1
|
Tong KL, Mahmood Zuhdi AS, Wong PF. The role of miR-134-5p in 7-ketocholesterol-induced human aortic endothelial dysfunction. EXCLI JOURNAL 2024; 23:1073-1090. [PMID: 39391056 PMCID: PMC11464864 DOI: 10.17179/excli2024-7342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024]
Abstract
Atherosclerotic cardiovascular diseases are the leading causes of morbidity and mortality worldwide. In our previous study, a panel of miRNA including miR-134-5p was deregulated in young acute coronary syndrome (ACS) patients. However, the roles of these ACS-associated miRNAs in endothelial dysfunction, an early event preceding atherosclerosis, remain to be investigated. In the present study, human aortic endothelial cells (HAECs) were treated with 7-ketocholesterol (7-KC) to induce endothelial dysfunction. Following treatment with 20 μg/ml 7-KC, miR-134-5p was significantly up-regulated and endothelial nitric oxide synthase (eNOS) expression was suppressed. Endothelial barrier disruption was evidenced by the deregulation of adhesion molecules including the activation of focal adhesion kinase (FAK), down-regulation of VE-cadherin, up-regulation of adhesion molecules (E-selectin and ICAM-1), increased expression of inflammatory genes (IL1B, IL6 and COX2) and AKT activation. Knockdown of miR-134-5p in 7-KC-treated HAECs attenuated the suppression of eNOS, the activation of AKT, the down-regulation of VE-cadherin and the up-regulation of E-selectin. In addition, the interaction between miR-134-5p and FOXM1 mRNA was confirmed by the enrichment of FOXM1 transcripts in the pull-down miRNA-mRNA complex. Knockdown of miR-134-5p increased FOXM1 expression whereas transfection with mimic miR-134-5p decreased FOXM1 protein expression. In summary, the involvement of an ACS-associated miRNA, miR-134-5p in endothelial dysfunction was demonstrated. Findings from this study could pave future investigations into utilizing miRNAs as a supplementary tool in ACS diagnosis or as targets for the development of therapeutics.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Ricciotti E, Haines PG, Chai W, FitzGerald GA. Prostanoids in Cardiac and Vascular Remodeling. Arterioscler Thromb Vasc Biol 2024; 44:558-583. [PMID: 38269585 PMCID: PMC10922399 DOI: 10.1161/atvbaha.123.320045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Prostanoids are biologically active lipids generated from arachidonic acid by the action of the COX (cyclooxygenase) isozymes. NSAIDs, which reduce the biosynthesis of prostanoids by inhibiting COX activity, are effective anti-inflammatory, antipyretic, and analgesic drugs. However, their use is limited by cardiovascular adverse effects, including myocardial infarction, stroke, hypertension, and heart failure. While it is well established that NSAIDs increase the risk of atherothrombotic events and hypertension by suppressing vasoprotective prostanoids, less is known about the link between NSAIDs and heart failure risk. Current evidence indicates that NSAIDs may increase the risk for heart failure by promoting adverse myocardial and vascular remodeling. Indeed, prostanoids play an important role in modulating structural and functional changes occurring in the myocardium and in the vasculature in response to physiological and pathological stimuli. This review will summarize current knowledge of the role of the different prostanoids in myocardial and vascular remodeling and explore how maladaptive remodeling can be counteracted by targeting specific prostanoids.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Philip G Haines
- Rhode Island Hospital, Department of Medicine, Warren Alpert Medical School of Brown University, Providence (P.G.H.)
| | - William Chai
- Health and Human Biology, Division of Biology and Medicine, Brown University, Providence, RI (W.C.)
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Department of Medicine (G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
3
|
Ye W, Wang J, Little PJ, Zou J, Zheng Z, Lu J, Yin Y, Liu H, Zhang D, Liu P, Xu S, Ye W, Liu Z. Anti-atherosclerotic effects and molecular targets of ginkgolide B from Ginkgo biloba. Acta Pharm Sin B 2024; 14:1-19. [PMID: 38239238 PMCID: PMC10792990 DOI: 10.1016/j.apsb.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Bioactive compounds derived from herbal medicinal plants modulate various therapeutic targets and signaling pathways associated with cardiovascular diseases (CVDs), the world's primary cause of death. Ginkgo biloba , a well-known traditional Chinese medicine with notable cardiovascular actions, has been used as a cardio- and cerebrovascular therapeutic drug and nutraceutical in Asian countries for centuries. Preclinical studies have shown that ginkgolide B, a bioactive component in Ginkgo biloba , can ameliorate atherosclerosis in cultured vascular cells and disease models. Of clinical relevance, several clinical trials are ongoing or being completed to examine the efficacy and safety of ginkgolide B-related drug preparations in the prevention of cerebrovascular diseases, such as ischemia stroke. Here, we present a comprehensive review of the pharmacological activities, pharmacokinetic characteristics, and mechanisms of action of ginkgolide B in atherosclerosis prevention and therapy. We highlight new molecular targets of ginkgolide B, including nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidase), lectin-like oxidized LDL receptor-1 (LOX-1), sirtuin 1 (SIRT1), platelet-activating factor (PAF), proprotein convertase subtilisin/kexin type 9 (PCSK9) and others. Finally, we provide an overview and discussion of the therapeutic potential of ginkgolide B and highlight the future perspective of developing ginkgolide B as an effective therapeutic agent for treating atherosclerosis.
Collapse
Affiliation(s)
- Weile Ye
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jiaojiao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peter J. Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba QLD 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya QLD 4575, Australia
| | - Jiami Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhihua Zheng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jing Lu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanjun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peiqing Liu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Suowen Xu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Institute of Endocrine and Metabolic Diseases, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhiping Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Song J, Zhang Y, Frieler RA, Andren A, Wood S, Tyrrell DJ, Sajjakulnukit P, Deng JC, Lyssiotis CA, Mortensen RM, Salmon M, Goldstein DR. Itaconate suppresses atherosclerosis by activating a Nrf2-dependent antiinflammatory response in macrophages in mice. J Clin Invest 2023; 134:e173034. [PMID: 38085578 PMCID: PMC10849764 DOI: 10.1172/jci173034] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
Itaconate has emerged as a critical immunoregulatory metabolite. Here, we examined the therapeutic potential of itaconate in atherosclerosis. We found that both itaconate and the enzyme that synthesizes it, aconitate decarboxylase 1 (Acod1, also known as immune-responsive gene 1 [IRG1]), are upregulated during atherogenesis in mice. Deletion of Acod1 in myeloid cells exacerbated inflammation and atherosclerosis in vivo and resulted in an elevated frequency of a specific subset of M1-polarized proinflammatory macrophages in the atherosclerotic aorta. Importantly, Acod1 levels were inversely correlated with clinical occlusion in atherosclerotic human aorta specimens. Treating mice with the itaconate derivative 4-octyl itaconate attenuated inflammation and atherosclerosis induced by high cholesterol. Mechanistically, we found that the antioxidant transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), was required for itaconate to suppress macrophage activation induced by oxidized lipids in vitro and to decrease atherosclerotic lesion areas in vivo. Overall, our work shows that itaconate suppresses atherogenesis by inducing Nrf2-dependent inhibition of proinflammatory responses in macrophages. Activation of the itaconate pathway may represent an important approach to treat atherosclerosis.
Collapse
Affiliation(s)
- Jianrui Song
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yanling Zhang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Ryan A. Frieler
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony Andren
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sherri Wood
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel J. Tyrrell
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Rogel Cancer Center
| | - Jane C. Deng
- Graduate Program in Immunology, and
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Richard M. Mortensen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes
| | | | - Daniel R. Goldstein
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Graduate Program in Immunology, and
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Guha Ray A, Odum OP, Wiseman D, Weinstock A. The diverse roles of macrophages in metabolic inflammation and its resolution. Front Cell Dev Biol 2023; 11:1147434. [PMID: 36994095 PMCID: PMC10041730 DOI: 10.3389/fcell.2023.1147434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are one of the most functionally diverse immune cells, indispensable to maintain tissue integrity and metabolic health. Macrophages perform a myriad of functions ranging from promoting inflammation, through inflammation resolution to restoring and maintaining tissue homeostasis. Metabolic diseases encompass a growing list of diseases which develop from a mix of genetics and environmental cues leading to metabolic dysregulation and subsequent inflammation. In this review, we summarize the contributions of macrophages to four metabolic conditions-insulin resistance and adipose tissue inflammation, atherosclerosis, non-alcoholic fatty liver disease and neurodegeneration. The role of macrophages is complex, yet they hold great promise as potential therapies to address these growing health concerns.
Collapse
Affiliation(s)
| | | | | | - Ada Weinstock
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
Xu J, Zhou H, Cheng Y, Xiang G. Identifying potential signatures for atherosclerosis in the context of predictive, preventive, and personalized medicine using integrative bioinformatics approaches and machine-learning strategies. EPMA J 2022; 13:433-449. [PMID: 36061826 PMCID: PMC9437201 DOI: 10.1007/s13167-022-00289-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
Background Atherosclerosis is a major contributor to morbidity and mortality worldwide. Although several molecular markers associated with atherosclerosis have been developed in recent years, the lack of robust evidence hinders their clinical applications. For these reasons, identification of novel and robust biomarkers will directly contribute to atherosclerosis management in the context of predictive, preventive, and personalized medicine (PPPM). This integrative analysis aimed to identify critical genetic markers of atherosclerosis and further explore the underlying molecular immune mechanism attributing to the altered biomarkers. Methods Gene Expression Omnibus (GEO) series datasets were downloaded from GEO. Firstly, differential expression analysis and functional analysis were conducted. Multiple machine-learning strategies were then employed to screen and determine key genetic markers, and receiver operating characteristic (ROC) analysis was used to assess diagnostic value. Subsequently, cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) and a single-cell RNA sequencing (scRNA-seq) data were performed to explore relationships between signatures and immune cells. Lastly, we validated the biomarkers' expression in human and mice experiments. Results A total of 611 overlapping differentially expressed genes (DEGs) included 361 upregulated and 250 downregulated genes. Based on the enrichment analysis, DEGs were mapped in terms related to immune cell involvements, immune activating process, and inflaming signals. After using multiple machine-learning strategies, dehydrogenase/reductase 9 (DHRS9) and protein tyrosine phosphatase receptor type J (PTPRJ) were identified as critical biomarkers and presented their high diagnostic accuracy for atherosclerosis. From CIBERSORT analysis, both DHRS9 and PTPRJ were significantly related to diverse immune cells, such as macrophages and mast cells. Further scRNA-seq analysis indicated DHRS9 was specifically upregulated in macrophages of atherosclerotic lesions, which was confirmed in atherosclerotic patients and mice. Conclusions Our findings are the first to report the involvement of DHRS9 in the atherogenesis, and the proatherogenic effect of DHRS9 is mediated by immune mechanism. In addition, we confirm that DHRS9 is localized in macrophages within atherosclerotic plaques. Therefore, upregulated DHRS9 could be a novel potential target for the future predictive diagnostics, targeted prevention, patient stratification, and personalization of medical services in atherosclerosis. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-022-00289-y.
Collapse
Affiliation(s)
- Jinling Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515 Guangdong China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, 430070 Hubei China
| | - Hui Zhou
- Department of General Surgery, Central South University, The Third Xiangya Hospital, Changsha, 410013 Hunan China
| | - Yangyang Cheng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515 Guangdong China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, 430070 Hubei China
| | - Guangda Xiang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515 Guangdong China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, 430070 Hubei China
| |
Collapse
|
7
|
Tian JJ, Levy M, Zhang X, Sinnott R, Maddela R. Counteracting Health Risks by Modulating Homeostatic Signaling. Pharmacol Res 2022; 182:106281. [PMID: 35661711 DOI: 10.1016/j.phrs.2022.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Homeostasis was initially conceptualized by Bernard and Cannon around a century ago as a steady state of physiological parameters that vary within a certain range, such as blood pH, body temperature, and heart rate1,2. The underlying mechanisms that maintain homeostasis are explained by negative feedbacks that are executed by the neuronal, endocrine, and immune systems. At the cellular level, homeostasis, such as that of redox and energy steady state, also exists and is regulated by various cell signaling pathways. The induction of homeostatic mechanism is critical for human to adapt to various disruptive insults (stressors); while on the other hand, adaptation occurs at the expense of other physiological processes and thus runs the risk of collateral damages, particularly under conditions of chronic stress. Conceivably, anti-stress protection can be achieved by stressor-mimicking medicinals that elicit adaptive responses prior to an insult and thereby serve as health risk countermeasures; and in situations where maladaptation may occur, downregulating medicinals could be used to suppress the responses and prevent subsequent pathogenesis. Both strategies are preemptive interventions particularly suited for individuals who carry certain lifestyle, environmental, or genetic risk factors. In this article, we will define and characterize a new modality of prophylactic intervention that forestalls diseases via modulating homeostatic signaling. Moreover, we will provide evidence from the literature that support this concept and distinguish it from other homeostasis-related interventions such as adaptogen, hormesis, and xenohormesis.
Collapse
Affiliation(s)
- Junqiang J Tian
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA.
| | - Mark Levy
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Xuekai Zhang
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing100029, China; US Center for Chinese Medicine, 14801 Physicians lane, 171 A 2nd Floor, #281, Rockville MD 20850, USA
| | - Robert Sinnott
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Rolando Maddela
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| |
Collapse
|
8
|
Madrigal-Matute J, de Bruijn J, van Kuijk K, Riascos-Bernal DF, Diaz A, Tasset I, Martín-Segura A, Gijbels MJJ, Sander B, Kaushik S, Biessen EAL, Tiano S, Bourdenx M, Krause GJ, McCracken I, Baker AH, Jin H, Sibinga NES, Bravo-Cordero JJ, Macian F, Singh R, Rensen PCN, Berbée JFP, Pasterkamp G, Sluimer JC, Cuervo AM. Protective role of chaperone-mediated autophagy against atherosclerosis. Proc Natl Acad Sci U S A 2022; 119:e2121133119. [PMID: 35363568 PMCID: PMC9168839 DOI: 10.1073/pnas.2121133119] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) contributes to regulation of energy homeostasis by timely degradation of enzymes involved in glucose and lipid metabolism. Here, we report reduced CMA activity in vascular smooth muscle cells and macrophages in murine and human arteries in response to atherosclerotic challenges. We show that in vivo genetic blockage of CMA worsens atherosclerotic pathology through both systemic and cell-autonomous changes in vascular smooth muscle cells and macrophages, the two main cell types involved in atherogenesis. CMA deficiency promotes dedifferentiation of vascular smooth muscle cells and a proinflammatory state in macrophages. Conversely, a genetic mouse model with up-regulated CMA shows lower vulnerability to proatherosclerotic challenges. We propose that CMA could be an attractive therapeutic target against cardiovascular diseases.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jenny de Bruijn
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Kim van Kuijk
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Institute of Experimental Medicine and Systems Biology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Antonio Diaz
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Inmaculada Tasset
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Adrián Martín-Segura
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Marion J. J. Gijbels
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam University Medical Centers, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Bianca Sander
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Susmita Kaushik
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Erik A. L. Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Simoni Tiano
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Mathieu Bourdenx
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Gregory J. Krause
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ian McCracken
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Andrew H. Baker
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Han Jin
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Nicholas E. S. Sibinga
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jose Javier Bravo-Cordero
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Fernando Macian
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Rajat Singh
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Patrick C. N. Rensen
- Section of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jimmy F. P. Berbée
- Section of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gerard Pasterkamp
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Judith C. Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Ana Maria Cuervo
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
9
|
Inflammation as a mechanism and therapeutic target in peripheral artery disease. Can J Cardiol 2022; 38:588-600. [PMID: 35114347 DOI: 10.1016/j.cjca.2022.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/24/2022] Open
Abstract
Peripheral artery disease is one of three major clinical manifestations of atherosclerosis, the other two being coronary artery and cerebrovascular disease. Despite progress in surgery, antithrombotic therapy and therapies that modify conventional risk factors (lipid-, blood pressure-, and glucose-lowering interventions), patients with peripheral artery disease have unacceptably high risk of vascular complications. Additional strategies to reduce this residual risk are needed. The accumulated evidence that inflammation plays an important role in the pathogenesis of atherosclerosis has spurred recent efforts to evaluate anti-inflammatory agents as an additional therapeutic approach for atherothrombosis prevention and treatment. In this review, we examine the evidence supporting the role of inflammation in atherosclerosis, review recent trials evaluating anti-inflammatory approaches to reduce cardiovascular complications, and offer insights into the opportunities for novel anti-inflammatory strategies to reduce the burden of cardiovascular and limb complications in patients with peripheral artery disease.
Collapse
|
10
|
Shuey MM, Xiang RR, Moss ME, Carvajal BV, Wang Y, Camarda N, Fabbri D, Rahman P, Ramsey J, Stepanian A, Sebastiani P, Wells QS, Beckman JA, Jaffe IZ. Systems Approach to Integrating Preclinical Apolipoprotein E-Knockout Investigations Reveals Novel Etiologic Pathways and Master Atherosclerosis Network in Humans. Arterioscler Thromb Vasc Biol 2022; 42:35-48. [PMID: 34758633 PMCID: PMC8887835 DOI: 10.1161/atvbaha.121.317071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Animal models of atherosclerosis are used extensively to interrogate molecular mechanisms in serial fashion. We tested whether a novel systems biology approach to integration of preclinical data identifies novel pathways and regulators in human disease. Approach and Results: Of 716 articles published in ATVB from 1995 to 2019 using the apolipoprotein E knockout mouse to study atherosclerosis, data were extracted from 360 unique studies in which a gene was experimentally perturbed to impact plaque size or composition and analyzed using Ingenuity Pathway Analysis software. TREM1 (triggering receptor expressed on myeloid cells) signaling and LXR/RXR (liver X receptor/retinoid X receptor) activation were identified as the top atherosclerosis-associated pathways in mice (both P<1.93×10-4, TREM1 implicated early and LXR/RXR in late atherogenesis). The top upstream regulatory network in mice (sc-58125, a COX2 inhibitor) linked 64.0% of the genes into a single network. The pathways and networks identified in mice were interrogated by testing for associations between the genetically predicted gene expression of each mouse pathway-identified human homolog with clinical atherosclerosis in a cohort of 88 660 human subjects. Homologous human pathways and networks were significantly enriched for gene-atherosclerosis associations (empirical P<0.01 for TREM1 and LXR/RXR pathways and COX2 network). This included 12(60.0%) TREM1 pathway genes, 15(53.6%) LXR/RXR pathway genes, and 67(49.3%) COX2 network genes. Mouse analyses predicted, and human study validated, the strong association of COX2 expression (PTGS2) with increased likelihood of atherosclerosis (odds ratio, 1.68 per SD of genetically predicted gene expression; P=1.07×10-6). CONCLUSIONS PRESCIANT (Preclinical Science Integration and Translation) leverages published preclinical investigations to identify high-confidence pathways, networks, and regulators of human disease.
Collapse
Affiliation(s)
| | | | - M. Elizabeth Moss
- Department of Medicine (M.M.S., J.R., Q.S.W., J.A.B.) and Department of Biomedical Informatics (D.F., P.R.), Vanderbilt University Medical Center, Nashville, TN. Molecular Cardiology Research Institute (R.R.X., M.E.M., B.V.C., Y.W., N.C., A.S., I.Z.J.) and Institute for Clinical Research and Health Policy Studies (P.S.), Tufts Medical Center, Boston, MA
| | - Brigett V. Carvajal
- Department of Medicine (M.M.S., J.R., Q.S.W., J.A.B.) and Department of Biomedical Informatics (D.F., P.R.), Vanderbilt University Medical Center, Nashville, TN. Molecular Cardiology Research Institute (R.R.X., M.E.M., B.V.C., Y.W., N.C., A.S., I.Z.J.) and Institute for Clinical Research and Health Policy Studies (P.S.), Tufts Medical Center, Boston, MA
| | - Yihua Wang
- Department of Medicine (M.M.S., J.R., Q.S.W., J.A.B.) and Department of Biomedical Informatics (D.F., P.R.), Vanderbilt University Medical Center, Nashville, TN. Molecular Cardiology Research Institute (R.R.X., M.E.M., B.V.C., Y.W., N.C., A.S., I.Z.J.) and Institute for Clinical Research and Health Policy Studies (P.S.), Tufts Medical Center, Boston, MA
| | - Nicholas Camarda
- Department of Medicine (M.M.S., J.R., Q.S.W., J.A.B.) and Department of Biomedical Informatics (D.F., P.R.), Vanderbilt University Medical Center, Nashville, TN. Molecular Cardiology Research Institute (R.R.X., M.E.M., B.V.C., Y.W., N.C., A.S., I.Z.J.) and Institute for Clinical Research and Health Policy Studies (P.S.), Tufts Medical Center, Boston, MA
| | - Daniel Fabbri
- Department of Medicine (M.M.S., J.R., Q.S.W., J.A.B.) and Department of Biomedical Informatics (D.F., P.R.), Vanderbilt University Medical Center, Nashville, TN. Molecular Cardiology Research Institute (R.R.X., M.E.M., B.V.C., Y.W., N.C., A.S., I.Z.J.) and Institute for Clinical Research and Health Policy Studies (P.S.), Tufts Medical Center, Boston, MA
| | - Protiva Rahman
- Department of Medicine (M.M.S., J.R., Q.S.W., J.A.B.) and Department of Biomedical Informatics (D.F., P.R.), Vanderbilt University Medical Center, Nashville, TN. Molecular Cardiology Research Institute (R.R.X., M.E.M., B.V.C., Y.W., N.C., A.S., I.Z.J.) and Institute for Clinical Research and Health Policy Studies (P.S.), Tufts Medical Center, Boston, MA
| | - Jacob Ramsey
- Department of Medicine (M.M.S., J.R., Q.S.W., J.A.B.) and Department of Biomedical Informatics (D.F., P.R.), Vanderbilt University Medical Center, Nashville, TN. Molecular Cardiology Research Institute (R.R.X., M.E.M., B.V.C., Y.W., N.C., A.S., I.Z.J.) and Institute for Clinical Research and Health Policy Studies (P.S.), Tufts Medical Center, Boston, MA
| | - Alec Stepanian
- Department of Medicine (M.M.S., J.R., Q.S.W., J.A.B.) and Department of Biomedical Informatics (D.F., P.R.), Vanderbilt University Medical Center, Nashville, TN. Molecular Cardiology Research Institute (R.R.X., M.E.M., B.V.C., Y.W., N.C., A.S., I.Z.J.) and Institute for Clinical Research and Health Policy Studies (P.S.), Tufts Medical Center, Boston, MA
| | - Paola Sebastiani
- Department of Medicine (M.M.S., J.R., Q.S.W., J.A.B.) and Department of Biomedical Informatics (D.F., P.R.), Vanderbilt University Medical Center, Nashville, TN. Molecular Cardiology Research Institute (R.R.X., M.E.M., B.V.C., Y.W., N.C., A.S., I.Z.J.) and Institute for Clinical Research and Health Policy Studies (P.S.), Tufts Medical Center, Boston, MA
| | | | | | | |
Collapse
|
11
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Chen W, Zhong Y, Feng N, Guo Z, Wang S, Xing D. New horizons in the roles and associations of COX-2 and novel natural inhibitors in cardiovascular diseases. Mol Med 2021; 27:123. [PMID: 34592918 PMCID: PMC8482621 DOI: 10.1186/s10020-021-00358-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Age-related cardiovascular disease is the leading cause of death in elderly populations. Coxibs, including celecoxib, valdecoxib, etoricoxib, parecoxib, lumiracoxib, and rofecoxib, are selective cyclooxygenase-2 (COX-2) inhibitors used to treat osteoarthritis and rheumatoid arthritis. However, many coxibs have been discontinued due to adverse cardiovascular events. COX-2 contains cyclooxygenase (COX) and peroxidase (POX) sites. COX-2 inhibitors block COX activity without affecting POX activity. Recently, quercetin-like flavonoid compounds with OH groups in their B-rings have been found to serve as activators of COX-2 by binding the POX site. Galangin-like flavonol compounds serve as inhibitors of COX-2. Interestingly, nabumetone, flurbiprofen axetil, piketoprofen-amide, and nepafenac are ester prodrugs that inhibit COX-2. The combination of galangin-like flavonol compounds with these prodrug metabolites may lead to the development of novel COX-2 inhibitors. This review focuses on the most compelling evidence regarding the role and mechanism of COX-2 in cardiovascular diseases and demonstrates that quercetin-like compounds exert potential cardioprotective effects by serving as cofactors of COX-2.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Yingjie Zhong
- Cancer Institute, Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Nuan Feng
- Department of Nutrition, Qingdao Women and Children's Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhu Guo
- Cancer Institute, Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Shuai Wang
- School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, 261053, Shandong, China.
| | - Dongming Xing
- Cancer Institute, Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Kaduševičius E. Novel Applications of NSAIDs: Insight and Future Perspectives in Cardiovascular, Neurodegenerative, Diabetes and Cancer Disease Therapy. Int J Mol Sci 2021; 22:6637. [PMID: 34205719 PMCID: PMC8235426 DOI: 10.3390/ijms22126637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Once it became clear that inflammation takes place in the modulation of different degenerative disease including neurodegenerative, cardiovascular, diabetes and cancer the researchers has started intensive programs evaluating potential role of non-steroidal anti-inflammatory drugs (NSAIDs) in the prevention or therapy of these diseases. This review discusses the novel mechanism of action of NSAIDs and its potential use in the pharmacotherapy of neurodegenerative, cardiovascular, diabetes and cancer diseases. Many different molecular and cellular factors which are not yet fully understood play an important role in the pathogenesis of inflammation, axonal damage, demyelination, atherosclerosis, carcinogenesis thus further NSAID studies for a new potential indications based on precise pharmacotherapy model are warranted since NSAIDs are a heterogeneous group of medicines with relative different pharmacokinetics and pharmacodynamics profiles. Hopefully the new data from studies will fill in the gap between experimental and clinical results and translate our knowledge into successful disease therapy.
Collapse
Affiliation(s)
- Edmundas Kaduševičius
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania
| |
Collapse
|
14
|
Hashem RM, Rashed LA, Abdelkader RM, Hashem KS. Stem cell therapy targets the neointimal smooth muscle cells in experimentally induced atherosclerosis: involvement of intracellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM). ACTA ACUST UNITED AC 2021; 54:e10807. [PMID: 34037094 PMCID: PMC8148879 DOI: 10.1590/1414-431x2020e10807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Smooth muscle cells (SMCs) are currently considered a central pivotal player in pathogenesis and development of atherosclerotic lesions. As consequence of vascular injury, SMCs migrate from the tunica media into the tunica intima layers where they contribute to neointimal formation by converting into foam cells and producing pro-inflammatory and oxidative stress markers. We targeted the replacement of neointimal SMCs by using the mesenchymal stem cells (MSCs) therapy in experimentally induced atherosclerosis in an attempt to improve the atherosclerotic lesion and its concomitant complications. Rats were divided into 4 groups (n=20). Control group: rats kept on a standard chow diet; atherosclerotic group: rats received the atherogenic diet; stem cells-treated group: rats were injected with CD34+ stem cells (6×106 cells in 0.5 mL PBS in rat tail vein) and maintained on the atherogenic diet; and resveratrol-treated group: rats were supplemented orally with resveratrol at a dose level 3 mg/kg per day and the atherogenic diet. After 12 weeks, rats were euthanized, blood samples were collected for separation of serum, and abdominal aortas were excised for further biochemical, molecular, and histopathological investigations. We used resveratrol, the well-established anti-atherosclerotic drug, as a benchmark to assess the efficacy of stem cell therapy. MSCs treatment revealed significant amelioration in both histopathological and biochemical patterns as evidenced by decreased foam cells formation, ICAM-1, VCAM, M-CSF, iNOS, COX-2, and TNF-α. We concluded that MSCs therapy significantly replaced the neointimal SMCs and decreased adhesion molecules as well as the oxidative and inflammatory markers in atherosclerosis.
Collapse
Affiliation(s)
- R M Hashem
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - L A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - R M Abdelkader
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - K S Hashem
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
15
|
Eicosanoid blood vessel regulation in physiological and pathological states. Clin Sci (Lond) 2021; 134:2707-2727. [PMID: 33095237 DOI: 10.1042/cs20191209] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Arachidonic acid can be metabolized in blood vessels by three primary enzymatic pathways; cyclooxygenase (COX), lipoxygenase (LO), and cytochrome P450 (CYP). These eicosanoid metabolites can influence endothelial and vascular smooth muscle cell function. COX metabolites can cause endothelium-dependent dilation or constriction. Prostaglandin I2 (PGI2) and thromboxane (TXA2) act on their respective receptors exerting opposing actions with regard to vascular tone and platelet aggregation. LO metabolites also influence vascular tone. The 12-LO metabolite 12S-hydroxyeicosatrienoic acid (12S-HETE) is a vasoconstrictor whereas the 15-LO metabolite 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA) is an endothelial-dependent hyperpolarizing factor (EDHF). CYP enzymes produce two types of eicosanoid products: EDHF vasodilator epoxyeicosatrienoic acids (EETs) and the vasoconstrictor 20-HETE. The less-studied cross-metabolites generated from arachidonic acid metabolism by multiple pathways can also impact vascular function. Likewise, COX, LO, and CYP vascular eicosanoids interact with paracrine and hormonal factors such as the renin-angiotensin system and endothelin-1 (ET-1) to maintain vascular homeostasis. Imbalances in endothelial and vascular smooth muscle cell COX, LO, and CYP metabolites in metabolic and cardiovascular diseases result in vascular dysfunction. Restoring the vascular balance of eicosanoids by genetic or pharmacological means can improve vascular function in metabolic and cardiovascular diseases. Nevertheless, future research is necessary to achieve a more complete understanding of how COX, LO, CYP, and cross-metabolites regulate vascular function in physiological and pathological states.
Collapse
|
16
|
Mitchell JA, Shala F, Pires MEL, Loy RY, Ravendren A, Benson J, Urquhart P, Nicolaou A, Herschman HR, Kirkby NS. Endothelial cyclooxygenase-1 paradoxically drives local vasoconstriction and atherogenesis despite underpinning prostacyclin generation. SCIENCE ADVANCES 2021; 7:7/12/eabf6054. [PMID: 33741600 PMCID: PMC7978428 DOI: 10.1126/sciadv.abf6054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/02/2021] [Indexed: 05/03/2023]
Abstract
Endothelial cyclooxygenase-1-derived prostanoids, including prostacyclin, have clear cardioprotective roles associated with their anti-thrombotic potential but have also been suggested to have paradoxical pathological activities within arteries. To date it has not been possible to test the importance of this because no models have been available that separate vascular cyclooxygenase-1 products from those generated elsewhere. Here, we have used unique endothelial-specific cyclooxygenase-1 knockout mice to show that endothelial cyclooxygenase-1 produces both protective and pathological products. Functionally, however, the overall effect of these was to drive pathological responses in the context of both vasoconstriction in vitro and the development of atherosclerosis and vascular inflammation in vivo. These data provide the first demonstration of a pathological role for the vascular cyclooxygenase-1 pathway, highlighting its potential as a therapeutic target. They also emphasize that, across biology, the role of prostanoids is not always predictable due to unique balances of context, products, and receptors.
Collapse
Affiliation(s)
- Jane A Mitchell
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Fisnik Shala
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Maria Elisa Lopes Pires
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Rachel Y Loy
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew Ravendren
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Joshua Benson
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Paula Urquhart
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Harvey R Herschman
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas S Kirkby
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
17
|
Liang B, Xiang Y, Zhang X, Wang C, Jin B, Zhao Y, Zheng F. Systematic Pharmacology and GEO Database Mining Revealed the Therapeutic Mechanism of Xuefu Zhuyu Decoration for Atherosclerosis Cardiovascular Disease. Front Cardiovasc Med 2020; 7:592201. [PMID: 33425996 PMCID: PMC7793929 DOI: 10.3389/fcvm.2020.592201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Xuefu Zhuyu decoration (XFZYD), as a traditional Chinese compound recipe, has been used to treat atherosclerosis cardiovascular disease (ASCVD) for thousands of years in China, but its effective compounds and underlying treatment molecular mechanism remains promiscuous, which severely limits its clinical application. Methods: The effective components and their targets of XFZYD were predicted and screened based on the Traditional Chinese Medicine System Pharmacology (TCMSP) database. The candidate therapeutic targets of ASCVD were screened by Pharmacogenomics Knowledgebase (PharmGKB) and Comparative Toxicogenomics Database (CTD). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for target proteins were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. Differentially expressed genes were identified using the GEO2R online tool. Molecular docking was performed by Schrodinger software. To assess the efficacy of the prediction, human umbilical vein endothelial cells (HUVECs) treated with the effective compound of XFZYD were used as the in vitro model. Results: A total of 108 effective compounds (including quercetin) and 137 candidate therapeutic targets were identified. Analyzing the relationships among effective compounds, candidate therapeutic targets, and signaling pathways, the therapy mechanisms of XFZYD were mainly reflected in the protection of vascular endothelium, anti-inflammatory, antioxidant stress, etc. Accordingly, we found the effective compound of XFZYD (quercetin) decreased intracellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expressions and pro-inflammatory cytokines in HUVECs treated with lipopolysaccharide (LPS), and reduced the adhesion function of HUVECs with monocytes. The inhibitor of the predicted target protein (PTGS2) could further reduce the expressions of VCAM-1, ICAM-1, and TNF-α induced by LPS, and inhibit the adhesion function of HUVECs with monocytes, while PTGS2 agonists partially counteracted the protective effect of quercetin. Conclusions: In this study, the effective components and potential therapeutic targets of XFZYD for ASCVD treatment were explored from the perspective of systemic pharmacology. The effective component quercetin was verified to protect endothelial cells by reducing endothelial inflammatory response and impeding the attachment of monocytes against the predicted therapeutic target PTGS2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Dose-Effect of Irbesartan on Cyclooxygenase-2 and Matrix Metalloproteinase-9 Expression in Rabbit Atherosclerosis. J Cardiovasc Pharmacol 2019; 71:82-94. [PMID: 29420356 DOI: 10.1097/fjc.0000000000000544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Irbesartan has previously shown antiatherosclerotic effects on human carotid atherosclerotic plaques. Our study aimed to assess the dose-effect of irbesartan on cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) in rabbit atherosclerotic aorta. New Zealand rabbits were randomly divided into 6 groups: normal control (NC), high cholesterol (HC), low-dose (10 mg·kg·day), medium-dose (20 mg·kg·d), and high-dose (30 mg·kg·d) irbesartan and celecoxib (20 mg·kg·d). Except for the NCs, rabbits were fed a HC diet for 14 weeks to induce atherosclerosis. Aortic atherosclerotic lesions and messenger RNA and protein expression of COX-2, MMP-9, and nuclear factor-κB (NF-κB) were subsequently measured. The surface area of aortic atherosclerotic lesions was visibly larger in the HC group than in NCs (P < 0.01), but showed considerable reduction with medium- and high-dosage irbesartan and celecoxib treatments (P < 0.01). In medium- and high-dosage irbesartan and celecoxib groups, COX-2 and MMP-9 expression and NF-κB activity were significantly lower than in the high-cholesterol group (P < 0.01). No significant differences in treatment effects were observed between the high-dosage irbesartan and celecoxib groups (P > 0.05). Our results indicate that medium and high doses of irbesartan and celecoxib have antiatherosclerotic effects in aortic plaques via inhibition of COX-2 and MMP-9 by suppressing NF-κB activation. High-dose irbesartan has effects similar to celecoxib.
Collapse
|
19
|
Pang Y, Gan L, Wang X, Su Q, Liang C, He P. Celecoxib aggravates atherogenesis and upregulates leukotrienes in ApoE -/- mice and lipopolysaccharide-stimulated RAW264.7 macrophages. Atherosclerosis 2019; 284:50-58. [PMID: 30875493 DOI: 10.1016/j.atherosclerosis.2019.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS COX-2-selective inhibitors have been associated with an increased risk of cardiovascular complications, and their impact on atherosclerosis (AS) remains controversial. The proinflammatory COX-2 and 5-LO pathways both play essential roles in AS and related cardiovascular diseases. Previous clinical studies have provided evidence of the ability of COX-2-selective inhibitors to shunt AA metabolism from the COX-2 pathway to the 5-LO pathway. In this study, the effects of celecoxib, a selective COX-2 inhibitor, on AS and the COX-2 and 5-LO pathways were investigated in vivo and in vitro. METHODS Male ApoE-/- mice fed a western-type diet for 18 weeks and cultured mouse RAW264.7 macrophages stimulated with 1 μg/mL LPS for 24 h were used in this study. RESULTS In ApoE-/- mice, intragastric administration of celecoxib (80 mg/kg/d) for 18 weeks significantly increased aortic atherosclerotic lesion area but had no effect on hyperlipidemia. In addition, celecoxib significantly lowered TNF-α and PGE2 levels but increased both LTB4 and CysLTs levels in aortic tissues. In LPS-stimulated RAW264.7 macrophages, pretreatment with 8 μmol/L celecoxib for 1 h significantly lowered the TNF-α, NO, and PGE2 levels but increased the LTB4 and CysLTs levels. Celecoxib also decreased the protein and mRNA expression of COX-2 but increased the expression of 5-LO and LTC4S in both ApoE-/- mouse aortic tissues and LPS-stimulated RAW264.7 macrophages. CONCLUSION The COX-2-selective inhibitor celecoxib can aggravate atherogenesis, an effect that may be related to upregulation of LTs via a 5-LO pathway shunt.
Collapse
Affiliation(s)
- Yimin Pang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021,Guangxi, China
| | - Lu Gan
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021,Guangxi, China
| | - Xianzhe Wang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021,Guangxi, China
| | - Qi Su
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021,Guangxi, China
| | - Cong Liang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021,Guangxi, China
| | - Ping He
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
20
|
Gargiulo S, Rossin D, Testa G, Gamba P, Staurenghi E, Biasi F, Poli G, Leonarduzzi G. Up-regulation of COX-2 and mPGES-1 by 27-hydroxycholesterol and 4-hydroxynonenal: A crucial role in atherosclerotic plaque instability. Free Radic Biol Med 2018; 129:354-363. [PMID: 30312760 DOI: 10.1016/j.freeradbiomed.2018.09.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is currently understood to be mainly the consequence of a complicated inflammatory process at the different stages of plaque development. Among the several inflammatory molecules involved, up-regulation of the functional cyclooxygenase 2/membrane-bound prostaglandin E synthase 1 (COX-2/mPGES-1) axis plays a key role in plaque development. Excessive production of oxidized lipids, following low-density lipoprotein (LDL) oxidation, is a characteristic feature of atherosclerosis. Among the oxidized lipids of LDLs, the oxysterol 27-hydroxycholesterol (27-OH) and the aldehyde 4-hydroxynonenal (HNE) substantially accumulate in the atherosclerotic plaque, contributing to its progression and instability through a variety of processes. This study shows that 27-OH and HNE promote up-regulation of both the inducible enzymes COX-2 and mPGES-1, leading to increased production of prostaglandin (PG) E2 and inducible nitric oxide synthase, and the subsequent release of nitric oxide in human promonocytic U937 cells. The study also examined the potential involvement of the functionally coupled COX-2/mPGES-1 in enhancing the production of certain pro-inflammatory cytokines and of matrix metalloproteinase 9 by U937 cells. This enhancement is presumably due to the induction of PGE2 synthesis, as a result of the up-regulation of the COX-2/mPGES-1, stimulated by the two oxidized lipids, 27-OH and HNE. Induction of PGE2 synthesis might thus be a mechanism of plaque instability and eventual rupture, contributing to matrix metalloproteinase production by activated macrophages.
Collapse
Affiliation(s)
- Simona Gargiulo
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Daniela Rossin
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Fiorella Biasi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy.
| |
Collapse
|
21
|
Zhang K, Zhang F, Yang JM, Kong J, Meng X, Zhang M, Zhang C, Zhang Y. Silencing of Non-POU-domain-containing octamer-binding protein stabilizes atherosclerotic plaque in apolipoprotein E-knockout mice via NF-κB signaling pathway. Int J Cardiol 2018; 263:96-103. [PMID: 29673854 DOI: 10.1016/j.ijcard.2018.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/25/2018] [Accepted: 04/05/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND It remains unknown whether Non-POU-domain-containing octamer-binding protein (NonO) plays a causative role in plaque destabilization. We hypothesized that NonO gene silencing may stabilize atherosclerotic plaque by increasing P4Hα1 expression and inhibiting the inflammation. METHODS AND RESULTS Vulnerable atherosclerotic plaques were induced in ApoE-/- mice by high fat diet, perivascular collar placement and mental stress. Compared with normal carotid arteries, those contained vulnerable plaques had high NonO expression. In another in vivo experiment, mice contained vulnerable plaques were randomly divided into 5 groups to receive physiological saline, si-N.C-lentivirus (LV), si-NonO-LV, pGC-GFP-LV and NonO-LV, respectively. NonO overexpression increased while NonO silencing decreased the incidence of carotid plaque disruption. NonO overexpression enhanced macrophage infiltration and lipid deposition but reduced the content of vascular smooth muscle cells and collagen in plaques, leading to an increased plaque vulnerability index, whereas NonO silencing exhibited the opposite effect. In addition, NonO overexpression increased the expression of proinflammatory cytokines and matrix metalloproteinases and decreased the expression of P4Hα1 both in vivo and in vitro, whereas NonO silencing showed the contrary effect. NonO co-immunoprecipitated with NF-κB p65, and promoted its nuclear translocation and phosphorylation, and these effects were reversed by NonO silencing. CONCLUSION NonO may promote plaque destabilization and increase the incidence of plaque disruption in ApoE-/- mice by inducing the expression of inflammatory cytokines and matrix metalloproteinases and suppressing that of P4Hα1. The mechanism may involve the interaction of NonO with NF-κB leading to enhanced NF-κB nuclear translocation and phosphorylation.
Collapse
Affiliation(s)
- Kai Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Fang Zhang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Jian-Min Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Kong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
22
|
De Iuliis V, Ursi S, Pennelli A, Caruso M, Nunziata A, Marino A, Flati V, Cipollone F, Giamberardino MA, Vitullo G, Toniato E, Conti P, Martinotti S. Differential TBXA2 receptor transcript stability is dependent on the C924T polymorphism. Prostaglandins Other Lipid Mediat 2018; 134:141-147. [DOI: 10.1016/j.prostaglandins.2017.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/26/2017] [Accepted: 07/03/2017] [Indexed: 12/28/2022]
|
23
|
Prasad GS, Govardhan P, Deepika G, Vakdevi V, Sashidhar RB. Anti-inflammatory activity of anti-hyperlipidemic drug, fenofibrate, and its phase-I metabolite fenofibric acid: in silico, in vitro, and in vivo studies. Inflammopharmacology 2017; 26:973-981. [DOI: 10.1007/s10787-017-0428-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
24
|
Microsomal Prostaglandin E Synthase-1 Expression by Aortic Smooth Muscle Cells Attenuates the Differentiated Phenotype. J Cardiovasc Pharmacol 2017; 68:127-42. [PMID: 27159620 DOI: 10.1097/fjc.0000000000000395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The development of numerous types of cardiovascular disease is associated with alteration of the vascular smooth muscle cell (SMC) phenotype. We have previously shown that abdominal aortic aneurysm progression in a mouse model of the disease is associated with reduced differentiation of SMCs within the lesion and that cyclooxygenase-2 (COX-2) is critical to initiation and progression of the aneurysms. The current studies used human aortic SMC (hASMC) cultures to better characterize mechanisms responsible for COX-2-dependent modulation of the SMC phenotype. Depending on the culture conditions, hASMCs expressed multiple characteristics of a differentiated and contractile phenotype, or a dedifferentiated and secretory phenotype. The pharmacological inhibition of COX-2 promoted the differentiated phenotype, whereas treatment with the COX-2-derived metabolite prostaglandin E2 (PGE2) increased characteristics of the dedifferentiated phenotype. Furthermore, pharmacological inhibition or siRNA-mediated knockdown of microsomal prostaglandin E synthase-1 (mPGES-1), the enzyme that functions downstream of COX-2 during the synthesis of PGE2, significantly increased expression of characteristics of the differentiated SMC phenotype. Therefore, our findings suggest that COX-2 and mPGES-1-dependent synthesis of PGE2 contributes to a dedifferentiated hASMC phenotype and that mPGES-1 may provide a novel pharmacological target for treatment of cardiovascular diseases where altered SMC differentiation has a causative role.
Collapse
|
25
|
Lee SE, Park HR, Kim H, Choi Y, Jin YH, Park CS, Ahn HJ, Cho JJ, Park YS. Effect of crotonaldehyde on the induction of COX-2 expression in human endothelial cells. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0038-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Maitrias P, Metzinger-Le Meuth V, Nader J, Reix T, Caus T, Metzinger L. The Involvement of miRNA in Carotid-Related Stroke. Arterioscler Thromb Vasc Biol 2017; 37:1608-1617. [PMID: 28775076 DOI: 10.1161/atvbaha.117.309233] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in developed countries. Stroke is associated with a marked disability burden and has a major economic impact; this is especially true for carotid artery stroke. Major advances in primary and secondary prevention during the last few decades have helped to tackle this public health problem. However, better knowledge of the physiopathology of stroke and its underlying genetic mechanisms is needed to improve diagnosis and therapy. miRNAs are an important, recently identified class of post-transcriptional regulators of gene expression and are known to be involved in cerebrovascular disease. These endogenous, small, noncoding RNAs may have applications as noninvasive biomarkers and therapeutic tools in practice. Here, we review the involvement of several miRNAs in cell-based and whole-animal models of stroke, with a focus on human miRNA profiling studies of carotid artery stroke. Lastly, we describe the miRNAs' potential role as a biomarker of stroke.
Collapse
Affiliation(s)
- Pierre Maitrias
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.).
| | - Valérie Metzinger-Le Meuth
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.)
| | - Joseph Nader
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.)
| | - Thierry Reix
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.)
| | - Thierry Caus
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.)
| | - Laurent Metzinger
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.)
| |
Collapse
|
27
|
Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J Cell Physiol 2017; 233:2116-2132. [DOI: 10.1002/jcp.25930] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/22/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Zahra Hoseini
- Faculty of Medicine, Students Research Center; Isfahan University of Medical Sciences; Isfahan Iran
| | - Fatemeh Sepahvand
- Faculty of Medicine, Students Research Center; Isfahan University of Medical Sciences; Isfahan Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine; Isfahan University of Medical Sciences; Isfahan Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center; Royan Institute for Biotechnology; ACECR; Isfahan Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
28
|
An Update of Microsomal Prostaglandin E Synthase-1 and PGE2 Receptors in Cardiovascular Health and Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5249086. [PMID: 27594972 PMCID: PMC4993943 DOI: 10.1155/2016/5249086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/19/2016] [Accepted: 06/26/2016] [Indexed: 12/16/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), especially cyclooxygenase-2 (COX-2) selective inhibitors, are among the most widely used drugs to treat pain and inflammation. However, clinical trials have revealed that these inhibitors predisposed patients to a significantly increased cardiovascular risk, consisting of thrombosis, hypertension, myocardial infarction, heart failure, and sudden cardiac death. Thus, microsomal prostaglandin E (PGE) synthase-1 (mPGES-1), the key terminal enzyme involved in the synthesis of inflammatory prostaglandin E2 (PGE2), and the four PGE2 receptors (EP1-4) have gained much attention as alternative targets for the development of novel analgesics. The cardiovascular consequences of targeting mPGES-1 and the PGE2 receptors are substantially studied. Inhibition of mPGES-1 has displayed a relatively innocuous or preferable cardiovascular profile. The modulation of the four EP receptors in cardiovascular system is diversely reported as well. In this review, we highlight the most recent advances from our and other studies on the regulation of PGE2, particularly mPGES-1 and the four PGE2 receptors, in cardiovascular function, with a particular emphasis on blood pressure regulation, atherosclerosis, thrombosis, and myocardial infarction. This might lead to new avenues to improve cardiovascular disease management strategies and to seek optimized anti-inflammatory therapeutic options.
Collapse
|
29
|
Rather RA, Malik VS, Trikha D, Bhat O, Dhawan V. Aqueous Terminalia arjuna extract modulates expression of key atherosclerosis-related proteins in a hypercholesterolemic rabbit: A proteomic-based study. Proteomics Clin Appl 2016; 10:750-759. [PMID: 26934842 DOI: 10.1002/prca.201500114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/15/2016] [Accepted: 02/29/2016] [Indexed: 07/07/2024]
Abstract
PURPOSE The present study evaluates the effect of an aqueous extract of Terminalia arjuna (aqTAE) on protein expression in aortic plaques of hypercholesterolemic rabbits using a proteomic approach. EXPERIMENTAL DESIGN Thirty male New Zealand rabbits (n = 6) were employed as Gp1 (stock diet); Gp2 (high-fat diet [HFD]); Gp3 (stock diet + aqTAE); Gp4 (HFD + aqTAE); and Gp5 (HFD + atorvastatin) and followed for 6 months. Protein lysates of aortic tissues were separated by 2DE and proteins were identified by MALDI-TOF/MS. RESULTS Serum lipids were found to be significantly increased by an HFD and reduced by aqTAE both at 3 and 6 months (Gp4 vs. Gp2; p < 0.05). Total 79 spots were differentially expressed, among which 60 individual proteins were identified, 31 grouped as atherosclerosis-related proteins and 29 classified as others. aqTAE significantly attenuated the protein expression of tumor necrosis factor α, cyclooxygenase-2, MMP-9, HSP60, ICAM-5, Endothelin-3, Vimentin, Protein S100-A9 besides others. Many of the observed proteins are known to be consistently associated with endothelial dysfunction, inflammation, plaque rupture, and immune imbalance. CONCLUSIONS AND CLINICAL RELEVANCE Strong hypolipidemic effects of aqTAE and attenuation of these signature atherogenic biomarkers using proteomics highlights the fact that aqTAE may be useful in the prevention and management of atherosclerosis.
Collapse
Affiliation(s)
- Riyaz Ahmad Rather
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Vivek Singh Malik
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Dimple Trikha
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Owais Bhat
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| |
Collapse
|
30
|
Papageorgiou N, Zacharia E, Briasoulis A, Charakida M, Tousoulis D. Celecoxib for the treatment of atherosclerosis. Expert Opin Investig Drugs 2016; 25:619-633. [PMID: 26940257 DOI: 10.1517/13543784.2016.1161756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION It is widely accepted that inflammation plays a pivotal role in the progression of atherosclerosis. Anti-inflammatory drugs and especially selective cyclooxygenase-2 (COX-2) inhibitors have attracted a keen interest. AREAS COVERED In the present drug evaluation article, the authors elucidate the role of celecoxib, a selective COX-2 inhibitor, in the treatment of atherosclerosis. They discuss the atherogenic properties of the COX-2 enzyme. In addition, they address the studies that support an atheroprotective role of celecoxib. Moreover, they provide a review of the literature on the role of COX-2 inhibitors in increasing the rate of major adverse cardiovascular events. Finally, they discuss the emerging evidence that supports celecoxib as an adjuvant or neo-adjuvant therapy to percutaneous coronary intervention (PCI). EXPERT OPINION Several studies have demonstrated a beneficial effect of celecoxib on the progression of atherosclerosis. Nevertheless, this evidence is mainly derived from preliminary data, while a substantial number of clinical studies have raised concerns regarding the cardiovascular safety of COX-2 inhibitors. Interestingly, recent clinical studies have supported the advantages of short-term celecoxib administration in patients undergoing PCI. However, many more large scale clinical trials are required to assess the long-term safety and efficacy of celecoxib administration in patients with cardiovascular disease.
Collapse
Affiliation(s)
| | - Effimia Zacharia
- b 1st Department of Cardiology, Hippokration Hospital , University of Athens , Athens , Greece
| | - Alexandros Briasoulis
- c Division of Cardiology , Wayne State University/Detroit Medical Center , Detroit , MI , USA
| | - Marietta Charakida
- d Vascular Physiology Unit, Institute of Cardiovascular Science , University College London , London , UK
| | - Dimitris Tousoulis
- b 1st Department of Cardiology, Hippokration Hospital , University of Athens , Athens , Greece
| |
Collapse
|
31
|
Li S, Liu B, Luo W, Zhang Y, Li H, Huang D, Zhou Y. Role of cyclooxygenase-1 and -2 in endothelium-dependent contraction of atherosclerotic mouse abdominal aortas. Clin Exp Pharmacol Physiol 2016; 43:67-74. [PMID: 26444418 DOI: 10.1111/1440-1681.12501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 02/05/2023]
Abstract
The objective of this study was to determine the role of cyclooxygenase (COX)-1 or -2 in endothelium-dependent contraction under atherosclerotic conditions. Atherosclerosis was induced in apoE knockout (apoE(-/-)) mice and those with COX-1(-/-) (apoE(-/-)-COX-1(-/-)) by feeding with high fat and cholesterol food. Aortas (abdominal or the whole section) were isolated for functional and/or biochemical analyses. As in non-atherosclerotic conditions, the muscarinic receptor agonist acetylcholine (ACh) evoked an endothelium-dependent, COX-mediated contraction following NO synthase (NOS) inhibition in abdominal aortic rings from atherosclerotic apoE(-/-) mice. Interestingly, COX-1 inhibition not only abolished such a contraction in rings showing normal appearance, but also diminished that in rings with plaques. Accordingly, only a minor contraction (<30% that of apoE(-/-) counterparts) was evoked by ACh (following NOS inhibition) in abdominal aortic rings of atherosclerotic apoE(-/-)-COX-1(-/-) mice with plaques, and none was evoked in those showing normal appearance. Also, the contraction evoked by ACh in apoE(-/-)-COX-1(-/-) abdominal aortic rings with plaques was abolished by non-selective COX inhibition, thromboxane-prostanoid (TP) receptor antagonism, or endothelial denudation. Moreover, it was noted that ACh evoked a predominant production of the prostacyclin (PGI2, which mediates abdominal aortic contraction via TP receptors in mice) metabolite 6-keto-PGF1α, which was again sensitive to COX-1 inhibition or COX-1(-/-). Therefore, in atherosclerotic mouse abdominal aortas, COX-1 can still be the major isoform mediating endothelium-dependent contraction, which probably results largely from PGI2 synthesis as in non-atherosclerotic conditions. In contrast, COX-2 may have only a minor role in such response limited to areas of plaques under the same pathological condition.
Collapse
Affiliation(s)
- Shasha Li
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Wenhong Luo
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Hui Li
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Dongyang Huang
- Department of Molecular and Cell Biology, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
32
|
Bojic LA, McLaren DG, Harms AC, Hankemeier T, Dane A, Wang SP, Rosa R, Previs SF, Johns DG, Castro-Perez JM. Quantitative profiling of oxylipins in plasma and atherosclerotic plaques of hypercholesterolemic rabbits. Anal Bioanal Chem 2015; 408:97-105. [DOI: 10.1007/s00216-015-9105-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/11/2015] [Accepted: 10/07/2015] [Indexed: 01/06/2023]
|
33
|
Townley-Tilson WHD, Pi X, Xie L. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:676893. [PMID: 26491535 PMCID: PMC4600863 DOI: 10.1155/2015/676893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/26/2015] [Accepted: 04/10/2015] [Indexed: 12/14/2022]
Abstract
Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.
Collapse
Affiliation(s)
- W. H. Davin Townley-Tilson
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinchun Pi
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liang Xie
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
34
|
Could the thromboxane A2 pathway be a therapeutic target for the treatment of obstructive sleep apnea-induced atherosclerosis? Prostaglandins Other Lipid Mediat 2015; 121:97-104. [DOI: 10.1016/j.prostaglandins.2015.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/08/2015] [Accepted: 05/08/2015] [Indexed: 11/19/2022]
|
35
|
Praticò D. Prostanoids, Their Receptors, and Atherogenesis. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Cipollone F, Santovito D. Cyclooxygenase-2 polymorphism: another piece in the cardiovascular puzzle. Eur Heart J 2014; 35:2208-10. [DOI: 10.1093/eurheartj/ehu219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
37
|
Dou L, Sallée M, Cerini C, Poitevin S, Gondouin B, Jourde-Chiche N, Fallague K, Brunet P, Calaf R, Dussol B, Mallet B, Dignat-George F, Burtey S. The cardiovascular effect of the uremic solute indole-3 acetic acid. J Am Soc Nephrol 2014; 26:876-87. [PMID: 25145928 DOI: 10.1681/asn.2013121283] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In CKD, uremic solutes may induce endothelial dysfunction, inflammation, and oxidative stress, leading to increased cardiovascular risk. We investigated whether the uremic solute indole-3 acetic acid (IAA) predicts clinical outcomes in patients with CKD and has prooxidant and proinflammatory effects. We studied 120 patients with CKD. During the median study period of 966 days, 29 patients died and 35 experienced a major cardiovascular event. Kaplan-Meier analysis revealed that mortality and cardiovascular events were significantly higher in the higher IAA group (IAA>3.73 µM) than in the lower IAA group (IAA<3.73 µM). Multivariate Cox regression analysis demonstrated that serum IAA was a significant predictor of mortality and cardiovascular events after adjustments for age and sex; cholesterol, systolic BP, and smoking; C-reactive protein, phosphate, body mass index, and albumin; diastolic BP and history of cardiovascular disease; and uremic toxins p-cresyl sulfate and indoxyl sulfate. Notably, IAA level remained predictive of mortality when adjusted for CKD stage. IAA levels were positively correlated with markers of inflammation and oxidative stress: C-reactive protein and malondialdehyde, respectively. In cultured human endothelial cells, IAA activated an inflammatory nongenomic aryl hydrocarbon receptor (AhR)/p38MAPK/NF-κB pathway that induced the proinflammatory enzyme cyclooxygenase-2. Additionally, IAA increased production of endothelial reactive oxygen species. In conclusion, serum IAA may be an independent predictor of mortality and cardiovascular events in patients with CKD. In vitro, IAA induces endothelial inflammation and oxidative stress and activates an inflammatory AhR/p38MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Laetitia Dou
- Aix Marseille University, Inserm, UMR 1076, Marseille, France;
| | - Marion Sallée
- Aix Marseille University, Inserm, UMR 1076, Marseille, France; Nephrology Dialysis Renal Transplantation Center, APHM, CHU Conception, Marseille, France
| | - Claire Cerini
- Aix Marseille University, Inserm, UMR 1076, Marseille, France
| | | | - Bertrand Gondouin
- Aix Marseille University, Inserm, UMR 1076, Marseille, France; Nephrology Dialysis Renal Transplantation Center, APHM, CHU Conception, Marseille, France
| | - Noemie Jourde-Chiche
- Nephrology Dialysis Renal Transplantation Center, APHM, CHU Conception, Marseille, France
| | - Karim Fallague
- Aix Marseille University, Inserm, UMR 1076, Marseille, France
| | - Philippe Brunet
- Aix Marseille University, Inserm, UMR 1076, Marseille, France; Nephrology Dialysis Renal Transplantation Center, APHM, CHU Conception, Marseille, France
| | - Raymond Calaf
- Biochemistry Laboratory, Aix Marseille University, Marseille, France; and
| | - Bertrand Dussol
- Aix Marseille University, Inserm, UMR 1076, Marseille, France; Nephrology Dialysis Renal Transplantation Center, APHM, CHU Conception, Marseille, France
| | - Bernard Mallet
- Biochemistry Laboratory, APHM, CHU Timone, Marseille, France
| | | | - Stephane Burtey
- Aix Marseille University, Inserm, UMR 1076, Marseille, France; Nephrology Dialysis Renal Transplantation Center, APHM, CHU Conception, Marseille, France
| |
Collapse
|
38
|
Yang L, Chu Y, Wang Y, Zhao X, Xu W, Zhang P, Liu X, Dong S, He W, Gao C. siRNA-mediated silencing of Wnt5a regulates inflammatory responses in atherosclerosis through the MAPK/NF-κB pathways. Int J Mol Med 2014; 34:1147-52. [PMID: 25050997 DOI: 10.3892/ijmm.2014.1860] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/08/2014] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that the aberrant expression of Wnt5a occurs in atherosclerotic lesions. However, the precise role of Wnt5a in the pathogenesis of atherosclerosis remains largely unknown. The present study was undertaken to determine whether the RNA interference of Wnt5a in vivo by adenovirus (Ad)-mediated small interfering RNA (siRNA) transfection is capable of inhibiting the progression of atherosclerosis. Recombinant adenovirus carrying siRNA targeting Wnt5a (Ad-Wnt5a siRNA) was designed. Male apolipoprotein E-deficient (ApoE(-/-)) mice were fed a high-fat diet to induce the pathogenesis of atherosclerosis. Mice were randomly divided into 3 groups (n=15 in each group): the mock group, which received treatment with phosphate-buffered saline (PBS); the Ad-NC group, which received treatment with Ad-non-specific siRNA; and the Ad-Wnt5a siRNA group, which received treatment with Ad-Wnt5a siRNA. Treatment with Ad-Wnt5a siRNA markedly inhibited the mRNA and protein expression of Wnt5a in the aortic tissues. The knockdown of Wnt5a had no significant effect on blood lipid levels, but it suppressed atherosclerotic development and increased plaque stability, which was determined by hematoxylin and eosin staining, picrosirius red staining and Oil Red O staining. Furthermore, the mRNA and protein expression of inflammatory cytokines, including monocyte chemotactic protein-1 (MCP-1), cyclooxygenase-2 (COX-2), matrix metalloproteinase (MMP)-2 and MMP-9 was significantly downregulated in the Ad-Wnt5a siRNA group. In addition, the knockdown of Wnt5a inhibited the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. These results demonstrate that Ad-mediated Wnt5a silencing in vivo attenuates the development of atherosclerotic disease by reducing inflammatory mediators involved in the MAPK/NF-κB pathways.
Collapse
Affiliation(s)
- Lei Yang
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yingjie Chu
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yuhang Wang
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xiangmei Zhao
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Wenke Xu
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Peirong Zhang
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xiaoyu Liu
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Shujuan Dong
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Wenqi He
- Department of Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Chuanyu Gao
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
39
|
COX-2 protects against atherosclerosis independently of local vascular prostacyclin: identification of COX-2 associated pathways implicate Rgl1 and lymphocyte networks. PLoS One 2014; 9:e98165. [PMID: 24887395 PMCID: PMC4041570 DOI: 10.1371/journal.pone.0098165] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/29/2014] [Indexed: 12/13/2022] Open
Abstract
Cyxlo-oxygenase (COX)-2 inhibitors, including traditional nonsteroidal anti-inflammatory drugs (NSAIDs) are associated with increased cardiovascular side effects, including myocardial infarction. We and others have shown that COX-1 and not COX-2 drives vascular prostacyclin in the healthy cardiovascular system, re-opening the question of how COX-2 might regulate cardiovascular health. In diseased, atherosclerotic vessels, the relative contribution of COX-2 to prostacyclin formation is not clear. Here we have used apoE(-/-)/COX-2(-/-) mice to show that, whilst COX-2 profoundly limits atherosclerosis, this protection is independent of local prostacyclin release. These data further illustrate the need to look for new explanations, targets and pathways to define the COX/NSAID/cardiovascular risk axis. Gene expression profiles in tissues from apoE(-/-)/COX-2(-/-) mice showed increased lymphocyte pathways that were validated by showing increased T-lymphocytes in plaques and elevated plasma Th1-type cytokines. In addition, we identified a novel target gene, rgl1, whose expression was strongly reduced by COX-2 deletion across all examined tissues. This study is the first to demonstrate that COX-2 protects vessels against atherosclerotic lesions independently of local vascular prostacyclin and uses systems biology approaches to identify new mechanisms relevant to development of next generation NSAIDs.
Collapse
|
40
|
De Oliveira F, Maifrino LBM, De Jesus GPP, Carvalho JG, Marchon C, Ribeiro DA. The role of cyclooxygenase-2 on endurance exercise training in female LDL-receptor knockout ovariectomized mice. AN ACAD BRAS CIENC 2014; 85:1157-64. [PMID: 23969853 DOI: 10.1590/s0001-37652013005000046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/12/2013] [Indexed: 11/22/2022] Open
Abstract
Estrogen deprivation in postmenopausal women increases cardiovascular risk. Cardiovascular risk as a result of atherosclerosis is able to induce an inflammatory disease as far as cyclooxygenase-2 ( COX-2) expression. The purpose of the study was to investigate the role of COX-2 on exercise training in female mice low-density lipoprotein receptor knockout ( LDL-KO) with or without ovariectomy. A total of 15 female C57BL/6 mice and 15 female LDL-KO mice were distributed into 6 groups: sedentary control, sedentary control ovariectomized, trained control ovariectomized, LDL-KO sedentary, LDL-KO sedentary ovariectomized and LDL-KO trained ovariectomized. The ascending part of the aorta was stained with H&E and COX-2 expression was assessed by immunohistochemistry. Results revealed that ovariectomy as well as exercise training were not able to induce histopathological changes in mouse aorta for all groups investigated. LDL-KO mice demonstrated plaque containing cholesterol clefts, foamy histiocytes and mild inflammatory process for all groups indistinctly. Ovariectomy induced a strong immunoexpression in atherosclerosis lesion of LDL-KO mice. Nevertheless, a down-regulation of COX-2 expression was detected in LDL-KO trained ovariectomized when compared to LDL-KO sedentary. Our results are consistent with the notion that exercise training is able to modulate COX-2 expression in LDL-KO mice as a result of COX-2 down-regulation.
Collapse
Affiliation(s)
- Flavia De Oliveira
- Departamento de Biociências, Universidade Federal de São Paulo, Campus Baixada Santista, 11060-001 Santos SP, Brasil.
| | | | | | | | | | | |
Collapse
|
41
|
Zhao L, Grosser T, Fries S, Kadakia L, Wang H, Zhao J, Falotico R. Lipoxygenase and prostaglandin G/H synthase cascades in cardiovascular disease. Expert Rev Clin Immunol 2014; 2:649-58. [DOI: 10.1586/1744666x.2.4.649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Abstract
Selective cyclooxygenase-2 inhibitors represent a significant advance in the management of inflammatory disorders. They have similar efficacy to nonselective 'conventional' nonsteroidal anti-inflammatory drugs, but a superior gastrointestinal safety profile. However, a significant caveat is the perceived potential of cyclooxygenase-2 inhibitors to cause adverse cardiovascular effects, an issue first raised by the Vioxx Gastrointestinal Outcomes Research (VIGOR) study of rofecoxib (Vioxx, Merck & Co. Inc.). Mechanisms by which cyclooxygenase-2 inhibitors may increase cardiovascular risk are selective inhibition of prostaglandin I2 over thromboxane A2 within the eicosanoid pathway, which promotes thrombosis, and inhibition of prostaglandins E2 and I2 within the kidney, which leads to sodium and water retention and blood pressure elevation. In spite of this, the cardiovascular findings from VIGOR are not firmly supported by observations from large cohort studies and other clinical trials of selective cyclooxygenase-2 inhibitors, including the Celecoxib Long-term Arthritis Safety Study. The two main theories that explain the VIGOR findings are that the comparator used (naproxen; Naprosyn, Roche) is cardioprotective and that very high doses of rofecoxib were used, but at present neither is backed by firm evidence. Indeed, there is now early evidence that selective cyclooxygenase-2 inhibition with celecoxib may even protect against the progression of cardiovascular disease, on the basis that cyclooxygenase-2 mediates key processes in atherothrombosis. Currently, it is not clear what the net cardiovascular effects of cyclooxygenase-2 inhibitors are. The data are inconsistent and at best, speculative. It may be also that celecoxib and rofecoxib differ in their cardiovascular effects. Clarification of these issues is of vital importance given the vast number of patients presently taking both types of cyclooxygenase-2 inhibitors. Therefore, what is clear in this situation is the urgent need for randomized clinical trials designed specifically to examine the impact of selective cyclooxygenase-2 inhibitors on cardiovascular risk.
Collapse
Affiliation(s)
- Henry Krum
- NHMRC Centre of Clinical Excellence in Therapeutics, Departments of Medicine, Epidemiology and Preventive Medicine, Monash University Central and Eastern Clinical School, Alfred Hospital, Melbourne, Victoria 3004, Australia.
| | | | | | | |
Collapse
|
43
|
Lee SE, Park YS. Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells. J Ginseng Res 2013; 38:34-9. [PMID: 24558308 PMCID: PMC3915333 DOI: 10.1016/j.jgr.2013.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 11/29/2022] Open
Abstract
Cigarette smoke is considered a major risk factor for vascular diseases. There are many toxic compounds in cigarette smoke, including acrolein and other α,β-unsaturated aldehydes, which are regarded as mediators of inflammation and vascular dysfunction. Furthermore, recent studies have revealed that acrolein, an α,β-unsaturated aldehyde in cigarette smoke, induces inflammatory mediator expression, which is known to be related to vascular diseases. In this study, we investigated whether Korean Red Ginseng (KRG) water extract suppressed acrolein-induced cyclooxygenase (COX)-2 expression in human umbilical vein endothelial cells (HUVECs). Acrolein-induced COX-2 expression was accompanied by increased levels of phosphorylated p38 in HUVECs and KRG inhibited COX-2 expression in HUVECs. These results suggest that KRG suppresses acrolein-induced COX-2 expression via inhibition of the p38 mitogen-activated protein kinase signaling pathway. In addition, KRG exhibited an inhibitory effect on acrolein-induced apoptosis, as demonstrated by annexin V-propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Consistent with these results, KRG may exert a vasculoprotective effect through inhibition of COX-2 expression in acrolein-stimulated human endothelial cells.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Yong Seek Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
44
|
Regulation of inflammation by extracellular acidification and proton-sensing GPCRs. Cell Signal 2013; 25:2263-71. [PMID: 23917207 DOI: 10.1016/j.cellsig.2013.07.022] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 07/26/2013] [Indexed: 12/14/2022]
Abstract
Under ischemic and inflammatory circumstances, such as allergic airway asthma, rheumatoid arthritis, atherosclerosis, and tumors, extracellular acidification occurs due to the stimulation of anaerobic glycolysis. An acidic microenvironment has been shown to modulate pro-inflammatory or anti-inflammatory responses, including cyclooxygenase-2 (COX-2) expression, prostaglandin synthesis, and cytokine expression, in a variety of cell types, and thereby to exacerbate or ameliorate inflammation. However, molecular mechanisms underlying extracellular acidic pH-induced actions have not been fully understood. Recent studies have shown that ovarian cancer G protein-coupled receptor 1 (OGR1)-family G protein-coupled receptors (GPCRs) can sense extracellular pH or protons, which in turn stimulates intracellular signaling pathways and subsequent diverse cellular responses. In the present review, I discuss extracellular acidic pH-induced inflammatory responses and related responses in inflammatory cells, such as macrophages and neutrophils, and non-inflammatory cells, such as smooth muscle cells and endothelial cells, focusing especially on proton-sensing GPCRs.
Collapse
|
45
|
Kazuma SM, Cavalcante MF, Telles AER, Maranhão AQ, Abdalla DSP. Cloning and expression of an anti-LDL(-) single-chain variable fragment, and its inhibitory effect on experimental atherosclerosis. MAbs 2013; 5:763-75. [PMID: 23924793 DOI: 10.4161/mabs.25859] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The in vivo modified forms of low-density lipoprotein (LDL) are important for the formation of foam cells and as mediators of the immuno-inflammatory process involved in the progression of atherosclerosis. Electronegative LDL, LDL(-), is a LDL subfraction with pro-inflammatory properties that is present in human blood. To investigate possible atheroprotective effects, an anti-LDL(-) single-chain variable fragment (scFv) was expressed in the methylotrophic yeast Pichia pastoris and its activity was evaluated in vitro against macrophages and in experimental atherosclerosis in Ldlr(-/-) mice. The recombinant 2C7 scFv was produced in a yield of 9.5 mg of protein/L. The specificity and affinity of purified 2C7 scFv against LDL(-) was confirmed by ELISA. To assess the activity of 2C7 scFv on foam cell formation, RAW 264.7 macrophages were exposed to LDL(-) in the presence or absence of 2C7 scFv. The 2C7 scFv inhibited the uptake of LDL(-) by macrophages in a dose-dependent manner, and internalization of LDL(-) by these cells was found to be mediated by the CD36 and CD14 receptor. In addition, compared with untreated cells, lipid accumulation in macrophages was decreased, and the expression of Cd36, Tlr-4 and Cox-2 was downregulated in macrophages treated with 2C7 scFv. Importantly, compared with untreated mice, the treatment of Ldlr(-/-) mice with 2C7 scFv decreased the atherosclerotic lesion area at the aortic sinus. In conclusion, our data show that 2C7 scFv inhibits foam cell formation and atherosclerotic plaque development by modulating the expression of genes relevant to atherogenesis. These results encourage further use of this antibody fragment in the development of new therapeutic strategies that neutralize the pro-atherogenic effects of LDL(-).
Collapse
Affiliation(s)
- Soraya M Kazuma
- Department of Clinical Analysis; Faculty of Pharmaceutical Sciences; University of Sao Paulo; Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Francesco Cipollone
- From the European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia, and Clinical Research Center, Center of Excellence on Aging (Ce.S.I.), G. d’Annunzio University, Chieti-Pescara, Italy
| | - Donato Santovito
- From the European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia, and Clinical Research Center, Center of Excellence on Aging (Ce.S.I.), G. d’Annunzio University, Chieti-Pescara, Italy
| |
Collapse
|
47
|
Janeesh PA, Abraham A. Amelioration of cholesterol induced atherosclerosis by normalizing gene expression, cholesterol profile and antioxidant enzymes by Vigna unguiculata. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2013; 68:118-123. [PMID: 23475595 DOI: 10.1007/s11130-013-0345-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cardiovascular diseases, especially atherosclerosis, have found to be the dreadful diseases worldwide and therapeutic interventions using plant sources have wide therapeutic value. Vigna unguiculata (VU) leaves have been used as food and therapeutics. Hence, our study was designed to evaluate the hypolipidemic as well as anti-atherogenic potential of VU leaves in normalizing atherogenic gene expression, cholesterol profile, generation of reactive oxygen species (ROS) and antioxidant enzyme system on cholesterol fed rabbit model. For the study New Zealand white rabbits were randomly divided into four groups of six animals each and experimental period was three months; group -i - ND [normal diet (40 g feed)], group-ii- ND (normal diet) +EAVU [ethyl acetate fraction of Vigna unguiculata (150 mg/kg body weight)], group -iii- ND [normal diet ]+ CFD [cholesterol fed diet (cholesterol 1 % of 40 g feed and cholic acid 0.5 % of 40 g feed)] and group-iv - ND [normal diet] +CFD [cholesterol fed diet ]+EAVU [ethyl acetate fraction of Vigna unguiculata (150 mg/kg body weight)]. Atherosclerosis was induced by feeding the rabbit with cholesterol (1 % of 40 g feed) and cholic acid (0.5 % of 40 g feed). Supplementation of EAVU normalized cholesterol profile, generation of reactive oxygen species (ROS), lipid peroxidation products like thiobarbituric acid reactive substance (TBARS), antioxidant system and important genes of cardiovascular diseases like interleukin-10 (IL 10), paraoxanase-1 (PON I), interleukin-6 (IL 6), and cyclooxygenase-2 (Cox 2) to near normal level as compared with normal diet. The result obtained showed the antioxidant as well as anti-atherogenic potential of Vigna unguiculata leaves in ameliorating cholesterol induced atherosclerosis, and thus it is good task to include VU leaves in daily diet for the prevention of cardiovascular diseases especially atherosclerosis.
Collapse
Affiliation(s)
- P A Janeesh
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Trivandrum, India
| | | |
Collapse
|
48
|
Role of lipid peroxidation-derived α, β-unsaturated aldehydes in vascular dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:629028. [PMID: 23819013 PMCID: PMC3683506 DOI: 10.1155/2013/629028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/30/2013] [Accepted: 05/07/2013] [Indexed: 12/30/2022]
Abstract
Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction.
Collapse
|
49
|
Huang CC, McDermott MM, Liu K, Kuo CH, Wang SY, Tao H, Tseng YJ. Plasma metabolomic profiles predict near-term death among individuals with lower extremity peripheral arterial disease. J Vasc Surg 2013; 58:989-96.e1. [PMID: 23688629 DOI: 10.1016/j.jvs.2013.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 02/19/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Individuals with peripheral arterial disease (PAD) have a nearly two-fold increased risk of all-cause and cardiovascular disease mortality compared to those without PAD. This pilot study determined whether metabolomic profiling can accurately identify patients with PAD who are at increased risk of near-term mortality. METHODS We completed a case-control study using (1)H NMR metabolomic profiling of plasma from 20 decedents with PAD, without critical limb ischemia, who had blood drawn within 8 months prior to death (index blood draw) and within 10 to 28 months prior to death (preindex blood draw). Twenty-one PAD participants who survived more than 30 months after their index blood draw served as a control population. RESULTS Results showed distinct metabolomic patterns between preindex decedent, index decedent, and survivor samples. The major chemical signals contributing to the differential pattern (between survivors and decedents) arose from the fatty acyl chain protons of lipoproteins and the choline head group protons of phospholipids. Using the top 40 chemical signals for which the intensity was most distinct between survivor and preindex decedent samples, classification models predicted near-term all-cause death with overall accuracy of 78% (32/41), a sensitivity of 85% (17/20), and a specificity of 71% (15/21). When comparing survivor with index decedent samples, the overall classification accuracy was optimal at 83% (34/41) with a sensitivity of 80% (16/20) and a specificity of 86% (18/21), using as few as the top 10 to 20 chemical signals. CONCLUSIONS Our results suggest that metabolomic profiling of plasma may be useful for identifying PAD patients at increased risk for near-term death. Larger studies using more sensitive metabolomic techniques are needed to identify specific metabolic pathways associated with increased risk of near-term all-cause mortality among PAD patients.
Collapse
Affiliation(s)
- Chiang-Ching Huang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | | | | | | | | | | | | |
Collapse
|
50
|
Kim JY, Kim H, Jung BJ, Kim NR, Park JE, Chung DK. Lipoteichoic acid isolated from Lactobacillus plantarum suppresses LPS-mediated atherosclerotic plaque inflammation. Mol Cells 2013; 35:115-24. [PMID: 23456333 PMCID: PMC3887899 DOI: 10.1007/s10059-013-2190-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022] Open
Abstract
Chronic inflammation plays an important role in atherogenesis. Experimental studies have demonstrated the accumulation of monocytes/macrophages in atherosclerotic plaques caused by inflammation. Here, we report the inhibitory effects of lipoteichoic acid (LTA) from Lactobacillus plantarum (pLTA) on atherosclerotic inflammation. pLTA inhibited the production of proinflammatory cytokines and nitric oxide in lipopolysaccharide (LPS)-stimulated cells and alleviated THP-1 cell adhesion to HUVEC by down-regulation of adhesion molecules such as intracellular adhesion molecule-1 (ICAM-I), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. The inhibitory effect of pLTA was mediated by inhibition of NF-κB and activation of MAP kinases. Inhibition of monocyte/macrophage infiltration to the arterial lumen was shown in pLTA-injected ApoE(-/-) mice, which was concurrent with inhibition of MMP-9 and preservation of CD31 production. The antiinflammatory effect mediated by pLTA decreased expression of atherosclerotic markers such as COX-2, Bax, and HSP27 and also cell surface receptors such as TLR4 and CCR7. Together, these results underscore the role of pLTA in suppressing atherosclerotic plaque inflammation and will help in identifying targets with therapeutic potential against pathogen-mediated atherogenesis.
Collapse
Affiliation(s)
- Joo Yun Kim
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 449-701,
Korea
| | - Hangeun Kim
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104,
USA
| | - Bong Jun Jung
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 449-701,
Korea
| | - Na-Ra Kim
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 449-701,
Korea
| | - Jeong Euy Park
- Division of Cardiology, Samsung Medical Center and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul 135-710,
Korea
| | - Dae Kyun Chung
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 449-701,
Korea
- Skin Biotechnology Center, Kyung Hee University, Yongin 449-701,
Korea
| |
Collapse
|