1
|
Santen RJ, Karaguzel G, Livaoglu M, Yue W, Cline JM, Ratan A, Sasano H. Role of ERα and Aromatase in Juvenile Gigantomastia. J Clin Endocrinol Metab 2024; 109:1765-1772. [PMID: 38227777 DOI: 10.1210/clinem/dgae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
CONTEXT Approximately 150 patients with juvenile gigantomastia have been reported in the literature but the underlying biologic mechanisms remain unknown. OBJECTIVE To conduct extensive clinical, biochemical, immunochemical, and genetic studies in 3 patients with juvenile gigantomastia to determine causative biologic factors. METHODS We examined clinical effects of estrogen by blockading estrogen synthesis or its action. Breast tissue aromatase expression and activity were quantitated in 1 patient and 5 controls. Other biochemical markers, including estrogen receptor α (ERα), cyclin D1 and E, p-RB, p-MAPK, p-AKT, BCL-2, EGF-R, IGF-IR β, and p-EGFR were assayed by Western blot. Immunohistochemical analyses for aromatase, ERα and β, PgR, Ki67, sulfotransferase, estrone sulfatase, and 17βHD were performed in all 3 patients. The entire genomes of the mother, father, and patient in the 3 families were sequenced. RESULTS Blockade of estrogen synthesis or action in patients resulted in demonstrable clinical effects. Biochemical studies on fresh frozen tissue revealed no differences between patients and controls, presumably due to tissue dilution from the large proportion of stroma. However, immunohistochemical analysis of ductal breast cells in the 3 patients revealed a high percent of ERα (64.1% ± 7.8% vs reference women 9.6%, range 2.3-15%); aromatase score of 4 (76%-100% of cells positive vs 30.4% ± 5.6%); PgR (69.5% ± 15.2% vs 6.0%, range 2.7%-11.9%) and Ki67 (23.7% ± 0.54% vs 4.2%). Genetic studies were inconclusive although some intriguing variants were identified. CONCLUSION The data implicate an important biologic role for ERα to increase tissue sensitivity to estrogen and aromatase to enhance local tissue production as biologic factors involved in juvenile gigantomastia.
Collapse
Affiliation(s)
- Richard J Santen
- Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Gulay Karaguzel
- Department of Pediatric Endocrinology, Karadeniz Technical University, School of Medicine, 61080 Trabzon, Turkey
| | - Murat Livaoglu
- Department of Plastic Surgery, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Wei Yue
- Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - J Mark Cline
- Department of Pathology, Section of Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
2
|
Figueroa V, Rodríguez MS, Lanari C, Lamb CA. Nuclear action of FGF members in endocrine-related tissues and cancer: Interplay with steroid receptor pathways. Steroids 2019; 152:108492. [PMID: 31513818 DOI: 10.1016/j.steroids.2019.108492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023]
Abstract
Dysregulation of the fibroblast growth factors/fibroblast growth factor receptor (FGF/FGFR) pathway has been implicated in a wide range of human disorders and several members have been localized in the nuclear compartment. Hormone-activated steroid receptors or ligand independent activated receptors form nuclear complexes that activate gene transcription. This review aims to highlight the interplay between the steroid receptor and the FGF/FGFR pathways and focuses on the current knowledge on nuclear action of FGF members in endocrine-related tissues and cancer. The nuclear trafficking and targets of FGF/FGFR members and the available evidence on the interplay with steroid hormones and receptors is described. Finally, the data on aberrant FGF/FGFR signaling is summarized and the nuclear action of FGF members on endocrine resistant breast cancer is highlighted. Identifying the mechanisms underlying FGF-induced endocrine resistance will be important to understand how to efficiently target endocrine-related diseases and even enhance or restore endocrine sensitivity in hormone receptor positive tumors.
Collapse
Affiliation(s)
- Virginia Figueroa
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - María Sol Rodríguez
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
| | - Caroline Ana Lamb
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires 1428, Argentina.
| |
Collapse
|
3
|
Landeros RV, Jobe SO, Aranda-Pino G, Lopez GE, Zheng J, Magness RR. Convergent ERK1/2, p38 and JNK mitogen activated protein kinases (MAPKs) signalling mediate catecholoestradiol-induced proliferation of ovine uterine artery endothelial cells. J Physiol 2017; 595:4663-4676. [PMID: 28437005 DOI: 10.1113/jp274119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS The catechol metabolites of 17β-oestradiol (E2 β), 2-hydroxyoestradiol (2-OHE2 ) and 4-hydroxyoestradiol (4-OHE2 ), stimulate proliferation of pregnancy-derived ovine uterine artery endothelial cells (P-UAECs) through β-adrenoceptors (β-ARs) and independently of the classic oestrogen receptors (ERs). Herein we show that activation of ERK1/2, p38 and JNK mitogen activated protein kinases (MAPKs) is necessary for 2-OHE2 - and 4-OHE2 -induced P-UAEC proliferation, as well as proliferation induced by the parent hormone E2 β and other β-AR signalling hormones (i.e. catecholamines). Conversely, although 2-OHE2 and 4-OHE2 rapidly activate phosphatidylinositol 3-kinase (PI3K), its activation is not involved in catecholoestradiol-induced P-UAEC proliferation. We also show for the first time the signalling mechanisms involved in catecholoestradiol-induced P-UAEC proliferation; which converge at the level of MAPKs with the signalling mechanisms mediating E2 β- and catecholamine-induced proliferation. The present study advances our understanding of the complex signalling mechanisms involved in regulating uterine endothelial cell proliferation during pregnancy. ABSTRACT Previously we demonstrated that the biologically active metabolites of 17β-oestradiol, 2-hydroxyoestradiol (2-OHE2 ) and 4-hydroxyoestradiol (4-OHE2 ), stimulate pregnancy-specific proliferation of uterine artery endothelial cells derived from pregnant (P-UAECs), but not non-pregnant ewes. However, unlike 17β-oestradiol, which induces proliferation via oestrogen receptor-β (ER-β), the catecholoestradiols mediate P-UAEC proliferation via β-adrenoceptors (β-AR) and independently of classic oestrogen receptors. Herein, we aim to further elucidate the signalling mechanisms involved in proliferation induced by catecholoestradiols in P-UAECs. P-UAECs were treated with 2-OHE2 and 4-OHE2 for 0, 0.25, 0.5, 1, 2, 4, 12 and 24 h, to analyse activation of mitogen activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase (PI3K)-AKT. Specific inhibitors for ERK1/2 MAPK (PD98059), p38 MAPK (SB203580), JNK MAPK (SP600125), or PI3K (LY294002) were used to determine the involvement of individual kinases in agonist-induced P-UAEC proliferation. 2-OHE2 and 4-OHE2 stimulated biphasic phosphorylation of ERK1/2, slow p38 and JNK phosphorylation over time, and rapid monophasic AKT phosphorylation. Furthermore, ERK1/2, p38 and JNK MAPKs, but not PI3K, were individually necessary for catecholoestradiol-induced proliferation. In addition, when comparing the signalling mechanisms of the catecholoestradiols, to 17β-oestradiol and catecholamines, we observed that convergent MAPKs signalling pathways facilitate P-UAEC proliferation induced by all of these hormones. Thus, all three members of the MAPK family mediate the mitogenic effects of catecholoestradiols in the endothelium during pregnancy. Furthermore, the convergent signalling of MAPKs involved in catecholoestradiol-, 17β-oestradiol- and catecholamine-induced endothelial cell proliferation may be indicative of unappreciated evolutionary functional redundancy to facilitate angiogenesis and ensure maintenance of uterine blood flow during pregnancy.
Collapse
Affiliation(s)
- Rosalina Villalon Landeros
- Department of Obstetrics and Gynaecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA
| | - Sheikh O Jobe
- Department of Obstetrics and Gynaecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA
| | - Gabrielle Aranda-Pino
- Department of Obstetrics and Gynaecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA
| | - Gladys E Lopez
- Department of Obstetrics and Gynaecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Zheng
- Department of Obstetrics and Gynaecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA
| | - Ronald R Magness
- Department of Obstetrics and Gynaecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, WI, USA.,Department of Pediatrics and Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Department of Obstetrics and Gynaecology, University of South Florida Perinatal Research Vascular Centre, Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
4
|
Zheng S, Zhang Y, Qiao Y. Network analysis of primary active compounds in Danqi analogous formulas for treating cardiovascular disease. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2016. [DOI: 10.1016/j.jtcms.2016.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
5
|
Bentur OS, Schwartz D, Chernichovski T, Ingbir M, Weinstein T, Chernin G, Schwartz IF. Estradiol augments while progesterone inhibits arginine transport in human endothelial cells through modulation of cationic amino acid transporter-1. Am J Physiol Regul Integr Comp Physiol 2015; 309:R421-7. [PMID: 26062636 DOI: 10.1152/ajpregu.00532.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 06/04/2015] [Indexed: 01/03/2023]
Abstract
Decreased generation of nitric oxide (NO) by endothelial NO synthase (eNOS) characterizes endothelial dysfunction (ECD). Delivery of arginine to eNOS by cationic amino acid transporter-1 (CAT-1) was shown to modulate eNOS activity. We found in female rats, but not in males, that CAT-1 activity is preserved with age and in chronic renal failure, two experimental models of ECD. In contrast, during pregnancy CAT-1 is inhibited. We hypothesize that female sex hormones regulate arginine transport. Arginine uptake in human umbilical vein endothelial cells (HUVEC) was determined following incubation with either 17β-estradiol (E2) or progesterone. Exposure to E2 (50 and 100 nM) for 30 min resulted in a significant increase in arginine transport and reduction in phosphorylated CAT-1 (the inactive form) protein content. This was coupled with a decrease in phosphorylated MAPK/extracellular signal-regulated kinase (ERK) 1/2. Progesterone (1 and 100 pM for 30 min) attenuated arginine uptake and increased phosphorylated CAT-1, phosphorylated protein kinase Cα (PKCα), and phosphorylated ERK1/2 protein content. GO-6976 (PKCα inhibitor) prevented the progesterone-induced decrease in arginine transport. Coincubation with both progesterone and estrogen for 30 min resulted in attenuated arginine transport. While estradiol increases arginine transport and CAT-1 activity through modulation of constitutive signaling transduction pathways involving ERK, progesterone inhibits arginine transport and CAT-1 via both PKCα and ERK1/2 phosphorylation, an effect that predominates over estradiol.
Collapse
Affiliation(s)
- Ohad S Bentur
- Department of Nephrology, Sackler School of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Doron Schwartz
- Department of Nephrology, Sackler School of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Tamara Chernichovski
- Department of Nephrology, Sackler School of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Merav Ingbir
- Department of Nephrology, Sackler School of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Talia Weinstein
- Department of Nephrology, Sackler School of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Gil Chernin
- Department of Nephrology, Sackler School of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Idit F Schwartz
- Department of Nephrology, Sackler School of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Direct vasorelaxation by a novel phytoestrogen tanshinone IIA is mediated by nongenomic action of estrogen receptor through endothelial nitric oxide synthase activation and calcium mobilization. J Cardiovasc Pharmacol 2011; 57:340-7. [PMID: 21383591 DOI: 10.1097/fjc.0b013e31820a0da1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Salvia miltiorrhiza (Danshen) has been widely used in China and other Asian countries for treating various cardiovascular diseases resulting from its ability to improve coronary microcirculation and increase coronary blood flow. Tanshinone IIA (Tan IIA), the major active lipophilic ingredient responsible for the beneficial actions of Salvia miltiorrhiza, has been shown to induce vasodilation in coronary arteries. Because our recent study identified Tan IIA as a new member of the phytoestrogens, we hypothesized that its action might be mediated by estrogen receptor (ER) in vascular endothelial cells. The aim of the present study was to assess whether cardiovascular protection exerted by Tan IIA is mediated by the ER signal pathway and whether the genomic or nongenomic action of ER is involved within arteries and vascular endothelial cells. The effect of Tan IIA on blood vessels was investigated by vascular ring assay using endothelium-intact and endothelium-denuded rat aortas. Similar to estrogen, Tan IIA caused an nitric oxide- and endothelium-dependent relaxation, which was blocked by ER antagonist ICI 182,780. Primary cardiac microvascular endothelial cells were used as a model to study the cellular and molecular mechanisms of Tan IIA-induced vasorelaxation. We demonstrate that Tan IIA is capable of activating the estrogen receptor signal pathway, leading to increased endothelial nitric oxide synthase gene expression, nitric oxide production, ERK1/2 phosphorylation, and Ca mobilization. Collectively, these effects contribute to Tan IIA's vasodilative activity effects of y ER antagonist Cnt of cardiovascular diseases. Our findings support a continued effort in discovering and developing novel phytoestrogens as an alternative hormone replacement therapy for safer and more effective treatment of cardiovascular diseases.
Collapse
|
7
|
Sanchez AM, Flamini MI, Zullino S, Gopal S, Genazzani AR, Simoncini T. Estrogen receptor-{alpha} promotes endothelial cell motility through focal adhesion kinase. Mol Hum Reprod 2010; 17:219-26. [PMID: 21127007 DOI: 10.1093/molehr/gaq097] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sex steroids play a key role in cell movement and tissue organization. Cell migration requires the integration of events that induce changes in cell structure such as protrusion, polarization and traction toward the direction of migration. These actions are driven by actin remodeling and are stabilized by the development of adhesion sites to extracellular matrix via transmembrane receptors linked to the actin cytoskeleton. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that facilitates cell migration via the control of the turnover of focal adhesion complexes. In this work, we demonstrated that 17β-estradiol (E(2)) regulates actin remodeling and cell movement in human umbilical vein endothelial cells through the recruitment of FAK. E(2) induces phosphorylation of FAK and its translocation toward membrane sites where focal adhesion complexes are assembled. This process is triggered via a Gα/Gβ protein-dependent, rapid extra-nuclear signaling of estrogen receptor-α (ERα) that interacts in a multiprotein complex with c-Src, phosphatidylinositol 3-OH kinase and FAK. Phosphorylation of FAK is fundamental for its activation, translocation to the plasmatic membrane and the subsequent formation of focal adhesion complexes. In conclusion, we found that ERα enhances endothelial cell motility through the dynamic control of actin arrangement and the formation of focal adhesion complexes. The identification of these processes broadens the understanding of the actions of estrogens on endothelial cells and could be relevant in physiological or pathological settings.
Collapse
Affiliation(s)
- Angel Matias Sanchez
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, Division of Obstetrics and Gynecology, University of Pisa, Via Roma, 57, Pisa 56100, Italy
| | | | | | | | | | | |
Collapse
|
8
|
The Effects of CD133-Positive Cells to a Nonvascularized Fasciocutaneous Free Graft in the Rat Model. Ann Plast Surg 2009; 63:331-5. [DOI: 10.1097/sap.0b013e3181934951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Liao S, Bodmer J, Pietras D, Azhar M, Doetschman T, Schultz JEJ. Biological functions of the low and high molecular weight protein isoforms of fibroblast growth factor-2 in cardiovascular development and disease. Dev Dyn 2009; 238:249-64. [PMID: 18773489 PMCID: PMC3115589 DOI: 10.1002/dvdy.21677] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) consists of multiple protein isoforms (low molecular weight, LMW, and high molecular weight, HMW) produced by alternative translation from the Fgf2 gene. These protein isoforms are localized to different cellular compartments, indicating unique biological activity. FGF2 isoforms in the heart have distinct roles in many pathological circumstances in the heart including cardiac hypertrophy, ischemia-reperfusion injury, and atherosclerosis. These studies suggest distinct biological activities of FGF2 LMW and HMW isoforms both in vitro and in vivo. Yet, due to the limitations that only the recombinant FGF2 LMW isoform is readily available and that the FGF2 antibody is nonspecific with regards to its isoforms, much remains to be determined regarding the role(s) of the FGF2 LMW and HMW isoforms in cellular behavior and in cardiovascular development and pathophysiology. This review summarizes the activities of LMW and HMW isoforms of FGF2 in cardiovascular development and disease.
Collapse
Affiliation(s)
- Siyun Liao
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio
| | - Janet Bodmer
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio
| | - Daniel Pietras
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio
| | - Mohamad Azhar
- BIO5 Institute, and Department of Cell Biology & Anatomy, University of Arizona, Tucson, Arizona
| | - Tom Doetschman
- BIO5 Institute, and Department of Cell Biology & Anatomy, University of Arizona, Tucson, Arizona
| | - Jo El J. Schultz
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
10
|
Fontaine V, Filipe C, Werner N, Gourdy P, Billon A, Garmy-Susini B, Brouchet L, Bayard F, Prats H, Doetschman T, Nickenig G, Arnal JF. Essential role of bone marrow fibroblast growth factor-2 in the effect of estradiol on reendothelialization and endothelial progenitor cell mobilization. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1855-62. [PMID: 17071606 PMCID: PMC1780213 DOI: 10.2353/ajpath.2006.060260] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
17beta-Estradiol (E2) accelerates reendothelialization and increases the number of circulating endothelial progenitor cells (EPCs), but whether fibroblast growth factor-2 (FGF2) is involved in these processes remains unknown. Here we explored the role of FGF2 in the effect of E2 on reendothelialization and EPC levels in a mouse model. As previously reported, E2 increased both the velocity of reendothelialization and the number of circulating EPCs in ovariectomized wild-type (Fgf2+/+) mice. In contrast, the effect of E2 on both parameters was abolished in FGF2-deficient mice (Fgf2-/-), demonstrating that FGF2 is absolutely required for these effects of E2. To test the implication of medullary and extramedullary FGF2, we developed chimeric mice by grafting Fgf2-/- bone marrow to Fgf2+/+ [Fgf2-/- bone marrow (BM) = > Fgf2+/+] mice and observed that the effect of E2 on both reendothelialization and EPC levels was abolished. In contrast, both effects of E2 in Fgf2+/+BM = >Fgf2-/- mice were similar to those observed in Fgf2+/+ mice, demonstrating that only BM-derived, but not extramedullary, FGF2 is required for both effects. Interestingly, E2 was found to markedly increase both FGF2(lmw) and FGF2(hmw) in bone marrow. In conclusion, FGF2, specifically medullary FGF2, is necessary and sufficient to mediate the accelerative effect of E2 on both reendothelialization and EPC mobilization.
Collapse
Affiliation(s)
- Vincent Fontaine
- INSERM U589, Institut L. Bugnard, Centre Hospitalier Universitaire Rangueil, Toulouse Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Donnini S, Solito R, Giachetti A, Granger HJ, Ziche M, Morbidelli L. Fibroblast growth factor-2 mediates Angiotensin-converting enzyme inhibitor-induced angiogenesis in coronary endothelium. J Pharmacol Exp Ther 2006; 319:515-22. [PMID: 16868034 DOI: 10.1124/jpet.106.108803] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The beneficial effect exerted by angiotensin-converting enzyme inhibitors (ACEI) on vascular endothelium has been attributed to restoration of endothelial cell survival properties and improvement of angiogenesis. Fibroblast growth factor (FGF)-2 is an angiogenic factor for the microvascular endothelium, which tonically promotes endothelial cell growth and survival through an autocrine/paracrine mechanism. Here, we formulate the hypothesis that FGF-2 might contribute to the prosurvival/proangiogenic effect of ACEI. We investigated zofenoprilat and, in selected experiments, lisinopril, as representatives of ACEI. These compounds induced formation of pseudocapillaries in vessel fragments isolated from porcine coronary and human umbilical arteries by increasing endothelial cell growth up to 5-fold. Angiogenesis was abolished by inhibitors of nitric-oxide synthase (NOS) pathway and by anti-FGF-2 antibodies. Consistently, in cultured coronary endothelial cells (CVECs), ACEI up-regulated endothelial NOS (eNOS) and FGF-2 and induced mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 activation. The overexpression of eNOS/FGF-2 produced, at the functional level, enhanced cell proliferation and migration, the latter effect being dose-dependent and maximal at 0.1 microM zofenoprilat. The importance of FGF-2 for the acquisition of the angiogenic phenotype elicited by ACEI was clearly demonstrated by the impairment of endothelial functions following transfection of CVECs with small interference RNA for FGF-2. Moreover, FGF-2 silencing greatly affected the nuclear translocation of the FGF receptor (FGFR)-1, highlighting the autocrine mode of action of FGF-2. At the endothelial membrane level, zofenoprilat appeared to activate the bradykinin B1 receptor, a known stimulant of FGF-2 expression. In conclusion, we show that ACEI exert protective/proangiogenic effects in microvascular coronary endothelial cells by activating the endogenous FGF-2/FGFR-1 system.
Collapse
Affiliation(s)
- Sandra Donnini
- Pharmacology Section, Department of Molecular Biology, Via A. Moro 2, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Joy S, Siow RCM, Rowlands DJ, Becker M, Wyatt AW, Aaronson PI, Coen CW, Kallo I, Jacob R, Mann GE. The Isoflavone Equol Mediates Rapid Vascular Relaxation. J Biol Chem 2006; 281:27335-45. [PMID: 16840783 DOI: 10.1074/jbc.m602803200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently reported that soy isoflavones increase gene expression of endothelial nitric-oxide synthase (eNOS) and antioxidant defense enzymes, resulting in improved endothelial function and lower blood pressure in vivo. In this study, we establish that equol (1-100 nM) causes acute endothelium- and nitric oxide (NO)-dependent relaxation of aortic rings and rapidly (2 min) activates eNOS in human aortic and umbilical vein endothelial cells. Intracellular Ca2+ and cyclic AMP levels were unaffected by treatment (100 nM, 2 min) with equol, daidzein, or genistein. Rapid phosphorylation of ERK1/2, protein kinase B/Akt, and eNOS serine 1177 by equol was paralleled by association of eNOS with heat shock protein 90 (Hsp90) and NO synthesis in human umbilical vein endothelial cells, expressing estrogen receptors (ER)alpha and ERbeta. Inhibition of phosphatidylinositol 3-kinase and ERK1/2 inhibited eNOS activity, whereas pertussis toxin and the ER antagonists ICI 182,750 and tamoxifen had negligible effects. Our findings provide the first evidence that nutritionally relevant plasma concentrations of equol (and other soy protein isoflavones) rapidly stimulate phosphorylation of ERK1/2 and phosphatidylinositol 3-kinase/Akt, leading to the activation of NOS and increased NO production at resting cytosolic Ca2+ levels. Identification of the nongenomic mechanisms by which equol mediates vascular relaxation provides a basis for evaluating potential benefits of equol in the treatment of postmenopausal women and patients at risk of cardiovascular disease.
Collapse
Affiliation(s)
- Sheeja Joy
- Cardiovascular Division, School of Biomedical and Health Sciences, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nakopoulou L, Mylona E, Rafailidis P, Alexandrou P, Giannopoulou I, Keramopoulos A. Effect of different ERK2 protein localizations on prognosis of patients with invasive breast carcinoma. APMIS 2006; 113:693-701. [PMID: 16309429 DOI: 10.1111/j.1600-0463.2005.apm_236.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mitogen-activated protein kinase (MAP kinase) pathways represent a cascade of phosphorylation events, including three pivotal kinases, Raf, MEK and ERK1/2, which have been implicated in the pathogenesis of cancer. We examined 151 cases of invasive breast carcinoma by immunohistochemistry and compared the ERK2 expression with clinicopathological parameters, MMP-11 immunoexpression and patients' survival. ERK2 immunoexpression was detected in the cytoplasm and nucleus of cancer cells in 37.7% and 19.2% of cases, respectively. Nuclear ERK2 was inversely correlated with ER (p = 0.039), whereas cytoplasmic ERK2 was positively correlated with MMP-11 in fibroblasts (p = 0.032) and more often expressed in lobular than ductal carcinomas (p = 0.026). Nuclear ERK2 expression was found to be an independent prognostic factor of shortened overall survival of patients (p = 0.040), while cytoplasmic ERK2 had an independent, favorable effect on both disease-free and overall survival (p < 0.0001 and p = 0.002, respectively). These findings suggest that the different subcellular localizations of ERK2 seem to be related to different, possibly contradictory, effects on patient survival.
Collapse
Affiliation(s)
- L Nakopoulou
- School of Medicine, National and Kapodistrian University of Athens, Greece.
| | | | | | | | | | | |
Collapse
|
14
|
Blacklock AD, Johnson MS, Krizsan-Agbas D, Smith PG. Estrogen increases sensory nociceptor neuritogenesis in vitro by a direct, nerve growth factor-independent mechanism. Eur J Neurosci 2005; 21:2320-8. [PMID: 15932591 DOI: 10.1111/j.1460-9568.2005.04075.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Estrogen affects many aspects of the nervous system, including pain sensitivity and neural regulation of vascular function. We have shown that estrogen elevation increases sensory nociceptor innervation of arterioles in Sprague-Dawley rat mammary gland, external ear and mesentery, suggesting widespread effects on sensory vasodilatory innervation. However, it is unclear whether estrogen elicits nociceptor hyperinnervation by promoting target release of neurotrophic factors, or by direct effects on sensory neurons. To determine if estrogen may promote axon sprouting by increasing release of target-derived diffusible factors, dorsal root ganglia explants were co-cultured with mesenteric arterioles for 36 h in the absence or presence of 17beta-estradiol (E2). Mesenteric arteriolar target substantially increased neurite outgrowth from explanted ganglia, but estrogen had no effect on outgrowth, suggesting that estrogen does not increase the availability of trophic proteins responsible for target-induced neurite outgrowth. To assess the direct effects of estrogen, dissociated neonatal dorsal root ganglion neurons were cultured for 3 days in the absence or presence of E2 and nerve growth factor (NGF; 1-10 ng/mL), and immunostained for the nociceptor markers peripherin or calcitonin gene-related peptide. NGF increased neuron size, survival and numbers of neurons with neurites, but did not affect neurite area per neuron. Estrogen did not affect neuron survival, size or numbers of neurons with neurites, but did increase neurite area per neuron. The effects of these agents were not synergistic. We conclude that estrogen exerts direct effects on nociceptor neurons to promote axon outgrowth, and this occurs through an NGF-independent mechanism.
Collapse
Affiliation(s)
- A D Blacklock
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, KS, 66160-7401, USA
| | | | | | | |
Collapse
|
15
|
Karl M, Potier M, Schulman IH, Rivera A, Werner H, Fornoni A, Elliot SJ. Autocrine activation of the local insulin-like growth factor I system is up-regulated by estrogen receptor (ER)-independent estrogen actions and accounts for decreased ER expression in type 2 diabetic mesangial cells. Endocrinology 2005; 146:889-900. [PMID: 15550505 DOI: 10.1210/en.2004-1121] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autocrine activation of the IGF-I system in mesangial cells (MC) promotes glomerular scarring in a model of type 1 diabetes. Although estrogens protect against progressive nondiabetic glomerulosclerosis (GS), women with diabetes seem to loose the estrogen-mediated protection against cardiovascular disease. However, little is known about the local IGF-I system and its interactions with estrogens in the pathogenesis of type 2 diabetic GS. Therefore, we examined db/db B6 (db/db) mice, a model of type 2 diabetes and diabetic GS. The IGF-I system was activated in the glomeruli and MC of female diabetic db/db mice, but not in nondiabetic db/+ littermates. We found increased IGF-I receptor (IGFR) expression and activation, including activation of MAPK. Surprisingly, estrogens, via an estrogen receptor (ER)-independent mechanism(s), increased IGFR expression, IGFR and insulin receptor substrate phosphorylation, and extracellular signal-regulated kinase activation in db/db MC. In contrast, ER expression was decreased in MC and glomeruli of db/db mice. Treatment with a neutralizing antibody to IGF-I or the MAPK inhibitor PD98059 increased ER expression and transcriptional activity. This suggests that the local prosclerotic IGF-I system is activated in type 2 diabetes and diminishes ER-mediated protection against GS. Although estrogens may stimulate protective ER signaling, they also activate the IGF-I system via ER-independent mechanisms in db/db MC. The later estrogen effects appear to outweigh the antisclerotic effects of ER activation. This may in part account for loss of estrogen protection against the progression of diabetic GS in women with type 2 diabetes.
Collapse
Affiliation(s)
- Michael Karl
- Vascular Biology Institute, University of Miami School of Medicine, 1600 N.W. 10th Avenue, RMSB, Room 1043-R104, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Blacklock AD, Cauveren JA, Smith PG. Estrogen selectively increases sensory nociceptor innervation of arterioles in the female rat. Brain Res 2004; 1018:55-65. [PMID: 15262205 DOI: 10.1016/j.brainres.2004.05.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Differences exist in vascular function and disease susceptibility in males and females, and estrogen is apparently a primary factor. One mechanism by which estrogen may influence vascular function is by affecting vasomotor innervation. We have shown previously that estrogen increases calcitonin gene-related peptide (CGRP)-immunoreactive sensory innervation of the rat mammary gland, but it is not known if this occurs in other tissues. The objective of this study was to determine if estrogen modulates CGRP-immunoreactive innervation of vascular and non-vascular tissues. Ovariectomized adult virgin female rats were implanted with pellets containing 17beta-estradiol or placebo. After 7 days, innervation was examined in the external ear, jejunal mesenteric arterioles, superficial epigastric, femoral, and uterine arteries, and foot skin. Immunofluorescence microscopy of the external ear pinna revealed increased CGRP-immunoreactive sensory innervation in estrogen-treated rats, and this was attributable specifically to increased innervation of arterioles. Tyrosine hydroxylase-immunoreactive innervation was unchanged. Total nerve density, revealed by the pan-neuronal marker PGP 9.5, was also greater after estrogen treatment, implying structural proliferation of nociceptor vasodilator fibers. Mesenteric arteriolar CGRP-immunoreactive nerve density was also selectively increased by estrogen treatment. However, estrogen did not affect CGRP-immunoreactive nerve density of superficial epigastric, femoral, or uterine arteries, or foot skin. Therefore, estrogen increases sensory innervation of arterioles, but not of large arteries or skin. We conclude that sensory nociceptor vasodilatory innervation of arterioles is selectively enriched by estrogen, which may influence cardiovascular function in health and disease.
Collapse
Affiliation(s)
- Audrey D Blacklock
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City 66160-7401, USA
| | | | | |
Collapse
|
18
|
Kyriakides ZS, Petinakis P, Kaklamanis L, Lyras T, Sbarouni E, Karayannakos P, Iliopoulos D, Kremastinos DT. Gender does not influence angiogenesis and arteriogenesis in a rabbit model of chronic hind limb ischemia. Int J Cardiol 2004; 92:83-91. [PMID: 14602222 DOI: 10.1016/s0167-5273(03)00039-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Estrogen administration promotes angiogenesis and perfusion in oophorectomized rabbits with chronic limb ischemia. In the present study we tested whether gender affects angiogenesis and arteriogenesis in a rabbit model of chronic hind limb ischemia. METHODS AND RESULTS Ischemia was induced in one hind limb of five oophorectomized (Ooph), seven non-oophorectomized (NonOoph) female and eight male New Zealand White rabbits by excision of the femoral artery. Ten days after the induction of ischemia (day 0) and at days 15 and 30 systolic calf blood pressure was measured in the ischemic and non-ischemic hind limbs. Revascularization in the ischemic limb was expressed as ischemic/normal limb blood pressure, capillary/muscle fiber density, and non-capillary, non-lymphatic vessels/muscle fiber density after examination of light microscopic sections taken from the abductor muscle of the ischemic limb at the time of death (day 30). Ischemic/normal blood pressure at day 30 in males was 0.62 +/- 0.22, in NonOoph 0.64 +/- 0.09 (P=ns vs. males) and in Ooph 0.39 +/- 0.05 (P<0.05 vs. males and NonOoph), (F=4.69, P=0.02). Ischemic capillary/muscle fiber in males was 0.96 +/- 0.09, in NonOoph 0.95 +/- 0.06 (P=ns vs. males) and in Ooph 0.83 +/- 0.09 (P<0.05 vs. males and NonOoph), (F=5.93, P=0.01). Ischemic non-capillary, non-lymphatic vessels/muscle fiber density in males was 0.11 +/- 0.02, in NonOoph 0.12 +/- 0.03 (P=ns vs. males) and in Ooph 0.08 +/- 0.02 (P<0.05 vs. NonOoph), (F=5.05, P=0.02). CONCLUSION Gender does not influence angiogenesis and arteriogenesis in the rabbit model of chronic hind limb ischemia. However, estrogen deficiency induced by oophorectomy negatively affects angiogenesis and arteriogenesis.
Collapse
Affiliation(s)
- Zenon S Kyriakides
- 2nd Department of Cardiology, Onassis Cardiac Surgery Centre, 356 Sygrou Ave, GR-17674 Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sengupta K, Banerjee S, Saxena NK, Banerjee SK. Thombospondin-1 Disrupts Estrogen-Induced Endothelial Cell Proliferation and Migration and Its Expression Is Suppressed by Estradiol. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.150.2.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The natural hormone 17β-estradiol (17β-E2) is known to induce tumor angiogenesis in various target organs by activating positive regulators of angiogenesis. In this study, we show for the first time that in human umbilical vein endothelial cells (HUVECs), 17β-E2 transiently down-regulates the expression and secretion of a potent negative regulator of angiogenesis, thrombospondin-1 (TSP-1). This inhibitory effect of 17β-E2 is mediated through nongenomic estrogen receptor (ER)/mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) 1/2 and c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase (SAPK) signaling pathways, because this effect can be abolished by a pure ER antagonist (ICI 182,780) and inhibitors of downstream signaling proteins of MAPK signaling cascades, including MAPK kinase 1/2 and ERK1/2 inhibitor and JNK/SAPK inhibitor. To understand the functional role(s) of TSP-1 during estradiol-induced angiogenesis, we examined the growth and migration of endothelial cells in different experimental environments. Using a recombinant protein, we show that increments of TSP-1 protein concentration in culture medium significantly reduce the migration and proliferation of HUVECs stimulated by 17β-E2. Together, these studies suggest that TSP-1 can be considered an important negative factor in understanding the increased angiogenesis in response to estrogens.
Collapse
Affiliation(s)
- Krishanu Sengupta
- Cancer Research Unit, VA Medical Center, Kansas City, MO and Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO and Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Neela K. Saxena
- Cancer Research Unit, VA Medical Center, Kansas City, MO and Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Sushanta K. Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO and Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
20
|
Mompéo B, Tscheuschilsuren G, Aust G, Metz S, Spanel-Borowski K. Estrogen receptor expression and synthesis in the human internal thoracic artery. Ann Anat 2003; 185:57-65. [PMID: 12597128 DOI: 10.1016/s0940-9602(03)80011-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The inhibition of vascular smooth muscle cell proliferation is mediated through two intracellular estrogen receptors (ERs), ER-alpha and ER-beta. Deletion variants of ER-alpha have been decribed for cultures of smooth muscle cells. The internal thoracic artery is frequently used as coronary artery bypass graft, yet neither has it been studied for the expression of ER subtypes nor for the synthesis of the ERs in morphologically hetergeneous smooth muscle cells. Using nested RT-PCR, we have demonstrated the mRNA for ER-alpha splicing variants in intact human internal thoracic arteries. The 7A deletion variant occurred in 8 out of 12 cases, the full-length transcript in three cases. The full-length transcript was always found for the ER-beta. Immunolocalization revealed ER-positive nuclei in the desmin-positive subset of smooth muscle cells, but not in cytokeratin (CK)-positive cells of the thickened intima. Morphological evidence is presented suggesting that ER synthesis is high in the tunica media when cell proliferation of smooth muscle cells is increased. We conclude that, in internal thoracic arteries, the 7A deletion variant of ER-a occurs in 75%, whereas the full-length transcript is found in all cases. The significance remains unclear.
Collapse
Affiliation(s)
- Blanca Mompéo
- Institute of Anatomy, University of Leipzig, Liebigstrasse 13, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
21
|
Abstract
Blood vessel homeostasis involves a complex interplay between inflammatory signals, hormones, and other mediators. Recent research suggests that although atherosclerosis is primarily a problem of impaired lipid regulation, the very processes of cholesterol and triglyceride metabolism are intrinsically tied to inflammatory and hormonal regulatory signals. Similarities between inflammatory and endocrine disturbances in systemic lupus and the predicted consequences for vascular regulation help explain the high incidence of premature atherosclerosis in lupus. Atherosclerosis in systemic lupus, then, may be a consequence of imbalances in what are intrinsic homeostatic mechanisms, rather than a result of externally superimposed pathologic changes.
Collapse
Affiliation(s)
- Joan T Merrill
- Clinical Pharmacology Research Program, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA.
| |
Collapse
|
22
|
Abstract
Estrogens exert important regulatory functions on vessel wall components, which may contribute to the increased prevalence and severity of certain chronic inflammatory and autoimmune diseases in females and the lower cardiovascular risk observed in premenopausal women. Endothelial cells have been recently identified as targets for estrogens, and estrogen receptors have been demonstrated in endothelial cells from various vascular beds. This review focuses on the regulatory function of estrogens in endothelial cell responses relevant to vessel inflammation, injury, and repair; estrogen effects on nitric oxide production and release; estrogen modulation of endothelial cell adhesion molecule expression; and estrogen regulation of angiogenesis. The mechanisms through which estrogen regulates endothelial cell functions are complex and involve both genomic and nongenomic mechanisms.
Collapse
MESH Headings
- Animals
- Arteriosclerosis/immunology
- Arteriosclerosis/physiopathology
- Autoimmune Diseases/immunology
- Autoimmune Diseases/physiopathology
- Cell Adhesion Molecules/biosynthesis
- Cell Adhesion Molecules/genetics
- Connective Tissue Diseases/immunology
- Connective Tissue Diseases/physiopathology
- Disease Models, Animal
- Disease Susceptibility
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/injuries
- Endothelium, Vascular/metabolism
- Estrogens/pharmacology
- Estrogens/physiology
- Female
- Gene Expression Regulation/drug effects
- Growth Substances/metabolism
- Humans
- Inflammation/immunology
- Inflammation/physiopathology
- Integrins/metabolism
- Mice
- Mice, Inbred NZB
- Models, Biological
- Neovascularization, Pathologic/physiopathology
- Neovascularization, Physiologic/drug effects
- Nitric Oxide/metabolism
- Oxidative Stress/drug effects
- Premenopause/physiology
- Receptors, Estrogen/drug effects
- Receptors, Estrogen/physiology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Maria C Cid
- Department of Internal Medicine, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | | | | |
Collapse
|
23
|
Dubey RK, Jackson EK. Estrogen-induced cardiorenal protection: potential cellular, biochemical, and molecular mechanisms. Am J Physiol Renal Physiol 2001; 280:F365-88. [PMID: 11181399 DOI: 10.1152/ajprenal.2001.280.3.f365] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A number of cellular and biochemical processes are involved in the pathophysiology of glomerular and vascular remodeling, leading to renal and vascular disorders, respectively. Although estradiol protects the renal and cardiovascular systems, the mechanisms involved remain unclear. In this review we provide a discussion of the cellular, biochemical, and molecular mechanisms by which estradiol may exert protective effects on the kidneys and vascular wall. In this regard, we consider the possible role of genomic vs. nongenomic mechanisms and estrogen receptor-dependent vs. estrogen receptor-independent mechanisms in mediating the protective effects of estradiol on the renal and cardiovascular systems.
Collapse
Affiliation(s)
- R K Dubey
- Center for Clinical Pharmacology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
24
|
Manole D, Schildknecht B, Gosnell B, Adams E, Derwahl M. Estrogen promotes growth of human thyroid tumor cells by different molecular mechanisms. J Clin Endocrinol Metab 2001; 86:1072-7. [PMID: 11238488 DOI: 10.1210/jcem.86.3.7283] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid tumors are about 3 times more frequent in females than in males. Epidemiological studies suggest that the use of estrogens may contribute to the pathogenesis of thyroid tumors. In a very recent study a direct growth stimulatory effect of 17beta-estradiol was demonstrated in FRTL-5 rat thyroid cells. In this work the presence of estrogen receptors alpha and beta in thyroid cells derived from human goiter nodules and in human thyroid carcinoma cell line HTC-TSHr was demonstrated. There was no difference between the expression levels of estrogen receptor alpha in males and females, but there was a significant increase in expression levels in response to 17beta-estradiol. Stimulation of benign and malignant thyroid cells with 17beta-estradiol resulted in an increased proliferation rate and an enhanced expression of cyclin D1 protein, which plays a key role in the regulation of G(1)/S transition in the cell cycle. In malignant tumor cells maximal cyclin D1 expression was observed after 3 h, whereas in benign cells the effect of 17beta-estradiol was delayed. ICI 182780, a pure estrogen antagonist, prevented the effects of 17beta-estradiol. In addition, 17beta-estradiol was found to modulate activation of mitogen-activated protein (MAP) kinase, whose activity is mainly regulated by growth factors in thyroid carcinoma cells. In response to 17beta-estradiol, both MAP kinase isozymes, extracellular signal-regulated protein kinases 1 and 2, were strongly phosphorylated in benign and malignant thyroid cells. Treatment of the cells with 17beta-estradiol and MAP kinase kinase 1 inhibitor, PD 098059, prevented the accumulation of cyclin D1 and estrogen-mediated mitogenesis. Our data indicate that 17beta-estradiol is a potent mitogen for benign and malignant thyroid tumor cells and that it exerts a growth-promoting effect not only by binding to nuclear estrogen receptors, but also by activation of the MAP kinase pathway.
Collapse
Affiliation(s)
- D Manole
- Division of Endocrinology, Department of Medicine, St. Hedwig Hospital, 10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
25
|
Parenti A, Brogelli L, Donnini S, Ziche M, Ledda F. ANG II potentiates mitogenic effect of norepinephrine in vascular muscle cells: role of FGF-2. Am J Physiol Heart Circ Physiol 2001; 280:H99-H107. [PMID: 11123223 DOI: 10.1152/ajpheart.2001.280.1.h99] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the possible cooperation between norepinephrine (NE) and ANG II on proliferation of cultured vascular smooth muscle cells (VSMCs) and the involved cellular mechanisms. Nanomolar NE concentrations stimulated VSMC proliferation through a prazosin-sensitive effect. The pretreatment of cells with 100 nM ANG II for 24 h significantly potentiated the NE-induced VSMC proliferation; this potentiating effect of ANG II was blocked by losartan but was unaffected by the AT(2) receptor antagonist PD-123177. ANG II pretreatment also potentiated the increase in inositol phosphate turnover and upregulated the cell expression of fibroblast growth factor (FGF-2) induced by NE. Anti-FGF-2 neutralizing antibodies prevented the potentiating effect of ANG II on NE-induced cell growth. Both ANG II and NE stimulated extracellular signal-related kinase (ERK1) activation, but an ANG II potentiation of the effect of NE on ERK1 activity was not detectable. Moreover, ANG II significantly increased protein synthesis but did not potentiate the hypertrophic effect of NE. These findings demonstrate that ANG II and NE cooperate in promoting VSMC growth and that FGF-2 upregulation is involved in this effect.
Collapse
Affiliation(s)
- A Parenti
- Department of Pharmacology, University of Florence, Florence 50139, Italy
| | | | | | | | | |
Collapse
|
26
|
Lobenhofer EK, Marks JR. Estrogen-induced mitogenesis of MCF-7 cells does not require the induction of mitogen-activated protein kinase activity. J Steroid Biochem Mol Biol 2000; 75:11-20. [PMID: 11179904 DOI: 10.1016/s0960-0760(00)00132-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Estrogen mediates the transcription of responsive genes via its interaction with the estrogen receptor (ER). This ligand-dependent transcriptional activity has been the mechanistic basis for understanding estrogen-induced proliferation. However, recent reports suggest that estrogen stimulation results in activation of the mitogen-activated protein kinase (MAPK) cascade in an ER-dependent manner suggesting that mitogenesis may be mediated through this cytoplasmic signaling cascade. In this study, we demonstrate that estrogen stimulation of MCF-7 cells does not activate MAPK regardless of hormone concentration, serum concentration, or cell density. We also excluded the activation of MAPK through autocrine effects after estrogen treatment. Finally, concentrations required for estrogen-induced mitogenesis and estrogen-mediated transcription were shown to be the same. These results support transcriptional activation as the primary mechanism for estrogen-mediated mitogenesis.
Collapse
Affiliation(s)
- E K Lobenhofer
- Program in Cell and Molecular Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
27
|
Mueller H, Flury N, Eppenberger-Castori S, Kueng W, David F, Eppenberger U. Potential prognostic value of mitogen-activated protein kinase activity for disease-free survival of primary breast cancer patients. Int J Cancer 2000; 89:384-8. [PMID: 10956414 DOI: 10.1002/1097-0215(20000720)89:4<384::aid-ijc11>3.0.co;2-r] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Signaling through pathways involving mitogen-activated protein kinases (MAP kinases) has been implicated in the pathogenesis of cancer. Thus, the activity of MAP kinase is essential in the malignant potential of human breast tumors. p42/44(MAPK) was significantly higher expressed in tumor samples than in matching normal tissues adjacent to the tumor. p42/44(MAPK) protein expression correlated with enhanced MAP kinase activity only in a subset of tumors, indicating that over-expression of MAP kinases does not reflect the activation status of these enzymes. MAP kinase activity was significantly elevated in 131 tissue samples from primary breast tumors when compared to 18 normal tissues adjacent to tumors. A trend for higher MAP kinase activity in primary tumors of node-positive patients was observed when compared with tumors from node-negative patients. Similarly, higher MAP kinase activities were observed in specimens from patients who had a relapse within the follow-up time of 40 months when compared with patients with no relapse. A survival analysis demonstrated that the MAP kinase activity in primary breast tumors is potentially prognostic for relapse-free survival of patients.
Collapse
Affiliation(s)
- H Mueller
- Departments of Research and Gynecology, University Women's Clinics, Kantonsspital Basel, and Stiftung Tumorbank Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
28
|
Neugarten J, Medve I, Lei J, Silbiger SR. Estradiol suppresses mesangial cell type I collagen synthesis via activation of the MAP kinase cascade. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F875-81. [PMID: 10600934 DOI: 10.1152/ajprenal.1999.277.6.f875] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have previously shown that estradiol suppresses the synthesis of type I collagen by murine mesangial cells grown in the presence of serum via activation of the transcription factor activator protein-1 (AP-1). We hypothesized that estradiol upregulates AP-1 via activation of the mitogen-activated protein (MAP) kinase cascade, a signal transduction pathway that regulates AP-1 activity. Estradiol (10(-10) to 10(-7) M) upregulated the MAP kinase pathway in murine mesangial cells grown in the presence of serum in a dose-dependent manner. Activation was evident by 1 min, peaked at 10 min, and was completely dissipated by 2 h. In contrast, estradiol had no significant effect on total (phosphorylated + unphosphorylated) p44 extracellular signal-related protein kinase (ERK) or p42 ERK. Nuclear extracts isolated from mesangial cells treated with estradiol showed increased binding to a consensus sequence AP-1 binding oligonucleotide in gel shift assays. In contrast, nuclear extracts from cells exposed to PD-98059, a highly selective inhibitor of MAP kinase-ERK kinase 1 (MEK1) and MEK2, showed reduced binding. In addition, PD-98059 antagonizes the enhanced binding induced by estradiol. Estradiol (10(-9) M) suppressed mesangial cell type I collagen synthesis (37.8 +/- 2.4%, expressed as a percentage of control values, P < 0.001 vs. control). In contrast, PD-98059 increased type I collagen synthesis (344.6 +/- 98.8, P < 0.01) and reversed the suppression of type I collagen synthesis induced by estradiol. The effects of estradiol, PD-98059, and PD-98059 plus estradiol on type I collagen protein synthesis were closely paralleled by their effects on steady-state levels of mRNA for the alpha(1) chain of type I collagen. These data suggest that estradiol suppresses type I collagen synthesis via upregulation of the MAP kinase cascade, leading to stimulation of AP-1 activity.
Collapse
Affiliation(s)
- J Neugarten
- Renal Division, Department of Medicine, Montefiore Medical Center and the Albert Einstein College of Medicine, Bronx, New York 10467, USA
| | | | | | | |
Collapse
|
29
|
Nuedling S, Kahlert S, Loebbert K, Meyer R, Vetter H, Grohé C. Differential effects of 17beta-estradiol on mitogen-activated protein kinase pathways in rat cardiomyocytes. FEBS Lett 1999; 454:271-6. [PMID: 10431821 DOI: 10.1016/s0014-5793(99)00816-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cardiac myocytes contain functional estrogen receptors, however, the effect of estrogen on growth-related signaling pathways such as mitogen-activated protein kinases (MAPK) in the pathogenesis of cardiac disease is unclear. MAPKs are critically involved in regulatory signaling pathways which ultimately lead to cardiac hypertrophy. Here we show that 17beta-estradiol (E2) activates extracellular signal-regulated kinase (ERK1/2), c-Jun-NH2-terminal protein kinase (JNK) and p38 in rat cardiomyocytes in a distinctive pattern. As shown by immunoblot analysis and phosphorylation assays, E2 (10(-9) M) induced a rapid and transient activation of ERK1/2 and a rapid but sustained increase of JNK phosphorylation. In contrast, E2 had only a marginal effect on p38 activation. Furthermore, MAPK phosphatase expression was induced by E2 and E2-stimulated expression of endothelial and inducible NO synthase was inhibited by PD 98059, an inhibitor of the ERK pathway. These novel observations may help to explain the role of estrogen in gender-based differences found in cardiac disease.
Collapse
Affiliation(s)
- S Nuedling
- Medizinische Poliklinik, University of Bonn, Germany
| | | | | | | | | | | |
Collapse
|
30
|
|