1
|
Carrillo Diaz de Leon M, Keane K, Roizes S, Liao S, von der Weid PY, Stephens M. Not just fibrotic: endothelial-derived TGFβ maintains contractile function and lymphatic muscle phenotype during homeostasis. Am J Physiol Cell Physiol 2024; 326:C269-C281. [PMID: 38047303 DOI: 10.1152/ajpcell.00327.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Cell-cell communication within the lymphatic vasculature during homeostasis is incompletely detailed. Although many discoveries highlight the pathological roles of transforming growth factor-beta (TGFβ) in chronic vascular inflammation and associated fibrosis, only a small amount is known surrounding the role of TGFβ-signaling in homeostatic lymphatic function. Here, we discovered that pharmacological blockade of TGFβ receptor 1 (TGFβR1) negatively impacts rat mesenteric lymphatic vessel pumping, significantly reducing vessel contractility and surrounding lymphatic muscle coverage. We have identified mesenteric lymphatic endothelial cells themselves as a source of endogenous vascular TGFβ and that TGFβ production is significantly increased in these cells via activation of a number of functional pattern recognition receptors they express. We show that a continuous supply of TGFβ is essential to maintain the contractile phenotype of neighboring lymphatic muscle cells and support this conclusion through in vitro analysis of primary isolated lymphatic muscle cells that undergo synthetic differentiation during 2-D cell culture, a phenomenon that could be effectively rescued by supplementation with recombinant TGFβ. Finally, we demonstrate that lymphatic endothelial production of TGFβ is regulated, in part, by nitric oxide in a manner we propose is essential to counteract the pathological over-production of TGFβ. Taken together, these data highlight the essential role of homeostatic TGFβ signaling in the maintenance of lymphatic vascular function and highlight possible deleterious consequences of its inhibition.NEW & NOTEWORTHY The growth factor TGFβ is commonly associated with its pathological overproduction during tissue fibrosis rather than its homeostatic functions. We expose the lymphatic endothelium as a source of endogenous TGFβ, the impact of its production on the maintenance of surrounding lymphatic muscle cell phenotype, and internally regulated mechanisms of its production. Overall, these results highlight the intricate balance of TGFβ-signaling as an essential component of maintaining lymphatic contractile function.
Collapse
Affiliation(s)
- Miriam Carrillo Diaz de Leon
- Inflammation Research Network, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith Keane
- Inflammation Research Network, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Simon Roizes
- Inflammation Research Network, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Shan Liao
- Inflammation Research Network, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pierre-Yves von der Weid
- Inflammation Research Network, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Matthew Stephens
- Inflammation Research Network, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Pharmacological prevention of intimal hyperplasia: A state-of-the-art review. Pharmacol Ther 2022; 235:108157. [PMID: 35183591 DOI: 10.1016/j.pharmthera.2022.108157] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Intimal hyperplasia (IH) occurs in a considerable number of cases of blood vessel reconstruction by stenting or balloon angioplasty, venous bypass grafting, and arteriovenous dialysis accesses. It is triggered by endothelial injury during the vascular intervention and leads to vessel restenosis with life-threatening consequences for patients. To date, the drugs used for IH prevention in clinics-paclitaxel and rapalog drugs-have been focusing primarily on the vascular smooth muscle cell (VSMC) proliferation pathway of IH development. Limitations, such as endothelial toxicity and inappropriate drug administration timing, have spurred the search for new and efficient pharmacological approaches to control IH. In this state-of-the-art review, we present the pathways of IH development, focusing on the key events and actors involved in IH. Subsequently, we discuss different drugs and drug combinations interfering with these pathways based on their effect on peripheral circulation IH models in animal studies, or on clinical reports. The reports were obtained through an extensive search of peer-reviewed publications in Pubmed, Embase, and Google Scholar, with search equations composed based on five concepts around IH and their various combinations. To improve vascular intervention outcomes, rethinking of conventional therapeutic approaches to IH prevention is needed. Exploring local application of drugs and drug combinations acting on different pathophysiological pathways of IH development has the potential to provide effective and safe restenosis prevention.
Collapse
|
3
|
Zhao Z, Fu Q, Hu L, Liu Y. Identification of the Crucial Gene in Overflow Arteriovenous Fistula by Bioinformatics Analysis. Front Physiol 2021; 12:621830. [PMID: 34421628 PMCID: PMC8371383 DOI: 10.3389/fphys.2021.621830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim was to study the preliminary screening of the crucial genes in intimal hyperplasia in the venous segment of arteriovenous (AV) fistula and the underlying potential molecular mechanisms of intimal hyperplasia with bioinformatics analysis. Methods: The gene expression profile data (GSE39488) was analyzed to identify differentially expressed genes (DEGs). We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of DEGs. Gene set enrichment analysis (GSEA) was used to understand the potential activated signaling pathway. The protein-protein interaction (PPI) network was constructed with the STRING database and Cytoscape software. The Venn diagram between 10 hub genes and gene sets of 4 crucial signaling pathways was used to obtain core genes and relevant potential pathways. Furthermore, GSEAs were performed to understand their biological functions. Results: A total of 185 DEGs were screened in this study. The main biological function of the 111 upregulated genes in AV fistula primarily concentrated on cell proliferation and vascular remodeling, and the 74 downregulated genes in AV fistula were enriched in the biological function mainly relevant to inflammation. GSEA found four signaling pathways crucial for intimal hyperplasia, namely, MAPK, NOD-like, Cell Cycle, and TGF-beta signaling pathway. A total of 10 hub genes were identified, namely, EGR1, EGR2, EGR3, NR4A1, NR4A2, DUSP1, CXCR4, ATF3, CCL4, and CYR61. Particularly, DUSP1 and NR4A1 were identified as core genes that potentially participate in the MAPK signaling pathway. In AV fistula, the biological processes and pathways were primarily involved with MAPK signaling pathway and MAPK-mediated pathway with the high expression of DUSP1 and were highly relevant to cell proliferation and inflammation with the low expression of DUSP1. Besides, the biological processes and pathways in AV fistula with the high expression of NR4A1 similarly included the MAPK signaling pathway and the pathway mediated by MAPK signaling, and it was mainly involved with inflammation in AV fistula with the low expression of NR4A1. Conclusion: We screened four potential signaling pathways relevant to intimal hyperplasia and identified 10 hub genes, including two core genes (i.e., DUSP1 and NR4A1). Two core genes potentially participate in the MAPK signaling pathway and might serve as the therapeutic targets of intimal hyperplasia to prevent stenosis after AV fistula creation.
Collapse
Affiliation(s)
- Zhengde Zhao
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qining Fu
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangzhu Hu
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Vascular Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yangdong Liu
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Vascular Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Lee EJ, Han JC, Park DY, Cho J, Kee C. Effect of connective tissue growth factor gene editing using adeno-associated virus-mediated CRISPR-Cas9 on rabbit glaucoma filtering surgery outcomes. Gene Ther 2021; 28:277-286. [PMID: 32541929 DOI: 10.1038/s41434-020-0166-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 01/16/2023]
Abstract
Suppressing excessive wound healing responses is critical to ensure surgical success in glaucoma filtration surgery (GFS). Currently used adjunctive materials can lead to side effects due to the nonselectivity in cell inhibition and may require repeated applications. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system may become a compelling opportunity in glaucoma surgery due to its high selectivity and permanent effect. Connective tissue growth factor (CTGF) is one of the most potent stimulators of tissue fibrosis in the eye. Therefore, we tested the effect of CTGF suppression using the CRISPR-Cas9 system on GFS fibrosis. We used an adeno-associated virus (AAV)-CRISPR-Cas9 system and confirmed successful CTGF suppression was achieved in fibroblasts in vitro through western blot analysis and deep sequencing. In the in vivo intereye-comparison rabbit GFS model, CRISPR-CTGF-treated eyes showed significantly better survival of the surgery site, less subconjunctival fibrosis, limited collagen deposition, and reduced cellularity than untreated eyes. Our results suggest a new possibility of CRISPR-Cas9-mediated CTGF suppression to improve human GFS outcomes.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do Young Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Junhun Cho
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res 2021; 116:1254-1274. [PMID: 31834409 DOI: 10.1093/cvr/cvz338] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The founding member of the lipoprotein receptor family, low-density lipoprotein receptor (LDLR) plays a major role in the atherogenesis through the receptor-mediated endocytosis of LDL particles and regulation of cholesterol homeostasis. Since the discovery of the LDLR, many other structurally and functionally related receptors have been identified, which include low-density lipoprotein receptor-related protein (LRP)1, LRP5, LRP6, very low-density lipoprotein receptor, and apolipoprotein E receptor 2. The scavenger receptor family members, on the other hand, constitute a family of pattern recognition proteins that are structurally diverse and recognize a wide array of ligands, including oxidized LDL. Among these are cluster of differentiation 36, scavenger receptor class B type I and lectin-like oxidized low-density lipoprotein receptor-1. In addition to the initially assigned role as a mediator of the uptake of macromolecules into the cell, a large number of studies in cultured cells and in in vivo animal models have revealed that these lipoprotein receptors participate in signal transduction to modulate cellular functions. This review highlights the signalling pathways by which these receptors influence the process of atherosclerosis development, focusing on their roles in the vascular cells, such as macrophages, endothelial cells, smooth muscle cells, and platelets. Human genetics of the receptors is also discussed to further provide the relevance to cardiovascular disease risks in humans. Further knowledge of the vascular biology of the lipoprotein receptors and their ligands will potentially enhance our ability to harness the mechanism to develop novel prophylactic and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of Pediatrics and Cell Biology, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| |
Collapse
|
6
|
Low EL, Baker AH, Bradshaw AC. TGFβ, smooth muscle cells and coronary artery disease: a review. Cell Signal 2019; 53:90-101. [PMID: 30227237 PMCID: PMC6293316 DOI: 10.1016/j.cellsig.2018.09.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Excessive vascular smooth muscle cell (SMC) proliferation, migration and extracellular matrix (ECM) synthesis are key events in the development of intimal hyperplasia, a pathophysiological response to acute or chronic sources of vascular damage that can lead to occlusive narrowing of the vessel lumen. Atherosclerosis, the primary cause of coronary artery disease, is characterised by chronic vascular inflammation and dyslipidemia, while revascularisation surgeries such as coronary stenting and bypass grafting represent acute forms of vascular injury. Gene knockouts of transforming growth factor-beta (TGFβ), its receptors and downstream signalling proteins have demonstrated the importance of this pleiotropic cytokine during vasculogenesis and in the maintenance of vascular homeostasis. Dysregulated TGFβ signalling is a hallmark of many vascular diseases, and has been associated with the induction of pathological vascular cell phenotypes, fibrosis and ECM remodelling. Here we present an overview of TGFβ signalling in SMCs, highlighting the ways in which this multifaceted cytokine regulates SMC behaviour and phenotype in cardiovascular diseases driven by intimal hyperplasia.
Collapse
Affiliation(s)
- Emma L Low
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Andrew H Baker
- Queen's Medical Research Institute, University of Edinburgh, 47 Little Crescent, Edinburgh EH16 4TJ, UK
| | - Angela C Bradshaw
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
7
|
Schütz E, Bochenek ML, Riehl DR, Bosmann M, Münzel T, Konstantinides S, Schäfer K. Absence of transforming growth factor beta 1 in murine platelets reduces neointima formation without affecting arterial thrombosis. Thromb Haemost 2018; 117:1782-1797. [PMID: 28726976 DOI: 10.1160/th17-02-0112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/11/2017] [Indexed: 12/15/2022]
Abstract
Platelet degranulation at the site of vascular injury prevents bleeding and may affect the chronic vascular wound healing response. Transforming Growth Factor (TGF)-β1 is a major component of platelet α-granules known to accumulating in thrombi. It was our aim to determine the role of TGFβ1 released from activated platelets for neointima formation following arterial injury and thrombosis. Mice with platelet-specific deletion of TGFβ1 (Plt.TGFβ-KO) underwent carotid artery injury. Immunoassays confirmed the absence of active TGFβ1 in platelet releasates and plasma of Plt.TGFβ-KO mice. Whole blood analyses revealed similar haematological parameters, and tail cut assays excluded major bleeding defects. Platelet aggregation and the acute thrombotic response to injury in vivo did not differ between Plt.TGFβ-KO and Plt.TGFβ-WT mice. Morphometric analysis revealed that absence of TGFβ1 in platelets resulted in a significant reduction of neointima formation with lower neointima area, intima-to-media ratio, and lumen stenosis. On the other hand, the media area was enlarged in mice lacking TGFβ1 in platelets and contained increased amounts of proteases involved in latent TGFβ activation, including MMP2, MMP9 and thrombin. Significantly increased numbers of proliferating cells and cells expressing the mesenchymal markers platelet-derived growth factor receptor-β or fibroblast-specific protein-1, and the macrophage antigen F4/80, were observed in the media of Plt.TGFβ-KO mice, whereas the medial smooth muscle-actin-immunopositive area and collagen content did not differ between genotypes. Our findings support an essential role for platelet-derived TGFβ1 for the vascular remodelling response to arterial injury, apparently independent from the role of platelets in thrombosis or haemostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katrin Schäfer
- Katrin Schäfer, MD, FESC, FAHA, Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany, Tel.: +49 6131 17 4221, Fax: +49 6131 17 8047, E-mail:
| |
Collapse
|
8
|
Sanjadi M, Rezvanie Sichanie Z, Totonchi H, Karami J, Rezaei R, Aslani S. Atherosclerosis and autoimmunity: a growing relationship. Int J Rheum Dis 2018; 21:908-921. [PMID: 29671956 DOI: 10.1111/1756-185x.13309] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Atherosclerosis is regarded as one of the leading causes of mortality and morbidity in the world. Nowadays, it seems that atherosclerosis cannot be defined merely through the Framingham traditional risk factors and that autoimmunity settings exert a remarkable role in its mechanobiology. Individuals with autoimmune disorders show enhanced occurrence of cardiovascular complications and subclinical atherosclerosis. The mechanisms underlying the atherosclerosis in disorders like rheumatoid arthritis, systemic lupus erythematosus, antiphospholipid syndrome, systemic sclerosis and Sjögren's syndrome, seem to be the classical risk factors. However, chronic inflammatory processes and abnormal immune function may also be involved in atherosclerosis development. Autoantigens, autoantibodies, infectious agents and pro-inflammatory mediators exert a role in that process. Being armed with the mechanisms underlying autoimmunity in the etiopathogenesis of atherosclerosis in rheumatic autoimmune disorders and the shared etiologic pathway may result in substantial developing therapeutics for these patients.
Collapse
Affiliation(s)
- Maryam Sanjadi
- Department of Biochemistry, Islamic Azad University, Falavarjan Branch, Tehran, Iran
| | | | - Hamidreza Totonchi
- Department of Biochemistry, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ramazan Rezaei
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Roostalu U, Wong JK. Arterial smooth muscle dynamics in development and repair. Dev Biol 2018; 435:109-121. [PMID: 29397877 DOI: 10.1016/j.ydbio.2018.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Arterial vasculature distributes blood from early embryonic development and provides a nutrient highway to maintain tissue viability. Atherosclerosis, peripheral artery diseases, stroke and aortic aneurysm represent the most frequent causes of death and are all directly related to abnormalities in the function of arteries. Vascular intervention techniques have been established for the treatment of all of these pathologies, yet arterial surgery can itself lead to biological changes in which uncontrolled arterial wall cell proliferation leads to restricted blood flow. In this review we describe the intricate cellular composition of arteries, demonstrating how a variety of distinct cell types in the vascular walls regulate the function of arteries. We provide an overview of the developmental origin of arteries and perivascular cells and focus on cellular dynamics in arterial repair. We summarize the current knowledge of the molecular signaling pathways that regulate vascular smooth muscle differentiation in the embryo and in arterial injury response. Our review aims to highlight the similarities as well as differences between cellular and molecular mechanisms that control arterial development and repair.
Collapse
Affiliation(s)
- Urmas Roostalu
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK.
| | - Jason Kf Wong
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK; Department of Plastic Surgery, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK.
| |
Collapse
|
10
|
Liao M, Yang P, Wang F, Berceli SA, Ali YH, Chan KL, Jiang Z. Smooth muscle cell-specific Tgfbr1 deficiency attenuates neointimal hyperplasia but promotes an undesired vascular phenotype for injured arteries. Physiol Rep 2018; 4:4/23/e13056. [PMID: 27923978 PMCID: PMC5357823 DOI: 10.14814/phy2.13056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/31/2022] Open
Abstract
Neointimal hyperplasia (NIH) and inward wall remodeling cause arterial restenosis and failure of bypass vein grafts. Previous studies from our group suggest that transforming growth factor (TGF) β promotes these pathologies via regulating cell kinetics at the early stage and matrix metabolism at the late stage. Although these temporal TGFβ effects may result from its signaling in different cell groups, the responsible cell type has not been identified. In the current study, we evaluated the effect of smooth muscle cell (SMC)‐specific TGFβ signaling through its type I receptor TGFBR1 on NIH and wall remodeling of the injured femoral arteries (FAs). An inducible Cre/loxP system was employed to delete SMC Tgfbr1 (Tgfbr1iko). Mice not carrying the Cre allele (Tgfbr1f/f) served as controls. The injured FAs were evaluated on d3, d7, and d28 postoperatively. Tgfbr1iko attenuated NIH by 92%, but had insignificant influence on arterial caliber when compared with Tgfbr1f/f controls on d28. This attenuation correlated with greater cellularity and reduced collagen content. Compared with Tgfbr1f/fFAs, however, Tgfbr1ikoFAs exhibited persistent neointimal cell proliferation and cell apoptosis, with both events at a greater rate on d28. Tgfbr1ikoFAs additionally contained fewer SMCs and more inflammatory infiltrates in the neointima and displayed a thicker adventitia than did Tgfbr1f/fFAs. More MMP9 proteins were detected in the adventitia of Tgfbr1ikoFAs than in that of Tgfbr1f/f controls. Our results suggest that disruption of SMC Tgfbr1 inhibits arterial NIH in the short term, but the overall vascular phenotype may not favor long‐term performance of the injured arteries.
Collapse
Affiliation(s)
- Mingmei Liao
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida.,Department of Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Pu Yang
- Department of Surgery, Central South University Xiangya Hospital, Changsha, Hunan, China
| | - Fen Wang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida.,Malcom Randall VA Medical Center, Gainesville, Florida
| | - Yasmin H Ali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida
| | - Kelvin L Chan
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida
| | - Zhihua Jiang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
11
|
Genomic correlates of glatiramer acetate adverse cardiovascular effects lead to a novel locus mediating coronary risk. PLoS One 2017; 12:e0182999. [PMID: 28829817 PMCID: PMC5567477 DOI: 10.1371/journal.pone.0182999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
Glatiramer acetate is used therapeutically in multiple sclerosis but also known for adverse effects including elevated coronary artery disease (CAD) risk. The mechanisms underlying the cardiovascular side effects of the medication are unclear. Here, we made use of the chromosomal variation in the genes that are known to be affected by glatiramer treatment. Focusing on genes and gene products reported by drug-gene interaction database to interact with glatiramer acetate we explored a large meta-analysis on CAD genome-wide association studies aiming firstly, to investigate whether variants in these genes also affect cardiovascular risk and secondly, to identify new CAD risk genes. We traced association signals in a 200-kb region around genomic positions of genes interacting with glatiramer in up to 60 801 CAD cases and 123 504 controls. We validated the identified association in additional 21 934 CAD cases and 76 087 controls. We identified three new CAD risk alleles within the TGFB1 region on chromosome 19 that independently affect CAD risk. The lead SNP rs12459996 was genome-wide significantly associated with CAD in the extended meta-analysis (odds ratio 1.09, p = 1.58×10−12). The other two SNPs at the locus were not in linkage disequilibrium with the lead SNP and by a conditional analysis showed p-values of 4.05 × 10−10 and 2.21 × 10−6. Thus, studying genes reported to interact with glatiramer acetate we identified genetic variants that concordantly with the drug increase the risk of CAD. Of these, TGFB1 displayed signal for association. Indeed, the gene has been associated with CAD previously in both in vivo and in vitro studies. Here we establish genome-wide significant association with CAD in large human samples.
Collapse
|
12
|
Serum Levels of IL-1 β , IL-6, TGF- β , and MMP-9 in Patients Undergoing Carotid Artery Stenting and Regulation of MMP-9 in a New In Vitro Model of THP-1 Cells Activated by Stenting. Mediators Inflamm 2015; 2015:956082. [PMID: 26113783 PMCID: PMC4465715 DOI: 10.1155/2015/956082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 11/19/2022] Open
Abstract
Inflammation plays an important role in the pathophysiological process after carotid artery stenting (CAS). Monocyte is a significant source of inflammatory cytokines in vascular remodeling. Telmisartan could reduce inflammation. In our study, we first found that, after CAS, the serum IL-1β, IL-6, TGF-β, and MMP-9 levels were significantly increased, but only MMP-9 level was elevated no less than 3 months. Second, we established a new in vitro model, where THP-1 monocytes were treated with the supernatants of human umbilical vein endothelial cells (HUVECs) that were scratched by pipette tips, which mimics monocytes activated by mechanical injury of stenting. The treatment enhanced THP-1 cell adhesion, migration and invasion ability, and the phosphorylation of ERK1/2 and Elk-1 and MMP-9 expression were significantly increased. THP-1 cells pretreated with PD98095 (ERK1/2 inhibitor) attenuated the phosphorylation of ERK1/2 and Elk-1 and upregulation of MMP-9, while pretreatment with telmisartan merely decreased the phosphorylation of Elk-1 and MMP-9 expression. These results suggested that IL-1β, IL-6, TGF-β, and MMP-9 participate in the pathophysiological process after CAS. Our new in vitro model mimics monocytes activated by stenting. MMP-9 expression could be regulated through ERK1/2/Elk-1 pathway, and the protective effects of telmisartan after stenting are partly attributed to its MMP-9 inhibition effects via suppression of Elk-1.
Collapse
|
13
|
Wu ML, Chen CH, Lin YT, Jheng YJ, Ho YC, Yang LT, Chen L, Layne MD, Yet SF. Divergent signaling pathways cooperatively regulate TGFβ induction of cysteine-rich protein 2 in vascular smooth muscle cells. Cell Commun Signal 2014; 12:22. [PMID: 24674138 PMCID: PMC3973006 DOI: 10.1186/1478-811x-12-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/23/2014] [Indexed: 01/31/2023] Open
Abstract
Background Vascular smooth muscle cells (VSMCs) of the arterial wall play a critical role in the development of occlusive vascular diseases. Cysteine-rich protein 2 (CRP2) is a VSMC-expressed LIM-only protein, which functionally limits VSMC migration and protects against pathological vascular remodeling. The multifunctional cytokine TGFβ has been implicated to play a role in the pathogenesis of atherosclerosis through numerous downstream signaling pathways. We showed previously that TGFβ upregulates CRP2 expression; however, the detailed signaling mechanisms remain unclear. Results TGFβ treatment of VSMCs activated both Smad2/3 and ATF2 phosphorylation. Individually knocking down Smad2/3 or ATF2 pathways with siRNA impaired the TGFβ induction of CRP2, indicating that both contribute to CRP2 expression. Inhibiting TβRI kinase activity by SB431542 or TβRI knockdown abolished Smad2/3 phosphorylation but did not alter ATF2 phosphorylation, indicating while Smad2/3 phosphorylation was TβRI-dependent ATF2 phosphorylation was independent of TβRI. Inhibiting Src kinase activity by SU6656 suppressed TGFβ-induced RhoA and ATF2 activation but not Smad2 phosphorylation. Blocking ROCK activity, the major downstream target of RhoA, abolished ATF2 phosphorylation and CRP2 induction but not Smad2 phosphorylation. Furthermore, JNK inhibition with SP600125 reduced TGFβ-induced ATF2 (but not Smad2) phosphorylation and CRP2 protein expression while ROCK inhibition blocked JNK activation. These results indicate that downstream of TβRII, Src family kinase-RhoA-ROCK-JNK signaling pathway mediates TβRI-independent ATF2 activation. Promoter analysis revealed that the TGFβ induction of CRP2 was mediated through the CRE and SBE promoter elements that were located in close proximity. Conclusions Our results demonstrate that two signaling pathways downstream of TGFβ converge on the CRE and SBE sites of the Csrp2 promoter to cooperatively control CRP2 induction in VSMCs, which represents a previously unrecognized mechanism of VSMC gene induction by TGFβ.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
14
|
Appleby CE, Ranjzad P, Williams PD, Kakar SJ, Driessen A, Tijsma E, Fernandes B, Heagerty AM, Kingston PA. Periluminal expression of a secreted transforming growth factor-β type II receptor inhibits in-stent neointima formation following adenovirus-mediated stent-based intracoronary gene transfer. Hum Gene Ther 2014; 25:443-51. [PMID: 24483849 DOI: 10.1089/hum.2013.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) has been shown unequivocally to enhance neointima formation in carotid and ileo-femoral arteries. In our previous studies, however, TGF-β1 expression in coronary arteries actually reduced neointima formation without affecting luminal loss postangioplasty, while expression of a TGF-β1 antagonist (RIIs) in balloon-injured coronary arteries reduced luminal loss without affecting neointima formation. These observed effects may be a consequence of the mode of coronary artery gene transfer employed, but they may also represent differences in the modes of healing of coronary, carotid, and ileo-femoral arteries after endoluminal injury. To help clarify whether a gene therapy strategy to antagonize TGF-β might have application within the coronary vasculature, we have investigated the effect of high-level periluminal expression of RIIs using stent-based adenovirus-mediated intracoronary gene transfer. Porcine coronary arteries were randomized to receive a custom-made CoverStent preloaded with saline only, or with 1×10(9) infectious units of adenovirus expressing RIIs or β-galactosidase (lacZ). Vessels were analyzed 28 days poststenting, at which time angiographic in-stent diameter was significantly greater in RIIs-treated arteries, and in-stent luminal loss significantly reduced. Computerized morphometric minimum in-stent lumen area was ~300% greater in RIIs-exposed vessels than in lacZ or saline-only groups. This was because of significantly reduced neointima formation in the RIIs group. RIIs had no demonstrable effect on cellular proliferation or apoptosis, but greater normalized neointimal/medial collagen content was observed in RIIs-exposed arteries. These data highlight the qualitatively similar effect of TGF-β antagonism on neointima formation in injured coronary and noncoronary arteries, and suggest that since cellular proliferation is unaffected, TGF-β1 antagonism might prevent in-stent restenosis without the delayed healing that is associated with drug-eluting stents in current clinical use.
Collapse
Affiliation(s)
- Clare E Appleby
- 1 Institute of Cardiovascular Sciences, Manchester Academic Health Science Centre, The University of Manchester , Manchester M13 9NT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Strickland DK, Au DT, Cunfer P, Muratoglu SC. Low-density lipoprotein receptor-related protein-1: role in the regulation of vascular integrity. Arterioscler Thromb Vasc Biol 2014; 34:487-98. [PMID: 24504736 DOI: 10.1161/atvbaha.113.301924] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling receptor that is widely expressed. In the liver, LRP1 plays an important role in regulating the plasma levels of blood coagulation factor VIII (fVIII) by mediating its uptake and subsequent degradation. fVIII is a key plasma protein that is deficient in hemophilia A and circulates in complex with von Willebrand factor. Because von Willebrand factor blocks binding of fVIII to LRP1, questions remain on the molecular mechanisms by which LRP1 removes fVIII from the circulation. LRP1 also regulates cell surface levels of tissue factor, a component of the extrinsic blood coagulation pathway. This occurs when tissue factor pathway inhibitor bridges the fVII/tissue factor complex to LRP1, resulting in rapid LRP1-mediated internalization and downregulation of coagulant activity. In the vasculature LRP1 also plays protective role from the development of aneurysms. Mice in which the lrp1 gene is selectively deleted in vascular smooth muscle cells develop a phenotype similar to the progression of aneurysm formation in human patient, revealing that these mice are ideal for investigating molecular mechanisms associated with aneurysm formation. Studies suggest that LRP1 protects against elastin fiber fragmentation by reducing excess protease activity in the vessel wall. These proteases include high-temperature requirement factor A1, matrix metalloproteinase 2, matrix metalloproteinase-9, and membrane associated type 1-matrix metalloproteinase. In addition, LRP1 regulates matrix deposition, in part, by modulating levels of connective tissue growth factor. Defining pathways modulated by LRP1 that lead to aneurysm formation and defining its role in thrombosis may allow for more effective intervention in patients.
Collapse
Affiliation(s)
- Dudley K Strickland
- From the Center for Vascular and Inflammatory Disease (D.K.S., D.T.A., P.C., S.C.M.), Departments of Surgery (D.K.S.), and Physiology (S.C.M.), University of Maryland School of Medicine, Baltimore
| | | | | | | |
Collapse
|
16
|
Martin-Garrido A, Williams HC, Lee M, Seidel-Rogol B, Ci X, Dong JT, Lassègue B, Martín AS, Griendling KK. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation. PLoS One 2013; 8:e79657. [PMID: 24236150 PMCID: PMC3827379 DOI: 10.1371/journal.pone.0079657] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.
Collapse
Affiliation(s)
- Abel Martin-Garrido
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Holly C. Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Minyoung Lee
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Bonnie Seidel-Rogol
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Xinpei Ci
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, United States of America
| | - Jin-Tang Dong
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, United States of America
| | - Bernard Lassègue
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Alejandra San Martín
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
| | - Kathy K. Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Gene therapy for cardiovascular disease: perspectives and potential. Vascul Pharmacol 2012; 58:174-81. [PMID: 23142171 DOI: 10.1016/j.vph.2012.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is the most frequent cause of mortality in the western world, accounting for over 800,000 premature deaths per year in the EU alone. Cardiovascular disease is the second most common application for gene therapy clinical trials, which most frequently employ adenovirus serotype 5 (Ad5)-based vectors as delivery vehicles. Although interactions of Ad5 vectors with circulating proteins and cells can limit their efficacy after systemic administration, local gene delivery strategies show great potential in the cardiovascular setting, notably in the context of vascular delivery. Here we review the pathogenesis of bypass graft failure and in-stent restenosis, identifying potential therapeutic targets and discussing recent advances in the field of adenovirus biology and retargeting that, in concert, will potentially translate in coming years to more effective gene therapies for cardiovascular applications.
Collapse
|
18
|
Sun DX, Liu Z, Tan XD, Cui DX, Wang BS, Dai XW. Nanoparticle-mediated local delivery of an antisense TGF-β1 construct inhibits intimal hyperplasia in autogenous vein grafts in rats. PLoS One 2012; 7:e41857. [PMID: 22860019 PMCID: PMC3408488 DOI: 10.1371/journal.pone.0041857] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/26/2012] [Indexed: 11/18/2022] Open
Abstract
Background Intimal hyperplasia is one of the most important causes of vascular graft failure. Numerous studies have correlated transforming growth factor-β1 (TGF-β1) with extracellular matrix (ECM) deposition, a hallmark of intimal thickening. Principal Findings In the present study, we performed immunohistochemistry, RT-PCR, and Western blot to examine the dynamic expression of TGF-β1, TGF-β1 receptor type I (TGF-β RI), matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) during intimal hyperplasia in grafted veins of a rat model generated by grafting a portion of the right internal jugular vein to the ipisiliary caroid artery. Additionally, we determined whether nanoparticle-mediated delivery of a TGF-β1 antisense-expressing construct prevented TGF-β1 expression and intimal hyperplasia in grafted veins. In grafted veins, the expression of TGF-β1 significantly increased on day 3 after transplantation, peaked on day 7, slightly decreased on day 14, and returned to baseline levels on day 28. The positive expression of TGF-β RI in grafted veins remarkably increased on day 7, peaked on day 14, and decreased thereafter. MMP-1 expression decreased significantly, while TIMP-1 expression increased, significantly on days 14 and 28. Nanoparticle-mediated delivery of a TGF-β1 antisense-expressing construct down-regulated TGF-β1 expression and inhibited intimal hyperplasia in grafted veins. Conclusions Our findings provide further evidence that TGF-β1 plays an integral role in the development of intimal hyperplasia after vascular injury. Nanoparticle-mediated delivery of a TGF-β1 antisense-expressing construct is a feasible strategy to target TGF-β1-induced intimal thickening.
Collapse
Affiliation(s)
- Da-Xin Sun
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- * E-mail: (XWD); (DXS)
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiao-Dong Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Dong-Xu Cui
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Bao-Sheng Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xian-Wei Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
- * E-mail: (XWD); (DXS)
| |
Collapse
|
19
|
Zhang HF, Zhao KJ, Xu Y, Hong B, Zhao WY, Liu JM, Huang QH. Lysyl oxidase polymorphisms and ischemic stroke—a case control study. Mol Biol Rep 2012; 39:9391-7. [DOI: 10.1007/s11033-012-1803-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 06/09/2012] [Indexed: 11/29/2022]
|
20
|
Laçin N(T, Utkan G(G, Kutsal T, Pişkin E. A Thermo-Sensitive NIPA-Based Co-Polymer and Monosize Polycationic Nanoparticle for Non-viral Gene Transfer to Smooth Muscle Cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:577-92. [DOI: 10.1163/092050611x555272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Nelisa (Türkoğlu) Laçin
- a Advanced Technology Education, Research and Application Center, Mersin University, 33343 Mersin, Turkey.
| | - Güldem (Guven) Utkan
- b TUBITAK MAM, Genetic Engineering and Biotechnology Institute, Enzyme and Fermentation Technology Laboratory, Gebze, 41470 Kocaeli, Turkey
| | - Tülin Kutsal
- c Chemical Engineering Department and Bioengineering Division, Hacettepe University, 06800 Ankara, Turkey
| | - Erhan Pişkin
- d Chemical Engineering Department and Bioengineering Division, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
21
|
Guo X, Chen SY. Transforming growth factor-β and smooth muscle differentiation. World J Biol Chem 2012; 3:41-52. [PMID: 22451850 PMCID: PMC3312200 DOI: 10.4331/wjbc.v3.i3.41] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 02/05/2023] Open
Abstract
Transforming growth factor (TGF)-β family members are multifunctional cytokines regulating diverse cellular functions such as growth, adhesion, migration, apoptosis, and differentiation. TGF-βs elicit their effects via specific type I and type II serine/threonine kinase receptors and intracellular Smad transcription factors. Knockout mouse models for the different components of the TGF-β signaling pathway have revealed their critical roles in smooth muscle cell (SMC) differentiation. Genetic studies in humans have linked mutations in these signaling components to specific cardiovascular disorders such as aorta aneurysm and congenital heart diseases due to SMC defects. In this review, the current understanding of TGF-β function in SMC differentiation is highlighted, and the role of TGF-β signaling in SMC-related diseases is discussed.
Collapse
Affiliation(s)
- Xia Guo
- Xia Guo, Shi-You Chen, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States
| | | |
Collapse
|
22
|
Muratoglu SC, Belgrave S, Lillis AP, Migliorini M, Robinson S, Smith E, Zhang L, Strickland DK. Macrophage LRP1 suppresses neo-intima formation during vascular remodeling by modulating the TGF-β signaling pathway. PLoS One 2011; 6:e28846. [PMID: 22174911 PMCID: PMC3235159 DOI: 10.1371/journal.pone.0028846] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 11/16/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Vascular remodeling in response to alterations in blood flow has been shown to modulate the formation of neo-intima. This process results from a proliferative response of vascular smooth muscle cells and is influenced by macrophages, which potentiate the development of the intima. The LDL receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that recognizes a number of ligands including apoE-containing lipoproteins, proteases and protease-inhibitor complexes. Macrophage LRP1 is known to influence the development of atherosclerosis, but its role in vascular remodeling has not been investigated. METHODOLOGY/PRINCIPAL FINDINGS To define the contribution of macrophage LRP1 to vascular remodeling, we generated macrophage specific LRP1-deficient mice (macLRP1-/-) on an LDL receptor (LDLr) knock-out background. Using a carotid ligation model, we detected a 2-fold increase in neointimal thickening and a 2-fold increase in the intima/media ratio in macLRP1-/- mice. Quantitative RT-PCR arrays of the remodeled vessel wall identified increases in mRNA levels of the TGF-β2 gene as well as the Pdgfa gene in macLRP1-/- mice which could account for the alterations in vascular remodeling. Immunohistochemistry analysis revealed increased activation of the TGF-β signaling pathway in macLRP1-/- mice. Further, we observed that LRP1 binds TGF-β2 and macrophages lacking LRP1 accumulate twice as much TGF-β2 in conditioned media. Finally, TNF-α modulation of the TGF-β2 gene in macrophages is attenuated when LRP1 is expressed. Together, the data reveal that LRP1 modulates both the expression and protein levels of TGF-β2 in macrophages. CONCLUSIONS/SIGNIFICANCE Our data demonstrate that macrophage LRP1 protects the vasculature by limiting remodeling events associated with flow. This appears to occur by the ability of macrophage LRP1 to reduce TGF-β2 protein levels and to attenuate expression of the TGF-β2 gene resulting in suppression of the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Selen Catania Muratoglu
- Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Shani Belgrave
- Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Anna P. Lillis
- Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mary Migliorini
- Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Susan Robinson
- Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Elizabeth Smith
- Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Li Zhang
- Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
23
|
Ma L, Song H, Zhang M, Zhang D. Lysyl oxidase G473A polymorphism is associated with increased risk of coronary artery diseases. DNA Cell Biol 2011; 30:1033-7. [PMID: 21612403 DOI: 10.1089/dna.2011.1261] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lysyl oxidase (LOX) plays a crucial role in the maintenance of extracellular matrix stability and could participate in vascular remodeling associated with cardiovascular diseases. A novel polymorphism in the LOX gene, G473A (rs1800449), was identified. The objective of this study was to investigate the association between LOX G473A polymorphism and susceptibility to coronary artery diseases (CADs) in Chinese population. The LOX variant G473A was detected by polymerase chain reaction-restriction fragment length polymorphism in 656 CAD cases and 718 age-matched controls. Frequencies of LOX 473 AA genotype and A allele were significantly higher in patients with CAD than in controls (odds ratio = 1.93, 95% confidence interval 1.26-2.95, p = 0.002; and odds ratio = 1.38, 95% confidence interval 1.15-1.67, p = 0.001). Our data suggest that the G473A polymorphism of LOX gene is associated with increased susceptibility to CAD.
Collapse
Affiliation(s)
- Lan Ma
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | | | | | | |
Collapse
|
24
|
Suwanabol PA, Kent KC, Liu B. TGF-β and restenosis revisited: a Smad link. J Surg Res 2011; 167:287-97. [PMID: 21324395 PMCID: PMC3077463 DOI: 10.1016/j.jss.2010.12.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/12/2010] [Accepted: 12/15/2010] [Indexed: 01/17/2023]
Abstract
Despite novel surgical therapies for the treatment of atherosclerosis, restenosis continues to be a significant impediment to the long-term success of vascular interventions. Transforming growth factor-beta (TGF-β), a family of cytokines found to be up-regulated at sites of arterial injury, has long been implicated in restenosis; a role that has largely been attributed to TGF-β-mediated vascular fibrosis. However, emerging data indicate that the role of TGF-β in intimal thickening and arterial remodeling, the critical components of restenosis, is complex and multidirectional. Recent advancements have clarified the basic signaling pathway of TGF-β, making evident the need to redefine the precise role of this family of cytokines and its primary signaling pathway, Smad, in restenosis. Unraveling TGF-β signaling in intimal thickening and arterial remodeling will pave the way for a clearer understanding of restenosis and the development of innovative pharmacological therapies.
Collapse
Affiliation(s)
- Pasithorn A. Suwanabol
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - K. Craig Kent
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Bo Liu
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
25
|
Osherov AB, Gotha L, Cheema AN, Qiang B, Strauss BH. Proteins mediating collagen biosynthesis and accumulation in arterial repair: novel targets for anti-restenosis therapy. Cardiovasc Res 2011; 91:16-26. [PMID: 21245059 DOI: 10.1093/cvr/cvr012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Events contributing to restenosis after coronary interventions include platelet aggregation, inflammatory cell infiltration, growth factor release, and accumulation of smooth muscle cells (SMCs) and extracellular matrix (ECM). The ECM is composed of various collagen subtypes and proteoglycans and over time constitutes the major component of the mature restenotic plaque. The pathophysiology of collagen accumulation in the ECM during arterial restenosis is reviewed. Factors regulating collagen synthesis and degradation, including various cytokines and growth factors involved in the process, may be targets for therapies aimed at prevention of in-stent restenosis.
Collapse
Affiliation(s)
- Azriel B Osherov
- Schulich Heart Program, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Room A-253, Toronto, Ontario, Canada M4N 3M5
| | | | | | | | | |
Collapse
|
26
|
Westerweel PE, van Velthoven CTJ, Nguyen TQ, den Ouden K, de Kleijn DPV, Goumans MJ, Goldschmeding R, Verhaar MC. Modulation of TGF-β/BMP-6 expression and increased levels of circulating smooth muscle progenitor cells in a type I diabetes mouse model. Cardiovasc Diabetol 2010; 9:55. [PMID: 20858224 PMCID: PMC2954908 DOI: 10.1186/1475-2840-9-55] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/21/2010] [Indexed: 12/03/2022] Open
Abstract
Background Diabetic patients experience exaggerated intimal hyperplasia after endovascular procedures. Recently it has been shown that circulating smooth muscle progenitor cells (SPC) contribute to intimal hyperplasia. We hypothesized that SPC differentiation would be increased in diabetes and focused on modulation of TGF-β/BMP-6 signaling as potential underlying mechanism. Methods We isolated SPC from C57Bl/6 mice with streptozotocin-induced diabetes and controls. SPC differentiation was evaluated by immunofluorescent staining for αSMA and collagen Type I. SPC mRNA expression of TGF-β and BMP-6 was quantified using real-time PCR. Intima formation was assessed in cuffed femoral arteries. Homing of bone marrow derived cells to cuffed arterial segments was evaluated in animals transplanted with bone marrow from GFP-transgenic mice. Results We observed that SPC differentiation was accelerated and numeric outgrowth increased in diabetic animals (24.6 ± 8.8 vs 8.3 ± 1.9 per HPF after 10 days, p < 0.05). Quantitative real-time PCR showed increased expression of TGF-β and decreased expression of the BMP-6 in diabetic SPC. SPC were MAC-3 positive, indicative of monocytic lineage. Intima formation in cuffed arterial segments was increased in diabetic mice (intima/media ratio 0.68 ± 0.15 vs 0.29 ± 0.06, p < 0.05). In GFP-chimeric mice, bone marrow derived cells were observed in the neointima (4.4 ± 3.3 cells per section) and particularly in the adventitia (43.6 ± 9.3 cells per section). GFP-positive cells were in part MAC-3 positive, but rarely expressed α-SMA. Conclusions In conclusion, in a diabetic mouse model, SPC levels are increased and SPC TGF-β/BMP-6 expression is modulated. Altered TGF-β/BMP-6 expression is known to regulate smooth muscle cell differentiation and may facilitate SPC differentiation. This may contribute to exaggerated intimal hyperplasia in diabetes as bone marrow derived cells home to sites of neointima formation.
Collapse
Affiliation(s)
- Peter E Westerweel
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Barbato JE, Kibbe MR, Tzeng E. The Emerging Role of Gene Therapy in the Treatment of Cardiovascular Diseases. Crit Rev Clin Lab Sci 2010. [DOI: 10.1080/10408360390250621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Inhibition of Matrix Deposition: A New Strategy for Prevention of Restenosis After Balloon Angioplasty. J Cardiovasc Pharmacol 2010; 55:213-8. [DOI: 10.1097/fjc.0b013e3181ce97f6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Chung IM, Kim J, Pak YK, Jang Y, Yang WI, Han I, Park SJ, Park SW, Huh J, Wight TN, Ueno H. Blockade of TGF-β by catheter-based local intravascular gene delivery does not alter the in-stent neointimal response, but enhances inflammation in pig coronary arteries. Int J Cardiol 2010; 145:468-75. [PMID: 20053468 DOI: 10.1016/j.ijcard.2009.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 10/16/2009] [Accepted: 11/29/2009] [Indexed: 01/10/2023]
Abstract
BACKGROUND Extracellular matrix (ECM) accumulation significantly contributes to in-stent restenosis. In this regard, transforming growth factor (TGF)-β, a positive regulator of ECM deposition, may be implicated in in-stent restenosis. The goal of this study was to assess the effect of blockade of TGF-β on stent-induced restenosis in porcine coronary arteries. METHODS An adenovirus expressing the ectodomain of the TGF-β type II receptor (AdTβ-ExR) was applied onto a coronary arterial segment of a pig (n=10) using an Infiltrator, followed by stent deployment. Controls consisted of adenoviruses expressing β-galactosidase (AdLacZ) or phosphate-buffered saline (PBS) applied onto the other segment (n=10) of the same pig. RESULTS Computer-based pathological morphometric analysis of stented coronary arteries, performed 4 weeks after stenting, demonstrated no significant difference in morphometric parameters such as in-stent neointimal area and % area stenosis between the AdTβ-ExR group and control (n=7 for each). However the AdTβ-ExR group had increased neointimal cell density, infiltration of inflammatory cells mostly consisting of CD3+ T cell, accumulation of hyaluronan, cell proliferation rate, and adventitial matrix metalloproteinase-1 (MMP-1) expression compared with control. The expression of connective tissue growth factor mRNA, measured by reverse transcription PCR, in cultured rat arterial smooth muscle cells was inhibited by AdTβ-ExR at moi 60. CONCLUSIONS Blockade of TGF-β by catheter-based local intravascular gene delivery does not reduce stent-induced neointima formation 4 weeks after stenting in spite of modest inhibition of ECM accumulation, but it induces vascular inflammation and associated pathological changes that may potentially aggravate lesion progression.
Collapse
Affiliation(s)
- Ick-Mo Chung
- Division of Cardiology, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chronic angiotensin-(1–7) administration improves vascular remodeling after angioplasty through the regulation of the TGF-β/Smad signaling pathway in rabbits. Biochem Biophys Res Commun 2009; 389:138-44. [DOI: 10.1016/j.bbrc.2009.08.112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 08/20/2009] [Indexed: 11/21/2022]
|
31
|
Adenovirus-mediated gene transfer of fibromodulin inhibits neointimal hyperplasia in an organ culture model of human saphenous vein graft disease. Gene Ther 2009; 16:1154-62. [PMID: 19474808 DOI: 10.1038/gt.2009.63] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Poor long-term graft patency remains a major limitation of coronary artery bypass grafting using saphenous vein aortocoronary grafts. Neointimal hyperplasia (NIH) represents the principal mechanism of graft failure; a substantial body of evidence implicates transforming growth factor-beta1 (TGF-beta1) in the pathogenesis of NIH. The small leucine-rich proteoglycans decorin and fibromodulin possess TGF-beta-antagonist activity to differing extents and with differing avidities for the isoforms of TGF-beta. We compared their ability to inhibit NIH in an ex vivo model of human saphenous vein organ culture following adenovirus-mediated gene transfer. Surgically prepared human saphenous vein segments received adenovirus expressing fibromodulin (Ad5-Fmod), decorin (Ad5-Dcn), beta-galactosidase (Ad5-lacZ) or vehicle-only. Computerized morphometry 14 days after infection revealed significantly reduced neointimal area, neointimal thickness and intima/media ratio in Ad5-Fmod- and Ad5-Dcn-infected veins. Each parameter was significantly smaller in Ad5-Fmod- than in Ad5-Dcn-exposed segments. Fibrillar collagen content and levels of biologically active TGF-beta were lower in vessels receiving Ad5-Fmod or Ad5-Dcn than in those receiving Ad5-lacZ or vehicle-only. Fibromodulin is a more potent inhibitor of NIH in cultured human saphenous vein than decorin and offers potential therapeutic benefits in saphenous vein graft failure (and possibly in other forms of accelerated atherosclerosis) by reduction of associated neointima formation.
Collapse
|
32
|
Yao EH, Fukuda N, Ueno T, Matsuda H, Nagase H, Matsumoto Y, Sugiyama H, Matsumoto K. A pyrrole-imidazole polyamide targeting transforming growth factor-beta1 inhibits restenosis and preserves endothelialization in the injured artery. Cardiovasc Res 2008; 81:797-804. [PMID: 19098300 DOI: 10.1093/cvr/cvn355] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Although the use of drug-eluting stents (DESs) has been shown to limit neointima hyperplasia, currently available DESs may adversely affect re-endothelialization. To evaluate whether a novel gene silencer pyrrole-imidazole (PI) polyamide targeting transforming growth factor (TGF)-beta1 is a candidate agent for the DESs, we examined the effects of PI polyamide targeting the TGF-beta1 promoter on neointimal formation in rat carotid artery after balloon injury. METHODS AND RESULTS PI polyamide was designed to span the boundary of the AP-1 binding site of the TGF-beta1 promoter. After inducing balloon injury to arteries, incubation with PI polyamide was carried out for 10 min. Neointimal thickening and re-endothelialization were evaluated at 21 days after injury. Fluoresceinisothiocyanate-labelled PI polyamide was distributed into most of the nuclei in the injured artery without any delivery reagents. PI polyamide (100 microg) significantly inhibited neointimal thickening at 21 days after injury by 57%. PI polyamide targeting TGF-beta1 significantly decreased the expression of TGF-beta1 mRNA and protein in the artery at 3 days after injury and also suppressed the expression of connective tissue growth factor (CTGF), fibronectin, collagen type 1, and lectin-like ox-LDL receptor-1 mRNAs. A morphometric analysis showed that PI polyamide targeting TGF-beta1 accelerated re-endothelialization in the injured artery. CONCLUSION These findings suggest that the synthetic PI polyamide targeting the TGF-beta1 promoter may have the potential to suppress neointimal hyperplasia after arterial injury by the down-regulation of TGF-beta1 and CTGF and the reduction of the extracellular matrix. As a result, PI polyamide targeting TGF-beta1 may therefore be a potentially effective agent for the treatment of in-stent restenosis, as a candidate agent for the next-generation DES.
Collapse
Affiliation(s)
- En-Hui Yao
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rodríguez C, Martínez-González J, Raposo B, Alcudia JF, Guadall A, Badimon L. Regulation of lysyl oxidase in vascular cells: lysyl oxidase as a new player in cardiovascular diseases. Cardiovasc Res 2008; 79:7-13. [PMID: 18469024 DOI: 10.1093/cvr/cvn102] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lysyl oxidase (LOX) plays a crucial role in the maintenance of extracellular matrix stability and could participate in vascular remodelling associated with cardiovascular diseases. Evidence from in vitro and in vivo studies shows that LOX downregulation is associated with the endothelial dysfunction characteristic of earlier stages of the atherosclerotic process. Conversely, upregulation of this enzyme in vascular cells could induce neointimal thickening in atherosclerosis and restenosis. In fact, LOX is chemotactic for vascular smooth muscle cells and monocytes, is modulated by proliferative stimulus in these cells, and could control other cellular processes such as gene expression and cell transformation. Furthermore, it is conceivable that LOX downregulation could underlie plaque instability and contribute to the destructive remodelling that takes place during aneurysm development. Overall, LOX could play a key role in vascular homeostasis and, hence, it emerges as a new player in cardiovascular diseases. This review addresses the experimental evidence related to the role of LOX in vascular disorders and the potential benefits of controlling its expression and function.
Collapse
Affiliation(s)
- Cristina Rodríguez
- Centro de Investigación Cardiovascular, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Antoni Ma Claret 167, 08025 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
34
|
Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta Mol Basis Dis 2008; 1782:197-228. [PMID: 18313409 DOI: 10.1016/j.bbadis.2008.01.006] [Citation(s) in RCA: 504] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 12/14/2022]
Abstract
Transforming growth factor beta (TGF-beta) superfamily signaling pathways are ubiquitous and essential regulators of cellular processes including proliferation, differentiation, migration, and survival, as well as physiological processes, including embryonic development, angiogenesis, and wound healing. Alterations in these pathways, including either germ-line or somatic mutations or alterations in the expression of members of these signaling pathways often result in human disease. Appropriate regulation of these pathways is required at all levels, particularly at the ligand level, with either a deficiency or an excess of specific TGF-beta superfamily ligands resulting in human disease. TGF-beta superfamily ligands and members of these TGF-beta superfamily signaling pathways also have emerging roles as diagnostic, prognostic or predictive markers for human disease. Ongoing studies will enable targeting of TGF-beta superfamily signaling pathways for the chemoprevention and treatment of human disease.
Collapse
Affiliation(s)
- Kelly J Gordon
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | | |
Collapse
|
35
|
Effects of pentoxifylline on the vascular response to injury after angioplasty in rabbit iliac arteries. Basic Res Cardiol 2007; 103:257-64. [DOI: 10.1007/s00395-007-0694-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 11/22/2007] [Indexed: 10/22/2022]
|
36
|
Yokote K, Kobayashi K, Saito Y. The role of Smad3-dependent TGF-beta signal in vascular response to injury. Trends Cardiovasc Med 2007; 16:240-5. [PMID: 16980181 DOI: 10.1016/j.tcm.2006.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/04/2006] [Accepted: 04/11/2006] [Indexed: 11/29/2022]
Abstract
Transforming growth factor (TGF)-beta is a multifunctional cytokine involved in the regulation of proliferation, differentiation, migration, and survival of many different cell types. The role of TGF-beta in atherosclerosis has been intensively studied, but the precise function of the downstream signals in this disease entity remains unclear. We recently discovered that mice lacking Smad3, a major downstream mediator of TGF-beta, show enhanced neointimal hyperplasia with decreased matrix deposition in response to vascular injury. This review summarizes the current view on involvement of TGF-beta in atherosclerotic vascular disease and discusses the role of Smad3-dependent TGF-beta signal in vascular response to injury.
Collapse
Affiliation(s)
- Koutaro Yokote
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Chiba University Hospital, Chiba, Japan.
| | | | | |
Collapse
|
37
|
Brewster L, Brey E, Greisler H. Cardiovascular gene delivery: The good road is awaiting. Adv Drug Deliv Rev 2006; 58:604-29. [PMID: 16769148 PMCID: PMC3337725 DOI: 10.1016/j.addr.2006.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 03/24/2006] [Indexed: 01/13/2023]
Abstract
Atherosclerotic cardiovascular disease is a leading cause of death worldwide. Despite recent improvements in medical, operative, and endovascular treatments, the number of interventions performed annually continues to increase. Unfortunately, the durability of these interventions is limited acutely by thrombotic complications and later by myointimal hyperplasia followed by progression of atherosclerotic disease over time. Despite improving medical management of patients with atherosclerotic disease, these complications appear to be persisting. Cardiovascular gene therapy has the potential to make significant clinical inroads to limit these complications. This article will review the technical aspects of cardiovascular gene therapy; its application for promoting a functional endothelium, smooth muscle cell growth inhibition, therapeutic angiogenesis, tissue engineered vascular conduits, and discuss the current status of various applicable clinical trials.
Collapse
Affiliation(s)
- L.P. Brewster
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - E.M. Brey
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
- Research and Surgical Services, Edward J. Hines Jr. V.A. Hospital, Hines, IL, 60141, USA
| | - H.P. Greisler
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Medical Center, Maywood, IL, 60153, USA
- Research and Surgical Services, Edward J. Hines Jr. V.A. Hospital, Hines, IL, 60141, USA
- Corresponding author. Loyola University Medical Center, Department of Surgery, 2160 South First Avenue, Maywood, IL, 60153, USA. Tel.: +1 708 216 8541; fax: +1 708 216 6300. (H.P. Greisler)
| |
Collapse
|
38
|
Miyake T, Aoki M, Shiraya S, Tanemoto K, Ogihara T, Kaneda Y, Morishita R. Inhibitory effects of NFkappaB decoy oligodeoxynucleotides on neointimal hyperplasia in a rabbit vein graft model. J Mol Cell Cardiol 2006; 41:431-40. [PMID: 16762361 DOI: 10.1016/j.yjmcc.2006.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/05/2006] [Accepted: 04/11/2006] [Indexed: 11/22/2022]
Abstract
Autologous vein remains the commonly used conduit for bypass grafts; however, neointimal hyperplasia is known to be one of the major disease processes in vein graft failure. In this study, we focused on the important role of NFkappaB which controls the expression of numerous genes for various cytokines and adhesion molecules in the mechanism of graft failure. Thus, we investigated the inhibitory effect of NFkappaB decoy oligodeoxynucleotides (ODN) on vein graft failure in a rabbit hypercholesterolemic model. Jugular vein to carotid artery interposition grafts in rabbits were transfected intraoperatively with NFkappaB decoy ODN (40 micromol/l) by ex-vivo pressure-mediated transfection (300 mm Hg, 10 min). Treatment with NFkappaB decoy ODN significantly suppressed intimal hyperplasia 4 weeks after vein implantation as compared to scrambled decoy ODN, and increased medial thickness, leading to a significant reduction in intima-to-media ratio. Treatment with NFkappaB decoy ODN significantly inhibited the recruitment of macrophages and the proliferation of vascular smooth muscle cells (VSMC), while apoptosis in VSMC was significantly increased by NFkappaB decoy ODN. In addition, a study of vascular reactivity demonstrated that transfection of grafts with NFkappaB decoy ODN significantly improved endothelium-mediated vasorelaxation as compared to scrambled decoy ODN. Here, we demonstrated that inhibition of NFkappaB activation using decoy ODN inhibited the development of neointimal hyperplasia, followed by suppression of inflammatory changes and accumulation of VSMC in the neointima of rabbit vein grafts. The present study raises the possibility of a novel strategy for prevention of graft failure.
Collapse
Affiliation(s)
- Takashi Miyake
- Division of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Bobek V, Taltynov O, Pinterova D, Kolostova K. Gene therapy of the ischemic lower limb--Therapeutic angiogenesis. Vascul Pharmacol 2006; 44:395-405. [PMID: 16698324 DOI: 10.1016/j.vph.2006.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 03/01/2006] [Indexed: 11/26/2022]
Abstract
The limitations of surgical revascularisation and pharmacological treatment in peripheral arterial occlusive disease (PAOD) are well recognized. Therapeutic options for critical leg ischemia are consequently limited to percutaneous transluminal angioplasty (PTA) or surgical revascularisation. Unfortunately, many patients with critical leg ischemia are poor candidates for either procedure. Therapeutic angiogenesis is a novel promising tool to treat these patients. Experimental and clinical and trials of gene transfer for therapeutic angiogenesis have already shown some clinical efficacy. This review is focused on gene transfer techniques in preclinical and clinical therapeutic angiogenesis, angiogenic growth factors, vectors, delivery methods and routes. The results of clinical and experimental studies, safety and side effects of gene therapy, and the perspectives of future research are also discussed.
Collapse
Affiliation(s)
- Vladimir Bobek
- Third Faculty of Medicine, Charles University Prague, Department of Tumor Biology, Czech Republic.
| | | | | | | |
Collapse
|
40
|
González JM, Andrés V. Cytostatic gene therapy for occlusive vascular disease. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.4.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Rezaee F, Casetta B, Levels JHM, Speijer D, Meijers JCM. Proteomic analysis of high-density lipoprotein. Proteomics 2006; 6:721-30. [PMID: 16419016 DOI: 10.1002/pmic.200500191] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Plasma lipoproteins, such as high-density lipoprotein (HDL), can serve as carriers for a wide range of proteins that are involved in processes such as lipid metabolism, thrombosis, inflammation and atherosclerosis. The identification of HDL-associated proteins is essential with regards to understanding these processes at the molecular level. In this study, a combination of proteomic approaches including 1-DE and 2-DE MALDI-TOF, isotope-coded affinity tag and Western blot analysis were employed to identify proteins associated with human HDL. To minimize potential losses of HDL-associated proteins during isolation, a one-step ultracentrifugation technique was applied and the quality of purified HDL was confirmed by nephelometry, high-performance gel chromatography, and Western blot analysis. MS analysis revealed the presence of 56 HDL-associated proteins including all known apolipoproteins and lipid transport proteins. Furthermore, proteins involved in hemostasis and thrombosis, the immune and complement system were found. In addition, growth factors, receptors, hormone-associated proteins and many other proteins were found to be associated with HDL. Our approach thus resulted in the identification of a large number of proteins associated with HDL. The combination of proteomic technologies proved to be a powerful and comprehensive tool for the identification of proteins on HDL.
Collapse
Affiliation(s)
- Farhad Rezaee
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
Wang M, Zhang J, Spinetti G, Jiang LQ, Monticone R, Zhao D, Cheng L, Krawczyk M, Talan M, Pintus G, Lakatta EG. Angiotensin II activates matrix metalloproteinase type II and mimics age-associated carotid arterial remodeling in young rats. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1429-42. [PMID: 16251426 PMCID: PMC1603787 DOI: 10.1016/s0002-9440(10)61229-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Increased angiotensin II (Ang II), matrix metalloproteinase type II (MMP2), and sympathetic activity accompany age-associated arterial remodeling. To analyze this relationship, we infused a low subpressor dose of Ang II into young (8 months old) rats. This increased carotid arterial MMP2 transcription, translation, and activation, as well as transforming growth factor-beta1 activity and collagen deposition. A higher Ang II concentration, which increased arterial pressure to that of old (30 months old) untreated rats, produced carotid media thickening and intima infiltration by vascular smooth muscle cells (VSMCs). Ex vivo, Ang II increased MMP2 activity in carotid rings from young rats to that of untreated old rats. Ang II also increased the ability of early passage VSMCs from young rats to invade a synthetic basement membrane, similar to that of untreated VSMCs from old rats. The MMP inhibitor GM6001 and the AT1 receptor antagonist Losartan inhibited these effects. The alpha-adrenoreceptor agonist phenylephrine increased arterial Ang II protein, causing MMP2 activation and intima and media thickening. Exposure of young VSMCs to phenylephrine in vitro increased Ang II protein and MMP2 activity to the levels of old VSMCs; Losartan abolished these effects. Thus, Ang II-induced effects on MMP2, transforming growth factor-beta1, collagen, and VSMCs are central to the arterial remodeling that accompanies advancing age.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Sciences, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Dr., 3-B-03, Baltimore, MD 21224-6825, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Edo MD, Roldán M, Andrés V. Cyclin-dependent protein kinases as therapeutic targets in cardiovascular disease. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.5.579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Heckenkamp J, Aleksic M, Gawenda M, Breuer S, Brabender J, Mahdavi A, Aydin F, Brunkwall JS. Modulation of Human Adventitial Fibroblast Function by Photodynamic Therapy of Collagen Matrix. Eur J Vasc Endovasc Surg 2004; 28:651-9. [PMID: 15531203 DOI: 10.1016/j.ejvs.2004.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2004] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Photodynamic therapy (PDT) is a promising strategy to limit restenosis. PDT depletes the resident cells from the vessel wall without adventitial cell ingrowth. This study was undertaken to further explore the mechanisms by which PDT of matrix acts on key mechanisms in the development of restenosis. MATERIALS AND METHODS Control and PDT-treated collagen type-I matrix gels were prepared. Thereafter, untreated human fibroblasts were seeded on matrix gels (n=12). Fibroblast proliferation and invasive migration were quantified by calibrated phase contrast microscopy. Fibroblast bFGF and TGF-beta1 mRNA expression were analyzed using a quantitative real-time reverse transcription polymerase chain reaction. RESULTS Fibroblast proliferation on PDT-treated matrix gels was reduced by 30 and 76% after 3 and 7 days, respectively (3 days: P</=0.01, 7 days: P< or =0.001). PDT of matrix gels led to a 47% reduction of migration after 3 days and 51% after 7 days (P< or =0.001). PDT led to a 77% reduction of fibroblast TGF-beta1 mRNA (P< or =0.02) and to a 79% reduction of bFGF mRNA (P< or =0.03). CONCLUSIONS PDT of matrix-induced reduction of bFGF and TGF-beta1 mRNA levels may be important mechanisms of reducing fibroblast proliferation and invasive migration and thus the development of restenosis. These newly identified mechanisms highlight PDT's pleiotropic effects on the vessel wall and its potential clinical value.
Collapse
Affiliation(s)
- J Heckenkamp
- Division of Vascular Surgery, University of Cologne, Koeln, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ikeda Y, Imai Y, Kumagai H, Nosaka T, Morikawa Y, Hisaoka T, Manabe I, Maemura K, Nakaoka T, Imamura T, Miyazono K, Komuro I, Nagai R, Kitamura T. Vasorin, a transforming growth factor beta-binding protein expressed in vascular smooth muscle cells, modulates the arterial response to injury in vivo. Proc Natl Acad Sci U S A 2004; 101:10732-7. [PMID: 15247411 PMCID: PMC490003 DOI: 10.1073/pnas.0404117101] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth factors, cell-surface receptors, adhesion molecules, and extracellular matrix proteins play critical roles in vascular pathophysiology by affecting growth, migration, differentiation, and survival of vascular cells. In a search for secreted and cell-surface molecules expressed in the cardiovascular system, by using a retrovirus-mediated signal sequence trap method, we isolated a cell-surface protein named vasorin. Vasorin is a typical type I membrane protein, containing tandem arrays of a characteristic leucine-rich repeat motif, an epidermal growth factor-like motif, and a fibronectin type III-like motif at the extracellular domain. Expression analyses demonstrated that vasorin is predominantly expressed in vascular smooth muscle cells, and that its expression is developmentally regulated. To clarify biological functions of vasorin, we searched for its binding partners and found that vasorin directly binds to transforming growth factor (TGF)-beta and attenuates TGF-beta signaling in vitro. Vasorin expression was down-regulated during vessel repair after arterial injury, and reversal of vasorin down-regulation, by using adenovirus-mediated in vivo gene transfer, significantly diminished injury-induced vascular lesion formation, at least in part, by inhibiting TGF-beta signaling in vivo. These results suggest that down-regulation of vasorin expression contributes to neointimal formation after vascular injury and that vasorin modulates cellular responses to pathological stimuli in the vessel wall. Thus, vasorin is a potential therapeutic target for vascular fibroproliferative disorders.
Collapse
Affiliation(s)
- Yuichi Ikeda
- Division of Hematopoietic Factors and Department of Advanced Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Blalock TD, Yuan R, Lewin AS, Schultz GS. Hammerhead ribozyme targeting connective tissue growth factor mRNA blocks transforming growth factor-beta mediated cell proliferation. Exp Eye Res 2004; 78:1127-36. [PMID: 15109919 DOI: 10.1016/j.exer.2004.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 01/23/2004] [Indexed: 11/17/2022]
Abstract
PURPOSE Excessive scarring following trauma or surgery of cornea, conjunctiva or retina can greatly impair visual outcome. At present, no agents are clinically available that selectively reduce activity of genes that regulate fibrosis. Connective tissue growth factor (CTGF) has been linked to fibrosis in several tissues, including cornea and conjunctiva. In this study, hammerhead ribozymes targeting CTGF mRNA were synthesized, kinetic parameters were measured, and the effect on TGF-beta-mediated cell proliferation was measured in cultured human fibroblasts. METHODS The mRNA sequence of human CTGF was scanned for potential hammerhead ribozyme cleavage sites, and predicted secondary folding structures around the sites were calculated. Synthetic 12mer ribozymes and 33mer oligonucleotide mRNA targets corresponding to two sites were synthesized, and kinetic constants calculated from Hanes-Wolff plots of in vitro cleavage reactions. The ribozyme with higher percentage cleavage and kinetic rate was cloned into an expression plasmid (pTR-UF21) and stably transfected into cultured human fibroblasts. An inactive ribozyme plasmid served as a negative control. The effects of the ribozyme on expression of TGF-beta-induced CTGF mRNA and protein levels were measured using ELISA and real-time TaqMan quantitative RT-PCR. Finally, the effect of the CTGF ribozyme on TGF-beta-mediated proliferation of fibroblasts was measured using a non-radioactive cell proliferation microtiter assay. RESULTS Of the eight potential hammerhead ribozyme cleavage sites in human CTGF mRNA, two sites (CHR 745, and CHR 859) were identified with optimal secondary folding. CHR 859 cleaved 94% of the target mRNA, compared to 46% cleavage for CHR 745 after 16 hr of reaction. CHR 859 had a K(m) of 1.56 microM and a K(cat) of 2.97 min(-1), while CHR 745 had a K(m) of 7.80 microM and a K(cat) of 5.7 min(-1). The turnover numbers (K(cat)/K(m)) of CHR 859 and CHR 745 were 1.9 x 10(6) M min(-1) and 7.4 x 10(5) M min(-1), respectively, indicating CHR 859 is 2.6 times more efficient than CHR 745 in destroying CTGF mRNA. Stable transfection of CHR 859 into human fibroblasts reduced CTGF mRNA levels 55% and protein levels 72% compared to the inactive ribozyme control. Furthermore, TGF-beta-induced cell proliferation was reduced 90% in fibroblasts stably transfected with CHR 859 compared to control cell groups. CONCLUSIONS The CHR 859 hammerhead ribozyme cleaved human CTGF mRNA with high kinetic efficiency in vitro, effectively reduced levels of CTGF mRNA and protein in cultured human fibroblasts, and blocked TGF-beta-induced cell proliferation without nonspecific toxicity. These data support the concept that CTGF mediates TGF-beta-induced cell proliferation, and imply that regulating CTGF expression with ribozymes may be effective in reducing ocular scarring.
Collapse
Affiliation(s)
- Timothy D Blalock
- Department of Ob/Gyn, College of Medicine, Institute for Wound Research, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0294, USA.
| | | | | | | |
Collapse
|
47
|
Ohtani K, Egashira K, Usui M, Ishibashi M, Hiasa KI, Zhao Q, Aoki M, Kaneda Y, Morishita R, Takeshita A. Inhibition of neointimal hyperplasia after balloon injury by cis-element 'decoy' of early growth response gene-1 in hypercholesterolemic rabbits. Gene Ther 2004; 11:126-32. [PMID: 14712296 DOI: 10.1038/sj.gt.3302153] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early growth response factor-1 (Egr-1) is a transcription factor that is rapidly activated after vascular injury and thus might contribute to vascular proliferation and inflammation. We hypothesized that Egr-1 might therefore be a therapeutic target against restenosis. Hypercholesterolemic rabbits were intraluminally administered synthetic DNA as a 'decoy' against Egr-1 immediately after carotid artery balloon injury. Efficient transfection was confirmed by the delivery of a fluorescence-labeled decoy. Gel mobility-shift assay showed increased Egr-1 activity after balloon injury and its prevention by Egr-1 decoy transfection in vivo. Egr-1 decoy transfection attenuated early inflammation and proliferation and later neointimal hyperplasia. In addition, Egr-1 decoy transfection reduced gene expression and protein production of Egr-1-dependent genes such as platelet-derived growth factor-B, transforming growth factor-beta1, and monocyte chemoattractant protein-1. The Egr-1 pathway has an essential role in the pathogenesis of neointimal hyperplasia after balloon injury in hypercholesterolemic rabbits. This decoy strategy is a potential practical form of therapy for human restenosis.
Collapse
Affiliation(s)
- K Ohtani
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ando H, Fukuda N, Kotani M, Yokoyama SI, Kunimoto S, Matsumoto K, Saito S, Kanmatsuse K, Mugishima H. Chimeric DNA–RNA hammerhead ribozyme targeting transforming growth factor-β1 mRNA inhibits neointima formation in rat carotid artery after balloon injury. Eur J Pharmacol 2004; 483:207-14. [PMID: 14729108 DOI: 10.1016/j.ejphar.2003.10.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We designed and synthesized a chimeric DNA-RNA hammerhead ribozyme targeting transforming growth factor (TGF)-beta 1 mRNA and found that this ribozyme effectively and specifically inhibited growth of vascular smooth muscle cells. We examined the effects of the chimeric DNA-RNA hammerhead ribozyme targeting TGF-beta 1 mRNA on neointima formation and investigated the underlying mechanism to develop a possible gene therapy for coronary artery restenosis after percutaneous transluminal coronary angioplasty. Expression of mRNAs encoding TGF-beta 1, p27kip1, and connective tissue growth factor (CTGF) in carotid artery increased after balloon injury. Fluorescein-isothiocyanate (FITC)-labeled ribozyme was taken up into the midlayer smooth muscle of the injured carotid artery. Both 2 and 5 mg of ribozyme reduced neointima formation by 65% compared to that of controls. Ribozyme markedly decreased expression of TGF-beta 1 mRNA and protein in injured vessel. Mismatch ribozyme had no effect on expression of TGF-beta 1 mRNA protein in injured vessel. Ribozyme markedly decreased expression of fibronectin, p27kip1, and CTGF mRNAs in injured vessel, whereas a mismatch ribozyme had no effect on these mRNAs. These findings indicate that the chimeric DNA-RNA hammerhead ribozyme targeting TGF-beta 1 mRNA inhibits neointima formation in rat carotid artery after balloon injury with suppression of TGF-beta 1 and inhibition of extracellular matrix and CTGF. In conclusion, the hammerhead ribozyme against TGF-beta 1 may have promise as a therapy for coronary artery restenosis after percutaneous transluminal coronary angioplasty.
Collapse
Affiliation(s)
- Hideyuki Ando
- Second Department of Internal Medicine, Nihon University School of Medicine, Ooyaguchi-kami 30-1, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Li JM, Fan LM, Shah A, Brooks G. Targeting alphavbeta3 and alpha5beta1 for gene delivery to proliferating VSMCs: synergistic effect of TGF-beta1. Am J Physiol Heart Circ Physiol 2003; 285:H1123-31. [PMID: 12915391 DOI: 10.1152/ajpheart.00103.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TGF-beta1 levels increase after vascular injury and promote vascular smooth muscle cell (VSMC) proliferation. We define a nonviral gene delivery system that targets alphavbeta3 and alpha5beta1 integrins that are expressed on proliferating VSMCs and strongly induced by TGF-beta1. A 15-amino acid RGDNP-containing peptide from American Pit Viper venom was linked to a Lys(16) peptide as vector (molossin vector) and complexed with Lipofectamine or fusogenic peptide for delivery of luciferase or beta-galactosidase reporter genes to primary cultures of human, rabbit, and rat VSMCs. Preincubation of VSMCs with TGF-beta1 for 24 h, but not with PDGF-BB, interferon-gamma, TNF-alpha, nor PMA, increased alphavbeta3 and alpha5beta1 expressions on VSMCs and enhanced gene delivery of molossin vector. Thus beta-galactosidase activity increased from 35 +/- 5% (controls) to 75 +/- 5% after TGF-beta1 treatment, and luciferase activity increased fourfold over control values. Potential use of this system in vessel bypass surgery was examined in an ex vivo rat aortic organ culture model after endothelial damage. Molossin vector system delivered beta-galactosidase to VSMCs in the vessel wall that remained for up to 12 days posttransfection. The molossin vector system, when combined with TGF-beta1, enhances gene delivery to proliferating VSMCs and might have clinical applications for certain vasculoproliferative diseases.
Collapse
Affiliation(s)
- Jian-Mei Li
- Department of Cardiology, Institute of Liver Studies, King's College London, London SE5 9PJ, UK
| | | | | | | |
Collapse
|
50
|
Abstract
Lower vertebrates such as newt and zebrafish are able to reactivate high levels of cardiomyocyte cell cycle activity in response to experimental injury resulting in apparent regeneration. In contrast, damaged myocardium is replaced by fibrotic scar tissue in higher vertebrates. This process compromises the contractile function of the surviving myocardium, ultimately leading to heart failure. Various strategies are being pursued to augment myocyte number in the diseased hearts. One approach entails the reactivation of cell cycle in surviving cardiomyocytes. Here, we provide a summary of methods to monitor cell cycle activity, and interventions demonstrating positive cell cycle effects in cardiomyocytes as well as discuss the potential utility of cell cycle regulation to augment myocyte number in diseased hearts.
Collapse
Affiliation(s)
- Joshua D Dowell
- Wells Center for Pediatric Research and Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202-5225, USA
| | | | | |
Collapse
|