1
|
Klinaku FT, Comi L, Giglione C, Magni P. An integrated view of the pathophysiological crosstalk between adipose tissue, bone and cardiovascular system in men and women. J Endocrinol Invest 2025; 48:1061-1074. [PMID: 39692990 DOI: 10.1007/s40618-024-02516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Obesity, bone-related and cardiovascular diseases (CVD) are among the leading global health concerns. Growing evidence suggests that these conditions share common pathophysiological pathways and disease outcomes. PATHOGENETIC INTERACTIONS OF OBESITY, CVD AND BONE-RELATED DISEASES: Obesity is a well-established risk factor for atherosclerotic CVD (ASCVD), as dysfunctional ectopic adipose tissue may produce endocrine/paracrine hormones modulating metabolic processes and inflammation, predisposing to ASCVD. Although obesityhas been considered a protective factor for bone loss, it may lead to osteoporosis development and increased fracture risk at specific sites. Biological and epidemiological evidence has demonstrated the existence of a dynamic relationship between ASCVD and osteoporosis, since atherosclerotic calcification and bone mineralization share common pathophysiological mechanisms. Therefore, addressing ASCVD, obesity, and bone-related diseases requires multiple-level approach, which involve accurate screening, lifestyle modifications and pharmacological interventions.The current evidence about the pathophysiological relationships between obesity, bone-related diseases and ASCVD is discussed herein, highlighting common risk factors, proposed biomolecular mechanisms, clinical outcomes, lifestyle changes and pharmacological treatments. CONCLUSIONS As populations become increasingly older and obese, understanding the correlation within this triad highlights an unmet clinical need. Applying this knowledge would help to reduce both societal and individual costs, while supporting the development of novel preventive, diagnostic and therapeutic strategies to reduce morbidity and disability associated with cardio-metabolic and bone-related diseases.
Collapse
Affiliation(s)
- Fationa Tolaj Klinaku
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Laura Comi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Claudia Giglione
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, 20133, Milan, Italy.
- IRCCS MultiMedica, 20099, Sesto San Giovanni (Milan), Italy.
| |
Collapse
|
2
|
Arias-Mutis ÓJ, Calvo CJ, Bizy A, Ortiz-Guzmán JE, Such-Miquel L, Such L, Alberola A, Zhao J, Chorro FJ, Zarzoso M. Ventricular arrhythmogenic remodelling in diet-induced metabolic syndrome driven by right-to-left regional differences in action potential duration and dominant frequency gradients. J Physiol 2025; 603:2979-3000. [PMID: 40320918 DOI: 10.1113/jp286516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/26/2025] [Indexed: 06/02/2025] Open
Abstract
Metabolic syndrome (MetS) has been associated with an increased prevalence of cardiac arrhythmias and sudden cardiac death caused by ventricular fibrillation (VF), but the exact underlying mechanisms are not known. Our aim here was to study the effects that diet-induced MetS produces on ventricular remodelling and its potential electrophysiological arrhythmogenic mechanisms. Thirty-five male NZW rabbits were assigned to a control (n = 16) or MetS group (n = 19), fed for 28 weeks with a high-fat and high-sucrose diet. Echocardiography and electrocardiography were performed before diet and at weeks 14 and 28. Hearts were isolated and perfused in a Langendorff system and epicardial optical mapping was performed using two EMCCD cameras focused on the left (LV) and right (RV) ventricles. mRNA expression levels for ion channel proteins were examined by quantitative RT-PCR. A mixed-model ANOVA and unpaired t test were used for statistical analysis. MetS animals showed LV hypertrophy and electrophysiological abnormalities (increased PQ, QRS, QTc and T wave). In isolated hearts, MetS animals had shorter optical APD90 (action potential duration at 90% repolarization), increased restitution slope and alternans, and faster frequency of activation during VF in the RV, whereas no difference was observed in the LV. The mRNA expression for KvLQT1 and KChIP2 increased in the RV. MetS produced LV hypertrophy, and altered atrioventricular and ventricular conduction and repolarization abnormalities. In isolated hearts, the physiological gradients of refractoriness and frequency of activation during VF were abolished in MetS animals, with fast activation rates in both ventricles, which could be explained, at least in part, by upregulation of KvLQT1 and KChIP2 in the RV. KEY POINTS: Metabolic syndrome (MetS) has been associated with ventricular arrhythmias and sudden cardiac death, but the exact underlying mechanisms are not known. Previous studies have addressed the effects that individual components of MetS exert, individually, upon electrical cardiac remodelling, but the results obtained in some cases prove inconclusive or contradictory. We investigated the effects of diet-induced MetS on ventricular remodelling and its potential electrophysiological arrhythmogenic mechanisms. We found that diet-induced MetS produced altered activation-repolarization abnormalities as well as fast-activation non-stable flattening of the spatial distribution of dominant frequencies driving ventricular fibrillation, which might be explained, at least in part, due to increased expression of potassium channels in the right ventricle.
Collapse
Affiliation(s)
- Óscar J Arias-Mutis
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiology, University of Valencia, Valencia, Spain
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Conrado J Calvo
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiology, University of Valencia, Valencia, Spain
- CSIC-UPV, Instrumentation for Molecular Imaging Technologies Research Institute (I3M), Universitat Politècnica de València, Valencia, Spain
| | - Alexandra Bizy
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Johan E Ortiz-Guzmán
- Faculty of Health Sciences, University of Applied and Environmental Sciences (U.D.C.A), Bogotá, Colombia
| | - Luis Such-Miquel
- Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Luis Such
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Antonio Alberola
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Francisco J Chorro
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- INCLIVA, Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Manuel Zarzoso
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- INCLIVA, Valencia, Spain
- Department of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
3
|
Ogurtsova E, Arefieva T, Filatova A, Radyukhina N, Ovchinnikov A. Cardiometabolic Phenotype in HFpEF: Insights from Murine Models. Biomedicines 2025; 13:744. [PMID: 40149720 PMCID: PMC11940576 DOI: 10.3390/biomedicines13030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a significant challenge in modern healthcare. It accounts for the majority of heart failure cases and their number worldwide is steadily increasing. With its high prevalence and substantial clinical impact, therapeutic strategies for HFpEF are still inadequate. This review focuses on the cardiometabolic phenotype of HFpEF which is characterised by such conditions as obesity, type 2 diabetes mellitus, and hypertension. Various murine models that mimic this phenotype are discussed. Each model's pathophysiological aspects, namely inflammation, oxidative stress, endothelial dysfunction, changes in cardiomyocyte protein function, and myocardial metabolism alterations are examined in detail. Understanding these models can provide insight into the mechanisms underlying HFpEF and aid in the development of effective therapeutic interventions.
Collapse
Affiliation(s)
- Ekaterina Ogurtsova
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (E.O.); (T.A.); (N.R.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Prospekt, 27/1, 117192 Moscow, Russia
| | - Tatiana Arefieva
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (E.O.); (T.A.); (N.R.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Prospekt, 27/1, 117192 Moscow, Russia
| | - Anastasiia Filatova
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (E.O.); (T.A.); (N.R.)
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
| | - Natalya Radyukhina
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (E.O.); (T.A.); (N.R.)
| | - Artem Ovchinnikov
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named After Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
- Department of Clinical Functional Diagnostics, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, 127473 Moscow, Russia
| |
Collapse
|
4
|
Omoto ACM, do Carmo JM, Mouton AJ, Wang Z, Li X, Spitz R, Hall JE, da Silva AA. Targeting the Brain Leptin-Melanocortin Pathway to Treat Heart Failure. Curr Hypertens Rep 2024; 27:2. [PMID: 39612121 PMCID: PMC11607000 DOI: 10.1007/s11906-024-01318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE OF THE REVIEW The role of leptin in regulating cardiac function is still controversial with conflicting results in clinical and preclinical studies. However, most previous studies have not considered leptin's powerful cardiac effects that are mediated via activation of central nervous system (CNS) leptin receptors (LepRs) which, in turn, elicit major improvements in cardiac metabolism. In this review, we focus mainly on the role of leptin in regulating cardiac function via its CNS LepRs and downstream signaling pathways, such as the brain melanocortin system. RECENT FINDINGS Studies from our laboratory showed that CNS LepR activation, without raising plasma leptin levels, has remarkable beneficial effects on cardiac metabolism and function that protect the heart during pathological conditions, including heart failure (HF) induced by myocardial infarction (MI). These cardioprotective effects of leptin appear to be mediated by stimulation of CNS proopiomelanocortin neurons and subsequent activation of melanocortin 4 receptors (MC4R) in the brain. Chronic activation of the brain leptin-melanocortin pathway improves cardiac function and metabolism following myocardial infarction. However, the mechanism underlying this brain-heart crosstalk remains unclear and may have important implications for the development of new therapies for MI and HF.
Collapse
Affiliation(s)
- Ana C M Omoto
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA.
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Alan J Mouton
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Zhen Wang
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Xuan Li
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Robert Spitz
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - John E Hall
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, USA
| |
Collapse
|
5
|
Rubio B, Pintado C, Mazuecos L, Benito M, Andrés A, Gallardo N. Central Actions of Leptin Induce an Atrophic Pattern and Improves Heart Function in Lean Normoleptinemic Rats via PPARβ/δ Activation. Biomolecules 2024; 14:1028. [PMID: 39199415 PMCID: PMC11352611 DOI: 10.3390/biom14081028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Leptin, acting centrally or peripherally, has complex effects on cardiac remodeling and heart function. We previously reported that central leptin exerts an anti-hypertrophic effect in the heart via cardiac PPARβ/δ activation. Here, we assessed the impact of central leptin administration and PPARβ/δ inhibition on cardiac function. Various cardiac properties, including QRS duration, R wave amplitude, heart rate (HR), ejection fraction (EF), end-diastolic left ventricular mass (EDLVM), end-diastolic volume (EDV), and cardiac output (CO) were analyzed. Central leptin infusion increased cardiac PPARβ/δ protein content and decreased HR, QRS duration, and R wave amplitude. These changes induced by central leptin suggested a decrease in the ventricular wall growth, which was confirmed by MRI. In fact, the EDLVM was reduced by central leptin while increased in rats co-treated with leptin and GSK0660, a selective antagonist of PPARβ/δ activity. In summary, central leptin plays a dual role in cardiac health, potentially leading to ventricular atrophy and improving heart function when PPARβ/δ signaling is intact. The protective effects of leptin are lost by PPARβ/δ inhibition, underscoring the importance of this pathway. These findings highlight the therapeutic potential of targeting leptin and PPARβ/δ pathways to combat cardiac alterations and heart failure, particularly in the context of obesity.
Collapse
Affiliation(s)
- Blanca Rubio
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (B.R.); (L.M.)
- Molecular Regulation of Heart Failure Research Group, National Cardiovascular Research Center Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Cristina Pintado
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain;
- DOE Research Group, Institute of Biomedicine, University of Castilla-La Mancha (IB-UCLM), 13071 Ciudad Real, Spain
| | - Lorena Mazuecos
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (B.R.); (L.M.)
- DOE Research Group, Institute of Biomedicine, University of Castilla-La Mancha (IB-UCLM), 13071 Ciudad Real, Spain
| | - Marina Benito
- ICTS Bioimagen Complutense (BioImaC), Universidad Complutense de Madrid, P°. de Juan XXIII 1, 28040 Madrid, Spain;
| | - Antonio Andrés
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (B.R.); (L.M.)
- DOE Research Group, Institute of Biomedicine, University of Castilla-La Mancha (IB-UCLM), 13071 Ciudad Real, Spain
| | - Nilda Gallardo
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain; (B.R.); (L.M.)
- DOE Research Group, Institute of Biomedicine, University of Castilla-La Mancha (IB-UCLM), 13071 Ciudad Real, Spain
| |
Collapse
|
6
|
Wang J, Liu S, Sun L, Kong Z, Chai J, Wen J, Tian X, Chen N, Xu C. Association of attenuated leptin signaling pathways with impaired cardiac function under prolonged high-altitude hypoxia. Sci Rep 2024; 14:10206. [PMID: 38702334 PMCID: PMC11068766 DOI: 10.1038/s41598-024-59559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
Cardiovascular function and adipose metabolism were markedly influenced under high altitudes. However, the interplay between adipokines and heart under hypoxia remains to be elucidated. We aim to explore alterations of adipokines and underlying mechanisms in regulating cardiac function under high altitudes. We investigated the cardiopulmonary function and five adipokines in Antarctic expeditioners at Kunlun Station (4,087 m) for 20 days and established rats exposed to hypobaric hypoxia (5,000 m), simulating Kunlun Station. Antarctic expeditioners exhibited elevated heart rate, blood pressure, systemic vascular resistance, and decreased cardiac pumping function. Plasma creatine phosphokinase-MB (CK-MB) and platelet-endothelial cell adhesion molecule-1 (sPecam-1) increased, and leptin, resistin, and lipocalin-2 decreased. Plasma leptin significantly correlated with altered cardiac function indicators. Additionally, hypoxic rats manifested impaired left ventricular systolic and diastolic function, elevated plasma CK-MB and sPecam-1, and decreased plasma leptin. Chronic hypoxia for 14 days led to increased myocyte hypertrophy, fibrosis, apoptosis, and mitochondrial dysfunction, coupled with reduced protein levels of leptin signaling pathways in myocardial tissues. Cardiac transcriptome analysis revealed leptin was associated with downregulated genes involved in rhythm, Na+/K+ transport, and cell skeleton. In conclusion, chronic hypoxia significantly reduced leptin signaling pathways in cardiac tissues along with significant pathological changes, thus highlighting the pivotal role of leptin in regulation of cardiac function under high altitudes.
Collapse
Affiliation(s)
- Jianan Wang
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Shiying Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Lihong Sun
- Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Zhanping Kong
- Qinghai Provincial People's Hospital, Xining, 810000, Qinghai, China
| | - Jiamin Chai
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jigang Wen
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xuan Tian
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Nan Chen
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Chengli Xu
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
7
|
Jalil JE, Gabrielli L, Ocaranza MP, MacNab P, Fernández R, Grassi B, Jofré P, Verdejo H, Acevedo M, Cordova S, Sanhueza L, Greig D. New Mechanisms to Prevent Heart Failure with Preserved Ejection Fraction Using Glucagon-like Peptide-1 Receptor Agonism (GLP-1 RA) in Metabolic Syndrome and in Type 2 Diabetes: A Review. Int J Mol Sci 2024; 25:4407. [PMID: 38673991 PMCID: PMC11049921 DOI: 10.3390/ijms25084407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
This review examines the impact of obesity on the pathophysiology of heart failure with preserved ejection fraction (HFpEF) and focuses on novel mechanisms for HFpEF prevention using a glucagon-like peptide-1 receptor agonism (GLP-1 RA). Obesity can lead to HFpEF through various mechanisms, including low-grade systemic inflammation, adipocyte dysfunction, accumulation of visceral adipose tissue, and increased pericardial/epicardial adipose tissue (contributing to an increase in myocardial fat content and interstitial fibrosis). Glucagon-like peptide 1 (GLP-1) is an incretin hormone that is released from the enteroendocrine L-cells in the gut. GLP-1 reduces blood glucose levels by stimulating insulin synthesis, suppressing islet α-cell function, and promoting the proliferation and differentiation of β-cells. GLP-1 regulates gastric emptying and appetite, and GLP-1 RA is currently indicated for treating type 2 diabetes (T2D), obesity, and metabolic syndrome (MS). Recent evidence indicates that GLP-1 RA may play a significant role in preventing HFpEF in patients with obesity, MS, or obese T2D. This effect may be due to activating cardioprotective mechanisms (the endogenous counter-regulatory renin angiotensin system and the AMPK/mTOR pathway) and by inhibiting deleterious remodeling mechanisms (the PKA/RhoA/ROCK pathway, aldosterone levels, and microinflammation). However, there is still a need for further research to validate the impact of these mechanisms on humans.
Collapse
Affiliation(s)
- Jorge E. Jalil
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Luigi Gabrielli
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - María Paz Ocaranza
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Paul MacNab
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Rodrigo Fernández
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Bruno Grassi
- Pontificia Universidad Católica de Chile, School of Medicine, Department of Nutrition and Diabetes, Santiago 8330055, Chile; (B.G.); (P.J.)
| | - Paulina Jofré
- Pontificia Universidad Católica de Chile, School of Medicine, Department of Nutrition and Diabetes, Santiago 8330055, Chile; (B.G.); (P.J.)
| | - Hugo Verdejo
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Monica Acevedo
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Samuel Cordova
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Luis Sanhueza
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| | - Douglas Greig
- Pontificia Universidad Católica de Chile, School of Medicine, Division of Cardiovascular Diseases, Santiago 8330055, Chile; (L.G.); (P.M.); (R.F.); (H.V.); (M.A.); (S.C.); (L.S.); (D.G.)
| |
Collapse
|
8
|
Sun Q, Güven B, Wagg CS, Almeida de Oliveira A, Silver H, Zhang L, Chen B, Wei K, Ketema EB, Karwi QG, Persad KL, Vu J, Wang F, Dyck JRB, Oudit GY, Lopaschuk GD. Mitochondrial fatty acid oxidation is the major source of cardiac adenosine triphosphate production in heart failure with preserved ejection fraction. Cardiovasc Res 2024; 120:360-371. [PMID: 38193548 DOI: 10.1093/cvr/cvae006] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is a prevalent disease worldwide. While it is well established that alterations of cardiac energy metabolism contribute to cardiovascular pathology, the precise source of fuel used by the heart in HFpEF remains unclear. The objective of this study was to define the energy metabolic profile of the heart in HFpEF. METHODS AND RESULTS Eight-week-old C57BL/6 male mice were subjected to a '2-Hit' HFpEF protocol [60% high-fat diet (HFD) + 0.5 g/L of Nω-nitro-L-arginine methyl ester]. Echocardiography and pressure-volume loop analysis were used for assessing cardiac function and cardiac haemodynamics, respectively. Isolated working hearts were perfused with radiolabelled energy substrates to directly measure rates of fatty acid oxidation, glucose oxidation, ketone oxidation, and glycolysis. HFpEF mice exhibited increased body weight, glucose intolerance, elevated blood pressure, diastolic dysfunction, and cardiac hypertrophy. In HFpEF hearts, insulin stimulation of glucose oxidation was significantly suppressed. This was paralleled by an increase in fatty acid oxidation rates, while cardiac ketone oxidation and glycolysis rates were comparable with healthy control hearts. The balance between glucose and fatty acid oxidation contributing to overall adenosine triphosphate (ATP) production was disrupted, where HFpEF hearts were more reliant on fatty acid as the major source of fuel for ATP production, compensating for the decrease of ATP originating from glucose oxidation. Additionally, phosphorylated pyruvate dehydrogenase levels decreased in both HFpEF mice and human patient's heart samples. CONCLUSION In HFpEF, fatty acid oxidation dominates as the major source of cardiac ATP production at the expense of insulin-stimulated glucose oxidation.
Collapse
Affiliation(s)
- Qiuyu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Berna Güven
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey
| | - Cory S Wagg
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Amanda Almeida de Oliveira
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Heidi Silver
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Liyan Zhang
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Brandon Chen
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Kaleigh Wei
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Canada
| | - Kaya L Persad
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Jennie Vu
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Faqi Wang
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Gavin Y Oudit
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
9
|
Karmazyn M, Gan XT. Molecular and Cellular Mechanisms Underlying the Cardiac Hypertrophic and Pro-Remodelling Effects of Leptin. Int J Mol Sci 2024; 25:1137. [PMID: 38256208 PMCID: PMC10816997 DOI: 10.3390/ijms25021137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Since its initial discovery in 1994, the adipokine leptin has received extensive interest as an important satiety factor and regulator of energy expenditure. Although produced primarily by white adipocytes, leptin can be synthesized by numerous tissues including those comprising the cardiovascular system. Cardiovascular function can thus be affected by locally produced leptin via an autocrine or paracrine manner but also by circulating leptin. Leptin exerts its effects by binding to and activating specific receptors, termed ObRs or LepRs, belonging to the Class I cytokine family of receptors of which six isoforms have been identified. Although all ObRs have identical intracellular domains, they differ substantially in length in terms of their extracellular domains, which determine their ability to activate cell signalling pathways. The most important of these receptors in terms of biological effects of leptin is the so-called long form (ObRb), which possesses the complete intracellular domain linked to full cell signalling processes. The heart has been shown to express ObRb as well as to produce leptin. Leptin exerts numerous cardiac effects including the development of hypertrophy likely through a number of cell signaling processes as well as mitochondrial dynamics, thus demonstrating substantial complex underlying mechanisms. Here, we discuss mechanisms that potentially mediate leptin-induced cardiac pathological hypertrophy, which may contribute to the development of heart failure.
Collapse
|
10
|
Jalink EA, Schonk AW, Boon RA, Juni RP. Non-coding RNAs in the pathophysiology of heart failure with preserved ejection fraction. Front Cardiovasc Med 2024; 10:1300375. [PMID: 38259314 PMCID: PMC10800550 DOI: 10.3389/fcvm.2023.1300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the largest unmet clinical need in cardiovascular medicine. Despite decades of research, the treatment option for HFpEF is still limited, indicating our ongoing incomplete understanding on the underlying molecular mechanisms. Non-coding RNAs, comprising of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are non-protein coding RNA transcripts, which are implicated in various cardiovascular diseases. However, their role in the pathogenesis of HFpEF is unknown. Here, we discuss the role of miRNAs, lncRNAs and circRNAs that are involved in the pathophysiology of HFpEF, namely microvascular dysfunction, inflammation, diastolic dysfunction and cardiac fibrosis. We interrogated clinical evidence and dissected the molecular mechanisms of the ncRNAs by looking at the relevant in vivo and in vitro models that mimic the co-morbidities in patients with HFpEF. Finally, we discuss the potential of ncRNAs as biomarkers and potential novel therapeutic targets for future HFpEF treatment.
Collapse
Affiliation(s)
- Elisabeth A. Jalink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Amber W. Schonk
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Reinier A. Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Frankfurt Rhein/Main, Frankfurt, Germany
| | - Rio P. Juni
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| |
Collapse
|
11
|
Cohen CD, De Blasio MJ, Farrugia GE, Dona MS, Hsu I, Prakoso D, Kiriazis H, Krstevski C, Nash DM, Li M, Gaynor TL, Deo M, Drummond GR, Ritchie RH, Pinto AR. Mapping the cellular and molecular landscape of cardiac non-myocytes in murine diabetic cardiomyopathy. iScience 2023; 26:107759. [PMID: 37736052 PMCID: PMC10509303 DOI: 10.1016/j.isci.2023.107759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Diabetes is associated with a significantly elevated risk of heart failure. However, despite extensive efforts to characterize the phenotype of the diabetic heart, the molecular and cellular protagonists that underpin cardiac pathological remodeling in diabetes remain unclear, with a notable paucity of data regarding the impact of diabetes on non-myocytes within the heart. Here we aimed to define key differences in cardiac non-myocytes between spontaneously type-2 diabetic (db/db) and healthy control (db/h) mouse hearts. Single-cell transcriptomic analysis revealed a concerted diabetes-induced cellular response contributing to cardiac remodeling. These included cell-specific activation of gene programs relating to fibroblast hyperplasia and cell migration, and dysregulation of pathways involving vascular homeostasis and protein folding. This work offers a new perspective for understanding the cellular mediators of diabetes-induced cardiac pathology, and pathways that may be targeted to address the cardiac complications associated with diabetes.
Collapse
Affiliation(s)
- Charles D. Cohen
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Miles J. De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Gabriella E. Farrugia
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Baker Department of Cardiovascular Research and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Malathi S.I. Dona
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Ian Hsu
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Darnel Prakoso
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Helen Kiriazis
- Preclinical Cardiology, Microsurgery and Imaging Platform, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Crisdion Krstevski
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - David M. Nash
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Mandy Li
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Taylah L. Gaynor
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Minh Deo
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Alexander R. Pinto
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Smart CD, Madhur MS. The immunology of heart failure with preserved ejection fraction. Clin Sci (Lond) 2023; 137:1225-1247. [PMID: 37606086 PMCID: PMC10959189 DOI: 10.1042/cs20230226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) now accounts for the majority of new heart failure diagnoses and continues to increase in prevalence in the United States. Importantly, HFpEF is a highly morbid, heterogeneous syndrome lacking effective therapies. Inflammation has emerged as a potential contributor to the pathogenesis of HFpEF. Many of the risk factors for HFpEF are also associated with chronic inflammation, such as obesity, hypertension, aging, and renal dysfunction. A large amount of preclinical evidence suggests that immune cells and their associated cytokines play important roles in mediating fibrosis, oxidative stress, metabolic derangements, and endothelial dysfunction, all potentially important processes in HFpEF. How inflammation contributes to HFpEF pathogenesis, however, remains poorly understood. Recently, a variety of preclinical models have emerged which may yield much needed insights into the causal relationships between risk factors and the development of HFpEF, including the role of specific immune cell subsets or inflammatory pathways. Here, we review evidence in animal models and humans implicating inflammation as a mediator of HFpEF and identify gaps in knowledge requiring further study. As the understanding between inflammation and HFpEF evolves, it is hoped that a better understanding of the mechanisms underlying immune cell activation in HFpEF can open up new therapeutic avenues.
Collapse
Affiliation(s)
- Charles Duncan Smart
- Department of Molecular Physiology and Biophysics,
Vanderbilt University School of Medicine, Nashville, TN, U.S.A
| | - Meena S. Madhur
- Department of Molecular Physiology and Biophysics,
Vanderbilt University School of Medicine, Nashville, TN, U.S.A
- Department of Medicine, Division of Cardiovascular
Medicine, Vanderbilt University Medical Center, Nashville, TN, U.S.A
- Department of Medicine, Division of Clinical Pharmacology,
Vanderbilt University Medical Center, Nashville, TN, U.S.A
- Vanderbilt Institute for Infection, Immunology, and
Inflammation, Nashville, TN, U.S.A
| |
Collapse
|
13
|
Wang B, Du M. Increasing adipocyte number and reducing adipocyte size: the role of retinoids in adipose tissue development and metabolism. Crit Rev Food Sci Nutr 2023; 64:10608-10625. [PMID: 37427553 PMCID: PMC10776826 DOI: 10.1080/10408398.2023.2227258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The rising prevalence of obesity is a grave public health threat. In response to excessive energy intake, adipocyte hypertrophy impairs cellular function and leads to metabolic dysfunctions while de novo adipogenesis leads to healthy adipose tissue expansion. Through burning fatty acids and glucose, the thermogenic activity of brown/beige adipocytes can effectively reduce the size of adipocytes. Recent studies show that retinoids, especially retinoic acid (RA), promote adipose vascular development which in turn increases the number of adipose progenitors surrounding the vascular vessels. RA also promotes preadipocyte commitment. In addition, RA promotes white adipocyte browning and stimulates the thermogenic activity of brown/beige adipocytes. Thus, vitamin A is a promising anti-obesity micronutrient.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
14
|
Vasamsetti SB, Natarajan N, Sadaf S, Florentin J, Dutta P. Regulation of cardiovascular health and disease by visceral adipose tissue-derived metabolic hormones. J Physiol 2023; 601:2099-2120. [PMID: 35661362 PMCID: PMC9722993 DOI: 10.1113/jp282728] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
Visceral adipose tissue (VAT) is a metabolic organ known to regulate fat mass, and glucose and nutrient homeostasis. VAT is an active endocrine gland that synthesizes and secretes numerous bioactive mediators called 'adipocytokines/adipokines' into systemic circulation. These adipocytokines act on organs of metabolic importance like the liver and skeletal muscle. Multiple preclinical and in vitro studies showed strong evidence of the roles of adipocytokines in the regulation of metabolic disorders like diabetes, obesity and insulin resistance. Adipocytokines, such as adiponectin and omentin, are anti-inflammatory and have been shown to prevent atherogenesis by increasing nitric oxide (NO) production by the endothelium, suppressing endothelium-derived inflammation and decreasing foam cell formation. By inhibiting differentiation of vascular smooth muscle cells (VSMC) into osteoblasts, adiponectin and omentin prevent vascular calcification. On the other hand, adipocytokines like leptin and resistin induce inflammation and endothelial dysfunction that leads to vasoconstriction. By promoting VSMC migration and proliferation, extracellular matrix degradation and inflammatory polarization of macrophages, leptin and resistin increase the risk of atherosclerotic plaque vulnerability and rupture. Additionally, the plasma concentrations of these adipocytokines alter in ageing, rendering older humans vulnerable to cardiovascular disease. The disturbances in the normal physiological concentrations of these adipocytokines secreted by VAT under pathological conditions impede the normal functions of various organs and affect cardiovascular health. These adipokines could be used for both diagnostic and therapeutic purposes in cardiovascular disease.
Collapse
Affiliation(s)
- Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Niranjana Natarajan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Samreen Sadaf
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Li X, Bi X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023; 13:615. [PMID: 37233656 PMCID: PMC10220550 DOI: 10.3390/metabo13050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Disrupted fatty acid metabolism is one of the most important metabolic features in heart failure. The heart obtains energy from fatty acids via oxidation. However, heart failure results in markedly decreased fatty acid oxidation and is accompanied by the accumulation of excess lipid moieties that lead to cardiac lipotoxicity. Herein, we summarized and discussed the current understanding of the integrated regulation of fatty acid metabolism (including fatty acid uptake, lipogenesis, lipolysis, and fatty acid oxidation) in the pathogenesis of heart failure. The functions of many enzymes and regulatory factors in fatty acid homeostasis were characterized. We reviewed their contributions to the development of heart failure and highlighted potential targets that may serve as promising new therapeutic strategies.
Collapse
Affiliation(s)
| | - Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
16
|
Roy PK, Islam J, Lalhlenmawia H. Prospects of potential adipokines as therapeutic agents in obesity-linked atherogenic dyslipidemia and insulin resistance. Egypt Heart J 2023; 75:24. [PMID: 37014444 PMCID: PMC10073393 DOI: 10.1186/s43044-023-00352-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND In normal circumstances, AT secretes anti-inflammatory adipokines (AAKs) which regulates lipid metabolism, insulin sensitivity, vascular hemostasis, and angiogenesis. However, during obesity AT dysfunction occurs and leads to microvascular imbalance and secretes several pro-inflammatory adipokines (PAKs), thereby favoring atherogenic dyslipidemia and insulin resistance. Literature suggests decreased levels of circulating AAKs and increased levels of PAKs in obesity-linked disorders. Importantly, AAKs have been reported to play a vital role in obesity-linked metabolic disorders mainly insulin resistance, type-2 diabetes mellitus and coronary heart diseases. Interestingly, AAKs counteract the microvascular imbalance in AT and exert cardioprotection via several signaling pathways such as PI3-AKT/PKB pathway. Although literature reviews have presented a number of investigations detailing specific pathways involved in obesity-linked disorders, literature concerning AT dysfunction and AAKs remains sketchy. In view of the above, in the present contribution an effort has been made to provide an insight on the AT dysfunction and role of AAKs in modulating the obesity and obesity-linked atherogenesis and insulin resistance. MAIN BODY "Obesity-linked insulin resistance", "obesity-linked cardiometabolic disease", "anti-inflammatory adipokines", "pro-inflammatory adipokines", "adipose tissue dysfunction" and "obesity-linked microvascular dysfunction" are the keywords used for searching article. Google scholar, Google, Pubmed and Scopus were used as search engines for the articles. CONCLUSIONS This review offers an overview on the pathophysiology of obesity, management of obesity-linked disorders, and areas in need of attention such as novel therapeutic adipokines and their possible future perspectives as therapeutic agents.
Collapse
Affiliation(s)
- Probin Kr Roy
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences (RIPANS), Aizawl, Mizoram, 796017, India.
| | - Johirul Islam
- Coromandel International Limited, Hyderabad, Telangana, 500101, India
| | - Hauzel Lalhlenmawia
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences (RIPANS), Aizawl, Mizoram, 796017, India
| |
Collapse
|
17
|
Coimbra S, Catarino C, Sameiro Faria M, Nunes JPL, Rocha S, Valente MJ, Rocha-Pereira P, Bronze-da-Rocha E, Bettencourt N, Beco A, Marques SHDM, Oliveira JG, Madureira J, Fernandes JC, Miranda V, Belo L, Santos-Silva A. The Association of Leptin with Left Ventricular Hypertrophy in End-Stage Kidney Disease Patients on Dialysis. Biomedicines 2023; 11:biomedicines11041026. [PMID: 37189644 DOI: 10.3390/biomedicines11041026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Left ventricular hypertrophy (LVH) is a common cardiovascular complication in end-stage kidney disease (ESKD) patients. We aimed at studying the association of LVH with adiponectin and leptin levels, cardiovascular stress/injury biomarkers and nutritional status in these patients. We evaluated the LV mass (LVM) and calculated the LVM index (LVMI) in 196 ESKD patients on dialysis; the levels of hemoglobin, calcium, phosphorus, parathyroid hormone, albumin, adiponectin, leptin, N-terminal pro B-type natriuretic peptide (NT-proBNP) and growth differentiation factor (GDF)-15 were analyzed. ESKD patients with LVH (n = 131) presented higher NT-proBNP and GDF-15, lower hemoglobin and, after adjustment for gender, lower leptin levels compared with non-LVH patients. LVH females also showed lower leptin than the non-LVH female group. In the LVH group, LVMI presented a negative correlation with leptin and a positive correlation with NT-proBNP. Leptin emerged as an independent determinant of LVMI in both groups, and NT-proBNP in the LVH group. Low hemoglobin and leptin and increased calcium, NT-proBNP and dialysis vintage are associated with an increased risk of developing LVH. In ESKD patients on dialysis, LVH is associated with lower leptin values (especially in women), which are negatively correlated with LVMI, and with higher levels of biomarkers of myocardial stress/injury. Leptin and NT-proBNP appear as independent determinants of LVMI; dialysis vintage, hemoglobin, calcium, NT-proBNP and leptin emerged as predicting markers for LVH development. Further studies are needed to better understand the role of leptin in LVH in ESKD patients.
Collapse
|
18
|
Sanganalmath SK, Dubey S, Veeranki S, Narisetty K, Krishnamurthy P. The interplay of inflammation, exosomes and Ca 2+ dynamics in diabetic cardiomyopathy. Cardiovasc Diabetol 2023; 22:37. [PMID: 36804872 PMCID: PMC9942322 DOI: 10.1186/s12933-023-01755-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Diabetes mellitus is one of the prime risk factors for cardiovascular complications and is linked with high morbidity and mortality. Diabetic cardiomyopathy (DCM) often manifests as reduced cardiac contractility, myocardial fibrosis, diastolic dysfunction, and chronic heart failure. Inflammation, changes in calcium (Ca2+) handling and cardiomyocyte loss are often implicated in the development and progression of DCM. Although the existence of DCM was established nearly four decades ago, the exact mechanisms underlying this disease pathophysiology is constantly evolving. Furthermore, the complex pathophysiology of DCM is linked with exosomes, which has recently shown to facilitate intercellular (cell-to-cell) communication through biomolecules such as micro RNA (miRNA), proteins, enzymes, cell surface receptors, growth factors, cytokines, and lipids. Inflammatory response and Ca2+ signaling are interrelated and DCM has been known to adversely affect many of these signaling molecules either qualitatively and/or quantitatively. In this literature review, we have demonstrated that Ca2+ regulators are tightly controlled at different molecular and cellular levels during various biological processes in the heart. Inflammatory mediators, miRNA and exosomes are shown to interact with these regulators, however how these mediators are linked to Ca2+ handling during DCM pathogenesis remains elusive. Thus, further investigations are needed to understand the mechanisms to restore cardiac Ca2+ homeostasis and function, and to serve as potential therapeutic targets in the treatment of DCM.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nevada Las Vegas School of Medicine, Las Vegas, NV, 89102, USA.
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, University Blvd., Birmingham, AL, 35294, USA
| | - Sudhakar Veeranki
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | | | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, University Blvd., Birmingham, AL, 35294, USA
| |
Collapse
|
19
|
Lazar-Poloczek E, Romuk E, Jacheć W, Stanek W, Stanek B, Szołtysik M, Techmański T, Hasterok M, Wojciechowska C. Levels of TNF-α and Soluble TNF Receptors in Normal-Weight, Overweight and Obese Patients with Dilated Non-Ischemic Cardiomyopathy: Does Anti-TNF Therapy Still Have Potential to Be Used in Heart Failure Depending on BMI? Biomedicines 2022; 10:biomedicines10112959. [PMID: 36428528 PMCID: PMC9687112 DOI: 10.3390/biomedicines10112959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Background. We sought to measure the levels of adipokines, TNF-α and soluble receptors (sTNFr1, sTNFr2) in heart failure patients with reduced ejection fraction (HFrEF) due to non-ischemic cardiomyopathy (nDCM). Methods. A total of 123 patients with HFrEF due to nDCM were divided into three groups according to BMI: 34 (27.6%) normal weight, 56 (45.5%) overweight and 33 (26.8%) obese. A six-minute walk test, echocardiography and right heart catheterization were performed. Serum concentrations of adiponectin, leptin, NT-proBNP, blood hemoglobin, sodium, creatinine, ALAT, AspAT, bilirubin, CRP, lipids, TNF-α, sTNFr1 and sTNFr2 receptors were measured. Results. Obese patients had the lowest NT-proBNP concentrations, significantly higher leptin levels and higher leptin/adiponectin ratios. The concentration of sTNFr1 was higher in normal-weight patients. In all groups, TNF-α concentrations correlated positively with sTNFr1 (p < 0.001). Higher levels of sTNFr1 were associated with higher sTNFr2 (p < 0.001) and CRP (p < 0.001). Moreover, the concentration of sTNFr2 positively correlated with CRP (p < 0.05) and adiponectin (p < 0.001). Levels of TNF-α were not associated with elevated CRP. Conclusion: This study demonstrated that changes in the concentrations of TNF and its receptors differ between groups of patients with different BMI. These findings suggest that the effective use of anti-TNF therapy is dependent not only on BMI, but also on concentrations of TNF-α receptors and other laboratory parameters.
Collapse
Affiliation(s)
- Elżbieta Lazar-Poloczek
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland
- Correspondence:
| | - Ewa Romuk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-808 Zabrze, Poland
| | - Wojciech Jacheć
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland
| | - Wiktoria Stanek
- Student Research Team at the Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-800 Zabrze, Poland
| | - Bartosz Stanek
- Student Research Team at the Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-800 Zabrze, Poland
| | - Monika Szołtysik
- Student Research Team at the Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-800 Zabrze, Poland
| | - Tomasz Techmański
- Student Research Team at the Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-800 Zabrze, Poland
| | - Maja Hasterok
- Student Research Team at the Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-800 Zabrze, Poland
| | - Celina Wojciechowska
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland
| |
Collapse
|
20
|
Omoto ACM, do Carmo JM, Nelson B, Aitken N, Dai X, Moak S, Flynn E, Wang Z, Mouton AJ, Li X, Hall JE, da Silva AA. Central Nervous System Actions of Leptin Improve Cardiac Function After Ischemia–Reperfusion: Roles of Sympathetic Innervation and Sex Differences. J Am Heart Assoc 2022; 11:e027081. [DOI: 10.1161/jaha.122.027081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Therapeutic strategies for preventing paradoxical reperfusion injury after myocardial ischemia are limited. We tested whether central nervous system actions of leptin induce important protective effects on cardiac function and metabolism after myocardial ischemia/reperfusion (I/R) injury, the role of cardiac sympathetic innervation in mediating these effects, and whether there are major sex differences in the cardioprotective effects of chronic central nervous system leptin infusion.
Methods and Results
Myocardial I/R was induced by temporary ligation of the left descending coronary artery in male and female Wistar rats instrumented with intracerebroventricular cannula in the lateral ventricle. Vehicle or leptin (0.62 μg/h) infusion was started immediately after reperfusion and continued for 28 days using osmotic minipumps connected to the intracerebroventricular cannula. Cardiac function was assessed by echocardiography, ventricular pressures, and exercise performance. Intracerebroventricular leptin treatment markedly attenuated cardiac dysfunction post‐I/R as evidenced by improved ejection fraction (56.7±1.9 versus 22.6%±1.1%), maximal rate of left ventricle rise (11 680±2122 versus 5022±441 mm Hg) and exercise performance (−4.2±7.9 versus −68.2±3.8 Δ%) compared with vehicle‐treated rats. Intracerebroventricular leptin infusion reduced infarct size in females, but not males, when compared with ad‐lib fed or pair‐fed saline‐treated rats. Intracerebroventricular leptin treatment also increased cardiac NAD
+
/NADH content (≈10‐fold) and improved mitochondrial function when compared with vehicle treatment. Cervical ganglia denervation did not attenuate the cardiac protective effects of leptin after I/R injury.
Conclusions
These data indicate that leptin, via its central nervous system actions, markedly improves overall heart function and mitochondrial metabolism after I/R injury regardless of sex, effects that are largely independent of cardiac sympathetic innervation.
Collapse
Affiliation(s)
- Ana C. M. Omoto
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Benjamin Nelson
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Nikaela Aitken
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Xuemei Dai
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Sydney Moak
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Elizabeth Flynn
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Zhen Wang
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Alan J. Mouton
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Xuan Li
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - John E. Hall
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center Jackson MS
| |
Collapse
|
21
|
Abstract
It is important to understand how different human organs coordinate and interact with each other. Since obesity and cardiac disease frequently coincide, the crosstalk between adipose tissues and heart has drawn attention. We appreciate that specific peptides/proteins, lipids, nucleic acids, and even organelles shuttle between the adipose tissues and heart. These bioactive components can profoundly affect the metabolism of cells in distal organs, including heart. Importantly, this process can be dysregulated under pathophysiological conditions. This also opens the door to efforts targeting these mediators as potential therapeutic strategies to treat patients who manifest diabetes and cardiovascular disease. Here, we summarize the recent progress toward a better understanding of how the adipose tissues and heart interact with each other.
Collapse
|
22
|
Khokhlova A, Myachina T, Butova X, Kochurova A, Polyakova E, Galagudza M, Solovyova O, Kopylova G, Shchepkin D. The Acute Effects of Leptin on the Contractility of Isolated Rat Atrial and Ventricular Cardiomyocytes. Int J Mol Sci 2022; 23:ijms23158356. [PMID: 35955485 PMCID: PMC9369024 DOI: 10.3390/ijms23158356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Leptin is a pleiotropic peptide playing an important role in the regulation of cardiac functions. It is not clear whether leptin directly modulates the mechanical function of atrial cardiomyocytes. We compared the acute effects of leptin on the characteristics of mechanically non-loaded sarcomere shortening and cytosolic Ca2+ concentration ([Ca2+]i) transients in single rat atrial and ventricular cardiomyocytes. We also studied the functional properties of myosin obtained from cardiomyocytes using an in vitro motility assay and assessed the sarcomeric protein phosphorylation. Single cardiomyocytes were exposed to 5, 20, and 60 nM leptin for 60 min. In ventricular cardiomyocytes, 60 nM leptin depressed sarcomere shortening amplitude and decreased the rates of shortening and relaxation. These effects were accompanied by a decrease in the phosphorylation of cMyBP-C, an increase in Tpm phosphorylation, and a slowdown of the sliding velocity of thin filaments over myosin in the in vitro motility assay. In contrast, in atrial cardiomyocytes, the phosphorylation of cMyBP-C and TnI increased, and the characteristics of sarcomere shortening did not change. Leptin had no effect on the characteristics of [Ca2+]i transients in ventricular cardiomyocytes, while 5 nM leptin prolonged [Ca2+]i transients in atrial cardiomyocytes. Thus, leptin-induced changes in contractility of ventricular cardiomyocytes may be attributed to the direct effects of leptin on cross-bridge kinetics and sarcomeric protein properties rather than changes in [Ca2+]i. We also suggest that the observed differences between atrial and ventricular cardiomyocytes may be associated with the peculiarities of the expression of leptin receptors, as well as signaling pathways in the atrial and ventricular myocardium.
Collapse
Affiliation(s)
- Anastasia Khokhlova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
- Correspondence:
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| | - Xenia Butova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| | - Anastasia Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| | - Ekaterina Polyakova
- Almazov National Medical Research Centre, Institute of Experimental Medicine, Akkuratova Str. 2, 197341 Saint-Petersburg, Russia; (E.P.); (M.G.)
| | - Michael Galagudza
- Almazov National Medical Research Centre, Institute of Experimental Medicine, Akkuratova Str. 2, 197341 Saint-Petersburg, Russia; (E.P.); (M.G.)
| | - Olga Solovyova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| | - Galina Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| | - Daniil Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia; (T.M.); (X.B.); (A.K.); (O.S.); (G.K.); (D.S.)
| |
Collapse
|
23
|
García-Vega D, González-Juanatey JR, Eiras S. Diabesity in Elderly Cardiovascular Disease Patients: Mechanisms and Regulators. Int J Mol Sci 2022; 23:7886. [PMID: 35887234 PMCID: PMC9318065 DOI: 10.3390/ijms23147886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world. In 2019, 550 million people were suffering from CVD and 18 million of them died as a result. Most of them had associated risk factors such as high fasting glucose, which caused 134 million deaths, and obesity, which accounted for 5.02 million deaths. Diabesity, a combination of type 2 diabetes and obesity, contributes to cardiac, metabolic, inflammation and neurohumoral changes that determine cardiac dysfunction (diabesity-related cardiomyopathy). Epicardial adipose tissue (EAT) is distributed around the myocardium, promoting myocardial inflammation and fibrosis, and is associated with an increased risk of heart failure, particularly with preserved systolic function, atrial fibrillation and coronary atherosclerosis. In fact, several hypoglycaemic drugs have demonstrated a volume reduction of EAT and effects on its metabolic and inflammation profile. However, it is necessary to improve knowledge of the diabesity pathophysiologic mechanisms involved in the development and progression of cardiovascular diseases for comprehensive patient management including drugs to optimize glucometabolic control. This review presents the mechanisms of diabesity associated with cardiovascular disease and their therapeutic implications.
Collapse
Affiliation(s)
- David García-Vega
- Cardiology and Intensive Cardiac Care Department, University Hospital, 15706 Santiago de Compostela, Spain;
- Cardiology Group, Health Research Institute, 15706 Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cardiology and Intensive Cardiac Care Department, University Hospital, 15706 Santiago de Compostela, Spain;
- Cardiology Group, Health Research Institute, 15706 Santiago de Compostela, Spain
- CIBERCV, 28029 Madrid, Spain
| | - Sonia Eiras
- CIBERCV, 28029 Madrid, Spain
- Translational Cardiology Group (Laboratory 6), Health Research Institute, 15706 Santiago de Compostela, Spain
| |
Collapse
|
24
|
Bayes-Genis A, Cediel G, Domingo M, Codina P, Santiago E, Lupón J. Biomarkers in Heart Failure with Preserved Ejection Fraction. Card Fail Rev 2022; 8:e20. [PMID: 35815256 PMCID: PMC9253965 DOI: 10.15420/cfr.2021.37] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/02/2022] [Indexed: 12/23/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous disorder developing from multiple aetiologies with overlapping pathophysiological mechanisms. HFpEF diagnosis may be challenging, as neither cardiac imaging nor physical examination are sensitive in this situation. Here, we review biomarkers of HFpEF, of which the best supported are related to myocardial stretch and injury, including natriuretic peptides and cardiac troponins. An overview of biomarkers of inflammation, extracellular matrix derangements and fibrosis, senescence, vascular dysfunction, anaemia/iron deficiency and obesity is also provided. Finally, novel biomarkers from -omics technologies, including plasma metabolites and circulating microRNAs, are outlined briefly. A cardiac-centred approach to HFpEF diagnosis using natriuretic peptides seems reasonable at present in clinical practice. A holistic approach including biomarkers that provide information on the non-cardiac components of the HFpEF syndrome may enrich our understanding of the disease and may be useful in classifying HFpEF phenotypes or endotypes that may guide patient selection in HFpEF trials.
Collapse
Affiliation(s)
- Antoni Bayes-Genis
- Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Germán Cediel
- Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Domingo
- Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Pau Codina
- Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Evelyn Santiago
- Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Lupón
- Heart Institute, University Hospital Germans Trias i Pujol, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Yanucil C, Kentrup D, Li X, Grabner A, Schramm K, Martinez EC, Li J, Campos I, Czaya B, Heitman K, Westbrook D, Wende AR, Sloan A, Roche JM, Fornoni A, Kapiloff MS, Faul C. FGF21-FGFR4 signaling in cardiac myocytes promotes concentric cardiac hypertrophy in mouse models of diabetes. Sci Rep 2022; 12:7326. [PMID: 35513431 PMCID: PMC9072546 DOI: 10.1038/s41598-022-11033-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor (FGF) 21, a hormone that increases insulin sensitivity, has shown promise as a therapeutic agent to improve metabolic dysregulation. Here we report that FGF21 directly targets cardiac myocytes by binding β-klotho and FGF receptor (FGFR) 4. In combination with high glucose, FGF21 induces cardiac myocyte growth in width mediated by extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. While short-term FGF21 elevation can be cardio-protective, we find that in type 2 diabetes (T2D) in mice, where serum FGF21 levels are elevated, FGFR4 activation induces concentric cardiac hypertrophy. As T2D patients are at risk for heart failure with preserved ejection fraction (HFpEF), we propose that induction of concentric hypertrophy by elevated FGF21-FGFR4 signaling may constitute a novel mechanism promoting T2D-associated HFpEF such that FGFR4 blockade might serve as a cardio-protective therapy in T2D. In addition, potential adverse cardiac effects of FGF21 mimetics currently in clinical trials should be investigated.
Collapse
Affiliation(s)
- Christopher Yanucil
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Dominik Kentrup
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Xueyi Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, 1651 Page Mill Road, Mail Code 5356, Palo Alto, CA, USA
| | - Alexander Grabner
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Karla Schramm
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Eliana C Martinez
- Department of Pediatrics and Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, FL, Miami, USA
| | - Jinliang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, 1651 Page Mill Road, Mail Code 5356, Palo Alto, CA, USA
- Department of Pediatrics and Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, FL, Miami, USA
| | - Isaac Campos
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kylie Heitman
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - David Westbrook
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Adam R Wende
- Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexis Sloan
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Johanna M Roche
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alessia Fornoni
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Michael S Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, 1651 Page Mill Road, Mail Code 5356, Palo Alto, CA, USA.
- Department of Pediatrics and Interdisciplinary Stem Cell Institute, Leonard M. Miller School of Medicine, University of Miami, FL, Miami, USA.
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Tinsley Harrison Tower 611L, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
26
|
da Silva FA, Freire LS, da Rosa Lima T, Santos SF, de França Lemes SA, Gai BM, Colodel EM, Avila ETP, Damazo AS, Pereira MP, Kawashita NH. Introduction of the high-fat and very high-fat diets associated with fructose drink in critical development periods causes cardiovascular damage in rats in the beginning of adult life. Nutrition 2022; 101:111689. [DOI: 10.1016/j.nut.2022.111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
|
27
|
Dhore-Patil A, Thannoun T, Samson R, Le Jemtel TH. Diabetes Mellitus and Heart Failure With Preserved Ejection Fraction: Role of Obesity. Front Physiol 2022; 12:785879. [PMID: 35242044 PMCID: PMC8886215 DOI: 10.3389/fphys.2021.785879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Heart failure with preserved ejection fraction is a growing epidemic and accounts for half of all patients with heart failure. Increasing prevalence, morbidity, and clinical inertia have spurred a rethinking of the pathophysiology of heart failure with preserved ejection fraction. Unlike heart failure with reduced ejection fraction, heart failure with preserved ejection fraction has distinct clinical phenotypes. The obese-diabetic phenotype is the most often encountered phenotype in clinical practice and shares the greatest burden of morbidity and mortality. Left ventricular remodeling plays a major role in its pathophysiology. Understanding the interplay of obesity, diabetes mellitus, and inflammation in the pathophysiology of left ventricular remodeling may help in the discovery of new therapeutic targets to improve clinical outcomes in heart failure with preserved ejection fraction. Anti-diabetic agents like glucagon-like-peptide 1 analogs and sodium-glucose co-transporter 2 are promising therapeutic modalities for the obese-diabetic phenotype of heart failure with preserved ejection fraction and aggressive weight loss via lifestyle or bariatric surgery is still key to reverse adverse left ventricular remodeling. This review focuses on the obese-diabetic phenotype of heart failure with preserved ejection fraction highlighting the interaction between obesity, diabetes, and coronary microvascular dysfunction in the development and progression of left ventricular remodeling. Recent therapeutic advances are reviewed.
Collapse
Affiliation(s)
- Aneesh Dhore-Patil
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| | - Tariq Thannoun
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| | - Rohan Samson
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| | - Thierry H Le Jemtel
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Tulane University Heart and Vascular Institute, New Orleans, LA, United States
| |
Collapse
|
28
|
Rocca A, van Heeswijk RB, Richiardi J, Meyer P, Hullin R. The Cardiomyocyte in Heart Failure with Preserved Ejection Fraction-Victim of Its Environment? Cells 2022; 11:867. [PMID: 35269489 PMCID: PMC8909081 DOI: 10.3390/cells11050867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 12/07/2022] Open
Abstract
Heart failure (HF) with preserved left ventricular ejection fraction (HFpEF) is becoming the predominant form of HF. However, medical therapy that improves cardiovascular outcome in HF patients with almost normal and normal systolic left ventricular function, but diastolic dysfunction is missing. The cause of this unmet need is incomplete understanding of HFpEF pathophysiology, the heterogeneity of the patient population, and poor matching of therapeutic mechanisms and primary pathophysiological processes. Recently, animal models improved understanding of the pathophysiological role of highly prevalent and often concomitantly presenting comorbidity in HFpEF patients. Evidence from these animal models provide first insight into cellular pathophysiology not considered so far in HFpEF disease, promising that improved understanding may provide new therapeutical targets. This review merges observation from animal models and human HFpEF disease with the intention to converge cardiomyocytes pathophysiological aspects and clinical knowledge.
Collapse
Affiliation(s)
- Angela Rocca
- Department of Cardiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Ruud B. van Heeswijk
- Department of Diagnostic and Interventional Radiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (R.B.v.H.); (J.R.)
| | - Jonas Richiardi
- Department of Diagnostic and Interventional Radiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (R.B.v.H.); (J.R.)
| | - Philippe Meyer
- Cardiology Service, Department of Medical Specialties, Faculty of Science, Geneva University Hospital, University of Geneva, 1205 Geneva, Switzerland;
| | - Roger Hullin
- Department of Cardiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
29
|
Kobak KA, Zarzycka W, Chiao YA. Age and Sex Differences in Heart Failure With Preserved Ejection Fraction. FRONTIERS IN AGING 2022; 3:811436. [PMID: 35821846 PMCID: PMC9261310 DOI: 10.3389/fragi.2022.811436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 11/29/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multi-organ disorder that represents about 50% of total heart failure (HF) cases and is the most common form of HF in the elderly. Because of its increasing prevalence caused by the aging population, high mortality and morbidity, and very limited therapeutic options, HFpEF is considered as one of the greatest unmet medical needs in cardiovascular medicine. Despite its complex pathophysiology, numerous preclinical models have been established in rodents and in large animals to study HFpEF pathophysiology. Although age and sex differences are well described in HFpEF population, there are knowledge gaps in sex- and age-specific differences in established preclinical models. In this review, we summarize various strategies that have been used to develop HFpEF models and discuss the knowledge gaps in sex and age differences in HFpEF.
Collapse
|
30
|
Ramesh P, Yeo JL, Brady EM, McCann GP. Role of inflammation in diabetic cardiomyopathy. Ther Adv Endocrinol Metab 2022; 13:20420188221083530. [PMID: 35308180 PMCID: PMC8928358 DOI: 10.1177/20420188221083530] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
The prevalence of type 2 diabetes (T2D) has reached a pandemic scale. Systemic chronic inflammation dominates the diabetes pathophysiology and has been implicated as a causal factor for the development of vascular complications. Heart failure (HF) is regarded as the most common cardiovascular complication of T2D and the diabetic diagnosis is an independent risk factor for HF development. Key molecular mechanisms pivotal to the development of diabetic cardiomyopathy include the NF-κB pathway and renin-angiotensin-aldosterone system, in addition to advanced glycation end product accumulation and inflammatory interleukin overexpression. Chronic myocardial inflammation in T2D mediates structural and metabolic changes, including cardiomyocyte apoptosis, impaired calcium handling, myocardial hypertrophy and fibrosis, all of which contribute to the diabetic HF phenotype. Advanced cardiovascular magnetic resonance imaging (CMR) has emerged as a gold standard non-invasive tool to delineate myocardial structural and functional changes. This review explores the role of chronic inflammation in diabetic cardiomyopathy and the ability of CMR to identify inflammation-mediated myocardial sequelae, such as oedema and diffuse fibrosis.
Collapse
Affiliation(s)
- Pranav Ramesh
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK
| | | | - Emer M. Brady
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK
| | - Gerry P. McCann
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK
| |
Collapse
|
31
|
Li DK, Smith LE, Rookyard AW, Lingam SJ, Koay YC, McEwen HP, Twigg SM, Don AS, O'Sullivan JF, Cordwell SJ, White MY. Multi-omics of a pre-clinical model of diabetic cardiomyopathy reveals increased fatty acid supply impacts mitochondrial metabolic selectivity. J Mol Cell Cardiol 2021; 164:92-109. [PMID: 34826416 DOI: 10.1016/j.yjmcc.2021.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
The incidence of type 2 diabetes (T2D) is increasing globally, with long-term implications for human health and longevity. Heart disease is the leading cause of death in T2D patients, who display an elevated risk of an acute cardiovascular event and worse outcomes following such an insult. The underlying mechanisms that predispose the diabetic heart to this poor prognosis remain to be defined. This study developed a pre-clinical model (Rattus norvegicus) that complemented caloric excess from a high-fat diet (HFD) and pancreatic β-cell dysfunction from streptozotocin (STZ) to produce hyperglycaemia, peripheral insulin resistance, hyperlipidaemia and elevated fat mass to mimic the clinical features of T2D. Ex vivo cardiac function was assessed using Langendorff perfusion with systolic and diastolic contractile depression observed in T2D hearts. Cohorts representing untreated, individual HFD- or STZ-treatments and the combined HFD + STZ approach were used to generate ventricular samples (n = 9 per cohort) for sequential and integrated analysis of the proteome, lipidome and metabolome by liquid chromatography-tandem mass spectrometry. This study found that in T2D hearts, HFD treatment primed the metabolome, while STZ treatment was the major driver for changes in the proteome. Both treatments equally impacted the lipidome. Our data suggest that increases in β-oxidation and early TCA cycle intermediates promoted rerouting via 2-oxaloacetate to glutamate, γ-aminobutyric acid and glutathione. Furthermore, we suggest that the T2D heart activates networks to redistribute excess acetyl-CoA towards ketogenesis and incomplete β-oxidation through the formation of short-chain acylcarnitine species. Multi-omics provided a global and comprehensive molecular view of the diabetic heart, which distributes substrates and products from excess β-oxidation, reduces metabolic flexibility and impairs capacity to restore high energy reservoirs needed to respond to and prevent subsequent acute cardiovascular events.
Collapse
Affiliation(s)
- Desmond K Li
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia
| | - Lauren E Smith
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia
| | - Alexander W Rookyard
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Life and Environmental Sciences, Camperdown, The University of Sydney, Australia
| | - Shivanjali J Lingam
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia
| | - Yen C Koay
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; Sydney Medical School, The University of Sydney, Camperdown, Australia; Heart Research Institute, Newtown, Australia
| | - Holly P McEwen
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Stephen M Twigg
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; Sydney Medical School, The University of Sydney, Camperdown, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Anthony S Don
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia; Centenary Institute, The University of Sydney, Camperdown, Australia
| | - John F O'Sullivan
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; Sydney Medical School, The University of Sydney, Camperdown, Australia; Heart Research Institute, Newtown, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Stuart J Cordwell
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia; School of Life and Environmental Sciences, Camperdown, The University of Sydney, Australia; Sydney Mass Spectrometry, The University of Sydney, Camperdown, Australia
| | - Melanie Y White
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia; School of Medical Sciences, The University of Sydney, Camperdown, Australia.
| |
Collapse
|
32
|
Kamareddine L, Ghantous CM, Allouch S, Al-Ashmar SA, Anlar G, Kannan S, Djouhri L, Korashy HM, Agouni A, Zeidan A. Between Inflammation and Autophagy: The Role of Leptin-Adiponectin Axis in Cardiac Remodeling. J Inflamm Res 2021; 14:5349-5365. [PMID: 34703273 PMCID: PMC8528546 DOI: 10.2147/jir.s322231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiac remodeling is the process by which the heart adapts to stressful stimuli, such as hypertension and ischemia/reperfusion; it ultimately leads to heart failure upon long-term exposure. Autophagy, a cellular catabolic process that was originally considered as a mechanism of cell death in response to detrimental stimuli, is thought to be one of the main mechanisms that controls cardiac remodeling and induces heart failure. Dysregulation of the adipokines leptin and adiponectin, which plays essential roles in lipid and glucose metabolism, and in the pathophysiology of the neuroendocrine and cardiovascular systems, has been shown to affect the autophagic response in the heart and to contribute to accelerate cardiac remodeling. The obesity-associated protein leptin is a pro-inflammatory, tumor-promoting adipocytokine whose elevated levels in obesity are associated with acute cardiovascular events, and obesity-related hypertension. Adiponectin exerts anti-inflammatory and anti-tumor effects, and its reduced levels in obesity correlate with the pathogenesis of obesity-associated cardiovascular diseases. Leptin- and adiponectin-induced changes in autophagic flux have been linked to cardiac remodeling and heart failure. In this review, we describe the different molecular mechanisms of hyperleptinemia- and hypoadiponectinemia-mediated pathogenesis of cardiac remodeling and the involvement of autophagy in this process. A better understanding of the roles of leptin, adiponectin, and autophagy in cardiac functions and remodeling, and the exact signal transduction pathways by which they contribute to cardiac diseases may well lead to discovery of new therapeutic agents for the treatment of cardiovascular remodeling.
Collapse
Affiliation(s)
- Layla Kamareddine
- Department Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Crystal M Ghantous
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Keserwan, Lebanon
| | - Soumaya Allouch
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Sarah A Al-Ashmar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Gulsen Anlar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Surya Kannan
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Laiche Djouhri
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Hesham M Korashy
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Abdelali Agouni
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
33
|
Parker AM, Tate M, Prakoso D, Deo M, Willis AM, Nash DM, Donner DG, Crawford S, Kiriazis H, Granata C, Coughlan MT, De Blasio MJ, Ritchie RH. Characterisation of the Myocardial Mitochondria Structural and Functional Phenotype in a Murine Model of Diabetic Cardiomyopathy. Front Physiol 2021; 12:672252. [PMID: 34539423 PMCID: PMC8442993 DOI: 10.3389/fphys.2021.672252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
People affected by diabetes are at an increased risk of developing heart failure than their non-diabetic counterparts, attributed in part to a distinct cardiac pathology termed diabetic cardiomyopathy. Mitochondrial dysfunction and excess reactive oxygen species (ROS) have been implicated in a range of diabetic complications and are a common feature of the diabetic heart. In this study, we sought to characterise impairments in mitochondrial structure and function in a recently described experimental mouse model of diabetic cardiomyopathy. Diabetes was induced in 6-week-old male FVB/N mice by the combination of three consecutive-daily injections of low-dose streptozotocin (STZ, each 55 mg/kg i.p.) and high-fat diet (42% fat from lipids) for 26 weeks. At study end, diabetic mice exhibited elevated blood glucose levels and impaired glucose tolerance, together with increases in both body weight gain and fat mass, replicating several aspects of human type 2 diabetes. The myocardial phenotype of diabetic mice included increased myocardial fibrosis and left ventricular (LV) diastolic dysfunction. Elevated LV superoxide levels were also evident. Diabetic mice exhibited a spectrum of LV mitochondrial changes, including decreased mitochondria area, increased levels of mitochondrial complex-III and complex-V protein abundance, and reduced complex-II oxygen consumption. In conclusion, these data suggest that the low-dose STZ-high fat experimental model replicates some of the mitochondrial changes seen in diabetes, and as such, this model may be useful to study treatments that target the mitochondria in diabetes.
Collapse
Affiliation(s)
- Alex M Parker
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - Mitchel Tate
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Darnel Prakoso
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Andrew M Willis
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - David M Nash
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Daniel G Donner
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Simon Crawford
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Melbourne, VIC, Australia
| | - Helen Kiriazis
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Cesare Granata
- Department of Diabetes, Monash University, Melbourne, VIC, Australia.,Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | | | - Miles J De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Bermúdez V, Durán P, Rojas E, Díaz MP, Rivas J, Nava M, Chacín M, Cabrera de Bravo M, Carrasquero R, Ponce CC, Górriz JL, D´Marco L. The Sick Adipose Tissue: New Insights Into Defective Signaling and Crosstalk With the Myocardium. Front Endocrinol (Lausanne) 2021; 12:735070. [PMID: 34603210 PMCID: PMC8479191 DOI: 10.3389/fendo.2021.735070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue (AT) biology is linked to cardiovascular health since obesity is associated with cardiovascular disease (CVD) and positively correlated with excessive visceral fat accumulation. AT signaling to myocardial cells through soluble factors known as adipokines, cardiokines, branched-chain amino acids and small molecules like microRNAs, undoubtedly influence myocardial cells and AT function via the endocrine-paracrine mechanisms of action. Unfortunately, abnormal total and visceral adiposity can alter this harmonious signaling network, resulting in tissue hypoxia and monocyte/macrophage adipose infiltration occurring alongside expanded intra-abdominal and epicardial fat depots seen in the human obese phenotype. These processes promote an abnormal adipocyte proteomic reprogramming, whereby these cells become a source of abnormal signals, affecting vascular and myocardial tissues, leading to meta-inflammation, atrial fibrillation, coronary artery disease, heart hypertrophy, heart failure and myocardial infarction. This review first discusses the pathophysiology and consequences of adipose tissue expansion, particularly their association with meta-inflammation and microbiota dysbiosis. We also explore the precise mechanisms involved in metabolic reprogramming in AT that represent plausible causative factors for CVD. Finally, we clarify how lifestyle changes could promote improvement in myocardiocyte function in the context of changes in AT proteomics and a better gut microbiome profile to develop effective, non-pharmacologic approaches to CVD.
Collapse
Affiliation(s)
- Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Edward Rojas
- Cardiovascular Division, University Hospital, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José Rivas
- Department of Medicine, Cardiology Division, University of Florida-College of Medicine, Jacksonville, FL, United States
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | | | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano Ponce
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José Luis Górriz
- Servicio de Nefrología, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Luis D´Marco
- Servicio de Nefrología, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
35
|
Withaar C, Lam CSP, Schiattarella GG, de Boer RA, Meems LMG. Heart failure with preserved ejection fraction in humans and mice: embracing clinical complexity in mouse models. Eur Heart J 2021; 42:4420-4430. [PMID: 34414416 PMCID: PMC8599003 DOI: 10.1093/eurheartj/ehab389] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a multifactorial disease accounting for a large and increasing proportion of all clinical HF presentations. As a clinical syndrome, HFpEF is characterized by typical signs and symptoms of HF, a distinct cardiac phenotype and raised natriuretic peptides. Non-cardiac comorbidities frequently co-exist and contribute to the pathophysiology of HFpEF. To date, no therapy has proven to improve outcomes in HFpEF, with drug development hampered, at least partly, by lack of consensus on appropriate standards for pre-clinical HFpEF models. Recently, two clinical algorithms (HFA-PEFF and H2FPEF scores) have been developed to improve and standardize the diagnosis of HFpEF. In this review, we evaluate the translational utility of HFpEF mouse models in the context of these HFpEF scores. We systematically recorded evidence of symptoms and signs of HF or clinical HFpEF features and included several cardiac and extra-cardiac parameters as well as age and sex for each HFpEF mouse model. We found that most of the pre-clinical HFpEF models do not meet the HFpEF clinical criteria, although some multifactorial models resemble human HFpEF to a reasonable extent. We therefore conclude that to optimize the translational value of mouse models to human HFpEF, a novel approach for the development of pre-clinical HFpEF models is needed, taking into account the complex HFpEF pathophysiology in humans.
Collapse
Affiliation(s)
- Coenraad Withaar
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Carolyn S P Lam
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.,National University Heart Centre, Singapore and Duke-National University of Singapore
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Department of Cardiology, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.,Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Laura M G Meems
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
36
|
He T, Zhang Z, Staessen JA, Mischak H, Latosinska A, Beige J. Proteomic Biomarkers in the Cardiorenal Syndrome: Toward Deciphering Molecular Pathophysiology. Am J Hypertens 2021; 34:669-679. [PMID: 33821948 DOI: 10.1093/ajh/hpaa201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiorenal syndrome (CRS) is defined by coexisting heart and renal dysfunctions. Malfunction of 1 organ may cause dysfunction of the other with variable causative disease that defines the type of CRS (1-5). Numerous studies showed that the prevalence of cardiovascular disease is increased in patients with chronic kidney disease (CKD). Similarly, CKD affects a large proportion of patients with heart failure. This overlap between primary heart or primary kidney disease blurs cause-effect inferences of the initiator/target organ. The classical subdivision of CRS in 5 categories does not provide pathophysiological suggestions for targeted intervention. It seems timely to revisit the value of CRS biomarkers in a pathophysiology-centered approach. We systematically reviewed the literature in CRS, which revealed 53 clinical studies describing the use of 44 biomarkers and 4 proteomic panels. All biomarkers are involved in at least one of the CRS comorbidities. Among the pathways affected, inflammation, aberrant glucose metabolism, neurohormonal activation, and oxidative stress are well described. There is growing evidence that fibrosis may be the "cornerstone" that unifies most of the pathways leading to CRS. Formation of excess fibrous connective tissue antedates CRS in many cases. This review highlights that biomarkers reflecting fibrosis may be of substantial clinical value in the early detection, prognostication, and guiding treatment of CRS. Biomarkers detecting changes in collagen turnover in the extracellular matrix of heart and kidney appear able to depict subclinical changes in the fibrotic remodeling of tissues and constitute a promising approach toward personalized intervention in CRS.
Collapse
Affiliation(s)
- Tianlin He
- Mosaiques Diagnostics GmbH, Hannover, Germany
- Institute of Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Zhenyu Zhang
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jan A Staessen
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
- Research Institute Alliance for the Promotion of Preventive Medicine (APPREMED), Mechelen, Belgium
| | | | | | - Joachim Beige
- Medical Clinic, Martin-Luther University, Halle-Wittenberg, Germany
| |
Collapse
|
37
|
Del Campo A, Perez G, Castro PF, Parra V, Verdejo HE. Mitochondrial function, dynamics and quality control in the pathophysiology of HFpEF. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166208. [PMID: 34214606 DOI: 10.1016/j.bbadis.2021.166208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is one of the leading causes of hospitalization for the adult population and a major cause of mortality worldwide. The HF syndrome is characterized by the heart's inability to supply the cardiac output required to meet the body's metabolic requirements or only at the expense of elevated filling pressures. HF without overt impairment of left ventricular ejection fraction (LVEF) was initially labeled as "diastolic HF" until recognizing the coexistence of both systolic and diastolic abnormalities in most cases. Acknowledging these findings, the preferred nomenclature is HF with preserved EF (HFpEF). This syndrome primarily affects the elderly population and is associated with a heterogeneous overlapping of comorbidities that makes its diagnosis challenging. Despite extensive research, there is still no evidence-based therapy for HFpEF, reinforcing the need for a thorough understanding of the pathophysiology underlying its onset and progression. The role of mitochondrial dysfunction in developing the pathophysiological changes that accompany HFpEF onset and progression (low-grade systemic inflammation, oxidative stress, endothelial dysfunction, and myocardial remodeling) has just begun to be acknowledged. This review summarizes our current understanding of the participation of the mitochondrial network in the pathogenesis of HFpEF, with particular emphasis on the signaling pathways involved, which may provide future therapeutic targets.
Collapse
Affiliation(s)
- Andrea Del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo Perez
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Castro
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Universidad de Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile.
| | - Hugo E Verdejo
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Chile.
| |
Collapse
|
38
|
Leptin modulates gene expression in the heart, cardiomyocytes and the adipose tissue thus mitigating LPS-induced damage. Exp Cell Res 2021; 404:112647. [PMID: 34015313 DOI: 10.1016/j.yexcr.2021.112647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 11/20/2022]
Abstract
Leptin is an adipokine of pleiotropic effects linked to energy metabolism, satiety, the immune response, and cardioprotection. We have recently shown that leptin causally conferred resistance to myocardial infarction-induced damage in transgenic αMUPA mice overexpressing leptin compared to their wild type (WT) ancestral mice FVB/N. Prompted by these findings, we have investigated here if leptin can counteract the inflammatory response triggered after LPS administration in tissues in vivo and in cardiomyocytes in culture. The results have shown that LPS upregulated in vivo and in vitro all genes examined here, both pro-inflammatory and antioxidant, as well as the leptin gene. Pretreating mice with leptin neutralizing antibodies further upregulated the expression of TNFα and IL-1β in the adipose tissue of both mouse types, and in the αMUPA heart. The antibodies also increased the levels of serum markers for cell toxicity in both mouse types. These results indicate that under LPS, leptin actually reduced the levels of these inflammatory-related parameters. In addition, pretreatment with leptin antibodies reduced the levels of HIF-1α and VEGF mRNAs in the heart, indicating that under LPS leptin increased the levels of these mRNAs. In cardiomyocytes, pretreatment with exogenous leptin prior to LPS reduced the expression of both pro-inflammatory genes, enhanced the expression of the antioxidant genes HO-1, SOD2 and HIF-1α, and lowered ROS staining. In addition, results obtained with leptin antibodies and the SMLA leptin antagonist indicated that endogenous and exogenous leptin can inhibit leptin gene expression. Together, these findings have indicated that under LPS, leptin concomitantly downregulated pro-inflammatory genes, upregulated antioxidant genes, and lowered ROS levels. These results suggest that leptin can counteract inflammation in the heart and adipose tissue by modulating gene expression.
Collapse
|
39
|
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle (R.T.)
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.)
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City (E.D.A.).,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City (E.D.A.)
| |
Collapse
|
40
|
Rubio B, Mora C, Pintado C, Mazuecos L, Fernández A, López V, Andrés A, Gallardo N. The nutrient sensing pathways FoxO1/3 and mTOR in the heart are coordinately regulated by central leptin through PPARβ/δ. Implications in cardiac remodeling. Metabolism 2021; 115:154453. [PMID: 33249043 DOI: 10.1016/j.metabol.2020.154453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cardiovascular disease in obese individuals with type 2 diabetes is often associated with hyperleptinemia and leptin resistance, while other studies support that leptin has cardioprotective effects. Besides, the role of leptin in regulating cardiac atrophy or hypertrophy remains to be clearly defined. In fact, in rats with normal leptin sensitivity, the molecular underpinnings of the effects of central leptin regulating cardiac structural pathways remain poorly understood. OBJECTIVE Hence, we assessed the effects of intracerebroventricular (icv) leptin infusion on cardiac remodeling analyzing FOXO1/3 and mTORC1 pathways, focusing special attention to PPARβ/δ as mediator of central leptin's effects on cardiac metabolism. METHODS Male 3-months-old Wistar rats, infused with icv leptin (0.2 μg/day) for 7 days, were daily co-treated intraperitoneally with the specific PPARβ/δ antagonist GSK0660, at 1 mg/kg per day along leptin treatment. RESULTS Central leptin regulated dynamically, in an opposite manner, the network between FOXOs and mTORC1 and induced an atrophy-related gene program in cardiac tissue. Leptin activated the anti-hypertrophic kinase GSK3β and increased the protein levels of muscle-specific ubiquitin ligases, muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/Atrogin-1 involved in limiting cardiac hypertrophy. FOXO1 activity and the expression of their target genes, Sod2 and Lpl, were also increased in the heart upon central leptin infusion. Besides, Beclin-1 and LC3B-II, gene products of the autophagic pathway response, were upregulated, while the content and expression levels of phenotypic markers of cardiac hypertrophy as ANP and β-myosin heavy chain, gene product of Myh7 were significantly decreased. On the other hand, mTORC1 activity and OXPHOS protein levels were decreased suggesting a key role of central leptin preventing cardiac oxidative stress. In fact, the content of carbonylated proteins, TBARS and ROS/RSN were not increased in cardiac tissue in response to central leptin infusion. Finally, the pharmacological inhibition of PPARβ/δ, via in vivo administration of the selective antagonist GSK0660, blunted the induction of FOXO1/3, Atrogin-1, MuRF1 and GSK3β in the heart mediated by icv leptin infusion. CONCLUSIONS Our results demonstrate that, in lean rats with normal leptin sensitivity, central leptin regulates nutrient sensing pathways in heart contributing to balance cardiac remodeling through the anti- and pro-hypertrophic programs, and in this process is involved PPARβ/δ.
Collapse
Affiliation(s)
- Blanca Rubio
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Cristina Mora
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Cristina Pintado
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, Avda. Carlos III s/n, 45071 Toledo, Spain
| | - Lorena Mazuecos
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Alejandro Fernández
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Virginia López
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Antonio Andrés
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain.
| | - Nilda Gallardo
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain.
| |
Collapse
|
41
|
Abstract
The landmark discoveries of leptin and adiponectin firmly established adipose tissue as a sophisticated and highly active endocrine organ, opening a new era of investigating adipose-mediated tissue crosstalk. Both obesity-associated hyperleptinemia and hypoadiponectinemia are important biomarkers to predict cardiovascular outcomes, suggesting a crucial role for adiponectin and leptin in obesity-associated cardiovascular disorders. Normal physiological levels of adiponectin and leptin are indeed essential to maintain proper cardiovascular function. Insufficient adiponectin and leptin signaling results in cardiovascular dysfunction. However, a paradox of high levels of both leptin and adiponectin is emerging in the pathogenesis of cardiovascular disorders. Here, we (1) summarize the recent progress in the field of adiponectin and leptin and its association with cardiovascular disorders, (2) further discuss the underlying mechanisms for this new paradox of leptin and adiponectin action, and (3) explore the possible application of partial leptin reduction, in addition to increasing the adiponectin/leptin ratio as a means to prevent or reverse cardiovascular disorders.
Collapse
Affiliation(s)
- Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine (S.Z., C.M.K., P.E.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine (S.Z., C.M.K., P.E.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine (S.Z., C.M.K., P.E.S.), The University of Texas Southwestern Medical Center, Dallas.,Department of Cell Biology (P.E.S.), The University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
42
|
Kang KW, Ok M, Lee SK. Leptin as a Key between Obesity and Cardiovascular Disease. J Obes Metab Syndr 2020; 29:248-259. [PMID: 33342767 PMCID: PMC7789022 DOI: 10.7570/jomes20120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity increases the risk of cardiovascular disease through various influencing factors. Leptin, which is predominantly secreted by adipose tissue, regulates satiety homeostasis and energy balance, and influences cardiovascular functions directly and indirectly. Leptin appears to play a role in heart protection in leptin-deficient and leptin-receptor-deficient rodent model experiments. Hyperleptinemia or leptin resistance in human obesity influences the vascular endothelium, cardiovascular structure and functions, inflammation, and sympathetic activity, which may lead to cardiovascular disease. Leptin is involved in many processes, including signal transduction, vascular endothelial function, and cardiac structural remodeling. However, the dual (positive and negative) regulator effect of leptin and its receptor on cardiovascular disease has not been completely understood. The protective role of leptin signaling in cardiovascular disease could be a promising target for cardiovascular disease prevention in obese patients.
Collapse
Affiliation(s)
- Ki-Woon Kang
- Division of Cardiology, Department of Internal Medicine, Eulji University School of Medicine, Daejeon, Korea
| | - Minho Ok
- Department of Cardiovascular Pharmacology, Mokpo National University, Mokpo, Korea
| | - Seong-Kyu Lee
- Division of Endocrinology, Department of Internal Medicine, Daejeon, Korea.,Department of Biochemistry-Molecular Biology, Eulji University School of Medicine, Daejeon, Korea
| |
Collapse
|
43
|
Abd Alkhaleq H, Kornowski R, Waldman M, Levy E, Zemel R, Nudelman V, Shainberg A, Miskin R, Hochhauser E. Leptin modulates gene expression in the heart and cardiomyocytes towards mitigating ischemia-induced damage. Exp Cell Res 2020; 397:112373. [PMID: 33189721 DOI: 10.1016/j.yexcr.2020.112373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022]
Abstract
Leptin, an adipocyte-derived satiety hormone, has been previously linked to cardioprotection. We have shown before that leptin conferred resistance to ischemic damage in the heart in long-lived transgenic αMUPA mice overexpressing leptin compared to the wild type (WT) FVB/N control mice. To better understand the contribution of leptin to the ischemic heart, we measured here the expression of genes encoding leptin and ischemia-related proteins in αMUPA and WT mice in the heart vs adipose tissue after MI. In addition, we investigated gene expression in neonatal rat cardiomyocytes under hypoxia in the absence and presence of exogenously added leptin or a leptin antagonist. We used real time RT-PCR and ELISA or Western blot assays to measure, respectively, mRNA and protein levels. The results have shown that circulating leptin levels and mRNA levels of leptin and heme oxygenase-1 (HO-1) in the heart were elevated in both mouse genotypes after 24 h myocardial infarction (MI), reaching higher values in αMUPA mice. In contrast, leptin gene expression in the adipose tissue was significantly increased only in WT mice, but reaching lower levels compared to the heart. Expression of the proinflammatory genes encoding TNFα and IL-1β was also largely increased after MI in the heart in both mouse types, however reaching considerably lower levels in αMUPA mice indicating a mitigated inflammatory state. In cardiomyocytes, mRNA levels of all aforementioned genes as well as HIF-1α and SOD2 genes were elevated after hypoxia. Pretreatment with exogenous leptin largely reduced the mRNA levels of TNFα and IL-1β after hypoxia, while enhancing expression of all other genes and reducing ROS levels. Pretreating the cells with a leptin antagonist increased solely the levels of leptin mRNA, suggesting a negative regulation of the hormone on the expression of its own gene. Overall, the results have shown that leptin affects expression of genes in cardiomyocytes under hypoxia in a manner that could mitigate inflammation and oxidative stress, suggesting a similar influence by endogenous leptin in αMUPA mice. Furthermore, leptin is likely to function in the ischemic murine heart more effectively in an autocrine compared to paracrine manner. These results suggest that leptin can reduce ischemic damage by modulating gene expression in the heart.
Collapse
Affiliation(s)
- Heba Abd Alkhaleq
- Cardiac Research Laboratory, Felsenstein Medical Research Center Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Kornowski
- Cardiology Dept, Rabin Medical Center, Petah Tikva, Israel
| | - Maayan Waldman
- Cardiac Research Laboratory, Felsenstein Medical Research Center Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ester Levy
- Cardiac Research Laboratory, Felsenstein Medical Research Center Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Romy Zemel
- Cardiac Research Laboratory, Felsenstein Medical Research Center Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vadim Nudelman
- Cardiac Research Laboratory, Felsenstein Medical Research Center Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asher Shainberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Ruth Miskin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Center Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
44
|
Maneechote C, Palee S, Kerdphoo S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N. Pharmacological inhibition of mitochondrial fission attenuates cardiac ischemia-reperfusion injury in pre-diabetic rats. Biochem Pharmacol 2020; 182:114295. [PMID: 33080185 DOI: 10.1016/j.bcp.2020.114295] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022]
Abstract
An increase in the number of fragmented mitochondria contributes to the pathogenesis of ischemia-reperfusion (I/R) injury. Also, mitochondrial fission has shown an increase in obese condition. However, the cardioprotective roles of a mitochondrial fission inhibitor in obesity with cardiac I/R injury are unclear. We hypothesized that a fission inhibitor (Mdivi-1) reduces cardiac dysfunction during I/R injury in pre-diabetic rats. Male Wistar rats (n = 40) were received a high-fat diet for 12 weeks to induce prediabetes. Then, rats underwent a 30-min coronary artery ligation was performed followed by reperfusion for 120 min. These I/R rats were given either: (1) vehicle or Mdivi-1 treatment at 3 time points relative to onset of ischemia: (2) pre-ischemia; (3) during ischemia; and (4) at onset of reperfusion. Cardiac function, myocardial infarct size, mitochondrial function and dynamic balance were determined. Interestingly, Mdivi-1 given at any time points effectively attenuated mitochondrial reactive oxygen species production, depolarization, swelling, and dynamic imbalance, resulting in reduced arrhythmias, myocardial cell death, infarct size and enhanced cardiac performance during I/R injury in pre-diabetic rats. Taken together, inhibition of mitochondrial fission effectively protected the heart against cardiac I/R injury regardless of the time of administration in pre-diabetic rats.
Collapse
Affiliation(s)
- Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
45
|
Tracy E, Rowe G, LeBlanc AJ. Cardiac tissue remodeling in healthy aging: the road to pathology. Am J Physiol Cell Physiol 2020; 319:C166-C182. [PMID: 32432929 DOI: 10.1152/ajpcell.00021.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review aims to highlight the normal physiological remodeling that occurs in healthy aging hearts, including changes that occur in contractility, conduction, valve function, large and small coronary vessels, and the extracellular matrix. These "normal" age-related changes serve as the foundation that supports decreased plasticity and limited ability for tissue remodeling during pathophysiological states such as myocardial ischemia and heart failure. This review will identify populations at greater risk for poor tissue remodeling in advanced age along with present and future therapeutic strategies that may ameliorate dysfunctional tissue remodeling in aging hearts.
Collapse
Affiliation(s)
- Evan Tracy
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Amanda J LeBlanc
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| |
Collapse
|
46
|
Abstract
FGF21 (fibroblast growth factor 21) is a regulator of metabolism and performs an important role in glucose and lipid metabolism and the maintenance of energy balance. FGF21 is principally expressed in the liver, but it can also be found in the pancreas, skeletal muscle, and adipose tissue. It is known that levels of serum FGF21 are significantly elevated in obese, insulin-resistant patients, and those with metabolic syndrome. Elevated levels of FGF21 in serum during the early stages of various metabolic diseases are considered a compensatory response by the organism. Therefore, FGF21 is considered a hormone in response to stress and an early diagnostic marker of disease. Diabetic cardiomyopathy is a special type of cardiac complication, characterized as a chronic myocardial disorder caused by diabetes. The pathological process includes increased oxidative stress, energy metabolism in myocardial cells, an inflammatory response, and myocardial cell apoptosis. A growing body of evidence suggests that FGF21 has the potential to be an effective drug for the treatment of diabetic cardiomyopathy. Here, we review recent progress on the characteristics of FGF21 in its protective role, especially in pathological processes such as suppressing apoptosis in the myocardium, reducing inflammation in cardiomyocytes, reducing oxidative stress, and promoting fatty acid oxidation. In addition, we explore the possibility that diabetic cardiomyopathy can be delayed through the application of FGF21, providing possible therapeutic targets of the disease.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Luo Yang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Xiongfeng Xu
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Fengjuan Tang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Peng Yi
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Bo Qiu
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Yarong Hao
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China.
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China.
- Division of Metabolic Syndrome, Department of Geriatrics, Renming Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
47
|
An HS, Lee JY, Choi EB, Jeong EA, Shin HJ, Kim KE, Park KA, Jin Z, Lee JE, Koh JS, Kwak W, Kim WH, Roh GS. Caloric restriction reverses left ventricular hypertrophy through the regulation of cardiac iron homeostasis in impaired leptin signaling mice. Sci Rep 2020; 10:7176. [PMID: 32346034 PMCID: PMC7188880 DOI: 10.1038/s41598-020-64201-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Leptin-deficient and leptin-resistant mice manifest obesity, insulin resistance, and left ventricular hypertrophy (LVH); however, LVH’s mechanisms are not fully understood. Cardiac iron dysregulation has been recently implicated in cardiomyopathy. Here we investigated the protective effects of caloric restriction on cardiac remodeling in impaired leptin signaling obese mice. RNA-seq analysis was performed to assess the differential gene expressions in the heart of wild-type and ob/ob mice. In particular, to investigate the roles of caloric restriction on iron homeostasis-related gene expressions, 10-week-old ob/ob and db/db mice were assigned to ad libitum or calorie-restricted diets for 12 weeks. Male ob/ob mice exhibited LVH, cardiac inflammation, and oxidative stress. Using RNA-seq analysis, we identified that an iron uptake-associated gene, transferrin receptor, was upregulated in obese ob/ob mice with LVH. Caloric restriction attenuated myocyte hypertrophy, cardiac inflammation, fibrosis, and oxidative stress in ob/ob and db/db mice. Furthermore, we found that caloric restriction reversed iron homeostasis-related lipocalin 2, divalent metal transporter 1, transferrin receptor, ferritin, ferroportin, and hepcidin expressions in the heart of ob/ob and db/db mice. These findings demonstrate that the cardioprotective effects of caloric restriction result from the cellular regulation of iron homeostasis, thereby decreasing oxidative stress, inflammation, and cardiac remodeling. We suggest that decreasing iron-mediated oxidative stress and inflammation offers new therapeutic approaches for obesity-induced cardiomyopathy.
Collapse
Affiliation(s)
- Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Eun Bee Choi
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Kyung-Ah Park
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Zhen Jin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Jung Eun Lee
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Jin Sin Koh
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Woori Kwak
- C&K genomics, Songpa-gu, Seoul, Republic of Korea
| | - Won-Ho Kim
- Division of Cardiovascular Diseases, Center for Biomedical Sciences, National Institute of Health, Cheongju, Chungbuk, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea. .,Bio Anti-aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.
| |
Collapse
|
48
|
Paduszyńska A, Sakowicz A, Banach M, Maciejewski M, Dąbrowa M, Bielecka-Dąbrowa A. Cardioprotective properties of leptin in patients with excessive body mass. Ir J Med Sci 2020; 189:1259-1265. [PMID: 32198598 PMCID: PMC7554003 DOI: 10.1007/s11845-020-02211-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/11/2020] [Indexed: 11/25/2022]
Abstract
Background Adipose tissue is producing adipokines that play different roles in the pathophysiology of cardiovascular disease. Aims The study aimed to assess the role of selected biomarkers in hypertensive patients with overweight and obesity compared with those with normal body-mass index (BMI). Methods A total of 62 patients with BMI < 25 kg/m2 (median age 54 (46–58) yrs., 57% males) and 51 with BMI ≥ 25 kg/m2 (median age 53 (48–59) yrs., 37% males) were enrolled. Biochemical parameters, leptin, adiponectin, and resistin; asymmetric dimethylarginine; interleukin 6; and N-terminal propeptide of type III procollagen, were assessed in plasma. The evaluation of hemodynamic parameters was performed using SphygmoCor 9.0 tonometer. Echocardiography was performed using AlokaAlpha 10 Premier device. Results Overweight and obese patients had significantly higher concentration of leptin (34 vs 18 ng/ml; p = 0.03), ADMA (0.43 vs 0.38 μmol/l, p = 0.04), and lower concentration of adiponectin (5.3 vs 7 μg/ml, p = 0.01). The only significant difference in tonometry analysis was higher aortic pulse pressure (mmHg) in patients with BMI ≥ 25 kg/m2 group (34 vs 30; p = 0.03). These patients had also significantly lower peak systolic velocity and early diastolic velocity in tissue Doppler imaging of the right ventricle free wall at the level of the tricuspid annulus compared with controls (p = 0.02 and p = 0.001, respectively). The level of leptin is correlated negatively with the left ventricular mass index (LVMI) (R Spearman = − 0.5; p = 0.002) and PWV (R = − 0.4; p = 0.01) and ADMA with total and LDL cholesterol (R = − 0.42; p = 0.008), and adiponectin is correlated positively with HDL cholesterol (R = 0.67; p = 0.0001). Conclusions Leptin concentrations were inversely proportional to LVMI and PWV in patients with BMI < 25 kg/m2. Trial registration Clinicaltrials.gov study ID: NCT04175080.
Collapse
Affiliation(s)
- Aleksandra Paduszyńska
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Marek Maciejewski
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Marek Dąbrowa
- Department of Biopharmacy, Chair of Biopharmacy, Medical University of Lodz, Lodz, Poland
| | - Agata Bielecka-Dąbrowa
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland.
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
49
|
Lu H, Chen R, Barnie PA, Tian Y, Zhang S, Xu H, Chakrabarti S, Su Z. Fibroblast transdifferentiation promotes conversion of M1 macrophages and replenishment of cardiac resident macrophages following cardiac injury in mice. Eur J Immunol 2020; 50:795-808. [PMID: 32068249 DOI: 10.1002/eji.201948414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
Resident cardiac macrophages play important roles in homeostasis, maintenance of cardiac function, and tissue repair. After cardiac injury, monocytes infiltrate the tissue, undergo phenotypic and functional changes, and are involved in inflammatory injury and functional remodelling. However, the fate of cardiac infiltrating/polarized macrophages and the relationship between these cells and resident cardiac macrophage replenishment following injury remain unclear. Our results showed that angiotensin II induces cardiac fibroblast transdifferentiation into cardiac myofibroblasts (MFBs). In cocultures with MFBs and murine macrophages, the MFBs promoted macrophage polarization to M1 phenotype, followed by selective apoptosis, which was associated with TNF/TNFR1 axis and independent of NO production. Surprisingly, after 36 h of coculture, the surviving macrophages were converted to M2 phenotype and settled in heart, which was dependent on leptin produced by MFBs or polarized macrophages via the PI3K or Akt pathway. CCR2+ CD45.2+ cells adoptively transferred into CD45.1+ mice with viral myocarditis, differentiated into CD45.2+ CCR2+ CX3CR1+ M2 cells during the resolution of inflammation and settled within the heart. Our data highlight a novel mechanism related to the renewal or replenishment of cardiac resident macrophages following cardiac injury; and suggest that transdifferentiation of cardiac fibroblasts may promote the resolution of inflammation.
Collapse
Affiliation(s)
- Hongxiang Lu
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Rong Chen
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | | | - Yu Tian
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Shiqing Zhang
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Subrata Chakrabarti
- Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu University, Zhenjiang, China.,Laboratory Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
50
|
Imerbtham T, Thitiwuthikiat P, Jongjitwimol J, Nuamchit T, Yingchoncharoen T, Siriwittayawan D. Leptin Levels are Associated with Subclinical Cardiac Dysfunction in Obese Adolescents. Diabetes Metab Syndr Obes 2020; 13:925-933. [PMID: 32273744 PMCID: PMC7108875 DOI: 10.2147/dmso.s245048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The purposes of this study were to use speckle tracking echocardiography to confirm the influence of obesity on cardiac functions and to assess their relationships with leptin and uric acid levels in obese adolescents. METHODS Eighty-one participants aged 16-19 years were recruited and classified as either non-obese (n = 30) or obese (n = 51). Global longitudinal strain (GLS), leptin and uric acid levels for each group were assessed and compared. The data from obese participants were then compared based on their leptin levels and analyzed for correlation using regression analysis. RESULTS The obese group had significantly lower absolute GLS compared to the non-obese group (19.10 ± 0.30 versus 21.10 ± 0.30%, p < 0.001). In obese group, subclinical cardiac dysfunction was worse in the hyperleptinemic group than that of the normoleptinemic group (p = 0.03). Multivariate regression analysis showed that leptin and triglyceride levels were negatively associated with absolute GLS. Leptin could predict the absolute GLS with β = -0.35 (p = 0.02). CONCLUSION Subclinical left ventricular systolic dysfunction was found in obese adolescents, while GLS was worse in the hyperleptinemic subjects. Leptin, but not uric acid, levels were associated with a worsening of GLS.
Collapse
Affiliation(s)
- Thamonwan Imerbtham
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Piyanuch Thitiwuthikiat
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Jirapas Jongjitwimol
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Teonchit Nuamchit
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | | | - Duangduan Siriwittayawan
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Correspondence: Duangduan Siriwittayawan Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok65000, ThailandTel +66 55 966 417Fax +66 55 966 234 Email
| |
Collapse
|