1
|
Ihnatsyeu-Kachan A, Saichuk A, Sharko O, Zhogla V, Abashkin V, Le Goff W, Shmanai V, Shcharbin D, Guillas I, Kim S. Biomimetic high-density lipoprotein nanoparticles for the delivery of nucleic acid-based therapeutics. Biotechnol Adv 2025:108606. [PMID: 40398645 DOI: 10.1016/j.biotechadv.2025.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/10/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
The field of delivering nucleic acids (NAs) via high-density lipoprotein-mimicking nanoparticles (HDL NPs) has shown promising advancements over the past two decades. HDL NPs are designed to efficiently bind NAs, safeguard them from degradation, and help navigate through various biological barriers to deliver them into the target cell's cytosol. Some HDL NPs allow direct cytosolic delivery of NAs by a selective mechanism with the involvement of HDL's natural receptor scavenger receptor class B type I (SR-B1). In contrast, others rely on endocytic uptake of the entire NA-loaded HDL NP. Owing to their highly biocompatible nature, ability to target clinically relevant receptors, and fine tunability, NA-loaded HDL NPs are applied to treat cancer, cardiovascular diseases, and brain malignancies. They are also emerging as potent vaccines against cancers and infectious diseases. This review focuses on various architectures of NA-loaded HDL NPs, their mechanisms for NA cellular uptake, and their therapeutic efficacy in vivo. It comprehensively covers the latest nanocarriers for NA delivery that contain HDL's apolipoproteins (ApoA-I, ApoE) or their mimetic peptides, which define the unique functional and targeting capabilities of HDL NPs.
Collapse
Affiliation(s)
- Aliaksei Ihnatsyeu-Kachan
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Republic of Korea; INSERM UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne University, 91 boulevard de l'Hôpital, 75013 Paris, France.
| | - Anastasiia Saichuk
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Republic of Korea
| | - Olga Sharko
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, Surganova 13, 220072 Minsk, Belarus
| | - Victoriya Zhogla
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Akademicheskaya 27, 220072 Minsk, Belarus
| | - Viktar Abashkin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Akademicheskaya 27, 220072 Minsk, Belarus
| | - Wilfried Le Goff
- INSERM UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne University, 91 boulevard de l'Hôpital, 75013 Paris, France.
| | - Vadim Shmanai
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, Surganova 13, 220072 Minsk, Belarus
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Akademicheskaya 27, 220072 Minsk, Belarus
| | - Isabelle Guillas
- INSERM UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne University, 91 boulevard de l'Hôpital, 75013 Paris, France.
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, 02792 Seoul, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Anam-ro 145, Seongbuk-gu, 02841 Seoul, Republic of Korea.
| |
Collapse
|
2
|
Dai CL, Qiu ZY, Wang AQ, Yan S, Zhang LJ, Luan X. Targeting cholesterol metabolism: a promising therapy strategy for cancer. Acta Pharmacol Sin 2025:10.1038/s41401-025-01531-9. [PMID: 40133625 DOI: 10.1038/s41401-025-01531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
Cholesterol is a crucial structural component of cell membranes, playing a vital role in maintaining membrane fluidity and stability. Cholesterol metabolism involves four interconnected processes: de novo synthesis, uptake, efflux, and esterification. Disruptions in any of these pathways can lead to imbalances in cholesterol homeostasis, which are significantly associated with cancer progression. In recent years, traditional Chinese medicine (TCM) has emerged as a comprehensive therapeutic approach with multi-target and multi-pathway effects, demonstrating significant potential in regulating cholesterol metabolism. Research has shown that certain components of TCM can modulate enzymes, transport proteins, and signaling pathways involved in cholesterol metabolism, effectively interfering with survival and migration of cancer. These mechanisms highlight the unique advantages of TCM in inhibiting tumor progression. In this review we systematically describe the execution and regulation of the four key cholesterol metabolism processes, highlights the roles of critical proteins involved, and provides a comprehensive overview of natural products from TCM that modulate cholesterol metabolism. This review provides valuable insights for the development of novel drugs and cancer therapeutic strategies targeting cholesterol metabolism.
Collapse
Affiliation(s)
- Chun-Lan Dai
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zi-Yang Qiu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - An-Qi Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shen Yan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Daya T, Breytenbach A, Gu L, Kaur M. Cholesterol metabolism in pancreatic cancer and associated therapeutic strategies. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159578. [PMID: 39542394 DOI: 10.1016/j.bbalip.2024.159578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Pancreatic cancer remains one of the most lethal cancers due to late diagnosis and high chemoresistance. Despite recent progression in the development of chemotherapies, immunotherapies, and potential nanoparticles-based approaches, the success rate of therapeutic response is limited which is further compounded by cancer drug resistance. Understanding of emerging biological and molecular pathways causative of pancreatic cancer's aggressive and chemoresistance is vital to improve the effectiveness of existing therapeutics and to develop new therapies. One such under-investigated and relatively less explored area of research is documenting the effect that lipids, specifically cholesterol, and its metabolism, impose on pancreatic cancer. Dysregulated cholesterol metabolism has a profound role in supporting cellular proliferation, survival, and promoting chemoresistance and this has been well established in various other cancers. Thus, we aimed to provide an in-depth review focusing on the significance of cholesterol metabolism in pancreatic cancer and relevant genes at play, molecular processes contributing to cellular cholesterol homeostasis, and current research efforts to develop new cholesterol-targeting therapeutics. We highlight the caveats, weigh in different experimental therapeutic strategies, and provide possible suggestions for future research highlighting cholesterol's importance as a therapeutic target against pancreatic cancer resistance and cancer progression.
Collapse
Affiliation(s)
- Tasvi Daya
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Andrea Breytenbach
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Liang Gu
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa.
| |
Collapse
|
4
|
Wang Y, Bendre SV, Krauklis SA, Steelman AJ, Nelson ER. Role of Protein Regulators of Cholesterol Homeostasis in Immune Modulation and Cancer Pathophysiology. Endocrinology 2025; 166:bqaf031. [PMID: 39951497 PMCID: PMC11878532 DOI: 10.1210/endocr/bqaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 02/16/2025]
Abstract
Cholesterol metabolism and homeostasis have emerged as important factors governing various aspects of cancer biology. Clinical associations between circulating cholesterol and poor prognosis or use of cholesterol-lowering medication and improved prognosis have been noted for several different solid tumors. Mechanistically, cholesterol has many different direct and indirect effects on cancer cells themselves but is also critically involved in shaping the function of other cells of the tumor microenvironment, especially immune cells. There are 2 major feedback loops regulating cholesterol homeostasis. Here we highlight the major proteins involved in the so-called oxysterol-bile acid feedback loop and discuss how each has been implicated in cancer biology. We focus on roles within the immune system with implications for cancer. Given that many of these proteins are enzymes or nuclear receptors, both of which are amenable to small molecule intervention, we posit that this axis may represent a promising area for therapeutic intervention.
Collapse
Affiliation(s)
- Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Shruti V Bendre
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Steven A Krauklis
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People (ERN) and Regenerative Biology & Tissue Engineering (AJS), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People (ERN) and Regenerative Biology & Tissue Engineering (AJS), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Kotlyarov S, Kotlyarova A. Biological Functions and Clinical Significance of the ABCG1 Transporter. BIOLOGY 2024; 14:8. [PMID: 39857239 PMCID: PMC11760449 DOI: 10.3390/biology14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025]
Abstract
ATP-binding cassette (ABC) transporters are a large family of proteins that transport various substances across cell membranes using energy from ATP hydrolysis. ATP-binding cassette sub-family G member 1 (ABCG1) is a member of the ABCG subfamily of transporters and performs many important functions, such as the export of cholesterol and some other lipids across the membranes of various cells. Cholesterol transport is the mechanism that links metabolism and the innate immune system. Due to its lipid transport function, ABCG1 may contribute to the prevention of atherosclerosis and is involved in the functioning of the lung, pancreas, and other organs and systems. However, the full clinical significance of ABCG1 is still unknown and is a promising area for future research.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
6
|
Sarkar S, Morris J, You Y, Sexmith H, Street SE, Thibert SM, Attah IK, Hutchinson Bunch CM, Novikova IV, Evans JE, Shah AS, Gordon SM, Segrest JP, Bornfeldt KE, Vaisar T, Heinecke JW, Davidson WS, Melchior JT. APOA2 increases cholesterol efflux capacity to plasma HDL by displacing the C-terminus of resident APOA1. J Lipid Res 2024; 65:100686. [PMID: 39490930 PMCID: PMC11617996 DOI: 10.1016/j.jlr.2024.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
The ability of high-density lipoprotein (HDL) to promote cellular cholesterol efflux is a more robust predictor of cardiovascular disease protection than HDL-cholesterol levels in plasma. Previously, we found that lipidated HDL containing both apolipoprotein A-I (APOA1) and A-II (APOA2) promotes cholesterol efflux via the ATP-binding cassette transporter (ABCA1). In the current study, we directly added purified, lipid-free APOA2 to human plasma and found a dose-dependent increase in whole plasma cholesterol efflux capacity. APOA2 likewise increased the cholesterol efflux capacity of isolated HDL with the maximum effect occurring when equal masses of APOA1 and APOA2 coexisted on the particles. Follow-up experiments with reconstituted HDL corroborated that the presence of both APOA1 and APOA2 were necessary for the increased efflux. Using limited proteolysis and chemical cross-linking mass spectrometry, we found that APOA2 induced a conformational change in the N- and C-terminal helices of APOA1. Using reconstituted HDL with APOA1 deletion mutants, we further showed that APOA2 lost its ability to stimulate ABCA1 efflux to HDL if the C-terminal domain of APOA1 was absent, but retained this ability when the N-terminal domain was absent. Based on these findings, we propose a model in which APOA2 displaces the C-terminal helix of APOA1 from the HDL surface which can then interact with ABCA1-much like it does in lipid-poor APOA1. These findings suggest APOA2 may be a novel therapeutic target given this ability to open a large, high-capacity pool of HDL particles to enhance ABCA1-mediated cholesterol efflux.
Collapse
Affiliation(s)
- Snigdha Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jamie Morris
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Youngki You
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Hannah Sexmith
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Scott E Street
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stephanie M Thibert
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Irina V Novikova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - James E Evans
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Amy S Shah
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Scott M Gordon
- Department of Physiology and the Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jere P Segrest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karin E Bornfeldt
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle WA, USA
| | - Tomas Vaisar
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle WA, USA
| | - Jay W Heinecke
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle WA, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - John T Melchior
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Neurology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
7
|
Karmaus PWF, Gordon SM, Chen MY, Motsinger-Reif AA, Snyder RW, Fennell TR, Waidyanatha S, Fernando RA, Remaley AT, Fessler MB. Untargeted lipidomics reveals novel HDL metabotypes and lipid-clinical correlates. J Lipid Res 2024; 65:100678. [PMID: 39490932 PMCID: PMC11617998 DOI: 10.1016/j.jlr.2024.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Plasma high-density lipoprotein (HDL), originally studied for its role in lipid transport, is now appreciated to have wide-ranging biological functions that become defective during disease. While >200 lipids have collectively been detected in HDL, published HDL lipidomic analyses in different diseases have commonly been targeted to prespecified subsets of lipids. Here, we report the results of untargeted lipidomic analysis of HDL isolated from 101 subjects referred for computed tomographic coronary imaging for whom multiple additional clinical and lipoprotein metadata were measured. Unsupervised clustering of the total HDL lipidome revealed that the subjects fell into one of two discrete groups, herein referred to as HDL "metabotypes." Patients in metabotype 1 were likelier to be female and tended to have a less atherogenic lipoprotein profile, higher HDL cholesterol efflux capacity (CEC), and lower-grade non-calcified burden on coronary imaging than metabotype 2 counterparts. Specific lipids were relatively enriched in metabotype 1 HDL. Linear modeling revealed that several of these lipids were positively associated with CEC, statin use, HDL size, and HDL particle number, and positively correlated with HDL apolipoprotein A-1, suggesting that they may be informative HDL biomarkers. Taken together, we posit a novel, clinically relevant categorization for HDL revealed by systems biology.
Collapse
Affiliation(s)
- Peer W F Karmaus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Scott M Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Marcus Y Chen
- Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Alison A Motsinger-Reif
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | - Suramya Waidyanatha
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
8
|
Ajoolabady A, Pratico D, Lin L, Mantzoros CS, Bahijri S, Tuomilehto J, Ren J. Inflammation in atherosclerosis: pathophysiology and mechanisms. Cell Death Dis 2024; 15:817. [PMID: 39528464 PMCID: PMC11555284 DOI: 10.1038/s41419-024-07166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Atherosclerosis imposes a heavy burden on cardiovascular health due to its indispensable role in the pathogenesis of cardiovascular disease (CVD) such as coronary artery disease and heart failure. Ample clinical and experimental evidence has corroborated the vital role of inflammation in the pathophysiology of atherosclerosis. Hence, the demand for preclinical research into atherosclerotic inflammation is on the horizon. Indeed, the acquisition of an in-depth knowledge of the molecular and cellular mechanisms of inflammation in atherosclerosis should allow us to identify novel therapeutic targets with translational merits. In this review, we aimed to critically discuss and speculate on the recently identified molecular and cellular mechanisms of inflammation in atherosclerosis. Moreover, we delineated various signaling cascades and proinflammatory responses in macrophages and other leukocytes that promote plaque inflammation and atherosclerosis. In the end, we highlighted potential therapeutic targets, the pros and cons of current interventions, as well as anti-inflammatory and atheroprotective mechanisms.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Ling Lin
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | | | - Suhad Bahijri
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Jaakko Tuomilehto
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Public Health, University of Helsinki, Helsinki, Finland.
- Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
9
|
Hu H, Zhang P, Liu F, Pan S. Regulations of Citrus Pectin Oligosaccharide on Cholesterol Metabolism: Insights from Integrative Analysis of Gut Microbiota and Metabolites. Nutrients 2024; 16:2002. [PMID: 38999750 PMCID: PMC11243408 DOI: 10.3390/nu16132002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 07/14/2024] Open
Abstract
(1) Background: Recently, academic studies are demonstrating that the cholesterol-lowering effects of pectin oligosaccharides (POSs) are correlated to intestinal flora. However, the mechanisms of POS on cholesterol metabolisms are limited, and the observations of intestinal flora are lacking integrative analyses. (2) Aim and methods: To reveal the regulatory mechanisms of POS on cholesterol metabolism via an integrative analysis of the gut microbiota, the changes in gut microbiota structure and metabolite composition after POS addition were investigated using Illumina MiSeq sequencing and non-targeted metabolomics through in vitro gut microbiota fermentation. (3) Results: The composition of fecal gut flora was adjusted positively by POS. POS increased the abundances of the cholesterol-related bacterial groups Bacteroidetes, Bifidobacterium and Lactobacillus, while it decreased conditional pathogenic Escherichia coli and Enterococcus, showing good prebiotic activities. POS changed the composition of gut microbiota fermentation metabolites (P24), causing significant changes in 221 species of fermentation metabolites in a non-targeted metabolomics analysis and promoting the production of short-chain fatty acids. The abundances of four types of cholesterol metabolism-related metabolites (adenosine monophosphate, cyclic adenosine monophosphate, guanosine and butyrate) were significantly higher in the P24 group than those in the control group without POS addition. (4) Conclusion: The abovementioned results may explain the hypocholesterolemic effects of POS and promotion effects on cholesterol efflux of P24. These findings indicated that the potential regulatory mechanisms of citrus POS on cholesterol metabolism are modulated by cholesterol-related gut microbiota and specific metabolites.
Collapse
Affiliation(s)
- Haijuan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Peipei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
11
|
Tong H, Wang T, Chen R, Jin P, Jiang Y, Zhang X, Qi H. High level 27-HC impairs trophoblast cell invasion and migration via LXR in pre-eclampsia. Exp Cell Res 2024; 437:113979. [PMID: 38462209 DOI: 10.1016/j.yexcr.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION To explore the potential impact of 27-hydroxycholesterol (27-HC) on trophoblast cell function in pre-eclampsia. RESULTS The levels of 27-HC and the expression of CYP27A1 are upregulated in clinical samples of PE. Furthermore, high concentrations of 27-HC can inhibit the invasion and migration ability of trophoblast cells in vitro, and this inhibitory effect is weakened after LXR silencing. In HTR8/SVneo cells treated with 27-HC, the expression of ABCA1/ABCG1 are increased. Finally, we established a mouse model of PE using l-NAME (N-Nitro-l-Arginine Methyl Ester). We found an increase in the levels of 27-HC in the peripheral blood serum of the PE mouse model, and an upregulation of CYP27A1 and LXR expressions in the placenta of the PE mouse model. CONCLUSION 27-HC inhibits the invasion and migration ability of trophoblast cells by activating the LXR signaling pathway, which is involved in the pathogenesis of Pre-eclampsia(PE).
Collapse
Affiliation(s)
- Hai Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ruixin Chen
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Pingsong Jin
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University (CQMU-WCH), Chongqing, 401147, China
| | - Youqing Jiang
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xue Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University (CQMU-WCH), Chongqing, 401147, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China.
| |
Collapse
|
12
|
Bahramian M, Moezi bady SA, Bahramian M, Amouzeshi A. Examining the Outcomes of Hybrid Coronary Revascularization in Acute STEMI Patients from 2015 to 2022. J Interv Cardiol 2024; 2024:8861704. [PMID: 38362141 PMCID: PMC10869198 DOI: 10.1155/2024/8861704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/25/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024] Open
Abstract
Background The global rise of chronic diseases, especially cardiovascular disease (CVD), poses a significant public health challenge, being a leading cause of death and disability worldwide. In Iran, the surge in CVD incidence and its risk factors, along with a decrease in the age of onset, has notably increased the reliance on coronary artery bypass grafting (CABG) as a life-saving intervention. Staged hybrid coronary revascularization (HCR), which combines percutaneous coronary intervention with delayed CABG, offers a novel approach for patients with complex coronary artery disease, potentially improving survival and reducing complications. Considering the newness of this treatment method and the limitations of previous studies, we investigated the results of staged HCR in acute ST-elevation myocardial infarction (STEMI) patients in this study. Methods This observational study was performed on consecutive patients with acute STEMI who underwent staged HCR and were referred to Valiasr and Razi hospitals in Birjand from 2015 to 2022. The required information (demographic information, angiography result, and operation side effects) was collected in a checklist. If necessary, the patients were contacted by phone. After collecting the data, they were entered into SPSS version 16 software. Results This study was conducted on 33 patients with a mean age of 64.88 ± 9.24 years (69.7% male). The average hospital stay was 11.6 ± 8.9 days (3 to 72 days). The mean ejection fraction and syntax score were 36.5% ± 10.2% and 31.21 ± 6.7, respectively. Following surgery and during hospitalization, arrhythmias were observed, including 33.3% with premature ventricular contractions, 18.1% with atrial fibrillation, and 3.1% with ventricular tachycardia. The average number of pack cells (red blood cells that have been separated for blood transfusion) and creatinine changes before and after hybrid surgery were 640.9 ± 670.9 cc and 0.055 ± 0.07. In the follow-up, 9.09% of patients had late mortality, 6.1% of patients had urinary tract infections during hospitalization, 6.1% of patients had surgical site infections, 3.1% needed dialysis, and none of the studied patients had premature death or need for reintervention. Conclusions The results of our study indicated that staged HCR performed early after an ACS is not associated with significant mortality or complications. Therefore, it is advisable to consider staged HCR as a surgical option in appropriate cases.
Collapse
Affiliation(s)
- Mozhgan Bahramian
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Ali Moezi bady
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Bahramian
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ahmad Amouzeshi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
13
|
Cooper O, Hallett P, Isacson O. Upstream lipid and metabolic systems are potential causes of Alzheimer's disease, Parkinson's disease and dementias. FEBS J 2024; 291:632-645. [PMID: 36165619 PMCID: PMC10040476 DOI: 10.1111/febs.16638] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Brain health requires circuits, cells and molecular pathways to adapt when challenged and to promptly reset once the challenge has resolved. Neurodegeneration occurs when adaptability becomes confined, causing challenges to overwhelm neural circuitry. Studies of rare and common neurodegenerative diseases suggest that the accumulation of lipids can compromise circuit adaptability. Using microglia as an example, we review data that suggest increased lipid concentrations cause dysfunctional inflammatory responses to immune challenges, leading to Alzheimer's disease, Parkinson's disease and dementia. We highlight current approaches to treat lipid metabolic and clearance pathways and identify knowledge gaps towards restoring adaptive homeostasis in individuals who are at-risk of losing cognition.
Collapse
Affiliation(s)
- Oliver Cooper
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Penny Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
14
|
Liimatta J, Curschellas E, Altinkilic EM, Naamneh Elzenaty R, Augsburger P, du Toit T, Voegel CD, Breault DT, Flück CE, Pignatti E. Adrenal Abcg1 Controls Cholesterol Flux and Steroidogenesis. Endocrinology 2024; 165:bqae014. [PMID: 38301271 PMCID: PMC10863561 DOI: 10.1210/endocr/bqae014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Cholesterol is the precursor of all steroids, but how cholesterol flux is controlled in steroidogenic tissues is poorly understood. The cholesterol exporter ABCG1 is an essential component of the reverse cholesterol pathway and its global inactivation results in neutral lipid redistribution to tissue macrophages. The function of ABCG1 in steroidogenic tissues, however, has not been explored. To model this, we inactivated Abcg1 in the mouse adrenal cortex, which led to an adrenal-specific increase in transcripts involved in cholesterol uptake and de novo synthesis. Abcg1 inactivation did not affect adrenal cholesterol content, zonation, or serum lipid profile. Instead, we observed a moderate increase in corticosterone production that was not recapitulated by the inactivation of the functionally similar cholesterol exporter Abca1. Altogether, our data imply that Abcg1 controls cholesterol uptake and biosynthesis and regulates glucocorticoid production in the adrenal cortex, introducing the possibility that ABCG1 variants may account for physiological or subclinical variation in stress response.
Collapse
Affiliation(s)
- Jani Liimatta
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
- Kuopio Pediatric Research Unit (KuPRU), University of Eastern Finland and Kuopio University Hospital, Kuopio 70200, Finland
| | - Evelyn Curschellas
- Department of Chemistry, Biochemistry and Pharmacy, Medical Faculty, University of Bern, Bern 3010, Switzerland
| | - Emre Murat Altinkilic
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Rawda Naamneh Elzenaty
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Philipp Augsburger
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Therina du Toit
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Clarissa D Voegel
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - David T Breault
- Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| | - Emanuele Pignatti
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, Bern 3010, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, Bern 3010, Switzerland
| |
Collapse
|
15
|
Zeng GG, Lei Q, Jiang WL, Zhang XX, Nie L, Gong X, Zheng K. A new perspective on the current and future development potential of ABCG1. Curr Probl Cardiol 2024; 49:102161. [PMID: 37875209 DOI: 10.1016/j.cpcardiol.2023.102161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023]
Abstract
ABCG1 is an essential protein involved in the efflux of intracellular cholesterol to the extracellular space, thus playing a critical role in reducing cholesterol accumulation in neighboring tissues. Bibliometric analysis pertains to the interdisciplinary field of quantitative examination of diverse documents using mathematical and statistical techniques. It integrates the investigation of structural and temporal patterns in academic publications with an exploration of subject focus and forms of uncertainty. This research paper examines the historical evolution, current areas of interest, and future development trends of ABCG1 through bibliometric analysis. This study aims to offer readers insights into the research status and emerging trends of ABCG1, thereby assisting researchers in the exciting field to explore novel research avenues. Following rigorous selection, research on ABCG1 has remained highly active over the past two decades. ABCG1 has even started to emerge in previously unrelated fields, such as the field of cancer research. According to the analysis conducted by Citespace, a lot of keywords and influential citations were identified. ABCG1 has been found to establish a connection between cancer and cardiovascular disease, highlighting their interrelationship. This review aims to assist readers who have limited familiarity with ABCG1 research in gaining a rapid understanding of its developmental trajectory. Additionally, it aims to offer researchers potential areas of focus for future studies related to ABCG1.
Collapse
Affiliation(s)
- Guang-Gui Zeng
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan 421001, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Qiong Lei
- Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421001, China
| | - Wan-Li Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xing-Xing Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liluo Nie
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan 421001, China
| | - Xianghao Gong
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan 421001, China.
| | - Kang Zheng
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, Hunan 421001, China.
| |
Collapse
|
16
|
Teigen M, Ølnes ÅS, Bjune K, Leren TP, Bogsrud MP, Strøm TB. Functional characterization of missense variants affecting the extracellular domains of ABCA1 using a fluorescence-based assay. J Lipid Res 2024; 65:100482. [PMID: 38052254 PMCID: PMC10792246 DOI: 10.1016/j.jlr.2023.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Excess cholesterol originating from nonhepatic tissues is transported within HDL particles to the liver for metabolism and excretion. Cholesterol efflux is initiated by lipid-free or lipid-poor apolipoprotein A1 interacting with the transmembrane protein ABCA1, a key player in cholesterol homeostasis. Defective ABCA1 results in reduced serum levels of HDL cholesterol, deposition of cholesterol in arteries, and an increased risk of early onset CVD. Over 300 genetic variants in ABCA1 have been reported, many of which are associated with reduced HDL cholesterol levels. Only a few of these have been functionally characterized. In this study, we have analyzed 51 previously unclassified missense variants affecting the extracellular domains of ABCA1 using a sensitive, easy, and low-cost fluorescence-based assay. Among these, only 12 variants showed a distinct loss-of-function phenotype, asserting their direct association with severe HDL disorders. These findings emphasize the crucial role of functional characterization of genetic variants in pathogenicity assessment and precision medicine. The functional rescue of ABCA1 loss-of-function variants through proteasomal inhibition or by the use of the chemical chaperone 4-phenylbutyric acid was genotype specific. Genotype-specific responses were also observed for the ability of apolipoprotein A1 to stabilize the different ABCA1 variants. In view of personalized medicine, this could potentially form the basis for novel therapeutic strategies.
Collapse
Affiliation(s)
- Marianne Teigen
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Åsa Schawlann Ølnes
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Martin Prøven Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
17
|
Wang Y, Guo M, Tang CK. History and Development of ABCA1. Curr Probl Cardiol 2024; 49:102036. [PMID: 37595859 DOI: 10.1016/j.cpcardiol.2023.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
ATP-binding cassette protein A1 (ABCA1) is a key protein in the transport of intracellular cholesterol to the extracellular and plays an important role in reducing cholesterol accumulation in surrounding tissues. Bibliometric analysis refers to the cross-science of quantitative analysis of a variety of documents by mathematical and statistical methods. It combines an analysis of structural and temporal patterns in scholarly publications with a description of topic concentration and types of uncertainty. This paper analyzes the history, hotspot, and development trend of ABCA1 through bibliometrics. It will provide readers with the research status and development trend of ABCA1 and help the hot research in this field explore new research directions. After screening, the research on ABCA1 is still in a hot phase in the past 20 years. ABCA1 is emerging in previously unrelated disciplines such as cancer. There were 551 keywords and 6888 breakout citations counted by CiteSpace. The relationship between cancer and cardiovascular disease has been linked by ABCA1. This review will guide readers who are not familiar with ABCA1 research to quickly understand the development process of ABCA1 and provide researchers with a possible future research focus on ABCA1.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Guo
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
18
|
Mirza Z, Al-Saedi DA, Saddeek S, Almowallad S, AlMassabi RF, Huwait E. Atheroprotective Effect of Fucoidan in THP-1 Macrophages by Potential Upregulation of ABCA1. Biomedicines 2023; 11:2929. [PMID: 38001931 PMCID: PMC10669811 DOI: 10.3390/biomedicines11112929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Targeting foam cells reduces the risk and pathophysiology of atherosclerosis, of which they are one of its early hallmarks. The precise mechanism of action of fucoidan, a potential anti-atherogenic drug, is still unknown. Our objective was to assess the ability of fucoidan to regulate expression of ATP-binding cassette transporter A1 (ABCA1) in ox-LDL-induced THP-1 macrophages. Molecular docking was used to predict how fucoidan interacts with anti-foam cell markers, and further in vitro experiments were performed to evaluate the protective effect of fucoidan on modulating uptake and efflux of lipids. THP-1 macrophages were protected by 50 µg/mL of fucoidan and were then induced to form foam cells with 25 µg/mL of ox-LDL. Expression levels were assessed using RT-qPCR, and an Oil Red O stain was used to observe lipid accumulation in THP-1 macrophages. In addition, ABCA1 protein was examined by Western blot, and cellular cholesterol efflux was determined using fluorescently labeled cholesterol. Under a light microscope, decreased lipid accumulation in ox-LDL-induced-THP-1 macrophages pre-treated with fucoidan showed a significant effect, although it did not affect the expression of scavenger receptors (SR-AI and CD36). It is interesting to note that fucoidan dramatically increased the gene and protein expression of ABCA1, perhaps via the liver X receptor-α (LXR-α). Moreover, fucoidan's ability to increase and control the efflux of cholesterol from ox-LDL-induced THP-1 macrophages revealed how it may alter ABCA1's conformation and have a major effect on how it interacts with apolipoprotein A (ApoA1). In vitro results support a rationale for predicting fucoidan and its interaction with its receptor targets' predicted data, hence validating its anti-atherogenic properties and suggesting that fucoidan could be promising as an atheroprotective.
Collapse
Affiliation(s)
- Zeenat Mirza
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Dalal A. Al-Saedi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Cell Culture Lab, Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salma Saddeek
- Department of Chemistry, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin 39511, Saudi Arabia;
| | - Sanaa Almowallad
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 48322, Saudi Arabia (R.F.A.)
| | - Rehab F. AlMassabi
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 48322, Saudi Arabia (R.F.A.)
| | - Etimad Huwait
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Cell Culture Lab, Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
19
|
Jin Y, Tang Z, Shang S, Chen Y, Han G, Song M, Zhou J, Zhang H, Ding Y. A Nanodisc-Paved Biobridge Facilitates Stem Cell Membrane Fusogenicity for Intracerebral Shuttling and Bystander Effects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302367. [PMID: 37543432 DOI: 10.1002/adma.202302367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/21/2023] [Indexed: 08/07/2023]
Abstract
Mesenchymal stem cell (MSC) therapies experience steadfast clinical advances but are still hindered by inefficient site-specific migration. An adaptable MSC membrane fusogenicity technology is conceptualized for lipid raft-mediated targeting ligand embedding by using toolkits of discoidal high-density lipoprotein (HDL)-containing biomimicking 4F peptides. According to the pathological clues of brain diseases, the vascular cell adhesion molecule 1 specialized VBP peptide is fused with 4F to assemble 4F-VBP (HDL), which acts as a biobridge and transfers VBP onto the living cell membrane via lipid rafts for surface engineering of MSCs in suspension. When compared with the membrane-modifying strategies of PEGylated phospholipids, 4F-VBP (HDL) provides a 3.86 higher linkage efficiency to obtain MSCs4F-VBP(HDL) , which can recognize and adhere to the inflammatory endothelium for efficient blood-brain barrier crossing and brain accumulation. In APPswe/PSEN1dE9 mice with Alzheimer's disease (AD), the transcriptomic analysis reveals that systemic administration of MSCs4F-VBP(HDL) can activate pathways associated with neuronal activity and diminish neuroinflammation for rewiring AD brains. This customizable HDL-mediated membrane fusogenicity platform primes MSC inflammatory brain delivery, which can be expanded to other disease treatments by simply fusing 4F with relevant ligands for living cell engineering.
Collapse
Affiliation(s)
- Yi Jin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Shibeilei Shang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Guochen Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Mingjie Song
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Huaqing Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| |
Collapse
|
20
|
Laubach K, Turan T, Mathew R, Wilsbacher J, Engelhardt J, Samayoa J. Tumor-intrinsic metabolic reprogramming and how it drives resistance to anti-PD-1/PD-L1 treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:611-641. [PMID: 37842241 PMCID: PMC10571065 DOI: 10.20517/cdr.2023.60] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023]
Abstract
The development of immune checkpoint blockade (ICB) therapies has been instrumental in advancing the field of immunotherapy. Despite the prominence of these treatments, many patients exhibit primary or acquired resistance, rendering them ineffective. For example, anti-programmed cell death protein 1 (anti-PD-1)/anti-programmed cell death ligand 1 (anti-PD-L1) treatments are widely utilized across a range of cancer indications, but the response rate is only 10%-30%. As such, it is necessary for researchers to identify targets and develop drugs that can be used in combination with existing ICB therapies to overcome resistance. The intersection of cancer, metabolism, and the immune system has gained considerable traction in recent years as a way to comprehensively study the mechanisms that drive oncogenesis, immune evasion, and immunotherapy resistance. As a result, new research is continuously emerging in support of targeting metabolic pathways as an adjuvant to ICB to boost patient response and overcome resistance. Due to the plethora of studies in recent years highlighting this notion, this review will integrate the relevant articles that demonstrate how tumor-derived alterations in energy, amino acid, and lipid metabolism dysregulate anti-tumor immune responses and drive resistance to anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Kyra Laubach
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Tolga Turan
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Rebecca Mathew
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | | | | | - Josue Samayoa
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| |
Collapse
|
21
|
Gerontas A, Avgerinos D, Charitakis K, Maragou H, Drosatos K. 1821-2021: Contributions of physicians and researchers of Greek descent in the advancement of clinical and experimental cardiology and cardiac surgery. Front Cardiovasc Med 2023; 10:1231762. [PMID: 37600045 PMCID: PMC10436502 DOI: 10.3389/fcvm.2023.1231762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
While the role of Greeks in the development of early western medicine is well-known and appreciated, the contributions of modern Greek medical practitioners are less known and often overlooked. On the occasion of the 200-year anniversary of the Greek War of Independence, this review article sheds light onto the achievements of modern scientists of Greek descent in the development of cardiology, cardiac surgery, and cardiovascular research, through a short history of the development of these fields and of the related institutions in Greece. In the last decades, the Greek cardiology and Cardiac Surgery communities have been active inside and outside Greece and have a remarkable presence internationally, particularly in the United States. This article highlights the ways in which Greek cardiology and cardiovascular research has been enriched by absorbing knowledge produced in international medical centers, academic institutes and pharmaceutical industries in which generations of Greek doctors and researchers trained prior to their return to the homeland; it also highlights the achievements of medical practitioners and researchers of Greek descent who excelled abroad, producing ground-breaking work that has left a permanent imprint on global medicine.
Collapse
Affiliation(s)
- Apostolos Gerontas
- School of Applied Natural Sciences, Coburg University, Coburg, Germany
- School of Liberal Arts and Sciences, The American College of Greece, Athens, Greece
| | - Dimitrios Avgerinos
- Department of Cardiac Surgery, Onassis Cardiac Surgery Center, Athens, Greece
- ARISTEiA-Institute for the Advancement of Research and Education in Arts, Sciences and Technology, McLean, VA, United States
| | - Konstantinos Charitakis
- Department of Internal Medicine, Division of Cardiology, University of Texas Health Science Center, Houston, TX, United States
| | - Helena Maragou
- School of Liberal Arts and Sciences, The American College of Greece, Athens, Greece
| | - Konstantinos Drosatos
- ARISTEiA-Institute for the Advancement of Research and Education in Arts, Sciences and Technology, McLean, VA, United States
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
22
|
Abstract
Cholesterol is an essential lipid species of mammalian cells. Cells acquire it through synthesis in the endoplasmic reticulum (ER) and uptake from lipoprotein particles. Newly synthesized cholesterol is efficiently distributed from the ER to other organelles via lipid-binding/transfer proteins concentrated at membrane contact sites (MCSs) to reach the trans-Golgi network, endosomes, and plasma membrane. Lipoprotein-derived cholesterol is exported from the plasma membrane and endosomal compartments via a combination of vesicle/tubule-mediated membrane transport and transfer through MCSs. In this review, we provide an overview of intracellular cholesterol trafficking pathways, including cholesterol flux from the ER to other membranes, cholesterol uptake from lipoprotein donors and transport from the plasma membrane to the ER, cellular cholesterol efflux to lipoprotein acceptors, as well as lipoprotein cholesterol secretion from enterocytes, hepatocytes, and astrocytes. We also briefly discuss human diseases caused by defects in these processes and therapeutic strategies available in such conditions.
Collapse
Affiliation(s)
- Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00100 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| |
Collapse
|
23
|
Erazo-Oliveras A, Muñoz-Vega M, Mlih M, Thiriveedi V, Salinas ML, Rivera-Rodríguez JM, Kim E, Wright RC, Wang X, Landrock KK, Goldsby JS, Mullens DA, Roper J, Karpac J, Chapkin RS. Mutant APC reshapes Wnt signaling plasma membrane nanodomains by altering cholesterol levels via oncogenic β-catenin. Nat Commun 2023; 14:4342. [PMID: 37468468 PMCID: PMC10356786 DOI: 10.1038/s41467-023-39640-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Although the role of the Wnt pathway in colon carcinogenesis has been described previously, it has been recently demonstrated that Wnt signaling originates from highly dynamic nano-assemblies at the plasma membrane. However, little is known regarding the role of oncogenic APC in reshaping Wnt nanodomains. This is noteworthy, because oncogenic APC does not act autonomously and requires activation of Wnt effectors upstream of APC to drive aberrant Wnt signaling. Here, we demonstrate the role of oncogenic APC in increasing plasma membrane free cholesterol and rigidity, thereby modulating Wnt signaling hubs. This results in an overactivation of Wnt signaling in the colon. Finally, using the Drosophila sterol auxotroph model, we demonstrate the unique ability of exogenous free cholesterol to disrupt plasma membrane homeostasis and drive Wnt signaling in a wildtype APC background. Collectively, these findings provide a link between oncogenic APC, loss of plasma membrane homeostasis and CRC development.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mohamed Mlih
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Venkataramana Thiriveedi
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jaileen M Rivera-Rodríguez
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Eunjoo Kim
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Rachel C Wright
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kerstin K Landrock
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer S Goldsby
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Destiny A Mullens
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jatin Roper
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason Karpac
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA.
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA.
- Center for Environmental Health Research, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
24
|
Turri M, Conti E, Pavanello C, Gastoldi F, Palumbo M, Bernini F, Aprea V, Re F, Barbiroli A, Emide D, Galimberti D, Tremolizzo L, Zimetti F, Calabresi L. Plasma and cerebrospinal fluid cholesterol esterification is hampered in Alzheimer's disease. Alzheimers Res Ther 2023; 15:95. [PMID: 37210544 PMCID: PMC10199596 DOI: 10.1186/s13195-023-01241-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate cholesterol esterification and HDL subclasses in plasma and cerebrospinal fluid (CSF) of Alzheimer's disease (AD) patients. METHODS The study enrolled 70 AD patients and 74 cognitively normal controls comparable for age and sex. Lipoprotein profile, cholesterol esterification, and cholesterol efflux capacity (CEC) were evaluated in plasma and CSF. RESULTS AD patients have normal plasma lipids but significantly reduced unesterified cholesterol and unesterified/total cholesterol ratio. Lecithin:cholesterol acyltransferase (LCAT) activity and cholesterol esterification rate (CER), two measures of the efficiency of the esterification process, were reduced by 29% and 16%, respectively, in the plasma of AD patients. Plasma HDL subclass distribution in AD patients was comparable to that of controls but the content of small discoidal preβ-HDL particles was significantly reduced. In agreement with the reduced preβ-HDL particles, cholesterol efflux capacity mediated by the transporters ABCA1 and ABCG1 was reduced in AD patients' plasma. The CSF unesterified to total cholesterol ratio was increased in AD patients, and CSF CER and CEC from astrocytes were significantly reduced in AD patients. In the AD group, a significant positive correlation was observed between plasma unesterified cholesterol and unesterified/total cholesterol ratio with Aβ1-42 CSF content. CONCLUSION Taken together our data indicate that cholesterol esterification is hampered in plasma and CSF of AD patients and that plasma cholesterol esterification biomarkers (unesterified cholesterol and unesterified/total cholesterol ratio) are significantly associated to disease biomarkers (i.e., CSF Aβ1-42).
Collapse
Affiliation(s)
- Marta Turri
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy
| | - Elisa Conti
- Neurology Unit, IRCCS "San Gerardo Dei Tintori", Monza, and University of Milano-Bicocca, Milano, Italy
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy
| | - Francesco Gastoldi
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy
| | | | - Franco Bernini
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Vittoria Aprea
- Neurology Unit, IRCCS "San Gerardo Dei Tintori", Monza, and University of Milano-Bicocca, Milano, Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Alberto Barbiroli
- Dipartimento Di Scienze Per Gli Alimenti, La Nutrizione E L'Ambiente, Università Degli Studi Di Milano, Milano, Italy
| | - Davide Emide
- Dipartimento Di Scienze Per Gli Alimenti, La Nutrizione E L'Ambiente, Università Degli Studi Di Milano, Milano, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
| | - Lucio Tremolizzo
- Neurology Unit, IRCCS "San Gerardo Dei Tintori", Monza, and University of Milano-Bicocca, Milano, Italy
| | | | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, Milano, Italy.
| |
Collapse
|
25
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
26
|
Rezaei F, Farhat D, Gursu G, Samnani S, Lee JY. Snapshots of ABCG1 and ABCG5/G8: A Sterol's Journey to Cross the Cellular Membranes. Int J Mol Sci 2022; 24:ijms24010484. [PMID: 36613930 PMCID: PMC9820320 DOI: 10.3390/ijms24010484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
The subfamily-G ATP-binding cassette (ABCG) transporters play important roles in regulating cholesterol homeostasis. Recent progress in the structural data of ABCG1 and ABCG5/G8 disclose putative sterol binding sites that suggest the possible cholesterol translocation pathway. ABCG1 and ABCG5/G8 share high similarity in the overall molecular architecture, and both transporters appear to use several unique structural motifs to facilitate cholesterol transport along this pathway, including the phenylalanine highway and the hydrophobic valve. Interestingly, ABCG5/G8 is known to transport cholesterol and phytosterols, whereas ABCG1 seems to exclusively transport cholesterol. Ligand docking analysis indeed suggests a difference in recruiting sterol molecules to the known sterol-binding sites. Here, we further discuss how the different and shared structural features are relevant to their physiological functions, and finally provide our perspective on future studies in ABCG cholesterol transporters.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Danny Farhat
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Gonca Gursu
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Biochemistry Program, Faculty of Science, University of Ottawa, Ottawa, ON K1H 6N5, Canada
| | - Sabrina Samnani
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Biochemistry Program, Faculty of Science, University of Ottawa, Ottawa, ON K1H 6N5, Canada
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence:
| |
Collapse
|
27
|
Identification of potential M2 macrophage-associated diagnostic biomarkers in coronary artery disease. Biosci Rep 2022; 42:231928. [PMID: 36222281 DOI: 10.1042/bsr20221394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND M2 macrophages have been reported to be important in the progression of coronary artery disease (CAD). Thus, the present study aims at exploring the diagnostic value of M2 macrophage-associated genes in CAD. METHODS Transcriptome profile of CAD and control samples were downloaded from Gene Expression Omnibus database. The proportion of immune cells was analyzed using cell type identification by estimating relative subsets of RNA transcripts. Weighted Gene Co-expression Network Analysis (WGCNA) was carried out to screen the relevant module associated with M2 macrophages. Differential CAD and control samples of expressed genes (DEGs) were identified by the limma R package. Functional enrichment analysis by means of the clusterProfiler R package. Least absolute shrinkage and selection operator (LASSO) and random forest (RF) algorithms were carried out to select signature genes. Receiver operating curves (ROC) were plotted to evaluate the diagnostic value of selected signature genes. The expressions of potential diagnostic markers were validated by RT-qPCR. The ceRNA network of diagnostic biomarkers was constructed via miRwalk and Starbase database. CMap database was used to screen candidate drugs in the treatment of CAD by targeting diagnostic biomarkers. RESULTS A total of 166 M2 macrophage-associated genes were identified by WGCNA. By intersecting those genes with 879 DEGs, 53 M2 macrophage-associated DEGs were obtained in the present study. By LASSO, RF, and ROC analyses, C1orf105, CCL22, CRYGB, FRK, GAP43, REG1P, CALB1, and PTPN21 were identified as potential diagnostic biomarkers. RT-qPCR showed the consistent expression patterns of diagnostic biomarkers between GEO dataset and clinical samples. Perhexiline, alimemazine and mecamylamine were found to be potential drugs in the treatment of CAD. CONCLUSION We identified eight M2 macrophage-associated diagnostic biomarkers and candidate drugs for the CAD treatment.
Collapse
|
28
|
Maja M, Tyteca D. Alteration of cholesterol distribution at the plasma membrane of cancer cells: From evidence to pathophysiological implication and promising therapy strategy. Front Physiol 2022; 13:999883. [PMID: 36439249 PMCID: PMC9682260 DOI: 10.3389/fphys.2022.999883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Cholesterol-enriched domains are nowadays proposed to contribute to cancer cell proliferation, survival, death and invasion, with important implications in tumor progression. They could therefore represent promising targets for new anticancer treatment. However, although diverse strategies have been developed over the years from directly targeting cholesterol membrane content/distribution to adjusting sterol intake, all approaches present more or less substantial limitations. Those data emphasize the need to optimize current strategies, to develop new specific cholesterol-targeting anticancer drugs and/or to combine them with additional strategies targeting other lipids than cholesterol. Those objectives can only be achieved if we first decipher (i) the mechanisms that govern the formation and deformation of the different types of cholesterol-enriched domains and their interplay in healthy cells; (ii) the mechanisms behind domain deregulation in cancer; (iii) the potential generalization of observations in different types of cancer; and (iv) the specificity of some alterations in cancer vs. non-cancer cells as promising strategy for anticancer therapy. In this review, we will discuss the current knowledge on the homeostasis, roles and membrane distribution of cholesterol in non-tumorigenic cells. We will then integrate documented alterations of cholesterol distribution in domains at the surface of cancer cells and the mechanisms behind their contribution in cancer processes. We shall finally provide an overview on the potential strategies developed to target those cholesterol-enriched domains in cancer therapy.
Collapse
|
29
|
Hegyi Z, Hegedűs T, Homolya L. The Reentry Helix Is Potentially Involved in Cholesterol Sensing of the ABCG1 Transporter Protein. Int J Mol Sci 2022; 23:ijms232213744. [PMID: 36430223 PMCID: PMC9698493 DOI: 10.3390/ijms232213744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
ABCG1 has been proposed to play a role in HDL-dependent cellular sterol regulation; however, details of the interaction between the transporter and its potential sterol substrates have not been revealed. In the present work, we explored the effect of numerous sterol compounds on the two isoforms of ABCG1 and ABCG4 and made efforts to identify the molecular motifs in ABCG1 that are involved in the interaction with cholesterol. The functional readouts used include ABCG1-mediated ATPase activity and ABCG1-induced apoptosis. We found that both ABCG1 isoforms and ABCG4 interact with several sterol compounds; however, they have selective sensitivities to sterols. Mutational analysis of potential cholesterol-interacting motifs in ABCG1 revealed altered ABCG1 functions when F571, L626, or Y586 were mutated. L430A and Y660A substitutions had no functional consequence, whereas Y655A completely abolished the ABCG1-mediated functions. Detailed structural analysis of ABCG1 demonstrated that the mutations modulating ABCG1 functions are positioned either in the so-called reentry helix (G-loop/TM5b,c) (Y586) or in its close proximity (F571 and L626). Cholesterol molecules resolved in the structure of ABCG1 are also located close to Y586. Based on the experimental observations and structural considerations, we propose an essential role for the reentry helix in cholesterol sensing in ABCG1.
Collapse
Affiliation(s)
- Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, H-1094 Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-3826608
| |
Collapse
|
30
|
Kotlyarov S, Kotlyarova A. Clinical Significance of Lipid Transport Function of ABC Transporters in the Innate Immune System. MEMBRANES 2022; 12:1083. [PMID: 36363640 PMCID: PMC9698216 DOI: 10.3390/membranes12111083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
ABC transporters are a large family of proteins that transport a variety of substrates across cell plasma membranes. Because of this, they are involved in many physiological processes. It is of interest to note that many ABC transporters are involved in the transport of various lipids. In addition, this function may be related to the innate immune system. The evidence that ABC transporters are involved in the regulation of the innate immune system through the transport of various substances greatly enhances the understanding of their clinical significance. ABC transporters are involved in the cellular homeostasis of cholesterol as well as in the regulation of its content in lipid rafts. Through these mechanisms, they can regulate the function of membrane proteins, including receptors of the innate immune system. By regulating lipid transport, some members of ABC transporters are involved in phagocytosis. In addition, ABC transporters are involved in the transport of lipopolysaccharide, lipid mediators of inflammation, and perform other functions in the innate immune system.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
31
|
Kotlyarov S. High-Density Lipoproteins: A Role in Inflammation in COPD. Int J Mol Sci 2022; 23:8128. [PMID: 35897703 PMCID: PMC9331387 DOI: 10.3390/ijms23158128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widespread disease associated with high rates of disability and mortality. COPD is characterized by chronic inflammation in the bronchi as well as systemic inflammation, which contributes significantly to the clinically heterogeneous course of the disease. Lipid metabolism disorders are common in COPD, being a part of its pathogenesis. High-density lipoproteins (HDLs) are not only involved in lipid metabolism, but are also part of the organism's immune and antioxidant defense. In addition, HDL is a versatile transport system for endogenous regulatory agents and is also involved in the removal of exogenous substances such as lipopolysaccharide. These functions, as well as information about lipoprotein metabolism disorders in COPD, allow a broader assessment of their role in the pathogenesis of heterogeneous and comorbid course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
32
|
Zhang ZZ, Yu XH, Tan WH. Baicalein inhibits macrophage lipid accumulation and inflammatory response by activating the PPARγ/LXRα pathway. Clin Exp Immunol 2022; 209:316-325. [PMID: 35749304 PMCID: PMC9521661 DOI: 10.1093/cei/uxac062] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 01/23/2023] Open
Abstract
Lipid accumulation and inflammatory response are two major risk factors for atherosclerosis. Baicalein, a phenolic flavonoid widely used in East Asian countries, possesses a potential atheroprotective activity. However, the underlying mechanisms remain elusive. This study was performed to explore the impact of baicalein on lipid accumulation and inflammatory response in THP-1 macrophage-derived foam cells. Our results showed that baicalein up-regulated the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, liver X receptor α (LXRα), and peroxisome proliferator-activated receptor γ (PPARγ), promoted cholesterol efflux, and inhibited lipid accumulation. Administration of baicalein also reduced the expression and secretion of TNF-α, IL-1β, and IL-6. Knockdown of LXRα or PPARγ with siRNAs abrogated the effects of baicalein on ABCA1 and ABCG1 expression, cholesterol efflux, lipid accumulation as well as pro-inflammatory cytokine release. In summary, these findings suggest that baicalein exerts a beneficial effect on macrophage lipid accumulation and inflammatory response by activating the PPARγ/LXRα signaling pathway.
Collapse
Affiliation(s)
- Zi-Zhen Zhang
- School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang Hunan, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Wei-Hua Tan
- Correspondence: Wei-Hua Tan, Emergency Department, The First Affiliated Hospital of University of South China, Hengyang 421001 Hunan, China.
| |
Collapse
|
33
|
CTRP15 promotes macrophage cholesterol efflux and attenuates atherosclerosis by increasing the expression of ABCA1. J Physiol Biochem 2022; 78:653-666. [PMID: 35286626 DOI: 10.1007/s13105-022-00885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
C1q tumor necrosis factor-related protein 15 (CTRP15), a newly identified myokine, is closely implicated in cardiovascular disease. However, the role of CTRP15 in atherosclerosis is still unclear. This study aims to determine the role of CTRP15 in atherosclerosis and explore the underlying mechanisms. Our findings revealed that lentivirus-mediated CTRP15 overexpression significantly decreased atherosclerotic plaque lesions and increased reverse cholesterol transport (RCT) efficiency and circulating HDL-C levels in apolipoprotein E-deficient (apoE-/-) mice. Consistently, in vitro, overexpression of CTRP15 also inhibited intracellular lipid accumulation and promoted cholesterol efflux from macrophages. Mechanistically, CTRP15 decreased the expression of miR-101-3p by upregulating T-cadherin, thereby facilitating ABCA1 expression and cholesterol efflux. In summary, these data indicate that CTRP15 inhibits the development of atherosclerosis by enhancing RCT efficiency and increasing plasma HDL-C levels via the T-cadherin/miR-101-3p/ABCA1 pathway. Targeting CTRP15 may serve as a novel and promising therapeutic strategy for atherosclerotic cardiovascular diseases.
Collapse
|
34
|
Sun Y, Li X. Cholesterol efflux mechanism revealed by structural analysis of human ABCA1 conformational states. NATURE CARDIOVASCULAR RESEARCH 2022; 1:238-245. [PMID: 37181814 PMCID: PMC10181854 DOI: 10.1038/s44161-022-00022-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/25/2022] [Indexed: 05/16/2023]
Abstract
ATP-binding cassette transporter A1 (ABCA1) utilizes energy derived from ATP hydrolysis to export cholesterol and phospholipids from macrophages. ABCA1 plays a central role in the biosynthesis of high-density lipoprotein (HDL), which mediates reverse cholesterol transport and prevents detrimental lipid deposition. Mutations in ABCA1 cause Tangier disease characterized by a remarkable reduction in the amount of HDL in blood. Here we present cryo-electron microscopy structures of human ABCA1 in ATP-bound and nucleotide-free states. Structural comparison reveals that ATP molecules pull the nucleotide-binding domains together, inducing movements of transmembrane helices 1, 2, 7 and 8 through a series of salt-bridge interactions. Subsequently, extracellular domains (ECDs) undergo a rotation and introduce conformational changes in the ECD-transmembrane interface. In addition, while we observe a sterol-like molecule in ECDs, no such density was observed in the structure of an HDL-deficiency mutant ABCA1Y482C, demonstrating the physiological importance of ECDs and a putative interaction mode between ABCA1 and its lipid acceptors. Thus, these structures, along with cholesterol efflux assays, advance the understanding ABCA1-mediated reverse cholesterol transport.
Collapse
Affiliation(s)
- Yingyuan Sun
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
35
|
Structure and transport mechanism of the human cholesterol transporter ABCG1. Cell Rep 2022; 38:110298. [PMID: 35081353 DOI: 10.1016/j.celrep.2022.110298] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/13/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022] Open
Abstract
The reverse cholesterol transport pathway is responsible for the maintenance of human cholesterol homeostasis, an imbalance of which usually leads to atherosclerosis. As a key component of this pathway, the ATP-binding cassette transporter ABCG1 forwards cellular cholesterol to the extracellular acceptor nascent high-density lipoprotein (HDL). Here, we report a 3.26-Å cryo-electron microscopy structure of cholesterol-bound ABCG1 in an inward-facing conformation, which represents a turnover condition upon ATP binding. Structural analyses combined with functional assays reveals that a cluster of conserved hydrophobic residues, in addition to two sphingomyelins, constitute a well-defined cholesterol-binding cavity. The exit of this cavity is closed by three pairs of conserved Phe residues, which constitute a hydrophobic path for the release of cholesterol in an acceptor concentration-dependent manner. Overall, we propose an ABCG1-driven cholesterol transport cycle initiated by sphingomyelin-assisted cholesterol recruitment and accomplished by the release of cholesterol to HDL.
Collapse
|
36
|
Poznyak AV, Kashirskikh DA, Sukhorukov VN, Kalmykov V, Omelchenko AV, Orekhov AN. Cholesterol Transport Dysfunction and Its Involvement in Atherogenesis. Int J Mol Sci 2022; 23:ijms23031332. [PMID: 35163256 PMCID: PMC8836120 DOI: 10.3390/ijms23031332] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is the cause of the development of serious cardiovascular disorders, leading to disability and death. Numerous processes are involved in the pathogenesis of atherosclerosis, including inflammation, endothelial dysfunction, oxidative stress, and lipid metabolism disorders. Reverse transport of cholesterol is a mechanism presumably underlying the atheroprotective effect of high-density lipoprotein. In this review, we examined disorders of cholesterol metabolism and their possible effect on atherogenesis. We paid special attention to the reverse transport of cholesterol. Transformed cholesterol metabolism results in dyslipidemia and early atherosclerosis. Reverse cholesterol transport is an endogenous mechanism by which cells export cholesterol and maintain homeostasis. It is known that one of the main factors leading to the formation of atherosclerotic plaques on the walls of blood vessels are multiple modifications of low-density lipoprotein, and the formation of foam cells following them.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia;
- Correspondence: (A.V.P.); (A.N.O.)
| | - Dmitry A. Kashirskikh
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (D.A.K.); (V.K.)
| | - Vasily N. Sukhorukov
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
| | - Vladislav Kalmykov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (D.A.K.); (V.K.)
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
| | - Andrey V. Omelchenko
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia;
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (D.A.K.); (V.K.)
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
37
|
Zhou H, You P, Liu H, Fan J, Tong C, Yang A, Jiang Y, Liu B. Artemisinin and Procyanidins loaded multifunctional nanocomplexes alleviate atherosclerosis via simultaneously modulating lipid influx and cholesterol efflux. J Control Release 2021; 341:828-843. [PMID: 34942304 DOI: 10.1016/j.jconrel.2021.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022]
Abstract
The development of new reagents combining with nanotechnology has become an efficient strategy for improving the immune escaping ability and increasing local drug concentration for natural compounds with low therapy efficiency. In this study, we prepared biomimetic membrane-coated Prussian blue nanoparticles (PB NPs) for the treatment of atherosclerosis, using the function of Artemisinin (ART) and Procyanidins (PC) on the lipid influx and cholesterol efflux of macrophages, two logical steps involved in the plaque progression. In vitro results indicated that the prepared nanocomplexes have significant scavenging effect on ROS and NO, followed by inhibiting NF-κB/NLRP3 pathway, leading to the suppression of lipid influx. Meanwhile, they can notably reduce the uptake and internalization of oxLDL through significantly enhancing AMPK/mTOR/autophagy pathway, accompanied by promoting cholesterol efflux. In vivo study showed that the improved biocompatibility and immune-escape ability of nanocomplexes allowed less drug clearance during the circulation and high drug accumulation in the atherosclerotic plaque of ApoE-/- mice model. More importantly, the ART and PC co-loaded nanocomplexes showed the high efficacy against atherosclerosis of ApoE-/- mice model with both 8-week low dosage treatment or 1-week high dosage treatment. These findings indicated that ART and PC co-loaded nanocomplexes was promising for the targeted treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hongyan Zhou
- College of Biology, Hunan University, Changsha 410082, China
| | - Peidong You
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hao Liu
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha 410082, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha 410082, China.
| | - Anning Yang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
38
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
39
|
Glitscher M, Hildt E. Endosomal Cholesterol in Viral Infections - A Common Denominator? Front Physiol 2021; 12:750544. [PMID: 34858206 PMCID: PMC8632007 DOI: 10.3389/fphys.2021.750544] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cholesterol has gained tremendous attention as an essential lipid in the life cycle of virtually all viruses. These seem to have developed manifold strategies to modulate the cholesterol metabolism to the side of lipid uptake and de novo synthesis. In turn, affecting the cholesterol homeostasis has emerged as novel broad-spectrum antiviral strategy. On the other hand, the innate immune system is similarly regulated by the lipid and stimulated by its derivatives. This certainly requires attention in the design of antiviral strategies aiming to decrease cellular cholesterol, as evidence accumulates that withdrawal of cholesterol hampers innate immunity. Secondly, there are exceptions to the rule of the abovementioned virus-induced metabolic shift toward cholesterol anabolism. It therefore is of interest to dissect underlying regulatory mechanisms, which we aimed for in this minireview. We further collected evidence for intracellular cholesterol concentrations being less important in viral life cycles as compared to the spatial distribution of the lipid. Various routes of cholesterol trafficking were found to be hijacked in viral infections with respect to organelle-endosome contact sites mediating cholesterol shuttling. Thus, re-distribution of cellular cholesterol in the context of viral infections requires more attention in ongoing research. As a final aim, a pan-antiviral treatment could be found just within the transport and re-adjustment of local cholesterol concentrations. Thus, we aimed to emphasize the importance of the regulatory roles the endosomal system fulfils herein and hope to stimulate research in this field.
Collapse
Affiliation(s)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
40
|
Jeon S, Kim SH, Jeong J, Lee DK, Lee S, Kim S, Kim G, Maruthupandy M, Cho WS. ABCG1 and ABCG4 as key transporters in the development of pulmonary alveolar proteinosis by nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126595. [PMID: 34256330 DOI: 10.1016/j.jhazmat.2021.126595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Pulmonary alveolar proteinosis (PAP) has been reported in rodents treated with nanoparticles (NPs). However, little is known about the type of NPs producing PAP and their toxicity mechanisms. Here, we assembled seven PAP-inducing NPs and TiO2 NPs as a negative control. At 1 and 6 months after a single intratracheal instillation in rats, pulmonary inflammation and the gene expression of ATP-binding cassette (ABC) transporters and related genes were evaluated in separated alveolar macrophages (AMs). One month after intratracheal instillation, seven NPs (Eu2O3, In2O3, Pr6O11, Sm2O3, Tb4O7, and NiO) caused PAP, but only In2O3 NPs caused persistent PAP at 6 months after treatment. The levels of phospholipids, indicators of PAP, showed good correlations with the gene expression profile of five transporters (ABCA1, ABCB4, ABCB8, ABCG1, and ABCG4), which effluxing phospholipids in AMs. Among them, ABCG1 and ABCG4 might be key transporters involved in PAP development because both showed a negative correlation with the magnitude of PAP, while others might be compensatory transporters for PAP recovery, as they showed a positive correlation. In conclusion, the identification of seven PAP-producing NPs implies that PAP may be an emerging occupational disease and that ABCG1 and ABCG4 may be therapeutic targets for PAP.
Collapse
Affiliation(s)
- Soyeon Jeon
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil Saha-gu, Busan 49315, Republic of Korea
| | - Sung-Hyun Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil Saha-gu, Busan 49315, Republic of Korea
| | - Jiyoung Jeong
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil Saha-gu, Busan 49315, Republic of Korea
| | - Dong-Keun Lee
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil Saha-gu, Busan 49315, Republic of Korea
| | - Sinuk Lee
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil Saha-gu, Busan 49315, Republic of Korea
| | - Songyeon Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil Saha-gu, Busan 49315, Republic of Korea
| | - Gyuri Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil Saha-gu, Busan 49315, Republic of Korea
| | - Muchuchamy Maruthupandy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil Saha-gu, Busan 49315, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil Saha-gu, Busan 49315, Republic of Korea.
| |
Collapse
|
41
|
Skarda L, Kowal J, Locher KP. Structure of the Human Cholesterol Transporter ABCG1. J Mol Biol 2021; 433:167218. [PMID: 34461069 DOI: 10.1016/j.jmb.2021.167218] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023]
Abstract
ABCG1 is an ATP binding cassette (ABC) transporter that removes excess cholesterol from peripheral tissues. Despite its role in preventing lipid accumulation and the development of cardiovascular and metabolic disease, the mechanism underpinning ABCG1-mediated cholesterol transport is unknown. Here we report a cryo-EM structure of human ABCG1 at 4 Å resolution in an inward-open state, featuring sterol-like density in the binding cavity. Structural comparison with the multidrug transporter ABCG2 and the sterol transporter ABCG5/G8 reveals the basis of mechanistic differences and distinct substrate specificity. Benzamil and taurocholate inhibited the ATPase activity of liposome-reconstituted ABCG1, whereas the ABCG2 inhibitor Ko143 did not. Based on the structural insights into ABCG1, we propose a mechanism for ABCG1-mediated cholesterol transport.
Collapse
Affiliation(s)
- Liga Skarda
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland.
| |
Collapse
|
42
|
Hu H, Zhang S, Pan S. Characterization of Citrus Pectin Oligosaccharides and Their Microbial Metabolites as Modulators of Immunometabolism on Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8403-8414. [PMID: 34313419 DOI: 10.1021/acs.jafc.1c01445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We characterized the structure of prepared citrus pectin oligosaccharides (POS) and investigated the immunometabolism-modulating effects of POS and their microbial metabolites on human macrophages. Both POS and metabolites activated immune responses and exhibited anti-inflammatory properties in the presence of lipopolysaccharide (LPS) via regulating expressions of inflammatory cytokines and nuclear factor-kappa B. Cholesterol efflux was also facilitated via increased gene expressions of the liver X receptor-α-adenosine triphosphate-binding cassette transporter (ABC) A1/ABCG1 pathway and suppressed cholesterol synthesis via suppressing expressions of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Microbial degradation prevented POS from attenuating palmitoyl-3-cysteine-serine-lysine-4-induced inflammation and promoting M2 polarization, but it is capable of inhibiting cholesterol uptake-related genes CD36 and SR-A. These findings indicate that immunometabolism-modulating effects of POS are not solely microbiota-dependent effects. Both POS and their microbial metabolites are potential immunometabolism modulators via different mechanisms.
Collapse
Affiliation(s)
- Haijuan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm 14152, Sweden
| | - Shanshan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
43
|
Lipid accumulation and novel insight into vascular smooth muscle cells in atherosclerosis. J Mol Med (Berl) 2021; 99:1511-1526. [PMID: 34345929 DOI: 10.1007/s00109-021-02109-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/03/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is a chronic and progressive process. It is the most important pathological basis of cardiovascular disease and stroke. Vascular smooth muscle cells (VSMCs) are an essential cell type in atherosclerosis. Previous studies have revealed that VSMCs undergo phenotypic transformation in atherosclerosis to participate in the retention of atherogenic lipoproteins as well as the formation of the fibrous cap and the underlying necrotic core in plaques. The emergence of lineage-tracing studies indicates that the function and number of VSMCs in plaques have been greatly underestimated. In addition, recent studies have revealed that VSMCs make up at least 50% of the foam cell population in human and mouse atherosclerotic lesions. Therefore, understanding the formation of lipid-loaded VSMCs and their regulatory mechanisms is critical to elucidate the pathogenesis of atherosclerosis and to explore potential therapeutic targets. Moreover, combination of many complementary technologies such as lineage tracing, single-cell RNA sequencing (scRNA-seq), flow cytometry, and mass cytometry (CyTOF) with immunostaining has been performed to further understand the complex VSMC function. Correct identification of detrimental and beneficial processes may reveal successful therapeutic treatments targeting VSMCs and their derivatives during atherosclerosis. The purpose of this review is to summarize the process of lipid-loaded VSMC formation in atherosclerosis and to describe novel insight into VSMCs gained by using multiple advanced methods.
Collapse
|
44
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|
45
|
Feringa FM, van der Kant R. Cholesterol and Alzheimer's Disease; From Risk Genes to Pathological Effects. Front Aging Neurosci 2021; 13:690372. [PMID: 34248607 PMCID: PMC8264368 DOI: 10.3389/fnagi.2021.690372] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
While the central nervous system compromises 2% of our body weight, it harbors up to 25% of the body's cholesterol. Cholesterol levels in the brain are tightly regulated for physiological brain function, but mounting evidence indicates that excessive cholesterol accumulates in Alzheimer's disease (AD), where it may drive AD-associated pathological changes. This seems especially relevant for late-onset AD, as several of the major genetic risk factors are functionally associated with cholesterol metabolism. In this review we discuss the different systems that maintain brain cholesterol metabolism in the healthy brain, and how dysregulation of these processes can lead, or contribute to, Alzheimer's disease. We will also discuss how AD-risk genes might impact cholesterol metabolism and downstream AD pathology. Finally, we will address the major outstanding questions in the field and how recent technical advances in CRISPR/Cas9-gene editing and induced pluripotent stem cell (iPSC)-technology can aid to study these problems.
Collapse
Affiliation(s)
- Femke M. Feringa
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
46
|
Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2021; 22:6711. [PMID: 34201488 PMCID: PMC8269124 DOI: 10.3390/ijms22136711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks among the leading causes of morbidity and mortality worldwide. COPD rarely occurs in isolation and is often combined with various diseases. It is considered that systemic inflammation underlies the comorbid course of COPD. The data obtained in recent years have shown the importance of violations of the cross-links of lipid metabolism and the immune response, which are links in the pathogenesis of both COPD and atherosclerosis. The role of lipid metabolism disorders in the pathogenesis of the comorbid course of COPD and atherosclerosis and the participation of ATP-binding cassette (ABC) transporters in these processes is discussed in this article. It is known that about 20 representatives of a large family of ABC transporters provide lipid homeostasis of cells by moving lipids inside the cell and in its plasma membrane, as well as removing lipids from the cell. It was shown that some representatives of the ABC-transporter family are involved in various links of the pathogenesis of COPD and atherosclerosis, which can determine their comorbid course.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
47
|
Varghese DS, Ali BR. Pathological Crosstalk Between Oxidized LDL and ER Stress in Human Diseases: A Comprehensive Review. Front Cell Dev Biol 2021; 9:674103. [PMID: 34124059 PMCID: PMC8187772 DOI: 10.3389/fcell.2021.674103] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
The oxidative modification of the major cholesterol carrying lipoprotein, oxLDL, is a biomarker as well as a pathological factor in cardiovascular diseases (CVD), type 2 diabetes mellitus (T2DM), obesity and other metabolic diseases. Perturbed cellular homeostasis due to physiological, pathological and pharmacological factors hinder the proper functioning of the endoplasmic reticulum (ER), which is the major hub for protein folding and processing, lipid biosynthesis and calcium storage, thereby leading to ER stress. The cellular response to ER stress is marked by a defensive mechanism called unfolded protein response (UPR), wherein the cell adapts strategies that favor survival. Under conditions of excessive ER stress, when the survival mechanisms fail to restore balance, UPR switches to apoptosis and eliminates the defective cells. ER stress is a major hallmark in metabolic syndromes such as diabetes, non-alcoholic fatty liver disease (NAFLD), neurological and cardiovascular diseases. Though the pathological link between oxLDL and ER stress in cardiovascular diseases is well-documented, its involvement in other diseases is still largely unexplored. This review provides a deep insight into the common mechanisms in the pathogenicity of diseases involving oxLDL and ER stress as key players. In addition, the potential therapeutic intervention of the targets implicated in the pathogenic processes are also explored.
Collapse
Affiliation(s)
- Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
48
|
Giacomini I, Gianfanti F, Desbats MA, Orso G, Berretta M, Prayer-Galetti T, Ragazzi E, Cocetta V. Cholesterol Metabolic Reprogramming in Cancer and Its Pharmacological Modulation as Therapeutic Strategy. Front Oncol 2021; 11:682911. [PMID: 34109128 PMCID: PMC8181394 DOI: 10.3389/fonc.2021.682911] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Cholesterol is a ubiquitous sterol with many biological functions, which are crucial for proper cellular signaling and physiology. Indeed, cholesterol is essential in maintaining membrane physical properties, while its metabolism is involved in bile acid production and steroid hormone biosynthesis. Additionally, isoprenoids metabolites of the mevalonate pathway support protein-prenylation and dolichol, ubiquinone and the heme a biosynthesis. Cancer cells rely on cholesterol to satisfy their increased nutrient demands and to support their uncontrolled growth, thus promoting tumor development and progression. Indeed, transformed cells reprogram cholesterol metabolism either by increasing its uptake and de novo biosynthesis, or deregulating the efflux. Alternatively, tumor can efficiently accumulate cholesterol into lipid droplets and deeply modify the activity of key cholesterol homeostasis regulators. In light of these considerations, altered pathways of cholesterol metabolism might represent intriguing pharmacological targets for the development of exploitable strategies in the context of cancer therapy. Thus, this work aims to discuss the emerging evidence of in vitro and in vivo studies, as well as clinical trials, on the role of cholesterol pathways in the treatment of cancer, starting from already available cholesterol-lowering drugs (statins or fibrates), and moving towards novel potential pharmacological inhibitors or selective target modulators.
Collapse
Affiliation(s)
- Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Federico Gianfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, VIMM, Padova, Italy
| | | | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Tommaso Prayer-Galetti
- Department of Surgery, Oncology and Gastroenterology - Urology, University of Padova, Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
49
|
Khunweeraphong N, Kuchler K. Multidrug Resistance in Mammals and Fungi-From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. Int J Mol Sci 2021; 22:4806. [PMID: 33946618 PMCID: PMC8124828 DOI: 10.3390/ijms22094806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance (MDR) can be a serious complication for the treatment of cancer as well as for microbial and parasitic infections. Dysregulated overexpression of several members of the ATP-binding cassette transporter families have been intimately linked to MDR phenomena. Three paradigm ABC transporter members, ABCB1 (P-gp), ABCC1 (MRP1) and ABCG2 (BCRP) appear to act as brothers in arms in promoting or causing MDR in a variety of therapeutic cancer settings. However, their molecular mechanisms of action, the basis for their broad and overlapping substrate selectivity, remains ill-posed. The rapidly increasing numbers of high-resolution atomic structures from X-ray crystallography or cryo-EM of mammalian ABC multidrug transporters initiated a new era towards a better understanding of structure-function relationships, and for the dynamics and mechanisms driving their transport cycles. In addition, the atomic structures offered new evolutionary perspectives in cases where transport systems have been structurally conserved from bacteria to humans, including the pleiotropic drug resistance (PDR) family in fungal pathogens for which high resolution structures are as yet unavailable. In this review, we will focus the discussion on comparative mechanisms of mammalian ABCG and fungal PDR transporters, owing to their close evolutionary relationships. In fact, the atomic structures of ABCG2 offer excellent models for a better understanding of fungal PDR transporters. Based on comparative structural models of ABCG transporters and fungal PDRs, we propose closely related or even conserved catalytic cycles, thus offering new therapeutic perspectives for preventing MDR in infectious disease settings.
Collapse
Affiliation(s)
| | - Karl Kuchler
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria;
| |
Collapse
|
50
|
Vona R, Iessi E, Matarrese P. Role of Cholesterol and Lipid Rafts in Cancer Signaling: A Promising Therapeutic Opportunity? Front Cell Dev Biol 2021; 9:622908. [PMID: 33816471 PMCID: PMC8017202 DOI: 10.3389/fcell.2021.622908] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cholesterol is a lipid molecule that plays an essential role in a number of biological processes, both physiological and pathological. It is an essential structural constituent of cell membranes, and it is fundamental for biosynthesis, integrity, and functions of biological membranes, including membrane trafficking and signaling. Moreover, cholesterol is the major lipid component of lipid rafts, a sort of lipid-based structures that regulate the assembly and functioning of numerous cell signaling pathways, including those related to cancer, such as tumor cell growth, adhesion, migration, invasion, and apoptosis. Considering the importance of cholesterol metabolism, its homeostasis is strictly regulated at every stage: import, synthesis, export, metabolism, and storage. The alterations of this homeostatic balance are known to be associated with cardiovascular diseases and atherosclerosis, but mounting evidence also connects these behaviors to increased cancer risks. Although there is conflicting evidence on the role of cholesterol in cancer development, most of the studies consistently suggest that a dysregulation of cholesterol homeostasis could lead to cancer development. This review aims to discuss the current understanding of cholesterol homeostasis in normal and cancerous cells, summarizing key findings from recent preclinical and clinical studies that have investigated the role of major players in cholesterol regulation and the organization of lipid rafts, which could represent promising therapeutic targets.
Collapse
Affiliation(s)
- Rosa Vona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità [Italian National Institute of Health], Rome, Italy
| | - Elisabetta Iessi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità [Italian National Institute of Health], Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità [Italian National Institute of Health], Rome, Italy
| |
Collapse
|