1
|
Physiological and Pathophysiological Effects of C-Type Natriuretic Peptide on the Heart. BIOLOGY 2022; 11:biology11060911. [PMID: 35741432 PMCID: PMC9219612 DOI: 10.3390/biology11060911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/06/2023]
Abstract
Simple Summary C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Unlike atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), CNP was not previously regarded as an important cardiac modulator. However, recent studies have revealed the physiological and pathophysiological importance of CNP in the heart; in concert with its cognate natriuretic peptide receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective natriuretic peptide in the failed heart. In this review, I introduce the history of research on CNP in the cardiac field. Abstract C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Unlike other members, i.e., atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), which are cardiac hormones secreted from the atrium and ventricle of the heart, respectively, CNP is regarded as an autocrine/paracrine regulator with broad expression in the body. Because of its low expression levels compared to ANP and BNP, early studies failed to show its existence and role in the heart. However, recent studies have revealed the physiological and pathophysiological importance of CNP in the heart; in concert with the distribution of its specific natriuretic peptide receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective natriuretic peptide in the failed heart. NPR-B generates intracellular cyclic guanosine 3′,5′-monophosphate (cGMP) upon CNP binding, followed by various molecular effects including the activation of cGMP-dependent protein kinases, which generates diverse cytoprotective actions in cardiomyocytes, as well as in cardiac fibroblasts. CNP exerts negative inotropic and positive lusitropic responses in both normal and failing heart models. Furthermore, osteocrin, the intrinsic and specific ligand for the clearance receptor for natriuretic peptides, can augment the effects of CNP and may supply a novel therapeutic strategy for cardiac protection.
Collapse
|
2
|
Taura D, Nakao K, Nakagawa Y, Kinoshita H, Sone M, Nakao K. C-type natriuretic peptide (CNP)/guanylate cyclase B (GC-B) system and endothelin-1(ET-1)/ET receptor A and B system in human vasculature. Can J Physiol Pharmacol 2020; 98:611-617. [PMID: 32268070 DOI: 10.1139/cjpp-2019-0686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To assess the physiological and clinical implications of the C-type natriuretic peptide (CNP)/guanylyl cyclase B (GC-B) system in the human vasculature, we have examined gene expressions of CNP and its receptor, GC-B, in human vascular endothelial cells (ECs) and smooth muscle cells (SMCs) and have also compared the endothelin-1(ET-1)/endothelin receptor-A (ETR-A) and endothelin receptor-B (ETR-B) system in human aortic ECs (HAECs) and vascular SMCs (HSMCs) in vitro. We also examined these gene expressions in human embryonic stem (ES)/induced pluripotent stem cell (iPS)-derived ECs and mural cells (MCs). A little but significant amount of mRNA encoding CNP was detected in both human ES-derived ECs and HAECs. A substantial amount of GC-B was expressed in both ECs (iPS-derived ECs and HAECs) and SMCs (iPS-derived MCs and HSMCs). ET-1 was expressed solely in ECs. ETR-A was expressed in SMCs, while ETR-B was expressed in ECs. These results indicate the existence of a vascular CNP/GC-B system in the human vascular wall, indicating the evidence for clinical implication of the CNP/GC-B system in concert with the ET-1/ETR-A and ETR-B system in the human vasculature.
Collapse
Affiliation(s)
- Daisuke Taura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuhiro Nakao
- National Cardiovascular, Cerebrovascular Research Center Hospital, Suita, Japan
| | - Yasuaki Nakagawa
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideyuki Kinoshita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakatsu Sone
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Hsu SJ, Huang HC, Chuang CL, Chang CC, Hou MC, Lee FY, Lee SD. Dual Angiotensin Receptor and Neprilysin Inhibitor Ameliorates Portal Hypertension in Portal Hypertensive Rats. Pharmaceutics 2020; 12:E320. [PMID: 32252377 PMCID: PMC7238216 DOI: 10.3390/pharmaceutics12040320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Portal hypertension is characterized by exaggerated activation of the renin-angiotensin-aldosterone axis. Natriuretic peptide system plays a counter-regulatory role, which is modulated by neprilysin. LCZ696 (sacubitril/valsartan) is a dual angiotensin receptor and neprilysin inhibitor. This study evaluated the effect of LCZ696 on portal hypertensive rats. METHODS Portal hypertension was induced by partial portal vein ligation (PVL) in rats. LCZ696, valsartan (angiotensin receptor blocker), or normal saline (control) was administered in PVL rats for 10 days. Then, hemodynamic and biochemistry data were obtained. The hepatic histology and protein expressions were surveyed. On the parallel groups, the portal-systemic shunting degrees were determined. RESULTS LCZ696 and valsartan reduced mean arterial pressure and systemic vascular resistance. LCZ696, but not valsartan, reduced portal pressure in portal hypertensive rats (control vs. valsartan vs. LCZ696: 15.4 ± 1.6 vs. 14.0 ± 2.3 vs. 12.0 ± 2.0 mmHg, control vs. LCZ696: P < 0.05). LCZ696 and valsartan improved liver biochemistry data and reduced intrahepatic Cluster of Differentiation 68 (CD68)-stained macrophages infiltration. Hepatic endothelin-1 (ET-1) protein expression was downregulated by LCZ696. The portal-systemic shunting was not affected by LCZ696 and valsartan. CONCLUSION LCZ696 and valsartan reduced mean arterial pressure through peripheral vasodilation. Furthermore, LCZ696 significantly reduced portal pressure in PVL rats via hepatic ET-1 downregulation.
Collapse
Affiliation(s)
- Shao-Jung Hsu
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-J.H.); (H.-C.H.); (M.-C.H.); (F.-Y.L.); (S.-D.L.)
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan;
| | - Hui-Chun Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-J.H.); (H.-C.H.); (M.-C.H.); (F.-Y.L.); (S.-D.L.)
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan;
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chiao-Lin Chuang
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan;
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ching-Chih Chang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-J.H.); (H.-C.H.); (M.-C.H.); (F.-Y.L.); (S.-D.L.)
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan;
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-J.H.); (H.-C.H.); (M.-C.H.); (F.-Y.L.); (S.-D.L.)
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan;
| | - Fa-Yauh Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-J.H.); (H.-C.H.); (M.-C.H.); (F.-Y.L.); (S.-D.L.)
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan;
| | - Shou-Dong Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-J.H.); (H.-C.H.); (M.-C.H.); (F.-Y.L.); (S.-D.L.)
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11217, Taiwan;
| |
Collapse
|
4
|
Bubb KJ, Aubdool AA, Moyes AJ, Lewis S, Drayton JP, Tang O, Mehta V, Zachary IC, Abraham DJ, Tsui J, Hobbs AJ. Endothelial C-Type Natriuretic Peptide Is a Critical Regulator of Angiogenesis and Vascular Remodeling. Circulation 2019; 139:1612-1628. [PMID: 30586761 DOI: 10.1161/circulationaha.118.036344] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Angiogenesis and vascular remodeling are complementary, innate responses to ischemic cardiovascular events, including peripheral artery disease and myocardial infarction, which restore tissue blood supply and oxygenation; the endothelium plays a critical function in these intrinsic protective processes. C-type natriuretic peptide (CNP) is a fundamental endothelial signaling species that coordinates vascular homeostasis. Herein, we sought to delineate a central role for CNP in angiogenesis and vascular remodeling in response to ischemia. METHODS The in vitro angiogenic capacity of CNP was examined in pulmonary microvascular endothelial cells and aortic rings isolated from wild-type, endothelium-specific CNP-/-, global natriuretic peptide receptor (NPR)-B-/- and NPR-C-/- animals, and human umbilical vein endothelial cells. These studies were complemented by in vivo investigation of neovascularization and vascular remodeling after ischemia or vessel injury, and CNP/NPR-C expression and localization in tissue from patients with peripheral artery disease. RESULTS Clinical vascular ischemia is associated with reduced levels of CNP and its cognate NPR-C. Moreover, genetic or pharmacological inhibition of CNP and NPR-C, but not NPR-B, reduces the angiogenic potential of pulmonary microvascular endothelial cells, human umbilical vein endothelial cells, and isolated vessels ex vivo. Angiogenesis and remodeling are impaired in vivo in endothelium-specific CNP-/- and NPR-C-/-, but not NPR-B-/-, mice; the detrimental phenotype caused by genetic deletion of endothelial CNP, but not NPR-C, can be rescued by pharmacological administration of CNP. The proangiogenic effect of CNP/NPR-C is dependent on activation of Gi, ERK1/2, and phosphoinositide 3-kinase γ/Akt at a molecular level. CONCLUSIONS These data define a central (patho)physiological role for CNP in angiogenesis and vascular remodeling in response to ischemia and provide the rationale for pharmacological activation of NPR-C as an innovative approach to treating peripheral artery disease and ischemic cardiovascular disorders.
Collapse
Affiliation(s)
- Kristen J Bubb
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, UK (K.J.B., A.A.A., A.J.M., J.P.D., A.J.H.).,University of Sydney, Kolling Institute of Medical Research, St Leonards, Australia (K.J.B., O.T.)
| | - Aisah A Aubdool
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, UK (K.J.B., A.A.A., A.J.M., J.P.D., A.J.H.)
| | - Amie J Moyes
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, UK (K.J.B., A.A.A., A.J.M., J.P.D., A.J.H.)
| | - Sarah Lewis
- Centre for Rheumatology and Connective Tissue Diseases, University College London Medical School, Royal Free Campus, UK (S.L., D.J.A., J.T.)
| | - Jonathan P Drayton
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, UK (K.J.B., A.A.A., A.J.M., J.P.D., A.J.H.)
| | - Owen Tang
- University of Sydney, Kolling Institute of Medical Research, St Leonards, Australia (K.J.B., O.T.)
| | - Vedanta Mehta
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, UK (V.M., I.C.Z.)
| | - Ian C Zachary
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, UK (V.M., I.C.Z.)
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, University College London Medical School, Royal Free Campus, UK (S.L., D.J.A., J.T.)
| | - Janice Tsui
- Centre for Rheumatology and Connective Tissue Diseases, University College London Medical School, Royal Free Campus, UK (S.L., D.J.A., J.T.)
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, UK (K.J.B., A.A.A., A.J.M., J.P.D., A.J.H.)
| |
Collapse
|
5
|
Burtenshaw D, Cahill PA. Natriuretic Peptides and the Regulation of Retinal Neovascularization. Arterioscler Thromb Vasc Biol 2019; 40:7-10. [PMID: 31869266 DOI: 10.1161/atvbaha.119.313566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Denise Burtenshaw
- From the Vascular Biology and Therapeutics Laboratories, School of Biotechnology, Faculty of Science and Health, Dublin City University, Ireland
| | - Paul A Cahill
- From the Vascular Biology and Therapeutics Laboratories, School of Biotechnology, Faculty of Science and Health, Dublin City University, Ireland
| |
Collapse
|
6
|
Moyes AJ, Hobbs AJ. C-type Natriuretic Peptide: A Multifaceted Paracrine Regulator in the Heart and Vasculature. Int J Mol Sci 2019; 20:E2281. [PMID: 31072047 PMCID: PMC6539462 DOI: 10.3390/ijms20092281] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
C-type natriuretic peptide (CNP) is an autocrine and paracrine mediator released by endothelial cells, cardiomyocytes and fibroblasts that regulates vital physiological functions in the cardiovascular system. These roles are conveyed via two cognate receptors, natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C), which activate different signalling pathways that mediate complementary yet distinct cellular responses. Traditionally, CNP has been deemed the endothelial component of the natriuretic peptide system, while its sibling peptides, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), are considered the endocrine guardians of cardiac function and blood volume. However, accumulating evidence indicates that CNP not only modulates vascular tone and blood pressure, but also governs a wide range of cardiovascular effects including the control of inflammation, angiogenesis, smooth muscle and endothelial cell proliferation, atherosclerosis, cardiomyocyte contractility, hypertrophy, fibrosis, and cardiac electrophysiology. This review will focus on the novel physiological functions ascribed to CNP, the receptors/signalling mechanisms involved in mediating its cardioprotective effects, and the development of therapeutics targeting CNP signalling pathways in different disease pathologies.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
7
|
NAKAO K. Translational science: Newly emerging science in biology and medicine - Lessons from translational research on the natriuretic peptide family and leptin. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:538-567. [PMID: 31708497 PMCID: PMC6856003 DOI: 10.2183/pjab.95.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Translation is the process of turning observations in the laboratory, clinic, and community into interventions that improve the health of individuals and the public, ranging from diagnostics and therapeutics to medical procedures and behavioral changes. Translational research is defined as the effort to traverse a particular step of the translation process for a particular target or disease. Translational science is a newly emerging science, distinct from basic and clinical sciences in biology and medicine, and is a field of investigation focused on understanding the scientific and operational principles underlying each step of the translational process. Advances in translational science will increase the efficacy and safety of translational research in all diagnostic and therapeutic areas. This report examines translational research on novel hormones, the natriuretic peptide family and leptin, which have achieved clinical applications or for which studies are still ongoing, and also emphasizes the lessons that translational science has learned from more than 30 years' experience in translational research.
Collapse
Affiliation(s)
- Kazuwa NAKAO
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
8
|
Wu YF, Zhang DD, Liu SY, Luo HH, Jiang GM, Xu Y, Wu Y, Wang JJ, Liu FF, Samadli S, Wei W, Hu B, Hu P. C-Type Natriuretic Peptide Dampens Fibroblast Growth Factor-23 Expression Through MAPK Signaling Pathway in Human Mesangial Cells. J Interferon Cytokine Res 2018; 38:500-509. [PMID: 30335543 DOI: 10.1089/jir.2018.0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
C-type natriuretic peptide (CNP) is believed to be produced locally in the kidneys and possess several renoprotective properties. In contrast, fibroblast growth factor (FGF) -23 elevates in the early stage of chronic kidney disease and predicts its outcomes. Currently, several studies have demonstrated that CNP and FGF-23 act through a close pathway, and moreover, FGF-23/mitogen-activated protein kinase (MAPK) can be obviously suppressed by CNP. In the present study, human mesangial cells (MCs) were incubated in serum-containing medium in the absence or presence of CNP (0, 10 and 100 pM) for 24, 48 and 72 h, respectively. CNP administration significantly suppresses MCs proliferation in a time- and dose-dependent manner. As a down-stream signaling of CNP activation, the expressions of natriuretic peptide receptor (NPR)-B, cyclic guanosine monophosphate-dependent protein kinases II and NPR-C were obviously augmented, whereas neutral endopeptidase expression was significantly decreased after CNP treatment in MCs. FGF-23, FGF receptor-1 and RAF-1 experienced a pronounced down-regulation in MCs with different doses of CNP throughout the whole observational period. CNP may dampen FGF-23 expression via MAPK signaling pathway in MCs.
Collapse
Affiliation(s)
- Yang Fang Wu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Dong Dong Zhang
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Si Yan Liu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Huang Huang Luo
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Guang Mei Jiang
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Yao Xu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Yue Wu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Jing Jing Wang
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Fei Fei Liu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Sama Samadli
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Wei Wei
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Bo Hu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| | - Peng Hu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University , Hefei, People's Republic of China
| |
Collapse
|
9
|
Öztop M, Cinar K, Turk S. Immunolocalization of natriuretic peptides and their receptors in goat (Capra hircus) heart. Biotech Histochem 2018; 93:389-404. [PMID: 30124338 DOI: 10.1080/10520295.2018.1425911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Natriuretic peptides are structurally similar, but genetically distinct, hormones that participate in cardiovascular homeostasis by regulating blood and extracellular fluid volume and blood pressure. We investigated the distribution of natriuretic peptides and their receptors in goat (Capra hircus) heart tissue using the peroxidase-anti-peroxidase (PAP) immunohistochemical method. Strong staining of atrial natriuretic peptide (ANP) was observed in atrial cardiomyocytes, while strong staining for brain natriuretic peptide (BNP) was observed in ventricular cardiomyocytes. Slightly stronger cytoplasmic C-type natriuretic peptide (CNP) immunostaining was detected in the ventricles compared to the atria. Natriuretic peptide receptor-A (NPR-A) immunoreactivity was more prominent in the atria, while natriuretic peptide receptor-B (NPR-B) immunoreactivity was stronger in the ventricles. Cytoplasmic natriuretic peptide receptor-C (NPR-C) immunoreactivity was observed in both the atria and ventricles, although staining was more prominent in the ventricles. ANP immunoreactivity ranged from weak to strong in endothelial and vascular smooth muscle cells. Endothelial cells exhibited moderate to strong BNP immunoreactivity, while vascular smooth cells displayed weak to strong staining. Endothelial cells exhibited weak to strong cytoplasmic CNP immunoreactivity. Vascular smooth muscle cells were labeled moderately to strongly for CNP. Weak to strong cytoplasmic NPR-A immunoreactivity was found in the endothelial cells and vascular smooth muscle cells stained weakly to moderately for NPR-A. Endothelial and vascular smooth cells exhibited weak to strong cytoplasmic NPR-B immunoreactivity. Moderate to strong NPR-C immunoreactivity was observed in the endothelial and smooth muscle cells. Small gender differences in the immunohistochemical distribution of natriuretic peptides and receptors were observed. Our findings suggest that endothelial cells, vascular smooth cells and cardiomyocytes express both natriuretic peptides and their receptors.
Collapse
Affiliation(s)
- M Öztop
- a Department of Biology , Mehmet Akif Ersoy University , Burdur
| | - K Cinar
- b Department of Biology , Süleyman Demirel University , Isparta , Turkey
| | - S Turk
- b Department of Biology , Süleyman Demirel University , Isparta , Turkey
| |
Collapse
|
10
|
Mahdy EM, El-mezayen HA, Eldegheidy E, Alsharabasy AM. Assessment of the healing activity of polyelectrolyte complexes through molecular and histological characterization. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/6/065010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Hu P, Huang BY, Xia X, Xuan Q, Hu B, Qin YH. Therapeutic effect of CNP on renal osteodystrophy by antagonizing the FGF-23/MAPK pathway. J Recept Signal Transduct Res 2015; 36:213-9. [DOI: 10.3109/10799893.2015.1075041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Shrivastava D. Impact of sleep-disordered breathing treatment on upper airway anatomy and physiology. Sleep Med 2014; 15:733-41. [PMID: 24854886 DOI: 10.1016/j.sleep.2014.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 11/19/2022]
Abstract
Sleep-disordered breathing (SDB) is a major public health problem. Various anatomic, pathophysiologic, and environmental changes contribute to SDB. The successful treatment of SDB reverses many of these abnormal processes. The present article discusses the current clinical evidence that supports the reversibility and its potential application in the management of SDB. Continuous positive airway pressure reduces angiogenesis and inflammatory edema, increases pharyngeal size, and improves surrogate markers of vascular inflammation and tongue muscle fiber types. Mandibular advancement devices lead to favorable maxillary and mandibular changes, increase pharyngeal area, and improve hypertension. Uvulopalatopharyngoplasty increases posterior airway space and pharyngeal volume, reduces nasal and oral resistance, and lowers response to high CO2. Weight loss reduces nasopharyngeal collapsibility, critical closing pressure of the airway, apnea-hypopnea index, and improves oxygen saturations. Potential clinical benefits of these changes in the management of SDB and patient compliance with treatment are discussed.
Collapse
Affiliation(s)
- Deepak Shrivastava
- University of California, Davis, CA, USA; Division of Sleep Medicine, Pulmonary and Critical Care, SJGH Sleep Center, 500, West Hospital Road, French Camp, CA 95231, USA.
| |
Collapse
|
13
|
Del Ry S, Cabiati M, Martino A, Cavallini C, Caselli C, Aquaro G, Battolla B, Prescimone T, Giannessi D, Mattii L, Lionetti V. High concentration of C-type natriuretic peptide promotes VEGF-dependent vasculogenesis in the remodeled region of infarcted swine heart with preserved left ventricular ejection fraction. Int J Cardiol 2013; 168:2426-34. [DOI: 10.1016/j.ijcard.2013.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/23/2013] [Accepted: 03/05/2013] [Indexed: 11/28/2022]
|
14
|
Murdaca G, Colombo BM, Cagnati P, Gulli R, Spanò F, Puppo F. Endothelial dysfunction in rheumatic autoimmune diseases. Atherosclerosis 2012; 224:309-317. [PMID: 22673743 DOI: 10.1016/j.atherosclerosis.2012.05.013] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 05/14/2012] [Accepted: 05/14/2012] [Indexed: 12/14/2022]
Abstract
Rheumatic autoimmune diseases have been associated with accelerated atherosclerosis and various types of vasculopathies. Atherosclerosis is an inflammatory condition which starts as a "response to injury" favoring endothelial dysfunction which is associated with increased expression of adhesion molecules, pro-inflammatory cytokines, pro-thrombotic factors, oxidative stress upregulation and abnormal vascular tone modulation. Endothelial dysfunction in rheumatic autoimmune diseases involves innate immune responses, including macrophages and dendritic cells expression of scavenger and toll-like receptors for modified or native LDL as well as neutrophil and complement activation, and dysregulation of adaptive immune responses, including proliferation of autoreactive T-helper-1 lymphocytes and defective function of dendritic and regulatory T cells. Specific differences for endothelial function among different disorders include: a) increased amounts of pro-atherogenic hormones, decreased amounts of anti-atherogenic hormones and increased insulin resistance in rheumatoid arthritis; b) autoantibodies production in systemic lupus erythematosus and antiphospholipid syndrome; c) smooth muscle cells proliferation, destruction of internal elastic lamina, fibrosis and coagulation and fibrinolytic system dysfunction in systemic sclerosis. Several self-antigens (i.e. high density lipoproteins, heat shock proteins, β2-glycoprotein1) and self-molecules modified by oxidative events (i.e. low density lipoproteins and oxidized hemoglobin) have been identified as targets of autoimmune responses. Endothelial dysfunction leads to accelerated atherosclerosis in rheumatoid arthritis, systemic lupus erythematosus and spondyloarthropaties whereas obliterative vasculopathy is associated with systemic sclerosis. In this paper, we will briefly review the most relevant information upon endothelial dysfunction and inflammatory mechanisms in atherosclerosis and we will summarize the similarities and differences in vascular disease patterns underlying different rheumatic autoimmune diseases.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, Viale Benedetto XV, n. 6, University of Genoa, 16132 Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Sellitti DF, Koles N, Mendonça MC. Regulation of C-type natriuretic peptide expression. Peptides 2011; 32:1964-71. [PMID: 21816187 DOI: 10.1016/j.peptides.2011.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 01/17/2023]
Abstract
C-type natriuretic peptide (CNP) is a member of the small family of natriuretic peptides that also includes atrial natriuretic peptide (ANP) and brain, or B-type natriuretic peptide (BNP). Unlike them, it performs its major functions in an autocrine or paracrine manner. Those functions, mediated through binding to the membrane guanylyl cyclase natriuretic peptide receptor B (NPR-B), or by signaling through the non-enzyme natriuretic peptide receptor C (NPR-C), include the regulation of endochondral ossification, reproduction, nervous system development, and the maintenance of cardiovascular health. To date, the regulation of CNP gene expression has not received the attention that has been paid to regulation of the ANP and BNP genes. CNP expression in vitro is regulated by TGF-β and receptor tyrosine kinase growth factors in a cell/tissue-specific and sometimes species-specific manner. Expression of CNP in vivo is altered in diseased organs and tissues, including atherosclerotic vessels, and the myocardium of failing hearts. Analysis of the human CNP gene has led to the identification of a number of regulatory sites in the proximal promoter, including a GC-rich region approximately 50 base pairs downstream of the Tata box, and shown to be a binding site for several putative regulatory proteins, including transforming growth factor clone 22 domain 1 (TSC22D1) and a serine threonine kinase (STK16). The purpose of this review is to summarize the current literature on the regulation of CNP expression, emphasizing in particular the putative regulatory elements in the CNP gene and the potential DNA-binding proteins that associate with them.
Collapse
Affiliation(s)
- Donald F Sellitti
- Department of Medicine, Division of Endocrinology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA.
| | | | | |
Collapse
|
16
|
Del Ry S, Cabiati M, Vozzi F, Battolla B, Caselli C, Forini F, Segnani C, Prescimone T, Giannessi D, Mattii L. Expression of C-type natriuretic peptide and its receptor NPR-B in cardiomyocytes. Peptides 2011; 32:1713-8. [PMID: 21723350 DOI: 10.1016/j.peptides.2011.06.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 11/20/2022]
Abstract
C-type natriuretic peptide (CNP) was recently found in myocardium at the mRNA and protein levels, but it is not known whether cardiomyocytes are able to produce CNP. The aim of this study was to determine the expression of CNP and its specific receptor NPR-B in cardiac cells, both in vitro and ex vivo. CNP, brain natriuretic peptide (BNP) and natriuretic peptide receptor (NPR)-B mRNA expression were examined by RT-PCR in the H9c2 rat cardiac myoblast cell line, in neonatal rat primary cardiomyocytes and in human umbilical vein endothelial cells (HUVECs) as control. CNP protein expression was probed in cardiac tissue sections obtained from adult male minipigs by immunohistochemistry, and in H9c2 cells both by immunocytochemistry and by specific radioimmunoassay. The results showed that cardiac cells as well as endothelial cells were able to produce CNP. Unlike cardiomyocytes, as expected, in endothelial cells expression of BNP was not detected. NPR-B mRNA expression was found in both cell types. Production of CNP in the heart muscle cells at protein level was confirmed by radioimmunological determination (H9c2: CNP=0.86 ± 0.083 pg/mg) and by immunocytochemistry studies. By immunostaining of tissue sections, CNP was detected in both endothelium and cardiomyocytes. Expression of CNP in cardiac cells at gene and protein levels suggests that the heart is actively involved in the production of CNP.
Collapse
Affiliation(s)
- S Del Ry
- CNR Institute of Clinical Physiology Laboratory of Cardiovascular Biochemistry, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
By using transgenic and knockout mice, we have elucidated that C-type natriuretic peptide (CNP) is a potent stimulator of endochondral bone growth. In humans, loss-of-function mutations in the gene coding for guanylyl cyclase-B (GC-B), the specific receptor for CNP, have been proved to be the cause of acromesomelic dysplasia, type Maroteaux, one form of human skeletal dysplasias. Following these results, we have started to translate the stimulatory effect of CNP on endochondral bone growth into the therapy for patients with skeletal dysplasias. We have shown that targeted overexpression of CNP in cartilage or systemic administration of CNP reverses the impaired skeletal growth of mice model of achondroplasia, the most common form of human skeletal dysplasias.
Collapse
Affiliation(s)
- Akihiro Yasoda
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | |
Collapse
|
18
|
Blood serum levels of amino-terminal pro-C-type natriuretic peptide in patients with rheumatoid arthritis. Adv Med Sci 2010; 55:261-5. [PMID: 20934962 DOI: 10.2478/v10039-010-0036-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Angiogenesis is a prominent feature of rheumatoid synovitis and contributes to perpetuation of joint disease. The aim of presented study was to evaluate the association of inflammatory response and endothelial dysfunction parameters with serum levels of amino-terminal pro-C-type natriuretic peptide (NT-proCNP), a surrogate measure for a potent regulator of vascular tone and angiogenesis, CNP. MATERIAL/METHODS We included in this study 40 rheumatoid arthritis (RA) patients (36 female, four male) and 30 healthy controls (28 female, two male). Disease activity score (DAS28), Health Assessment Questionnaire Disability Index (HAQDI), Rheumatoid Arthritis Disease Activity Index (RADAI) and visual analogue scales (VAS) for pain and arthritis were determined. The concentrations of the following laboratory parameters (serum C-reactive protein (CRP), soluble (s) L-, sP-, sE-selectin, NT-proCNP, IgM rheumatoid factor (RF), and anti-cyclic citrullinated peptide antibodies) were measured using sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS The concentrations of NT-proCNP in RA patients were significantly increased when compared to healthy controls (p<0.001). In RA patients we found significant correlations only between sE-selectin and NT-proCNP levels (p=0.02). No significant associations were found between serum NT-proCNP and soluble selectin levels and patients' age and sex. Also, the parameters of clinical profile in the RA group (HAQ, RADAI, DAS28, VAS-pain, VAS-arthritis, swollen and tender joint counts) showed no association with serum NT-proCNP, sE-, sP- and sL-selectin. CONCLUSIONS Serum concentration of NT-proCNP reflecting serum CNP level is likely secondary to the activation of endothelium. Nevertheless, the results of our study encourage to further studies over the role of CNP in the pathogenesis of RA, preferably on tissue level.
Collapse
|
19
|
Nakao K, Yasoda A, Ebihara K, Hosoda K, Mukoyama M. Translational research of novel hormones: lessons from animal models and rare human diseases for common human diseases. J Mol Med (Berl) 2009; 87:1029-39. [DOI: 10.1007/s00109-009-0515-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 01/15/2023]
|
20
|
Kuramoto E, Kinami S, Ishida Y, Shiotani H, Nishimura Y. Continuous positive nasal airway pressure decreases levels of serum amyloid A and improves autonomic function in obstructive sleep apnea syndrome. Int J Cardiol 2009; 135:338-45. [DOI: 10.1016/j.ijcard.2008.03.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/22/2007] [Accepted: 03/30/2008] [Indexed: 12/26/2022]
|
21
|
Huang WH, Chen KH, Hsu CW, Chen YC, Hung CC, Huang JY, Lin JL, Yang CW. Residual Renal Function – One of the Factors Associated with Arterial Stiffness in Peritoneal Dialysis Patients. Blood Purif 2008; 26:133-7. [DOI: 10.1159/000113013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 11/09/2007] [Indexed: 11/19/2022]
|
22
|
Prickett TCR, Rumball CWH, Buckley AJ, Bloomfield FH, Yandle TG, Harding JE, Espiner EA. C-type natriuretic peptide forms in the ovine fetal and maternal circulations: evidence for independent regulation and reciprocal response to undernutrition. Endocrinology 2007; 148:4015-22. [PMID: 17510241 DOI: 10.1210/en.2007-0281] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
C-type natriuretic peptide (CNP) has a crucial role in postnatal endochondral bone growth and is rapidly responsive to changes in nutrition. Although CNP is expressed in the placenta, little is known about the regulation and role of CNP in fetal-maternal health. We hypothesized that CNP may be similarly responsive to undernutrition in the growing fetus, in which maternal nutrition is crucial to normal growth and development. We therefore studied maternal and fetal CNP and the aminoterminal (bioinactive) fragment of proCNP (NTproCNP) in 39 chronically catheterized pregnant sheep before and after a 3-d maternal fast from 121 d gestation. Maternal CNP and NTproCNP levels were higher than in the fetus (CNP 12-fold, NTproCNP 1.5-fold, both P < 0.001). The ratio of NTproCNP to CNP was higher in the fetus than the mother (53 +/- 3 vs. 8.7 +/- 0.6, P < 0.001), suggesting enhanced synthesis and/or degradation of CNP in the fetus. As in postnatal lambs, fetal plasma CNP forms fell promptly during maternal fasting. In contrast, maternal levels exhibited reciprocal and contemporaneous increase, which was reversed by refeeding. Uteroplacental production of CNP was suggested by a high venoarterial concentration gradient across the gravid uterus, and a correlation between maternal NTproCNP levels and placental weight (r(2) = 0.26, P = 0.01). These studies provide the first evidence that CNP is regulated independently in the fetus. Reciprocal increases in maternal CNP forms may reflect the response of the uteroplacental unit to substrate deficiency. CNP may have a role in maintaining fetal welfare and provides a possible marker of uteroplacental nutrient supply.
Collapse
Affiliation(s)
- Timothy C R Prickett
- Department of Medicine, Christchurch School of Medicine and Health Sciences, PO Box 4345, Christchurch 8015, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
23
|
Pagel-Langenickel I, Buttgereit J, Bader M, Langenickel TH. Natriuretic peptide receptor B signaling in the cardiovascular system: protection from cardiac hypertrophy. J Mol Med (Berl) 2007; 85:797-810. [PMID: 17429599 DOI: 10.1007/s00109-007-0183-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/06/2007] [Accepted: 02/27/2007] [Indexed: 11/28/2022]
Abstract
Natriuretic peptides (NP) represent a family of structurally homologous but genetically distinct peptide hormones involved in regulation of fluid and electrolyte balance, blood pressure, fat metabolism, cell proliferation, and long bone growth. Recent work suggests a role for natriuretic peptide receptor B (NPR-B) signaling in regulation of cardiac growth by either a direct effect on cardiomyocytes or by modulation of other signaling pathways including the autonomic nervous system. The research links NPR-B for the first time to a cardiac phenotype in vivo and underlines the importance of the NP in the cardiovascular system. This manuscript will focus on the role of NPR-B and its ligand C-type natriuretic peptide in cardiovascular physiology and disease and will evaluate these new findings in the context of the known function of this receptor, with a perspective on how future research might further elucidate NPR-B function.
Collapse
Affiliation(s)
- Ines Pagel-Langenickel
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
24
|
Kelsall CJ, Chester AH, Sarathchandra P, Singer DRJ. Expression and localization of C-type natriuretic peptide in human vascular smooth muscle cells. Vascul Pharmacol 2006; 45:368-73. [PMID: 16914388 DOI: 10.1016/j.vph.2006.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/08/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVES C-type natriuretic peptide (CNP) released by vascular endothelium relaxes smooth muscle and is important in the maintenance of vascular tone. Since it is not known whether other human vascular cell types produce CNP, we investigated its expression in human vascular smooth muscle. METHODS CNP expression was examined by RT-PCR in vascular smooth muscle cells (SMC) cultured from human saphenous vein (SV), internal mammary artery (IMA) and radial artery (RA), and CNP protein was probed using immunostaining, in tissue sections and in SMCs cultured from these vessels, respectively. RESULTS PCR for CNP produced a 334 bp product in all SMC cultures, as expressed in endothelial cells, although the band intensity was markedly less in SMCs. Myocardium from CNP-knockout mouse did not express CNP, while there was expression in wild-type mouse. CNP protein was detected by immunostaining in 100% of SMC cultures. By immunostaining of tissue sections, CNP was detected throughout the medial layer, but not adventitia, of all vessel types. CONCLUSIONS Expression of CNP at gene and protein level by human vascular SMCs suggests that CNP may have the capacity to regulate vascular tone independently of the endothelium.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Endothelial Cells/chemistry
- Humans
- Immunohistochemistry
- Mammary Arteries/chemistry
- Mammary Arteries/cytology
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Myocardium/chemistry
- Myocytes, Smooth Muscle/chemistry
- Natriuretic Peptide, C-Type/analysis
- Natriuretic Peptide, C-Type/genetics
- RNA, Messenger/analysis
- Radial Artery/chemistry
- Radial Artery/cytology
- Reverse Transcriptase Polymerase Chain Reaction
- Saphenous Vein/chemistry
- Saphenous Vein/cytology
- Tunica Media/chemistry
- Umbilical Veins/chemistry
- Umbilical Veins/cytology
Collapse
|
25
|
Takahashi S, Nakamura Y, Nishijima T, Sakurai S, Inoue H. Essential roles of angiotensin II in vascular endothelial growth factor expression in sleep apnea syndrome. Respir Med 2005; 99:1125-31. [PMID: 16085213 DOI: 10.1016/j.rmed.2005.02.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hypoxia-induced endothelial cell dysfunction has been implicated in increased cardiovascular disease associated with obstructive sleep apnea syndrome (OSAS). OSAS mediates hypertension by stimulating angiotensin II (Ang II) production. Hypoxia and Ang II are the major stimuli of vascular endothelial growth factor (VEGF), which is a potent angiogenic cytokine and also contributes to the atherogenic process itself. METHODS AND RESULTS We observed serum Ang II and VEGF levels and peripheral blood mononuclear cell (PBMC) and neutrophil VEGF expression. Compared to controls, subjects with OSAS had significantly increased levels of serum Ang II and VEGF and VEGF mRNA expression in their leukocytes. To examine whether Ang II stimulates VEGF expression in OSAS, we treated PBMCs obtained from control subjects with Ang II and with an Ang II receptor type 1 (AT(1)) blocker, olmesartan. We observed an increased expression of VEGF in the Ang II-stimulated PBMCs and decreased in VEGF mRNA and protein expression in the PBMCs treated with olmesartan. CONCLUSIONS These findings suggest that the Ang II-AT(1) receptors pathway potentially are involved in OSAS and VEGF-induced vascularity and that endothelial dysfunction might be linked to this change in Ang II activity within leukocytes of OSAS patients.
Collapse
Affiliation(s)
- Susumu Takahashi
- Third Department of Internal Medicine, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, Iwate 0208505, Japan
| | | | | | | | | |
Collapse
|
26
|
Ahluwalia A, Hobbs AJ. Endothelium-derived C-type natriuretic peptide: more than just a hyperpolarizing factor. Trends Pharmacol Sci 2005; 26:162-7. [PMID: 15749162 DOI: 10.1016/j.tips.2005.01.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The perceived importance of C-type natriuretic peptide (CNP) in the mammalian vasculature has been raised by its recent identification as an endothelium-derived hyperpolarizing factor (EDHF). This aspect of its biological activity is likely to be significant in the regulation of vascular tone, local blood flow and systemic blood pressure. However, the importance of CNP to cardiovascular homeostasis is likely to extend beyond that of a "hyperpolarizing factor" ; indeed, there is evidence that CNP has a key role in preventing smooth muscle proliferation, leukocyte recruitment and platelet reactivity. As such, endothelium-derived CNP is likely to exert a strong anti-atherogenic influence on blood vessel walls and represent a new therapeutic target in the fight against inflammatory cardiovascular disorders. Moreover, this profile of activity defines a new paradigm for the biological significance of EDHF.
Collapse
Affiliation(s)
- Amrita Ahluwalia
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London, Charterhouse Square, London EC1M 6BQ, UK.
| | | |
Collapse
|
27
|
Lavie L, Kraiczi H, Hefetz A, Ghandour H, Perelman A, Hedner J, Lavie P. Plasma vascular endothelial growth factor in sleep apnea syndrome: effects of nasal continuous positive air pressure treatment. Am J Respir Crit Care Med 2002; 165:1624-8. [PMID: 12070063 DOI: 10.1164/rccm.20110-040oc] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sleep apnea syndrome is associated with recurrent episodic hypoxia during sleep, which has been implicated in the development of cardiovascular morbidity. Hypoxia is the major stimulus of vascular endothelial growth factor (VEGF), which is a potent angiogenic cytokine. In the present article we describe the results of three experiments in which plasma concentrations of VEGF were measured in patients with sleep apnea. In Experiment 1, apnea-hypopnea index was found to be a significant independent predictor of morning VEGF concentrations in 85 male subjects investigated in the sleep laboratory, of whom 47 had an apnea-hypopnea index greater than 20. In Experiment 2, VEGF concentrations measured hourly during the sleep period were found to be significantly higher in a group of five sleep apnea patients compared with six age-similar snorers and six normal young adults (129.1 +/- 43.4 versus 74.6 +/- 11.5 and 32.5 +/- 12.8 pg/ml, respectively [p < 0.007]). In Experiment 3, VEGF concentrations were compared in patients with sleep apnea before and 1 year after nasal continuous positive airway pressure treatment. A significant decrease in VEGF concentrations was found only in patients in whom nocturnal hypoxia improved after treatment (57.1 +/- 62.5 versus 39.6 +/- 46.9 pg/ml, p < 0.01). There was no comparable improvement in patients who did not accept treatment (53.9 +/- 23.6 versus 54.0 +/- 21.5 pg/ml, ns). These results raise the possibility that VEGF may contribute to the long-term adaptation of sleep apnea syndrome to recurrent nocturnal hypoxia.
Collapse
Affiliation(s)
- Lena Lavie
- Unit of Anatomy and Cell Biology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | |
Collapse
|
28
|
Chun TH, Itoh H, Saito T, Yamahara K, Doi K, Mori Y, Ogawa Y, Yamashita J, Tanaka T, Inoue M, Masatsugu K, Sawada N, Fukunaga Y, Nakao K. Oxidative stress augments secretion of endothelium-derived relaxing peptides, C-type natriuretic peptide and adrenomedullin. J Hypertens 2000; 18:575-80. [PMID: 10826560 DOI: 10.1097/00004872-200018050-00010] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Excess oxidative stress is one of the major metabolic abnormalities on vascular walls in hypertension and atherosclerosis. In order to further elucidate the endothelial function under oxidative stress, the effect of hydrogen peroxide (H2O2) on expression of two novel endothelium-derived vasorelaxing peptides, C-type natriuretic peptide (CNP) and adrenomedullin (AM) from bovine carotid artery endothelial cells (BCAECs) was examined. METHODS BCAECs were treated with H2O2 (0.1-1.0 mmol/ l) and/or an antioxidant, N-acetylcysteine (NAC) (5-10 mmol/l), and incubated for 48 h. The concentrations of CNP and AM were measured with the specific radioimmuno assays that we originally developed. CNP and AM mRNA expressions were also examined by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Treatment of BCAECs with 0.5 and 1 mmol/l H2O2 induced 9-and 10-fold increases of CNP concentration in the media. Addition of 10 mmol/l NAC significantly suppressed the effect of H2O2 by 52%. RT-PCR analysis showed that CNP mRNA expression in BCAECs was also rapidly augmented within 1 h with H2O2 (1 mmol/l) treatment, and reached a peak at 3 h to show a 10-fold increase. AM secretion from BCAECs also increased to two-fold with exposure to 0.5 mmol/l H2O2, accompanied with the augmented level of AM mRNA. NAC 10 mmol/l completely suppressed the effect of H2O2 on AM secretion. CONCLUSIONS In this study, it has been demonstrated that H2O2 augments endothelial secretion of the two endothelium-derived relaxing peptides, CNP and AM. Our findings suggest the increased secretion of CNP and AM from endothelium under oxidative stress may function to compensate the impaired nitric oxide-dependent vasorelaxation in hypertension and atherosclerosis.
Collapse
Affiliation(s)
- T H Chun
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
In response to several vascular stresses caused by hyperglycaemia, hypertension or hyperlipidemia, endothelial cells (EC) sense these stresses as oxidative stress to secrete several autocrine/paracrine factors, including growth factors/cytokines and vasoactive peptides to regulate vascular tone and remodelling. Vascular stresses induce co-ordinate gene regulation of endothelial vasoactive substances and their related enzymes to cause vasorelaxation and vascular growth inhibition. We speculate that prolonged and excessive vascular stresses impair endothelial function, which results in the imbalance of endothelial production of vasoactive substances and leads to the formation of proliferative vascular lesions.
Collapse
Affiliation(s)
- H Itoh
- Graduate School of Medicine, Department of Medicine, Kyoto University, Japan.
| | | |
Collapse
|
30
|
Abstract
Natriuretic peptides (NP) act as ligands on the guanylyl cyclase family of receptors. The NP binding site on these receptors is extracellular and the guanylyl cyclase and protein kinase domains are intracellular. The guanylyl cyclase receptor catalyzes the synthesis of the second messenger molecule, cGMP, which activates protein kinase. This in turn is involved in the phosphorylation of various ion transport proteins. Ion transport proteins, which are modulated by NP and are thought to underlie the natriuretic and diuretic actions of NP, include: (a) calcium-activated K+ channels; (b) ATP-sensitive K+ channels; (c) inwardly-rectifying K+ channels; (d) outwardly-rectifying K+ channels; (e) L-type Ca2+ channels; (f) Cl- channels including cystic fibrosis transmembrane conductance regulator Cl- channels; (g) Na+- K+ 2Cl- co-transporter; (h) Na+- K+ ATPase; (i) Na+ channels; (j) stretch-activated channels; and (k) water channels. It appears that NP modulate the kinetics, rather than the conductance, of ion channels. Some of these channels, like the Ca2+, ATP-sensitive K+ and stretch-activated channels, are also involved in NP secretion. In addition, the structural properties of the NP, e.g., ovCNP-22 and ovCNP-39, appear to confer on them the ability to form ion channels. These CNP-formed ion channels can modify the trans-membrane signal transduction and second messenger systems underlying NP-induced pathological effects.
Collapse
Affiliation(s)
- J I Kourie
- Department of Chemistry, The Faculties, The Australian National University, Canberra City, ACT.
| | | |
Collapse
|
31
|
Acuff CG, Huang H, Steinhelper ME. Estradiol induces C-type natriuretic peptide gene expression in mouse uterus. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:H2672-7. [PMID: 9435603 DOI: 10.1152/ajpheart.1997.273.6.h2672] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous experiments have demonstrated that C-type natriuretic peptide (CNP) expression in the uterus varies during the estrous cycle with maximal expression at proestrus. The present study was designed to determine whether exogenous steroid hormones regulate uterine CNP expression in ovariectomized mice. Estradiol increased significantly (3-fold) uterine immunoreactive CNP (irCNP) rapidly and dose dependently in ovariectomized mice as measured by radioimmunoassay. Other steroids produced either no significant change (testosterone, 1 mg; 2-methoxyestradiol, 1 microgram) or weak induction (estriol, 1 microgram) from vehicle controls. Progesterone (1 mg) significantly attenuated the estrogen-stimulated irCNP response by 50% when injected 30 min before estrogen (1 microgram) in estrogen-primed ovariectomized mice. Estrogen-stimulated increases in uterine CNP transcripts detected by ribonuclease protection analyses were blocked by actinomycin D (160 micrograms) or ICI-164,384 (20 micrograms), a specific nuclear estrogen receptor antagonist. These results indicate that a nuclear estrogen receptor is required for estrogen to stimulate uterine CNP transcription and that progesterone negatively regulates estrogen-stimulated CNP expression.
Collapse
Affiliation(s)
- C G Acuff
- Department of Physiology, University of Texas Health Science Center at San Antonio 78284-7756, USA
| | | | | |
Collapse
|
32
|
Doi K, Itoh H, Ikeda T, Hosoda K, Ogawa Y, Igaki T, Yamashita J, Chun TH, Inoue M, Masatsugu K, Matsuda K, Ohmori K, Nakao K. Adenovirus-mediated gene transfer of C-type natriuretic peptide causes G1 growth inhibition of cultured vascular smooth muscle cells. Biochem Biophys Res Commun 1997; 239:889-94. [PMID: 9367865 DOI: 10.1006/bbrc.1997.7576] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have proposed the "vascular natriuretic peptide system", in which C-type natriuretic peptide (CNP), the third member of the natriuretic peptide family, can control vascular tone and growth as an endothelium-derived relaxing peptide. We aimed at overexpression of CNP gene in vascular smooth muscle cells (SMCs) by adenovirus-mediated gene transfer to examine the growth characteristics of SMCs via the augmentation of cGMP production. Rat aortic SMCs infected with Ad.CNP, a replication-deficient adenovirus driving rat CNP cDNA, produced 162 +/- 55 fmol/mL of CNP, which was 4,000 times higher than that produced by endothelial cells. cGMP production was also augmented in Ad.CNP-infected SMCs (2200 +/- 270 fmol/10(4) cells). Accordingly, significant growth inhibition was observed in SMCs infected with Ad.CNP. The flow cytometry analysis revealed that the population of the S and G2 + M phases was reduced by 60% of the control in Ad.CNP-infected SMCs. The gene expression of ANP-B receptor, which is expressed abundantly in SMCs with the synthetic phenotype, was suppressed in Ad.CNP-infected SMCs, while the gene expression of ANP-A receptor, which is expressed predominantly in SMCs with the contractile phenotype, became detectable in Ad.CNP-infected SMCs. In addition, the gene expression of smooth muscle myosin heavy chain-2 (SM-2), which is the molecular marker of highly-differentiated SMCs, was also induced in Ad.CNP-treated SMCs. These results suggest that cGMP cascade activation induces re-differentiation of SMCs. The present study demonstrated that overexpression of CNP induced growth inhibition of SMCs at the G1 phase with possible alteration of the phenotype.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Aorta, Thoracic
- Atrial Natriuretic Factor/biosynthesis
- Atrial Natriuretic Factor/genetics
- Cells, Cultured
- Cyclic GMP/metabolism
- Cyclin A/biosynthesis
- Cyclin A/genetics
- G1 Phase/genetics
- Gene Expression Regulation
- Gene Transfer Techniques
- Growth Inhibitors/genetics
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/virology
- Natriuretic Peptide, C-Type
- Protein Biosynthesis
- Proteins/genetics
- RNA, Messenger/biosynthesis
- Rats
Collapse
Affiliation(s)
- K Doi
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pedram A, Razandi M, Hu RM, Levin ER. Vasoactive peptides modulate vascular endothelial cell growth factor production and endothelial cell proliferation and invasion. J Biol Chem 1997; 272:17097-103. [PMID: 9202027 DOI: 10.1074/jbc.272.27.17097] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The proliferation of vascular endothelial cells (EC) is an important event in angiogenesis. The synthesis of the EC growth factor, vascular endothelial cell growth factor (VEGF), is stimulated by a variety of activators; but the effects of important vasoactive peptides are not well understood, and there are no known natural inhibitors of VEGF production. We found that the vasoactive peptides endothelin (ET)-1 and ET-3 stimulated the synthesis of VEGF protein 3-4-fold in cultured human vascular smooth muscle cells, comparable in magnitude to hypoxia. ET-1 and ET-3 acted through the ETA and ETB receptors, respectively, and signaling through protein kinase C was important. Atrial natriuretic peptide (ANP), C-type natriuretic peptide, and C-ANP-(4-23), a ligand for the natriuretic peptide clearance receptor, equipotently inhibited production of VEGF by as much as 88% and inhibited ET- or hypoxia-stimulated VEGF transcription. EC proliferation and invasion of matrix were stimulated by VEGF secreted into the medium by ET-incubated vascular smooth muscle cells. This was inhibited by ANP. Our results identify the natriuretic peptides as the first peptide inhibitors of VEGF synthesis and indicate a novel mechanism by which vasoactive peptides could modulate angiogenesis.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor/metabolism
- Cattle
- Cell Division
- Endothelial Growth Factors/biosynthesis
- Endothelial Growth Factors/genetics
- Endothelin-1/metabolism
- Endothelin-3/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- GTP-Binding Proteins/metabolism
- Humans
- Lymphokines/biosynthesis
- Lymphokines/genetics
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Natriuretic Peptide, C-Type
- Neovascularization, Physiologic
- Protein Biosynthesis
- Protein Sorting Signals/metabolism
- Proteins/metabolism
- RNA, Messenger/metabolism
- Receptors, Endothelin/metabolism
- Transcription, Genetic
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- A Pedram
- Department of Medicine, University of California, Irvine, California 92717, USA
| | | | | | | |
Collapse
|
34
|
Itoh H, Suga S, Ogawa Y, Komatsu Y, Tamura N, Igaki T, Yamashita J, Ikeda T, Doi K, Chun TH, Inoue M, Matsuda K, Yoshimasa T, Ueda M, Ban T, Nakao K. Significance of vascular natriuretic peptide system in vascular remodeling in humans and its application to gene therapy. Ann N Y Acad Sci 1997; 811:533-41. [PMID: 9186633 DOI: 10.1111/j.1749-6632.1997.tb52037.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- H Itoh
- Kyoto University Graduate School of Medicine, Department of Medicine and Clinical Science, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|