the clearance of atherogenic lipoproteins from plasma circulation via its interaction with LDL receptor family proteins and heparan sulfate proteoglycans. Extracellular apoE also interacts with cell surface receptors and confers signaling events for cell regulation, while apoE expressed endogenously in various cell types regulates cell functions via autocrine and paracrine mechanisms. This review article focuses on lipoprotein transport-dependent and -independent mechanisms by which apoE deficiency or polymorphisms contribute to cardiovascular disease, metabolic disease, and neurological disorders.
Collapse
|
45
|
Kawai K, Vozenilek AE, Kawakami R, Sato Y, Ghosh SKB, Virmani R, Finn AV. Understanding the role of alternative macrophage phenotypes in human atherosclerosis. Expert Rev Cardiovasc Ther 2022; 20:689-705. [PMID: 35942866 DOI: 10.1080/14779072.2022.2111301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Atherosclerosis-based ischemic heart disease is still the primary cause of death throughout the world. Over the past decades there has been no significant changes in the therapeutic approaches to atherosclerosis, which are mainly based on lipid lowering therapies and management of comorbid conditions such as diabetes and hypertension. The involvement of macrophages in atherosclerosis has been recognized for decades. More recently, a more detailed and sophisticated understanding of their various phenotypes and roles in the atherosclerotic process has been recognized. This new data is revealing how specific subtypes of macrophage-induced inflammation may have distinct effects on atherosclerosis progression and may provide new approaches for treatment, based upon targeting of specific macrophage subtypes. AREAS COVERED We will comprehensively review the spectrum of macrophage phenotypes and how they contribute to atherosclerotic plaque development and progression. EXPERT OPINION Various signals derived from atherosclerotic lesions drive macrophages into complex subsets with different gene expression profiles, phenotypes, and functions, not all of which are understood. Macrophage phenotypes include those that enhance, heal, and regress the atherosclerotic lesions though various mechanisms. Targeting of specific macrophage phenotypes may provide a promising and novel approach to prevent atherosclerosis progression.
Collapse
Affiliation(s)
- Kenji Kawai
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Aimee E Vozenilek
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Rika Kawakami
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Yu Sato
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | | | - Renu Virmani
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Aloke V Finn
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA.,University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Liu M, Cai Y, Pan J, Peter K, Li Z. Macrophage polarization as a potential therapeutic target for atherosclerosis: a dynamic stochastic modelling study. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220239. [PMID: 35950200 PMCID: PMC9346359 DOI: 10.1098/rsos.220239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
We proposed a dynamic stochastic mathematical model to evaluate the role of macrophage polarization in plaque development. The dynamic process of macrophages from proliferation to death was simulated under different lipid microenvironments. The probability of macrophage phenotypic switching was described using a Bernoulli distribution where the stochastic variable was determined by the local lipid level. Moreover, the interactions between macrophages and microenvironmental factors vary with macrophage phenotype. We investigated the distribution of key microenvironmental factors, the dynamics of macrophage polarization and its influence on foam cell formation. M1 macrophages were found to predominate in advanced plaque corresponding to the exacerbated inflammation observed in mice experiments. The imbalance between the deposition of oxidized low-density lipoprotein and phagocytic effects of macrophages governed the formation of foam cells. Furthermore, we simulated targeted therapies by either directly inhibiting the polarization probability to M1 macrophages or indirectly regulating macrophage polarization due to high-density lipoprotein levels. Comparison of simulation results with experimental findings in both therapies indicated that the intervention and regulation of macrophage polarization could influence plaque microenvironment and subsequently induce plaque regression, especially in the early stage. The proposed modelling system can facilitate the evaluation of novel therapies targeting macrophage polarization.
Collapse
Affiliation(s)
- Mengchen Liu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Yan Cai
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Jichao Pan
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, PO Box 6492, St Kilda Road Central, Melbourne, VIC 8008, Australia
| | - Zhiyong Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| |
Collapse
|
47
|
Mahmoudi A, Firouzjaei AA, Darijani F, Navashenaq JG, Taghizadeh E, Darroudi M, Gheibihayat SM. Effect of diabetes on efferocytosis process. Mol Biol Rep 2022; 49:10849-10863. [PMID: 35902446 DOI: 10.1007/s11033-022-07725-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Diabetes is a complex of genetic, metabolic, and autoimmune disorders that are characterized by hyperglycemia. Elevated apoptotic cell count following defective clearance of dead cells that can cause chronic inflammation is a hallmark of the diabetic wound. Effective dead cell clearance is a prerequisite for rapid inflammation resolution and successful recovery. Efferocytosis is a multistep process in which phagocytes engulf the dead cells. Cell body elimination is of great significance in disease and homeostasis. Recent research has clarified that diabetic wounds have an enhanced load of the apoptotic cell, which is partly attributed to the dysfunction of macrophages in apoptotic clearance at the site of the diabetic wounds. In the current work, we highlight the pathways implicated in efferocytosis, from the diagnosis of apoptotic cells to the phagocytic swallowing and the homeostatic resolution, and explain the possible pathophysiological episodes occurring when the proceeding is abrogated. Also, we describe the last development in the management of inflammation in diabetes wound and future directions of surveillance.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of medical biotechnology and nanotechnology, faculty of medicine, Mashhad University of Medical science, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Darijani
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Eskandar Taghizadeh
- Department of Medical Genetic, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, Iran.
| |
Collapse
|
48
|
Zhang S, Liu Y, Cao Y, Zhang S, Sun J, Wang Y, Song S, Zhang H. Targeting the Microenvironment of Vulnerable Atherosclerotic Plaques: An Emerging Diagnosis and Therapy Strategy for Atherosclerosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110660. [PMID: 35238081 DOI: 10.1002/adma.202110660] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Atherosclerosis is considered one of the primary causes of cardiovascular diseases (CVDs). Unpredictable rupture of the vulnerable atherosclerotic plaques triggers adverse cardiovascular events such as acute myocardial syndrome and even sudden cardiac death. Therefore, assessing the vulnerability of atherosclerotic plaques and early intervention are of significance in reducing CVD mortality. Nanomedicine possesses tremendous advantages in achieving the integration of the diagnosis and therapy of atherosclerotic plaques because of its magnetic, optical, thermal, and catalytic properties. Based on the pathological characteristics of vulnerable plaques, stimuli-responsive nanoplatforms and surface-functionalized nanoagents are designed and have drawn great attention for accomplishing the precise imaging and treatment of vulnerable atherosclerotic plaques due to their superior properties, such as high bioavailability, lesion-targeting specificity, on-demand cargo release, and low off-target damage. Here, the characteristics of vulnerable plaques are generalized, and some targeted strategies for boosting the accuracy of plaque vulnerability evaluation by imaging and the efficacy of plaque stabilization therapy (including antioxidant therapy, macrophage depletion therapy, regulation of lipid metabolism therapy, anti-inflammation therapy, etc.) are systematically summarized. In addition, existing challenges and prospects in this field are discussed, and it is believed to provide new thinking for the diagnosis and treatment of CVDs in the near future.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yue Cao
- Department of Neurosurgery, The First Hospital of Jilin University, 71 Ximin Street, Changchun, Jilin, 130021, China
| | - Songtao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jian Sun
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
49
|
Garrido AM, Kaistha A, Uryga AK, Oc S, Foote K, Shah A, Finigan A, Figg N, Dobnikar L, Jørgensen H, Bennett M. Efficacy and limitations of senolysis in atherosclerosis. Cardiovasc Res 2022; 118:1713-1727. [PMID: 34142149 PMCID: PMC9215197 DOI: 10.1093/cvr/cvab208] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 01/28/2023] Open
Abstract
AIMS Traditional markers of cell senescence including p16, Lamin B1, and senescence-associated beta galactosidase (SAβG) suggest very high frequencies of senescent cells in atherosclerosis, while their removal via 'senolysis' has been reported to reduce atherogenesis. However, selective killing of a variety of different cell types can exacerbate atherosclerosis. We therefore examined the specificity of senescence markers in vascular smooth muscle cells (VSMCs) and the effects of genetic or pharmacological senolysis in atherosclerosis. METHODS AND RESULTS We examined traditional senescence markers in human and mouse VSMCs in vitro, and in mouse atherosclerosis. p16 and SAβG increased and Lamin B1 decreased in replicative senescence and stress-induced premature senescence (SIPS) of cultured human VSMCs. In contrast, mouse VSMCs undergoing SIPS showed only modest p16 up-regulation, and proliferating mouse monocyte/macrophages also expressed p16 and SAβG. Single cell RNA-sequencing (scRNA-seq) of lineage-traced mice showed increased p16 expression in VSMC-derived cells in plaques vs. normal arteries, but p16 localized to Stem cell antigen-1 (Sca1)+ or macrophage-like populations. Activation of a p16-driven suicide gene to remove p16+ vessel wall- and/or bone marrow-derived cells increased apoptotic cells, but also induced inflammation and did not change plaque size or composition. In contrast, the senolytic ABT-263 selectively reduced senescent VSMCs in culture, and markedly reduced atherogenesis. However, ABT-263 did not reduce senescence markers in vivo, and significantly reduced monocyte and platelet counts and interleukin 6 as a marker of systemic inflammation. CONCLUSIONS We show that genetic and pharmacological senolysis have variable effects on atherosclerosis, and may promote inflammation and non-specific effects respectively. In addition, traditional markers of cell senescence such as p16 have significant limitations to identify and remove senescent cells in atherosclerosis, suggesting that senescence studies in atherosclerosis and new senolytic drugs require more specific and lineage-restricted markers before ascribing their effects entirely to senolysis.
Collapse
Affiliation(s)
- Abel Martin Garrido
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Anuradha Kaistha
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Anna K Uryga
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Sebnem Oc
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Kirsty Foote
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Aarti Shah
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Alison Finigan
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Nichola Figg
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Lina Dobnikar
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | - Helle Jørgensen
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Martin Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| |
Collapse
|
50
|
Liang S, Sun Q, Du Z, Ren X, Xu Q, Sun Z, Duan J. PM 2.5 induce the defective efferocytosis and promote atherosclerosis via HIF-1α activation in macrophage. Nanotoxicology 2022; 16:290-309. [PMID: 35653618 DOI: 10.1080/17435390.2022.2083995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Epidemiological studies demonstrate that fine particulate matter (PM2.5) promotes the development of atherosclerosis. However, the mechanism insight of PM2.5-induced atherosclerosis is still lacking. The aim of this study was to explore the biological effects of hypoxia-inducible factor 1α (HIF-1α) on PM2.5-triggered atherosclerosis. The vascular stiffness, carotid intima-media thickness (CIMT), lipid and atherosclerotic lesion were increased when von Hippel-Lindau (VHL)-null mice were exposed to PM2.5. Yet, knockout of HIF-1α markedly decreased the PM2.5-triggered atherosclerotic lesion. We firstly performed microarray analysis in PM2.5-treated bone morrow-derived macrophages (BMDMs), which showed that PM2.5 significantly changed the genes expression patterns and affected biological processes such as phagocytosis, apoptotic cell clearance, cellular response to hypoxia, apoptotic process and inflammatory response. Moreover, the data showed knockout of HIF-1α remarkably relieved PM2.5-induced defective efferocytosis. Mechanistically, PM2.5 inhibited the level of genes and proteins of efferocytosis receptor c-Mer tyrosine kinase (MerTK), especially in VHL-null BMDMs. In addition, PM2.5 increased the genes and proteins of a disintegrin and metallopeptidase domain 17 (ADAM17), which caused the MerTK cleavage to form soluble MerTK (sMer) in plasma and cellular supernatant. The sMer was significantly up-regulated in plasma of VHL-null PM2.5-exposed mice. Moreover, PM2.5 could induce defective efferocytosis and activate inflammatory response through MerTK/IFNAR1/STAT1 signaling pathway in macrophages. Our results demonstrate that PM2.5 could induce defective efferocytosis and inflammation by activating HIF-1α in macrophages, ultimately resulting in accelerating atherosclerotic lesion formation and development. Our data suggest HIF-1α in macrophages might be a potential target for PM2.5-related atherosclerosis.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Qing Xu
- Core Facility Centre, Capital Medical University, Beijing, P.R. China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, P.R. China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| |
Collapse
|