1
|
Tuleta I, Hanna A, Humeres C, Aguilan JT, Sidoli S, Zhu F, Frangogiannis NG. Fibroblast-specific TGF-β signaling mediates cardiac dysfunction, fibrosis, and hypertrophy in obese diabetic mice. Cardiovasc Res 2024; 120:2047-2063. [PMID: 39373248 PMCID: PMC12097992 DOI: 10.1093/cvr/cvae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 10/08/2024] Open
Abstract
AIMS Transforming growth factor (TGF)-β is up-regulated in the diabetic myocardium and may mediate fibroblast activation. We aimed at examining the role of TGF-β-induced fibroblast activation in the pathogenesis of diabetic cardiomyopathy. METHODS AND RESULTS We generated lean and obese db/db mice with fibroblast-specific loss of TbR2, the Type 2 receptor-mediating signaling through all three TGF-β isoforms, and mice with fibroblast-specific Smad3 disruption. Systolic and diastolic function, myocardial fibrosis, and hypertrophy were assessed. Transcriptomic studies and in vitro experiments were used to dissect mechanisms of fibroblast activation. Fibroblast-specific TbR2 loss attenuated systolic and diastolic dysfunction in db/db mice. The protective effects of fibroblast TbR2 loss in db/db mice were associated with attenuated fibrosis and reduced cardiomyocyte hypertrophy, suggesting that in addition to their role in fibrous tissue deposition, TGF-β-stimulated fibroblasts may also exert paracrine actions on cardiomyocytes. Fibroblast-specific Smad3 loss phenocopied the protective effects of fibroblast TbR2 loss in db/db mice. Db/db fibroblasts had increased expression of genes associated with oxidative response (such as Fmo2, encoding flavin-containing monooxygenase 2), matricellular genes (such as Thbs4 and Fbln2), and Lox (encoding lysyl oxidase). Ingenuity pathway analysis (IPA) predicted that neurohumoral mediators, cytokines, and growth factors (such as AGT, TGFB1, and TNF) may serve as important upstream regulators of the transcriptomic profile of diabetic mouse fibroblasts. IPA of scRNA-seq data identified TGFB1, p53, MYC, PDGF-BB, EGFR, and WNT3A/CTNNB1 as important upstream regulators underlying fibroblast activation in db/db hearts. Comparison of the transcriptome of fibroblasts from db/db mice with fibroblast-specific Smad3 loss and db/db Smad3 fl/fl controls identified Thbs4 [encoding thrombospondin-4 (TSP-4), a marker of activated fibroblasts] as a candidate diabetes-induced fibrogenic mediator. However, in vitro experiments showed no significant activating effects of matricellular or intracellular TSP-4 on cardiac fibroblasts. CONCLUSION Fibroblast-specific TGF-β/Smad3 signaling mediates ventricular fibrosis, hypertrophy, and dysfunction in Type 2 diabetes.
Collapse
MESH Headings
- Animals
- Fibrosis
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Signal Transduction
- Transforming Growth Factor beta/metabolism
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/etiology
- Obesity/metabolism
- Obesity/physiopathology
- Obesity/genetics
- Obesity/pathology
- Cells, Cultured
- Ventricular Function, Left
- Mice, Inbred C57BL
- Smad3 Protein/metabolism
- Smad3 Protein/genetics
- Disease Models, Animal
- Ventricular Remodeling
- Male
- Myocardium/metabolism
- Myocardium/pathology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/pathology
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cardiomegaly/physiopathology
- Cardiomegaly/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Mice
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/genetics
- Mice, Knockout
- Paracrine Communication
Collapse
Affiliation(s)
- Izabela Tuleta
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Anis Hanna
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Claudio Humeres
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Jennifer T Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Fenglan Zhu
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Kuprytė M, Lesauskaitė V, Siratavičiūtė V, Utkienė L, Jusienė L, Pangonytė D. Expression of Osteopontin and Gremlin 1 Proteins in Cardiomyocytes in Ischemic Heart Failure. Int J Mol Sci 2024; 25:8240. [PMID: 39125809 PMCID: PMC11311846 DOI: 10.3390/ijms25158240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
A relevant role of osteopontin (OPN) and gremlin 1 (Grem1) in regulating cardiac tissue remodeling and formation of heart failure (HF) are documented, with the changes of OPN and Grem1 levels in blood plasma due to acute ischemia, ischemic heart disease-induced advanced HF or dilatative cardiomyopathy being the primary focus in most of these studies. However, knowledge on the early OPN and Grem1 proteins expression changes within cardiomyocytes during remodeling due to chronic ischemia remains insufficient. The aim of this study was to determine the OPN and Grem1 proteins expression changes in human cardiomyocytes at different stages of ischemic HF. A semi-quantitative immunohistochemical analysis was performed in 105 myocardial tissue samples obtained from the left cardiac ventricles. Increased OPN immunostaining intensity was already detected in the stage A HF group, compared to the control group (p < 0.001), and continued to increase in the stage B HF (p < 0.001), achieving the peak of immunostaining in the stages C/D HF group (p < 0.001). Similar data of Grem1 immunostaining intensity changes in cardiomyocytes were documented. Significantly positive correlations were detected between OPN, Grem1 expression in cardiomyocytes and their diameter as well as the length, in addition to positive correlation between OPN and Grem1 expression changes within cardiomyocytes. These novel findings suggest that OPN and Grem1 contribute significantly to reorganization of cellular geometry from the earliest stage of cardiomyocyte remodeling, providing new insights into the ischemic HF pathogenesis.
Collapse
Affiliation(s)
- Milda Kuprytė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.K.); (V.S.); (L.U.); (L.J.)
| | - Vaiva Lesauskaitė
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Vitalija Siratavičiūtė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.K.); (V.S.); (L.U.); (L.J.)
| | - Lina Utkienė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.K.); (V.S.); (L.U.); (L.J.)
| | - Lina Jusienė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.K.); (V.S.); (L.U.); (L.J.)
| | - Dalia Pangonytė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.K.); (V.S.); (L.U.); (L.J.)
| |
Collapse
|
3
|
Su Z, Sun JY, Gao M, Sun W, Kong X. Molecular mechanisms and potential therapeutic targets in the pathogenesis of hypertension in visceral adipose tissue induced by a high-fat diet. Front Cardiovasc Med 2024; 11:1380906. [PMID: 38689862 PMCID: PMC11058983 DOI: 10.3389/fcvm.2024.1380906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Background Hypertension (HTN) presents a significant global public health challenge with diverse causative factors. The accumulation of visceral adipose tissue (VAT) due to a high-fat diet (HFD) is an independent risk factor for HTN. While various studies have explored pathogenic mechanisms, a comprehensive understanding of impact of VAT on blood pressure necessitates bioinformatics analysis. Methods Datasets GSE214618 and GSE188336 were acquired from the Gene Expression Omnibus and analyzed to identify shared differentially expressed genes between HFD-VAT and HTN-VAT. Gene Ontology enrichment and protein-protein interaction analyses were conducted, leading to the identification of hub genes. We performed molecular validation of hub genes using RT-qPCR, Western-blotting and immunofluorescence staining. Furthermore, immune infiltration analysis using CIBERSORTx was performed. Results This study indicated that the predominant characteristic of VAT in HTN was related to energy metabolism. The red functional module was enriched in pathways associated with mitochondrial oxidative respiration and ATP metabolism processes. Spp1, Postn, and Gpnmb in VAT were identified as hub genes on the pathogenic mechanism of HTN. Proteins encoded by these hub genes were closely associated with the target organs-specifically, the resistance artery, aorta, and heart tissue. After treatment with empagliflozin, there was a tendency for Spp1, Postn, and Gpnmb to decrease in VAT. Immune infiltration analysis confirmed that inflammation and immune response may not be the main mechanisms by which visceral adiposity contributes to HTN. Conclusions Our study pinpointed the crucial causative factor of HTN in VAT following HFD. Spp1, Postn, and Gpnmb in VAT acted as hub genes that promote elevated blood pressure and can be targets for HTN treatment. These findings contributed to therapeutic strategies and prognostic markers for HTN.
Collapse
Affiliation(s)
- Zhenyang Su
- School of Medicine, Southeast University, Nanjing, China
| | - Jin-Yu Sun
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Min Gao
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Xiangqing Kong
- School of Medicine, Southeast University, Nanjing, China
- Department of Cardiology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Robinson JA, Toribio M, Quinaglia T, Awadalla M, Talathi R, Durbin CG, Alhallak I, Alagpulinsa DA, Fourman LT, Suero-Abreu GA, Nelson MD, Stanley TL, Longenecker CT, Szczepaniak LS, Jerosch-Herold M, Neilan TG, Zanni MV, Burdo TH. Plasma osteopontin relates to myocardial fibrosis and steatosis and to immune activation among women with HIV. AIDS 2023; 37:305-310. [PMID: 36541642 PMCID: PMC9782710 DOI: 10.1097/qad.0000000000003417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Women with HIV (WWH) have heightened heart failure risk. Plasma OPN (osteopontin) is a powerful predictor of heart failure outcomes in the general population. Limited data exist on relationships between plasma OPN and surrogates of HIV-associated heart failure risk. DESIGN Prospective, cross-sectional. METHODS We analyzed relationships between plasma OPN and cardiac structure/function (assessed using cardiovascular magnetic resonance imaging) and immune activation (biomarkers and flow cytometry) among 20 WWH and 14 women without HIV (WWOH). RESULTS Plasma OPN did not differ between groups. Among WWH, plasma OPN related directly to the markers of cardiac fibrosis, growth differentiation factor-15 (ρ = 0.51, P = 0.02) and soluble interleukin 1 receptor-like 1 (ρ = 0.45, P = 0.0459). Among WWH (but not among WWOH or the whole group), plasma OPN related directly to both myocardial fibrosis (ρ = 0.49, P = 0.03) and myocardial steatosis (ρ = 0.46, P = 0.0487). Among the whole group and WWH (and not among WWOH), plasma OPN related directly to the surface expression of C-X3-C motif chemokine receptor 1 (CX3CR1) on nonclassical (CD14-CD16+) monocytes (whole group: ρ = 0.36, P = 0.04; WWH: ρ = 0.46, P = 0.04). Further, among WWH and WWOH (and not among the whole group), plasma OPN related directly to the surface expression of CC motif chemokine receptor 2 (CCR2) on inflammatory (CD14+CD16+) monocytes (WWH: ρ = 0.54, P = 0.01; WWOH: ρ = 0.60, P = 0.03), and in WWH, this held even after controlling for HIV-specific parameters. CONCLUSION Among WWH, plasma OPN, a powerful predictor of heart failure outcomes, related to myocardial fibrosis and steatosis and the expression of CCR2 and CX3CR1 on select monocyte subpopulations. OPN may play a role in heart failure pathogenesis among WWH. CLINICALTRIALSGOV REGISTRATION NCT02874703.
Collapse
Affiliation(s)
- Jake A Robinson
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | | | - Thiago Quinaglia
- Cardiovascular Imaging Research Center (CIRC), Department of Radiology and Division of Cardiology
| | - Magid Awadalla
- Cardiovascular Imaging Research Center (CIRC), Department of Radiology and Division of Cardiology
| | | | | | | | - David A Alagpulinsa
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | | | - Michael D Nelson
- Applied Physiology and Advanced Imaging Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX
| | | | | | | | - Michael Jerosch-Herold
- Division of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tomas G Neilan
- Cardiovascular Imaging Research Center (CIRC), Department of Radiology and Division of Cardiology
| | | | - Tricia H Burdo
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
5
|
Schroeder ME, Batan D, Gonzalez Rodriguez A, Speckl KF, Peters DK, Kirkpatrick BE, Hach GK, Walker CJ, Grim JC, Aguado BA, Weiss RM, Anseth KS. Osteopontin activity modulates sex-specific calcification in engineered valve tissue mimics. Bioeng Transl Med 2023; 8:e10358. [PMID: 36684107 PMCID: PMC9842038 DOI: 10.1002/btm2.10358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with aortic valve stenosis (AVS) have sexually dimorphic phenotypes in their valve tissue, where male valvular tissue adopts a calcified phenotype and female tissue becomes more fibrotic. The molecular mechanisms that regulate sex-specific calcification in valvular tissue remain poorly understood. Here, we explored the role of osteopontin (OPN), a pro-fibrotic but anti-calcific bone sialoprotein, in regulating the calcification of female aortic valve tissue. Recognizing that OPN mediates calcification processes, we hypothesized that aortic valvular interstitial cells (VICs) in female tissue have reduced expression of osteogenic markers in the presence of elevated OPN relative to male VICs. Human female valve leaflets displayed reduced and smaller microcalcifications, but increased OPN expression relative to male leaflets. To understand how OPN expression contributes to observed sex dimorphisms in valve tissue, we employed enzymatically degradable hydrogels as a 3D cell culture platform to recapitulate male or female VIC interactions with the extracellular matrix. Using this system, we recapitulated sex differences observed in human tissue, specifically demonstrating that female VICs exposed to calcifying medium have smaller mineral deposits within the hydrogel relative to male VICs. We identified a change in OPN dynamics in female VICs in the presence of calcification stimuli, where OPN deposition localized from the extracellular matrix to perinuclear regions. Additionally, exogenously delivered endothelin-1 to encapsulated VICs increased OPN gene expression in male cells, which resulted in reduced calcification. Collectively, our results suggest that increased OPN in female valve tissue may play a sex-specific role in mitigating mineralization during AVS progression.
Collapse
Affiliation(s)
- Megan E. Schroeder
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Dilara Batan
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Department of BiochemistryUniversity of Colorado BoulderBoulderColoradoUSA
| | - Andrea Gonzalez Rodriguez
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Kelly F. Speckl
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Douglas K. Peters
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Department of Molecular, Cellular, and Developmental BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Medical Scientist Training ProgramUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Grace K. Hach
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Cierra J. Walker
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Materials Science and Engineering ProgramUniversity of Colorado BoulderBoulderColoradoUSA
| | - Joseph C. Grim
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Brian A. Aguado
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Sanford Consortium for Regenerative MedicineLa JollaCaliforniaUSA
| | - Robert M. Weiss
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Kristi S. Anseth
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Materials Science and Engineering ProgramUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
6
|
Abstract
Understanding how macrophages promote myocardial repair can help create new therapies for infarct repair. We aimed to determine what mechanisms underlie the reparative properties of macrophages. Cytokine arrays revealed that neonatal cardiac macrophages from the injured neonatal heart secreted high amounts of osteopontin (OPN). In vitro, recombinant OPN stimulated cardiac cell outgrowth, cardiomyocyte (CM) cell-cycle re-entry, and CM migration. In addition, OPN induced nuclear translocation of the cytoplasmatic yes-associated protein 1 (YAP1) and upregulated transcriptional factors and cell-cycle genes. Significantly, by blocking the OPN receptor CD44, we eliminated the effects of OPN on CMs. OPN also activated the proliferation and migration of non-CM cells: endothelial cells and cardiac mesenchymal stromal cells in vitro. Notably, the significant role of OPN in myocardial healing was demonstrated by impaired healing in OPN-deficient neonatal hearts. Finally, in the adult mice, a single injection of OPN into the border of the ischemic zone induced CM cell-cycle re-entry, improved scar formation, local and global cardiac function, and LV remodelling 30 days after MI. In summary, we have shown, for the first time, that recombinant OPN activates cell-cycle re-entry in CMs. In addition, recombinant OPN stimulates multiple cardiac cells and improves scar formation, LV remodelling, and regional and global function after MI. Therefore, we propose OPN as a new cell-free therapy to optimize infarct repair.
Collapse
|
7
|
Mamazhakypov A, Sartmyrzaeva M, Sarybaev AS, Schermuly R, Sydykov A. Clinical and Molecular Implications of Osteopontin in Heart Failure. Curr Issues Mol Biol 2022; 44:3573-3597. [PMID: 36005141 PMCID: PMC9406846 DOI: 10.3390/cimb44080245] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The matricellular protein osteopontin modulates cell-matrix interactions during tissue injury and healing. A complex multidomain structure of osteopontin enables it not only to bind diverse cell receptors but also to interact with various partners, including other extracellular matrix proteins, cytokines, and growth factors. Numerous studies have implicated osteopontin in the development and progression of myocardial remodeling in diverse cardiac diseases. Osteopontin influences myocardial remodeling by regulating extracellular matrix production, the activity of matrix metalloproteinases and various growth factors, inflammatory cell recruitment, myofibroblast differentiation, cardiomyocyte apoptosis, and myocardial vascularization. The exploitation of osteopontin loss- and gain-of-function approaches in rodent models provided an opportunity for assessment of the cell- and disease-specific contribution of osteopontin to myocardial remodeling. In this review, we summarize the recent knowledge on osteopontin regulation and its impact on various cardiac diseases, as well as delineate complex disease- and cell-specific roles of osteopontin in cardiac pathologies. We also discuss the current progress of therapeutics targeting osteopontin that may facilitate the development of a novel strategy for heart failure treatment.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Meerim Sartmyrzaeva
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Akpay Sh. Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Ralph Schermuly
- Department of Internal Medicine, German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Akylbek Sydykov
- Department of Internal Medicine, German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
- Correspondence:
| |
Collapse
|
8
|
Di Fusco SA, Cianfrocca C, Bisceglia I, Spinelli A, Alonzo A, Mocini E, Gulizia MM, Gabrielli D, Oliva F, Imperoli G, Colivicchi F. Potential pathophysiologic mechanisms underlying the inherent risk of cancer in patients with atherosclerotic cardiovascular disease. Int J Cardiol 2022; 363:190-195. [PMID: 35724799 DOI: 10.1016/j.ijcard.2022.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
Emerging evidence demonstrates an intimate interplay between cardiovascular disease and cancer pathophysiology. The aim of this review is to shed light on the common biological pathways underlying cardiovascular disease and cancer. These common pathways form the basis of "reverse cardio-oncology". We focus on the role of inflammation, stress response, cell proliferation, angiogenesis and tissue remodeling, neurohormonal system activation, and genomic instability as pathogenic pathways shared by cardiovascular disease and cancer. We also discuss shared mediators that may have a potential role as biomarkers for risk prediction in both diseases. Furthermore, we highlight current knowledge on biological pathways and mediators that are upregulated in diabetes and myocardial infarction and may be involved in tumorigenesis. On the basis of the shared pathophysiologic mechanisms, we also suggest an integrated approach to reduce the global burden of both cardiovascular disease and cancer.
Collapse
Affiliation(s)
| | - Cinzia Cianfrocca
- Clinical and Rehabilitation Cardiology Unit, P.O. San Filippo Neri, ASL Roma 1, Rome, Italy
| | - Irma Bisceglia
- Integrated Cardiology Services, Cardio-Thoracic-Vascular Department, San Camillo Hospital, Rome, Italy
| | - Antonella Spinelli
- Clinical and Rehabilitation Cardiology Unit, P.O. San Filippo Neri, ASL Roma 1, Rome, Italy
| | - Alessandro Alonzo
- Clinical and Rehabilitation Cardiology Unit, P.O. San Filippo Neri, ASL Roma 1, Rome, Italy
| | - Edoardo Mocini
- Department of Experimental Medicine, Sapienza University, Rome
| | - Michele Massimo Gulizia
- Cardiology Division, Ospedale Garibaldi-Nesima, Azienda di Rilievo Nazionale e Alta Specializzazione "Garibaldi" Catania, Italy; Fondazione per il Tuo Cuore, Heart Care Foundation, Florence, Italy
| | | | - Fabrizio Oliva
- De Gasperis Cardio Center, Niguarda Hospital, Milano, Italy
| | - Giuseppe Imperoli
- Medicine Unit, Emergency Department, P.O San Filippo Neri, ASL Roma 1, Rome, Italy
| | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Unit, P.O. San Filippo Neri, ASL Roma 1, Rome, Italy
| |
Collapse
|
9
|
Trinh K, Julovi SM, Rogers NM. The Role of Matrix Proteins in Cardiac Pathology. Int J Mol Sci 2022; 23:ijms23031338. [PMID: 35163259 PMCID: PMC8836004 DOI: 10.3390/ijms23031338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) and ECM-regulatory proteins mediate structural and cell-cell interactions that are crucial for embryonic cardiac development and postnatal homeostasis, as well as organ remodeling and repair in response to injury. These proteins possess a broad functionality that is regulated by multiple structural domains and dependent on their ability to interact with extracellular substrates and/or cell surface receptors. Several different cell types (cardiomyocytes, fibroblasts, endothelial and inflammatory cells) within the myocardium elaborate ECM proteins, and their role in cardiovascular (patho)physiology has been increasingly recognized. This has stimulated robust research dissecting the ECM protein function in human health and disease and replicating the genetic proof-of-principle. This review summarizes recent developments regarding the contribution of ECM to cardiovascular disease. The clear importance of this heterogeneous group of proteins in attenuating maladaptive repair responses provides an impetus for further investigation into these proteins as potential pharmacological targets in cardiac diseases and beyond.
Collapse
Affiliation(s)
- Katie Trinh
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sohel M. Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (K.T.); (S.M.J.)
- Faculty of Medicine and Health Sydney, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
10
|
Osteopontin in Cardiovascular Diseases. Biomolecules 2021; 11:biom11071047. [PMID: 34356671 PMCID: PMC8301767 DOI: 10.3390/biom11071047] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Unprecedented advances in secondary prevention have greatly improved the prognosis of cardiovascular diseases (CVDs); however, CVDs remain a leading cause of death globally. These findings suggest the need to reconsider cardiovascular risk and optimal medical therapy. Numerous studies have shown that inflammation, pro-thrombotic factors, and gene mutations are focused not only on cardiovascular residual risk but also as the next therapeutic target for CVDs. Furthermore, recent clinical trials, such as the Canakinumab Anti-inflammatory Thrombosis Outcomes Study trial, showed the possibility of anti-inflammatory therapy for patients with CVDs. Osteopontin (OPN) is a matricellular protein that mediates diverse biological functions and is involved in a number of pathological states in CVDs. OPN has a two-faced phenotype that is dependent on the pathological state. Acute increases in OPN have protective roles, including wound healing, neovascularization, and amelioration of vascular calcification. By contrast, chronic increases in OPN predict poor prognosis of a major adverse cardiovascular event independent of conventional cardiovascular risk factors. Thus, OPN can be a therapeutic target for CVDs but is not clinically available. In this review, we discuss the role of OPN in the development of CVDs and its potential as a therapeutic target.
Collapse
|
11
|
Sun X, Wu J, Qiang B, Romagnuolo R, Gagliardi M, Keller G, Laflamme MA, Li RK, Nunes SS. Transplanted microvessels improve pluripotent stem cell-derived cardiomyocyte engraftment and cardiac function after infarction in rats. Sci Transl Med 2021; 12:12/562/eaax2992. [PMID: 32967972 DOI: 10.1126/scitranslmed.aax2992] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 05/06/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer an unprecedented opportunity to remuscularize infarcted human hearts. However, studies have shown that most hiPSC-CMs do not survive after transplantation into the ischemic myocardial environment, limiting their regenerative potential and clinical application. We established a method to improve hiPSC-CM survival by cotransplanting ready-made microvessels obtained from adipose tissue. Ready-made microvessels promoted a sixfold increase in hiPSC-CM survival and superior functional recovery when compared to hiPSC-CMs transplanted alone or cotransplanted with a suspension of dissociated endothelial cells in infarcted rat hearts. Microvessels showed unprecedented persistence and integration at both early (~80%, week 1) and late (~60%, week 4) time points, resulting in increased vessel density and graft perfusion, and improved hiPSC-CM maturation. These findings provide an approach to cell-based therapies for myocardial infarction, whereby incorporation of ready-made microvessels can improve functional outcomes in cell replacement therapies.
Collapse
Affiliation(s)
- Xuetao Sun
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Jun Wu
- Division of Cardiovascular Surgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Beiping Qiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mark Gagliardi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada.,Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada.,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada.,Division of Cardiovascular Surgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, 101 College St., Toronto, ON M5G 1L7, Canada. .,Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON M5S 3H2, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
12
|
Irion CI, Dunkley JC, John-Williams K, Condor Capcha JM, Shehadeh SA, Pinto A, Loebe M, Webster KA, Brozzi NA, Shehadeh LA. Nuclear Osteopontin Is a Marker of Advanced Heart Failure and Cardiac Allograft Vasculopathy: Evidence From Transplant and Retransplant Hearts. Front Physiol 2020; 11:928. [PMID: 32903540 PMCID: PMC7438570 DOI: 10.3389/fphys.2020.00928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
Background Heart transplant is the gold standard therapy for patients with advanced heart failure. Over 5,500 heart transplants are performed every year worldwide. Cardiac allograft vasculopathy (CAV) is a common complication post-heart transplant which reduces survival and often necessitates heart retransplantation. Post-transplant follow-up requires serial coronary angiography and endomyocardial biopsy (EMB) for CAV and allograft rejection screening, respectively; both of which are invasive procedures. This study aims to determine whether osteopontin (OPN) protein, a fibrosis marker often present in chronic heart disease, represents a novel biomarker for CAV. Methods Expression of OPN was analyzed in cardiac tissue obtained from patients undergoing heart retransplantation using immunofluorescence imaging (n = 20). Tissues from native explanted hearts and three serial follow-up EMB samples of transplanted hearts were also analyzed in five of these patients. Results Fifteen out of 20 patients undergoing retransplantation had CAV. 13/15 patients with CAV expressed nuclear OPN. 5/5 patients with multiple tissue samples expressed nuclear OPN in both 1st and 2nd explanted hearts, while 0/5 expressed nuclear OPN in any of the follow-up EMBs. 4/5 of these patients had an initial diagnosis of dilated cardiomyopathy (DCM). Conclusion Nuclear localization of OPN in cardiomyocytes of patients with CAV was evident at the time of cardiac retransplant as well as in patients with DCM at the time of the 1st transplant. The results implicate nuclear OPN as a novel biomarker for severe CAV and DCM.
Collapse
Affiliation(s)
- Camila Iansen Irion
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Julian C Dunkley
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Krista John-Williams
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - José Manuel Condor Capcha
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Serene A Shehadeh
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Andre Pinto
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Matthias Loebe
- Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Keith A Webster
- Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Nicolas A Brozzi
- Department of Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Lina A Shehadeh
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
13
|
Hitscherich PG, Xie LH, Del Re D, Lee EJ. The effects of macrophages on cardiomyocyte calcium-handling function using in vitro culture models. Physiol Rep 2020; 7:e14137. [PMID: 31301118 PMCID: PMC6640591 DOI: 10.14814/phy2.14137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Following myocardial infarction (MI), myocardial inflammation plays a crucial role in the pathogenesis of MI injury and macrophages are among the key cells activated during the initial phases of the host response regulating the healing process. While macrophages have emerged as attractive effectors in tissue injury and repair, the contribution of macrophages on cardiac cell function and survival is not fully understood due to complexity of the in vivo inflammatory microenvironment. Understanding the key cells involved and how they communicate with one another is of paramount importance for the development of effective clinical treatments. Here, novel in vitro myocardial inflammation models were developed to examine how both direct and indirect interactions with polarized macrophage subsets present in the post-MI microenvironment affect cardiomyocyte function. The indirect model using conditioned medium from polarized macrophage subsets allowed examination of the effects of macrophage-derived factors on stem cell-derived cardiomyocyte function for up to 3 days. The results from the indirect model demonstrated that pro-inflammatory macrophage-derived factors led to a significant downregulation of cardiac troponin T (cTnT) and sarcoplasmic/endoplasmic reticulum calcium ATPase (Serca2) gene expression. It also demonstrated that inhibition of macrophage-secreted matricellular protein, osteopontin (OPN), led to a significant decrease in cardiomyocyte store-operated calcium entry (SOCE). In the direct model, stem cell-derived cardiomyocytes were co-cultured with polarized macrophage subsets for up to 3 days. It was demonstrated that anti-inflammatory macrophages significantly increased cardiomyocyte Ca2+ fractional release while macrophages independent of their subtypes led to significant downregulation of SOCE response in cardiomyocytes. This study describes simplified and controlled in vitro myocardial inflammation models, which allow examination of potential beneficial and deleterious effects of macrophages on cardiomyocytes and vise versa. This can lead to our improved understanding of the inflammatory microenvironment post-MI, otherwise difficult to directly investigate in vivo or by using currently available in vitro models.
Collapse
Affiliation(s)
- Pamela G Hitscherich
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Dominic Del Re
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Eun Jung Lee
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| |
Collapse
|
14
|
Murphy JM, Jeong K, Lim STS. FAK Family Kinases in Vascular Diseases. Int J Mol Sci 2020; 21:ijms21103630. [PMID: 32455571 PMCID: PMC7279255 DOI: 10.3390/ijms21103630] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
In various vascular diseases, extracellular matrix (ECM) and integrin expression are frequently altered, leading to focal adhesion kinase (FAK) or proline-rich tyrosine kinase 2 (Pyk2) activation. In addition to the major roles of FAK and Pyk2 in regulating adhesion dynamics via integrins, recent studies have shown a new role for nuclear FAK in gene regulation in various vascular cells. In particular, FAK primarily localizes within the nuclei of vascular smooth muscle cells (VSMCs) of healthy arteries. However, vessel injury increased FAK localization back to adhesions and elevated FAK activity, leading to VSMC hyperplasia. The study suggested that abnormal FAK or Pyk2 activation in vascular cells may cause pathology in vascular diseases. Here we will review several studies of FAK and Pyk2 associated with integrin signaling in vascular diseases including restenosis, atherosclerosis, heart failure, pulmonary arterial hypertension, aneurysm, and thrombosis. Despite the importance of FAK family kinases in vascular diseases, comprehensive reviews are scarce. Therefore, we summarized animal models involving FAK family kinases in vascular diseases.
Collapse
|
15
|
Yousefi K, Irion CI, Takeuchi LM, Ding W, Lambert G, Eisenberg T, Sukkar S, Granzier HL, Methawasin M, Lee DI, Hahn VS, Kass DA, Hatzistergos KE, Hare JM, Webster KA, Shehadeh LA. Osteopontin Promotes Left Ventricular Diastolic Dysfunction Through a Mitochondrial Pathway. J Am Coll Cardiol 2020; 73:2705-2718. [PMID: 31146816 DOI: 10.1016/j.jacc.2019.02.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) and coincident heart failure with preserved ejection fraction (HFpEF) may constitute a distinct HFpEF phenotype. Osteopontin (OPN) is a biomarker of HFpEF and predictive of disease outcome. We recently reported that OPN blockade reversed hypertension, mitochondrial dysfunction, and kidney failure in Col4a3-/- mice, a model of human Alport syndrome. OBJECTIVES The purpose of this study was to identify potential OPN targets in biopsies of HF patients, healthy control subjects, and human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), and to characterize the cardiac phenotype of Col4a3-/- mice, relate this to HFpEF, and investigate possible causative roles for OPN in driving the cardiomyopathy. METHODS OGDHL mRNA and protein were quantified in myocardial samples from patients with HFpEF, heart failure with reduced ejection fraction, and donor control subjects. OGDHL expression was quantified in hiPS-CMs treated with or without anti-OPN antibody. Cardiac parameters were evaluated in Col4a3-/- mice with and without global OPN knockout or AAV9-mediated delivery of 2-oxoglutarate dehydrogenase-like (Ogdhl) to the heart. RESULTS OGDHL mRNA and protein displayed abnormal abundances in cardiac biopsies of HFpEF (n = 17) compared with donor control subjects (n = 12; p < 0.01) or heart failure with reduced ejection fraction patients (n = 12; p < 0.05). Blockade of OPN in hiPS-CMs conferred increased OGDHL expression. Col4a3-/- mice demonstrated cardiomyopathy with similarities to HFpEF, including diastolic dysfunction, cardiac hypertrophy and fibrosis, pulmonary edema, and impaired mitochondrial function. The cardiomyopathy was ameliorated by Opn-/- coincident with improved renal function and increased expression of Ogdhl. Heart-specific overexpression of Ogdhl in Col4a3-/- mice also improved cardiac function and cardiomyocyte energy state. CONCLUSIONS Col4a3-/- mice present a model of HFpEF secondary to CKD wherein OPN and OGDHL are intermediates, and possibly therapeutic targets.
Collapse
Affiliation(s)
- Keyvan Yousefi
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Camila I Irion
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Wen Ding
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Guerline Lambert
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Trevor Eisenberg
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Sarah Sukkar
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Dong I Lee
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Virginia S Hahn
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Department of Cell Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Keith A Webster
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Vascular Biology Institute and Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Lina A Shehadeh
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Vascular Biology Institute and Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida.
| |
Collapse
|
16
|
Affiliation(s)
| | - Javid Moslehi
- Division of Cardiovascular MedicineClinical PharmacologyCardio‐Oncology ProgramVanderbilt University Medical Center and Vanderbilt‐Ingram Cancer CenterNashvilleTN
- Division of OncologyVanderbilt University Medical Center and Vanderbilt‐Ingram Cancer CenterNashvilleTN
| | - Rudolf A. de Boer
- Department of CardiologyUniversity Medical Center GroningenUniversity of Groningenthe Netherlands
| |
Collapse
|
17
|
Abdelaziz Mohamed I, Gadeau AP, Hasan A, Abdulrahman N, Mraiche F. Osteopontin: A Promising Therapeutic Target in Cardiac Fibrosis. Cells 2019; 8:cells8121558. [PMID: 31816901 PMCID: PMC6952988 DOI: 10.3390/cells8121558] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Osteopontin (OPN) is recognized for its significant roles in both physiological and pathological processes. Initially, OPN was recognized as a cytokine with pro-inflammatory actions. More recently, OPN has emerged as a matricellular protein of the extracellular matrix (ECM). OPN is also known to be a substrate for proteolytic cleavage by several proteases that form an integral part of the ECM. In the adult heart under physiological conditions, basal levels of OPN are expressed. Increased expression of OPN has been correlated with the progression of cardiac remodeling and fibrosis to heart failure and the severity of the condition. The intricate process by which OPN mediates its effects include the coordination of intracellular signals necessary for the differentiation of fibroblasts into myofibroblasts, promoting angiogenesis, wound healing, and tissue regeneration. In this review, we discuss the role of OPN in contributing to the development of cardiac fibrosis and its suitability as a therapeutic target.
Collapse
Affiliation(s)
- Iman Abdelaziz Mohamed
- Visiting Scholar, Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, P.O. Box 12588 Giza Governorate, Egypt;
| | - Alain-Pierre Gadeau
- INSERM, Biology of Cardiovascular Disease, University of Bordeaux, U1034 Pessac, France;
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, P.O. Box 2713 Doha, Qatar;
- Biomedical Research Center (BRC), Qatar University, P.O. Box 2713 Doha, Qatar
| | - Nabeel Abdulrahman
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050 Doha, Qatar;
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Fatima Mraiche
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
- Correspondence:
| |
Collapse
|
18
|
Yang Y, Wang Y, Gao PJ. Osteopontin associated with left ventricular hypertrophy and diastolic dysfunction in essential hypertension. J Hum Hypertens 2019; 34:388-396. [DOI: 10.1038/s41371-019-0246-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
|
19
|
Abstract
The ECM (extracellular matrix) network plays a crucial role in cardiac homeostasis, not only by providing structural support, but also by facilitating force transmission, and by transducing key signals to cardiomyocytes, vascular cells, and interstitial cells. Changes in the profile and biochemistry of the ECM may be critically implicated in the pathogenesis of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. The patterns of molecular and biochemical ECM alterations in failing hearts are dependent on the type of underlying injury. Pressure overload triggers early activation of a matrix-synthetic program in cardiac fibroblasts, inducing myofibroblast conversion, and stimulating synthesis of both structural and matricellular ECM proteins. Expansion of the cardiac ECM may increase myocardial stiffness promoting diastolic dysfunction. Cardiomyocytes, vascular cells and immune cells, activated through mechanosensitive pathways or neurohumoral mediators may play a critical role in fibroblast activation through secretion of cytokines and growth factors. Sustained pressure overload leads to dilative remodeling and systolic dysfunction that may be mediated by changes in the interstitial protease/antiprotease balance. On the other hand, ischemic injury causes dynamic changes in the cardiac ECM that contribute to regulation of inflammation and repair and may mediate adverse cardiac remodeling. In other pathophysiologic conditions, such as volume overload, diabetes mellitus, and obesity, the cell biological effectors mediating ECM remodeling are poorly understood and the molecular links between the primary insult and the changes in the matrix environment are unknown. This review article discusses the role of ECM macromolecules in heart failure, focusing on both structural ECM proteins (such as fibrillar and nonfibrillar collagens), and specialized injury-associated matrix macromolecules (such as fibronectin and matricellular proteins). Understanding the role of the ECM in heart failure may identify therapeutic targets to reduce geometric remodeling, to attenuate cardiomyocyte dysfunction, and even to promote myocardial regeneration.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
20
|
Coculescu BI, Manole G, Dincă GV, Coculescu EC, Berteanu C, Stocheci CM. Osteopontin - a biomarker of disease, but also of stage stratification of the functional myocardial contractile deficit by chronic ischaemic heart disease. J Enzyme Inhib Med Chem 2019; 34:783-788. [PMID: 30843743 PMCID: PMC6407584 DOI: 10.1080/14756366.2019.1587418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The study analyses the significance of the plasmatic values of the OPN dosed to 91 people suffering from diastolic cardiac dysfunction with preserved ejection fraction, thus revealing significant growths of its level compared to the normal value. Despite being a clinical research, its conclusions are a breakthrough, differing from the results of other studies published in the relevant medical literature. We can make this assertion because this study analyses the clinical information given by the circulating values of the OPN, based on experimental models (animals), or on patients with congestive heart failure, which can be identified with the existence of a low systolic flow. The results of our study allow us to assert that the plasmatic values of this glycoprotein lead to its acceptance in the medical practice as a new biomarker that provides indicators regarding the stratification of risk with the patients suffering from heart failure of the diastolic dysfunction type, but whose systolic flow is preserved.
Collapse
Affiliation(s)
- Bogdan-Ioan Coculescu
- a Faculty of Medicine , Titu Maiorescu University , Bucharest , Romania.,b Center for Military Medical Scientific Research , Bucharest , Romania.,c Faculty of General Nursing , Bioterra University , Bucharest , Romania
| | - Gheorghe Manole
- c Faculty of General Nursing , Bioterra University , Bucharest , Romania.,d Clinical Hospital Colentina , Bucharest , Romania
| | | | - Elena Claudia Coculescu
- e Faculty of Dental Medicine , Carol Davila University of Medicine and Pharmacy , Bucharest , Romania
| | | | | |
Collapse
|
21
|
Toba H, Lindsey ML. Extracellular matrix roles in cardiorenal fibrosis: Potential therapeutic targets for CVD and CKD in the elderly. Pharmacol Ther 2019; 193:99-120. [PMID: 30149103 PMCID: PMC6309764 DOI: 10.1016/j.pharmthera.2018.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Whereas hypertension, diabetes, and dyslipidemia are age-related risk factors for cardiovascular disease (CVD) and chronic kidney disease (CKD), aging alone is an independent risk factor. With advancing age, the heart and kidney gradually but significantly undergo inflammation and subsequent fibrosis, which eventually results in an irreversible decline in organ physiology. Through cardiorenal network interactions, cardiac dysfunction leads to and responds to renal injury, and both facilitate aging effects. Thus, a comprehensive strategy is needed to evaluate the cardiorenal aging network. Common hallmarks shared across systems include extracellular matrix (ECM) accumulation, along with upregulation of matrix metalloproteinases (MMPs) including MMP-9. The wide range of MMP-9 substrates, including ECM components and inflammatory cytokines, implicates MMP-9 in a variety of pathological and age-related processes. In particular, there is strong evidence that inflammatory cell-derived MMP-9 exacerbates cardiorenal aging. This review explores the potential therapeutic targets against CVD and CKD in the elderly, focusing on ECM and MMP roles.
Collapse
Affiliation(s)
- Hiroe Toba
- Department of Clinical Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|
22
|
Irion CI, Parrish K, John-Williams K, Gultekin SH, Shehadeh LA. Osteopontin Expression in Cardiomyocytes Is Increased in Pediatric Patients With Sepsis or Pneumonia. Front Physiol 2018; 9:1779. [PMID: 30618794 PMCID: PMC6295581 DOI: 10.3389/fphys.2018.01779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/23/2018] [Indexed: 11/15/2022] Open
Abstract
Sepsis and pneumonia are major causes of death in the United States, and their pathophysiology includes infection with inflammation and immune dysfunction. Both sepsis and pneumonia cause cardiovascular dysfunction. The expression of Osteopontin (OPN) in cardiomyocytes of patients with sepsis or pneumonia, and its role the induced cardiac dysfunction have not been thoroughly investigated. OPN is a matricellular protein synthesized by multiple diseased tissues and cells including cardiomyocytes. Here, we studied the expression of OPN protein using immunofluorescence in human myocardial autopsy tissues from pediatric and mid age or elderly patients with sepsis and/or pneumonia. Fourteen human myocardial tissues from six pediatric patients and eight mid-age or elderly patients were studied. Immunofluorescence was used to investigate the expression of OPN in paraffin-embedded heart sections co-stained with the myocyte markers Actin Alpha 1 (ACTA1) and Myosin Light Chain 2 (MLC2). A quantitative analysis was performed to determine the number of ACTA1 and MLC2 positive cardiomyocytes that express OPN. The results showed that OPN expression was significantly increased in cardiomyocytes in the hearts from pediatric patients with sepsis and/or pneumonia (N = 3) relative to pediatric patients without sepsis/pneumonia (N = 3), or adult to elderly patients with sepsis/pneumonia (N = 5). Among the older septic hearts, higher levels of cardiomyocyte OPN expression was seen only in conjunction with severe coronary arterial occlusion. This is the first study to document increased OPN expression in cardiomyocytes of pediatric subjects with sepsis or pneumonia. Our findings highlight a potentially important role for OPN in sepsis- or pneumonia-mediated cardiac dysfunction in pediatric patients.
Collapse
Affiliation(s)
- Camila Iansen Irion
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Kiera Parrish
- Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Krista John-Williams
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Sakir H Gultekin
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Lina A Shehadeh
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Division of Cardiology, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
23
|
Abdulrahman N, Jaspard-Vinassa B, Fliegel L, Jabeen A, Riaz S, Gadeau AP, Mraiche F. Na +/H + exchanger isoform 1-induced osteopontin expression facilitates cardiac hypertrophy through p90 ribosomal S6 kinase. Physiol Genomics 2018; 50:332-342. [PMID: 29473817 DOI: 10.1152/physiolgenomics.00133.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. One in three cases of heart failure is due to dilated cardiomyopathy. The Na+/H+ exchanger isoform 1 (NHE1), a multifunctional protein and the key pH regulator in the heart, has been demonstrated to be increased in this condition. We have previously demonstrated that elevated NHE1 activity induced cardiac hypertrophy in vivo. Furthermore, the overexpression of active NHE1 elicited modulation of gene expression in cardiomyocytes including an upregulation of myocardial osteopontin (OPN) expression. To determine the role of OPN in inducing NHE1-mediated cardiomyocyte hypertrophy, double transgenic mice expressing active NHE1 and OPN knockout were generated and assessed by echocardiography and the cardiac phenotype. Our studies showed that hearts expressing active NHE1 exhibited cardiac remodeling indicated by increased systolic and diastolic left ventricular internal diameter and increased ventricular volume. Moreover, these hearts demonstrated impaired function with decreased fractional shortening and ejection fraction. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNA was upregulated, and there was an increase in heart cell cross-sectional area confirming the cardiac hypertrophic effect. Moreover, NHE1 transgenic mice also showed increased collagen deposition, upregulation of CD44 and phosphorylation of p90 ribosomal s6 kinase (RSK), effects that were regressed in OPN knockout mice. In conclusion, we developed an interesting comparative model of active NHE1 transgenic mouse lines which express a dilated hypertrophic phenotype expressing CD44 and phosphorylated RSK, effects which were regressed in absence of OPN.
Collapse
Affiliation(s)
| | | | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta , Canada
| | | | - Sadaf Riaz
- College of Pharmacy, Qatar University , Doha , Qatar
| | - Alain-Pierre Gadeau
- University of Bordeaux, INSERM, Biology of Cardiovascular Disease, U1034, Pessac , France
| | | |
Collapse
|
24
|
Caballero EP, Santamaría MH, Corral RS. Endogenous osteopontin induces myocardial CCL5 and MMP-2 activation that contributes to inflammation and cardiac remodeling in a mouse model of chronic Chagas heart disease. Biochim Biophys Acta Mol Basis Dis 2017; 1864:11-23. [PMID: 28987763 DOI: 10.1016/j.bbadis.2017.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/21/2017] [Accepted: 10/03/2017] [Indexed: 01/22/2023]
Abstract
Cardiac dysfunction with progressive inflammation and fibrosis is a hallmark of Chagas disease caused by persistent Trypanosoma cruzi infection. Osteopontin (OPN) is a pro-inflammatory cytokine that orchestrates mechanisms controlling cell recruitment and cardiac architecture. Our main goal was to study the role of endogenous OPN as a modulator of myocardial CCL5 chemokine and MMP-2 metalloproteinase, and its pathological impact in a murine model of Chagas heart disease. Wild-type (WT) and OPN-deficient (spp1 -/-) mice were parasite-infected (Brazil strain) for 100days. Both groups developed chronic myocarditis with similar parasite burden and survival rates. However, spp1 -/- infection showed lower heart-to-body ratio (P<0.01) as well as reduced inflammatory pathology (P<0.05), CCL5 expression (P<0.05), myocyte size (P<0.05) and fibrosis (P<0.01) in cardiac tissues. Intense OPN labeling was observed in inflammatory cells recruited to infected heart (P<0.05). Plasma concentration of MMP-2 was higher (P<0.05) in infected WT than in spp1 -/- mice. Coincidently, specific immunostaining revealed increased gelatinase expression (P<0.01) and activity (P<0.05) in the inflamed hearts from T. cruzi WT mice, but not in their spp1 -/- littermates. CCL5 and MMP-2 induction occurred preferentially (P<0.01) in WT heart-invading CD8+ T cells and was mediated via phospho-JNK MAPK signaling. Heart levels of OPN, CCL5 and MMP-2 correlated (P<0.01) with collagen accumulation in the infected WT group only. Endogenous OPN emerges as a key player in the pathogenesis of chronic Chagas heart disease, through the upregulation of myocardial CCL5/MMP-2 expression and activities resulting in pro-inflammatory and pro-hypertrophic events, cardiac remodeling and interstitial fibrosis.
Collapse
Affiliation(s)
| | - Miguel H Santamaría
- Laboratorio de Biología Experimental, Centro de Estudios Metabólicos, Santander, Spain
| | - Ricardo S Corral
- Servicio de Parasitología-Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez", Buenos Aires, Argentina.
| |
Collapse
|
25
|
Schreckenberg R, Horn AM, da Costa Rebelo RM, Simsekyilmaz S, Niemann B, Li L, Rohrbach S, Schlüter KD. Effects of 6-months' Exercise on Cardiac Function, Structure and Metabolism in Female Hypertensive Rats-The Decisive Role of Lysyl Oxidase and Collagen III. Front Physiol 2017; 8:556. [PMID: 28824452 PMCID: PMC5541302 DOI: 10.3389/fphys.2017.00556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose: According to the current therapeutic guidelines of the WHO physical activity and exercise are recommended as first-line therapy of arterial hypertension. Previous results lead to the conclusion, however, that hearts of spontaneously hypertensive rats (SHR) with established hypertension cannot compensate for the haemodynamic stresses caused by long-term exercise. The current study was initiated to investigate the effects of aerobic exercise on the cardiac remodeling as the sole therapeutic measure before and during hypertension became established. Methods: Beginning at their 6th week of life, six SHR were provided with a running wheel over a period of 6 months. Normotensive Wistar rats served as non-hypertensive controls. Results: In Wistar rats and SHR, voluntary exercise led to cardioprotective adaptation reactions that were reflected in increased mitochondrial respiration, reduced heart rate and improved systolic function. Exercise also had antioxidant effects and reduced the expression of maladaptive genes (TGF-β1, CTGF, and FGF2). However, at the end of the 6-months' training, the echocardiograms revealed that SHR runners developed a restrictive cardiomyopathy. The induction of lysyl oxidase (LOX), which led to an increased network of matrix proteins and a massive elevation in collagen III expression, was identified as the underlying cause. Conclusions: Running-induced adaptive mechanisms effectively counteract the classic remodeling of hearts subject to chronic pressure loads. However, with sustained running stress, signaling pathways are activated that have a negative effect on left ventricular relaxation. Our data suggest that the induction of LOX may play a causative role in the diagnosed filling disorder in trained SHR.
Collapse
Affiliation(s)
- Rolf Schreckenberg
- Physiologisches Institut, Justus-Liebig-Universität GiessenGiessen, Germany
| | - Anja-Maria Horn
- Physiologisches Institut, Justus-Liebig-Universität GiessenGiessen, Germany
| | | | - Sakine Simsekyilmaz
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum DüsseldorfDüsseldorf, Germany
| | - Bernd Niemann
- Klinik für Herz-, Kinderherz- und Gefäßchirurgie, Universitätsklinikum GiessenGiessen, Germany
| | - Ling Li
- Physiologisches Institut, Justus-Liebig-Universität GiessenGiessen, Germany
| | - Susanne Rohrbach
- Physiologisches Institut, Justus-Liebig-Universität GiessenGiessen, Germany
| | | |
Collapse
|
26
|
Lutz M, von Ingersleben N, Lambers M, Rosenberg M, Freitag-Wolf S, Dempfle A, Lutter G, Frank J, Bramlage P, Frey N, Frank D. Osteopontin predicts clinical outcome in patients after treatment of severe aortic stenosis with transcatheter aortic valve implantation (TAVI). Open Heart 2017; 4:e000633. [PMID: 28761684 PMCID: PMC5515168 DOI: 10.1136/openhrt-2017-000633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/12/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022] Open
Abstract
Objective Osteopontin (OPN) is an extracellular matrix protein that plays an integral role in myocardial remodelling and has previously been shown to be a valuable biomarker in cardiovascular disease. Because of the concentric myocardial hypertrophy associated with severe, symptomatic aortic stenosis (AS), we hypothesised that OPN expression may have a prognostic value in patients undergoing transcatheter aortic valve implantation (TAVI). Methods We prospectively included 217 patients undergoing TAVI between February 2011 and December 2013 with a median follow-up of 349 days. Twenty healthy individuals from the same age range free from structural heart disease served as controls. The primary endpoint for the analysis was survival time. Results Median preprocedural OPN levels (675 ng/mL; IQR 488.5–990.5 ng/mL) were significantly higher in patients with severe aortic valve stenosis compared with healthy controls (386 ng/mL; IQR 324.5–458, p<0.001). Patients with increased OPN values showed at baseline a decreased 6 min walk test performance, increased rates of atrial arrhythmia, and an increased risk of death during follow-up (HR 2.2; 95% CI 1.3 to 3.5 for the comparison of the highest vs lowest OPN quartile). Multiple Cox regression analysis demonstrated that OPN improves the prediction of an adverse prognosis further than N-terminal probrain natriuretic peptide. Conclusions OPN levels at baseline are associated with adverse outcomes in patients with severe, symptomatic AS undergoing TAVI.
Collapse
Affiliation(s)
- Matthias Lutz
- Department of Internal Medicine III (Cardiology and Angiology), University Hospital Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany.,German Centre for Cardiovascular Research, DZHK Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Nora von Ingersleben
- Department of Internal Medicine III (Cardiology and Angiology), University Hospital Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Moritz Lambers
- Department of Internal Medicine III (Cardiology and Angiology), University Hospital Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Mark Rosenberg
- Department of Internal Medicine III (Cardiology and Angiology), University Hospital Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany.,German Centre for Cardiovascular Research, DZHK Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Georg Lutter
- German Centre for Cardiovascular Research, DZHK Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany.,Department for Cardiovascular Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Johanne Frank
- Department of Internal Medicine III (Cardiology and Angiology), University Hospital Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Peter Bramlage
- Institute for Pharmacology and Preventive Medicine, Cloppenburg, Germany
| | - Norbert Frey
- Department of Internal Medicine III (Cardiology and Angiology), University Hospital Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany.,German Centre for Cardiovascular Research, DZHK Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III (Cardiology and Angiology), University Hospital Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany.,German Centre for Cardiovascular Research, DZHK Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| |
Collapse
|
27
|
Li J, Yousefi K, Ding W, Singh J, Shehadeh LA. Osteopontin RNA aptamer can prevent and reverse pressure overload-induced heart failure. Cardiovasc Res 2017; 113:633-643. [PMID: 28453726 PMCID: PMC7526752 DOI: 10.1093/cvr/cvx016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/21/2016] [Accepted: 01/24/2017] [Indexed: 11/14/2022] Open
Abstract
AIMS Cardiac myocyte hypertrophy, the main compensatory response to chronic stress in the heart often progresses to a state of decompensation that can lead to heart failure. Osteopontin (OPN) is an effector for extracellular signalling that induces myocyte growth and fibrosis. Although increased OPN activity has been observed in stressed myocytes and fibroblasts, the detailed and long term effects of blocking OPN signalling on the heart remain poorly defined. Targeting cardiac OPN protein by an RNA aptamer may be beneficial for tuning down OPN pathologic signalling. We aimed to demonstrate the therapeutic effects of an OPN RNA aptamer on cardiac dysfunction. METHODS AND RESULTS In vivo, we show that in a mouse model of pressure overload, treating at the time of surgeries with an OPN aptamer prevented cardiomyocyte hypertrophy and cardiac fibrosis, blocked OPN downstream signalling (PI3K and Akt phosphorylation), reduced expression of extracellular matrix (Lum, Col3a1, Fn1) and hypertrophy (Nppa, Nppb) genes, and prevented cardiac dysfunction. Treating at two months post-surgeries with the OPN aptamer reversed cardiac dysfunction and fibrosis and myocyte hypertrophy. While genetic homozygous deletion of OPN reduced myocardial wall thickness, surprisingly cardiac function and myocardial fibrosis, specifically collagen deposition and myofibroblast infiltration, were worse compared with wild type mice at three months of pressure overload. CONCLUSION Taken together, these data demonstrate that tuning down cardiac OPN signalling by an OPN RNA aptamer is a novel and effective approach for preventing cardiac hypertrophy and fibrosis, improving cardiac function, and reversing pressure overload-induced heart failure.
Collapse
MESH Headings
- Animals
- Aorta/physiopathology
- Aorta/surgery
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Arterial Pressure
- Collagen Type III/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Fibrosis
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Heart Failure/prevention & control
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Ligation
- Lumican/metabolism
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardium/metabolism
- Myocardium/pathology
- Osteopontin/deficiency
- Osteopontin/genetics
- Osteopontin/metabolism
- Phenotype
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Time Factors
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Jihe Li
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Biomedical Research Building, Room 818, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Keyvan Yousefi
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Biomedical Research Building, Room 818, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Wen Ding
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Biomedical Research Building, Room 818, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Jayanti Singh
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Biomedical Research Building, Room 818, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Lina A. Shehadeh
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Biomedical Research Building, Room 818, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
28
|
Meschiari CA, Ero OK, Pan H, Finkel T, Lindsey ML. The impact of aging on cardiac extracellular matrix. GeroScience 2017; 39:7-18. [PMID: 28299638 PMCID: PMC5352584 DOI: 10.1007/s11357-017-9959-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/05/2017] [Indexed: 12/24/2022] Open
Abstract
Age-related changes in cardiac homeostasis can be observed at the cellular, extracellular, and tissue levels. Progressive cardiomyocyte hypertrophy, inflammation, and the gradual development of cardiac fibrosis are hallmarks of cardiac aging. In the absence of a secondary insult such as hypertension, these changes are subtle and result in slight to moderate impaired myocardial function, particularly diastolic function. While collagen deposition and cross-linking increase during aging, extracellular matrix (ECM) degradation capacity also increases due to increased expression of matrix metalloproteinases (MMPs). Of the MMPs elevated with cardiac aging, MMP-9 has been extensively evaluated and its roles are reviewed here. In addition to proteolytic activity on ECM components, MMPs oversee cell signaling during the aging process by modulating cytokine, chemokine, growth factor, hormone, and angiogenic factor expression and activity. In association with elevated MMP-9, macrophage numbers increase in an age-dependent manner to regulate the ECM and angiogenic responses. Understanding the complexity of the molecular interactions between MMPs and the ECM in the context of aging may provide novel diagnostic indicators for the early detection of age-related fibrosis and cardiac dysfunction.
Collapse
Affiliation(s)
- Cesar A Meschiari
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Room G351-04, Jackson, MS, USA
| | - Osasere Kelvin Ero
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Room G351-04, Jackson, MS, USA
| | - Haihui Pan
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Toren Finkel
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Room G351-04, Jackson, MS, USA.
- G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
29
|
Dewey CM, Spitler KM, Ponce JM, Hall DD, Grueter CE. Cardiac-Secreted Factors as Peripheral Metabolic Regulators and Potential Disease Biomarkers. J Am Heart Assoc 2016; 5:e003101. [PMID: 27247337 PMCID: PMC4937259 DOI: 10.1161/jaha.115.003101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Colleen M Dewey
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Kathryn M Spitler
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jessica M Ponce
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Duane D Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA Fraternal Order of Eagles Diabetes Research Center, Papajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
30
|
Kramer F, Dinh W. Molecular and Digital Biomarker Supported Decision Making in Clinical Studies in Cardiovascular Indications. Arch Pharm (Weinheim) 2016; 349:399-409. [DOI: 10.1002/ardp.201600055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Frank Kramer
- Clinical Sciences - Experimental Medicine; BAYER Pharma AG; Wuppertal Germany
| | - Wilfried Dinh
- Clinical Sciences - Experimental Medicine; BAYER Pharma AG; Wuppertal Germany
| |
Collapse
|
31
|
Mohamed IA, Mraiche F. Targeting osteopontin, the silent partner of Na+/H+ exchanger isoform 1 in cardiac remodeling. J Cell Physiol 2015; 230:2006-18. [PMID: 25677682 DOI: 10.1002/jcp.24958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/06/2015] [Indexed: 12/11/2022]
Abstract
Cardiac hypertrophy (CH), characterized by the enlargement of cardiomyocytes, fibrosis and apoptosis, contributes to cardiac remodeling, which if left unresolved results in heart failure. Understanding the signaling pathways underlying CH is necessary to identify potential therapeutic targets. The Na(+) /H(+) -exchanger isoform I (NHE1), a ubiquitously expressed glycoprotein and cardiac specific isoform, regulates intracellular pH. Recent studies have demonstrated that enhanced expression/activity of NHE1 contributes to cardiac remodeling and CH. Inhibition of NHE1 in both in vitro and in vivo models have suggested that inhibition of NHE1 protects against hypertrophy. However, clinical trials using NHE1 inhibitors have proven to be unsuccessful, suggesting that additional factors maybe contributing to cardiac remodeling. Recent studies have indicated that the upregulation of NHE1 is associated with enhanced levels of osteopontin (OPN) in the setting of CH. OPN has been demonstrated to be upregulated in left ventricular hypertrophy, dilated cardiomyopathy and in diabetic cardiomyopathy. The cellular interplay between OPN and NHE1 in the setting of CH remains unknown. This review focuses on the role of NHE1 and OPN in cardiac remodeling and emphasizes the signaling pathways implicating OPN in the NHE1-induced hypertrophic response.
Collapse
|
32
|
Stoynev N, Dimova I, Rukova B, Hadjidekova S, Nikolova D, Toncheva D, Tankova T. Gene expression in peripheral blood of patients with hypertension and patients with type 2 diabetes. J Cardiovasc Med (Hagerstown) 2015; 15:702-9. [PMID: 23337395 DOI: 10.2459/jcm.0b013e32835dbcc8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM To evaluate the expression of atherosclerosis-associated genes in patients with hypertension and type 2 diabetes mellitus. MATERIAL AND METHODS Twenty-seven patients (14 men, 13 women), mean age 43.26 ± 11.69 years, were included in the study, which was divided into three groups: group 1 - patients with newly diagnosed hypertension and normal glucose tolerance (n = 9), group 2 - normotensive individuals with newly diagnosed type 2 diabetes (n = 9), and control group - normotensive individuals with normal glucose tolerance (n = 9). Gene expression analysis was performed with Human Atherosclerosis RT2 Profiler PCR Array. RESULTS In patients with hypertension, we found eight genes with increased expression - FABP3, FAS, FN1, IL1R2, LPL, SERPINE1, TGFB1, and VCAM1. Decreased expression was observed for two genes - SELPLG and SERPINEB2. In patients with type 2 diabetes we found seven up-regulated genes - APOE, BAX, MMP1, NFKB1, PDGFB, SPP1, and TGFB2, whereas no specifically down-regulated genes were observed. Three genes - KLF2, PDGFRB, and PPARD were found to be expressed only in groups 1 and 2. CONCLUSION Hypertension is associated with increased expression of FABP3, FAS, FN1, IL1R2, LPL, SERPINE1, TGFB1, and VCAM1 and decreased expression of SELPLG and SERPINEB2. The up-regulation of FAS, FN1, SERPINE1, TGFB1, and VCAM1 might be associated with an increased cardiovascular risk. Type 2 diabetes is associated with increased expression of APOE, BAX, MMP1, NFKB1, PDGFB, SPP1, and TGFB2. KLF2 and PPARD might be part of protective mechanisms that limit target organ damage in both disease conditions. Expression of PDGFRB might play an important role in the pathogenesis of both hypertension and type 2 diabetes.
Collapse
Affiliation(s)
- Nikolay Stoynev
- aDepartment of Diabetology, Clinical Center of Endocrinology bDepartment of Medical Genetics cDepartment of Physiology, Medical University Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
33
|
Mohamed IA, Gadeau AP, Fliegel L, Lopaschuk G, Mlih M, Abdulrahman N, Fillmore N, Mraiche F. Na+/H+ exchanger isoform 1-induced osteopontin expression facilitates cardiomyocyte hypertrophy. PLoS One 2015; 10:e0123318. [PMID: 25884410 PMCID: PMC4401699 DOI: 10.1371/journal.pone.0123318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/02/2015] [Indexed: 01/02/2023] Open
Abstract
Enhanced expression and activity of the Na+/H+ exchanger isoform 1 (NHE1) has been implicated in cardiomyocyte hypertrophy in various experimental models. The upregulation of NHE1 was correlated with an increase in osteopontin (OPN) expression in models of cardiac hypertrophy (CH), and the mechanism for this remains to be delineated. To determine whether the expression of active NHE1-induces OPN and contributes to the hypertrophic response in vitro, cardiomyocytes were infected with the active form of the NHE1 adenovirus or transfected with OPN silencing RNA (siRNA-OPN) and characterized for cardiomyocyte hypertrophy. Expression of NHE1 in cardiomyocytes resulted in a significant increase in cardiomyocyte hypertrophy markers: cell surface area, protein content, ANP mRNA and expression of phosphorylated-GATA4. NHE1 activity was also significantly increased in cardiomyocytes expressing active NHE1. Interestingly, transfection of cardiomyocytes with siRNA-OPN significantly abolished the NHE1-induced cardiomyocyte hypertrophy. siRNA-OPN also significantly reduced the activity of NHE1 in cardiomyocytes expressing NHE1 (68.5±0.24%; P<0.05), confirming the role of OPN in the NHE1-induced hypertrophic response. The hypertrophic response facilitated by NHE1-induced OPN occurred independent of the extracellular-signal-regulated kinases and Akt, but required p90-ribosomal S6 kinase (RSK). The ability of OPN to facilitate the NHE1-induced hypertrophic response identifies OPN as a potential therapeutic target to reverse the hypertrophic effect induced by the expression of active NHE1.
Collapse
Affiliation(s)
| | - Alain-Pierre Gadeau
- University of Bordeaux, Adaptation Cardiovasculaire à L'ischémie, UMR1034, Pessac, France
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gary Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mohamed Mlih
- College of Pharmacy, Qatar University, Doha, Qatar
| | | | - Natasha Fillmore
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Fatima Mraiche
- College of Pharmacy, Qatar University, Doha, Qatar
- * E-mail:
| |
Collapse
|
34
|
Circulating biomarkers in pulmonary arterial hypertension: Update and future direction. J Heart Lung Transplant 2015; 34:282-305. [DOI: 10.1016/j.healun.2014.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022] Open
|
35
|
Herum KM, Lunde IG, Skrbic B, Louch WE, Hasic A, Boye S, Unger A, Brorson SH, Sjaastad I, Tønnessen T, Linke WA, Gomez MF, Christensen G. Syndecan-4 is a key determinant of collagen cross-linking and passive myocardial stiffness in the pressure-overloaded heart. Cardiovasc Res 2015; 106:217-26. [DOI: 10.1093/cvr/cvv002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/20/2014] [Indexed: 01/02/2023] Open
|
36
|
Osteopontin: At the cross-roads of myocyte survival and myocardial function. Life Sci 2014; 118:1-6. [PMID: 25265596 DOI: 10.1016/j.lfs.2014.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022]
Abstract
Heart failure represents a major cause of morbidity and mortality in Western society. Cardiac myocyte loss due to apoptosis plays a significant role in the progression of heart failure. The extracellular matrix (ECM) maintains the structural integrity of the heart and allows the transmission of electrical and mechanical signals during cardiac contraction and relaxation. Matricellular proteins, a class of non-structural ECM proteins, play a significant role in ECM homeostasis and intracellular signaling via their interactions with cell surface receptors, structural proteins, and/or soluble extracellular factors such as growth factors and cytokines. Osteopontin (OPN), also called cytokine Eta-1, is a member of the matricellular protein family. The normal heart expresses low levels of OPN. However, OPN expression increases markedly under a variety of pathophysiological conditions of the heart. Many human and transgenic mouse studies provide evidence that increased OPN expression, specifically in myocytes, is associated with increased myocyte apoptosis and myocardial dysfunction. This review summarizes OPN expression in the heart, and its role in myocyte apoptosis and myocardial function.
Collapse
|
37
|
Kristen AV, Rosenberg M, Lindenmaier D, Merkle C, Steen H, Andre F, Schönland SO, Schnabel PA, Schuster T, Röcken C, Giannitsis E, Katus HA, Frey N. Osteopontin: a novel predictor of survival in patients with systemic light-chain amyloidosis. Amyloid 2014; 21:202-10. [PMID: 25007036 DOI: 10.3109/13506129.2014.940457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Troponin-T (cTnT) and NT-proBNP provide prognostic information in light-chain amyloidosis (AL). Thus, these biomarkers are widely used in clinical routine for risk stratification. Recently, plasma level of osteopontin (OPN), a secreted phosphoglycoprotein expressed by a variety of cell types, has been reported as a risk predictor in various cardiovascular diseases. METHODS OPN was determined retrospectively in 150 consecutive patients newly diagnosed with AL amyloidosis. All patients were evaluated according to a routine protocol including electrocardiography, echocardiography and laboratory testing. RESULTS Mean OPN was 591 ± 37 ng/mL. Cardiac involvement was established in 83 (55.3%). Median OPN plasma level were associated with number of organs involved, renal function, eligibility for high-dose melphalan chemotherapy and autologous stem cell transplantation, and severity of cardiac amyloidosis. Median follow-up was 19.2 months. 1-year all-cause-survival was 83.4%. The cut-offs discriminating 1-year all-cause-mortality for NT-proBNP, troponin T, and OPN were 2544 ng/L, 0.035 µg/L, and 426.8 ng/mL, respectively. Outcome was worse in patients with biomarkers above the individual ROC derived cut-off. A significant improvement of survival was observed in patients with cTNT >0.035 µg/L or NT-proBNP >2544 ng/L and OPN below ROC-derived cut-off of 426.8 ng/mL as compared to patients with OPN above 426.8 ng/L. No further discrimination was achieved by OPN in the cohorts of low troponin T or low NT-proBNP, respectively. Separate multivariate models identified OPN (cut-off 426.8 ng/mL) and troponin T (cut-off 0.035 µg/L) as independent predictors of all-cause-mortality. CONCLUSIONS These data demonstrated that OPN appears to be a valuable marker in the clinical routine for evaluation of patients with AL amyloidosis, especially if it is used in combination with cTNT and/or NT-proBNP.
Collapse
Affiliation(s)
- Arnt V Kristen
- Department of Cardiology, Angiology, and Respiratory Medicine, Heidelberg University , Heidelberg , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cardioprotective effects of osteopontin-1 during development of murine ischemic cardiomyopathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:124063. [PMID: 24971311 PMCID: PMC4058102 DOI: 10.1155/2014/124063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 01/25/2023]
Abstract
Repetitive brief ischemia and reperfusion (I/R) is associated with ventricular dysfunction in pathogenesis of murine ischemic cardiomyopathy and human hibernating myocardium. We investigated the role of matricellular protein osteopontin-1 (OPN) in murine model of repetitive I/R. One 15-min LAD-occlusion followed by reperfusion was performed daily over 3, 5, and 7 consecutive days in C57/Bl6 wildtype- (WT-) and OPN−/−-mice (n = 8/group). After echocardiography hearts were processed for histological and mRNA-studies. Cardiac fibroblasts were isolated, cultured, and stimulated with TGF-β1. WT-mice showed an early, strong, and cardiomyocyte-specific osteopontin-expression leading to interstitial macrophage infiltration and consecutive fibrosis after 7 days I/R in absence of myocardial infarction. In contrast, OPN−/−-mice showed small, nontransmural infarctions after 3 days I/R associated with significantly worse ventricular dysfunction. OPN−/−-mice had different expression of myocardial contractile elements and antioxidative mediators and a lower expression of chemokines during I/R. OPN−/−-mice showed predominant collagen deposition in macrophage-rich small infarctions. We found lower induction of tenascin-C, MMP-9, MMP-12, and TIMP-1, whereas MMP-13-expression was higher in OPN−/−-mice. Cultured OPN−/−-myofibroblasts confirmed these findings. In conclusion, osteopontin seems to modulate expression of contractile elements, antioxidative mediators, and inflammatory response and subsequently remodel in order to protect cardiomyocytes in murine ischemic cardiomyopathy.
Collapse
|
39
|
Dalal S, Zha Q, Daniels CR, Steagall RJ, Joyner WL, Gadeau AP, Singh M, Singh K. Osteopontin stimulates apoptosis in adult cardiac myocytes via the involvement of CD44 receptors, mitochondrial death pathway, and endoplasmic reticulum stress. Am J Physiol Heart Circ Physiol 2014; 306:H1182-91. [PMID: 24531809 DOI: 10.1152/ajpheart.00954.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Increased osteopontin (OPN) expression associates with increased myocyte apoptosis and myocardial dysfunction. The objective of this study was to identify the receptor for OPN and get insight into the mechanism by which OPN induces cardiac myocyte apoptosis. Adult rat ventricular myocytes (ARVMs) and transgenic mice expressing OPN in a myocyte-specific manner were used for in vitro and in vivo studies. Treatment with purified OPN (20 nM) protein or adenoviral-mediated OPN expression induced apoptosis in ARVMs. OPN co-immunoprecipitated with CD44 receptors, not with β1 or β3 integrins. Proximity ligation assay confirmed interaction of OPN with CD44 receptors. Neutralizing anti-CD44 antibodies inhibited OPN-stimulated apoptosis. OPN activated JNKs and increased expression of Bax and levels of cytosolic cytochrome c, suggesting involvement of mitochondrial death pathway. OPN increased endoplasmic reticulum (ER) stress, as evidenced by increased expression of Gadd153 and activation of caspase-12. Inhibition of JNKs using SP600125 or ER stress using salubrinal or caspase-12 inhibitor significantly reduced OPN-stimulated apoptosis. Expression of OPN in adult mouse heart in myocyte-specific manner associated with decreased left ventricular function and increased myocyte apoptosis. In the heart, OPN expression increased JNKs and caspase-12 activities, and expression of Bax and Gadd153. Thus, OPN, acting via CD44 receptors, induces apoptosis in myocytes via the involvement of mitochondrial death pathway and ER stress.
Collapse
Affiliation(s)
- Suman Dalal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Serum osteopontin, but not OPN gene polymorphism, is associated with LVH in essential hypertensive patients. J Mol Med (Berl) 2013; 92:487-95. [PMID: 24370940 DOI: 10.1007/s00109-013-1099-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/24/2013] [Accepted: 10/31/2013] [Indexed: 01/12/2023]
Abstract
UNLABELLED This study aims to investigate the role of osteopontin (OPN) genetic polymorphisms in the occurrence of left ventricular hypertrophy (LVH) in Chinese patients with essential hypertension (EH). A total of 1,092 patients diagnosed with EH were recruited. Three single nucleotide polymorphisms (SNP) on the promoter region of the OPN gene, including -66T/G, -156G/GG, and -443C/T were genotyped. The serum thrombin-cleaved OPN levels were studied. Patients were divided into LVH+ (n = 443) and the LVH- (n = 649) groups. We found that none of the studied SNPs in the OPN gene was associated with the risk and severity of LVH. The SNPs in the OPN gene did not correlate with the serum OPN levels. However, the serum thrombin-cleaved OPN levels were found to be an independent risk factor for LVH in the EH patients. Multivariate logistic regression analysis showed that serum thrombin-cleaved OPN levels were independently associated with the development of LVH (adjusted OR = 2.47, 95 % CI 1.56-4.01, adjusted P < 0.001). In vitro studies showed that the thrombin-cleaved OPN treatment increased the protein content per cell, the cardiomyocyte surface size, and the expression level of atrial natriuretic peptide protein in a dose-dependent manner. The thrombin-cleaved OPN serum level, but not OPN gene polymorphism, is associated with the development of LVH in EH patients. KEY MESSAGES Serum OPN is related to LVH incidence in essential hypertension subjects. OPN stimulates cardiomyocyte hypertrophy in vitro. OPN SNPs are not related to LVH incidence.
Collapse
|
41
|
Dai J, Matsui T, Abel ED, Dedhar S, Gerszten RE, Seidman CE, Seidman JG, Rosenzweig A. Deep sequence analysis of gene expression identifies osteopontin as a downstream effector of integrin-linked kinase (ILK) in cardiac-specific ILK knockout mice. Circ Heart Fail 2013; 7:184-93. [PMID: 24319095 DOI: 10.1161/circheartfailure.113.000649] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Integrin-linked kinase (ILK) is a serine/threonine kinase that has been linked to human and experimental heart failure, but its role in the heart is not fully understood. METHODS AND RESULTS To define the role of cardiomyocyte ILK, we generated cardiac-specific ILK knockout mice using α-myosin heavy chain-driven Cre expression. Cardiac-specific ILK knockout mice spontaneously developed lethal dilated cardiomyopathy and heart failure with an early increase in apoptosis, fibrosis, and cardiac inflammation. To identify downstream effectors, we used deep sequence analysis of gene expression to compare comprehensive transcriptional profiles of cardiac-specific ILK knockout and wild-type hearts from 10-day-old mice before the development of cardiac dysfunction. Approximately 2×10(6) cDNA clones from each genotype were sequenced, corresponding to 33 274 independent transcripts. A total of 93 genes were altered, using nominal thresholds of >1.4-fold change and P<0.001. The most highly upregulated gene was osteopontin (47-fold increase; P=9.6×10(-45)), an inflammatory chemokine implicated in heart failure pathophysiology. ILK also regulated osteopontin expression in cardiomyocytes in vitro. Importantly, blocking antibodies to osteopontin mitigated but did not fully rescue the functional decline in cardiac-specific ILK knockout mice. CONCLUSIONS Cardiomyocyte-specific ILK deletion leads to a lethal cardiomyopathy characterized by cardiomyocyte death, fibrosis, and inflammation. Comprehensive profiling identifies ILK-dependent transcriptional effects and implicates osteopontin as a contributor to these phenotypes.
Collapse
Affiliation(s)
- Jing Dai
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schunke KJ, Coyle L, Merrill GF, Denhardt DT. Acetaminophen attenuates doxorubicin-induced cardiac fibrosis via osteopontin and GATA4 regulation: reduction of oxidant levels. J Cell Physiol 2013; 228:2006-14. [PMID: 23526585 PMCID: PMC3739938 DOI: 10.1002/jcp.24367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/14/2013] [Indexed: 01/07/2023]
Abstract
It is well documented in animal and human studies that therapy with the anti-cancer drug doxorubicin (DOX) induces fibrosis, cardiac dysfunction, and cell death. The most widely accepted mechanism of cardiac injury is through production of reactive oxygen species (ROS), which cause mitochondrial damage, sarcomere structural alterations, and altered gene expression in myocytes and fibroblasts. Here we investigated the effects of acetaminophen (APAP, N-acetyl-para-aminophenol) on DOX-induced cardiac injury and fibrosis in the presence or absence of osteopontin (OPN). H9c2 rat heart-derived embryonic myoblasts were exposed to increasing concentrations of DOX ± APAP; cell viability, oxidative stress, and OPN transcript levels were analyzed. We found a dose-dependent decrease in cell viability and a corresponding increase in intracellular oxidants at the tested concentrations of DOX. These effects were attenuated in the presence of APAP. RT-PCR analysis revealed a small increase in OPN transcript levels in response to DOX, which was suppressed by APAP. When male 10-12-week-old mice (OPN(+/+) or OPN(-/-)) were given weekly injections of DOX ± APAP for 4 weeks there was substantial cardiac fibrosis in OPN(+/+) and, to a lesser extent, in OPN(-/-) mice. In both groups, APAP decreased fibrosis to near baseline levels. Activity of the pro-survival GATA4 transcription factor was diminished by DOX in both mouse genotypes, but retained baseline activity in the presence of APAP. These effects were mediated, in part, by the ability of APAP, acting as an anti-inflammatory agent, to decrease intracellular ROS levels, consequently diminishing the injury-induced increase in OPN levels.
Collapse
Affiliation(s)
- Kathryn J Schunke
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | | | | | | |
Collapse
|
43
|
Behnes M, Brueckmann M, Lang S, Espeter F, Weiss C, Neumaier M, Ahmad-Nejad P, Borggrefe M, Hoffmann U. Diagnostic and prognostic value of osteopontin in patients with acute congestive heart failure. Eur J Heart Fail 2013; 15:1390-400. [PMID: 23851388 DOI: 10.1093/eurjhf/hft112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS To evaluate the diagnostic and prognostic value of osteopontin in patients with acute dyspnoea and/or peripheral oedema suspected of having acute congestive heart failure (aCHF). METHODS AND RESULTS A total of 401 patients presenting with acute dyspnoea and/or peripheral oedema to the emergency department were prospectively enrolled and followed up for up to 5 years. Blood samples for biomarker measurements were collected on admission to the emergency department. Osteopontin combined with NT-proBNP vs. NT-proBNP alone for diagnosis of aCHF was tested. Additionally, osteopontin vs. NT-proBNP for prognostic outcomes (i.e. all-cause mortality, aCHF-related rehospitalization, and both in combination) was tested. The diagnostic and prognostic capacity of osteopontin was tested by C-statistics, reclassification indices, and multivariable Cox prediction models. Osteopontin plus NT-proBNP improved the diagnostic capacity for aCHF diagnosis [accuracy 76%, 95% confidence interval (CI) 72-80%; specificity 74%, 95% CI 69-79%, net reclassification improvement (NRI) +0.10] compared with NT-proBNP alone in the emergency department (P = 0.0001). Osteopontin independently predicted all-cause mortality and aCHF-related rehospitalization after 1 and 5 years. Compared with NT-proBNP, osteopontin was of superior prognostic value, specifically in aCHF patients and for the prognostic outcome of aCHF-related rehospitalization. CONCLUSION Osteopontin improves aCHF diagnosis when combined with NT-proBNP. Osteopontin identifies aCHF patients with high 1- and 5-year mortality and rehospitalization risk, and adds prognostic value to NT-proBNP. Trial registration NCT00143793.
Collapse
Affiliation(s)
- Michael Behnes
- First Department of Medicine, University Medical Centre Mannheim (UMM), Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
López B, González A, Lindner D, Westermann D, Ravassa S, Beaumont J, Gallego I, Zudaire A, Brugnolaro C, Querejeta R, Larman M, Tschöpe C, Díez J. Osteopontin-mediated myocardial fibrosis in heart failure: a role for lysyl oxidase? Cardiovasc Res 2013; 99:111-20. [DOI: 10.1093/cvr/cvt100] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Rosenberg M, Meyer FJ, Gruenig E, Lutz M, Lossnitzer D, Wipplinger R, Katus HA, Frey N. Osteopontin predicts adverse right ventricular remodelling and dysfunction in pulmonary hypertension. Eur J Clin Invest 2012; 42:933-42. [PMID: 22500728 DOI: 10.1111/j.1365-2362.2012.02671.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Osteopontin (OPN) was found upregulated in several heart failure models and appears to play an important role in myocardial remodelling. As we have previously demonstrated that OPN predicts mortality in patients with pulmonary hypertension (PH), we now evaluated whether OPN also predicts adverse right ventricular (RV) remodelling and dysfunction in PH. METHODS We prospectively included 71 patients with PH of different etiology in this study. OPN plasma level were determined by ELISA and assessed for correlation with RV dilatation and dysfunction determined by echocardiography. RESULTS OPN plasma values significantly correlated with RV end-diastolic diameter, Tricuspid Annular Plane Systolic Excursion (TAPSE) and Tricuspid Annular Systolic Velocity (TASV) (r = 0·43, P = 0·0002; r = -0·46, P = 0·0006; r = -0·31, P = 0·02). Furthermore, stratification of our study population according to RV end-diastolic diameter and RV dysfunction revealed that patients with enlarged and functionally impaired RV's display higher OPN levels (956 ng/mL vs. 628 ng/mL, P = 0·0005; 1108 ng/mL vs. 792 ng/mL; P = 0·02). Next, we determined OPN cut-off values for the detection of RV remodelling and dysfunction by receiver operating curve analyses and further stratified these parameters in a multivariate analysis. Here, OPN emerged as an independent predictor of RV dilatation and dysfunction. Finally, we demonstrate synergism of OPN and NT-proBNP in the prediction of RV dilatation and dysfunction by calculation of the Rothman Synergy Index. CONCLUSION In summary, OPN predicts adverse RV remodelling and dysfunction in PH. Together with our previously published data regarding OPN's value for the prognostication of death in PH, we believe that OPN can improve risk stratification in patients with PH beyond current assessment standards.
Collapse
Affiliation(s)
- Mark Rosenberg
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Niebroj-Dobosz I, Madej-Pilarczyk A, Marchel M, Sokołowska B, Hausmanowa-Petrusewicz I. Osteopontin – a fibrosis-related marker – in dilated cardiomyopathy in patients with Emery-Dreifuss muscular dystrophy. Scandinavian Journal of Clinical and Laboratory Investigation 2011; 71:658-62. [DOI: 10.3109/00365513.2011.619272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Okamoto H, Imanaka-Yoshida K. Matricellular proteins: new molecular targets to prevent heart failure. Cardiovasc Ther 2011; 30:e198-209. [PMID: 21884011 DOI: 10.1111/j.1755-5922.2011.00276.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Matricellular proteins are highly expressed in reparative responses to pressure and volume overload, ischemia, oxidative stress after myocardial injury, and modulate the inflammatory and fibrotic process in ventricular remodeling, which leads to cardiac dysfunction and eventually overt heart failure. Generally, matricellular proteins loosen strong adhesion of cardiomyocytes to extracellular matrix, which would help cells to move for rearrangement and allow inflammatory cells and capillary vessels to spread during tissue remodeling. Among matricellular proteins, osteopontin (OPN) and tenascin-C (TN-C) are de-adhesion proteins and upregulate the expression and activity of matrix metalloproteinases. These matricellular proteins could be key molecules to diagnose cardiac remodeling and also might be targets for the prevention of adverse ventricular remodeling. This review provides an overview of the role of matricellular proteins such as OPN and TN-C in cardiac function and remodeling, as determined by both in basic and in clinical studies.
Collapse
Affiliation(s)
- Hiroshi Okamoto
- Department of Cardiovascular Medicine, Hokkaido Medical Center, Sapporo, Japan. okamotoh@ med.hokudai.ac.jp
| | | |
Collapse
|
48
|
Rabkin SW. Endothelin but Not Angiotensin II May Mediate Hypertension-Induced Coronary Vascular Calcification in Chronic Kidney Disease. Int J Nephrol 2011; 2011:516237. [PMID: 21747998 PMCID: PMC3124859 DOI: 10.4061/2011/516237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/26/2011] [Indexed: 12/31/2022] Open
Abstract
To understand the relationship between putative neurohormonal factors operative in hypertension and coronary artery calcification (CAC), the relevant cellular actions of angiotensin (Ang II) and endothelin-1 (ET-1) are reviewed. There is compelling evidence to implicate ET-1 in CAC. ET-1 increases phosphate transport with a 42 to 73% increase in Vmax. Increased cellular phosphate may induce CAC through increased Ca x phosphate product, transformation of vascular smooth muscle cells into a bone-producing phenotype or cell apoptosis that releases procalcific substances. ET-1 is increased in several models of vascular calcification. ET-1 inhibits inhibitors of calcification, matrix Gla and osteoprotegerin, while enhancing pro-calcific factors such as BMP-2 and osteopontin. In contrast, Ang II inhibits phosphate transport decreasing Vmax by 38% and increases matrix Gla. Ang II also stimulates bone resorption. Vascular calcification is reduced by ET-1 A receptor antagonists and to a greater extent than angiotensin receptor blockade although both agents reduce blood pressure.
Collapse
Affiliation(s)
- Simon W Rabkin
- University of British Columbia, Level 9, 2775 Laurel Street, Vancouver, BC, Canada V5Z 3J5
| |
Collapse
|
49
|
Arozal W, Sari FR, Watanabe K, Arumugam S, Veeraveedu PT, Ma M, Thandavarayan RA, Sukumaran V, Lakshmanan AP, Kobayashi Y, Mito S, Soetikno V, Suzuki K. Carvedilol-Afforded Protection against Daunorubicin-Induced Cardiomyopathic Rats In Vivo: Effects on Cardiac Fibrosis and Hypertrophy. ISRN PHARMACOLOGY 2011; 2011:430549. [PMID: 22084713 PMCID: PMC3197008 DOI: 10.5402/2011/430549] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/10/2011] [Indexed: 11/23/2022]
Abstract
Anthracyclines, most powerful anticancer agents, suffer from their cardiotoxic effects, which may be due to the induction of oxidative stress. Carvedilol, a third-generation, nonselective β-adrenoreceptor antagonist, possesses both reactive oxygen species (ROS) scavenging and ROS suppressive effects. It showed protective effects against daunorubicin- (DNR-) induced cardiac toxicity by reducing oxidative stress and apoptosis. This study therefore was designed to examine the effects of carvedilol on DNR-induced cardiomyopathic rats, focused on the changes of left ventricular function, cardiac fibrosis, and hypertrophy. Carvedilol increased survival rate, prevented systolic and diastolic dysfunction, and attenuated myocardial fibrosis and hypertrophy. DNR alone treated rats showed upregulated myocardial expression of ANP, PKC-α, OPN, and TGF-β1 and downregulation of GATA-4 in comparison with control, and treatment with carvedilol significantly reversed these changes. The results of the present study add the available evidences on the cardioprotection by carvedilol when associated with anthracyclines and explain the mechanisms underlying the benefits of their coadministration.
Collapse
Affiliation(s)
- Wawaimuli Arozal
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima Akiha-Ku, Niigata City 956-8603, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Francia P, Balla C, Ricotta A, Uccellini A, Frattari A, Modestino A, Borro M, Simmaco M, Salvati A, De Biase L, Volpe M. Plasma osteopontin reveals left ventricular reverse remodelling following cardiac resynchronization therapy in heart failure. Int J Cardiol 2010; 153:306-10. [PMID: 20863582 DOI: 10.1016/j.ijcard.2010.08.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 06/18/2010] [Accepted: 08/17/2010] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cardiac resynchronization therapy (CRT) promotes left ventricular (LV) reverse remodelling and affects myocardial collagen turnover in heart failure (HF) patients. Osteopontin (OPN) is a matrix glycoprotein required for the activation of fibroblasts upon TGF-β1 stimulation. In humans, plasma OPN and OPN-expressing lymphocytes correlate with the severity of HF. We sought to evaluate whether plasma OPN and TGF-β1 reflect LV reverse remodelling following CRT. METHODS Eighteen patients (12 men, mean age 65 ± 11 years) undergoing CRT were studied. Patients underwent baseline clinical and echocardiographic evaluation, and assessment of plasma OPN and TGF-β1. The evaluation was repeated 8.5 ± 4 months after device implantation. Eight healthy age- and sex-matched subjects served as controls. RESULTS In HF patients, baseline plasma OPN and TGF-β1 were higher as compared to control subjects (OPN: 99 ± 48 vs 59 ± 22 ng/ml; p<0.05; TGF-β1: 15.9 ± 8.0 vs 9.3 ± 5.6 ng/ml; p<0.05). At follow-up, 12 patients responded to CRT and showed LV reverse remodelling, whereas 6 did not. Plasma OPN decreased in CRT responders (108 ± 47 vs 84 ± 37 ng/ml; p=0.03) and increased in non-responders (79 ± 58 vs 115 ± 63 ng/ml; p<0.01). TGF-β1 showed a trend towards reduction in responders (17.5 ± 8.7 vs 10.2 ± 8.9 ng/ml; p=0.08) and was unchanged in non-responders. A significant correlation (r=-0.56; p=0.01) was found between relative changes of LVESV and plasma OPN. CONCLUSIONS CRT-induced LV reverse remodelling is reflected by changes in plasma OPN. Circulating OPN may represent a marker of LV dilation/impairment and an indicator of the response to HF therapies promoting LV reverse remodelling.
Collapse
Affiliation(s)
- Pietro Francia
- Cardiology, 2nd Faculty of Medicine, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|