1
|
Katsi V, Mavroudis A, Liatakis I, Konstantinos M, Tsioufis K. Exploring the Relationship Between Hypertension and Cerebral Microvascular Disease. Diseases 2024; 12:266. [PMID: 39589940 PMCID: PMC11592893 DOI: 10.3390/diseases12110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Hypertension exerts negative effects on the vasculature representing a key risk factor for cardiovascular disorders, cerebral and Cerebral Small Vessel Disease (CSVD). METHODS An extensive research in the literature was implemented in order to elucidate the role of hypertension in the pathogenesis of CSVD. RESULTS Hypertension-mediated vascular dysfunction and chronic cerebral hypoperfusion are closely linked to CSVD. CSVD encompasses a wide range of lesions depicted on brain Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) scans. The presenting symptoms and clinical course are highly variable, as a significant proportion of patients remain asymptomatic. Nevertheless, CSVD is associated with an increased risk of stroke, dementia and mobility disorders. Various randomised controlled trials have been implemented trying to shed light on the effect of vascular risk-modifying agents and lifestyle interventions on the prevention and treatment of small vessel disease. CONCLUSIONS Hypertension has a pivotal role in the pathogenesis of CSVD. However, further research is required for a better understanding of the relationship between blood pressure levels and CSVD progression.
Collapse
Affiliation(s)
| | - Andreas Mavroudis
- First Cardiology Clinic, School of Medicine, University of Athens, 11527 Athens, Greece; (V.K.); (M.K.); (K.T.)
| | | | | | | |
Collapse
|
2
|
Khoshneviszadeh M, Henneicke S, Pirici D, Senthilnathan A, Morton L, Arndt P, Kaushik R, Norman O, Jukkola J, Dunay IR, Seidenbecher C, Heikkinen A, Schreiber S, Dityatev A. Microvascular damage, neuroinflammation and extracellular matrix remodeling in Col18a1 knockout mice as a model for early cerebral small vessel disease. Matrix Biol 2024; 128:39-64. [PMID: 38387749 DOI: 10.1016/j.matbio.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Collagen type XVIII (COL18) is an abundant heparan sulfate proteoglycan in vascular basement membranes. Here, we asked (i) if the loss of COL18 would result in blood-brain barrier (BBB) breakdown, pathological alterations of small arteries and capillaries and neuroinflammation as found in cerebral small vessel disease (CSVD) and (ii) if such changes may be associated with remodeling of synapses and neural extracellular matrix (ECM). We found that 5-month-old Col18a1-/- mice had elevated BBB permeability for mouse IgG in the deep gray matter, and intravascular erythrocyte accumulations were observed brain-wide in capillaries and arterioles. BBB permeability increased with age and affected cortical regions and the hippocampus in 12-month-old Col18a1-/- mice. None of the Col18a1-/- mice displayed hallmarks of advanced CSVD, such as hemorrhages, and did not show perivascular space enlargement. Col18a1 deficiency-induced BBB leakage was accompanied by activation of microglia and astrocytes, a loss of aggrecan in the ECM of perineuronal nets associated with fast-spiking inhibitory interneurons and accumulation of the perisynaptic ECM proteoglycan brevican and the microglial complement protein C1q at excitatory synapses. As the pathway underlying these regulations, we found increased signaling through the TGF-ß1/Smad3/TIMP-3 cascade. We verified the pivotal role of COL18 for small vessel wall structure in CSVD by demonstrating the protein's involvement in vascular remodeling in autopsy brains from patients with cerebral hypertensive arteriopathy. Our study highlights an association between the alterations of perivascular ECM, extracellular proteolysis, and perineuronal/perisynaptic ECM, as a possible substrate of synaptic and cognitive alterations in CSVD.
Collapse
Affiliation(s)
- Mahsima Khoshneviszadeh
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Solveig Henneicke
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniel Pirici
- Department of Histology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Philipp Arndt
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Rahul Kaushik
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Oula Norman
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Jari Jukkola
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Constanze Seidenbecher
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Anne Heikkinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
3
|
Jelinic M, Jackson KL, O'Sullivan K, Singh J, Giddy T, Deo M, Parry LJ, Ritchie RH, Woodman OL, Head GA, Leo CH, Qin CX. Endothelium-dependent relaxation is impaired in Schlager hypertensive (BPH/2J) mice by region-specific mechanisms in conductance and resistance arteries. Life Sci 2023; 320:121542. [PMID: 36871935 DOI: 10.1016/j.lfs.2023.121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
AIMS Endothelial dysfunction and arterial stiffness are hallmarks of hypertension, and major risk factors for cardiovascular disease. BPH/2J (Schlager) mice are a genetic model of spontaneous hypertension, but little is known about the vascular pathophysiology of these mice and the region-specific differences between vascular beds. Therefore, this study compared the vascular function and structure of large conductance (aorta and femoral) and resistance (mesenteric) arteries of BPH/2J mice with their normotensive BPN/2J counterparts. MAIN METHODS Blood pressure was measured in BPH/2J and BPN/3J mice via pre-implanted radiotelemetry probes. At endpoint, vascular function and passive mechanical wall properties were assessed using wire and pressure myography, qPCR and histology. KEY FINDINGS Mean arterial blood pressure was elevated in BPH/2J mice compared to BPN/3J controls. Endothelium-dependent relaxation to acetylcholine was attenuated in both the aorta and mesenteric arteries of BPH/2J mice, but through different mechanisms. In the aorta, hypertension reduced the contribution of prostanoids. Conversely, in the mesenteric arteries, hypertension reduced the contribution of both nitric oxide and endothelium-dependent hyperpolarization. Hypertension reduced volume compliance in both femoral and mesenteric arteries, but hypertrophic inward remodelling was only observed in the mesenteric arteries of BPH/2J mice. SIGNIFICANCE This is the first comprehensive investigation of vascular function and structural remodelling in BPH/2J mice. Overall, hypertensive BPH/2J mice exhibited endothelial dysfunction and adverse vascular remodelling in the macro- and microvasculature, underpinned by distinct region-specific mechanisms. This highlights BPH/2J mice as a highly suitable model for evaluating novel therapeutics to treat hypertension-associated vascular dysfunction.
Collapse
Affiliation(s)
- Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Bundoora, VIC, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Kristy L Jackson
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kelly O'Sullivan
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jaideep Singh
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Thomas Giddy
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia; School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Rebecca H Ritchie
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Owen L Woodman
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Geoffrey A Head
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; Science, Math and Technology, Singapore University of Technology & Design, Singapore.
| | - Cheng Xue Qin
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Alkahtani R. Molecular mechanisms underlying some major common risk factors of stroke. Heliyon 2022; 8:e10218. [PMID: 36060992 PMCID: PMC9433609 DOI: 10.1016/j.heliyon.2022.e10218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/10/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Ischemic and hemorrhagic strokes are the most common known cerebrovascular disease which can be induced by modifiable and non-modifiable risk factors. Age and race are the most common non-modifiable risk factors of stroke. However, hypertension, diabetes, obesity, dyslipidemia, physical inactivity, and cardiovascular disorders are major modifiable risk factors. Understanding the molecular mechanism mediating each of these risk factors is expected to contribute significantly to reducing the risk of stroke, preventing neural damage, enhancing rehabilitation, and designing suitable treatments. Abnormalities in the structure of the blood-brain barrier and blood vessels, thrombosis, vasoconstriction, atherosclerosis, reduced cerebral blood flow, neural oxidative stress, inflammation, and apoptosis, impaired synaptic transmission, excitotoxicity, altered expression/activities of many channels and signaling proteins are the most knows mechanisms responsible for stroke induction. However, the molecular role of risk factors in each of these mechanisms is not well understood and requires a lot of search and reading. This review was designed to provide the reader with a single source of information that discusses the current update of the prevalence, pathophysiology, and all possible molecular mechanisms underlying some major risk factors of stroke namely, hypertension, diabetes mellitus, dyslipidemia, and lipid fraction, and physical inactivity. This provides a full resource for understanding the molecular effect of each of these risk factors in stroke.
Collapse
Affiliation(s)
- Reem Alkahtani
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz, University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Gonzalez-Marrero I, Hernández-Abad LG, Castañeyra-Ruiz L, Carmona-Calero EM, Castañeyra-Perdomo A. Changes in the choroid plexuses and brain barriers associated with high blood pressure and ageing. Neurologia 2022; 37:371-382. [PMID: 30060976 DOI: 10.1016/j.nrl.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION The choroid plexuses, blood vessels, and brain barriers are closely related both in terms of morphology and function. Hypertension causes changes in cerebral blood flow and in small vessels and capillaries of the brain. This review studies the effects of high blood pressure (HBP) on the choroid plexuses and brain barriers. DEVELOPMENT The choroid plexuses (ChP) are structures located in the cerebral ventricles, and are highly conserved both phylogenetically and ontogenetically. The ChPs develop during embryogenesis, forming a functional barrier during the first weeks of gestation. They are composed of highly vascularised epithelial tissue covered by microvilli, and their main function is cerebrospinal fluid (CSF) production. The central nervous system (CNS) is protected by the blood-brain barrier (BBB) and the blood-CSF barrier (BCSFB). While the BBB is formed by endothelial cells of the microvasculature of the CNS, the BCSFB is formed by epithelial cells of the choroid plexuses. Chronic hypertension induces vascular remodelling. This prevents hyperperfusion at HBPs, but increases the risk of ischaemia at low blood pressures. In normotensive individuals, in contrast, cerebral circulation is self-regulated, blood flow remains constant, and the integrity of the BBB is preserved. CONCLUSIONS HBP induces changes in the choroid plexuses that affect the stroma, blood vessels, and CSF production. HBP also exacerbates age-related ChP dysfunction and causes alterations in the brain barriers, which are more marked in the BCSFB than in the BBB. Brain barrier damage may be determined by quantifying blood S-100β and TTRm levels.
Collapse
Affiliation(s)
- I Gonzalez-Marrero
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, España
| | - L G Hernández-Abad
- Instituto de Investigación y Ciencias de Puerto de Rosario, Puerto del Rosario, Fuerteventura, España
| | - L Castañeyra-Ruiz
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, España; Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, España
| | - E M Carmona-Calero
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, España; Instituto de Investigación y Ciencias de Puerto de Rosario, Puerto del Rosario, Fuerteventura, España
| | - A Castañeyra-Perdomo
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, España; Instituto de Investigación y Ciencias de Puerto de Rosario, Puerto del Rosario, Fuerteventura, España.
| |
Collapse
|
6
|
Yeh SJ, Lung CW, Jan YK, Kuo FC, Liau BY. Hypertension and Stroke Cardiovascular Control Evaluation by Analyzing Blood Pressure, Cerebral Blood Flow, Blood Vessel Resistance and Baroreflex. Front Bioeng Biotechnol 2021; 9:731882. [PMID: 34957062 PMCID: PMC8702833 DOI: 10.3389/fbioe.2021.731882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases have been the leading causes of mortality in Taiwan and the world at large for decades. The composition of cardiovascular and cerebrovascular systems is quite complicated. Therefore, it is difficult to detect or trace the related signs of cardiovascular and cerebrovascular diseases. The characteristics and changes in cardiopulmonary system disease can be used to track cardiovascular and cerebrovascular disease prevention and diagnosis. This can effectively reduce the occurrence of cardiovascular and cerebrovascular diseases. This study analyzes the variability in blood pressure, cerebral blood flow velocity and the interaction characteristics using linear and nonlinear approaches in stroke, hypertension and healthy groups to identify the differences in cardiovascular control in these groups. The results showed that the blood pressure and cerebral blood flow of stroke patients and hypertensive patients were significantly higher than those of healthy people (statistical differences (p < 0.05). The cerebrovascular resistance (CVR) shows that the CVR of hypertensive patients is higher than that of healthy people and stroke patients (p < 0.1), indicating that the cerebral vascular resistance of hypertensive patients is slightly higher. From the patient's blood flow and vascular characteristics, it can be observed that the cardiovascular system is different from those in healthy people. Baroreflex sensitivity (BRS) decreased in stroke patients (p < 0.05). Chaotic analysis revealed that the blood pressure disturbance in hypertensive patients has a higher chaotic behavior change and the difference in initial state sensitivity. Cross-correlation (CCF) analysis shows that as the course of healthy→hypertension→stroke progresses, the maximum CCF value decreases significantly (p < 0.05). That means that blood pressure and cerebral blood flow are gradually not well controlled by the self-regulation mechanism. In conclusion, cardiovascular control performance in hypertensive and stroke patients displays greater variation. This can be observed by the bio-signal analysis. This analysis could identify a measure for detecting and preventing the risk for hypertension and stroke in clinical practice. This is a pilot study to analyze cardiovascular control variation in healthy, hypertensive and stroke groups.
Collapse
Affiliation(s)
- Shoou-Jeng Yeh
- Section of Neurology and Neurophysiology, Cheng-Ching General Hospital, Taichung, Taiwan
| | - Chi-Wen Lung
- Department of Creative Product Design, Asia University, Taichung, Taiwan.,Rehabilitation Engineering Lab, Kinesiology and Community Health, Computational Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Yih-Kuen Jan
- Rehabilitation Engineering Lab, Kinesiology and Community Health, Computational Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Fang-Chuan Kuo
- Department of Physical Therapy, Hungkuang University, Taichung, Taiwan
| | - Ben-Yi Liau
- Department of Biomedical Engineering, Hungkuang University, Taichung, Taiwan
| |
Collapse
|
7
|
Youwakim J, Girouard H. Inflammation: A Mediator Between Hypertension and Neurodegenerative Diseases. Am J Hypertens 2021; 34:1014-1030. [PMID: 34136907 DOI: 10.1093/ajh/hpab094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the most prevalent and modifiable risk factor for stroke, vascular cognitive impairment, and Alzheimer's disease. However, the mechanistic link between hypertension and neurodegenerative diseases remains to be understood. Recent evidence indicates that inflammation is a common pathophysiological trait for both hypertension and neurodegenerative diseases. Low-grade chronic inflammation at the systemic and central nervous system levels is now recognized to contribute to the physiopathology of hypertension. This review speculates that inflammation represents a mediator between hypertension and neurodegenerative diseases, either by a decrease in cerebral blood flow or a disruption of the blood-brain barrier which will, in turn, let inflammatory cells and neurotoxic molecules enter the brain parenchyma. This may impact brain functions including cognition and contribute to neurodegenerative diseases. This review will thus discuss the relationship between hypertension, systemic inflammation, cerebrovascular functions, neuroinflammation, and brain dysfunctions. The potential clinical future of immunotherapies against hypertension and associated cerebrovascular risks will also be presented.
Collapse
Affiliation(s)
- Jessica Youwakim
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
| | - Hélène Girouard
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériaterie de Montréal, Montreal, QC, Canada
| |
Collapse
|
8
|
Civilla L, Sbrollini A, Burattini L, Morettini M. An integrated lumped-parameter model of the cardiovascular system for the simulation of acute ischemic stroke: description of instantaneous changes in hemodynamics. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:3993-4010. [PMID: 34198422 DOI: 10.3934/mbe.2021200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acute Ischemic Stroke (AIS) is defined as the acute condition of occlusion of a cerebral artery and is often caused by a Hypertensive Condition (HC). Due to its sudden occurrence, AIS is not observable the right moment it occurs, thus information about instantaneous changes in hemodynamics is limited. This study aimed to propose an integrated Lumped Parameter (LP) model of the cardiovascular system to simulate an AIS and describe instantaneous changes in hemodynamics. In the integrated LP model of the cardiovascular system, heart chambers have been modelled with elastance systems with controlled pressure inputs; heart valves have been modelled with static open/closed pressure-controlled valves; eventually, the vasculature has been modelled with resistor-inductor-capacitor (RLC) direct circuits and have been linked to the rest of the system through a series connection. After simulating physiological conditions, HC has been simulated by changing pressure inputs and constant RLC parameters. Then, AIS occurring in arteries of different sizes have been simulated by considering time-dependent RLC parameters due to the elimination from the model of the occluding artery; instantaneous changes in hemodynamics have been evaluated by Systemic Arteriolar Flow (Qa) and Systemic Arteriolar Pressure (Pa) drop with respect to those measured in HC. Occlusion of arteries of different sizes leaded to an average Qa drop of 0.38 ml/s per cardiac cycle (with minimum and maximum values of 0.04 ml/s and 1.93 ml/s) and average Pa drop of 0.39 mmHg, (with minimum and maximum values of 0.04 mmHg and 1.98 mmHg). In conclusion, hemodynamic variations due to AIS are very small with respect to HC. A direct relation between the inverse of the length of the artery in which the occlusion occurs and the hemodynamic variations has been highlighted; this may allow to link the severity of AIS to the length of the interested artery.
Collapse
Affiliation(s)
- Lorenzo Civilla
- Department of Information Engineering, UniversitȤ Politecnica delle Marche, Ancona 60131, Italy
| | - Agnese Sbrollini
- Department of Information Engineering, UniversitȤ Politecnica delle Marche, Ancona 60131, Italy
| | - Laura Burattini
- Department of Information Engineering, UniversitȤ Politecnica delle Marche, Ancona 60131, Italy
| | - Micaela Morettini
- Department of Information Engineering, UniversitȤ Politecnica delle Marche, Ancona 60131, Italy
| |
Collapse
|
9
|
Adatia K, Newcombe VFJ, Menon DK. Contusion Progression Following Traumatic Brain Injury: A Review of Clinical and Radiological Predictors, and Influence on Outcome. Neurocrit Care 2021; 34:312-324. [PMID: 32462411 PMCID: PMC7253145 DOI: 10.1007/s12028-020-00994-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Secondary injuries remain an important cause of the morbidity and mortality associated with traumatic brain injury (TBI). Progression of cerebral contusions occurs in up to 75% of patients with TBI, and this contributes to subsequent clinical deterioration and requirement for surgical intervention. Despite this, the role of early clinical and radiological factors in predicting contusion progression remains relatively poorly defined due to studies investigating progression of all types of hemorrhagic injuries as a combined cohort. In this review, we summarize data from recent studies on factors which predict contusion progression, and the effect of contusion progression on clinical outcomes.
Collapse
Affiliation(s)
- Krishma Adatia
- Division of Anaesthesia, University of Cambridge, Cambridge, UK.
| | | | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Loewenstein D, Rabbat M. Neurological complications of systemic hypertension. HANDBOOK OF CLINICAL NEUROLOGY 2021; 177:253-259. [PMID: 33632444 DOI: 10.1016/b978-0-12-819814-8.00018-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic hypertension is the most common, most easily diagnosed, and one of the most reversible risk factors for neurologic pathology. Acute severe hypertension above a mean arterial pressure of approximately 150mmHg exceeds the brain's autoregulatory capacity and results in increased cerebral blood flow leading to hypertensive encephalopathy. Chronic hypertension predisposes to cerebral vasculature atherosclerosis, medial hypertrophy, luminal narrowing, endothelial dysfunction, impaired arterial relaxation, and decreased ability to augment cerebral blood flow at low blood pressures. The pathologic effects of hypertension increase stroke risk by three- to fivefold. With three-fourths of strokes incident events, primary prevention is essential. Multiple studies have demonstrated the benefit of blood pressure lowering in reducing incident and recurrent strokes. Even more, hypertension is a risk factor for cognitive impairment and dementia through multifactorial mechanisms including vascular compromise, cerebral small vessel disease, white matter disease (leukoaraiosis), cerebral microbleeds, cerebral atrophy, amyloid plaque deposition, and neurofibrillary tangles. In patients without hypotension, treatment with antihypertensives slows progression and assuages the degree of cognitive decline. While the choice of antihypertensive did not make a significant difference in most cognitive outcome studies, some large meta-analyses have pointed to angiotensin receptor blockers as the favored agent. Because of the well-documented morbidity and mortality associated with unchecked hypertension, treating and preventing hypertension are universally critical pillars in healthcare.
Collapse
Affiliation(s)
- Devin Loewenstein
- (1)Department of Medicine, Division of Cardiology, Rush University Medical Center, Chicago, IL, United States
| | - Mark Rabbat
- Department of Medicine, Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States.
| |
Collapse
|
11
|
Changes in the choroid plexuses and brain barriers associated with high blood pressure and ageing. NEUROLOGÍA (ENGLISH EDITION) 2020; 37:371-382. [DOI: 10.1016/j.nrleng.2020.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/11/2018] [Indexed: 01/04/2023] Open
|
12
|
Wang S, Zhang H, Liu Y, Li L, Guo Y, Jiao F, Fang X, Jefferson JR, Li M, Gao W, Gonzalez-Fernandez E, Maranon RO, Pabbidi MR, Liu R, Alexander BT, Roman RJ, Fan F. Sex differences in the structure and function of rat middle cerebral arteries. Am J Physiol Heart Circ Physiol 2020; 318:H1219-H1232. [PMID: 32216612 PMCID: PMC7346534 DOI: 10.1152/ajpheart.00722.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidemiological studies demonstrate that there are sex differences in the incidence, prevalence, and outcomes of cerebrovascular disease (CVD). The present study compared the structure and composition of the middle cerebral artery (MCA), neurovascular coupling, and cerebrovascular function and cognition in young Sprague-Dawley (SD) rats. Wall thickness and the inner diameter of the MCA were smaller in females than males. Female MCA exhibited less vascular smooth muscle cells (VSMCs), diminished contractile capability, and more collagen in the media, and a thicker internal elastic lamina with fewer fenestrae compared with males. Female MCA had elevated myogenic tone, lower distensibility, and higher wall stress. The stress/strain curves shifted to the left in female vessels compared with males. The MCA of females failed to constrict compared with a decrease of 15.5 ± 1.9% in males when perfusion pressure was increased from 40 to 180 mmHg. Cerebral blood flow (CBF) rose by 57.4 ± 4.4 and 30.1 ± 3.1% in females and males, respectively, when perfusion pressure increased from 100 to 180 mmHg. The removal of endothelia did not alter the myogenic response in both sexes. Functional hyperemia responses to whisker-barrel stimulation and cognition examined with an eight-arm water maze were similar in both sexes. These results demonstrate that there are intrinsic structural differences in the MCA between sexes, which are associated with diminished myogenic response and CBF autoregulation in females. The structural differences do not alter neurovascular coupling and cognition at a young age; however, they might play a role in the development of CVD after menopause. NEW & NOTEWORTHY Using perfusion fixation of the middle cerebral artery (MCA) in calcium-free solution at physiological pressure and systematically randomly sampling the sections prepared from the same M2 segments of MCA, we found that there are structural differences that are associated with altered cerebral blood flow (CBF) autoregulation but not neurovascular coupling and cognition in young, healthy Sprague-Dawley (SD) rats. Understanding the intrinsic differences in cerebrovascular structure and function in males and females is essential to develop new pharmaceutical treatments for cerebrovascular disease (CVD).
Collapse
Affiliation(s)
- Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Longyang Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ya Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Feng Jiao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Neurosurgery, Peking University People's Hospital, Beijing, China
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joshua R Jefferson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Man Li
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ezekiel Gonzalez-Fernandez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Rodrigo O Maranon
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Mallikarjuna R Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ruen Liu
- Department of Neurosurgery, Peking University People's Hospital, Beijing, China
| | - Barbara T Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
13
|
Tschoe C, Garner RM, Kittel C, Traunero JR, Wolfe SQ, Fargen KM. Changes in mean arterial pressure and end-tidal carbon dioxide content affect venous sinus pressures in patients with idiopathic intracranial hypertension: a randomized study. J Neurointerv Surg 2020; 12:906-910. [DOI: 10.1136/neurintsurg-2019-015741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/03/2023]
Abstract
IntroductionLittle is known about how changes in physiologic parameters affect venous sinus pressure measurements, waveforms, or gradients associated with sinus stenosis.ObjectiveTo evaluate the effect of changes in cardiovascular and respiratory physiologic parameters on venous sinus pressure and caliber measurements in patients with idiopathic intracranial hypertension (IIH) undergoing venous sinus stenting.MethodsIn a prospective, randomized pilot study, eight patients with IIH undergoing venous sinus stenting were randomized to one of two groups. Under general anesthesia, patients underwent venous manometry and waveform recordings twice in succession based on assigned physiologic groups immediately before stenting. The mean arterial pressure (MAP) group maintained normocapnia but modified MAPs in two arms to control for temporal confounding: group A1 (MAP 60-80 mm Hg then 100–110 mm Hg) and group A2 (MAP 100-110 mm Hg then 60–80 mm Hg). The end-tidal carbon dioxide (EtCO2) group maintained a high-normal MAP similar to standard neuroanesthesia goals and modified EtCO2: group B1 (EtCO2 24–26 mm Hg then 38–40 mm Hg) and B2 (EtCO2 28–40 mm Hg then 24–26 mm Hg).ResultsIn group A, superior sagittal sinus (SSS) pressures (ranging from 8 to 76 mm Hg) and trans-stenotic pressure gradients (TSPGs) (ranging from 2 to 67 mm Hg) were seen at MAP of 100–110 mm Hg compared with SSS pressures (4–38 mm Hg) and TSPGs (3–31 mm Hg) at 60–80 mm Hg. In group B, SSS pressures and TSPGs were considerably higher at EtCO2 levels of 38–40 mm Hg (15–57 mm Hg and 3–44 mm Hg, respectively) than at 24–26 mm Hg (8–26 mm Hg and 1–8 mm Hg, respectively).ConclusionsDespite the small sample size, this pilot study demonstrates a dramatic effect of both MAP and EtCO2 on venous sinus pressures obtained during venography. These findings underscore the importance of maintaining normal physiologic cardiovascular and respiratory parameters during venous sinus manometry.
Collapse
|
14
|
Cardiovascular effects of prenatal stress-Are there implications for cerebrovascular, cognitive and mental health outcome? Neurosci Biobehav Rev 2019; 117:78-97. [PMID: 31708264 DOI: 10.1016/j.neubiorev.2018.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/17/2023]
Abstract
Prenatal stress programs offspring cognitive and mental health outcome. We reviewed whether prenatal stress also programs cardiovascular dysfunction which potentially modulates cerebrovascular, cognitive and mental health disorders. We focused on maternal stress and prenatal glucocorticoid (GC) exposure which have different programming effects. While maternal stress induced cortisol is mostly inactivated by the placenta, synthetic GCs freely cross the placenta and have different receptor-binding characteristics. Maternal stress, particularly anxiety, but not GC exposure, has adverse effects on maternal-fetal circulation throughout pregnancy, probably by co-activation of the maternal sympathetic nervous system, and by raising fetal catecholamines. Both effects may impair neurodevelopment. Experimental data also suggest that severe maternal stress and GC exposure during early and mid-gestation may increase the risk for cardiovascular disorders. Human data are scarce and especially lacking for older age. Programming mechanisms include aberrations in cardiac and kidney development, and functional changes in the renin-angiotensin-aldosterone-system, stress axis and peripheral and coronary vasculature. Adequate experimental or human studies examining the consequences for cerebrovascular, cognitive and mental disorders are unavailable.
Collapse
|
15
|
Abutarboush R, Gu M, Kawoos U, Mullah SH, Chen Y, Goodrich SY, Lashof-Sullivan M, McCarron RM, Statz JK, Bell RS, Stone JR, Ahlers ST. Exposure to Blast Overpressure Impairs Cerebral Microvascular Responses and Alters Vascular and Astrocytic Structure. J Neurotrauma 2019; 36:3138-3157. [PMID: 31210096 PMCID: PMC6818492 DOI: 10.1089/neu.2019.6423] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Exposure to blast overpressure may result in cerebrovascular impairment, including cerebral vasospasm. The mechanisms contributing to this vascular response are unclear. The aim of this study was to evaluate the relationship between blast and functional alterations of the cerebral microcirculation and to investigate potential underlying changes in vascular microstructure. Cerebrovascular responses were assessed in sham- and blast-exposed male rats at multiple time points from 2 h through 28 days after a single 130-kPa (18.9-psi) exposure. Pial microcirculation was assessed through a cranial window created in the parietal bone of anesthetized rats. Pial arteriolar reactivity was evaluated in vivo using hypercapnia, barium chloride, and serotonin. We found that exposure to blast leads to impairment of arteriolar reactivity >24 h after blast exposure, suggesting delayed injury mechanisms that are not simply attributed to direct mechanical deformation. Observed vascular impairment included a reduction in hypercapnia-induced vasodilation, increase in barium-induced constriction, and reversal of the serotonin effect from constriction to dilation. A reduction in vascular smooth muscle contractile proteins consistent with vascular wall proliferation was observed, as well as delayed reduction in nitric oxide synthase and increase in endothelin-1 B receptors, mainly in astrocytes. Collectively, the data show that exposure to blast results in delayed and prolonged alterations in cerebrovascular reactivity that are associated with changes in the microarchitecture of the vessel wall and astrocytes. These changes may contribute to long-term pathologies involving dysfunction of the neurovascular unit, including cerebral vasospasm.
Collapse
Affiliation(s)
- Rania Abutarboush
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Ming Gu
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Usmah Kawoos
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Saad H Mullah
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Ye Chen
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Samantha Y Goodrich
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Margaret Lashof-Sullivan
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Richard M McCarron
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jonathan K Statz
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland
| | - Randy S Bell
- Neurosurgery Department, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia Medical Center, Charlottesville, Virginia
| | - Stephen T Ahlers
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland
| |
Collapse
|
16
|
Impaired Glymphatic Transport in Spontaneously Hypertensive Rats. J Neurosci 2019; 39:6365-6377. [PMID: 31209176 DOI: 10.1523/jneurosci.1974-18.2019] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/31/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022] Open
Abstract
The glymphatic system is a brainwide CSF transport system that uses the perivascular space for fast inflow of CSF. Arterial pulsations are a major driver of glymphatic CSF inflow, and hypertension that causes vascular pathologies, such as arterial stiffening and perivascular alterations, may impede the inflow. We used dynamic contrast-enhanced MRI to assess the effect of hypertension on glymphatic transport kinetics in male young and adult spontaneously hypertensive (SHR) rats compared with age-matched normotensive Wistar-Kyoto rats (WKY). We anesthetized the rats with dexmedetomidine/isoflurane and infused paramagnetic contrast (Gd-DOTA) into the cisterna magna during dynamic contrast-enhanced MRI to quantify glymphatic transport kinetics. Structural MRI analysis showed that cerebroventricular volumes are larger and brain volumes significantly smaller in SHR compared with WKY rats, regardless of age. We observed ventricular reflux of Gd-DOTA in SHR rats only, indicating abnormal CSF flow dynamics secondary to innate hydrocephalus. One-tissue compartment analysis revealed impeded glymphatic transport of Gd-DOTA in SHR compared with WKY rats in both age groups, implying that glymphatic transport, including solute clearance from brain parenchyma, is impaired during evolving hypertension in young SHR, an effect that worsens in states of chronic hypertension. The study demonstrates the suppression of glymphatic clearance in SHR rats and thus offers new insight into the coexistence of hypertension and concomitant vascular pathologies in Alzheimer's disease. The study further highlights the importance of considering the distribution of tracers in the CSF compartment in the analysis of the glymphatic system.SIGNIFICANCE STATEMENT The glymphatic system contributes to the removal of amyloid β from the brain and is disrupted in Alzheimer's disease and aging. Using a rat model of hypertension, we measured gross CSF flow and tracked glymphatic influx and efflux rates with dynamic contrast-enhanced MRI, showing that glymphatic transport is compromised in both early and advanced stages of hypertension. The study provides a new perspective on the importance for brain metabolite and fluid homeostasis of maintaining healthy blood vessels, an increasingly pertinent issue in an aging population that in part may explain the link between vascular pathology and Alzheimer's disease.
Collapse
|
17
|
Hua J, Liu P, Kim T, Donahue M, Rane S, Chen JJ, Qin Q, Kim SG. MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage 2019; 187:17-31. [PMID: 29458187 PMCID: PMC6095829 DOI: 10.1016/j.neuroimage.2018.02.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
The measurement of cerebral blood volume (CBV) has been the topic of numerous neuroimaging studies. To date, however, most in vivo imaging approaches can only measure CBV summed over all types of blood vessels, including arterial, capillary and venous vessels in the microvasculature (i.e. total CBV or CBVtot). As different types of blood vessels have intrinsically different anatomy, function and physiology, the ability to quantify CBV in different segments of the microvascular tree may furnish information that is not obtainable from CBVtot, and may provide a more sensitive and specific measure for the underlying physiology. This review attempts to summarize major efforts in the development of MRI techniques to measure arterial (CBVa) and venous CBV (CBVv) separately. Advantages and disadvantages of each type of method are discussed. Applications of some of the methods in the investigation of flow-volume coupling in healthy brains, and in the detection of pathophysiological abnormalities in brain diseases such as arterial steno-occlusive disease, brain tumors, schizophrenia, Huntington's disease, Alzheimer's disease, and hypertension are demonstrated. We believe that the continual development of MRI approaches for the measurement of compartment-specific CBV will likely provide essential imaging tools for the advancement and refinement of our knowledge on the exquisite details of the microvasculature in healthy and diseased brains.
Collapse
Affiliation(s)
- Jun Hua
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Peiying Liu
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Tae Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manus Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Swati Rane
- Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - J Jean Chen
- Rotman Research Institute, Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Qin Qin
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
18
|
Abstract
New Findings What is the topic of this review? In this symposium report, we review the glymphatic clearance from the brain. What advances does it highlight? Evaluation of the evidence indicates that cerebrospinal fluid flows along paravascular spaces at the surface of the brain. However, bulk flow along penetrating arteries into the brain, followed by exit along veins, requires further confirmation. Clearance from the brain, based on mixing, might provide an alternative explanation for experimental findings.
Abstract The interstitial fluid of the brain provides the environment for proper neuronal function. Maintenance of the volume and composition of interstitial fluid requires regulation of the influx and removal of water, ions, nutritive and waste products. The recently described glymphatic pathway might contribute to some of these functions. It is proposed that cerebrospinal fluid enters the brain via paravascular spaces along arteries, mixes with interstitial fluid, and leaves the brain via paravascular spaces along veins. In this symposium report, we review the glymphatic concept, its concerns, and alternative views on interstitial fluid–cerebrospinal fluid exchange.
Collapse
Affiliation(s)
- Erik N T P Bakker
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Daphne M P Naessens
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Ed VanBavel
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
19
|
A mechanism for injury through cerebral arteriole inflation. Biomech Model Mechanobiol 2019; 18:651-663. [PMID: 30604301 DOI: 10.1007/s10237-018-01107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
An increase in arterial pressure within the cerebral vasculature appears to coincide with ischemia and dysfunction of the neurovascular unit in some cases of traumatic brain injury. In this study, we examine a new mechanism of brain tissue damage that results from excessive cerebral arteriole pressurization. We begin by considering the morphological and material properties of normotensive and hypertensive arterioles and present a computational model that captures the interaction of neighboring pressurized arterioles and the surrounding brain tissue. Assuming an axonal strain-induced injury criterion, we find that the injury depends on vessel spacing, proximity to an unconfined free surface, and the relative difference in stiffness between the arterioles and the surrounding tissue. We find that a steeper heterogeneity (stiffer vessels surrounded by softer brain tissue) causes larger axial strains to develop at some distance from the arteriole wall, within the brain parenchyma. For a more gradual heterogeneity (softer vessels), we observe more larger strain fields close to the arteriole walls. Both deformation patterns are comparable to damage seen in previous pathology studies on postmortem TBI patients. Finally, we use an analytical model to approximate the interplay between internal pressure, arteriole thickness, and the variation in mechanical properties of arterioles.
Collapse
|
20
|
Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM, Olveda G, Thomas JH, Nedergaard M, Kelley DH. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun 2018; 9:4878. [PMID: 30451853 PMCID: PMC6242982 DOI: 10.1038/s41467-018-07318-3] [Citation(s) in RCA: 594] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/26/2018] [Indexed: 01/18/2023] Open
Abstract
Flow of cerebrospinal fluid (CSF) through perivascular spaces (PVSs) in the brain is important for clearance of metabolic waste. Arterial pulsations are thought to drive flow, but this has never been quantitatively shown. We used particle tracking to quantify CSF flow velocities in PVSs of live mice. CSF flow is pulsatile and driven primarily by the cardiac cycle. The speed of the arterial wall matches that of the CSF, suggesting arterial wall motion is the principal driving mechanism, via a process known as perivascular pumping. Increasing blood pressure leaves the artery diameter unchanged but changes the pulsations of the arterial wall, increasing backflow and thereby reducing net flow in the PVS. Perfusion-fixation alters the normal flow direction and causes a 10-fold reduction in PVS size. We conclude that particle tracking velocimetry enables the study of CSF flow in unprecedented detail and that studying the PVS in vivo avoids fixation artifacts.
Collapse
Affiliation(s)
- Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Ting Du
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- China Medical University, Shenyang, 110122, China
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Weiguo Peng
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Amanda M Sweeney
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Genaro Olveda
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - John H Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
21
|
Buonacera A, Stancanelli B, Malatino L. Stroke and Hypertension: An Appraisal from Pathophysiology to Clinical Practice. Curr Vasc Pharmacol 2018; 17:72-84. [DOI: 10.2174/1570161115666171116151051] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/25/2017] [Accepted: 10/05/2017] [Indexed: 01/04/2023]
Abstract
Stroke as a cause of long-term disability is a growing public health burden. Therefore, focusing
on prevention is important. The most prominent aim of this strategy is to treat modifiable risk factors,
such as arterial hypertension, the leading modifiable contributor to stroke. Thus, efforts to adequately
reduce Blood Pressure (BP) among hypertensives are mandatory. In this respect, although safety
and benefits of BP control related to long-term outcome have been largely demonstrated, there are open
questions that remain to be addressed, such as optimal timing to initiate BP reduction and BP goals to be
targeted. Moreover, evidence on antihypertensive treatment during the acute phase of stroke or BP management
in specific categories (i.e. patients with carotid stenosis and post-acute stroke) remain controversial.
</P><P>
This review provides a critical update on the current knowledge concerning BP management and stroke
pathophysiology in patients who are either at risk for stroke or who experienced stroke.
Collapse
Affiliation(s)
- Agata Buonacera
- Academic Unit of Internal Medicine and Hypertension Centre, Department of Clinical and Experimental Medicine, University of Catania, c/o Cannizzaro Hospital, Catania, Italy
| | - Benedetta Stancanelli
- Academic Unit of Internal Medicine and Hypertension Centre, Department of Clinical and Experimental Medicine, University of Catania, c/o Cannizzaro Hospital, Catania, Italy
| | - Lorenzo Malatino
- Academic Unit of Internal Medicine and Hypertension Centre, Department of Clinical and Experimental Medicine, University of Catania, c/o Cannizzaro Hospital, Catania, Italy
| |
Collapse
|
22
|
Jiménez-Xarrié E, Pérez B, Dantas AP, Puertas-Umbert L, Martí-Fabregas J, Chamorro Á, Planas AM, Vila E, Jiménez-Altayó F. Uric Acid Treatment After Stroke Prevents Long-Term Middle Cerebral Artery Remodelling and Attenuates Brain Damage in Spontaneously Hypertensive Rats. Transl Stroke Res 2018; 11:1332-1347. [PMID: 30219993 DOI: 10.1007/s12975-018-0661-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/02/2018] [Accepted: 08/30/2018] [Indexed: 01/21/2023]
Abstract
Hypertension is the most important modifiable risk factor for stroke and is associated with poorer post-stroke outcomes. The antioxidant uric acid is protective in experimental normotensive ischaemic stroke. However, it is unknown whether this treatment exerts long-term protection in hypertension. We aimed to evaluate the impact of transient intraluminal middle cerebral artery (MCA) occlusion (90 min)/reperfusion (1-15 days) on brain and vascular damage progression in adult male Wistar-Kyoto (WKY; n = 36) and spontaneously hypertensive (SHR; n = 37) rats treated (i.v./120 min post-occlusion) with uric acid (16 mg kg-1) or vehicle (Locke's buffer). Ischaemic brain damage was assessed longitudinally with magnetic resonance imaging and properties of MCA from both hemispheres were studied 15 days after stroke. Brain lesions in WKY rats were associated with a transitory increase in circulating IL-18 and cerebrovascular oxidative stress that did not culminate in long-term MCA alterations. In SHR rats, more severe brain damage and poorer neurofunctional outcomes were coupled to higher cortical cerebral blood flow at the onset of reperfusion, a transient increase in oxidative stress and long-lasting stroke-induced MCA hypertrophic remodelling. Thus, stroke promotes larger brain and vascular damage in hypertensive rats that persists for long-time. Uric acid administered during early reperfusion attenuated short- and long-term brain injuries in both normotensive and hypertensive rats, an effect that was associated with abolishment of the acute oxidative stress response and prevention of stroke-induced long-lasting MCA remodelling in hypertension. These results suggest that uric acid might be an effective strategy to improve stroke outcomes in hypertensive subjects.
Collapse
Affiliation(s)
- Elena Jiménez-Xarrié
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Instituto de Investigación Biomédica (IIB)-Sant Pau, Barcelona, Spain
| | - Belén Pérez
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - Ana Paula Dantas
- Institut Clínic Cardiovascular, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lídia Puertas-Umbert
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - Joan Martí-Fabregas
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Instituto de Investigación Biomédica (IIB)-Sant Pau, Barcelona, Spain
| | - Ángel Chamorro
- Comprehensive Stroke Center, Hospital Clínic, University of Barcelona, Barcelona, Spain.,Àrea de Neurociènces, IDIBAPS, Barcelona, Spain
| | - Anna Maria Planas
- Àrea de Neurociènces, IDIBAPS, Barcelona, Spain.,Departament d'Isquèmia Cerebral i Neurodegeneració, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Elisabet Vila
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - Francesc Jiménez-Altayó
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
23
|
Matin N, Pires PW, Garver H, Jackson WF, Dorrance AM. DOCA-salt hypertension impairs artery function in rat middle cerebral artery and parenchymal arterioles. Microcirculation 2018; 23:571-579. [PMID: 27588564 DOI: 10.1111/micc.12308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/30/2016] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Chronic hypertension induces detrimental changes in the structure and function of surface cerebral arteries. Very little is known about PAs, which perfuse distinct neuronal populations in the cortex and may play a role in cerebrovascular disorders. We investigated the effect of DOCA-salt induced hypertension on endothelial function and artery structure in PAs and MCAs. METHODS Uninephrectomized male Sprague-Dawley rats were implanted with a subcutaneous pellet containing DOCA (150 mg/kg b.w.) and drank salt water (1% NaCl and 0.2% KCl) for 4 weeks. Sham rats were uninephrectomized and drank tap water. Vasoreactivity and passive structure in the MCAs and the PAs were assessed by pressure myography. RESULTS Both MCAs and PAs from DOCA-salt rats exhibited impaired endothelium-dependent dilation (P<.05). In the PAs, addition of NO and COX inhibitors enhanced dilation in DOCA-salt rats (P<.05), suggesting that dysfunctional NO and COX-dependent signaling could contribute to impaired endothelium-mediated dilation. MCAs from DOCA-salt rats exhibited inward remodeling (P<.05). CONCLUSIONS Hypertension-induced MCA remodeling coupled with impaired endothelium-dependent dilation in both the MCAs and PAs may exacerbate the risk of cerebrovascular accidents and the associated morbidity and mortality.
Collapse
Affiliation(s)
- Nusrat Matin
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| | - Paulo W Pires
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.,Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, NV, USA
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
24
|
Hart EC. Human hypertension, sympathetic activity and the selfish brain. Exp Physiol 2018; 101:1451-1462. [PMID: 27519960 DOI: 10.1113/ep085775] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review article revisits an historical hypothesis that cerebral hypoperfusion, caused by elevated cerebral vascular resistances, causes the onset of high sympathetic nerve activity and hypertension in humans. What advances does it highlight? The review article highlights new evidence indicating that congenital cerebrovascular abnormalities, namely vertebral artery hypoplasia and an incomplete posterior circle of Willis, may play a role in the onset of hypertension. Despite the harmful consequences of high blood pressure (hypertension; e.g. stroke, renal failure, dementia and even death), the underlying physiological mechanisms that cause the onset of hypertension are poorly understood. The most established finding is that hypertension occurs alongside activation of the sympathetic nervous system, yet exactly what triggers this in humans is ambiguous. This review discusses evidence for elevated sympathetic nerve activity, particularly in human hypertension, and revisits an historical theory regarding the aetiology underlying human hypertension that was proposed by Seymour Kety and John Dickinson in the 1940s-1950s. My research group hypothesizes that elevated sympathetic nerve activity and hypertension develop as a fundamental mechanism to maintain adequate cerebral blood flow, which is now termed Cushing's mechanism or the selfish brain hypothesis. Moreover, it goes against the traditional belief that high cerebrovascular resistance is a consequence of hypertension; we propose that this elevated resistance drives hypertension. This review discusses historical and new evidence in animals and humans supporting this hypothesis. In particular, unique human data indicating a higher prevalence of congenital cerebral vascular abnormalities in hypertension are considered.
Collapse
Affiliation(s)
- Emma C Hart
- School of Physiology, Pharmacology and Neuroscience, Clinical Research and Imaging Centre, University of Bristol, Bristol, UK
| |
Collapse
|
25
|
Phillips AA, Matin N, Jia M, Squair JW, Monga A, Zheng MMZ, Sachdeva R, Yung A, Hocaloski S, Elliott S, Kozlowski P, Dorrance AM, Laher I, Ainslie PN, Krassioukov AV. Transient Hypertension after Spinal Cord Injury Leads to Cerebrovascular Endothelial Dysfunction and Fibrosis. J Neurotrauma 2018; 35:573-581. [PMID: 29141501 DOI: 10.1089/neu.2017.5188] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We aimed to create a clinically relevant pre-clinical model of transient hypertension, and then evaluate the pathophysiological cerebrovascular processes resulting from this novel stimulus, which has recently been epidemiologically linked to cerebrovascular disease. We first developed a clinically relevant model of transient hypertension, secondary to induced autonomic dysreflexia after spinal cord injury and demonstrated that in both patients and rats, this stimulus leads to drastic acute cerebral hyperperfusion. For this, iatrogenic urodynamic filling/penile vibrostimulation was completed while measuring beat-by-beat blood pressure and cerebral blood flow (CBF) in patients. We then developed a rodent model mimicking the clinical reality by performing colorectal distention (to induce autonomic dysreflexia) using pre-clinical beat-by-beat blood pressure and CBF assessments. We then performed colorectal distension in rats for four weeks (6x/day) to evaluate the long-term cerebrovascular consequences of transient hypertension. Outcome measures included middle cerebral artery endothelial function, remodeling, profibrosis and perivascular innervation; measured via pressure myography, immunohistochemistry, molecular biology, and magnetic resonance imaging. Our model demonstrates that chronic repetitive cerebral hyperperfusion secondary to transient hypertension because of autonomic dysreflexia: (1) impairs cerebrovascular endothelial function; (2) leads to profibrotic cerebrovascular stiffening characterized by reduced distensibility and increased collagen deposition; and (3) reduces perivascular sympathetic cerebrovascular innervation. These changes did not occur concurrent to hallmark cerebrovascular changes from chronic steady-state hypertension, such as hypertrophic inward remodeling, or reduced CBF. Chronic exposure to repetitive transient hypertension after spinal cord injury leads to diverse cerebrovascular impairment that appears to be unique pathophysiology compared with steady-state hypertension in non-spinal cord injured models.
Collapse
Affiliation(s)
- Aaron A Phillips
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Nusrat Matin
- 2 Michigan State University East Lansing , Michigan
| | - Mengyao Jia
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Jordan W Squair
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Aaron Monga
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Mei Mu Zi Zheng
- 3 Faculty of Graduate Studies, University of British Columbia , Vancouver, British Columbia, Canada
| | - Rahul Sachdeva
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Andrew Yung
- 4 MRI Research Centre, Life Sciences Centre, University of British Columbia , Vancouver, British Columbia, Canada
| | - Shea Hocaloski
- 5 Sexual Health Rehabilitation Service; Vancouver Coastal Health Authority , Vancouver, British Columbia, Canada
| | - Stacy Elliott
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada .,6 Department of Psychiatry and Urologic Sciences, Vancouver Coastal Health Authority , Vancouver, British Columbia, Canada
| | - Piotr Kozlowski
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | | | - Ismail Laher
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Philip N Ainslie
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- 1 International Collaboration on Repair Discoveries (ICORD), University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Gavito-Higuera J, Khatri R, Qureshi IA, Maud A, Rodriguez GJ. Aggressive blood pressure treatment of hypertensive intracerebral hemorrhage may lead to global cerebral hypoperfusion: Case report and imaging perspective. World J Radiol 2017; 9:448-453. [PMID: 29354210 PMCID: PMC5746648 DOI: 10.4329/wjr.v9.i12.448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/22/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023] Open
Abstract
Hypoperfusion injury related to blood pressure decrease in acute hypertensive intracerebral hemorrhage continues to be a controversial topic. Aggressive treatment is provided with the intent to stop the ongoing bleeding. However, there may be additional factors, including autoregulation and increased intracranial pressure, that may limit this approach. We present here a case of acute hypertensive intracerebral hemorrhage, in which aggressive blood pressure management to levels within the normal range led to global cerebral ischemia within multiple border zones. Global cerebral ischemia may be of concern in the management of hypertensive hemorrhage in the presence of premorbid poorly controlled blood pressure and increased intracranial pressure.
Collapse
Affiliation(s)
- Jose Gavito-Higuera
- Department of Neurology, Paul L. Foster School of Medicine, Texas Tech University of Health Sciences Center, El Paso, TX 79905, United States
| | - Rakesh Khatri
- Department of Neurology, Paul L. Foster School of Medicine, Texas Tech University of Health Sciences Center, El Paso, TX 79905, United States
| | - Ihtesham A Qureshi
- Department of Neurology, Paul L. Foster School of Medicine, Texas Tech University of Health Sciences Center, El Paso, TX 79905, United States
| | - Alberto Maud
- Department of Neurology, Paul L. Foster School of Medicine, Texas Tech University of Health Sciences Center, El Paso, TX 79905, United States
| | - Gustavo J Rodriguez
- Department of Neurology, Paul L. Foster School of Medicine, Texas Tech University of Health Sciences Center, El Paso, TX 79905, United States
| |
Collapse
|
27
|
Chan SL, Cipolla MJ. Treatment with low dose fasudil for acute ischemic stroke in chronic hypertension. J Cereb Blood Flow Metab 2017; 37:3262-3270. [PMID: 28665172 PMCID: PMC5584704 DOI: 10.1177/0271678x17718665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the effect of Rho kinase inhibition on changes in cerebral blood flow (CBF), brain injury and vascular function after ischemic stroke in spontaneously hypertensive rats (SHR). Changes in core MCA and collateral perfusion were measured by a validated laser Doppler method. Animals underwent 2 h tMCAO and 2 h reperfusion. Fasudil (0.1 mg/kg, i.v.) or vehicle was given at 30 min ischemia (n = 9/group; mean (SD)). Brain injury was determined by 2,3,5-triphenyltetrazolium chloride staining. To determine the effect of fasudil on vascular function, fasudil was given 10 min before reperfusion and parenchymal arterioles studied isolated (n = 6/group; mean(SD)). Collateral perfusion was low in vehicle-treated SHR (-8(32)%) that changed minimally with fasudil (6(24)%, p > 0.05, effect size: 0.47;95% CI-0.49-1.39). Reperfusion CBF was below baseline in vehicle (-27(26)%) and fasudil (-32(25)%, p > 0.05, effect size: 0.19; 95% CI-0.74-1.11) groups, suggesting incomplete reperfusion in both groups. Fasudil had little effect on brain injury volume (28(13)% vs. 36(7)% in vehicle, p > 0.05, effect size: 0.75; 95% CI-0.24-1.66). In isolated parenchymal arterioles, myogenic tone was similar between groups (37(6)% vs. 38(10)% in vehicle, p > 0.05, effect size: 0.09; 95% CI-1.05-1.21). There were no differences with fasudil treatment vs. vehicle in perfusion, brain injury and vascular function that may be related to the low dose that had minimal blood pressure lowering effect.
Collapse
Affiliation(s)
- Siu-Lung Chan
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, Larner, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Marilyn J Cipolla
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, Larner, College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
28
|
Zong Y, Xu H, Yu J, Jiang C, Kong X, He Y, Sun X. Retinal Vascular Autoregulation during Phase IV of the Valsalva Maneuver: An Optical Coherence Tomography Angiography Study in Healthy Chinese Adults. Front Physiol 2017; 8:553. [PMID: 28804464 PMCID: PMC5532432 DOI: 10.3389/fphys.2017.00553] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/17/2017] [Indexed: 12/26/2022] Open
Abstract
The impairment of retinal vascular autoregulation can be an early manifestation of many systemic and ocular diseases. Therefore, quantifying retinal vascular autoregulation in a non-invasive manner is very important. This study evaluated the effects of a Valsalva maneuver (VM)-induced blood pressure increases on retinal vascular autoregulation. Parafoveal and peripapillary retinal vessel density were measured with optical coherence tomography angiography before (baseline) and 5 s after each subject completed a VM (Phase IV [VM-IV]). Hemodynamic parameters and intraocular pressure (IOP) were examined. Blood pressure (systolic, diastolic, and mean arterial) and ocular perfusion pressure significantly increased during VM-IV, but IOP and heart rate (HR) did not change. The VM-induced blood pressure overshoot significantly decreased parafoveal (8.43%) and peripapillary (1.57%) perfused retinal vessel density (both P < 0.001). The response in the parafoveal region was greater than that in the peripapillary region (P < 0.001), and was age-dependent (r = 0.201, P < 0.05). Foveal avascular zone area detectable with OCTA significantly increased from baseline by 6.63% during VM-IV (P < 0.05). Autoregulatory responses to a VM did not show gender-related differences in either retinal region. The autoregulation of retinal vessels may vary in different regions of the fundus. Optical coherence tomography angiography could be a useful method for evaluating the autoregulation of the retinal vascular system.
Collapse
Affiliation(s)
- Yuan Zong
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan UniversityShanghai, China.,Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of ShanghaiShanghai, China
| | - Huan Xu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan UniversityShanghai, China.,Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of ShanghaiShanghai, China
| | - Jian Yu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan UniversityShanghai, China.,Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of ShanghaiShanghai, China
| | - Chunhui Jiang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan UniversityShanghai, China.,Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of ShanghaiShanghai, China.,Department of Ophthalmology, Fifth People's Hospital of ShanghaiShanghai, China
| | - Xiangmei Kong
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan UniversityShanghai, China.,Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of ShanghaiShanghai, China
| | - Yi He
- The Key Laboratory on Adaptive Optics, Chinese Academy of SciencesChengdu, China.,The Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of SciencesChengdu, China
| | - Xinghuai Sun
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan UniversityShanghai, China.,Key Laboratory of Myopia of State Health Ministry and Key Laboratory of Visual Impairment and Restoration of ShanghaiShanghai, China
| |
Collapse
|
29
|
Lee Y, Kim T. Assessment of hypertensive cerebrovascular alterations with multiband Look-Locker arterial spin labeling. J Magn Reson Imaging 2017; 47:663-672. [DOI: 10.1002/jmri.25812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/21/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yoojin Lee
- Department of Radiology; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Tae Kim
- Department of Radiology; University of Pittsburgh; Pittsburgh Pennsylvania USA
- Department of Bioengineering; University of Pittsburgh; Pittsburgh Pennsylvania USA
| |
Collapse
|
30
|
Ungvari Z, Tarantini S, Kirkpatrick AC, Csiszar A, Prodan CI. Cerebral microhemorrhages: mechanisms, consequences, and prevention. Am J Physiol Heart Circ Physiol 2017; 312:H1128-H1143. [PMID: 28314762 PMCID: PMC5495931 DOI: 10.1152/ajpheart.00780.2016] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
The increasing prevalence of multifocal cerebral microhemorrhages (CMHs, also known as "cerebral microbleeds") is a significant, newly recognized problem in the aging population of the Western world. CMHs are associated with rupture of small intracerebral vessels and are thought to progressively impair neuronal function, potentially contributing to cognitive decline, geriatric psychiatric syndromes, and gait disorders. Clinical studies show that aging and hypertension significantly increase prevalence of CMHs. CMHs are also now recognized by the National Institutes of Health as a major factor in Alzheimer's disease pathology. Moreover, the presence of CMHs is an independent risk factor for subsequent larger intracerebral hemorrhages. In this article, we review the epidemiology, detection, risk factors, clinical significance, and pathogenesis of CMHs. The potential age-related cellular mechanisms underlying the development of CMHs are discussed, with a focus on the structural determinants of microvascular fragility, age-related alterations in cerebrovascular adaptation to hypertension, the role of oxidative stress and matrix metalloproteinase activation, and the deleterious effects of arterial stiffening, increased pulse pressure, and impaired myogenic autoregulatory protection on the brain microvasculature. Finally, we examine potential treatments for the prevention of CMHs based on the proposed model of aging- and hypertension-dependent activation of the reactive oxygen species-matrix metalloproteinases axis, and we discuss critical questions to be addressed by future studies.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; .,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, Oklahoma.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Calin I Prodan
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
31
|
Yang T, Sun Y, Lu Z, Leak RK, Zhang F. The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res Rev 2017; 34:15-29. [PMID: 27693240 DOI: 10.1016/j.arr.2016.09.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/09/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023]
Abstract
As human life expectancy rises, the aged population will increase. Aging is accompanied by changes in tissue structure, often resulting in functional decline. For example, aging within blood vessels contributes to a decrease in blood flow to important organs, potentially leading to organ atrophy and loss of function. In the central nervous system, cerebral vascular aging can lead to loss of the integrity of the blood-brain barrier, eventually resulting in cognitive and sensorimotor decline. One of the major of types of cognitive dysfunction due to chronic cerebral hypoperfusion is vascular cognitive impairment and dementia (VCID). In spite of recent progress in clinical and experimental VCID research, our understanding of vascular contributions to the pathogenesis of VCID is still very limited. In this review, we summarize recent findings on VCID, with a focus on vascular age-related pathologies and their contribution to the development of this condition.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yang Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Zhengyu Lu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese, Shanghai 200437, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong, 271000, China.
| |
Collapse
|
32
|
Hu X, De Silva TM, Chen J, Faraci FM. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke. Circ Res 2017; 120:449-471. [PMID: 28154097 PMCID: PMC5313039 DOI: 10.1161/circresaha.116.308427] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Abstract
The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury after ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in blood-brain barrier integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events.
Collapse
Affiliation(s)
- Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - T. Michael De Silva
- Biomedicine Discovery Institute, Department of Pharmacology, 9 Ancora Imparo Way, Monash University, Clayton, Vic, Australia
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Frank M. Faraci
- Departments of Internal Medicine and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City Veterans Affairs Healthcare System, Iowa City, IA, USA
| |
Collapse
|
33
|
Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol 2017; 312:H1-H20. [PMID: 27793855 PMCID: PMC5283909 DOI: 10.1152/ajpheart.00581.2016] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022]
Abstract
Increasing evidence from epidemiological, clinical and experimental studies indicate that age-related cerebromicrovascular dysfunction and microcirculatory damage play critical roles in the pathogenesis of many types of dementia in the elderly, including Alzheimer's disease. Understanding and targeting the age-related pathophysiological mechanisms that underlie vascular contributions to cognitive impairment and dementia (VCID) are expected to have a major role in preserving brain health in older individuals. Maintenance of cerebral perfusion, protecting the microcirculation from high pressure-induced damage and moment-to-moment adjustment of regional oxygen and nutrient supply to changes in demand are prerequisites for the prevention of cerebral ischemia and neuronal dysfunction. This overview discusses age-related alterations in three main regulatory paradigms involved in the regulation of cerebral blood flow (CBF): cerebral autoregulation/myogenic constriction, endothelium-dependent vasomotor function, and neurovascular coupling responses responsible for functional hyperemia. The pathophysiological consequences of cerebral microvascular dysregulation in aging are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages, microvascular rarefaction, and ischemic neuronal dysfunction and damage. Due to the widespread attention that VCID has captured in recent years, the evidence for the causal role of cerebral microvascular dysregulation in cognitive decline is critically examined.
Collapse
Affiliation(s)
- Peter Toth
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Pecs, Hungary; and
| | - Stefano Tarantini
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
34
|
Gersing AS, Schwaiger BJ, Kleine JF, Kaesmacher J, Wunderlich S, Friedrich B, Prothmann S, Zimmer C, Boeckh-Behrens T. Clinical Outcome Predicted by Collaterals Depends on Technical Success of Mechanical Thrombectomy in Middle Cerebral Artery Occlusion. J Stroke Cerebrovasc Dis 2016; 26:801-808. [PMID: 27856113 DOI: 10.1016/j.jstrokecerebrovasdis.2016.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/06/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND This study aimed to analyze the effects of technical outcome of mechanical thrombectomy (MTE) on the associations between collateral status, assessed with pretreatment computed tomography angiography (CTA), and neurological and functional outcome, as well as associations between collaterals and metabolic risk factors (arterial hypertension, diabetes, hyperlipidemia, overweight). METHODS Prospectively collected data of 115 patients with CTA-proven isolated middle cerebral artery occlusion treated successfully with MTE (Thrombosis in Cerebral Infarction [TICI] scale 2b or 3) were assessed retrospectively. Initial CTAs were assessed for the regional leptomeningeal collateralization score (rLMC), neurological status was determined with the National Institutes of Health Stroke Scale (NIHSS) at admission and discharge, and mid-term functional outcome was assessed using the modified Rankin scale (mRS) 90 days after MTE. RESULTS NIHSS score at admission was significantly associated with rLMC (P = .004), whereas rLMC and NIHSS at discharge showed no significant associations (P = .12). Better rLMC was significantly associated with improved mid-term mRS (P = .018). This association was even more significant after complete MTE (TICI 3; P = .011). Arterial hypertension was significantly more often found in patients with poor rLMC (0-10) than in patients with good rLMC (11-20; P = .046), yet other risk factors showed no significant associations (P > .05). CONCLUSIONS In patients with successful MTE, good collaterals were associated with better neurological status at admission and favorable mid-term functional outcome. In patients with complete MTE, associations were even more significant compared with those with "almost complete" MTE, suggesting a synergistic effect between good collaterals and complete MTE and a predictive value of collaterals for estimation of the potential clinical benefit of MTE.
Collapse
Affiliation(s)
- Alexandra S Gersing
- Department of Neuroradiology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.
| | - Benedikt J Schwaiger
- Department of Neuroradiology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Justus F Kleine
- Department of Neuroradiology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Johannes Kaesmacher
- Department of Neuroradiology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Silke Wunderlich
- Department of Neurology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Benjamin Friedrich
- Department of Neuroradiology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Sascha Prothmann
- Department of Neuroradiology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Tobias Boeckh-Behrens
- Department of Neuroradiology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
35
|
Kuznetsov MP, Fedin AI, Karalkin AV, Frolov KB, Kunitsin NV, Yumin SM, Kholopova EA, Knyazev AV. [The efficacy of pharmacological preconditioning in carotid endarterectomy]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:34-41. [PMID: 27029445 DOI: 10.17116/jnevro20161162134-41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To assess the efficacy of pharmacological preconditioning with actovegin in carotid endarterectomy. MATERIAL AND METHODS The study was based on the results of surgical treatment of 80 patients with hemodynamically significant uni- and bilateral lesions of carotid arteries. Half of the patients was operated immediately and others after pharmacological preconditioning with actovegin in dose of 1200 mg/daily during 1,5 months. RESULTS Pharmacological preconditioning with actovegin increased the cerebral perfusion determined with one-photon emission computed tomography that improved significantly results of the surgery. There were significant changes in patient's state 7 days and 6 months after surgery. The improvement was correlated with the less number of asymptotic post-surgery ischemic strokes in different brain areas. CONCLUSION A positive role of pharmacological preconditioning with actovegin in surgical treatment of carotid artery stenosis has been demonstrated.
Collapse
Affiliation(s)
- M P Kuznetsov
- Pirogov Russian National Research Medical University, Moscow
| | - A I Fedin
- Pirogov Russian National Research Medical University, Moscow
| | | | | | | | - S M Yumin
- Pirogov Russian National Research Medical University, Moscow
| | - E A Kholopova
- Pirogov Russian National Research Medical University, Moscow
| | - A V Knyazev
- Pirogov Russian National Research Medical University, Moscow, Pirogov City Hospital #1, Moscow
| |
Collapse
|
36
|
Hypertension and Dementia: Epidemiological and Experimental Evidence Revealing a Detrimental Relationship. Int J Mol Sci 2016; 17:347. [PMID: 27005613 PMCID: PMC4813208 DOI: 10.3390/ijms17030347] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/20/2016] [Accepted: 02/29/2016] [Indexed: 02/07/2023] Open
Abstract
Hypertension and dementia represent two major public health challenges worldwide, notably in the elderly population. Although these two conditions have classically been recognized as two distinct diseases, mounting epidemiological, clinical and experimental evidence suggest that hypertension and dementia are strictly intertwined. Here, we briefly report how hypertension profoundly affects brain homeostasis, both at the structural and functional level. Chronic high blood pressure modifies the cerebral vasculature, increasing the risk of Aβ clearance impairment. The latter, excluding genetic etiologies, is considered one of the main causes of Aβ deposition in the brain. Studies have shown that hypertension induces cerebral arterial stiffening and microvascular dysfunction, thus contributing to dementia pathophysiology. This review examines the existing and the updated literature which has attempted to explain and clarify the relationship between hypertension and dementia at the pathophysiological level.
Collapse
|
37
|
De Silva TM, Faraci FM. Microvascular Dysfunction and Cognitive Impairment. Cell Mol Neurobiol 2016; 36:241-58. [PMID: 26988697 PMCID: PMC4846472 DOI: 10.1007/s10571-015-0308-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022]
Abstract
The impact of vascular risk factors on cognitive function has garnered much interest in recent years. The appropriate distribution of oxygen, glucose, and other nutrients by the cerebral vasculature is critical for proper cognitive performance. The cerebral microvasculature is a key site of vascular resistance and a preferential target for small vessel disease. While deleterious effects of vascular risk factors on microvascular function are known, the contribution of this dysfunction to cognitive deficits is less clear. In this review, we summarize current evidence for microvascular dysfunction in brain. We highlight effects of select vascular risk factors (hypertension, diabetes, and hyperhomocysteinemia) on the pial and parenchymal circulation. Lastly, we discuss potential links between microvascular disease and cognitive function, highlighting current gaps in our understanding.
Collapse
Affiliation(s)
- T Michael De Silva
- Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa City Veterans Affairs Healthcare System, Iowa City, IA, USA
- Biomedicine Discovery Institute, Department of Pharmacology, Monash University, 9 Ancora Imparo Way, Clayton, VIC, Australia
| | - Frank M Faraci
- Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Iowa City Veterans Affairs Healthcare System, Iowa City, IA, USA.
- Department of Internal Medicine, 340F EMRB, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242-1081, USA.
| |
Collapse
|
38
|
Kalani A, Pushpakumar SB, Vacek JC, Tyagi SC, Tyagi N. Inhibition of MMP-9 attenuates hypertensive cerebrovascular dysfunction in Dahl salt-sensitive rats. Mol Cell Biochem 2016; 413:25-35. [PMID: 26800984 DOI: 10.1007/s11010-015-2623-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/08/2015] [Indexed: 12/31/2022]
Abstract
Hypertensive cerebropathy is a pathological condition associated with cerebral edema and disruption of the blood-brain barrier. However, the molecular pathways leading to this condition remains obscure. We hypothesize that MMP-9 inhibition can help reducing blood pressure and endothelial disruption associated with hypertensive cerebropathy. Dahl salt-sensitive (Dahl/SS) and Lewis rats were fed with high-salt diet for 6 weeks and then treated without and with GM6001 (MMP inhibitor). Treatment of GM6001 (1.2 mg/kg body weight) was administered through intraperitoneal injections on alternate days for 4 weeks. GM6001 non-administered groups were given vehicle (0.9% NaCl in water) treatment as control. Blood pressure was measured by tail-cuff method. The brain tissues were analyzed for oxidative/nitrosative stress, vascular MMP-9 expression, and tight junction proteins (TJPs). GM6001 treatment significantly reduced mean blood pressure in Dahl/SS rats which was significantly higher in vehicle-treated Dahl/SS rats. MMP-9 expression and activity was also considerably reduced in GM6001-treated Dahl/SS rats, which was otherwise notably increased in vehicle-treated Dahl/SS rats. Similarly MMP-9 expression in cerebral vessels of GM6001-treated Dahl/SS rats was also alleviated, as devised by immunohistochemistry analysis. Oxidative/nitrosative stress was significantly higher in vehicle-treated Dahl/SS rats as determined by biochemical estimations of malondialdehyde, nitrite, reactive oxygen species, and glutathione levels. RT-PCR and immunohistochemistry analysis further confirmed considerable alterations of TJPs in hypertensive rats. Interestingly, GM6001 treatment significantly ameliorated oxidative/nitrosative stress and TJPs, which suggest restoration of vascular integrity in Dahl/SS rats. These findings determined that pharmacological inhibition of MMP-9 in hypertensive Dahl-SS rats attenuate high blood pressure and hypertension-associated cerebrovascular pathology.
Collapse
Affiliation(s)
- Anuradha Kalani
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, 500 South Preston Street, Health Sciences Centre, A-1201, Louisville, KY, 40202, USA
| | - Sathnur B Pushpakumar
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, 500 South Preston Street, Health Sciences Centre, A-1201, Louisville, KY, 40202, USA
| | - Jonathan C Vacek
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, 500 South Preston Street, Health Sciences Centre, A-1201, Louisville, KY, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, 500 South Preston Street, Health Sciences Centre, A-1201, Louisville, KY, 40202, USA
| | - Neetu Tyagi
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, 500 South Preston Street, Health Sciences Centre, A-1201, Louisville, KY, 40202, USA.
| |
Collapse
|
39
|
Mellendijk L, Wiesmann M, Kiliaan AJ. Impact of Nutrition on Cerebral Circulation and Cognition in the Metabolic Syndrome. Nutrients 2015; 7:9416-39. [PMID: 26580647 PMCID: PMC4663605 DOI: 10.3390/nu7115477] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/12/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of Metabolic Syndrome (MetS), defined as the clustering of abdominal obesity, dyslipidemia, hypertension, and hyperglycemia, appears to be driving the global epidemics cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). Nutrition has a major impact on MetS and plays an important role in the prevention, development, and treatment of its features. Structural and functional alterations in the vasculature, associated with MetS, might form the link between MetS and the increased risk of developing CVD and T2DM. Not only does the peripheral vasculature seem to be affected, but the syndrome has a profound impact on the cerebral circulation and thence brain structure as well. Furthermore, strong associations are shown with stroke, cognitive impairment, and dementia. In this review the impact of nutrition on the individual components of MetS, the effects of MetS on peripheral and cerebral vasculature, and its consequences for brain structure and function will be discussed.
Collapse
Affiliation(s)
- Laura Mellendijk
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6500 HB, The Netherlands.
| | - Maximilian Wiesmann
- Department of Anatomy & Geriatric Medicine, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6500 HB, The Netherlands.
| | - Amanda J Kiliaan
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6500 HB, The Netherlands.
| |
Collapse
|
40
|
Hainsworth AH, Oommen AT, Bridges LR. Endothelial cells and human cerebral small vessel disease. Brain Pathol 2015; 25:44-50. [PMID: 25521176 DOI: 10.1111/bpa.12224] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 12/11/2022] Open
Abstract
Brain endothelial cells have unique properties in terms of barrier function, local molecular signaling, regulation of local cerebral blood flow (CBF) and interactions with other members of the neurovascular unit. In cerebral small vessel disease (arteriolosclerosis; SVD), the endothelial cells in small arteries survive, even when mural pathology is advanced and myocytes are severely depleted. Here, we review aspects of altered endothelial functions that have been implicated in SVD: local CBF dysregulation, endothelial activation and blood-brain barrier (BBB) dysfunction. Reduced CBF is reported in the diffuse white matter lesions that are a neuroradiological signature of SVD. This may reflect an underlying deficit in local CBF regulation (possibly via the nitric oxide/cGMP signaling pathway). While many laboratories have observed an association of symptomatic SVD with serum markers of endothelial activation, it is apparent that the origin of these circulating markers need not be brain endothelium. Our own neuropathology studies did not confirm local endothelial activation in small vessels exhibiting SVD. Local BBB failure has been proposed as a cause of SVD and associated parenchymal lesions. Some groups find that computational analyses of magnetic resonance imaging (MRI) scans, following systemic injection of a gadolinium-based contrast agent, suggest that extravasation into brain parenchyma is heightened in people with SVD. Our recent histochemical studies of donated brain tissue, using immunolabeling for large plasma proteins [fibrinogen, immunoglobulin G (IgG)], do not support an association of SVD with recent plasma protein extravasation. It is possible that a trigger leakage episode, or a size-selective loosening of the BBB, participates in SVD pathology.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Molecular and Cellular Biology Research Centre, St Georges University of London, London, UK; Stroke and Dementia Research Centre, St Georges University of London, London, UK
| | | | | |
Collapse
|
41
|
Kent M, Glass EN, Haley AC, March P, Rozanski EA, Galban EM, Bertalan A, Platt SR. Ischemic stroke in Greyhounds: 21 cases (2007-2013). J Am Vet Med Assoc 2015; 245:113-7. [PMID: 24941395 DOI: 10.2460/javma.245.1.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the prevalence of ischemic stroke in Greyhounds and determine whether affected dogs had coagulation abnormalities and hypertension. DESIGN Multi-institutional, retrospective study. ANIMALS 21 dogs. PROCEDURES Medical records (including diagnostic testing results) and MRI images of the brain were reviewed for Greyhounds with ischemic stroke that had been evaluated at 4 institutions. The proportion of Greyhounds with ischemic stroke was compared with the proportion of non-Greyhound dogs with ischemic stroke. Demographic information for dogs evaluated at each institution was obtained to determine the proportion of Greyhounds in the hospital populations. RESULTS 21 Greyhounds with ischemic stroke were identified. Abnormalities in coagulation were not identified in the 14 Greyhounds that underwent such testing. Systemic hypertension was identified in 6 of 14 Greyhounds that underwent such testing. No other abnormalities were identified by means of other routine diagnostic tests for Greyhounds. For all institutions combined, the prevalence of ischemic stroke in Greyhounds was 0.66% (21/3,161 Greyhounds). Greyhounds were significantly more likely to be evaluated because of ischemic stroke, compared with all other dog breeds combined (OR, 6.6; 95% confidence interval, 4.2 to 10.2). CONCLUSIONS AND CLINICAL RELEVANCE Results of this study suggested that Greyhounds were predisposed to ischemic stroke, compared with all other breeds combined. Coagulation abnormalities did not seem to contribute to ischemic stroke. Hypertension may have contributed to the development of ischemic stroke. Greyhounds with ischemic stroke should undergo measurement of systolic arterial blood pressure. Antihypertensive treatments may be warranted for such dogs.
Collapse
Affiliation(s)
- Marc Kent
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
SIGNIFICANCE The brain has high energetic requirements and is therefore highly dependent on adequate cerebral blood supply. To compensate for dangerous fluctuations in cerebral perfusion, the circulation of the brain has evolved intrinsic safeguarding measures. RECENT ADVANCES AND CRITICAL ISSUES The vascular network of the brain incorporates a high degree of redundancy, allowing the redirection and redistribution of blood flow in the event of vascular occlusion. Furthermore, active responses such as cerebral autoregulation, which acts to maintain constant cerebral blood flow in response to changing blood pressure, and functional hyperemia, which couples blood supply with synaptic activity, allow the brain to maintain adequate cerebral perfusion in the face of varying supply or demand. In the presence of stroke risk factors, such as hypertension and diabetes, these protective processes are impaired and the susceptibility of the brain to ischemic injury is increased. One potential mechanism for the increased injury is that collateral flow arising from the normally perfused brain and supplying blood flow to the ischemic region is suppressed, resulting in more severe ischemia. FUTURE DIRECTIONS Approaches to support collateral flow may ameliorate the outcome of focal cerebral ischemia by rescuing cerebral perfusion in potentially viable regions of the ischemic territory.
Collapse
Affiliation(s)
- Katherine Jackman
- Brain and Mind Research Institute, Weill Cornell Medical College , New York, New York
| | | |
Collapse
|
43
|
Western diet consumption promotes vascular remodeling in non-senescent mice consistent with accelerated senescence, but does not modify vascular morphology in senescent ones. Exp Gerontol 2014; 55:1-11. [DOI: 10.1016/j.exger.2014.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/20/2014] [Accepted: 03/02/2014] [Indexed: 11/17/2022]
|
44
|
Kim T, Richard Jennings J, Kim SG. Regional cerebral blood flow and arterial blood volume and their reactivity to hypercapnia in hypertensive and normotensive rats. J Cereb Blood Flow Metab 2014; 34:408-14. [PMID: 24252849 PMCID: PMC3948115 DOI: 10.1038/jcbfm.2013.197] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/15/2013] [Accepted: 10/21/2013] [Indexed: 11/09/2022]
Abstract
Chronic hypertension induces cerebrovascular remodeling, changing the inner diameter and elasticity of arterial vessels. To examine cerebrovascular morphologic changes and vasodilatory impairment in early-stage hypertension, we measured baseline (normocapnic) cerebral arterial blood volume (CBV(a)) and cerebral blood flow (CBF) as well as hypercapnia-induced dynamic vascular responses in animal models. All experiments were performed with young (3 to 4 month old) spontaneously hypertensive rats (SHR) and control Wistar-Kyoto rats (WKY) under ∼1% isoflurane anesthesia at 9.4 Tesla. Baseline regional CBF values were similar in both animal groups, whereas SHR had significantly lower CBV(a) values, especially in the hippocampus area. As CBF is maintained by adjusting arterial diameters within the autoregulatory blood pressure range, CBV(a) is likely more sensitive than CBF for detecting hypertensive-mediated alterations. Unexpectedly, hypercapnia-induced CBF and blood-oxygenation-level-dependent (BOLD) response were significantly higher in SHR as compared with WKY, and the CBF reactivity was highly correlated with the BOLD reactivity in both groups. The higher reactivity in early-stage hypertensive animals indicates no significant vascular remodeling occurred. At later stages of hypertension, the reduced vascular reactivity is expected. Thus, CBF and CBV(a) mapping may provide novel insights into regional cerebrovascular impairment in hypertension and its progression as hypertension advances.
Collapse
Affiliation(s)
- Tae Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J Richard Jennings
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- 1] Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA [2] Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Daejeon, Republic of Korea [3] Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
45
|
Pannozzo MA, Holland PR, Scullion G, Talbot R, Mullins JJ, Horsburgh K. Controlled hypertension induces cerebrovascular and gene alterations in Cyp1a1-Ren2 transgenic rats. ACTA ACUST UNITED AC 2013; 7:411-9. [DOI: 10.1016/j.jash.2013.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/19/2013] [Accepted: 07/20/2013] [Indexed: 02/07/2023]
|
46
|
Menon BK, Smith EE, Coutts SB, Welsh DG, Faber JE, Goyal M, Hill MD, Demchuk AM, Damani Z, Cho KH, Chang HW, Hong JH, Sohn SI. Leptomeningeal collaterals are associated with modifiable metabolic risk factors. Ann Neurol 2013; 74:241-8. [PMID: 23536377 DOI: 10.1002/ana.23906] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 01/21/2023]
Abstract
OBJECTIVE We sought to identify potentially modifiable determinants associated with variability in leptomeningeal collateral status in patients with acute ischemic stroke. METHODS Data are from the Keimyung Stroke Registry. Consecutive patients with M1 segment middle cerebral artery ± intracranial internal carotid artery occlusions on baseline computed tomographic angiography (CTA) from May 2004 to July 2009 were included. Baseline and follow-up imaging was analyzed blinded to all clinical information. Two raters assessed leptomeningeal collaterals on baseline CTA by consensus, using a previously validated regional leptomeningeal score (rLMC). RESULTS Baseline characteristics (N = 206) were: mean age = 66.9 ± 11.6 years, median baseline National Institutes of Health Stroke Scale = 14 (interquartile range [IQR] = 11-20), and median time from stroke symptom onset to CTA = 166 minutes (IQR = 96-262). Poor collateral status at baseline (rLMC score = 0-10) was seen in 73 of 206 patients (35.4%). On univariate analyses, patients with poor collateral status at baseline were older; were hypertensive; had higher white blood cell count, blood glucose, D-dimer, and serum uric acid levels; and were more likely to have metabolic syndrome. Multivariate modeling identified metabolic syndrome (odds ratio [OR] = 3.22, 95% confidence interval [CI] = 1.69-6.15, p < 0.001), hyperuricemia (per 1mg/dl serum uric acid; OR = 1.35, 95% CI = 1.12-1.62, p < 0.01), and older age (per 10 years; OR = 1.34, 95% CI = 1.02-1.77, p = 0.03) as independent predictors of poor leptomeningeal collateral status at baseline. INTERPRETATION Metabolic syndrome, hyperuricemia, and age are associated with poor leptomeningeal collateral status in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Bijoy K Menon
- Calgary Stroke Program, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pires PW, Dams Ramos CM, Matin N, Dorrance AM. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol 2013; 304:H1598-614. [PMID: 23585139 DOI: 10.1152/ajpheart.00490.2012] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Maintenance of brain function depends on a constant blood supply. Deficits in cerebral blood flow are linked to cognitive decline, and they have detrimental effects on the outcome of ischemia. Hypertension causes alterations in cerebral artery structure and function that can impair blood flow, particularly during an ischemic insult or during periods of low arterial pressure. This review will focus on the historical discoveries, novel developments, and knowledge gaps in 1) hypertensive cerebral artery remodeling, 2) vascular function with emphasis on myogenic reactivity and endothelium-dependent dilation, and 3) blood-brain barrier function. Hypertensive artery remodeling results in reduction in the lumen diameter and an increase in the wall-to-lumen ratio in most cerebral arteries; this is linked to reduced blood flow postischemia and increased ischemic damage. Many factors that are increased in hypertension stimulate remodeling; these include the renin-angiotensin-aldosterone system and reactive oxygen species levels. Endothelial function, vital for endothelium-mediated dilation and regulation of myogenic reactivity, is impaired in hypertension. This is a consequence of alterations in vasodilator mechanisms involving nitric oxide, epoxyeicosatrienoic acids, and ion channels, including calcium-activated potassium channels and transient receptor potential vanilloid channel 4. Hypertension causes blood-brain barrier breakdown by mechanisms involving inflammation, oxidative stress, and vasoactive circulating molecules. This exposes neurons to cytotoxic molecules, leading to neuronal loss, cognitive decline, and impaired recovery from ischemia. As the population ages and the incidence of hypertension, stroke, and dementia increases, it is imperative that we gain a better understanding of the control of cerebral artery function in health and disease.
Collapse
Affiliation(s)
- Paulo W Pires
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
48
|
Cipolla MJ. The adaptation of the cerebral circulation to pregnancy: mechanisms and consequences. J Cereb Blood Flow Metab 2013; 33:465-78. [PMID: 23321787 PMCID: PMC3618397 DOI: 10.1038/jcbfm.2012.210] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/02/2012] [Accepted: 12/08/2012] [Indexed: 12/21/2022]
Abstract
The adaptation of the cerebral circulation to pregnancy is unique from other vascular beds. Most notably, the growth and vasodilatory response to high levels of circulating growth factors and cytokines that promote substantial hemodynamic changes in other vascular beds is limited in the cerebral circulation. This is accomplished through several mechanisms, including downregulation of key receptors and transcription factors, and production of circulating factors that counteract the vasodilatory effects of vascular endothelial growth factor (VEGF) and placental growth factor. Pregnancy both prevents and reverses hypertensive inward remodeling of cerebral arteries, possibly through downregulation of the angiotensin type 1 receptor. The blood-brain barrier (BBB) importantly adapts to pregnancy by preventing the passage of seizure provoking serum into the brain and limiting the permeability effects of VEGF that is more highly expressed in cerebral vasculature during pregnancy. While the adaptation of the cerebral circulation to pregnancy provides for relatively normal cerebral blood flow and BBB properties in the face of substantial cardiovascular changes and high levels of circulating factors, under pathologic conditions, these adaptations appear to promote greater brain injury, including edema formation during acute hypertension, and greater sensitivity to bacterial endotoxin.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Departments of Neurological Sciences, Obstetrics, Gynecology and Reproductive Sciences, Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA.
| |
Collapse
|
49
|
Death by a thousand cuts in Alzheimer's disease: hypoxia--the prodrome. Neurotox Res 2013; 24:216-43. [PMID: 23400634 DOI: 10.1007/s12640-013-9379-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/10/2013] [Accepted: 01/21/2013] [Indexed: 12/30/2022]
Abstract
A wide range of clinical consequences may be associated with obstructive sleep apnea (OSA) including systemic hypertension, cardiovascular disease, pulmonary hypertension, congestive heart failure, cerebrovascular disease, glucose intolerance, impotence, gastroesophageal reflux, and obesity, to name a few. Despite this, 82 % of men and 93 % of women with OSA remain undiagnosed. OSA affects many body systems, and induces major alterations in metabolic, autonomic, and cerebral functions. Typically, OSA is characterized by recurrent chronic intermittent hypoxia (CIH), hypercapnia, hypoventilation, sleep fragmentation, peripheral and central inflammation, cerebral hypoperfusion, and cerebral glucose hypometabolism. Upregulation of oxidative stress in OSA plays an important pathogenic role in the milieu of hypoxia-induced cerebral and cardiovascular dysfunctions. Strong evidence underscores that cerebral amyloidogenesis and tau phosphorylation--two cardinal features of Alzheimer's disease (AD), are triggered by hypoxia. Mice subjected to hypoxic conditions unambiguously demonstrated upregulation in cerebral amyloid plaque formation and tau phosphorylation, as well as memory deficit. Hypoxia triggers neuronal degeneration and axonal dysfunction in both cortex and brainstem. Consequently, neurocognitive impairment in apneic/hypoxic patients is attributable to a complex interplay between CIH and stimulation of several pathological trajectories. The framework presented here helps delineate the emergence and progression of cognitive decline, and may yield insight into AD neuropathogenesis. The global impact of CIH should provide a strong rationale for treating OSA and snoring clinically, in order to ameliorate neurocognitive impairment in aged/AD patients.
Collapse
|
50
|
Wiegman MJ, Van der Graaf AM, Henning RH, Zeeman GG, Buikema H, Faas MM. Structure and function of cerebral and mesenteric resistance arteries in low-dose endotoxin-infused pregnant rats. Pregnancy Hypertens 2013; 3:48-56. [PMID: 26105741 DOI: 10.1016/j.preghy.2012.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 11/18/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Since the cerebrovasculature likely plays a prominent role in the pathophysiology of eclampsia, we assessed the effects of low-dose endotoxin-induced experimental preeclampsia on the function and structure of rat posterior cerebral arteries (PCA) and mesenteric arteries (MA). METHODS Nonpregnant (NP) and pregnant (P) rats were infused with saline (NP-CTL, n=9; P-CTL, n=9) or low-dose endotoxin (NP-endotoxin, n=9; P-endotoxin, n=10). Myogenic activity, pressure of forced dilatation (FD) and structural properties were evaluated in PCA and MA. RESULTS PCA underwent FD between 125 and 150mmHg in P-endotoxin (repeated measures ANOVA vs 75mmHg; P<0.05) and between 150 and 175mmHg in P-CTL and NP animals (repeated measures ANOVA vs 75mmHg; P<0.05). PCA myogenic tone was unaffected by pregnancy or endotoxin, however, pregnancy decreased the MA myogenic tone (P<0.05 vs NP). Passive characteristics of PCA and MA were unaffected by pregnancy or endotoxin. CONCLUSION Low-dose endotoxin-infusion during pregnancy, but not pregnancy alone, decreased the pressure of FD in PCA. This may predispose to cerebral autoregulatory breakthrough and edema formation during increased blood pressure as seen in eclampsia.
Collapse
Affiliation(s)
- Marjon J Wiegman
- School of Behavioral and Cognitive Neurosciences, University of Groningen, University Medical Center Groningen, The Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands; Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands.
| | - Anne Marijn Van der Graaf
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands; Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Gerda G Zeeman
- School of Behavioral and Cognitive Neurosciences, University of Groningen, University Medical Center Groningen, The Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Hendrik Buikema
- Department of Clinical Pharmacology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|