1
|
Nguyen TLL, Van Nguyen D, Jin Y, Kim L, Heo KS. Potential effects of a human milk oligosaccharide 6'-sialyllactose on angiotensin II-induced aortic aneurysm via p90RSK/TGF-β/SMAD2 signaling pathway. Arch Pharm Res 2024; 47:854-869. [PMID: 39463210 DOI: 10.1007/s12272-024-01515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
The aberrant phenotypic transformation of vascular smooth muscle cells (VSMCs) is a key factor in the formation of aortic aneurysm (AA). This study aimed to explore the effects of 6'-sialyllactose (6'-SL), a human milk oligosaccharide, on angiotensin II (Ang II)-induced VSMC dysfunction and AA formation both in vitro and in vivo. An AA model was established in male C57BL/6 mice challenged with Ang II via osmotic pumps and a lysyl oxidase inhibitor, β-aminopropionitrile (BAPN), in drinking water. The mice were administered with 6'-SL, FMK (a p90RSK inhibitor), or losartan (as a positive control). In vitro, VSMCs were pretreated with 6'-SL before Ang II stimulation. We found that p90RSK inhibition abolished Ang II/BAPN-induced thoracic AA and abdominal AA formation. Treatment with 100 mg/kg 6'-SL significantly attenuated Ang II/BAPN-induced aortic dilatation. 6'-SL attenuated Ang II-induced collagen deposition, calcification, and immune cell accumulation. Consistently, 6'-SL downregulated p-p90RSK, p90RSK, and p-SMAD2, and mitigated VSMC contractility loss, as indicated by α-SMA expression in vivo. Interestingly, Ang II-induced transforming growth factor-beta (TGF-β) signaling pathway was suppressed by p90RSK inhibition in VSMCs. 6'-SL treatment significantly reduced TGF-β/SMAD2 targets, including dedifferentiation markers such as osteopontin and vimentin, and elastin degradation factors MMP2 and MMP9. Overexpression of p90RSK in VSMCs enhanced TGF-β and abrogated the effects of 6'-SL. Furthermore, 6'-SL co-treatment abolished high phosphate-induced calcification in vitro via p90RSK/TGF-β signaling pathway. Altogether, our findings suggest that 6'-SL could be a potential therapeutic candidate for protecting against Ang II-induced AA formation by inhibiting the p90RSK/TGF-β/SMAD2 signaling pathway.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Mice, Inbred C57BL
- Male
- Mice
- Aortic Aneurysm/chemically induced
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/prevention & control
- Aortic Aneurysm/pathology
- Aortic Aneurysm/drug therapy
- Signal Transduction/drug effects
- Transforming Growth Factor beta/metabolism
- Humans
- Smad2 Protein/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors
- Oligosaccharides/pharmacology
- Cells, Cultured
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Disease Models, Animal
Collapse
Affiliation(s)
- Thuy Le Lam Nguyen
- College of Pharmacy, Chungnam National University, Daejeon, 34134, South Korea
| | - Dung Van Nguyen
- College of Pharmacy, Chungnam National University, Daejeon, 34134, South Korea
| | - Yujin Jin
- College of Pharmacy, Chungnam National University, Daejeon, 34134, South Korea
| | - Lila Kim
- NeuraGene Inc., 17 Techno 2-Ro, Yuseong-Gu, Daejeon, 34025, South Korea
| | - Kyung-Sun Heo
- College of Pharmacy, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
2
|
Enkhjargal B, De Leon SSP, Tsukahara Y, Liu H, Huangfu Y, Wang Y, Seabra PM, Yang X, Goodman J, Wan X, Chitalia V, Han J, Seta F. Redox Dysregulation of Vascular Smooth Muscle Sirtuin-1 in Thoracic Aortic Aneurysm in Marfan Syndrome. Arterioscler Thromb Vasc Biol 2023; 43:e339-e357. [PMID: 37288573 PMCID: PMC10524979 DOI: 10.1161/atvbaha.123.319145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Thoracic aortic aneurysms (TAAs) are abnormal aortic dilatations and a major cardiovascular complication of Marfan syndrome. We previously demonstrated a critical role for vascular smooth muscle (VSM) SirT1 (sirtuin-1), a lysine deacetylase, against maladaptive aortic remodeling associated with chronic oxidative stress and aberrant activation of MMPs (matrix metalloproteinases). METHODS In this study, we investigated whether redox dysregulation of SirT1 contributed to the pathogenesis of TAA using fibrillin-1 hypomorphic mice (Fbn1mgR/mgR), an established model of Marfan syndrome prone to aortic dissection/rupture. RESULTS Oxidative stress markers 3-nitrotyrosine and 4-hydroxynonenal were significantly elevated in aortas of patients with Marfan syndrome. Moreover, reversible oxidative post-translational modifications (rOPTM) of protein cysteines, particularly S-glutathionylation, were dramatically increased in aortas of Fbn1mgR/mgR mice, before induction of severe oxidative stress markers. Fbn1mgR/mgR aortas and VSM cells exhibited an increase in rOPTM of SirT1, coinciding with the upregulation of acetylated proteins, an index of decreased SirT1 activity, and increased MMP2/9 activity. Mechanistically, we demonstrated that TGFβ (transforming growth factor beta), which was increased in Fbn1mgR/mgR aortas, stimulated rOPTM of SirT1, decreasing its deacetylase activity in VSM cells. VSM cell-specific deletion of SirT1 in Fbn1mgR/mgR mice (SMKO-Fbn1mgR/mgR) caused a dramatic increase in aortic MMP2 expression and worsened TAA progression, leading to aortic rupture in 50% of SMKO-Fbn1mgR/mgR mice, compared with 25% of Fbn1mgR/mgR mice. rOPTM of SirT1, rOPTM-mediated inhibition of SirT1 activity, and increased MMP2/9 activity were all exacerbated by the deletion of Glrx (glutaredoxin-1), a specific deglutathionylation enzyme, while being corrected by overexpression of Glrx or of an oxidation-resistant SirT1 mutant in VSM cells. CONCLUSIONS Our novel findings strongly suggest a causal role of S-glutathionylation of SirT1 in the pathogenesis of TAA. Prevention or reversal of SirT1 rOPTM may be a novel therapeutic strategy to prevent TAA and TAA dissection/ruptures in individuals with Marfan syndrome, for which, thus far, no targeted therapy has been developed.
Collapse
Affiliation(s)
- Budbazar Enkhjargal
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Yuko Tsukahara
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Hanxiao Liu
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yuhao Huangfu
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yu Wang
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Pedro Maria Seabra
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Xiaoqiu Yang
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jena Goodman
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Xueping Wan
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Vipul Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jingyan Han
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Zhang Y, Liu T, Deng Z, Fang W, Zhang X, Zhang S, Wang M, Luo S, Meng Z, Liu J, Sukhova GK, Li D, McKenzie ANJ, Libby P, Shi G, Guo J. Group 2 Innate Lymphoid Cells Protect Mice from Abdominal Aortic Aneurysm Formation via IL5 and Eosinophils. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206958. [PMID: 36592421 PMCID: PMC9982556 DOI: 10.1002/advs.202206958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Development of abdominal aortic aneurysms (AAA) enhances lesion group-2 innate lymphoid cell (ILC2) accumulation and blood IL5. ILC2 deficiency in Rorafl/fl Il7rCre/+ mice or induced ILC2 depletion in Icosfl-DTR-fl/+ Cd4Cre/+ mice expedites AAA growth, increases lesion inflammation, but leads to systemic IL5 and eosinophil (EOS) deficiency. Mechanistic studies show that ILC2 protect mice from AAA formation via IL5 and EOS. IL5 or ILC2 from wild-type (WT) mice, but not ILC2 from Il5-/- mice induces EOS differentiation in bone-marrow cells from Rorafl/fl Il7rCre/+ mice. IL5, IL13, and EOS or ILC2 from WT mice, but not ILC2 from Il5-/- and Il13-/- mice block SMC apoptosis and promote SMC proliferation. EOS but not ILC2 from WT or Il5-/- mice block endothelial cell (EC) adhesion molecule expression, angiogenesis, dendritic cell differentiation, and Ly6Chi monocyte polarization. Reconstitution of WT EOS and ILC2 but not Il5-/- ILC2 slows AAA growth in Rorafl/fl Il7rCre/+ mice by increasing systemic EOS. Besides regulating SMC pathobiology, ILC2 play an indirect role in AAA protection via the IL5 and EOS mechanism.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of EducationInstitute of Cardiovascular Research of the First Affiliated HospitalHainan Medical UniversityHaikou571199China
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Tianxiao Liu
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Guangdong Provincial Geriatrics InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Zhiyong Deng
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Department of GeriatricsNational Key Clinic SpecialtyGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Wenqian Fang
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesSchool of Life ScienceShanghai UniversityShanghai200444China
| | - Xian Zhang
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Shuya Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of EducationInstitute of Cardiovascular Research of the First Affiliated HospitalHainan Medical UniversityHaikou571199China
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Minjie Wang
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Songyuan Luo
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Zhaojie Meng
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Jing Liu
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Galina K. Sukhova
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Dazhu Li
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Andrew N. J. McKenzie
- Division of Protein & Nucleic Acid ChemistryMRC Laboratory of Molecular BiologyCambridgeCB2 0QHUK
| | - Peter Libby
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Guo‐Ping Shi
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Junli Guo
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of EducationInstitute of Cardiovascular Research of the First Affiliated HospitalHainan Medical UniversityHaikou571199China
| |
Collapse
|
4
|
An Unexpected Enzyme in Vascular Smooth Muscle Cells: Angiotensin II Upregulates Cholesterol-25-Hydroxylase Gene Expression. Int J Mol Sci 2023; 24:ijms24043968. [PMID: 36835391 PMCID: PMC9965395 DOI: 10.3390/ijms24043968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Angiotensin II (AngII) is a vasoactive peptide hormone, which, under pathological conditions, contributes to the development of cardiovascular diseases. Oxysterols, including 25-hydroxycholesterol (25-HC), the product of cholesterol-25-hydroxylase (CH25H), also have detrimental effects on vascular health by affecting vascular smooth muscle cells (VSMCs). We investigated AngII-induced gene expression changes in VSMCs to explore whether AngII stimulus and 25-HC production have a connection in the vasculature. RNA-sequencing revealed that Ch25h is significantly upregulated in response to AngII stimulus. The Ch25h mRNA levels were elevated robustly (~50-fold) 1 h after AngII (100 nM) stimulation compared to baseline levels. Using inhibitors, we specified that the AngII-induced Ch25h upregulation is type 1 angiotensin II receptor- and Gq/11 activity-dependent. Furthermore, p38 MAPK has a crucial role in the upregulation of Ch25h. We performed LC-MS/MS to identify 25-HC in the supernatant of AngII-stimulated VSMCs. In the supernatants, 25-HC concentration peaked 4 h after AngII stimulation. Our findings provide insight into the pathways mediating AngII-induced Ch25h upregulation. Our study elucidates a connection between AngII stimulus and 25-HC production in primary rat VSMCs. These results potentially lead to the identification and understanding of new mechanisms in the pathogenesis of vascular impairments.
Collapse
|
5
|
Schumacher D, Liehn EA, Nilcham P, Mayan DC, Rattanasopa C, Anand K, Crespo-Avilan GE, Hernandez-Resendiz S, Singaraja RR, Cook SA, Hausenloy DJ. A neutralizing IL-11 antibody reduces vessel hyperplasia in a mouse carotid artery wire injury model. Sci Rep 2021; 11:20674. [PMID: 34667238 PMCID: PMC8526715 DOI: 10.1038/s41598-021-99880-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022] Open
Abstract
Vascular restenosis remains a major problem in patients with coronary artery disease (CAD) and peripheral artery disease (PAD). Neointimal hyperplasia, defined by post-procedure proliferation and migration of vascular smooth muscle cells (VSMCs) is a key underlying pathology. Here we investigated the role of Interleukin 11 (IL-11) in a mouse model of injury-related plaque development. Apoe-/- mice were fed a hyperlipidaemic diet and subjected to carotid wire injury of the right carotid. Mice were injected with an anti-IL11 antibody (X203), IgG control antibody or buffer. We performed ultrasound analysis to assess vessel wall thickness and blood velocity. Using histology and immunofluorescence approaches, we determined the effects of IL-11 inhibition on VSMC and macrophages phenotypes and fibrosis. Treatment of mice with carotid wire injury using X203 significantly reduced post-endothelial injury vessel wall thickness, and injury-related plaque, when compared to control. Immunofluorescence staining of the injury-related plaque showed that X203 treatment did not reduce macrophage numbers, but reduced the number of VSMCs and lowered matrix metalloproteinase 2 (MMP2) levels and collagen content in comparison to control. X203 treatment was associated with a significant increase in smooth muscle protein 22α (SM22α) positive cells in injury-related plaque compared to control, suggesting preservation of the contractile VSMC phenotype. Interestingly, X203 also reduced the collagen content of uninjured carotid arteries as compared to IgG, showing an additional effect on hyperlipidemia-induced arterial remodeling in the absence of mechanical injury. Therapeutic inhibition of IL-11 reduced vessel wall thickness, attenuated neointimal hyperplasia, and has favorable effects on vascular remodeling following wire-induced endothelial injury. This suggests IL-11 inhibition as a potential novel therapeutic approach to reduce arterial stenosis following revascularization in CAD and PAD patients.
Collapse
Affiliation(s)
- David Schumacher
- Institute of Experimental Medicine and Systems Biology, University Hospital, RWTH Aachen University, Aachen, Germany.,Department of Anesthesiology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Elisa A Liehn
- Department of Cardiology, Angiology and Intensive Medicine, University Hospital Aachen, Aachen, Germany.,Victor Babes National Institute of Pathology, Bucharest, Romania.,Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, Aachen, Germany.,National Heart Research Institute Singapore, National Heart Centre, Singapore, 169609, Singapore
| | - Pakhwan Nilcham
- Department of Anesthesiology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - David Castaño Mayan
- Translational Laboratories in Genetic Medicine, Agency for Science, Research and Technology, Singapore, 138648, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, 169857, Singapore.,Cardiovascular Research Institute, National University Health System, Singapore, 119228, Singapore
| | - Chutima Rattanasopa
- Translational Laboratories in Genetic Medicine, Agency for Science, Research and Technology, Singapore, 138648, Singapore
| | - Kaviya Anand
- Translational Laboratories in Genetic Medicine, Agency for Science, Research and Technology, Singapore, 138648, Singapore
| | - Gustavo E Crespo-Avilan
- National Heart Research Institute Singapore, National Heart Centre, Singapore, 169609, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Biochemistry, Medical Faculty, Justus Liebig-University, Giessen, Germany
| | - Sauri Hernandez-Resendiz
- National Heart Research Institute Singapore, National Heart Centre, Singapore, 169609, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Roshni R Singaraja
- Translational Laboratories in Genetic Medicine, Agency for Science, Research and Technology, Singapore, 138648, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, 169857, Singapore.,Cardiovascular Research Institute, National University Health System, Singapore, 119228, Singapore
| | - Stuart A Cook
- National Heart Research Institute Singapore, National Heart Centre, Singapore, 169609, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.,MRC LMS, London, W12 0NN, UK
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre, Singapore, 169609, Singapore. .,Yong Loo Lin School of Medicine, National University Singapore, Singapore, 169857, Singapore. .,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore. .,The Hatter Cardiovascular Institute, University College London, London, WC1E 6BT, UK. .,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung, Taiwan.
| |
Collapse
|
6
|
Spronck B, Latorre M, Wang M, Mehta S, Caulk AW, Ren P, Ramachandra AB, Murtada SI, Rojas A, He CS, Jiang B, Bersi MR, Tellides G, Humphrey JD. Excessive adventitial stress drives inflammation-mediated fibrosis in hypertensive aortic remodelling in mice. J R Soc Interface 2021; 18:20210336. [PMID: 34314650 PMCID: PMC8315831 DOI: 10.1098/rsif.2021.0336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypertension induces significant aortic remodelling, often adaptive but sometimes not. To identify immuno-mechanical mechanisms responsible for differential remodelling, we studied thoracic aortas from 129S6/SvEvTac and C57BL/6 J mice before and after continuous 14-day angiotensin II infusion, which elevated blood pressure similarly in both strains. Histological and biomechanical assessments of excised vessels were similar at baseline, suggesting a common homeostatic set-point for mean wall stress. Histology further revealed near mechano-adaptive remodelling of the hypertensive 129S6/SvEvTac aortas, but a grossly maladaptive remodelling of C57BL/6 J aortas. Bulk RNA sequencing suggested that increased smooth muscle contractile processes promoted mechano-adaptation of 129S6/SvEvTac aortas while immune processes prevented adaptation of C57BL/6 J aortas. Functional studies confirmed an increased vasoconstrictive capacity of the former while immunohistochemistry demonstrated marked increases in inflammatory cells in the latter. We then used multiple computational biomechanical models to test the hypothesis that excessive adventitial wall stress correlates with inflammatory cell infiltration. These models consistently predicted that increased vasoconstriction against an increased pressure coupled with modest deposition of new matrix thickens the wall appropriately, restoring wall stress towards homeostatic consistent with adaptive remodelling. By contrast, insufficient vasoconstriction permits high wall stresses and exuberant inflammation-driven matrix deposition, especially in the adventitia, reflecting compromised homeostasis and gross maladaptation.
Collapse
Affiliation(s)
- Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA,Department of Biomedical Engineering, Maastricht University, Maastricht, The Netherlands
| | - Marcos Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mo Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Sameet Mehta
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Alexander W. Caulk
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Pengwei Ren
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Alexia Rojas
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Chang-Shun He
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Bo Jiang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Matthew R. Bersi
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, MO, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Zhang X, Zhao Z, Xu C, Zhao F, Yan Z. Allisartan ameliorates vascular remodeling through regulation of voltage-gated potassium channels in hypertensive rats. BMC Pharmacol Toxicol 2021; 22:33. [PMID: 34108047 PMCID: PMC8188709 DOI: 10.1186/s40360-021-00498-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The objective of the present study was to determine the effect of allisartan, a new angiotensin II type 1 receptor antagonist on vascular remodeling through voltage gated potassium channels (Kv7) in hypertensive rats. METHODS The study included a total of 47 Sprague Dawley (SD) rats. The animals were randomized to sham operation (n = 14), untreated hypertensive control group (n = 18) and allisartan treatment group (n = 15). Using renal artery stenosis, hypertension was induced in animals. Single dose of allisartan was administered intra-gastrically to animals in the allisartan treatment group and match placebo in the other 2 groups. Wire myography was used to measure the muscle tension in isolated mesenteric arteries from the animals. Real-time polymerase chain reaction was used to quantify the expression of Kv7 channel mRNA subunits. RESULTS After 4 weeks of treatment, a significant decrease in mean arterial, systolic and diastolic blood pressure (SBP and DBP) was observed in allisartan treatment group compared to hypertension control group. The median arterial wall thickness and area/diameter ratio reduced significantly in treatment group compared to untreated hypertension group (P < 0.05). Wire myography demonstrated increased relaxation of mesenteric artery with increase in concentration of ML213. A significant up-regulation in the expression of all Kv7 mRNA subunits was observed in allisartan group compared to untreated hypertension group. CONCLUSIONS From the results, allisartan was found to lower BP and preserve vascular remodeling through Kv7 channels.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Cardiology, Southern Medical University affiliated Fengxian Hospital, Shanghai, 201499, China
- Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Nanfeng Road No.6600, Shanghai, 201499, China
| | - Ziying Zhao
- Endoscopy Center, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Chunfang Xu
- Department of Cardiology, Southern Medical University affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Fengping Zhao
- Department of Cardiology, Southern Medical University affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Zhiqiang Yan
- Department of Cardiology, Southern Medical University affiliated Fengxian Hospital, Shanghai, 201499, China.
| |
Collapse
|
8
|
Levkovich TV, Pronko TP. ROLE OF THE TRANSFORMING GROWTH FACTOR β1 IN THE GENESIS OF ARTERIAL HYPERTENSION AND ITS COMPLICATIONS. JOURNAL OF THE GRODNO STATE MEDICAL UNIVERSITY 2021. [DOI: 10.25298/2221-8785-2021-19-1-16-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transforming growth factor beta 1 (TGFβ1) is an actively studied cytokine with rather contradictory effects. The article systematizes and summarizes the scientific data on TGFβ1 and its role in the development and progression of arterial hypertension, with an emphasis on arterial stiffness.
Collapse
|
9
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Latorre M, Spronck B, Humphrey JD. Complementary roles of mechanotransduction and inflammation in vascular homeostasis. Proc Math Phys Eng Sci 2021; 477:20200622. [PMID: 33642928 PMCID: PMC7897647 DOI: 10.1098/rspa.2020.0622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Arteries are exposed to relentless pulsatile haemodynamic loads, but via mechanical homeostasis they tend to maintain near optimal structure, properties and function over long periods in maturity in health. Numerous insults can compromise such homeostatic tendencies, however, resulting in maladaptations or disease. Chronic inflammation can be counted among the detrimental insults experienced by arteries, yet inflammation can also play important homeostatic roles. In this paper, we present a new theoretical model of complementary mechanobiological and immunobiological control of vascular geometry and composition, and thus properties and function. We motivate and illustrate the model using data for aortic remodelling in a common mouse model of induced hypertension. Predictions match the available data well, noting a need for increased data for further parameter refinement. The overall approach and conclusions are general, however, and help to unify two previously disparate literatures, thus leading to deeper insight into the separate and overlapping roles of mechanobiology and immunobiology in vascular health and disease.
Collapse
Affiliation(s)
- Marcos Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA,Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA,e-mail:
| |
Collapse
|
11
|
Interleukin-11 is important for vascular smooth muscle phenotypic switching and aortic inflammation, fibrosis and remodeling in mouse models. Sci Rep 2020; 10:17853. [PMID: 33082445 PMCID: PMC7576123 DOI: 10.1038/s41598-020-74944-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor beta-1 (TGFβ1) is a major driver of vascular smooth muscle cell (VSMC) phenotypic switching, an important pathobiology in arterial disease.
We performed RNA-sequencing of TGFβ1-stimulated human aortic or arterial VSMCs which revealed large and consistent upregulation of Interleukin 11 (IL11). IL11 has an unknown function in VSMCs, which highly express the IL11 receptor alpha, suggestive of an autocrine loop. In vitro, IL11 activated ERK signaling, but inhibited STAT3 activity, and caused VSMC phenotypic switching to a similar extent as TGFβ1 or angiotensin II (ANGII) stimulation. Genetic or therapeutic inhibition of IL11 signaling reduced TGFβ1- or ANGII-induced VSMC phenotypic switching, placing IL11 activity downstream of these factors. Aortas of mice with Myh11-driven IL11 expression were remodeled and had reduced contractile but increased matrix and inflammatory genes expression. In two models of arterial pressure loading, IL11 was upregulated in the aorta and neutralizing IL11 antibodies reduced remodeling along with matrix and pro-inflammatory gene expression. These data show that IL11 plays an important role in VSMC phenotype switching, vascular inflammation and aortic pathobiology.
Collapse
|
12
|
Cell signaling model for arterial mechanobiology. PLoS Comput Biol 2020; 16:e1008161. [PMID: 32834001 PMCID: PMC7470387 DOI: 10.1371/journal.pcbi.1008161] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/03/2020] [Accepted: 07/17/2020] [Indexed: 11/20/2022] Open
Abstract
Arterial growth and remodeling at the tissue level is driven by mechanobiological processes at cellular and sub-cellular levels. Although it is widely accepted that cells seek to promote tissue homeostasis in response to biochemical and biomechanical cues—such as increased wall stress in hypertension—the ways by which these cues translate into tissue maintenance, adaptation, or maladaptation are far from understood. In this paper, we present a logic-based computational model for cell signaling within the arterial wall, aiming to predict changes in extracellular matrix turnover and cell phenotype in response to pressure-induced wall stress, flow-induced wall shear stress, and exogenous sources of angiotensin II, with particular interest in mouse models of hypertension. We simulate a number of experiments from the literature at both the cell and tissue level, involving single or combined inputs, and achieve high qualitative agreement in most cases. Additionally, we demonstrate the utility of this modeling approach for simulating alterations (in this case knockdowns) of individual nodes within the signaling network. Continued modeling of cellular signaling will enable improved mechanistic understanding of arterial growth and remodeling in health and disease, and will be crucial when considering potential pharmacological interventions. Biological soft tissues are characterized by continuous production and removal of material, which endows them with a remarkable ability to adapt to changes in their biochemical and biomechanical environments. For arteries, mechanical stimuli result primarily from changes in blood pressure or flow, and biochemical changes are induced by multiple factors, including pharmacological intervention. In order to understand how arterial properties are maintained in health, or how they adapt or fail to adapt in disease, we must understand better how these diverse stimuli affect material turnover. Extracellular matrix is tightly regulated by mechano-sensing and mechano-regulation, and therefore cell signaling, thus we present a computational model of relevant signaling pathways within the vascular wall, with the aim of predicting changes in wall composition and function in response to three main inputs: pressure-induced wall stress, flow-induced wall shear stress, and exogenous angiotensin II. We obtain qualitative agreement with a range of experimental studies from the literature, and provide illustrative examples demonstrating how such models can be used to further our understanding of arterial remodeling.
Collapse
|
13
|
Yu W, Xiao L, Que Y, Li S, Chen L, Hu P, Xiong R, Seta F, Chen H, Tong X. Smooth muscle NADPH oxidase 4 promotes angiotensin II-induced aortic aneurysm and atherosclerosis by regulating osteopontin. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165912. [PMID: 32777344 DOI: 10.1016/j.bbadis.2020.165912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Angiotensin II (Ang II) is commonly used to induce aortic aneurysm and atherosclerosis in animal models. Ang II upregulates NADPH oxidase isoform Nox4 in aortic smooth muscle cells (SMCs) in mice. However, whether smooth muscle Nox4 is directly involved in Ang II-induced aortic aneurysm and atherosclerosis is unclear. METHODS & RESULTS To address this, we used smooth muscle-specific Nox4 dominant-negative (SDN) transgenic mice, in which Nox4 activity is constitutively inhibited. In non-transgenic (NTg) mice, Ang II increased the expression of proteins known to contribute to both aortic aneurysm and atherosclerosis, namely osteopontin (OPN), collagen type I&III (Col I&III), matrix metalloproteinase 2 (MMP2), and vascular cell adhesion molecule 1 (VCAM1), which were all significantly downregulated in SDN mice. The number and size of Ang II-induced aorta collateral aneurysms and atherosclerotic lesions in the renal artery and aortic root of SDN mice were significantly decreased compared to NTg mice, and directly correlated with a decrease in OPN expression. Replenishing OPN in SDN SMCs, increased the expression of Col I&III, MMP2, and VCAM1, and promoted SMC proliferation, migration, and inflammation. CONCLUSIONS Our data demonstrate that smooth muscle Nox4 directly promotes the development of Ang II-induced aortic aneurysm and atherosclerosis, at least in part, through regulating OPN expression.
Collapse
Affiliation(s)
- Weimin Yu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Li Xiao
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yumei Que
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lili Chen
- Wuhan EasyDiagnosis Biomedicine Co., Ltd., Wuhan 430075, China
| | - Pingping Hu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Rui Xiong
- Chongqing General Hospital, University of Chinese Academy of Science, Chongqing 400013, China
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hao Chen
- Chongqing General Hospital, University of Chinese Academy of Science, Chongqing 400013, China
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
14
|
Zhou X, Cheng J, Chen Z, Li H, Chen S, Xu F, Fan R, Zhuang J, Sun T. Role of c-Abl in Ang II-induced aortic dissection formation: Potential regulatory efficacy on phenotypic transformation and apoptosis of VSMCs. Life Sci 2020; 256:117882. [PMID: 32497633 DOI: 10.1016/j.lfs.2020.117882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022]
Abstract
AIMS Angiotensin II (Ang II) induces aortic dissection (AD) via regulation of pathological changes in vascular smooth muscle cells (VSMCs). However, the molecular mechanisms involved are not fully understood. The aim of this study was to evaluate the potential role of the proto-oncogene non-receptor cellular Abelson tyrosine kinase (c-Abl) in Ang II-induced VSMC phenotypic transformation and apoptosis. MAIN METHODS Lentiviral transfection and short hairpin RNA (shRNA) were used to enhance or inhibit c-Abl in cultured VSMCs. In addition, C57BL/6 and Abl1 gene knockout heterozygous (c-Abl-/+) mice were infused with Ang II, with or without c-Abl inhibitor (STI571) treatment. The incidence of AD was evaluated in vivo, while the molecular and pathological features of VSMC phenotypic transformation and apoptosis were evaluated in vitro and in vivo. KEY FINDINGS Ang II infusion induced a substantial incidence of AD in vivo (27%; 8/30), while STI571 intragastric gavage or Abl1 knockout reduced the incidence of AD to 13% (4/30) and 7% (2/30), respectively. The results of subsequent studies showed that c-Abl overexpression enhanced the Ang II-induced apoptosis and synthetic phenotypic transformation of VSMCs in vitro, while inhibition of c-Abl activity with STI571 or Abl1 gene knockout significantly attenuated the Ang II-induced apoptosis and synthetic phenotypic transformation of VSMCs both in vivo and in vitro. SIGNIFICANCE Activation of c-Abl may be important for the phenotypic transformation and apoptosis of VSMCs underlying the Ang II-induced AD. Targeted inhibition of c-Abl may prevent Ang II-induced AD via attenuation of the pathological changes of VSMCs.
Collapse
Affiliation(s)
- Xianwu Zhou
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangzhou 510100, PR China
| | - Jiancheng Cheng
- Cardiothoracic Surgery Department of Zhengzhou central hospital affiliated to Zhengzhou University, Zhengzhou, China
| | - Zerui Chen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangzhou 510100, PR China
| | - Huadong Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430030, China
| | - Ruixin Fan
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangzhou 510100, PR China
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangzhou 510100, PR China.
| | - Tucheng Sun
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangzhou 510100, PR China.
| |
Collapse
|
15
|
Centner AM, Bhide PG, Salazar G. Nicotine in Senescence and Atherosclerosis. Cells 2020; 9:E1035. [PMID: 32331221 PMCID: PMC7226537 DOI: 10.3390/cells9041035] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Cigarette smoke is a known exacerbator of age-related pathologies, such as cardiovascular disease (CVD), atherosclerosis, and cellular aging (senescence). However, the role of nicotine and its major metabolite cotinine is yet to be elucidated. Considering the growing amount of nicotine-containing aerosol use in recent years, the role of nicotine is a relevant public health concern. A number of recent studies and health education sites have focused on nicotine aerosol-induced adverse lung function, and neglected cardiovascular (CV) impairments and diseases. A critical review of the present scientific literature leads to the hypothesis that nicotine mediates the effects of cigarette smoke in the CV system by increasing MAPK signaling, inflammation, and oxidative stress through NADPH oxidase 1 (Nox1), to induce vascular smooth muscle cell (VSMC) senescence. The accumulation of senescent VSMCs in the lesion cap is detrimental as it increases the pathogenesis of atherosclerosis by promoting an unstable plaque phenotype. Therefore, nicotine, and most likely its metabolite cotinine, adversely influence atherosclerosis.
Collapse
Affiliation(s)
- Ann Marie Centner
- Department of Nutrition, Food and Exercise Sciences, College of Human Scinces, 120 Convocation Way, Florida State University, Tallahassee, FL 32306, USA;
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, FSU College of Medicine, 1115, West Call Street, Tallahassee, FL 32306, USA;
| | - Gloria Salazar
- Department of Nutrition, Food and Exercise Sciences, College of Human Scinces, 120 Convocation Way, Florida State University, Tallahassee, FL 32306, USA;
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
16
|
Fujie S, Hasegawa N, Sanada K, Hamaoka T, Maeda S, Padilla J, Martinez-Lemus LA, Iemitsu M. Increased serum salusin-α by aerobic exercise training correlates with improvements in arterial stiffness in middle-aged and older adults. Aging (Albany NY) 2020; 12:1201-1212. [PMID: 31918410 PMCID: PMC7053613 DOI: 10.18632/aging.102678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/25/2019] [Indexed: 04/16/2023]
Abstract
Aging causes arterial stiffening which can be mitigated by increased physical activity. Although low circulating levels of salusin-α are associated with cardiovascular disease, whether salusin-α decreases with aging and whether the reduced arterial stiffening occurring with exercise training is associated with increased serum salusin-α is unknown. Herein we assessed carotid-femoral pulse wave velocity (cfPWV), systolic (SBP) and diastolic (DBP) blood pressures in a cross-sectional study that compared young (20-39-year-old, n=45) versus middle-aged and older (40-80-year-old, n=60) subjects. We also performed an interventional study in which 36 young and 40 middle-aged and older subjects underwent eight weeks of aerobic exercise training. In the cross-sectional study, serum salusin-α levels were lesser in middle-aged and older subjects compared to young individuals and negatively correlated with age, SBP, DBP, or cfPWV. In the interventional study, exercise training increased serum salusin-α in middle-aged and older subjects. Notably, negative correlations were noted between the exercise training-induced changes in serum salusin-α and cfPWV, SBP and DBP. Results indicate that advanced age associates with low circulating salusin-α, the levels of which can be augmented by exercise training. Importantly, increased serum salusin-α with exercise correlates with improvements in arterial stiffness and a reduction in blood pressure.
Collapse
Affiliation(s)
- Shumpei Fujie
- Faculty of Sport and Health Sciences, University of Tsukuba, Ibaraki, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Natsuki Hasegawa
- Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | - Kiyoshi Sanada
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Takafumi Hamaoka
- Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Seiji Maeda
- Faculty of Sport and Health Sciences, University of Tsukuba, Ibaraki, Japan
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65201, USA
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Motoyuki Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
17
|
DuPont JJ, Kenney RM, Patel AR, Jaffe IZ. Sex differences in mechanisms of arterial stiffness. Br J Pharmacol 2019; 176:4208-4225. [PMID: 30767200 DOI: 10.1111/bph.14624] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 12/24/2022] Open
Abstract
Arterial stiffness progressively increases with aging and is an independent predictor of cardiovascular disease (CVD) risk. Evidence supports that there are sex differences in the time course of aging-related arterial stiffness and the associated CVD risk, which increases disproportionately in postmenopausal women. The association between arterial stiffness and mortality is almost twofold higher in women versus men. The differential clinical characteristics of the development of arterial stiffness between men and women indicate the involvement of sex-specific mechanisms. This review summarizes the current literature on sex differences in vascular stiffness induced by aging, obesity, hypertension, and sex-specific risk factors as well as the impact of hormonal status, diet, and exercise on vascular stiffness in males and females. An understanding of the mechanisms driving sex differences in vascular stiffness has the potential to identify novel sex-specific therapies to lessen CVD risk, the leading cause of death in males and females. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Rachel M Kenney
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Ayan R Patel
- Division of Cardiology, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America.,Division of Cardiology, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Mistriotis P, Andreadis ST. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 2017; 37:94-116. [PMID: 28579130 DOI: 10.1016/j.arr.2017.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Aging is the main risk factor contributing to vascular dysfunction and the progression of vascular diseases. In this review, we discuss the causes and mechanisms of vascular aging at the tissue and cellular level. We focus on Endothelial Cell (EC) and Smooth Muscle Cell (SMC) aging due to their critical role in mediating the defective vascular phenotype. We elaborate on two categories that contribute to cellular dysfunction: cell extrinsic and intrinsic factors. Extrinsic factors reflect systemic or environmental changes which alter EC and SMC homeostasis compromising vascular function. Intrinsic factors induce EC and SMC transformation resulting in cellular senescence. Replenishing or rejuvenating the aged/dysfunctional vascular cells is critical to the effective repair of the vasculature. As such, this review also elaborates on recent findings which indicate that stem cell and gene therapies may restore the impaired vascular cell function, reverse vascular aging, and prolong lifespan.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
19
|
Perrucci GL, Rurali E, Gowran A, Pini A, Antona C, Chiesa R, Pompilio G, Nigro P. Vascular smooth muscle cells in Marfan syndrome aneurysm: the broken bricks in the aortic wall. Cell Mol Life Sci 2017; 74:267-277. [PMID: 27535662 PMCID: PMC11107581 DOI: 10.1007/s00018-016-2324-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 01/22/2023]
Abstract
Marfan syndrome (MFS) is a connective tissue disorder with multiple organ manifestations. The genetic cause of this syndrome is the mutation of the FBN1 gene, encoding the extracellular matrix (ECM) protein fibrillin-1. This genetic alteration leads to the degeneration of microfibril structures and ECM integrity in the tunica media of the aorta. Indeed, thoracic aortic aneurysm and dissection represent the leading cause of death in MFS patients. To date, the most effective treatment option for this pathology is the surgical substitution of the damaged aorta. To highlight novel therapeutic targets, we review the molecular mechanisms related to MFS etiology in vascular smooth muscle cells, the foremost cellular type involved in MFS pathogenesis.
Collapse
Affiliation(s)
- Gianluca L Perrucci
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy
| | - Erica Rurali
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy
| | - Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy
| | - Alessandro Pini
- Department of Cardiology, Marfan Clinic®, "Luigi Sacco" University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy
| | - Carlo Antona
- Cardiovascular Surgery Department, "Luigi Sacco" University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy
- FoRCardioLab, "Luigi Sacco" University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy
| | - Roberto Chiesa
- Department of Vascular Surgery, San Raffaele Scientific Institute Hospital, Vita-Salute University, Milan, Italy
| | - Giulio Pompilio
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy.
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy.
| | - Patrizia Nigro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via C. Parea 4, 20138, Milan, Italy.
| |
Collapse
|
20
|
Diminazene aceturate, an angiotensin-converting enzyme II activator, prevents gastric mucosal damage in mice: Role of the angiotensin-(1-7)/Mas receptor axis. Biochem Pharmacol 2016; 112:50-9. [PMID: 27241079 DOI: 10.1016/j.bcp.2016.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/24/2016] [Indexed: 01/15/2023]
Abstract
The angiotensin (Ang) II converting enzyme (ACE II) pathway has recently been shown to be associated with several beneficial effects in various organisms, including gastroprotection. ACE II is responsible for converting Ang II into an active peptide, Ang-(1-7), which in turn binds the Mas receptor. Recent studies have shown that diminazene aceturate (Dize) a trypanocidal used in animals, activates ACE II. Thus, in this study, we aimed to evaluate the gastroprotective effects of Dize via the ACE II/Ang-(1-7)/Mas receptor pathway against gastric lesions induced by ethanol and acetic acid in mice. The results showed that Dize could promote gastric protection via several mechanisms, including increased levels of antioxidants and anti-inflammatory factors (e.g., decreasing tumor necrosis factor and interleukin-6 expression and reducing myeloperoxidase activity), maturation of collagen fibers, and promotion of re-epithelialization and regeneration of gastric tissue in different injury models. Thus, Dize represents a novel potential gastroprotective agent.
Collapse
|
21
|
Bersi MR, Bellini C, Wu J, Montaniel KRC, Harrison DG, Humphrey JD. Excessive Adventitial Remodeling Leads to Early Aortic Maladaptation in Angiotensin-Induced Hypertension. Hypertension 2016; 67:890-896. [PMID: 27001298 DOI: 10.1161/hypertensionaha.115.06262] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/22/2016] [Indexed: 01/27/2023]
Abstract
The primary function of central arteries is to store elastic energy during systole and to use it to sustain blood flow during diastole. Arterial stiffening compromises this normal mechanical function and adversely affects end organs, such as the brain, heart, and kidneys. Using an angiotensin II infusion model of hypertension in wild-type mice, we show that the thoracic aorta exhibits a dramatic loss of energy storage within 2 weeks that persists for at least 4 weeks. This diminished mechanical functionality results from increased structural stiffening as a result of an excessive accumulation of adventitial collagen, not a change in the intrinsic stiffness of the wall. A detailed analysis of the transmural biaxial wall stress suggests that the exuberant production of collagen results more from an inflammatory response than from a mechano-adaptation, hence reinforcing the need to control inflammation, not just blood pressure. Although most clinical assessments of arterial stiffening focus on intimal-medial thickening, these results suggest a need to measure and control the highly active and important adventitia.
Collapse
Affiliation(s)
- Mathew R Bersi
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Chiara Bellini
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Jing Wu
- Departments of Medicine and Pharmacology, Vanderbilt University, Nashville, TN
| | - Kim R C Montaniel
- Departments of Medicine and Pharmacology, Vanderbilt University, Nashville, TN
| | - David G Harrison
- Departments of Medicine and Pharmacology, Vanderbilt University, Nashville, TN
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| |
Collapse
|
22
|
Ameliorative effects of tannic acid on carbon tetrachloride-induced liver fibrosis in vivo and in vitro. J Pharmacol Sci 2016; 130:15-23. [DOI: 10.1016/j.jphs.2015.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/31/2022] Open
|
23
|
Angiotensin-II induced hypertension and renovascular remodelling in tissue inhibitor of metalloproteinase 2 knockout mice. J Hypertens 2015; 31:2270-81; discussion 2281. [PMID: 24077247 DOI: 10.1097/hjh.0b013e3283649b33] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sustained hypertension induces renovascular remodelling by altering extracellular matrix (ECM) components. Matrix metalloproteinases (MMPs) are Zn-dependent enzymes that regulate ECM turnover in concert with their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). Increased MMP-2 and MMP-9 have been implicated in hypertensive complications; however, the contribution of individual MMPs/TIMPs in renal remodelling has not been fully elucidated. The purpose of this study was to determine the effect of TIMP2 deficiency and thus MMP-2 on angiotensin-II (Ang-II) induced renal remodelling. METHOD C57BL/6J (wild-type) and TIMP2 knockout mice were infused with Ang-II at 250 ng/kg per min for 4 weeks. Blood pressure was measured weekly and end-point laser Doppler flowmetry was done to assess cortical blood flow. Immunohistochemical staining was performed for collagen and elastin analyses. The activity of MMP-9 and MMP-2 was determined by Gelatin zymography. RESULTS Ang-II induced similar elevation in mean blood pressure in TIMP2 and wild-type mice. In TIMP2 mice, Ang-II treatment was associated with a greater reduction in renal cortical blood flow and barium angiography demonstrated decreased vascular density compared with Ang-II treated wild-type mice. Peri-glomerular and vascular collagen deposition was increased and elastin content was decreased causing increased wall-to-lumen ratio in TIMP2 mice compared with wild-type mice receiving Ang-II. Ang-II increased the expression and activity of MMP-9 predominantly in TIMP2 mice than in wild-type mice. CONCLUSION These results suggest that TIMP2 deficiency exacerbates renovascular remodelling in agonist-induced hypertension by a mechanism that may, in part, be attributed to increased activity of MMP-9.
Collapse
|
24
|
Shi N, Chen SY. Smooth Muscle Cell Differentiation: Model Systems, Regulatory Mechanisms, and Vascular Diseases. J Cell Physiol 2015; 231:777-87. [DOI: 10.1002/jcp.25208] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Ning Shi
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| | - Shi-You Chen
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| |
Collapse
|
25
|
Mao S, Li W, Qa'aty N, Vincent M, Zhang M, Hinek A. Tanshinone IIA inhibits angiotensin II induced extracellular matrix remodeling in human cardiac fibroblasts--Implications for treatment of pathologic cardiac remodeling. Int J Cardiol 2015; 202:110-7. [PMID: 26408838 DOI: 10.1016/j.ijcard.2015.08.191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 08/21/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Shuai Mao
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Physiology & Experimental Medicine, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Winny Li
- Faculty of Medicine, University of Toronto, University Ave. Toronto M5G 0A4, Canada
| | - Nour Qa'aty
- Physiology & Experimental Medicine, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Mattchew Vincent
- Physiology & Experimental Medicine, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Minzhou Zhang
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Aleksander Hinek
- Physiology & Experimental Medicine, Hospital for Sick Children, Toronto M5G 0A4, Canada
| |
Collapse
|
26
|
Wanjare M, Agarwal N, Gerecht S. Biomechanical strain induces elastin and collagen production in human pluripotent stem cell-derived vascular smooth muscle cells. Am J Physiol Cell Physiol 2015; 309:C271-81. [PMID: 26108668 DOI: 10.1152/ajpcell.00366.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 06/22/2015] [Indexed: 12/17/2022]
Abstract
Blood vessels are subjected to numerous biomechanical forces that work harmoniously but, when unbalanced because of vascular smooth muscle cell (vSMC) dysfunction, can trigger a wide range of ailments such as cerebrovascular, peripheral artery, and coronary artery diseases. Human pluripotent stem cells (hPSCs) serve as useful therapeutic tools that may help provide insight on the effect that such biomechanical stimuli have on vSMC function and differentiation. In this study, we aimed to examine the effect of biomechanical strain on vSMCs derived from hPSCs. The effects of two types of tensile strain on hPSC-vSMC derivatives at different stages of differentiation were examined. The derivatives included smooth muscle-like cells (SMLCs), mature SMLCs, and contractile vSMCs. All vSMC derivatives aligned perpendicularly to the direction of cyclic uniaxial strain. Serum deprivation and short-term uniaxial strain had a synergistic effect in enhancing collagen type I, fibronectin, and elastin gene expression. Furthermore, long-term uniaxial strain deterred collagen type III gene expression, whereas long-term circumferential strain upregulated both collagen type III and elastin gene expression. Finally, long-term uniaxial strain downregulated extracellular matrix (ECM) expression in more mature vSMC derivatives while upregulating elastin in less mature vSMC derivatives. Overall, our findings suggest that in vitro application of both cyclic uniaxial and circumferential tensile strain on hPSC-vSMC derivatives induces cell alignment and affects ECM gene expression. Therefore, mechanical stimulation of hPSC-vSMC derivatives using tensile strain may be important in modulating the phenotype and thus the function of vSMCs in tissue-engineered vessels.
Collapse
Affiliation(s)
- Maureen Wanjare
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Nayan Agarwal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
27
|
Prasad AM, Morgan DA, Nuno DW, Ketsawatsomkron P, Bair TB, Venema AN, Dibbern ME, Kutschke WJ, Weiss RM, Lamping KG, Chapleau MW, Sigmund CD, Rahmouni K, Grumbach IM. Calcium/calmodulin-dependent kinase II inhibition in smooth muscle reduces angiotensin II-induced hypertension by controlling aortic remodeling and baroreceptor function. J Am Heart Assoc 2015; 4:e001949. [PMID: 26077587 PMCID: PMC4599535 DOI: 10.1161/jaha.115.001949] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Multifunctional calcium/calmodulin-dependent kinase II (CaMKII) is activated by angiotensin II (Ang II) in cultured vascular smooth muscle cells (VSMCs), but its function in experimental hypertension has not been explored. The aim of this study was to determine the impact of CaMKII inhibition selectively in VSMCs on Ang II hypertension. Methods and Results Transgenic expression of a CaMKII peptide inhibitor in VSMCs (TG SM-CaMKIIN model) reduced the blood pressure response to chronic Ang II infusion. The aortic depressor nerve activity was reset in hypertensive versus normotensive wild-type animals but not in TG SM-CaMKIIN mice, suggesting that changes in baroreceptor activity account for the blood pressure difference between genotypes. Accordingly, aortic pulse wave velocity, a measure of arterial wall stiffness and a determinant of baroreceptor activity, increased in hypertensive versus normotensive wild-type animals but did not change in TG SM-CaMKIIN mice. Moreover, examination of blood pressure and heart rate under ganglionic blockade revealed that VSMC CaMKII inhibition abolished the augmented efferent sympathetic outflow and renal and splanchnic nerve activity in Ang II hypertension. Consequently, we hypothesized that VSMC CaMKII controls baroreceptor activity by modifying arterial wall remodeling in Ang II hypertension. Gene expression analysis in aortas from normotensive and Ang II–infused mice revealed that TG SM-CaMKIIN aortas were protected from Ang II–induced upregulation of genes that control extracellular matrix production, including collagen. VSMC CaMKII inhibition also strongly altered the expression of muscle contractile genes under Ang II. Conclusions CaMKII in VSMCs regulates blood pressure under Ang II hypertension by controlling structural gene expression, wall stiffness, and baroreceptor activity.
Collapse
Affiliation(s)
- Anand M Prasad
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - Donald A Morgan
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Daniel W Nuno
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Pimonrat Ketsawatsomkron
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Thomas B Bair
- The Iowa Institute for Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA (T.B.B.)
| | - Ashlee N Venema
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| | - Megan E Dibbern
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - William J Kutschke
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - Robert M Weiss
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - Kathryn G Lamping
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| | - Mark W Chapleau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| | - Curt D Sigmund
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.) Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA (C.D.S.)
| | - Kamal Rahmouni
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Isabella M Grumbach
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| |
Collapse
|
28
|
Eberson LS, Sanchez PA, Majeed BA, Tawinwung S, Secomb TW, Larson DF. Effect of lysyl oxidase inhibition on angiotensin II-induced arterial hypertension, remodeling, and stiffness. PLoS One 2015; 10:e0124013. [PMID: 25875748 PMCID: PMC4395147 DOI: 10.1371/journal.pone.0124013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/09/2015] [Indexed: 12/20/2022] Open
Abstract
It is well accepted that angiotensin II (Ang II) induces altered vascular stiffness through responses including both structural and material remodeling. Concurrent with remodeling is the induction of the enzyme lysyl oxidase (LOX) through which ECM proteins are cross-linked. The study objective was to determine the effect of LOX mediated cross-linking on vascular mechanical properties. Three-month old mice were chronically treated with Ang II with or without the LOX blocker, β -aminopropionitrile (BAPN), for 14 days. Pulse wave velocity (PWV) from Doppler measurements of the aortic flow wave was used to quantify in vivo vascular stiffness in terms of an effective Young’s modulus. The increase in effective Young’s modulus with Ang II administration was abolished with the addition of BAPN, suggesting that the material properties are a major controlling element in vascular stiffness. BAPN inhibited the Ang II induced collagen cross-link formation by 2-fold and PWV by 44% (P<0.05). Consistent with this observation, morphometric analysis showed that BAPN did not affect the Ang II mediated increase in medial thickness but significantly reduced the adventitial thickness. Since the hypertensive state contributes to the measured in vivo PWV stiffness, we removed the Ang II infusion pumps on Day 14 and achieved normal arterial blood pressures. With pump removal we observed a decrease of the PWV in the Ang II group to 25% above that of the control values (P=0.002), with a complete return to control values in the Ang II plus BAPN group. In conclusion, we have shown that the increase in vascular stiffness with 14 day Ang II administration results from a combination of hypertension-induced wall strain, adventitial wall thickening and Ang II mediated LOX ECM cross-linking, which is a major material source of vascular stiffening, and that the increased PWV was significantly inhibited with co-administration of BAPN.
Collapse
Affiliation(s)
- Lance S. Eberson
- Department of Physiology, The University of Arizona, Tucson, Arizona, United States of America
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Pablo A. Sanchez
- Department of Physiology, The University of Arizona, Tucson, Arizona, United States of America
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Beenish A. Majeed
- Department of Pharmacology, The University of Arizona, Tucson, Arizona, United States of America
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Supannikar Tawinwung
- Department of Pharmacology, The University of Arizona, Tucson, Arizona, United States of America
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Timothy W. Secomb
- Department of Physiology, The University of Arizona, Tucson, Arizona, United States of America
| | - Douglas F. Larson
- Department of Physiology, The University of Arizona, Tucson, Arizona, United States of America
- Department of Pharmacology, The University of Arizona, Tucson, Arizona, United States of America
- Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
29
|
Wang C, Qian X, Sun X, Chang Q. Angiotensin II increases matrix metalloproteinase 2 expression in human aortic smooth muscle cells via AT1R and ERK1/2. Exp Biol Med (Maywood) 2015; 240:1564-71. [PMID: 25767191 DOI: 10.1177/1535370215576312] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/27/2015] [Indexed: 11/16/2022] Open
Abstract
Increased levels of angiotensin II (Ang II) and activated matrix metalloproteinase 2 (MMP-2) produced by human aortic smooth muscle cells (human ASMCs) have recently been implicated in the pathogenesis of thoracic aortic aneurysm (TAA). Additionally, angiotensin II type 1 receptor (AT1R)-mediated extracellular signal-regulated kinase (ERK)1/2 activation contributes to TAA development in Marfan Syndrome. However, there is scant data regarding the relationship between Ang II and MMP-2 expression in human ASMCs. Therefore, we investigated the effect of Ang II on MMP-2 expression in human ASMCs and used Western blotting to identify the Ang II receptors and intracellular signaling pathways involved. Reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence data demonstrated that Ang II receptors were expressed on human ASMCs. Additionally, Ang II increased the expression of Ang II type 2 receptor (AT2R) but not AT1R at both the transcriptional and translational levels. Furthermore, Western blotting showed that Ang II increased MMP-2 expression in human ASMCs in a dose- and time-dependent manner. This response was completely inhibited by the AT1R inhibitor candesartan but not by the AT2R blocker PD123319. In addition, Ang II-induced upregulation of MMP-2 was mediated by the activation of ERK1/2, whereas p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) had no effect on this process. In conclusion, these results indicate that Ang II can increase the expression of MMP-2 via AT1 receptor and ERK1/2 signaling pathways in human ASMCs and suggest that antagonists of AT1R and ERK1/2 may be useful for treating TAAs.
Collapse
Affiliation(s)
- Chunmao Wang
- State Key Laboratory of Cardiovascular Disease, Aorta Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, China
| | - Xiangyang Qian
- State Key Laboratory of Cardiovascular Disease, Aorta Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, China
| | - Xiaogang Sun
- State Key Laboratory of Cardiovascular Disease, Aorta Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, China
| | - Qian Chang
- State Key Laboratory of Cardiovascular Disease, Aorta Surgery Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, China
| |
Collapse
|
30
|
Effect of high-fat diet upon inflammatory markers and aortic stiffening in mice. BIOMED RESEARCH INTERNATIONAL 2014; 2014:914102. [PMID: 25013811 PMCID: PMC4071860 DOI: 10.1155/2014/914102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 11/21/2022]
Abstract
Changes in lifestyle such as increase in high-fat food consumption are an important cause for vascular diseases. The present study aimed to investigate the involvement of ACE and TGF-β in the aorta stiffness induced by high-fat diet. C57BL/6 male mice were divided in two groups according to their diet for 8 weeks: standard diet (ST) and high-fat diet (HF). At the end of the protocol, body weight gain, adipose tissue content, serum lipids and glucose levels, and aorta morphometric and biochemical measurements were performed. Analysis of collagen fibers by picrosirius staining of aorta slices showed that HF diet promoted increase of thin (55%) and thick (100%) collagen fibers deposition and concomitant disorganization of these fibers orientations in the aorta vascular wall (50%). To unravel the mechanism involved, myeloperoxidase (MPO) and angiotensin I converting enzyme (ACE) were evaluated by protein expression and enzyme activity. HF diet increased MPO (90%) and ACE (28%) activities, as well as protein expression of ACE. TGF-β was also increased in aorta tissue of HF diet mice after 8 weeks. Altogether, we have observed that the HF diet-induced aortic stiffening may be associated with increased oxidative stress damage and activation of the RAS in vascular tissue.
Collapse
|
31
|
Goldsmith EC, Bradshaw AD, Zile MR, Spinale FG. Myocardial fibroblast-matrix interactions and potential therapeutic targets. J Mol Cell Cardiol 2014; 70:92-9. [PMID: 24472826 PMCID: PMC4005609 DOI: 10.1016/j.yjmcc.2014.01.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 01/18/2023]
Abstract
The cardiac extracellular matrix (ECM) is a dynamic structure, adapting to physiological and pathological stresses placed on the myocardium. Deposition and organization of the matrix fall under the purview of cardiac fibroblasts. While often overlooked compared to myocytes, fibroblasts play a critical role in maintaining ECM homeostasis under normal conditions and in response to pathological stimuli assume an activated, myofibroblast phenotype associated with excessive collagen accumulation contributing to impaired cardiac function. Complete appreciation of fibroblast function is hampered by the lack of fibroblast-specific reagents and the heterogeneity of fibroblast precursors. This is further complicated by our ability to dissect the role of myofibroblasts versus fibroblasts in myocardial in remodeling. This review highlights critical points in the regulation of collagen deposition by fibroblasts, the current panel of molecular tools used to identify fibroblasts and the role of fibroblast-matrix interactions in fibroblast function and differentiation into the myofibroblast phenotype. The clinical potential of exploiting differences between fibroblasts and myofibroblasts and using them to target specific fibroblast populations is also discussed. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium."
Collapse
Affiliation(s)
- Edie C Goldsmith
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, USA.
| | - Amy D Bradshaw
- Ralph H. Johnson Department of Veteran's Affairs Medical Center, Charleston, SC, USA; Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Michael R Zile
- Ralph H. Johnson Department of Veteran's Affairs Medical Center, Charleston, SC, USA; Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Francis G Spinale
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, USA; Cardiovascular Translational Research Center, University of South Carolina School of Medicine, USA; WJB Dorn Veteran Affairs Medical Center, Columbia, SC, USA
| |
Collapse
|
32
|
Stefanovic L, Longo L, Zhang Y, Stefanovic B. Characterization of binding of LARP6 to the 5' stem-loop of collagen mRNAs: implications for synthesis of type I collagen. RNA Biol 2014; 11:1386-401. [PMID: 25692237 PMCID: PMC4615758 DOI: 10.1080/15476286.2014.996467] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 01/11/2023] Open
Abstract
Type I collagen is composed of 2 polypeptides, α1(I) and α2(I), which fold into triple helix. Collagen α1(I) and α2(I) mRNAs have a conserved stem-loop structure in their 5' UTRs, the 5'SL. LARP6 binds the 5'SL to regulate type I collagen expression. We show that 5 nucleotides within the single stranded regions of 5'SL contribute to the high affinity of LARP6 binding. Mutation of individual nucleotides abolishes the binding in gel mobility shift assay. LARP6 binding to 5'SL of collagen α2(I) mRNA is more stable than the binding to 5'SL of α1(I) mRNA, although the equilibrium binding constants are similar. The more stable binding to α2(I) mRNA may favor synthesis of the heterotrimeric type I collagen. LARP6 needs 2 domains to contact 5'SL, the La domain and the RRM. T133 in the La domain is critical for folding of the protein, while loop 3 in the RRM is critical for binding 5'SL. Loop 3 is also involved in the interaction of LARP6 and protein translocation channel SEC61. This interaction is essential for type I collagen synthesis, because LARP6 mutant which binds 5'SL but which does not interact with SEC61, suppresses collagen synthesis in a dominant negative manner. We postulate that LARP6 directly targets collagen mRNAs to the SEC61 translocons to facilitate coordinated translation of the 2 collagen mRNAs. The unique sequences of LARP6 identified in this work may have evolved to enable its role in type I collagen biosynthesis.
Collapse
Affiliation(s)
- Lela Stefanovic
- Department of Biomedical Sciences; College of Medicine; Florida State University; Tallahassee, FL USA
- Current affiliation: Molecular Biophysics; Florida State University; Tallahassee, FL USA
| | - Liam Longo
- Current affiliation: Molecular Biophysics; Florida State University; Tallahassee, FL USA
| | - Yujie Zhang
- Department of Biomedical Sciences; College of Medicine; Florida State University; Tallahassee, FL USA
- Current affiliation: Molecular Biophysics; Florida State University; Tallahassee, FL USA
| | | |
Collapse
|
33
|
Medvedev NV, Gorshunova NK. Apoptosis and interstitial fibrosis in remodeling of the myocardium in elderly patients with arterial hypertension. ADVANCES IN GERONTOLOGY 2014. [DOI: 10.1134/s2079057014010056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Myles V, Liao J, Warnock JN. Cyclic pressure and angiotensin II influence the biomechanical properties of aortic valves. J Biomech Eng 2013; 136:011011. [PMID: 24240552 DOI: 10.1115/1.4026041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Indexed: 11/08/2022]
Abstract
Hypertension is a known risk factor for aortic stenosis. The elevated blood pressure increases the transvalvular load and can elicit inflammation and extracellular matrix (ECM) remodeling. Elevated cyclic pressure and the vasoactive agent angiotensin II (Ang II) both promote collagen synthesis, an early hallmark of aortic sclerosis. In the current study, it was hypothesized that elevated cyclic pressure and/or angiotensin II decreases extensibility of aortic valve leaflets due to an increase in collagen content and/or interstitial cell stiffness. Porcine aortic valve leaflets were exposed to pressure conditions of increasing magnitude (static atmospheric pressure, 80, and 120 mmHg) with and without 10−6 M Ang II. Biaxial mechanical testing was performed to determine extensibility in the circumferential and radial directions and collagen content was determined using a quantitative dye-binding method at 24 and 48 h. Isolated aortic valve interstitial cells exposed to the same experimental conditions were subjected to atomic force microscopy to assess cellular stiffness at 24 h. Leaflet tissue incubated with Ang II decreased tissue extensibility in the radial direction, but not in the circumferential direction. Elevated cyclic pressure decreased extensibility in both the radial and circumferential directions. Ang II and elevated cyclic pressure both increased the collagen content in leaflet tissue. Interstitial cells incubated with Ang II were stiffer than those incubated without Ang II while elevated cyclic pressure caused a decrease in cell stiffness. The results of the current study demonstrated that both pressure and Ang II play a role in altering the biomechanical properties of aortic valve leaflets. Ang II and elevated cyclic pressure decreased the extensibility of aortic valve leaflet tissue. Ang II induced direction specific changes in extensibility, demonstrating different response mechanisms. These findings help to provide a better understanding of the responses of aortic valves to mechanical and biochemical changes that occur under hypertensive conditions.
Collapse
|
35
|
Xu YM, Sharma D, Li GP, Zhao YN. Effect of Angiotensin II Type 1 Receptor Antagonist, Losartan on Inflammatory Factor in Atherosclerotic Rabbits. Res Cardiovasc Med 2013; 2:127-32. [PMID: 25478508 PMCID: PMC4253768 DOI: 10.5812/cardiovascmed.10781] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/06/2013] [Accepted: 03/09/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Atherosclerosis is a progressive disease characterized by the accumulation of lipids and fibrous elements in the large arteries which now has become the pre-eminent health problem worldwide. OBJECTIVES To investigate the effect and mechanism of Losartan intervention on atherosclerosis in rabbits fed with high-cholesterol diet. MATERIALS AND METHODS 32 New Zealand rabbits were randomly divided into three groups: control group, high-cholesterol group and Losartan group. The level of weights, serum lipid levels and inflammatory factors, such as IL-6 and hs C-reactive protein were detected before the Losartan intervention and two months after the Losartan intervention respectively. The content of AngII was detected on later stage of the experiment. Pathological examination of the iliac arteries was performed to measure the thickness of endothelium and media. RESULTS After the atherosclerosis model was established, the level of the serum lipids, hs CRP and IL-6 of rabbits in high-cholesterol group and Losartan group increased significantly in comparison with control group(P < 0.05), but there was no statistical difference between the two groups (P > 0.05). After the Losartan intervention, the levels of serum hs CRP and IL-6 were higher in high-cholesterol group and Losartan group in comparison with control group (P < 0.05), and they were significantly lower in Losartan group than high-cholesterol group (P < 0.05). Serum lipids levels of rabbits in high-cholesterol group and Losartan group also increased significantly in comparison with control group (P < 0.05), but there was no statistical difference between them (P > 0.05). Ratio of endothelium thickness to the media thickness was higher in high-cholesterol group and Losartan group in comparison with control group (P < 0.05), and the ratio in Losartan group was significantly lower than high-cholesterol group (P < 0.05). Content of Angiotensin was higher in high-cholesterol group and Losartan group compared to control group, and there was no statistical difference between them. CONCLUSIONS The effect of Losartan on atherosclerosis is to prevent the development of atherosclerosis by inhibiting inflammatory process and may not be related to the lipid metabolism.
Collapse
Affiliation(s)
- Yan-min Xu
- Department of Cardiology, Tianjin Medical University, Tianjin, Republic of China
- Corresponding author: Yan-min Xu, Department of Cardiology, Tianjin Medical University. Tianjin, Republic of China. Tel: +86-2288328339, Fax: +86-2228261158, E-mail:
| | - Deepak Sharma
- Department of Cardiology, Tianjin Medical University, Tianjin, Republic of China
| | - Guang-ping Li
- Department of Cardiology, Tianjin Medical University, Tianjin, Republic of China
| | - Ya-Nan Zhao
- Department of Cardiology, Tianjin Medical University, Tianjin, Republic of China
| |
Collapse
|
36
|
Protopsaltis I, Foussas S, Angelidi A, Gritzapis A, Sergentanis TΝ, Matsagos S, Tzirogiannis K, Panoutsopoulos GI, Dimitriadis G, Raptis S, Melidonis A. Impact of ADMA, endothelial progenitor cells and traditional cardiovascular risk factors on pulse wave velocity among prediabetic individuals. Cardiovasc Diabetol 2012; 11:141. [PMID: 23153108 PMCID: PMC3527304 DOI: 10.1186/1475-2840-11-141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/11/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Central arterial stiffness represents a well-established predictor of cardiovascular disease. Decreased circulating endothelial progenitor cells (EPCs), increased asymmetric dimethyl-arginine (ADMA) levels, traditional cardiovascular risk factors and insulin resistance have all been associated with increased arterial stiffness. The correlations of novel and traditional cardiovascular risk factors with central arterial stiffness in prediabetic individuals were investigated in the present study. METHODS The study population consisted of 53 prediabetic individuals. Individuals were divided into groups of isolated impaired fasting glucose (IFG), isolated impaired glucose tolerance (IGT) and combined IGT-IFG. Age, sex, family history of diabetes, smoking history, body mass index (BMI), waist to hip ratio (WHR), waist circumference (WC), blood pressure, lipid profile, levels of high sensitive C-reactive protein (hsCRP), glomerular filtration rate (GFR), and history of antihypertensive or statin therapy were obtained from all participants. Insulin resistance was evaluated using the Homeostatic Model Assessment (HOMA-IR). Carotid -femoral pulse wave velocity was used as an index of arterial stiffness. Circulating EPC count and ADMA serum levels were also determined. RESULTS Among studied individuals 30 (56.6%) subjects were diagnosed with isolated IFG, 9 (17%) with isolated IGT (17%) and 14 with combined IFG-IGT (26.4%). In univariate analysis age, mean blood pressure, fasting glucose, total cholesterol, LDL cholesterol, and ADMA levels positively correlated with pulse-wave velocity while exercise and GFR correlated negatively. EPC count did not correlate with PWV. In multivariate stepwise regression analysis PWV correlated independently and positively with LDL-Cholesterol (low density lipoprotein) and ADMA levels and negatively with exercise. CONCLUSIONS Elevated ADMA and LDL-C levels are strongly associated with increased arterial stiffness among pre-diabetic subjects. In contrast exercise inversely correlated with arterial stiffness.
Collapse
Affiliation(s)
- Ioannis Protopsaltis
- Diabetes Center, Tzanio General Hospital of Piraeus, Zanni and Afendouli 1, Piraeus, 18537, Greece
| | - Stefanos Foussas
- Department of Cardiology, Tzanio General Hospital of Piraeus, Piraeus, Greece
| | - Angeliki Angelidi
- Diabetes Center, Tzanio General Hospital of Piraeus, Zanni and Afendouli 1, Piraeus, 18537, Greece
| | - Angelos Gritzapis
- Laboratory of Cellular Biology and Immunology, Locus Medicus S.A, Athens, Greece
| | - Theodoros Ν Sergentanis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National University of Athens, Athens, Greece
| | - Spyros Matsagos
- Blood Bank Service, Tzanio General Hospital of Piraeus, Piraeus, Greece
| | | | | | - Georgios Dimitriadis
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, ‘Attikon’ University General Hospital, Athens, Greece
| | | | - Andreas Melidonis
- Diabetes Center, Tzanio General Hospital of Piraeus, Zanni and Afendouli 1, Piraeus, 18537, Greece
| |
Collapse
|
37
|
Dab H, Hachani R, Dhaouadi N, Sakly M, Hodroj W, Randon J, Bricca G, Kacem K. Regulation of aortic extracellular matrix synthesis via noradrenergic system and angiotensin II in juvenile rats. PHARMACEUTICAL BIOLOGY 2012; 50:1219-1225. [PMID: 22853187 DOI: 10.3109/13880209.2012.664554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Extracellular matrix (ECM) synthesis regulation by sympathetic nervous system (SNS) or angiotensin II (ANG II) was widely reported, but interaction between the two systems on ECM synthesis needs further investigation. OBJECTIVE We tested implication of SNS and ANG II on ECM synthesis in juvenile rat aorta. MATERIALS AND METHODS Sympathectomy with guanethidine (50 mg/kg, subcutaneous) and blockade of the ANG II AT1 receptors (AT1R) blocker with losartan (20 mg/kg/day in drinking water) were performed alone or in combination in rats. mRNA and protein synthesis of collagen and elastin were examined by Q-RT-PCR and immunoblotting. RESULTS Collagen type I and III mRNA were increased respectively by 62 and 43% after sympathectomy and decreased respectively by 31 and 60% after AT1R blockade. Combined treatment increased collagen type III by 36% but not collagen type I. The same tendency of collagen expression was observed at mRNA and protein levels after the three treatments. mRNA and protein level of elastin was decreased respectively by 63 and 39% and increased by 158 and 15% after losartan treatment. Combined treatment abrogates changes induced by single treatments. DISCUSSION AND CONCLUSION The two systems act as antagonists on ECM expression in the aorta and combined inhibition of the two systems prevents imbalance of mRNA and protein level of collagen I and elastin induced by single treatment. Combined inhibition of the two systems prevents deposit or excessive reduction of ECM and can more prevent cardiovascular disorders.
Collapse
Affiliation(s)
- Houcine Dab
- Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Université de Carthage, Faculté des Sciences de Bizerte, Tunisia.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yu J, Taylor L, Rich C, Toselli P, Stone P, Green D, Warburton R, Hill N, Goldstein R, Polgar P. Transgenic expression of an altered angiotensin type I AT1 receptor resulting in marked modulation of vascular type I collagen. J Cell Physiol 2012; 227:2013-21. [PMID: 21751211 DOI: 10.1002/jcp.22929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The angiotensin II (AngII) type I receptor (AT1) was modified by replacing its third intracellular loop and C-terminal tail with the corresponding regions from the bradykinin B2 receptor. Transgenic mice were produced that overexpress this mutated receptor (AB3T). Considerably less collagen content in the intact aorta and in primary aortic smooth muscle cells (aSMCs) cultures was observed in the transgenic mice. On the other hand, elastin content remained unchanged as measured by Western blot, and insoluble amino acid quantitation. The contraction of isolated aortas also remained unaltered. The aSMCs derived from the transgenic mice showed a reduction in AngII responsive type I collagen production. In aSMCs from transgenic mice, the cascade of Akt to the mammalian target rapamycin (mTOR) to p70 S6 kinase (p70S6K) was not AngII activated, while in the aSMCs from wild-type (WT) mice the cascade was AngII activated. Angiotensin activation of Smad2 and Stat3 was also reduced in the AB3T aSMCs. However, no change in the effect of transforming growth factor β (TGFβ) on type I collagen production was observed. Also, the activation of ERK and JNK and G-protein linked signaling remained unaltered in response to AngII. Akt and PI3K activation inhibitors blocked AngII-stimulated type I collagen expression in WT aSMCs, whereas ERK inhibitor had no such effect. Our results point to an Akt/mTOR/p70S6K regulation of collagen production by AngII with participation of Smad2 and Stat3 cascades in this process.
Collapse
Affiliation(s)
- Jun Yu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Much evidence now suggests that angiotensin II has roles in normal functions of the breast that may be altered or attenuated in cancer. Both angiotensin type 1 (AT1) and type 2 (AT2) receptors are present particularly in the secretory epithelium. Additionally, all the elements of a tissue renin-angiotensin system, angiotensinogen, prorenin and angiotensin-converting enzyme (ACE), are also present and distributed in different cell types in a manner suggesting a close relationship with sites of angiotensin II activity. These findings are consistent with the concept that stromal elements and myoepithelium are instrumental in maintaining normal epithelial structure and function. In disease, this system becomes disrupted, particularly in invasive carcinoma. Both AT1 and AT2 receptors are present in tumours and may be up-regulated in some. Experimentally, angiotensin II, acting via the AT1 receptor, increases tumour cell proliferation and angiogenesis, both these are inhibited by blocking its production or function. Epidemiological evidence on the effect of expression levels of ACE or the distribution of ACE or AT1 receptor variants in many types of cancer gives indirect support to these concepts. It is possible that there is a case for the therapeutic use of high doses of ACE inhibitors and AT1 receptor blockers in breast cancer, as there may be for AT2 receptor agonists, though this awaits full investigation. Attention is drawn to the possibility of blocking specific AT1-mediated intracellular signalling pathways, for example by AT1-directed antibodies, which exploit the possibility that the extracellular N-terminus of the AT1 receptor may have previously unsuspected signalling roles.
Collapse
Affiliation(s)
- Gavin P Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| | | | | |
Collapse
|
40
|
Impaired vascular contractility and aortic wall degeneration in fibulin-4 deficient mice: effect of angiotensin II type 1 (AT1) receptor blockade. PLoS One 2011; 6:e23411. [PMID: 21858106 PMCID: PMC3153486 DOI: 10.1371/journal.pone.0023411] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 07/16/2011] [Indexed: 01/19/2023] Open
Abstract
Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT1) receptor antagonist losartan in preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4+/R) and 4-fold (homozygous Fibulin-4R/R) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were accompanied by upregulation of TGF-β signaling in aortas from fibulin-4 deficient mice, as identified by genome-scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular mediator of TGF-β. Tissue levels of Ang II, a regulator of TGF-β signaling, were increased. Prenatal treatment with the AT1 receptor antagonist losartan, which blunts TGF-β signaling, prevented elastic fiber fragmentation in the aortic media of newborn Fibulin-4R/R mice. Postnatal losartan treatment reduced haemodynamic stress and improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In conclusion, the AT1 receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does improve survival. These findings may extend the potential therapeutic application of inhibitors of the renin-angiotensin system to the preventive treatment of aneurysm disease.
Collapse
|
41
|
Dab H, Kacem K, Hachani R, Dhaouadi N, Hodroj W, Sakly M, Randon J, Bricca G. Physiological regulation of extracellular matrix collagen and elastin in the arterial wall of rats by noradrenergic tone and angiotensin II. J Renin Angiotensin Aldosterone Syst 2011; 13:19-28. [DOI: 10.1177/1470320311414752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The interactions between the effects of the sympathetic nervous system (SNS) and angiotensin II (ANG II) on vascular extracellular matrix (ECM) synthesis were determined in rats. The mRNA and protein content of collagen I, collagen III and elastin in the abdominal aorta (AA) and femoral artery (FA) was investigated in Wistar–Kyoto rats treated for 5 weeks with guanethidine, a sympathoplegic, losartan, an ANG II AT1 receptor (AT1R) blocker, or both. The effects of noradrenaline (NE) and ANG II on collagen III and elastin mRNA, and the receptor involved, were tested in cultured vascular smooth muscle cells (VSMCs) in vitro. Guanethidine increased collagen types I and III and decreased elastin, while losartan had an opposite effect, although without effect on collagen III. The combination of treatments abrogated changes induced by simple treatment with collagen I and elastin, but increased collagen III mRNA in AA and not in FA. NE stimulated collagen III mRNA via β receptors and elastin via α1 and α2 receptors. ANG II stimulated collagen III but inhibited elastin mRNA via AT1R. Overall, SNS and ANG II exert opposite and antagonistic effects on major components of ECM in the vascular wall. This may be of relevance for the choice of a therapeutic strategy in vascular diseases.
Collapse
Affiliation(s)
- Houcine Dab
- INSERM ERI-22, Agressions Vasculaires et Réponses Tissulaires, Université de Claude Bernard, Lyon I, France
- Université de Carthage. Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, Tunisia
| | - Kamel Kacem
- Université de Carthage. Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, Tunisia
| | - Rafik Hachani
- Université de Carthage. Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, Tunisia
| | - Nadra Dhaouadi
- INSERM ERI-22, Agressions Vasculaires et Réponses Tissulaires, Université de Claude Bernard, Lyon I, France
- Université de Carthage. Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, Tunisia
| | - Wassim Hodroj
- INSERM ERI-22, Agressions Vasculaires et Réponses Tissulaires, Université de Claude Bernard, Lyon I, France
| | - Mohsen Sakly
- INSERM ERI-22, Agressions Vasculaires et Réponses Tissulaires, Université de Claude Bernard, Lyon I, France
| | - Jacques Randon
- INSERM ERI-22, Agressions Vasculaires et Réponses Tissulaires, Université de Claude Bernard, Lyon I, France
| | - Giampiero Bricca
- INSERM ERI-22, Agressions Vasculaires et Réponses Tissulaires, Université de Claude Bernard, Lyon I, France
| |
Collapse
|
42
|
Suen RS, Rampersad SN, Stewart DJ, Courtman DW. Differential roles of endothelin-1 in angiotensin II-induced atherosclerosis and aortic aneurysms in apolipoprotein E-null mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1549-59. [PMID: 21718678 DOI: 10.1016/j.ajpath.2011.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 04/29/2011] [Accepted: 05/17/2011] [Indexed: 12/16/2022]
Abstract
Because both endothelin-1 (ET-1) and angiotensin II (AngII) are independent mediators of arterial remodeling, we sought to determine the role of ET receptor inhibition in AngII-accelerated atherosclerosis and aortic aneurysm formation. We administered saline or AngII and/or bosentan, an endothelin receptor antagonist (ERA) for 7, 14, or 28 days to 6-week- and 6-month-old apolipoprotein E-knockout mice. AngII treatment increased aortic atherosclerosis, which was reduced by ERA. ET-1 immunostaining was localized to macrophage-rich regions in aneurysmal vessels. ERA did not prevent AngII-induced aneurysm formation but instead may have increased aneurysm incidence. In AngII-treated animals with aneurysms, ERA had a profound effect on the non-aneurysmal thoracic aorta via increasing wall thickness, collagen/elastin ratio, wall stiffness, and viscous responses. These observations were confirmed in acute in vitro collagen sheet production models in which ERA inhibited AngII's dose-dependent effect on collagen type 1 α 1 (COL1A1) gene transcription. However, chronic treatment reduced matrix metalloproteinase 2 mRNA expression but enhanced COL3A1, tissue inhibitor of metalloproteinase 1 (TIMP-1), and TIMP-2 mRNA expressions. These data confirm a role for the ET system in AngII-accelerated atherosclerosis but suggest that ERA therapy is not protective against the formation of AngII-induced aneurysms and can paradoxically stimulate a chronic arterial matrix remodeling response.
Collapse
Affiliation(s)
- Renée S Suen
- Terrence Donnelly Research Laboratories, Division of Cardiology, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
Jiang B, Liao R. The Paradoxical Role of Inflammation in Cardiac Repair and Regeneration. J Cardiovasc Transl Res 2010; 3:410-6. [DOI: 10.1007/s12265-010-9193-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 04/22/2010] [Indexed: 01/04/2023]
|
44
|
Fletcher EL, Phipps JA, Ward MM, Vessey KA, Wilkinson-Berka JL. The renin-angiotensin system in retinal health and disease: Its influence on neurons, glia and the vasculature. Prog Retin Eye Res 2010; 29:284-311. [PMID: 20380890 DOI: 10.1016/j.preteyeres.2010.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Renin-Angiotensin System is classically recognized for its role in the control of systemic blood pressure. However, the retina is recognized to have all the components necessary for angiotensin II formation, suggestive of a role for Angiotensin II in the retina that is independent of the systemic circulation. The most well described effects of Angiotensin II are on the retinal vasculature, with roles in vasoconstriction and angiogenesis. However, it is now emerging that Angiotensin II has roles in modulation of retinal function, possibly in regulating GABAergic amacrine cells. In addition, Angiotensin II is likely to have effects on glia. Angiotensin II has also been implicated in retinal vascular diseases such as Retinopathy of Prematurity and diabetic retinopathty, and more recently actions in choroidal neovascularizaiton and glaucoma have also emerged. The mechanisms by which Angiotensin II promotes angiogensis in retinal vascular diseases is indicative of the complexity of the RAS and the variety of cell types that it effects. Indeed, these diseases are not purely characterized by direct effects of Angiotensin II on the vasculature. In retinopathy of prematurity, for example, blockade of AT1 receptors prevents pathological angiogenesis, but also promotes revascularization of avascular regions of the retina. The primary site of action of Angiotensin II in this disease may be on retinal glia, rather than the vasculature. Indeed, blockade of AT1 receptors prevents glial loss and promotes the re-establishment of normal vessel growth. Blockade of RAS as a treatment for preventing the incidence and progression of diabetic retinopathy has also emerged based on a series of studies in animal models showing that blockade of the RAS prevents the development of a variety of vascular and neuronal deficits in this disease. Importantly these effects may be independent of actions on systemic blood pressure. This has culminated recently with the completion of several large multi-centre clinical trials that showed that blockade of the RAS may be of benefit in some at risk patients with diabetes. With the emergence of novel compounds targeting different aspects of the RAS even more effective ways of blocking the RAS may be possible in the future.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville 3010, Victoria, Australia.
| | | | | | | | | |
Collapse
|
45
|
Tang HT, Cheng DS, Jia YT, Ben DF, Ma B, Lv KY, Wei D, Sheng ZY, Xia ZF. Angiotensin II induces type I collagen gene expression in human dermal fibroblasts through an AP-1/TGF-beta1-dependent pathway. Biochem Biophys Res Commun 2009; 385:418-23. [PMID: 19465003 DOI: 10.1016/j.bbrc.2009.05.081] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
Abstract
Angiotensin II is critically involved in skin wound healing, but the underlying mechanism remains unclear. This study investigated the effect of angiotensin II on type I collagen gene activation in human dermal fibroblasts and the possible mechanism involved. Angiotensin II stimulated the mRNA and protein expression of type I collagen and TGF-beta1. Effects were abolished by the angiotensin AT1 receptor antagonist ZD7155 but not by the AT2 blocker PD123319. Blockade of TGF-beta1 markedly inhibited angiotensin II-induced type I collagen gene expression. Activator protein-1 (AP-1) decoy ODNs transfection suppressed angiotensin II-induced TGF-beta1 expression, and also, diminished type I collagen expression. These data indicated that angiotensin II induces collagen gene activation in human dermal fibroblasts through an AT1-mediated AP-1/TGF-beta1 signaling pathway.
Collapse
Affiliation(s)
- Hong-Tai Tang
- Chinese PLA Institute of Burn Surgery & Burn Center, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Deguchi JO, Huang H, Libby P, Aikawa E, Whittaker P, Sylvan J, Lee RT, Aikawa M. Genetically engineered resistance for MMP collagenases promotes abdominal aortic aneurysm formation in mice infused with angiotensin II. J Transl Med 2009; 89:315-26. [PMID: 19153555 PMCID: PMC2932654 DOI: 10.1038/labinvest.2008.167] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Clinical evidence links increased aortic collagen content and stiffness to abdominal aortic aneurysm (AAA) formation. However, the possibility that excess collagen contributes to AAA formation remains untested. We investigated the hypothesis that augmented collagen promotes AAA formation, and employed apoE-null mice expressing collagenase-resistant mutant collagen (Col(R/R)/apoE(-/-)), heterozygote (Col(R/+)/apoE(-/-)), or wild-type collagen (Col(+/+)/apoE(-/-)) infused with angiotensin II to induce AAA. As expected, the aortas of Col(R/R)/apoE(-/-) mice contained more interstitial collagen than those from the other groups. Angiotensin II treatment elicited more AAA formation in Col(R/R)/apoE(-/-) mice than Col(R/+)/apoE(-/-) or Col(+/+)/apoE(-/-) mice. Aortic circumferences correlated positively with collagen content, determined by picrosirius red and Masson trichrome staining. Mechanical testing of aortas of Col(R/R)/apoE(-/-) mice showed increased stiffness and susceptibility to mechanical failure compared to those of Col(+/+)/apoE(-/-) mice. Optical analysis further indicated altered collagen fiber orientation in the adventitia of Col(R/R)/apoE(-/-) mice. These results demonstrate that collagen content regulates aortic biomechanical properties and influences AAA formation.
Collapse
Affiliation(s)
- Jun-o Deguchi
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Hayden Huang
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Peter Libby
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Elena Aikawa
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Peter Whittaker
- Department of Emergency Medicine, Wayne State University, Detroit, MI
| | - Jeremy Sylvan
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Richard T. Lee
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
47
|
Gao BB, Stuart L, Feener EP. Label-free quantitative analysis of one-dimensional PAGE LC/MS/MS proteome: application on angiotensin II-stimulated smooth muscle cells secretome. Mol Cell Proteomics 2008; 7:2399-409. [PMID: 18676994 DOI: 10.1074/mcp.m800104-mcp200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A widely used method for protein identification couples prefractionation of protein samples by one-dimensional (1D) PAGE with LC/MS/MS. We developed a new label-free quantitative algorithm by combining measurements of spectral counting, ion intensity, and peak area on 1D PAGE-based proteomics. This algorithm has several improvements over other label-free quantitative algorithms: (i) Errors in peak detection are reduced because the retention time is based on each LC/MS/MS run and actual precursor m/z. (ii) Detection sensitivity is increased because protein quantification is based on the combination of peptide count, ion intensity, and peak area. (iii) Peak intensity and peak area are calculated in each LC/MS/MS run for all slices from 1D PAGE for every single identified protein and visualized as a Western blot image. The sensitivity and accuracy of this algorithm were demonstrated by using standard curves (17.4 fmol to 8.7 pmol), complex protein mixtures (30 fmol to 1.16 pmol) of known composition, and spiked protein (34.8 fmol to 17.4 pmol) in complex proteins. We studied the feasibility of this approach using the secretome of angiotensin II (Ang II)-stimulated vascular smooth muscle cells (VSMCs). From the VSMC-conditioned medium, 629 proteins were identified including 212 putative secreted proteins. 26 proteins were differently expressed in control and Ang II-stimulated VSMCs, including 18 proteins not previously reported. Proteins related to cell growth (CYR61, protein NOV, and clusterin) were increased, whereas growth arrest-specific 6 (GAS6) and growth/differentiation factor 6 were decreased by Ang II stimulation. Ang II-stimulated changes of plasminogen activator inhibitor-1, GAS6, cathepsin B, and periostin were validated by Western blot. In conclusion, a novel label-free quantitative analysis of 1D PAGE-LC/MS/MS-based proteomics has been successfully applied to the identification of new potential mediators of Ang II action and may provide an alternative to traditional protein staining methods.
Collapse
Affiliation(s)
- Ben-Bo Gao
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
48
|
Humphrey JD. Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress. Hypertension 2008; 52:195-200. [PMID: 18541735 DOI: 10.1161/hypertensionaha.107.103440] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jay D Humphrey
- Department of Biomedical Engineering, 337 Zachry Engineering Center, 3120 TAMU, Texas A&M University, College Station, TX 77843-3120, USA.
| |
Collapse
|
49
|
|
50
|
Sen U, Herrmann M, Herrmann W, Tyagi SC. Synergism between AT1 receptor and hyperhomocysteinemia during vascular remodeling. Clin Chem Lab Med 2008; 45:1771-6. [PMID: 17990952 DOI: 10.1515/cclm.2007.354] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hyperhomocysteinemia (HHcy) is an independent risk factor of cardiovascular diseases. Extracellular signal-regulated kinase-1/2 (ERK-1/2) and the JAK/STAT pathway kinase, signal transducer and activator of transcription 3 (STAT3), are involved in matrix metalloproteinase-9 (MMP-9) induction and matrix remodeling. However, their role in homocysteine (Hcy)-mediated MMP-9 induction and matrix remodeling is unclear. Clinical and experimental evidence indicates that HHcy and activation of the renin-angiotensin system, mediated by angiotensin II type 1 (AT1) receptor, are involved in a variety of vascular pathologies. Despite this fact, the relationship between HHcy and activation of the renin-angiotensin system has not been comprehensively characterized. Therefore, we hypothesized that Hcy activates AT1 receptor that potentiates STAT3 via ERK-1/2 phosphorylation. STAT3 modulates target MMP-9 and collagen, resulting in vascular remodeling. METHODS Mouse aortic endothelial cells (MAEC) were treated with various doses of Hcy for different time periods. The levels of AT1 receptor, ERK-1/2, STAT3, MMP-9 and collagen type-1 were measured by immunoblot analyses. The activation of ERK-1/2 and STAT3 were determined by measuring ERK-1/2 phosphorylation and phosphoserine (727) STAT3. RESULTS Although Hcy dose-dependently induced AT1 receptor expression in the endothelial cells, a significant induction was observed at 100 microM at 48 h. We investigated Hcy-induced ERK-1/2 and STAT3 phosphorylation through AT1 receptor induction, and our results suggest that Hcy activated AT1 receptor which led to ERK-1/2 and STAT3 phosphorylation. In addition, findings of this study suggest that Hcy-mediated STAT3 activation regulated MMP-9 and collagen type-1. However, AT1 receptor blocker, valsartan, and the specific STAT3 inhibitor peptide attenuated MMP-9 and collagen type-1 induction. CONCLUSIONS These findings demonstrate for the first time the contribution of AT1 receptor in HHcy-induced atherosclerotic diseases; Hcy-induced activation of AT1 receptor involves MMP-9 and collagen type-1 modulation using ERK-1/2 and STAT3 signaling cascades.
Collapse
Affiliation(s)
- Utpal Sen
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|