1
|
Zhang X, Kang Z, Yin D, Gao J. Role of neutrophils in different stages of atherosclerosis. Innate Immun 2023; 29:97-109. [PMID: 37491844 PMCID: PMC10468622 DOI: 10.1177/17534259231189195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils constitute the first line of defense in human immunity and can be attracted to inflamed and infected sites by various chemokines. As essential players in immune processes, neutrophils theoretically play integral roles in the course of chronic inflammation-induced atherosclerosis. However, because neutrophils are rarely found in atherosclerotic lesions, their involvement in the pathophysiological progression of atherosclerosis has been largely underestimated or ignored. Recent research has revealed convincing evidence showing the presence of neutrophils in atherosclerotic lesions and has revealed neutrophil contributions to different atherosclerosis stages in mice and humans. This review describes the underlying mechanisms of neutrophils in different stages of atherosclerosis and highlights potential neutrophil-targeted therapeutic strategies relevant to atherosclerosis. An in-depth understanding of neutrophils' roles in atherosclerosis pathology will promote exploration of new methods for the prevention and treatment of atherogenesis and atherothrombosis.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zhanfang Kang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Dazhong Yin
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jun Gao
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| |
Collapse
|
2
|
Metformin Directly Binds to MMP-9 to Improve Plaque Stability. J Cardiovasc Dev Dis 2023; 10:jcdd10020054. [PMID: 36826550 PMCID: PMC9962015 DOI: 10.3390/jcdd10020054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Vulnerable atherosclerotic plaque rupture is the principal mechanism that accounts for myocardial infarction and stroke. High matrix metalloproteinase-9 (MMP-9) expression and activity have been proven to lead to plaque instability. Metformin, a first-line treatment for type 2 diabetes, is beneficial to plaque vulnerability. However, the mechanism underlying its anti-atherogenic effect remains unclear. Molecular docking and surface plasmon resonance experiments showed that metformin directly interacts with MMP-9, and incubated MMP-9 overexpressing HEK293A cells with metformin (1 μmol·L-1) significantly attenuates MMP-9's activity using zymography and MMP activity assays. Moreover, metformin treatment drives MMP-9 degradation. Next, we constructed a carotid artery atherosclerotic plaque model and administered consecutive 14-day metformin (200 mg·kg-1·d-1) treatment by intragastric gavage. Immunofluorescence staining of the right carotid common artery and serum MMP activity assay results showed that metformin treatment decreased local plaque MMP-9 protein level and circulating MMP-9 activity, respectively. Histochemical staining revealed that after metformin treatment, the collagen content in plaque was significantly preserved, and the plaque vulnerability index decreased. These findings suggested that metformin improved atherosclerotic plaque stability by directly binding to MMP-9 and driving its degradation.
Collapse
|
3
|
Jin Z, Zhao H, Luo Y, Li X, Cui J, Yan J, Yang P. Identification of core genes associated with the anti-atherosclerotic effects of Salvianolic acid B and immune cell infiltration characteristics using bioinformatics analysis. BMC Complement Med Ther 2022; 22:190. [PMID: 35842645 PMCID: PMC9288713 DOI: 10.1186/s12906-022-03670-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/06/2022] [Indexed: 12/17/2022] Open
Abstract
Background Atherosclerosis (AS) is the greatest contributor to pathogenesis of atherosclerotic cardiovascular disease (ASCVD), which is associated with increased mortality and reduced quality of life. Early intervention to mitigate AS is key to prevention of ASCVD. Salvianolic acid B (Sal B) is mainly extracted from root and rhizome of Salvia Miltiorrhiza Bunge, and exerts anti-atherosclerotic effect. The purpose of this study was to screen for anti-AS targets of Sal B and to characterize immune cell infiltration in AS. Methods We identified targets of Sal B using SEA (http://sea.bkslab.org/) and SIB (https://www.sib.swiss/) databases. GSE28829 and GSE43292 datasets were obtained from Gene Expression Omnibus database. We identified differentially expressed genes (DEGs) and performed enrichment analysis. Weighted gene co-expression network analysis (WGCNA) was used to determine the most relevant module associated with atherosclerotic plaque stability. Intersecting candidate genes were evaluated by generating receiver operating characteristic (ROC) curves and molecular docking. Then, immune cell types were identified using CIBERSOFT and single-sample gene set enrichment analysis (ssGSEA), the relationship between candidate genes and immune cell infiltration was evaluated. Finally, a network-based approach to explore the candidate genes relationship with microRNAs (miRNAs) and Transcription factors (TFs). Results MMP9 and MMP12 were been selected as candidate genes from 64 Sal B-related genes, 81 DEGs and turquoise module with 220 genes. ROC curve results showed that MMP9 (AUC = 0.815, P<0.001) and MMP12 (AUC = 0.763, P<0.001) were positively associated with advanced atherosclerotic plaques. The results of immune infiltration showed that B cells naive, B cells memory, Plasma cells, T cells CD8, T cells CD4 memory resting, T cells CD4 memory activated, T cells regulatory (Tregs), T cells gamma delta, NK cells activated, Monocytes, and Macrophages M0 may be involved in development of AS, and the candidate genes MMP9 and MMP12 were associated with these immune cells to different degrees. What’ s more, miR-34a-5p and FOXC1, JUN maybe the most important miRNA and TFs. Conclusion The anti-AS effects of Sal B may be related to MMP9 and MMP12 and associated with immune cell infiltration, which is expected to be used in the early intervention of AS. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03670-6.
Collapse
|
4
|
Sef D, Kovacevic M, Jernej B, Novacic K, Slavica M, Petrak J, Medved I, Milosevic M. Immunohistochemical analysis of MMP-9 and COX-2 expression in carotid atherosclerotic plaques among patients undergoing carotid endarterectomy: A prospective study. J Stroke Cerebrovasc Dis 2022; 31:106731. [PMID: 36075131 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Matrix metalloproteinase-9 protein (MMP-9) and cyclooxygenase-2 (COX-2) proteins may have a role in remodelling of atherosclerotic plaques. We analysed and compared the radiological, histological and immunohistochemical characteristics of carotid atherosclerotic plaques between symptomatic and asymptomatic patients who underwent carotid endarterectomy (CEA). METHODS This prospective single-blinded study included 31 patients (70 [64-75] years, 58% males, 42% symptomatic) who underwent CEA and a total of 155 carotid plaque sections that were analysed. Preoperative assessment and multimodality diagnostic imaging with magnetic resonance imaging (MRI) or computed tomography angiography (CTA), histological and immunohistochemical analyses of carotid plaques including the expression of MMP-9 and COX-2 proteins were performed. RESULTS Symptomatic and asymptomatic patients did not significantly differ in respect to preoperative characteristics. Unstable plaques were detected in 12/13 (92.3%, p = 0.020) symptomatic patients using MRI or CTA. There was no perioperative mortality and perioperative outcomes were comparable in both groups. A significantly higher expression of MMP-9 in macrophages was observed among symptomatic patients (p = 0.020). ROC curve analysis showed statistically significant associations of both the higher intensity of COX-2 staining in CD68 PG-M1 positive macrophages (area under the curve [AUC]=0.701, p = 0.014) and higher MVD (AUC=0.821, p < 0.001) within the plaque with cerebrovascular symptoms. The expression of COX-2 and the intensity of COX-2 staining in macrophages within the unstable carotid plaques detected by preoperative MRI or CTA were significantly higher (76.1% vs. 40.0%, p = 0.038; 76.2% vs. 30.0%, p = 0.01, respectively). CONCLUSIONS Advanced non-invasive multimodality diagnostic imaging including MRI or CTA is reliable in differentiating unstable from stable carotid plaques. High expression of MMP-9 and COX-2 in macrophages within the symptomatic plaque is associated with increased risk of cerebrovascular complications. TRIAL REGISTRATION This study has been registered at the ISRCTN registry (ID ISRCTN46536832), isrctn.org Identifier: https://www.isrctn.com/ISRCTN46536832.
Collapse
Affiliation(s)
- Davorin Sef
- Department of Cardiac Surgery, Harefield Hospital, Royal Brompton and Harefield Hospitals, Part of Guy's and St. Thomas' NHS Foundation Trust, London, UK.
| | - Miljenko Kovacevic
- Department of Vascular Surgery, University Hospital Centre Rijeka, Rijeka, Croatia, EU
| | - Bojan Jernej
- Polyclinic for Radiology and Neurology "Dijagnostika 2000", Zagreb, Croatia, EU
| | - Karlo Novacic
- Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, Zagreb, Croatia, EU
| | - Marko Slavica
- Department of Diagnostic and Interventional Radiology, University Hospital Merkur, Zagreb, Croatia, EU
| | - Jelka Petrak
- University of Zagreb, School of Medicine, Zagreb, Croatia, EU
| | - Igor Medved
- Department of Cardiac Surgery, University Hospital Centre Rijeka, Rijeka, Croatia, EU
| | - Milan Milosevic
- University of Zagreb, School of Medicine, Zagreb, Croatia, EU; Andrija Stampar School of Public Health, Zagreb, Croatia, EU
| |
Collapse
|
5
|
Sef D, Milosevic M, Ostric M, Mestrovic T, Jernej B, Kovacic S, Kovacevic M, Skrtic A, Vidjak V. The role of magnetic resonance imaging and the expression of MMP-9 protein in the analysis of carotid atherosclerotic plaques in patients undergoing carotid endarterectomy: a prospective pilot study. Rev Cardiovasc Med 2021; 22:1611-1620. [PMID: 34957802 DOI: 10.31083/j.rcm2204167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 09/01/2023] Open
Abstract
Components of carotid atherosclerotic plaque can be analysed preoperatively by non-invasive advanced imaging modalities such as magnetic resonance imaging (MRI). The expression of matrix metalloproteinase-9 protein (MMP-9), which has a potential role in remodelling of atherosclerotic plaques, can be analysed immunohistochemically. The aim of the present prospective pilot study is to analyse histological characteristics and expression of MMP-9 in carotid plaques of patients undergoing carotid endarterectomy (CEA) and to investigate the correlation with preoperative clinical symptoms and MRI features. Preoperative clinical assessment, MRI imaging, postoperative histological and immunohistochemical analyses were performed. Fifteen patients with symptomatic (7/15; 47%) and asymptomatic carotid artery stenosis undergoing CEA were included. Among symptomatic patients, 5 (71%) had recent stroke and 2 (29%) had recent transient ischaemic attack with a median timing of 6 weeks (IQR: 1, 18) before the surgery. Both groups did not significantly differ in respect to preoperative characteristics. Prevalence of unstable plaque was higher in symptomatic than asymptomatic patients, although it was not significant (63% vs. 37%, p = 0.077). The expression of MMP-9 in CD68 cells within the plaque by semiquantitative analysis was found to be significantly higher in symptomatic as compared to asymptomatic patients (86% vs. 25% with the highest expression, p = 0.014). The average microvascular density was found to be higher and lipid core area larger among both symptomatic patients and unstable carotid plaque specimens, although this did not reach statistical significance (p = 0.064 and p = 0.132, p = 0.360 and p = 0.569, respectively). Our results demonstrate that MRI is reliable in classifying carotid lesions and differentiating unstable from stable plaques. We have also shown that the expression of MMP-9 is significantly higher among symptomatic patients undergoing CEA.
Collapse
Affiliation(s)
- Davorin Sef
- Department of Cardiac Surgery, The Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, EC1A 7BE London, UK
| | - Milan Milosevic
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Andrija Stampar School of Public Health, 10000 Zagreb, Croatia
| | - Marin Ostric
- Department of Cardiac Surgery, University Hospital Centre Rijeka, 51000 Rijeka, Croatia
| | - Tomislav Mestrovic
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Vascular Surgery, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Bojan Jernej
- Polyclinic for Radiology and Neurology "Dijagnostika 2000", 10000 Zagreb, Croatia
| | - Slavica Kovacic
- Department of Radiology, University Hospital Centre Rijeka, 51000 Rijeka, Croatia
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Miljenko Kovacevic
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Vascular Surgery, University Hospital Centre Rijeka, 51000 Rijeka, Croatia
| | - Anita Skrtic
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pathology, University Hospital Merkur, 10000 Zagreb, Croatia
| | - Vinko Vidjak
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Diagnostic and Interventional Radiology, University Hospital Merkur, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Close Association of Matrix Metalloproteinase-9 Levels With the Presence of Thin-Cap Fibroatheroma in Acute Coronary Syndrome Patients: Assessment by Optical Coherence Tomography and Intravascular Ultrasonography. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2021; 32:5-10. [PMID: 33485858 DOI: 10.1016/j.carrev.2020.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thin-cap fibroatheroma (TCFA) has been suggested as a precursor lesion of coronary plaque rupture. As elevated plasma matrix metalloproteinase-9 (MMP-9) levels have been documented in patients with acute coronary syndrome (ACS), we sought to determine whether the presence of TCFA is linked to MMP-9 levels in these patients. METHODS We evaluated 51 ACS patients with de novo culprit lesions who were examined via optical coherence tomography and intravascular ultrasound. Blood samples were obtained from the peripheral vein (PV) and the ostium and culprit lesion of the infarct-related coronary artery (CA) in the acute phase of ACS and from the PV in the chronic phase (8 months after ACS). RESULTS The plasma MMP-9 level in the acute phase was significantly higher than that in the chronic phase. Plasma MMP-9 levels at the culprit lesion of the infarct-related CA were significantly higher than, but positively correlated with those in the PV (10.9 (5.9-16.1) ng/mL and 8.9 (5.6-13.0) ng/mL, p < 0.0001, respectively; Spearman ρ = 0.84, p < 0.0001). Significantly higher PV plasma MMP-9 levels were observed in patients with TCFA than in patients without TCFA (12.1 (7.0-13.5) and 5.7 (4.0-8.2) ng/ml, p<0.0001, respectively). Further, plasma MMP-9 levels in the PV were positively correlated with the remodeling index (Spearman ρ = 0.29, p = 0.039) and negatively correlated with fibrous cap thickness (Spearman ρ = -0.42, p = 0.0021). Receiver operating characteristic curve analysis showed that the plasma MMP-9 levels in the PV could predict the presence of TCFA at a cut-off value of 9.9 ng/mL. CONCLUSIONS Plasma MMP-9 levels were closely associated with MMP-9 levels in the CA and were further linked with TCFA in patients with ACS.
Collapse
|
7
|
Yuan C, Miller Z, Zhao XQ. Magnetic Resonance Imaging: Cardiovascular Applications for Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Yu J, Jiang Y, Tu M, Liao B, Fang J. Investigating Prescriptions and Mechanisms of Acupuncture for Chronic Stable Angina Pectoris: An Association Rule Mining and Network Analysis Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:1931839. [PMID: 33110434 PMCID: PMC7578734 DOI: 10.1155/2020/1931839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/02/2020] [Accepted: 09/25/2020] [Indexed: 12/31/2022]
Abstract
Chronic stable angina pectoris (CSAP) is a worldwide cardiovascular disease that severely affects people's quality of life and causes serious cardiovascular accidents. Although acupuncture had been confirmed as a potential adjunctive treatment for CSAP, the basic rules and mechanisms of acupoints were little understood. We conducted a systematic search of the China Biology Medicine (CBM), VIP database, Wangfang database, China National Knowledge Infrastructure (CNKI), PubMed, Cochrane Library, Embase, and Web of Science to identify eligible clinical controlled trials (CCTs) and randomized controlled trials (RCTs), from their inception to 18th February 2020. The acupoint prescriptions in the treatment of CSAP were extracted and analyzed based on the association rule mining (ARM) and network analysis. In addition, potential mechanisms of acupuncture for treating CSAP were summarized by data mining. A total of 27 eligible trials were included. Analysis of acupoint prescriptions covered 36 conventional acupoints and 1 experience acupoint, distributing in 10 meridians. The top three frequently used acupoints were PC6, LU9, and ST36. The top three frequently used meridians were the pericardial meridian, lung meridian, and heart meridian. The most frequently used acupoint combinations were LU9 combined with PC6. Besides, network analysis indicated that the core acupoints included PC6, BL15, ST40, and RN17. Moreover, potential mechanisms of acupuncture for treating CSAP involved the regulation of autonomic nerve function, the content of matrix metalloproteinase-9 (MMP-9), volume and the equivalent block of coronary artery calcified plaque (CACP), endothelin (ET), and nitric oxide (NO), neutrophil-lymphocyte ratio (NLR), the content of C-reactive protein (CRP), and tumor necrosis factor-α (TNF-α). In conclusion, our findings concerning acupoint prescriptions and potential mechanisms in the acupuncture treatment of CSAP could provide an optimized acupuncture treatment plan for clinical treatment of CSAP and promote further mechanism research and network research of CSAP.
Collapse
Affiliation(s)
- Jie Yu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Yongliang Jiang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Mingqi Tu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Binjun Liao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| |
Collapse
|
9
|
The Role of Matrix Metalloproteinase-9 in Atherosclerotic Plaque Instability. Mediators Inflamm 2020; 2020:3872367. [PMID: 33082709 PMCID: PMC7557896 DOI: 10.1155/2020/3872367] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) belongs to the MMP family and has been widely investigated. Excessive MMP-9 expression can enhance extracellular matrix degradation and promote plaque instability. Studies have demonstrated that MMP-9 levels are higher in vulnerable plaques than in stable plaques. Additionally, several human studies have demonstrated that MMP-9 may be a predictor of atherosclerotic plaque instability and a risk factor for future adverse cardiovascular and cerebrovascular events. MMP-9 deficiency or blocking MMP-9 expression can inhibit plaque inflammation and prevent atherosclerotic plaque instability. All of these results suggest that MMP-9 may be a useful predictive biomarker for vulnerable atherosclerotic plaques, as well as a therapeutic target for preventing atherosclerotic plaque instability. In this review, we describe the structure, function, and regulation of MMP-9. We also discuss the role of MMP-9 in predicting and preventing atherosclerotic plaque instability.
Collapse
|
10
|
Jeon S, Kim TK, Jeong SJ, Jung IH, Kim N, Lee MN, Sonn SK, Seo S, Jin J, Kweon HY, Kim S, Shim D, Park YM, Lee SH, Kim KW, Cybulsky MI, Shim H, Roh TY, Park WY, Lee HO, Choi JH, Park SH, Oh GT. Anti-Inflammatory Actions of Soluble Ninjurin-1 Ameliorate Atherosclerosis. Circulation 2020; 142:1736-1751. [PMID: 32883094 DOI: 10.1161/circulationaha.120.046907] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Macrophages produce many inflammation-associated molecules, released by matrix metalloproteinases, such as adhesion molecules, and cytokines, as well, which play a crucial role in atherosclerosis. In this context, we investigated the relationship between Ninjurin-1 (Ninj1 [nerve injury-induced protein]), a novel matrix metalloproteinase 9 substrate, expression, and atherosclerosis progression. METHODS Ninj1 expression and atherosclerosis progression were assessed in atherosclerotic aortic tissue and serum samples from patients with coronary artery disease and healthy controls, and atheroprone apolipoprotein e-deficient (Apoe-/-) and wild-type mice, as well. Apoe-/- mice lacking systemic Ninj1 expression (Ninj1-/-Apoe-/-) were generated to assess the functional effects of Ninj1. Bone marrow transplantation was also used to generate low-density lipoprotein receptor-deficient (Ldlr-/-) mice that lack Ninj1 specifically in bone marrow-derived cells. Mice were fed a Western diet for 5 to 23 weeks, and atherosclerotic lesions were investigated. The anti-inflammatory role of Ninj1 was verified by treating macrophages and mice with the peptides Ninj11-56 (ML56) and Ninj126-37 (PN12), which mimic the soluble form of Ninj1 (sNinj1). RESULTS Our in vivo results conclusively showed a correlation between Ninj1 expression in aortic macrophages and the extent of human and mouse atherosclerotic lesions. Ninj1-deficient macrophages promoted proinflammatory gene expression by activating mitogen-activated protein kinase and inhibiting the phosphoinositide 3-kinase/Akt signaling pathway. Whole-body and bone marrow-specific Ninj1 deficiencies significantly increased monocyte recruitment and macrophage accumulation in atherosclerotic lesions through elevated macrophage-mediated inflammation. Macrophage Ninj1 was directly cleaved by matrix metalloproteinase 9 to generate a soluble form that exhibited antiatherosclerotic effects, as assessed in vitro and in vivo. Treatment with the sNinj1-mimetic peptides, ML56 and PN12, reduced proinflammatory gene expression in human and mouse classically activated macrophages, thereby attenuating monocyte transendothelial migration. Moreover, continuous administration of mPN12 alleviated atherosclerosis by inhibiting the enhanced monocyte recruitment and inflammation characteristics of this disorder in mice, regardless of the presence of Ninj1. CONCLUSIONS Ninj1 is a novel matrix metalloproteinase 9 substrate in macrophages, and sNinj1 is a secreted atheroprotective protein that regulates macrophage inflammation and monocyte recruitment in atherosclerosis. Moreover, sNinj1-mediated anti-inflammatory effects are conserved in human macrophages and likely contribute to human atherosclerosis.
Collapse
Affiliation(s)
- Sejin Jeon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Tae Kyeong Kim
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (S.-J.J., I.-H.J.)
| | - In-Hyuk Jung
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (S.-J.J., I.-H.J.)
| | - Nayoung Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (N.K., W.-Y.P., H.-O.L.).,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (N.K., W.-Y.P., H.-O.L.)
| | - Mi-Ni Lee
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Seong-Keun Sonn
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Seungwoon Seo
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Jing Jin
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Hyae Yon Kweon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Sinai Kim
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Dahee Shim
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea (D.S., J.-H.C.)
| | - Young Mi Park
- Department of Molecular Medicine, Ewha Womans University School of Medicine, Seoul, Korea (Y.M.P.)
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (S.-H.L.)
| | - Kyu-Won Kim
- College of Pharmacy, Seoul National University, Seoul, Korea (K.-W.K.)
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada (M.I.C.)
| | - Hyunbo Shim
- Departments of Bioinspired Science and Life Science (H.S.), Ewha Womans University, Seoul, Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea (T.-Y.R.)
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (N.K., W.-Y.P., H.-O.L.).,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (N.K., W.-Y.P., H.-O.L.)
| | - Hae-Ock Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (N.K., W.-Y.P., H.-O.L.).,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (N.K., W.-Y.P., H.-O.L.)
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea (D.S., J.-H.C.)
| | - Sung Ho Park
- School of Life Sciences, Ulsan National Institute of Science & Technology (UNIST), Ulsan, Korea (S.H.P.)
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| |
Collapse
|
11
|
Tarbell J, Mahmoud M, Corti A, Cardoso L, Caro C. The role of oxygen transport in atherosclerosis and vascular disease. J R Soc Interface 2020; 17:20190732. [PMID: 32228404 PMCID: PMC7211472 DOI: 10.1098/rsif.2019.0732] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis and vascular disease of larger arteries are often associated with hypoxia within the layers of the vascular wall. In this review, we begin with a brief overview of the molecular changes in vascular cells associated with hypoxia and then emphasize the transport mechanisms that bring oxygen to cells within the vascular wall. We focus on fluid mechanical factors that control oxygen transport from lumenal blood flow to the intima and inner media layers of the artery, and solid mechanical factors that influence oxygen transport to the adventitia and outer media via the wall's microvascular system-the vasa vasorum (VV). Many cardiovascular risk factors are associated with VV compression that reduces VV perfusion and oxygenation. Dysfunctional VV neovascularization in response to hypoxia contributes to plaque inflammation and growth. Disturbed blood flow in vascular bifurcations and curvatures leads to reduced oxygen transport from blood to the inner layers of the wall and contributes to the development of atherosclerotic plaques in these regions. Recent studies have shown that hypoxia-inducible factor-1α (HIF-1α), a critical transcription factor associated with hypoxia, is also activated in disturbed flow by a mechanism that is independent of hypoxia. A final section of the review emphasizes hypoxia in vascular stenting that is used to enlarge vessels occluded by plaques. Stenting can compress the VV leading to hypoxia and associated intimal hyperplasia. To enhance oxygen transport during stenting, new stent designs with helical centrelines have been developed to increase blood phase oxygen transport rates and reduce intimal hyperplasia. Further study of the mechanisms controlling hypoxia in the artery wall may contribute to the development of therapeutic strategies for vascular diseases.
Collapse
Affiliation(s)
- John Tarbell
- Biomedical Engineering Department, The City College of New York, New York, NY, USA
| | - Marwa Mahmoud
- Biomedical Engineering Department, The City College of New York, New York, NY, USA
| | - Andrea Corti
- Biomedical Engineering Department, The City College of New York, New York, NY, USA
| | - Luis Cardoso
- Biomedical Engineering Department, The City College of New York, New York, NY, USA
| | - Colin Caro
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
12
|
Gonzalez-Cotto M, Guo L, Karwan M, Sen SK, Barb J, Collado CJ, Elloumi F, Palmieri EM, Boelte K, Kolodgie FD, Finn AV, Biesecker LG, McVicar DW. TREML4 Promotes Inflammatory Programs in Human and Murine Macrophages and Alters Atherosclerosis Lesion Composition in the Apolipoprotein E Deficient Mouse. Front Immunol 2020; 11:397. [PMID: 32292401 PMCID: PMC7133789 DOI: 10.3389/fimmu.2020.00397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
The Triggering Receptor Expressed on Myeloid cells-like 4 (TREML4) is a member of the TREM receptor family, known modulators of inflammatory responses. We have previously found that TREML4 expression positively correlates with human coronary arterial calcification (CAC). However, the role of TREML4 in the pathogenesis of cardiovascular disease remains incompletely defined. Since macrophages play a key role in inflammatory conditions, we investigated if activated macrophages selectively expressed TREML4 and found that carriage of either one of the eQTL SNP's previously associated with increased TREML4 expression conferred higher expression in human inflammatory macrophages (M1) compared to alternatively activated macrophages (M2). Furthermore, we found that TREML4 expression in human M1 dysregulated several inflammatory pathways related to leukocyte activation, apoptosis and extracellular matrix degradation. Similarly, murine M1 expressed substantial levels of Treml4, as did oxLDL treated macrophages. Transcriptome analysis confirmed that murine Treml4 controls the expression of genes related to inflammation and lipid regulation pathways, suggesting a possible role in atherosclerosis. Analysis of Apoe-/-/Treml4-/- mice showed reduced plaque burden and lesion complexity as indicated by decreased stage scores, macrophage content and collagen deposition. Finally, transcriptome analysis of oxLDL-loaded murine macrophages showed that Treml4 represses a specific set of genes related to carbohydrate, ion and amino acid membrane transport. Metabolomic analysis confirmed that Treml4 deficiency may promote a beneficial relationship between iron homeostasis and glucose metabolism. Together, our results suggest that Treml4 plays a role in the development of cardiovascular disease, as indicated by Treml4-dependent dysregulation of macrophage inflammatory pathways, macrophage metabolism and promotion of vulnerability features in advanced lesions.
Collapse
Affiliation(s)
- Marieli Gonzalez-Cotto
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD, United States
| | - Liang Guo
- CVPath Institute, Gaithersburg, MD, United States
| | - Megan Karwan
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Shurjo K. Sen
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jennifer Barb
- Mathematical and Statistical Computing Laboratory, Center for Information Technology (CIT), NIH, Bethesda, MD, United States
| | | | - Fathi Elloumi
- Center for Cancer Research Collaborative Bioinformatics Resource, Leidos Biomedical Research, Inc., Bethesda, MD, United States
| | - Erika M. Palmieri
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD, United States
| | - Kimberly Boelte
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD, United States
| | - Frank D. Kolodgie
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Aloke V. Finn
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Leslie G. Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States
| | - Daniel W. McVicar
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick, MD, United States
| |
Collapse
|
13
|
Chen Y, Waqar AB, Nishijima K, Ning B, Kitajima S, Matsuhisa F, Chen L, Liu E, Koike T, Yu Y, Zhang J, Chen YE, Sun H, Liang J, Fan J. Macrophage-derived MMP-9 enhances the progression of atherosclerotic lesions and vascular calcification in transgenic rabbits. J Cell Mol Med 2020; 24:4261-4274. [PMID: 32126159 PMCID: PMC7171347 DOI: 10.1111/jcmm.15087] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/01/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase‐9 (MMP‐9), or gelatinase B, has been hypothesized to be involved in the progression of atherosclerosis. In the arterial wall, accumulated macrophages secrete considerable amounts of MMP‐9 but its pathophysiological functions in atherosclerosis have not been fully elucidated. To examine the hypothesis that macrophage‐derived MMP‐9 may affect atherosclerosis, we created MMP‐9 transgenic (Tg) rabbits to overexpress the rabbit MMP‐9 gene under the control of the scavenger receptor A enhancer/promoter and examined their susceptibility to cholesterol diet‐induced atherosclerosis. Tg rabbits along with non‐Tg rabbits were fed a cholesterol diet for 16 and 28 weeks, and their aortic and coronary atherosclerosis was compared. Gross aortic lesion areas were significantly increased in female Tg rabbits at 28 weeks; however, pathological examination revealed that all the lesions of Tg rabbits fed a cholesterol diet for either 16 or 28 weeks were characterized by increased monocyte/macrophage accumulation and prominent lipid core formation compared with those of non‐Tg rabbits. Macrophages isolated from Tg rabbits exhibited higher infiltrative activity towards a chemoattractant, MCP‐1 in vitro and augmented capability of hydrolysing extracellular matrix in granulomatous tissue. Surprisingly, the lesions of Tg rabbits showed more advanced lesions with remarkable calcification in both aortas and coronary arteries. In conclusion, macrophage‐derived MMP‐9 facilitates the infiltration of monocyte/macrophages into the lesions thereby enhancing the progression of atherosclerosis. Increased accumulation of lesional macrophages may promote vascular calcification.
Collapse
Affiliation(s)
- Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Ahmed Bilal Waqar
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Kazutoshi Nishijima
- Bioscience Education-Research Support Center, Akita University, Akita, Japan
| | - Bo Ning
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Shuji Kitajima
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Fumikazu Matsuhisa
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Lu Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Tomonari Koike
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Ying Yu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yuqing Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Huijun Sun
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jingyan Liang
- Research Center for Vascular Biology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
14
|
Zirak MR, Mehri S, Karimani A, Zeinali M, Hayes AW, Karimi G. Mechanisms behind the atherothrombotic effects of acrolein, a review. Food Chem Toxicol 2019; 129:38-53. [DOI: 10.1016/j.fct.2019.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
|
15
|
Kiugel M, Hellberg S, Käkelä M, Liljenbäck H, Saanijoki T, Li XG, Tuomela J, Knuuti J, Saraste A, Roivainen A. Evaluation of [ 68Ga]Ga-DOTA-TCTP-1 for the Detection of Metalloproteinase 2/9 Expression in Mouse Atherosclerotic Plaques. Molecules 2018; 23:molecules23123168. [PMID: 30513758 PMCID: PMC6321344 DOI: 10.3390/molecules23123168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 12/30/2022] Open
Abstract
Background: The expression of matrix metalloproteinases 2/9 (MMP-2/9) has been implicated in arterial remodeling and inflammation in atherosclerosis. We evaluated a gallium-68 labeled peptide for the detection of MMP-2/9 in atherosclerotic mouse aorta. Methods: We studied sixteen low-density lipoprotein receptor deficient mice (LDLR-/-ApoB100/100) kept on a Western-type diet. Distribution of intravenously-injected MMP-2/9-targeting peptide, [68Ga]Ga-DOTA-TCTP-1, was studied by combined positron emission tomography (PET) and contrast-enhanced computed tomography (CT). At 60 min post-injection, aortas were cut into cryosections for autoradiography analysis of tracer uptake, histology, and immunohistochemistry. Zymography was used to assess MMP-2/9 activation and pre-treatment with MMP-2/9 inhibitor to assess the specificity of tracer uptake. Results: Tracer uptake was not visible by in vivo PET/CT in the atherosclerotic aorta, but ex vivo autoradiography revealed 1.8 ± 0.34 times higher tracer uptake in atherosclerotic plaques than in normal vessel wall (p = 0.0029). Tracer uptake in plaques correlated strongly with the quantity of Mac-3-positive macrophages (R = 0.91, p < 0.001), but weakly with MMP-9 staining (R = 0.40, p = 0.099). Zymography showed MMP-2 activation in the aorta, and pre-treatment with MMP-2/9 inhibitor decreased tracer uptake by 55% (p = 0.0020). Conclusions: The MMP-2/9-targeting [68Ga]Ga-DOTA-TCTP-1 shows specific uptake in inflamed atherosclerotic lesions; however, a low target-to-background ratio precluded in vivo vascular imaging. Our results suggest, that the affinity of gelatinase imaging probes should be steered towards activated MMP-2, to reduce the interference of circulating enzymes on the target visualization in vivo.
Collapse
Affiliation(s)
- Max Kiugel
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | - Sanna Hellberg
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | - Meeri Käkelä
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, FI-20520 Turku, Finland.
| | - Tiina Saanijoki
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | - Xiang-Guo Li
- Turku PET Centre, Åbo Akademi University, FI-20520 Turku, Finland.
| | - Johanna Tuomela
- Department of Cell Biology and Anatomy, University of Turku, FI-20520 Turku, Finland.
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland.
| | - Antti Saraste
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland.
- Heart Center, Turku University Hospital, FI-20520 Turku, Finland.
- Institute of Clinical Medicine, University of Turku, FI-20520 Turku, Finland.
| | - Anne Roivainen
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, FI-20520 Turku, Finland.
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland.
| |
Collapse
|
16
|
Amersfoort J, Schaftenaar FH, Douna H, van Santbrink PJ, Kröner MJ, van Puijvelde GHM, Quax PHA, Kuiper J, Bot I. Lipocalin-2 contributes to experimental atherosclerosis in a stage-dependent manner. Atherosclerosis 2018; 275:214-224. [PMID: 29960897 DOI: 10.1016/j.atherosclerosis.2018.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/15/2018] [Accepted: 06/08/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND AIMS Lipocalin-2 (Lcn2) is a glycoprotein which can be secreted by immune cells. Several studies in humans have suggested Lcn2 can be used as a biomarker for the detection of unstable atherosclerotic lesions, partly as it is known to interact with MMP-9. METHODS In this study, we generated Ldlr-/-Lcn2-/- mice to assess the functional role of Lcn2 in different stages of atherosclerosis. Atherosclerotic lesions were characterized through histological analysis and myeloid cell populations were examined using flow cytometry. RESULTS We show that Ldlr-/-Lcn2-/- mice developed larger atherosclerotic lesions during earlier stages of atherosclerosis and had increased circulating Ly6Chi inflammatory monocytes compared to Ldlr-/- mice. Advanced atherosclerotic lesions from Ldlr-/-Lcn2-/- mice had decreased necrotic core area, suggesting Lcn2 deficiency may affect lesion stability. Furthermore, MMP-9 activity was diminished in plaques from Ldlr-/-Lcn2-/- mice. CONCLUSIONS Altogether, these findings suggest that Lcn2 deficiency promotes lesion growth in earlier stages of the disease while it decreases MMP-9 activity and necrotic core size in advanced atherosclerosis.
Collapse
Affiliation(s)
- J Amersfoort
- Division of Biotherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| | - F H Schaftenaar
- Division of Biotherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - H Douna
- Division of Biotherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - P J van Santbrink
- Division of Biotherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - M J Kröner
- Division of Biotherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - G H M van Puijvelde
- Division of Biotherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - P H A Quax
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - J Kuiper
- Division of Biotherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - I Bot
- Division of Biotherapeutics, LACDR, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| |
Collapse
|
17
|
Abstract
Over the past decade, studies have repeatedly found single-nucleotide polymorphisms located in the collagen ( COL) 4A1 and COL4A2 genes to be associated with cardiovascular disease (CVD), and the 13q34 locus harboring these genes is one of ~160 genome-wide significant risk loci for coronary artery disease. COL4A1 and COL4A2 encode the α1- and α2-chains of collagen type IV, a major component of basement membranes in various tissues including arteries. Despite the growing body of evidence indicating a role for collagen type IV in CVD, remarkably few studies have aimed to directly investigate such a role. The purpose of this review is to summarize the clinical reports linking 13q34 to coronary artery disease, atherosclerosis, and artery stiffening and to assemble the scattered pieces of evidence from experimental studies based on vascular cells and tissue collectively supporting a role for collagen type IV in atherosclerosis and other macrovascular disease conditions.
Collapse
Affiliation(s)
- L B Steffensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital , Odense , Denmark.,Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital , Odense , Denmark.,Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - L M Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital , Odense , Denmark.,Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital , Odense , Denmark
| |
Collapse
|
18
|
Zhang K, Zhang F, Yang JM, Kong J, Meng X, Zhang M, Zhang C, Zhang Y. Silencing of Non-POU-domain-containing octamer-binding protein stabilizes atherosclerotic plaque in apolipoprotein E-knockout mice via NF-κB signaling pathway. Int J Cardiol 2018; 263:96-103. [PMID: 29673854 DOI: 10.1016/j.ijcard.2018.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/25/2018] [Accepted: 04/05/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND It remains unknown whether Non-POU-domain-containing octamer-binding protein (NonO) plays a causative role in plaque destabilization. We hypothesized that NonO gene silencing may stabilize atherosclerotic plaque by increasing P4Hα1 expression and inhibiting the inflammation. METHODS AND RESULTS Vulnerable atherosclerotic plaques were induced in ApoE-/- mice by high fat diet, perivascular collar placement and mental stress. Compared with normal carotid arteries, those contained vulnerable plaques had high NonO expression. In another in vivo experiment, mice contained vulnerable plaques were randomly divided into 5 groups to receive physiological saline, si-N.C-lentivirus (LV), si-NonO-LV, pGC-GFP-LV and NonO-LV, respectively. NonO overexpression increased while NonO silencing decreased the incidence of carotid plaque disruption. NonO overexpression enhanced macrophage infiltration and lipid deposition but reduced the content of vascular smooth muscle cells and collagen in plaques, leading to an increased plaque vulnerability index, whereas NonO silencing exhibited the opposite effect. In addition, NonO overexpression increased the expression of proinflammatory cytokines and matrix metalloproteinases and decreased the expression of P4Hα1 both in vivo and in vitro, whereas NonO silencing showed the contrary effect. NonO co-immunoprecipitated with NF-κB p65, and promoted its nuclear translocation and phosphorylation, and these effects were reversed by NonO silencing. CONCLUSION NonO may promote plaque destabilization and increase the incidence of plaque disruption in ApoE-/- mice by inducing the expression of inflammatory cytokines and matrix metalloproteinases and suppressing that of P4Hα1. The mechanism may involve the interaction of NonO with NF-κB leading to enhanced NF-κB nuclear translocation and phosphorylation.
Collapse
Affiliation(s)
- Kai Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Fang Zhang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Jian-Min Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Kong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
19
|
Suzuki E, Imuta H, Fujita D, Takahashi M, Oba S, Kiyosue A, Nishimatsu H. Endogenous Interleukin-1β Is Implicated in Intraplaque Hemorrhage in Apolipoprotein E Gene Null Mice. Circ J 2018; 82:1130-1138. [PMID: 29467356 DOI: 10.1253/circj.cj-17-1023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Intraplaque hemorrhage (IPH) has been implicated in plaque instability and rupture in atherosclerotic lesions, although the mechanisms by which IPH progresses remain largely unknown. In this study, apolipoprotein E-deficient mice with carotid artery ligation and cuff placement around the artery were used, and pro-inflammatory cytokines that are implicated in IPH were analyzed. METHODS AND RESULTS The expression of interleukin-1β (IL-1β) increased significantly following cuff placement compared with mice with carotid artery ligation alone. IPH occurred in the cuff-placed carotid artery following treatment with the negative control (NC) small interfering RNA (siRNA). However, the occurrence was significantly reduced in the cuff-placed carotid artery following treatment with an IL-1β siRNA. Neovessel formation was significantly reduced in the carotid artery treated with the NC siRNA compared with that treated with IL-1β siRNA. IL-1β significantly inhibited the tube formation and wound healing capacities of vascular endothelial cells in vitro. Furthermore, immunostaining of matrix metalloproteinase-9 (MMP-9) significantly increased in the carotid artery treated with the NC siRNA compared with that treated with IL-1β siRNA. CONCLUSIONS These results suggest that endogenous IL-1β is implicated in the progression of IPH via the inhibition of physiological angiogenesis in the atherosclerotic plaque, leading to the formation of leaky neovessels. Furthermore, the stimulation of MMP-9 expression may also contribute to the formation of leaky neovessels.
Collapse
Affiliation(s)
- Etsu Suzuki
- Institute of Medical Science, St. Marianna University School of Medicine
| | - Hiroyuki Imuta
- Division of Cardiovascular Medicine, Faculty of Medicine, the University of Tokyo
| | - Daishi Fujita
- Division of Cardiovascular Medicine, Faculty of Medicine, the University of Tokyo
| | - Masao Takahashi
- Department of Cardiovascular Medicine, Jichi Medical University School of Medicine
| | - Shigeyoshi Oba
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, the University of Tokyo
| | - Arihiro Kiyosue
- Division of Cardiovascular Medicine, Faculty of Medicine, the University of Tokyo
| | | |
Collapse
|
20
|
Weiss TW, Rohla M. Metabolic syndrome, inflammation and atherothrombosis. Hamostaseologie 2017; 33:283-94. [DOI: 10.5482/hamo-13-07-0035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/16/2013] [Indexed: 12/17/2022] Open
Abstract
SummaryExtensive research of the past decades altered our traditional concept about the genesis of atherosclerosis fundamentally. Today, the crucial role of inflammation in the formation and progression of atherosclerotic plaques is indisputable. Patients at high risk for developing cardiovascular disease, owing to poor diet, obesity and low physical activity have been shown to exhibit a particular inflammatory pattern.Therefore, the present review highlights the crosslink between the metabolic syndrome (MetS), adipose tissue, adipokines and selected inflammatory cytokines in the context of atherothrombosis and cardiovascular disease.
Collapse
|
21
|
Animal models of atherosclerosis. Eur J Pharmacol 2017; 816:3-13. [DOI: 10.1016/j.ejphar.2017.05.010] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/07/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022]
|
22
|
Metalloproteinases in atherosclerosis. Eur J Pharmacol 2017; 816:93-106. [DOI: 10.1016/j.ejphar.2017.09.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022]
|
23
|
Zhang C, Chen D, Maguire EM, He S, Chen J, An W, Yang M, Afzal TA, Luong LA, Zhang L, Lei H, Wu Q, Xiao Q. Cbx3 inhibits vascular smooth muscle cell proliferation, migration, and neointima formation. Cardiovasc Res 2017; 114:443-455. [DOI: 10.1093/cvr/cvx236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, Yuzhong District, China
| | - Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, Yuzhong District, China
| | - Eithne Margaret Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Shiping He
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jiangyong Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Cardiothoracic Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Mei Yang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Tayyab Adeel Afzal
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Le Anh Luong
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Han Lei
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, Yuzhong District, China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, Yuzhong District, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Guangzhou, Guangdong 511436, Panyu District, China
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Guangzhou, Guangdong 511436, Panyu District, China
| |
Collapse
|
24
|
Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Herrmann J, Hoefer I, Jukema JW, Krams R, Kwak BR, Marx N, Naruszewicz M, Newby A, Pasterkamp G, Serruys PWJC, Waltenberger J, Weber C, Tokgözoglu L, Ylä-Herttuala S. Stabilisation of atherosclerotic plaques. Thromb Haemost 2017; 106:1-19. [DOI: 10.1160/th10-12-0784] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/29/2011] [Indexed: 01/04/2023]
Abstract
SummaryPlaque rupture and subsequent thrombotic occlusion of the coronary artery account for as many as three quarters of myocardial infarctions. The concept of plaque stabilisation emerged about 20 years ago to explain the discrepancy between the reduction of cardiovascular events in patients receiving lipid lowering therapy and the small decrease seen in angiographic evaluation of atherosclerosis. Since then, the concept of a vulnerable plaque has received a lot of attention in basic and clinical research leading to a better understanding of the pathophysiology of the vulnerable plaque and acute coronary syndromes. From pathological and clinical observations, plaques that have recently ruptured have thin fibrous caps, large lipid cores, exhibit outward remodelling and invasion by vasa vasorum. Ruptured plaques are also focally inflamed and this may be a common denominator of the other pathological features. Plaques with similar characteristics, but which have not yet ruptured, are believed to be vulnerable to rupture. Experimental studies strongly support the validity of anti-inflammatory approaches to promote plaque stability. Unfortunately, reliable non-invasive methods for imaging and detection of such plaques are not yet readily available. There is a strong biological basis and supportive clinical evidence that low-density lipoprotein lowering with statins is useful for the stabilisation of vulnerable plaques. There is also some clinical evidence for the usefulness of antiplatelet agents, beta blockers and renin-angiotensin-aldosterone system inhibitors for plaque stabilisation. Determining the causes of plaque rupture and designing diagnostics and interventions to prevent them are urgent priorities for current basic and clinical research in cardiovascular area.
Collapse
|
25
|
A Rabbit Model for Testing Helper-Dependent Adenovirus-Mediated Gene Therapy for Vein Graft Atherosclerosis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:96-111. [PMID: 29296626 PMCID: PMC5744068 DOI: 10.1016/j.omtm.2017.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/21/2017] [Indexed: 02/03/2023]
Abstract
Coronary artery bypass vein grafts are a mainstay of therapy for human atherosclerosis. Unfortunately, the long-term patency of vein grafts is limited by accelerated atherosclerosis. Gene therapy, directed at the vein graft wall, is a promising approach for preventing vein graft atherosclerosis. Because helper-dependent adenovirus (HDAd) efficiently transduces grafted veins and confers long-term transgene expression, HDAd is an excellent candidate for delivery of vein graft-targeted gene therapy. We developed a model of vein graft atherosclerosis in fat-fed rabbits and demonstrated long-term (≥20 weeks) persistence of HDAd genomes after graft transduction. This model enables quantitation of vein graft hemodynamics, wall structure, lipid accumulation, cellularity, vector persistence, and inflammatory markers on a single graft. Time-course experiments identified 12 weeks after transduction as an optimal time to measure efficacy of gene therapy on the critical variables of lipid and macrophage accumulation. We also used chow-fed rabbits to test whether HDAd infusion in vein grafts promotes intimal growth and inflammation. HDAd did not increase intimal growth, but had moderate-yet significant-pro-inflammatory effects. The vein graft atherosclerosis model will be useful for testing HDAd-mediated gene therapy; however, pro-inflammatory effects of HdAd remain a concern in developing HDAd as a therapy for vein graft disease.
Collapse
|
26
|
Gu C, Wang F, Zhao Z, Wang H, Cong X, Chen X. Lysophosphatidic Acid Is Associated with Atherosclerotic Plaque Instability by Regulating NF-κB Dependent Matrix Metalloproteinase-9 Expression via LPA 2 in Macrophages. Front Physiol 2017; 8:266. [PMID: 28496416 PMCID: PMC5406459 DOI: 10.3389/fphys.2017.00266] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/11/2017] [Indexed: 01/18/2023] Open
Abstract
Lysophosphatidic acid (LPA), one of the simplest phospholipid signaling molecules, participates in formation and disruption of atherosclerotic plaque. Matrix metalloproteinases (MMPs) contribute to atherosclerotic plaque rupture by involving in extracellular matrix (ECM) degradation and then thinning fibrous cap. Our previous study demonstrated that macrophage-derived MMP-9 was associated with coronary plaque instability, but the relationship between LPA and MMP-9 remains unclear. The present work therefore aimed at elucidating association between LPA and MMP-9 and the regulation mechanism of LPA on MMP-9 in macrophages. We found that plasma LPA and MMP-9 levels were correlated positively (r = 0.31, P < 0.05) and both elevated significantly in patients with acute myocardial infarct (AMI). Consistent with peripheral blood levels, histochemical staining indicated that autotaxin (ATX), LPA-producing ectoenzyme, and MMP-9 were expressed frequently in the necrotic core and fibrous cap of human unstable plaques, which might increase the instability of plaque. Experiments in vitro were done with THP-1-derived macrophages and showed that LPA enhanced the expression, secretion and activity of MMP-9 in a time- and dose-dependent manner. Induction of LPA on pro-MMP-9 and active-MMP-9 was confirmed in human peripheral blood monocyte-derived macrophages. PDTC, NF-κB inhibitor, but not inhibitor of AP-1 and PPARγ, effectively prevented LPA-induced MMP-9 expression and NF-κB p65 siRNA decreased MMP-9 transcription, confirming that LPA might induce MMP-9 elevation by activating NF-κB pathway. In addition, knockdown of LPA2 attenuated LPA-induced MMP-9 expression and nucleus p65 levels. These findings revealed that LPA upregulated the expression of MMP-9 through activating NF-κB pathway in the LPA2 dependent manner, hence blocking LPA receptors signaling may provide therapeutic strategy to target plaque destabilization.
Collapse
Affiliation(s)
- Chun Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Fang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Zhenwen Zhao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of ScienceBeijing, China
| | - Hongyue Wang
- Department of Pathology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Xiangfeng Cong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Xi Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
27
|
Brown BA, Williams H, George SJ. Evidence for the Involvement of Matrix-Degrading Metalloproteinases (MMPs) in Atherosclerosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:197-237. [PMID: 28413029 DOI: 10.1016/bs.pmbts.2017.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Atherosclerosis leads to blockage of arteries, culminating in myocardial infarction, and stroke. The involvement of matrix-degrading metalloproteinases (MMPs) in atherosclerosis is established and many studies have highlighted the importance of various MMPs in this process. MMPs were first implicated in atherosclerosis due to their ability to degrade extracellular matrix components, which can lead to increased plaque instability. However, more recent work has highlighted a multitude of roles for MMPs in addition to breakdown of extracellular matrix proteins. MMPs are now known to be involved in various stages of plaque progression: from initial macrophage infiltration to plaque rupture. This chapter summarizes the development and progression of atherosclerotic plaques and the contribution of MMPs. We provide data from human studies showing the effect of MMP polymorphisms and the expression of MMPs in both the atherosclerotic plaque and within plasma. We also discuss work in animal models of atherosclerosis that show the effect of gain or loss of function of MMPs. Together, the data provided from these studies illustrate that MMPs are ideal targets as both biomarkers and potential drug therapies for atherosclerosis.
Collapse
Affiliation(s)
- Bethan A Brown
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Helen Williams
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Sarah J George
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
28
|
Chen Q, Zhai H, Li X, Ma Y, Chen B, Liu F, Lai H, Xie J, He C, Luo J, Gao J, Yang Y. Recombinant adeno-associated virus serotype 9 in a mouse model of atherosclerosis: Determination of the optimal expression time in vivo. Mol Med Rep 2017; 15:2090-2096. [PMID: 28260093 PMCID: PMC5364991 DOI: 10.3892/mmr.2017.6235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/23/2016] [Indexed: 01/18/2023] Open
Abstract
Adeno-associated virus 9 (AAV9) has been identified as one of the optimal gene transduction carriers for gene therapy. The aim of the present study was to determine the gene transfection efficiency and safety of an AAV9 vector produced using a recombinant baculovirus (rBac)‑based system. AAV9‑cytomegalovirus (CMV)-green fluorescent protein was produced using an rBac system and the resulting vector particles were injected intravenously into mice. Animals were sacrificed at 14, 21, 28, 35, 60, 90 and 120 days following injection. GFP expression in aortic vasculature and aortic plaques in C57/6B and apolipoprotein E‑/‑ mice was analyzed by fluorescence imaging and western blotting. In vivo analyses of biological markers of liver and heart damage, and renal function, as well as in vitro terminal deoxynucleotidyl transferase dUTP nick end labeling analysis were used to determine the toxicity of the AAV9 carrier. The findings of the present study demonstrated that AAV9 viral vectors packaged using the rBac system functioned appropriately in arteriosclerosis plaques. The CMV promoter significantly induced GFP expression in the vascular plaque in a time-dependent manner. AAV9‑CMV viral particles did not lead to heart, liver or renal damage and no change in apoptotic rate was identified. These findings indicated that AAV9-CMV may be effectively and safely used to transfect genes into atherosclerotic plaques.
Collapse
Affiliation(s)
- Qingjie Chen
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hui Zhai
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xiaomei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yitong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Bangdang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, Xinjiang 830054, P.R. China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, Xinjiang 830054, P.R. China
| | - Hongmei Lai
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Jia Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Chunhui He
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Junyi Luo
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Jing Gao
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yining Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
29
|
Zhao D, Tong L, Zhang L, Li H, Wan Y, Zhang T. Tanshinone II A stabilizes vulnerable plaques by suppressing RAGE signaling and NF-κB activation in apolipoprotein-E-deficient mice. Mol Med Rep 2016; 14:4983-4990. [PMID: 27840935 PMCID: PMC5355755 DOI: 10.3892/mmr.2016.5916] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/05/2016] [Indexed: 11/11/2022] Open
Abstract
Tanshinone II A (TSIIA) is a diterpene quinone extracted from the roots of Salvia miltiorrhiza with anti-inflammatory and anti‑oxidant properties that is used to treat atherosclerosis. In the current study, morphological analyses were conducted to evaluate the effects of TSIIA on atherosclerotic vulnerable plaque stability. Additionally, receptor of advanced glycation end products (RAGE), adhesion molecule, and matrix‑metalloproteinases (MMPs) expression, and nuclear factor-κB (NF‑κB) activation were examined in apolipoprotein E (apoE)‑deficient mice treated with TSIIA. Eight‑week‑old apoE-/- mice were administered TSIIA and fed an atherogenic diet for 8 weeks. TSIIA exhibited no effects on plaque size. Analysis of the vulnerable plaque composition demonstrated decreased numbers of macrophages and smooth muscle cells, and increased collagen content in apoE‑deficient mice treated with TSIIA compared with untreated mice. Western blotting revealed that TSIIA downregulated the expression levels of vascular cellular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule‑1 (ICAM‑1), and MMP‑2, ‑3, and ‑9, suppressed RAGE, and inhibited NF‑κB, JNK and p38 activation. The present study demonstrated that the underlying mechanism of TSIIA stabilization of vulnerable plaques involves interfering with RAGE and NF‑κB activation, and downregulation of downstream inflammatory factors, including ICAM‑1, VCAM‑1, and MMP‑2, ‑3 and ‑9 in apoE-/- mice.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Geriatric Medicine, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Lufang Tong
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Lixin Zhang
- Department of Dermatology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Hong Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Yingxin Wan
- Third Department of Internal Medicine, Changping Chinese and Western Medicine Hospital, Beijing 102208, P.R. China
| | - Tiezhong Zhang
- Department of Geriatric Medicine, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
30
|
Nishiguchi T, Tanaka A, Taruya A, Emori H, Ozaki Y, Orii M, Shiono Y, Shimamura K, Kameyama T, Yamano T, Yamaguchi T, Matsuo Y, Ino Y, Kubo T, Hozumi T, Hayashi Y, Akasaka T. Local Matrix Metalloproteinase 9 Level Determines Early Clinical Presentation of ST-Segment-Elevation Myocardial Infarction. Arterioscler Thromb Vasc Biol 2016; 36:2460-2467. [PMID: 27687605 DOI: 10.1161/atvbaha.116.308099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Early clinical presentation of ST-segment-elevation myocardial infarction (STEMI) and non-ST-segment-elevation myocardial infarction affects patient management. Although local inflammatory activities are involved in the onset of MI, little is known about their impact on early clinical presentation. This study aimed to investigate whether local inflammatory activities affect early clinical presentation. APPROACH AND RESULTS This study comprised 94 and 17 patients with MI (STEMI, 69; non-STEMI, 25) and stable angina pectoris, respectively. We simultaneously investigated the culprit lesion morphologies using optical coherence tomography and inflammatory activities assessed by shedding matrix metalloproteinase 9 (MMP-9) and myeloperoxidase into the coronary circulation before and after stenting. Prevalence of plaque rupture, thin-cap fibroatheroma, and lipid arc or macrophage count was higher in patients with STEMI and non-STEMI than in those with stable angina pectoris. Red thrombus was frequently observed in STEMI compared with others. Local MMP-9 levels were significantly higher than systemic levels (systemic, 42.0 [27.9-73.2] ng/mL versus prestent local, 69.1 [32.2-152.3] ng/mL versus poststent local, 68.0 [35.6-133.3] ng/mL; P<0.01). Poststent local MMP-9 level was significantly elevated in patients with STEMI (STEMI, 109.9 [54.5-197.8] ng/mL versus non-STEMI: 52.9 [33.0-79.5] ng/mL; stable angina pectoris, 28.3 [14.2-40.0] ng/mL; P<0.01), whereas no difference was observed in the myeloperoxidase level. Poststent local MMP-9 and the presence of red thrombus are the independent determinants for STEMI in multivariate analysis. CONCLUSIONS Local MMP-9 level could determine the early clinical presentation in patients with MI. Local inflammatory activity for atherosclerosis needs increased attention.
Collapse
Affiliation(s)
- Tsuyoshi Nishiguchi
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Atsushi Tanaka
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan.
| | - Akira Taruya
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Hiroki Emori
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Yuichi Ozaki
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Makoto Orii
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Yasutsugu Shiono
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Kunihiro Shimamura
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Takeyoshi Kameyama
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Takashi Yamano
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Tomoyuki Yamaguchi
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Yoshiki Matsuo
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Yasushi Ino
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Takashi Kubo
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Takeshi Hozumi
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Yasushi Hayashi
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Takashi Akasaka
- From the Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| |
Collapse
|
31
|
Ruddy JM, Ikonomidis JS, Jones JA. Multidimensional Contribution of Matrix Metalloproteinases to Atherosclerotic Plaque Vulnerability: Multiple Mechanisms of Inhibition to Promote Stability. J Vasc Res 2016; 53:1-16. [PMID: 27327039 PMCID: PMC7196926 DOI: 10.1159/000446703] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/07/2016] [Indexed: 12/17/2022] Open
Abstract
The prevalence of atherosclerotic disease continues to increase, and despite significant reductions in major cardiovascular events with current medical interventions, an additional therapeutic window exists. Atherosclerotic plaque growth is a complex integration of cholesterol penetration, inflammatory cell infiltration, vascular smooth muscle cell (VSMC) migration, and neovascular invasion. A family of matrix-degrading proteases, the matrix metalloproteinases (MMPs), contributes to all phases of vascular remodeling. The contribution of specific MMPs to endothelial cell integrity and VSMC migration in atherosclerotic lesion initiation and progression has been confirmed by the increased expression of these proteases in plasma and plaque specimens. Endogenous blockade of MMPs by the tissue inhibitors of metalloproteinases (TIMPs) may attenuate proteolysis in some regions, but the progression of matrix degeneration suggests that MMPs predominate in atherosclerotic plaque, precipitating vulnerability. Plaque neovascularization also contributes to instability and, coupling the known role of MMPs in angiogenesis to that of atherosclerotic plaque growth, interest in targeting MMPs to facilitate plaque stabilization continues to accumulate. This article aims to review the contributions of MMPs and TIMPs to atherosclerotic plaque expansion, neovascularization, and rupture vulnerability with an interest in promoting targeted therapies to improve plaque stabilization and decrease the risk of major cardiovascular events.
Collapse
Affiliation(s)
- Jean Marie Ruddy
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, Charleston, S.C., USA
| | | | | |
Collapse
|
32
|
Geronimo FRB, Barter PJ, Rye KA, Heather AK, Shearston KD, Rodgers KJ. Plaque stabilizing effects of apolipoprotein A-IV. Atherosclerosis 2016; 251:39-46. [PMID: 27240254 DOI: 10.1016/j.atherosclerosis.2016.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/20/2016] [Accepted: 04/24/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Apolipoprotein (apo) A-IV, the third most abundant HDL-associated protein, is atheroprotective and shares similar properties as apoA-I. We have reported previously that apoA-I, the most abundant apolipoprotein in HDL, inhibits plaque disruption in a mouse model. We aimed at examining the effects of apoA-IV on markers of plaque stability in vivo. METHODS Plaques within brachiocephalic arteries of 16-week old apoE-knockout C57BL/6 mice were examined for changes in composition after 10 weeks on a high-fat diet (HFD). The animals received twice-weekly injections of human lipid-free apoA-IV (1 mg/kg, n = 31) or PBS (n = 32) during the 9th and 10th weeks of the HFD. RESULTS In the apoA-IV treated mice, there were significantly fewer hemorrhagic plaque disruptions (9/31 vs. 18/32, p < 0.05), thicker fibrous caps, smaller lipid cores, a lower macrophage:SMC ratio, less MMP-9 protein, more collagen, and fewer proliferating cells. In the plaques of mice given apoA-IV, MCP-1, VCAM-1, and inducible NOS were also significantly lower. Based on the percentage of cleaved PARP-positive and TUNEL-positive plaque nuclei, apoA-IV reduced apoptosis. in HMDMs, apoA-IV reduced MMP-9 mRNA expression by half, doubled mRNA levels of TIMP1 and decreased MMP-9 activity. CONCLUSIONS ApoA-IV treatment is associated with a more stable plaque phenotype and a reduced incidence of acute disruptions in this mouse model.
Collapse
Affiliation(s)
| | - P J Barter
- School of Medical Sciences, University of New South Wales, Australia.
| | - K A Rye
- School of Medical Sciences, University of New South Wales, Australia.
| | - A K Heather
- The Heart Research Institute, Sydney, Australia; School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | - K D Shearston
- School of Dentistry, University of Western Australia, Australia.
| | - K J Rodgers
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, Australia.
| |
Collapse
|
33
|
Fernandez Machulsky N, Gagliardi J, Fabre B, Miksztowicz V, Lombardo M, García Escudero A, Gigena G, Blanco F, Gelpi RJ, Schreier L, Gidron Y, Berg G. Matrix metalloproteinases and psychosocial factors in acute coronary syndrome patients. Psychoneuroendocrinology 2016; 63:102-8. [PMID: 26431804 DOI: 10.1016/j.psyneuen.2015.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Psychosocial factors have been linked to cardiovascular diseases independently of traditional risk factors. The impact of psychosocial factors on plaque destabilizing factors, such as matrix metalloproteinases (MMPs) has been proposed although scarcely studied. OBJECTIVE To evaluate the relationships between hostility, perceived stress and social support with MMPs activity in patients after an Acute Myocardial Infarction (AMI). METHODS Blood samples were obtained from 76 patients on admission, post-angioplasty, 24h, 7 days and 3 months after AMI. Hostility, perceived stress and social support were evaluated by validated questionnaires. RESULTS Social support was positively correlated with patientś ejection fraction (r=0.453, p=0.009). Patients with higher infarct size presented increased MMP-2 activity at admission (p=0.04). Patients with one diseased vessel had more social support than those with three diseased vessels (p=0.05). The highest values of MMP-2 and MMP-9 activity were observed at the acute event, decreasing, with the lowest activity at 3 months post-AMI (p<0.001). Only in patients with low social support, hostility correlated with MMP-2 activity, from AMI onset (r=0.645, p=0.013), to 7 days post AMI (r=0.557, p=0.038). Hostility explained up to 28% of the variance in MMP-2 activity (R(2)=0.28, p=0.005). Finally, in patients with high hostility, MMP-9 was positively correlated with IL-1β (r=0.468, p=0.02). CONCLUSIONS This study adds weight to the idea that two psychosocial factors, namely hostility and social support, acting jointly, may affect MMP-2 activity. Moreover, in hostile patients, there is a link between IL-1β and MMP-9. These findings support the role of psychosocial factors in plaque destabilization and in the inflammatory process in AMI.
Collapse
Affiliation(s)
- Nahuel Fernandez Machulsky
- Lipids and Atherosclerosis Laboratory, Clinical Biochemistry Department, INFIBIOC, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Juan Gagliardi
- Hemodynamic Unit, Cardiology Division, General Hospital Dr. Cosme Argerich, Buenos Aires, Argentina
| | - Bibiana Fabre
- Endocrinology Laboratory, Clinical Biochemistry Department, INFIBIOC, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Verónica Miksztowicz
- Lipids and Atherosclerosis Laboratory, Clinical Biochemistry Department, INFIBIOC, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Micaela Lombardo
- Lipids and Atherosclerosis Laboratory, Clinical Biochemistry Department, INFIBIOC, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | | | - Gerardo Gigena
- Hemodynamic Unit, Cardiology Division, General Hospital Dr. Cosme Argerich, Buenos Aires, Argentina
| | - Federico Blanco
- Hemodynamic Unit, Cardiology Division, General Hospital Dr. Cosme Argerich, Buenos Aires, Argentina
| | - Ricardo J Gelpi
- Institute of Cardiovascular Physiopathology and Department of Pathology, Faculty of Medicine, University of Buenos Aires, Argentina
| | - Laura Schreier
- Lipids and Atherosclerosis Laboratory, Clinical Biochemistry Department, INFIBIOC, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | - Yori Gidron
- Behavior Medicine, Faculty of Medicine & Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Gabriela Berg
- Lipids and Atherosclerosis Laboratory, Clinical Biochemistry Department, INFIBIOC, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina.
| |
Collapse
|
34
|
Berg G, Schreier L, Miksztowicz V. Circulating and adipose tissue matrix metalloproteinases in cardiometabolic risk environments: pathophysiological aspects. Horm Mol Biol Clin Investig 2015; 17:79-87. [PMID: 25372732 DOI: 10.1515/hmbci-2013-0069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/28/2014] [Indexed: 02/04/2023]
Abstract
Matrix metalloproteinases (MMPs) play an important role during physiological tissue remodeling in embryonic development and angiogenesis, as well as in pathophysiological conditions such as obesity and development and vulnerability of atherosclerotic plaque. Moreover, MMP circulating levels have emerged as potential biomarkers of cardiovascular disease. MMP expression and activity are regulated by different factors such as insulin resistance and obesity. Expanded fat tissue has been demonstrated to be an active organ, where MMPs also exert a role in adipogenesis, angiogenesis, and proliferation of extracellular matrix (ECM). However, the lack of association between adipose tissue and plasma levels of some MMPs, specifically MMP-2 and MMP-9, suggests that this tissue is not a major contributor to circulating gelatinases. MMPs are also co-expressed or co-repressed in response to inflammatory adipocytokines, like adiponectin and leptin. Adiponectin may also play a protective role in plaque rupture through selectively increasing the tissue inhibitor of metalloproteinase (TIMP) expression. Leptin induces the expression of MMP-2 activators as well as the expression of MMP-2, MMP-9, and TIMP-1 in different human cells. Furthermore, sex hormones also participate in MMP regulation. In postmenopausal women, hormone replacement therapy produces an increase in MMP activity, leading to a breakdown in ECM homeostasis and accelerated progression of vascular pathologies. Besides, in men, an inverse relationship between testosterone levels and MMP-2 activity has been described. It is still necessary to go forward in the study of MMPs in different metabolic situations to corroborate their role as vulnerable plaque biomarkers.
Collapse
|
35
|
Winkel LC, Hoogendoorn A, Xing R, Wentzel JJ, Van der Heiden K. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis. Atherosclerosis 2015; 241:100-10. [PMID: 25969893 DOI: 10.1016/j.atherosclerosis.2015.04.796] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/12/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed.
Collapse
Affiliation(s)
- Leah C Winkel
- Department of Biomedical Engineering, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Ayla Hoogendoorn
- Department of Biomedical Engineering, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Ruoyu Xing
- Department of Biomedical Engineering, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jolanda J Wentzel
- Department of Biomedical Engineering, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Kim Van der Heiden
- Department of Biomedical Engineering, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
36
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Contribution of neovascularization and intraplaque haemorrhage to atherosclerotic plaque progression and instability. Acta Physiol (Oxf) 2015; 213:539-53. [PMID: 25515699 DOI: 10.1111/apha.12438] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/13/2014] [Accepted: 12/10/2014] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a continuous pathological process that starts early in life and progresses frequently to unstable plaques. Plaque rupture leads to deleterious consequences such as acute coronary syndrome, stroke and atherothrombosis. The vulnerable lesion has several structural and functional hallmarks that distinguish it from the stable plaque. The unstable plaque has large necrotic core (over 40% plaque volume) composed of cholesterol crystals, cholesterol esters, oxidized lipids, fibrin, erythrocytes and their remnants (haeme, iron, haemoglobin), and dying macrophages. The fibrous cap is thin, depleted of smooth muscle cells and collagen, and is infiltrated with proinflammatory cells. In unstable lesion, formation of neomicrovessels is increased. These neovessels have weak integrity and leak thereby leading to recurrent haemorrhages. Haemorrhages deliver erythrocytes to the necrotic core where they degrade promoting inflammation and oxidative stress. Inflammatory cells mostly presented by monocytes/macrophages, neutrophils and mast cells extravagate from bleeding neovessels and infiltrate adventitia where they support chronic inflammation. Plaque destabilization is an evolutionary process that could start at early atherosclerotic stages and whose progression is influenced by many factors including neovascularization, intraplaque haemorrhages, formation of cholesterol crystals, inflammation, oxidative stress and intraplaque protease activity.
Collapse
Affiliation(s)
- D. A. Chistiakov
- Department of Medical Nanobiotechnology; Pirogov Russian State Medical University; Moscow Russia
- The Mount Sinai Community Clinical Oncology Program; Mount Sinai Comprehensive Cancer Center; Mount Sinai Medical Center; Miami Beach FL USA
- Research Center for Children's Health; Moscow Russia
| | - A. N. Orekhov
- Laboratory of Angiopathology; Institute of General Pathology and Pathophysiology; Russian Academy of Sciences; Moscow Russia
- Skolkovo Innovative Center; Institute for Atherosclerosis Research; Moscow Russia
| | - Y. V. Bobryshev
- Laboratory of Angiopathology; Institute of General Pathology and Pathophysiology; Russian Academy of Sciences; Moscow Russia
- Faculty of Medicine and St Vincent's Centre for Applied Medical Research; University of New South Wales; Sydney NSW Australia
- School of Medicine; University of Western Sydney; Campbelltown NSW Australia
| |
Collapse
|
37
|
Newby AC. Metalloproteinases promote plaque rupture and myocardial infarction: A persuasive concept waiting for clinical translation. Matrix Biol 2015; 44-46:157-66. [PMID: 25636537 DOI: 10.1016/j.matbio.2015.01.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 02/05/2023]
Abstract
Atherosclerotic plaque rupture provokes most myocardial infarctions. Matrix metalloproteinases (MMPs) have counteracting roles in intimal thickening, which stabilizes plaques, on the one hand and extracellular matrix destruction that leads to plaque rupture on the other. This review briefly summarizes the key points supporting the involvement of individual MMPs in provoking plaque rupture and discusses the barriers that stand in the way of clinical translation, which can be itemised as follows: structural and functional complexity of the MMP family; lack of adequate preclinical models partly owing to different expression patterns of MMPs and TIMPs in mouse and human macrophages; the need to target individual MMPs selectively; the difficulties in establishing causality in human studies; and the requirement for surrogate markers of efficacy. Overcoming these barriers would open the way to new treatments that could have a major impact on cardiovascular mortality worldwide.
Collapse
Affiliation(s)
- Andrew C Newby
- University of Bristol, School of Clinical Sciences and Bristol Heart Institute, Bristol, UK.
| |
Collapse
|
38
|
Sluimer JC, Gijbels MJ, Heeneman S. Detection of Intraplaque Hemorrhage in Mouse Atherosclerotic Lesions. Methods Mol Biol 2015; 1339:339-348. [PMID: 26445801 DOI: 10.1007/978-1-4939-2929-0_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Intraplaque hemorrhage is defined as the presence of fresh or lysed erythrocytes, iron deposits in macrophages, and/or a fibrin clot in an atherosclerotic plaque. These features can be detected by hematoxylin and eosin, Martius scarlet Blue, and Perl's iron histological stainings. It is noteworthy that intraplaque hemorrhage is only present in murine atherosclerotic plaques after additional interventions or additional genetic traits affecting matrix degradation or thrombosis. In this chapter, we describe methods to detect intraplaque hemorrhage in mouse atherosclerotic lesions.
Collapse
Affiliation(s)
- Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, 5800, 6202 AZ, The Netherlands
| | - Marion J Gijbels
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, 5800, 6202 AZ, The Netherlands
- Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Department of Medical Biochemistry, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Sylvia Heeneman
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, 5800, 6202 AZ, The Netherlands.
| |
Collapse
|
39
|
Herías V, Biessen EAL, Beckers C, Delsing D, Liao M, Daemen MJ, Pham CCTN, Heeneman S. Leukocyte cathepsin C deficiency attenuates atherosclerotic lesion progression by selective tuning of innate and adaptive immune responses. Arterioscler Thromb Vasc Biol 2014; 35:79-86. [PMID: 25395616 DOI: 10.1161/atvbaha.114.304292] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The protein degrading activity of cathepsin C (CatC), combined with its role in leukocyte granule activation, suggests a contribution of this cystein protease in atherosclerosis. However, no experimental data are available to validate this concept. APPROACH AND RESULTS CatC gene and protein expression were increased in ruptured versus advanced stable human carotid artery lesions. To assess causal involvement of CatC in plaque progression and stability, we generated LDLr(-/-)//CatC(-/-) chimeras by bone marrow transplantation. CatC(-/-) chimeras presented attenuated plaque burden in carotids, descending aorta, aortic arch and root, at both the early and advanced plaque stage. CatC was abundantly expressed by plaque macrophages and foam cells. CatC expression and activity were dramatically downregulated in plaques of CatC(-/-) chimeras, supporting a hematopoietic origin of plaque CatC. Our studies unveiled an unexpected feedback of CatC deficiency on macrophage activation programs and T helper cell differentiation in as much as that CatC expression was upregulated in M1 macrophages, whereas its deficiency led to combined M2 (in vitro) and Th2 polarization (in vivo). CONCLUSIONS Our data implicate CatC has a role in the selective tuning of innate and adaptive immune responses, relevant to a chronic immune disease, such as atherosclerosis.
Collapse
Affiliation(s)
- Veronica Herías
- From the Experimental Vascular Pathology and Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University, The Netherlands (V.H., E.A.L.B., C.B., S.H.); Department of Immune Therapeutics, Merck Sharp & Dohme, Oss, The Netherlands (D.D.); Department of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (M.L.); Department of Pathology M2-206, Academic Medical Centre, Amsterdam, The Netherlands (M.J.D.); and Department of Medicine and Pathology and Immunology, Washington University, St Louis, MO (C.T.N.P.)
| | - Erik A L Biessen
- From the Experimental Vascular Pathology and Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University, The Netherlands (V.H., E.A.L.B., C.B., S.H.); Department of Immune Therapeutics, Merck Sharp & Dohme, Oss, The Netherlands (D.D.); Department of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (M.L.); Department of Pathology M2-206, Academic Medical Centre, Amsterdam, The Netherlands (M.J.D.); and Department of Medicine and Pathology and Immunology, Washington University, St Louis, MO (C.T.N.P.)
| | - Cora Beckers
- From the Experimental Vascular Pathology and Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University, The Netherlands (V.H., E.A.L.B., C.B., S.H.); Department of Immune Therapeutics, Merck Sharp & Dohme, Oss, The Netherlands (D.D.); Department of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (M.L.); Department of Pathology M2-206, Academic Medical Centre, Amsterdam, The Netherlands (M.J.D.); and Department of Medicine and Pathology and Immunology, Washington University, St Louis, MO (C.T.N.P.)
| | - Dianne Delsing
- From the Experimental Vascular Pathology and Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University, The Netherlands (V.H., E.A.L.B., C.B., S.H.); Department of Immune Therapeutics, Merck Sharp & Dohme, Oss, The Netherlands (D.D.); Department of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (M.L.); Department of Pathology M2-206, Academic Medical Centre, Amsterdam, The Netherlands (M.J.D.); and Department of Medicine and Pathology and Immunology, Washington University, St Louis, MO (C.T.N.P.)
| | - Mengyang Liao
- From the Experimental Vascular Pathology and Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University, The Netherlands (V.H., E.A.L.B., C.B., S.H.); Department of Immune Therapeutics, Merck Sharp & Dohme, Oss, The Netherlands (D.D.); Department of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (M.L.); Department of Pathology M2-206, Academic Medical Centre, Amsterdam, The Netherlands (M.J.D.); and Department of Medicine and Pathology and Immunology, Washington University, St Louis, MO (C.T.N.P.)
| | - Mat J Daemen
- From the Experimental Vascular Pathology and Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University, The Netherlands (V.H., E.A.L.B., C.B., S.H.); Department of Immune Therapeutics, Merck Sharp & Dohme, Oss, The Netherlands (D.D.); Department of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (M.L.); Department of Pathology M2-206, Academic Medical Centre, Amsterdam, The Netherlands (M.J.D.); and Department of Medicine and Pathology and Immunology, Washington University, St Louis, MO (C.T.N.P.)
| | - Christine C T N Pham
- From the Experimental Vascular Pathology and Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University, The Netherlands (V.H., E.A.L.B., C.B., S.H.); Department of Immune Therapeutics, Merck Sharp & Dohme, Oss, The Netherlands (D.D.); Department of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (M.L.); Department of Pathology M2-206, Academic Medical Centre, Amsterdam, The Netherlands (M.J.D.); and Department of Medicine and Pathology and Immunology, Washington University, St Louis, MO (C.T.N.P.)
| | - Sylvia Heeneman
- From the Experimental Vascular Pathology and Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University, The Netherlands (V.H., E.A.L.B., C.B., S.H.); Department of Immune Therapeutics, Merck Sharp & Dohme, Oss, The Netherlands (D.D.); Department of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (M.L.); Department of Pathology M2-206, Academic Medical Centre, Amsterdam, The Netherlands (M.J.D.); and Department of Medicine and Pathology and Immunology, Washington University, St Louis, MO (C.T.N.P.).
| |
Collapse
|
40
|
Andreou I, Antoniadis AP, Shishido K, Papafaklis MI, Koskinas KC, Chatzizisis YS, Coskun AU, Edelman ER, Feldman CL, Stone PH. How do we prevent the vulnerable atherosclerotic plaque from rupturing? Insights from in vivo assessments of plaque, vascular remodeling, and local endothelial shear stress. J Cardiovasc Pharmacol Ther 2014; 20:261-75. [PMID: 25336461 DOI: 10.1177/1074248414555005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/14/2014] [Indexed: 01/13/2023]
Abstract
Coronary atherosclerosis progresses both as slow, gradual enlargement of focal plaque and also as a more dynamic process with periodic abrupt changes in plaque geometry, size, and morphology. Systemic vasculoprotective therapies such as statins, angiotensin-converting enzyme inhibitors, and antiplatelet agents are the cornerstone of prevention of plaque rupture and new adverse clinical outcomes, but such systemic therapies are insufficient to prevent the majority of new cardiac events. Invasive imaging methods have been able to identify both the anatomic features of high-risk plaque and the ongoing pathobiological stimuli responsible for progressive plaque inflammation and instability and may provide sufficient information to formulate preventive local mechanical strategies (eg, preemptive percutaneous coronary interventions) to avert cardiac events. Local endothelial shear stress (ESS) triggers vascular phenomena that synergistically exacerbate atherosclerosis toward an unstable phenotype. Specifically, low ESS augments lipid uptake and catabolism, induces plaque inflammation and oxidation, downregulates the production, upregulates the degradation of extracellular matrix, and increases cellular apoptosis ultimately leading to thin-cap fibroatheromas and/or endothelial erosions. Increases in blood thrombogenicity that result from either high or low ESS also contribute to plaque destabilization. An understanding of the actively evolving vascular phenomena, as well as the development of in vivo imaging methodologies to identify the presence and severity of the different processes, may enable early identification of a coronary plaque destined to acquire a high-risk state and allow for highly selective, focal preventive interventions to avert the adverse natural history of that particular plaque. In this review, we focus on the role of ESS in the pathobiologic processes responsible for plaque destabilization, leading either to accelerated plaque growth or to acute coronary events, and emphasize the potential to utilize in vivo risk stratification of individual coronary plaques to optimize prevention strategies to preclude new cardiac events.
Collapse
Affiliation(s)
- Ioannis Andreou
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Antonios P Antoniadis
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Koki Shishido
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Michail I Papafaklis
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Konstantinos C Koskinas
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Yiannis S Chatzizisis
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ahmet U Coskun
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Elazer R Edelman
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Charles L Feldman
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Peter H Stone
- The Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
41
|
Millon A, Canet-Soulas E, Boussel L, Fayad Z, Douek P. Animal models of atherosclerosis and magnetic resonance imaging for monitoring plaque progression. Vascular 2014; 22:221-37. [DOI: 10.1177/1708538113478758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atherosclerosis, the main cause of heart attack and stroke, is the leading cause of death in most modern countries. Preventing clinical events depends on a better understanding of the mechanism of atherosclerotic plaque destabilization. Our knowledge on the characteristics of vulnerable plaques in humans has grown past decades. Histological studies have provided a precise definition of high-risk lesions and novel imaging methods for human atherosclerotic plaque characterization have made significant progress. However the pathological mechanisms leading from stable lesions to the formation of vulnerable plaques remain uncertain and the related clinical events are unpredictable. An animal model mimicking human plaque destablization is required as well as an in vivo imaging method to assess and monitor atherosclerosis progression. Magnetic resonance imaging (MRI) is increasingly used for in vivo assessment of atherosclerotic plaques in the human carotids. MRI provides well-characterized morphological and functional features of human atherosclerotic plaque which can be also assessed in animal models. This review summarizes the most common species used as animal models for experimental atherosclerosis, the techniques to induce atherosclerosis and to obtain vulnerable plaques, together with the role of MRI for monitoring atherosclerotic plaques in animals.
Collapse
Affiliation(s)
- Antoine Millon
- Department of Vascular Surgery, University Hospital of Lyon, 69000 Lyon, France
- CREATIS, UMR CNRS 5515, INSERM U630, Lyon University, 69000 Lyon, France
| | | | - Loic Boussel
- CREATIS, UMR CNRS 5515, INSERM U630, Lyon University, 69000 Lyon, France
- Department of Radiology, Hôpital Cardiovasculaire et Pneumologique, Louis Pradel, 69000 Lyon, France
| | - Zahi Fayad
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Philippe Douek
- CREATIS, UMR CNRS 5515, INSERM U630, Lyon University, 69000 Lyon, France
- Department of Radiology, Hôpital Cardiovasculaire et Pneumologique, Louis Pradel, 69000 Lyon, France
| |
Collapse
|
42
|
Harman SM. Menopausal hormone treatment cardiovascular disease: another look at an unresolved conundrum. Fertil Steril 2014; 101:887-97. [PMID: 24680648 DOI: 10.1016/j.fertnstert.2014.02.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
Cardiovascular disease (CVD) is the most common cause of death in women. Before the Women's Health Initiative (WHI) hormone trials, evidence favored the concept that menopausal hormone treatment (MHT) protects against CVD. WHI studies failed to demonstrate CVD benefit, with worse net outcomes for MHT versus placebo in the population studied. We review evidence regarding the relationship between MHT and CVD with consideration of mechanisms and risk factors for atherogenesis and cardiac events, results of observational case-control and cohort studies, and outcomes of randomized trials. Estrogen effects on CVD risk factors favor delay or amelioration of atherosclerotic plaque development but may increase risk of acute events when at-risk plaque is present. Long-term observational studies have shown ∼40% reductions in risk of myocardial infarction and all-cause mortality. Analyses of data from randomized control trials other than the WHI show a ∼30% cardioprotective effect in recently menopausal women. Review of the literature as well as WHI data suggests that younger and/or more recently menopausal women may have a better risk-benefit ratio than older or remotely menopausal women and that CVD protection may only occur after >5 years; WHI women averaged 63 years of age (12 years postmenopausal) and few were studied for >6 years. Thus, a beneficial effect of long-term MHT on CVD and mortality is still an open question and is likely to remain controversial for the foreseeable future.
Collapse
|
43
|
Eguchi A, Kaneko Y, Murakami A, Ohigashi H. Zerumbone Suppresses Phorbol Ester-Induced Expression of Multiple Scavenger Receptor Genes in THP-1 Human Monocytic Cells. Biosci Biotechnol Biochem 2014; 71:935-45. [PMID: 17420607 DOI: 10.1271/bbb.60596] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Unregulated uptake of oxidized low-density lipoproteins (ox-LDL) via macrophage scavenger receptors (SRs), such as lectin-like ox-LDL receptor-1 (LOX-1), is a key event in atherosclerosis. In the present study, we used differentiated Caco-2 cells as a model of the human small intestine to evaluate the suppressive effects of 16 traditional food items selected from Okinawa on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced LOX-1 mRNA expression in THP-1 human monocyte-like cells. Three Zingiberaceae plants, Curcuma aromatica Salisbury, Curcuma longa L., and Zingiber zerumbet Smith, markedly suppressed that expression. When added to the apical sides of Caco-2 monolayers, zerumbone, a sesquiterpene from Z. zerumbet Smith, was found to permeate into the basolateral medium as an intact structure in a time-dependent manner. alpha-Humulene, a structural analog of zerumbone lacking the alpha,beta-unsaturated carbonyl group, did not suppress LOX-1 mRNA expression, indicating that its electrophilic moiety might play pivotal roles in its activities. Further, zerumbone attenuated the expression of SR-A, SR-PSOX, and CD36, but not that of CD68 or CLA-1, leading to a blockade of DiI-acLDL uptake, while it also inhibited the transcriptional activities of activator protein-1 and nuclear factor-kappaB. Together, our results indicate that zerumbone is a potential phytochemical for regulating atherosclerosis with reasonable action mechanisms.
Collapse
Affiliation(s)
- Ai Eguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
44
|
Ma R, Zhang W, Wang T, He X, Huang Z, Zhu J, Yao Z. Pentraxin 3, long expression in mononuclear cells of patients with acute coronary syndrome: Correlation with C-reactive protein and matrix metalloproteinase-9 levels. J Int Med Res 2014; 42:677-83. [PMID: 24709882 DOI: 10.1177/0300060513507387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/10/2013] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To investigate expression of pentraxin 3, long (PTX3) in patients with acute coronary syndrome (ACS) and its correlation with matrix metalloproteinase-9 (MMP-9) and C-reactive protein (CRP) levels. METHODS Patients with ACS were randomly assigned to the ACS group (subdivided into unstable angina pectoris [UAP] and acute myocardial infarction [AMI]). Healthy participants and patients with stable angina pectoris (SAP) were enrolled as controls. Mononuclear cell PTX3 expression, and serum MMP-9 and CRP levels, were measured by enzyme-linked immunosorbent assay. RESULTS The ACS group comprised 200 patients (80 in the UAP subgroup; 120 in the AMI subgroup). The control group comprised 130 participants (80 healthy volunteers and 50 patients with SAP). PTX3 expression was significantly higher in the ACS group compared with controls (3.64 ± 0.49 versus 1.85 ± 0.65 ng/ml), and significantly higher in the AMI compared with the UAP subgroup (5.44 ± 0.47 versus 3.39 ± 0.59 ng/ml). Serum MMP-9 and CRP levels were significantly higher in the ACS group compared with controls (48.55 ± 14.22 versus 23.14 ± 0.62 ng/ml; 4.88 ± 1.76 versus 1.26 ± 0.19 ng/ml, respectively), and significantly higher in the AMI compared with the UAP subgroup (58.13 ± 7.24 versus 31.77 ± 3.61 ng/ml; 5.80 ± 1.46 versus 3.27 ± 0.83 ng/ml, respectively). PTX3 expression, and MMP-9 and CRP levels in the SAP subgroup, were not significantly different from the healthy participants. PTX3 expression positively correlated with MMP-9 and CRP levels. CONCLUSIONS In patients with ACS, peripheral blood mononuclear cell PTX3 expression, and serum MMP-9 and CRP levels, were significantly enhanced compared with controls; in addition, PTX3 expression positively correlated with MMP-9 and CRP levels. PTX3 may be involved in ACS pathogenesis.
Collapse
Affiliation(s)
- Ruilian Ma
- Department of Cardiology, The People's Hospital of Sanya, Sanya, Hainan, China
| | - Wei Zhang
- Department of Cardiology, The People's Hospital of Sanya, Sanya, Hainan, China
| | - Tiansong Wang
- Department of Cardiology, The People's Hospital of Sanya, Sanya, Hainan, China
| | - Ximin He
- Department of Cardiology, The People's Hospital of Sanya, Sanya, Hainan, China
| | - Zichong Huang
- The Hospital of the Chinese People's Armed Police Force Academy, Langfang, Hebei, China
| | - Jinguo Zhu
- Department of Cardiology, The People's Hospital of Sanya, Sanya, Hainan, China
| | - Zhen Yao
- Department of Cardiology, The People's Hospital of Sanya, Sanya, Hainan, China
| |
Collapse
|
45
|
Miksztowicz V, Morales C, Zago V, Friedman S, Schreier L, Berg G. Effect of insulin-resistance on circulating and adipose tissue MMP-2 and MMP-9 activity in rats fed a sucrose-rich diet. Nutr Metab Cardiovasc Dis 2014; 24:294-300. [PMID: 24418386 DOI: 10.1016/j.numecd.2013.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/05/2013] [Accepted: 08/03/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Adipose tissue produces different metalloproteinases (MMPs), involved in adipogenesis and angiogenesis. Different studies have shown that in obesity the behavior of different MMPs may be altered. However there are scarce data about the effect of insulin-resistance (IR) on MMP-2 and MMP-9 activity in adipose tissue. Our aim was to determine whether sucrose induced IR modifies MMP-2 and MMP-9 behavior in expanded visceral adipose tissue and the contribution of this tissue to circulating activity of these gelatinases. METHODS AND RESULTS Male Wistar rats were fed with standard diet (Control) or standard diet plus 30% sucrose in the drinking water throughout 12 weeks (SRD). In epididymal adipose tissue vascular density, size and adipocyte density, PPARγ expression and MMP-2 and -9 were measured. Adipose tissue from SRD presented higher adipocyte size (6.32 ± 8.71 vs 4.33 ± 2.17 × 10(3) μm(2), p = 0.001) lower adipocyte density (164 (130-173) vs 190 (170-225) number/mm(2), p = 0.046) and lower vascular density (16.2 (12.8-23.5) vs 28.1 (22.3-46.5) blood vessels/mm(2), p = 0.002) than Control. MMP-2 and MMP-9 activity was decreased in SRD (1.93 ± 0.7 vs 3.92 ± 0.9 relative units, p = 0.048 and 1.80 ± 0.8 vs 5.13 ± 1.7 relative units, p = 0.004 respectively) in accordance with lower protein expression (0.35 ± 0.20 vs 2.71 ± 0.48 relative units, p = 0.004 and 1.12 ± 0.21 vs 1.52 ± 0.05 relative units, p = 0.036 respectively). There were no differences in PPARγ expression between groups. CONCLUSION Insulin resistance induced by SRD decreases MMP-2 and MMP-9 activity in adipose tissue which would not represent an important source for circulating MMP-2 and -9. In this state of IR, PPARγ would not be involved in the negative regulation of adipose tissue gelatinases.
Collapse
Affiliation(s)
- V Miksztowicz
- Laboratory of Lipids and Lipoproteins, Department of Clinical Biochemistry, Faculty of Pharmacy and Biochemistry, INFIBIOC, University of Buenos Aires, Buenos Aires, Argentina
| | - C Morales
- Institute of Cardiovascular Physiopathology and Department of Pathology, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - V Zago
- Laboratory of Lipids and Lipoproteins, Department of Clinical Biochemistry, Faculty of Pharmacy and Biochemistry, INFIBIOC, University of Buenos Aires, Buenos Aires, Argentina
| | - S Friedman
- Oral and General Biochemistry Department, Faculty of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | - L Schreier
- Laboratory of Lipids and Lipoproteins, Department of Clinical Biochemistry, Faculty of Pharmacy and Biochemistry, INFIBIOC, University of Buenos Aires, Buenos Aires, Argentina
| | - G Berg
- Laboratory of Lipids and Lipoproteins, Department of Clinical Biochemistry, Faculty of Pharmacy and Biochemistry, INFIBIOC, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
46
|
Kojima Y, Downing K, Kundu R, Miller C, Dewey F, Lancero H, Raaz U, Perisic L, Hedin U, Schadt E, Maegdefessel L, Quertermous T, Leeper NJ. Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis. J Clin Invest 2014. [PMID: 24531546 DOI: 10.1172/jci7039170391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
Genetic variation at the chromosome 9p21 risk locus promotes cardiovascular disease; however, it is unclear how or which proteins encoded at this locus contribute to disease. We have previously demonstrated that loss of one candidate gene at this locus, cyclin-dependent kinase inhibitor 2B (Cdkn2b), in mice promotes vascular SMC apoptosis and aneurysm progression. Here, we investigated the role of Cdnk2b in atherogenesis and found that in a mouse model of atherosclerosis, deletion of Cdnk2b promoted advanced development of atherosclerotic plaques composed of large necrotic cores. Furthermore, human carriers of the 9p21 risk allele had reduced expression of CDKN2B in atherosclerotic plaques, which was associated with impaired expression of calreticulin, a ligand required for activation of engulfment receptors on phagocytic cells. As a result of decreased calreticulin, CDKN2B-deficient apoptotic bodies were resistant to efferocytosis and not efficiently cleared by neighboring macrophages. These uncleared SMCs elicited a series of proatherogenic juxtacrine responses associated with increased foam cell formation and inflammatory cytokine elaboration. The addition of exogenous calreticulin reversed defects associated with loss of Cdkn2b and normalized engulfment of Cdkn2b-deficient cells. Together, these data suggest that loss of CDKN2B promotes atherosclerosis by increasing the size and complexity of the lipid-laden necrotic core through impaired efferocytosis.
Collapse
|
47
|
Meisner JK, Annex BH, Price RJ. Despite normal arteriogenic and angiogenic responses, hind limb perfusion recovery and necrotic and fibroadipose tissue clearance are impaired in matrix metalloproteinase 9-deficient mice. J Vasc Surg 2014; 61:1583-94.e1-10. [PMID: 24582703 DOI: 10.1016/j.jvs.2014.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/17/2014] [Accepted: 01/18/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The relative contributions of arteriogenesis, angiogenesis, and ischemic muscle tissue composition toward reperfusion after arterial occlusion are largely unknown. Differential loss of bone marrow-derived cell (BMC) matrix metalloproteinase 9 (MMP9), which has been implicated in all of these processes, was used to assess the relative contributions of these processes during limb reperfusion. METHODS We compared collateral growth (arteriogenesis), capillary growth (angiogenesis), and ischemic muscle tissue composition after femoral artery ligation in FVB/NJ mice that had been reconstituted with bone marrow from wild-type or MMP9(-/-) mice. RESULTS Laser Doppler perfusion imaging confirmed decreased reperfusion capacity in mice with BMC-specific loss of MMP9; however, collateral arteriogenesis was not affected. Furthermore, when accounting for the fact that muscle tissue composition changes markedly with ischemia (ie, necrotic, fibroadipose, and regenerating tissue regions are present), angiogenesis was also unaffected. Instead, BMC-specific loss of MMP9 caused an increase in the proportion of necrotic and fibroadipose tissue, which showed the strongest correlation with poor perfusion recovery. Similarly, the reciprocal loss of MMP9 from non-BMCs showed similar deficits in perfusion and tissue composition without affecting arteriogenesis. CONCLUSIONS By concurrently analyzing arteriogenesis, angiogenesis, and ischemic tissue composition, we determined that the loss of BMC-derived or non-BMC-derived MMP9 impairs necrotic and fibroadipose tissue clearance after femoral artery ligation, despite normal arteriogenic and angiogenic vascular growth. These findings imply that therapeutic revascularization strategies for treating peripheral arterial disease may benefit from additionally targeting necrotic tissue clearance or skeletal muscle regeneration, or both.
Collapse
Affiliation(s)
- Joshua K Meisner
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Va
| | - Brian H Annex
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Va; Cardiovascular Research Center, University of Virginia, Charlottesville, Va
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Va; Cardiovascular Research Center, University of Virginia, Charlottesville, Va.
| |
Collapse
|
48
|
Van der Donckt C, Van Herck JL, Schrijvers DM, Vanhoutte G, Verhoye M, Blockx I, Van Der Linden A, Bauters D, Lijnen HR, Sluimer JC, Roth L, Van Hove CE, Fransen P, Knaapen MW, Hervent AS, De Keulenaer GW, Bult H, Martinet W, Herman AG, De Meyer GRY. Elastin fragmentation in atherosclerotic mice leads to intraplaque neovascularization, plaque rupture, myocardial infarction, stroke, and sudden death. Eur Heart J 2014; 36:1049-58. [PMID: 24553721 PMCID: PMC4416138 DOI: 10.1093/eurheartj/ehu041] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 01/22/2014] [Indexed: 12/15/2022] Open
Abstract
Our study underscores the importance of elastin fragmentation in the vessel wall as an accelerator of atherosclerosis with enhanced inflammation and increased neovascularization, thereby promoting the development of unstable plaques that eventually may rupture. The present mouse model offers the opportunity to further investigate the role of key factors involved in plaque destabilization and potential targets for therapeutic interventions. Aims There is a need for animal models of plaque rupture. We previously reported that elastin fragmentation, due to a mutation (C1039G+/−) in the fibrillin-1 (Fbn1) gene, promotes atherogenesis and a highly unstable plaque phenotype in apolipoprotein E deficient (ApoE−/−) mice on a Western-type diet (WD). Here, we investigated whether plaque rupture occurred in ApoE−/−Fbn1C1039G+/− mice and was associated with myocardial infarction, stroke, and sudden death. Methods and results Female ApoE−/−Fbn1C1039G+/− and ApoE−/− mice were fed a WD for up to 35 weeks. Compared to ApoE−/− mice, plaques of ApoE−/−Fbn1C1039G+/− mice showed a threefold increase in necrotic core size, augmented T-cell infiltration, a decreased collagen I content (70 ± 10%), extensive neovascularization, intraplaque haemorrhage, and a significant increase in matrix metalloproteinase-2, -9, -12, and -13 expression or activity. Plaque rupture was observed in 70% of ascending aortas and in 50% of brachiocephalic arteries of ApoE−/−Fbn1C1039G+/− mice. In ApoE−/− mice, plaque rupture was not seen in ascending aortas and only in 10% of brachiocephalic arteries. Seventy percent of ApoE−/−Fbn1C1039G+/− mice died suddenly, whereas all ApoE−/− mice survived. ApoE−/−Fbn1C1039G+/− mice showed coronary plaques and myocardial infarction (75% of mice). Furthermore, they displayed head tilt, disorientation, and motor disturbances (66% of cases), disturbed cerebral blood flow (73% of cases; MR angiograms) and brain hypoxia (64% of cases), indicative of stroke. Conclusions Elastin fragmentation plays a key role in plaque destabilization and rupture. ApoE−/−Fbn1C1039G+/− mice represent a unique model of acute plaque rupture with human-like complications.
Collapse
Affiliation(s)
| | - Jozef L Van Herck
- Division of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | | | | | | | - Ines Blockx
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | | | - Dries Bauters
- Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Henri R Lijnen
- Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Cor E Van Hove
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Paul Fransen
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Michiel W Knaapen
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | | | | | - Hidde Bult
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Arnold G Herman
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
49
|
Kojima Y, Downing K, Kundu R, Miller C, Dewey F, Lancero H, Raaz U, Perisic L, Hedin U, Schadt E, Maegdefessel L, Quertermous T, Leeper NJ. Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis. J Clin Invest 2014; 124:1083-97. [PMID: 24531546 DOI: 10.1172/jci70391] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 12/05/2013] [Indexed: 12/14/2022] Open
Abstract
Genetic variation at the chromosome 9p21 risk locus promotes cardiovascular disease; however, it is unclear how or which proteins encoded at this locus contribute to disease. We have previously demonstrated that loss of one candidate gene at this locus, cyclin-dependent kinase inhibitor 2B (Cdkn2b), in mice promotes vascular SMC apoptosis and aneurysm progression. Here, we investigated the role of Cdnk2b in atherogenesis and found that in a mouse model of atherosclerosis, deletion of Cdnk2b promoted advanced development of atherosclerotic plaques composed of large necrotic cores. Furthermore, human carriers of the 9p21 risk allele had reduced expression of CDKN2B in atherosclerotic plaques, which was associated with impaired expression of calreticulin, a ligand required for activation of engulfment receptors on phagocytic cells. As a result of decreased calreticulin, CDKN2B-deficient apoptotic bodies were resistant to efferocytosis and not efficiently cleared by neighboring macrophages. These uncleared SMCs elicited a series of proatherogenic juxtacrine responses associated with increased foam cell formation and inflammatory cytokine elaboration. The addition of exogenous calreticulin reversed defects associated with loss of Cdkn2b and normalized engulfment of Cdkn2b-deficient cells. Together, these data suggest that loss of CDKN2B promotes atherosclerosis by increasing the size and complexity of the lipid-laden necrotic core through impaired efferocytosis.
Collapse
|
50
|
Abstract
Understanding the pathophysiology of atherogenesis and the progression of atherosclerosis have been major goals of cardiovascular research during the previous decades. However, the complex molecular and cellular mechanisms underlying plaque destabilization remain largely obscure. Here, we review how lesional cells undergo cell death and how failed clearance exacerbates necrotic core formation. Advanced atherosclerotic lesions are further weakened by the pronounced local activity of matrix-degrading proteases as well as immature neovessels sprouting into the lesion. To stimulate translation of the current knowledge of molecular mechanisms of plaque destabilization into clinical studies, we further summarize available animal models of plaque destabilization. Based on the molecular mechanisms leading to plaque instability, we outline the current status of clinical and preclinical trials to induce plaque stability with a focus on induction of dead cell clearance, inhibition of protease activity, and dampening of inflammatory cell recruitment.
Collapse
|