1
|
Malbon AJ, Czopek A, Beekman AM, Goddard ZR, Boyle A, Ivy JR, Stewart K, Denham SG, Simpson JP, Homer NZ, Walker BR, Dhaun N, Bailey MA, Morgan RA. Carbonyl reductase 1: a novel regulator of blood pressure in Down syndrome. Biosci Rep 2025; 45:157-170. [PMID: 39869501 DOI: 10.1042/bsr20241636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
Approximately one in every 800 children is born with the severe aneuploid condition of Down syndrome (DS), a trisomy of chromosome 21. Low blood pressure (hypotension) is a common condition associated with DS and can have a significant impact on exercise tolerance and quality of life. Little is known about the factors driving this hypotensive phenotype, therefore therapeutic interventions are limited. Carbonyl reductase 1 (CBR1) is an enzyme contributing to the metabolism of prostaglandins, glucocorticoids, reactive oxygen species and neurotransmitters, encoded by a gene (CBR1) positioned on chromosome 21 with the potential to affect blood pressure. Utilising telemetric blood pressure measurement of genetically modified mice, we tested the hypothesis that CBR1 influences blood pressure and that its overexpression contributes to hypotension in DS by evaluating possible contributing mechanisms in vitro. In a mouse model of DS (Ts65Dn), which exhibits hypotension, CBR1 activity was increased and pharmacological inhibition of CBR1 ed to increased blood pressure. Mice heterozygous null for Cbr1 had reduced CBR1 enzyme activity and elevated blood pressure. Further experiments indicate that the underlying mechanisms include alterations in both sympathetic tone and prostaglandin metabolism. We conclude that CBR1 activity contributes to blood pressure homeostasis and inhibition of CBR1 may present a novel therapeutic opportunity to correct symptomatic hypotension in DS.
Collapse
Affiliation(s)
- Alexandra J Malbon
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, EH25 9RG, U.K
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, EH25 9RG, U.K
| | - Alicja Czopek
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, U.K
| | - Andrew M Beekman
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, U.K
| | - Zoë R Goddard
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, U.K
| | - Aileen Boyle
- Department of Animal and Veterinary Sciences, Scotland's Rural College, Roslin Institute Building, Easter Bush Campus, EH25 9RG, U.K
| | - Jessica R Ivy
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, U.K
| | - Kevin Stewart
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, U.K
| | - Scott G Denham
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, U.K
| | - Joanna P Simpson
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, U.K
| | - Natalie Z Homer
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, U.K
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, U.K
| | - Brian R Walker
- Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, U.K
| | - Neeraj Dhaun
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, U.K
| | - Matthew A Bailey
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, U.K
| | - Ruth A Morgan
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, EH25 9RG, U.K
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, U.K
- Department of Animal and Veterinary Sciences, Scotland's Rural College, Roslin Institute Building, Easter Bush Campus, EH25 9RG, U.K
| |
Collapse
|
2
|
Geurts F, Chaker L, van der Burgh AC, Cronin‐Fenton D, Fenton RA, Hoorn EJ. Urinary Prostaglandin E2 Excretion and the Risk of Cardiovascular and Kidney Disease. J Am Heart Assoc 2024; 13:e032835. [PMID: 38362883 PMCID: PMC11010119 DOI: 10.1161/jaha.123.032835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Inhibition of prostaglandin synthesis by nonsteroidal anti-inflammatory drugs is associated with cardiovascular mortality and kidney disease. This study hypothesizes that urinary prostaglandin E2 (PGE2) and PGE2 metabolite (PGEM) excretions are markers of cardiovascular and kidney health, because they reflect both systemic and kidney-derived PGE2 production. METHODS AND RESULTS PGE2 and PGEM were measured in spot urine samples from 2291 participants (≥55 years old) of the population-based Rotterdam Study. Urinary PGE2 and PGEM excretions were analyzed using linear regression analyses to identify cross-sectional associations with cardiovascular risk factors and baseline estimated glomerular filtration rate (eGFR). Longitudinal associations with cardiovascular mortality and kidney outcomes (eGFR <60 or <45 mL/min per 1.73 m2 and the composite outcome 40% eGFR loss or kidney failure) were assessed with Cox regression. Urinary PGE2 and PGEM excretions were higher with increasing age, lower eGFR, smoking, diabetes, and albuminuria. A 2-fold higher urinary PGE2 and PGEM excretion was associated with a higher risk of cardiovascular mortality (28 825 patient-years; 160 events; PGE2 hazard ratio [HR], 1.27, [95% CI, 1.06-1.54]; PGEM HR, 1.36 [95% CI, 1.10-1.67]). Higher PGE2 excretions were also associated with a higher risk of incident eGFR <60 mL/min per 1.73 m2 (31 530 person-years; 691 events; HR, 1.13 [95% CI, 1.02-1.25]) with similar HRs for the other kidney outcomes. CONCLUSIONS Urinary PGE2 and PGEM excretions are novel markers for the presence and progression of cardiovascular and kidney disease. Future studies should address whether these associations are causal and can be targeted to improve cardiovascular and kidney outcomes.
Collapse
Affiliation(s)
- Frank Geurts
- Department of Internal Medicine, Erasmus Medical CenterUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Epidemiology, Erasmus Medical CenterUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Layal Chaker
- Department of Internal Medicine, Erasmus Medical CenterUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Epidemiology, Erasmus Medical CenterUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Anna C. van der Burgh
- Department of Epidemiology, Erasmus Medical CenterUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Deirdre Cronin‐Fenton
- Department of Clinical Epidemiology, Department of Clinical MedicineAarhus University Hospital and Aarhus UniversityAarhusDenmark
| | | | - Ewout J. Hoorn
- Department of Internal Medicine, Erasmus Medical CenterUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
3
|
Silva de França F, Tambourgi DV. Hyaluronan breakdown by snake venom hyaluronidases: From toxins delivery to immunopathology. Front Immunol 2023; 14:1125899. [PMID: 37006255 PMCID: PMC10064005 DOI: 10.3389/fimmu.2023.1125899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
Snake venom enzymes have a broad range of molecular targets in plasma, tissues, and cells, among which hyaluronan (HA) is outstanding. HA is encountered in the extracellular matrix of diverse tissues and in the bloodstream, and its different chemical configurations dictate the diverse morphophysiological processes in which it participates. Hyaluronidases are highlighted among the enzymes involved in HA metabolism. This enzyme has been detected along the phylogenetic tree, suggesting that hyaluronidases exert multiple biological effects on different organisms. Hyaluronidases have been described in tissues, blood and snake venoms. Snake venom hyaluronidases (SVHYA) contribute to tissue destruction in envenomations and are called spreading factors since their action potentiates venom toxin delivery. Interestingly, SVHYA are clustered in Enzyme Class 3.2.1.35 together with mammalian hyaluronidases (HYAL). Both HYAL and SVHYA of Class 3.2.1.35 act upon HA, generating low molecular weight HA fragments (LMW-HA). LMW-HA generated by HYAL becomes a damage-associated molecular pattern that is recognized by Toll-like receptors 2 and 4, triggering cell signaling cascades culminating in innate and adaptive immune responses that are characterized by lipid mediator generation, interleukin production, chemokine upregulation, dendritic cell activation and T cell proliferation. In this review, aspects of the structures and functions of HA and hyaluronidases in both snake venoms and mammals are presented, and their activities are compared. In addition, the potential immunopathological consequences of HA degradation products generated after snakebite envenoming and their use as adjuvant to enhance venom toxin immunogenicity for antivenom production as well as envenomation prognostic biomarker are also discussed.
Collapse
|
4
|
Benson LN, Guo Y, Deck K, Mora C, Liu Y, Mu S. The link between immunity and hypertension in the kidney and heart. Front Cardiovasc Med 2023; 10:1129384. [PMID: 36970367 PMCID: PMC10034415 DOI: 10.3389/fcvm.2023.1129384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Hypertension is the primary cause of cardiovascular disease, which is a leading killer worldwide. Despite the prevalence of this non-communicable disease, still between 90% and 95% of cases are of unknown or multivariate cause ("essential hypertension"). Current therapeutic options focus primarily on lowering blood pressure through decreasing peripheral resistance or reducing fluid volume, but fewer than half of hypertensive patients can reach blood pressure control. Hence, identifying unknown mechanisms causing essential hypertension and designing new treatment accordingly are critically needed for improving public health. In recent years, the immune system has been increasingly implicated in contributing to a plethora of cardiovascular diseases. Many studies have demonstrated the critical role of the immune system in the pathogenesis of hypertension, particularly through pro-inflammatory mechanisms within the kidney and heart, which, eventually, drive a myriad of renal and cardiovascular diseases. However, the precise mechanisms and potential therapeutic targets remain largely unknown. Therefore, identifying which immune players are contributing to local inflammation and characterizing pro-inflammatory molecules and mechanisms involved will provide promising new therapeutic targets that could lower blood pressure and prevent progression from hypertension into renal or cardiac dysfunction.
Collapse
Affiliation(s)
- Lance N. Benson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| | | | | | | | | | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, United States
| |
Collapse
|
5
|
Kotlyarov S, Kotlyarova A. Clinical significance of polyunsaturated fatty acids in the prevention of cardiovascular diseases. Front Nutr 2022; 9:998291. [PMID: 36276836 PMCID: PMC9582942 DOI: 10.3389/fnut.2022.998291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are one of the most important problems of modern medicine. They are associated with a large number of health care visits, hospitalizations and mortality. Prevention of atherosclerosis is one of the most effective strategies and should start as early as possible. Correction of lipid metabolism disorders is associated with definite clinical successes, both in primary prevention and in the prevention of complications of many cardiovascular diseases. A growing body of evidence suggests a multifaceted role for polyunsaturated fatty acids. They demonstrate a variety of functions in inflammation, both participating directly in a number of cellular processes and acting as a precursor for subsequent biosynthesis of lipid mediators. Extensive clinical data also support the importance of polyunsaturated fatty acids, but all questions have not been answered to date, indicating the need for further research.
Collapse
Affiliation(s)
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, Ryazan, Russia
| |
Collapse
|
6
|
Wang L, Wu Y, Jia Z, Yu J, Huang S. Roles of EP Receptors in the Regulation of Fluid Balance and Blood Pressure. Front Endocrinol (Lausanne) 2022; 13:875425. [PMID: 35813612 PMCID: PMC9262144 DOI: 10.3389/fendo.2022.875425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important prostanoid expressing throughout the kidney and cardiovascular system. Despite the diverse effects on fluid metabolism and blood pressure, PGE2 is implicated in sustaining volume and hemodynamics homeostasis. PGE2 works through four distinct E-prostanoid (EP) receptors which are G protein-coupled receptors. To date, pharmacological specific antagonists and agonists of all four subtypes of EP receptors and genetic targeting knockout mice for each subtype have helped in uncoupling the diverse functions of PGE2 and discriminating the respective characteristics of each receptor. In this review, we summarized the functions of individual EP receptor subtypes in the renal and blood vessels and the molecular mechanism of PGE2-induced fluid metabolism and blood pressure homeostasis.
Collapse
Affiliation(s)
- Lu Wang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqian Wu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| | - Songming Huang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| |
Collapse
|
7
|
Bryson TD, Harding P. Prostaglandin E2 EP receptors in cardiovascular disease: An update. Biochem Pharmacol 2021; 195:114858. [PMID: 34822808 DOI: 10.1016/j.bcp.2021.114858] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
This review article provides an update for the role of prostaglandin E2 receptors (EP1, EP2, EP3 and EP4) in cardiovascular disease. Where possible we have reported citations from the last decade although this was not possible for all of the topics covered due to the paucity of publications. The authors have attempted to cover the subjects of ischemia-reperfusion injury, arrhythmias, hypertension, novel protein binding partners of the EP receptors and their pathophysiological significance, and cardiac regeneration. These latter two topics bring studies of the EP receptors into new and exciting areas of research that are just beginning to be explored. Where there is peer-reviewed literature, the authors have placed particular emphasis on clinical studies although these are limited in number.
Collapse
Affiliation(s)
- Timothy D Bryson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, United States; Frankel Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pamela Harding
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
8
|
Singh P, Song CY, Dutta SR, Pingili A, Shin JS, Gonzalez FJ, Bonventre JV, Malik KU. 6β-Hydroxytestosterone Promotes Angiotensin II-Induced Hypertension via Enhanced Cytosolic Phospholipase A 2α Activity. Hypertension 2021; 78:1053-1066. [PMID: 34420370 PMCID: PMC8415516 DOI: 10.1161/hypertensionaha.121.17927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Supplemental Digital Content is available in the text. This study was conducted to test the hypothesis that the CYP1B1 (cytochrome P450 1B1)-testosterone metabolite 6β-hydroxytestosterone contributes to angiotensin II-induced hypertension by promoting activation of group IV cPLA2α (cytosolic phospholipase A2α) and generation of prohypertensive eicosanoids in male mice. Eight-week-old male intact or orchidectomized cPLA2α+/+/Cyp1b1+/+ and cPLA2α–/–/Cyp1b1+/+ and intact cPLA2α+/+/Cyp1b1–/– mice were infused with angiotensin II (700 ng/kg/min, subcutaneous) for 2 weeks and injected with 6β-hydroxytestosterone (15 μg/g/every third day, intraperitoneal). Systolic blood pressure was measured by tail-cuff and confirmed by radiotelemetry. Angiotensin II-induced increase in systolic blood pressure, cardiac and renal collagen deposition, and reactive oxygen species production were reduced by disruption of the cPLA2α or Cyp1b1 genes or by administration of the arachidonic acid metabolism inhibitor 5,8,11,14-eicosatetraynoic acid to cPLA2α+/+/Cyp1b1+/+ mice. 6β-hydroxytestosterone treatment restored these effects of angiotensin II in cPLA2α+/+/Cyp1b1–/– mice but not in orchidectomized cPLA2α–/–/Cyp1b1+/+ mice, which were lowered by 5,8,11,14-eicosatetraynoic acid in cPLA2α+/+/Cyp1b1–/– mice. Antagonists of prostaglandin E2-EP1/EP3 receptors and thromboxane A2-TP receptors decreased the effect of 6β-hydroxytestosterone in restoring the angiotensin II-induced increase in systolic blood pressure, cardiac and renal collagen deposition, and reactive oxygen species production in cPLA2α+/+/Cyp1b1–/– mice. These data suggest that 6β-hydroxytestosterone promotes angiotensin II-induced increase in systolic blood pressure and associated pathogenesis via cPLA2α activation and generation of eicosanoids, most likely prostaglandin E2 and thromboxane A2 that exerts prohypertensive effects by stimulating EP1/EP3 and TP receptors, respectively. Therefore, agents that selectively block these receptors could be useful in treating testosterone exacerbated angiotensin II-induced hypertension and its pathogenesis.
Collapse
Affiliation(s)
- Purnima Singh
- Department of Pharmacology, Addiction Research, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., A.P., J.S.S., K.U.M.)
| | - Chi Young Song
- Department of Pharmacology, Addiction Research, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., A.P., J.S.S., K.U.M.)
| | - Shubha R Dutta
- Department of Pharmacology, Addiction Research, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., A.P., J.S.S., K.U.M.)
| | - Ajeeth Pingili
- Department of Pharmacology, Addiction Research, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., A.P., J.S.S., K.U.M.)
| | - Ji Soo Shin
- Department of Pharmacology, Addiction Research, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., A.P., J.S.S., K.U.M.)
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Kafait U Malik
- Department of Pharmacology, Addiction Research, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., A.P., J.S.S., K.U.M.)
| |
Collapse
|
9
|
González LM, Robles NR, Mota-Zamorano S, Valdivielso JM, López-Gómez J, Gervasini G. Genetic Variants in PGE2 Receptors Modulate the Risk of Nephrosclerosis and Clinical Outcomes in These Patients. J Pers Med 2021; 11:772. [PMID: 34442416 PMCID: PMC8400263 DOI: 10.3390/jpm11080772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a major actor mediating renal injury. We aimed to determine genetic variability in the genes coding for its receptors (PTGER1-4) and study associations with nephrosclerosis risk and clinical outcomes. We identified 96 tag-SNPs capturing global variability in PTGER1-4 and screened 1209 nephrosclerosis patients and controls. The effect of these variants was evaluated by multivariate regression analyses. Two PTGER3 SNPs, rs11209730 and rs10399704, remained significant in a backward elimination regression model with other non-genetic variables (OR = 1.45 (1.07-1.95), p = 0.016 and OR = 0.71 (0.51-0.99), p = 0.041, respectively). In the nephrosclerosis patients, a proximal region of PTGER3 was tagged as relevant for eGFR (p values for identified SNPs ranged from 0.0003 to 0.038). Two consecutive PTGER3 SNPs, rs2284362 and rs2284363, significantly decreased systolic (p = 0.005 and p = 0.0005), diastolic (p = 0.039 and p = 0.005), and pulse pressure values (p = 0.038 and 0.014). Patients were followed for a median of 47 months (7-54) to evaluate cardiovascular (CV) risk. Cox regression analysis showed that carriers of the PTGER1rs2241360 T variant had better CV event-free survival than wild-type individuals (p = 0.029). In addition, PTGER3rs7533733 GG carriers had lower event-free survival than AA/AG patients (p = 0.011). Our results indicate that genetic variability in PGE2 receptors, particularly EP3, may be clinically relevant for nephrosclerosis and its associated CV risk.
Collapse
Affiliation(s)
- Luz María González
- Department of Medical and Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, 06006 Badajoz, Spain; (L.M.G.); (S.M.-Z.)
| | | | - Sonia Mota-Zamorano
- Department of Medical and Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, 06006 Badajoz, Spain; (L.M.G.); (S.M.-Z.)
| | - José Manuel Valdivielso
- Vascular and Renal Translational Research Group, UDETMA, ISCIII REDinREN, IRBLleida, 25198 Lleida, Spain;
| | - Juan López-Gómez
- Service of Clinical Analyses, Badajoz University Hospital, 06080 Badajoz, Spain;
| | - Guillermo Gervasini
- Department of Medical and Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura, 06006 Badajoz, Spain; (L.M.G.); (S.M.-Z.)
| |
Collapse
|
10
|
Wu J, Fang S, Lu KT, Wackman K, Schwartzman ML, Dikalov SI, Grobe JL, Sigmund CD. EP3 (E-Prostanoid 3) Receptor Mediates Impaired Vasodilation in a Mouse Model of Salt-Sensitive Hypertension. Hypertension 2021; 77:1399-1411. [PMID: 33641369 DOI: 10.1161/hypertensionaha.120.16518] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jing Wu
- From the Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (J.W., S.F., K.-T.L., K.W., J.L.G., C.D.S.)
| | - Shi Fang
- From the Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (J.W., S.F., K.-T.L., K.W., J.L.G., C.D.S.).,Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa (S.F.)
| | - Ko-Ting Lu
- From the Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (J.W., S.F., K.-T.L., K.W., J.L.G., C.D.S.)
| | - Kelsey Wackman
- From the Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (J.W., S.F., K.-T.L., K.W., J.L.G., C.D.S.)
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla (M.L.S.)
| | - Sergey I Dikalov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (S.D.)
| | - Justin L Grobe
- From the Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (J.W., S.F., K.-T.L., K.W., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee (J.W., S.F., K.-T.L., K.W., J.L.G., C.D.S.)
| |
Collapse
|
11
|
Bothrops lanceolatus snake (Fer-de-lance) venom triggers inflammatory mediators' storm in human blood. Arch Toxicol 2021; 95:1129-1138. [PMID: 33398417 DOI: 10.1007/s00204-020-02959-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022]
Abstract
Systemic increased inflammatory mediators' levels are a hallmark in a plethora of pathological conditions, including thrombotic diseases as the envenomation by Bothrops lanceolatus snake. Multiple organ infarctions, which are not prevented by anticoagulant therapy, are the main cause of death on this envenomation. However, the potential mechanisms involved in these systemic reactions are underexplored. This study aimed to explore the potential systemic events which could contribute to thrombotic reactions on the envenomation by B. lanceolatus in an ex vivo human whole-blood model. B. lanceolatus venom elicited an inflammatory reaction, which was characterized by a strong complement activation, since we detected high C3a, C4a and C5a anaphylatoxins levels. Besides, the venom promoted soluble Terminal Complement Complex (sTCC) assembly. Complement activation was accompanied by intense lipid mediators' release, which included LTB4, PGE2 and TXB2. In addition, in the blood exposed to B. lanceolatus venom, we detected IL-1β, IL-6 and TNF-α interleukins production. Chemokines, including CCL2, CCL5 and CXCL8 were upregulated in the venom presence. These outcomes show that B. lanceolatus venom causes a strong inflammatory reaction in the blood favoring a potential setting to thrombi formation. Thus, inhibiting inflammatory mediators or their receptors may help in the envenomed patients' management.
Collapse
|
12
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
13
|
Yun WJ, Zhang XY, Liu TT, Liang JH, Sun CP, Yan JK, Huo XK, Tian XG, Zhang BJ, Huang HL, Ma XC. The inhibition effect of uncarialin A on voltage-dependent L-type calcium channel subunit alpha-1C: Inhibition potential and molecular stimulation. Int J Biol Macromol 2020; 159:1022-1030. [DOI: 10.1016/j.ijbiomac.2020.05.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/09/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
|
14
|
Yun W, Qian L, Cheng Y, Tao W, Yuan R, Xu H. Periplocymarin Plays an Efficacious Cardiotonic Role via Promoting Calcium Influx. Front Pharmacol 2020; 11:1292. [PMID: 32973521 PMCID: PMC7466735 DOI: 10.3389/fphar.2020.01292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
Periplocymarin, which belongs to cardiac glycosides, is an effective component extracted from Periplocae Cortex. However, its cardiovascular effects remain unidentified. In the present study, injection of periplocymarin (5 mg/kg) through external jugular vein immediately increased the mean arterial pressure (MAP) in anesthetized C57BL/6 mice. Ex vivo experiments using mouse mesenteric artery rings were conducted to validate the role of periplocymarin on blood vessels. However, periplocymarin failed to induce vasoconstriction directly, and had no effects on vasoconstriction induced by phenylephrine (Phe) and angiotensin II (Ang II). In addition, vasodilatation induced by acetylcholine (Ach) was insusceptible to periplocymarin. Echocardiography was used to evaluate the effects of periplocymarin on cardiac function. The results showed that the injection of periplocymarin significantly increase the ejection fraction (EF) in mice without changing the heart rate. In vitro studies using isolated neonatal rat ventricular myocytes (NRVMs) revealed that periplocymarin transiently increased the intracellular Ca2+ concentration observed by confocal microscope. But in Ca2+-free buffer, this phenomenon vanished. Besides, inhibition of sodium potassium-activated adenosine triphosphatase (Na+-K+-ATPase) by digoxin significantly suppressed the increase of MAP and EF in mice, and the influx of Ca2+ in cardiomyocytes, mediated by periplocymarin. Collectively, these findings demonstrated that periplocymarin increased the contractility of myocardium by promoting the Ca2+ influx of cardiomyocytes via targeting on Na+-K+-ATPase, which indirectly led to the instantaneous rise of blood pressure.
Collapse
Affiliation(s)
- Weijing Yun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Lei Qian
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yanyan Cheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Weiwei Tao
- College of Nursing, Dalian Medical University, Dalian, China
| | - Ruqiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Xu H, Fang B, Du S, Wang S, Li Q, Jia X, Bao C, Ye L, Sui X, Qian L, Luan Z, Yang G, Zheng F, Wang N, Chen L, Zhang X, Guan Y. Endothelial cell prostaglandin E2 receptor EP4 is essential for blood pressure homeostasis. JCI Insight 2020; 5:138505. [PMID: 32641583 DOI: 10.1172/jci.insight.138505] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/03/2020] [Indexed: 01/07/2023] Open
Abstract
Prostaglandin E2 and its cognate EP1-4 receptors play important roles in blood pressure (BP) regulation. Herein, we show that endothelial cell-specific (EC-specific) EP4 gene-knockout mice (EC-EP4-/-) exhibited elevated, while EC-specific EP4-overexpression mice (EC-hEP4OE) displayed reduced, BP levels compared with the control mice under both basal and high-salt diet-fed conditions. The altered BP was completely abolished by treatment with l-NG-nitro-l-arginine methyl ester (l-NAME), a competitive inhibitor of endothelial nitric oxide synthase (eNOS). The mesenteric arteries of the EC-EP4-/- mice showed increased vasoconstrictive response to angiotensin II and reduced vasorelaxant response to acetylcholine, both of which were eliminated by l-NAME. Furthermore, EP4 activation significantly reduced BP levels in hypertensive rats. Mechanistically, EP4 deletion markedly decreased NO contents in blood vessels via reducing eNOS phosphorylation at Ser1177. EP4 enhanced NO production mainly through the AMPK pathway in cultured ECs. Collectively, our findings demonstrate that endothelial EP4 is essential for BP homeostasis.
Collapse
Affiliation(s)
- Hu Xu
- Advanced Institute for Medical Sciences and.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| | | | - Shengnan Du
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | | | - Qingwei Li
- Advanced Institute for Medical Sciences and
| | - Xiao Jia
- Advanced Institute for Medical Sciences and
| | | | - Lan Ye
- Advanced Institute for Medical Sciences and
| | - Xue Sui
- Advanced Institute for Medical Sciences and
| | - Lei Qian
- Advanced Institute for Medical Sciences and
| | | | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences and.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| | - Nanping Wang
- Advanced Institute for Medical Sciences and.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| | - Lihong Chen
- Advanced Institute for Medical Sciences and.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| | - Xiaoyan Zhang
- Advanced Institute for Medical Sciences and.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences and.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Liaoning Engineering and Technology Research Center of Nuclear Receptors and Major Metabolic Diseases, Dalian, China
| |
Collapse
|
16
|
El-Ouady F, Eddouks M. Ruta Montana Evokes Antihypertensive Activity Through an Increase of Prostaglandins Release in L-NAME-Induced Hypertensive Rats. Endocr Metab Immune Disord Drug Targets 2020; 21:305-314. [PMID: 32600240 DOI: 10.2174/1871530320666200628025430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/08/2020] [Accepted: 05/08/2020] [Indexed: 11/22/2022]
Abstract
AIMS The aim of the study was to experimentally investigate the antihypertensive effect of Ruta Montana. BACKGROUND Ruta montana L. is traditionally used in Moroccan herbal medicine to treat hypertension. This study aimed to experimentally evaluate the hypotensive and vasoactive properties of this plant. OBJECTIVE The objective of the study was to evaluate the effect of the aqueous extract of Ruta Montana on blood pressure parameters in LNAME-induced hypertensive rats and to determine the vasorelaxant activity of this aqueous extract. METHODS The antihypertensive effect of the aqueous extract obtained from Ruta montana aerial parts (RMAPAE) (200 mg/kg) was evaluated in normal and anesthetized hypertensive rats. Blood pressure parameters (systolic blood pressure (SBP), mean blood pressure (MBP) and diastolic blood pressure (DBP)) and heart rate were measured using a tail-cuff and a computer-assisted monitoring device. The acute and chronic effect of RMAPAE was recorded for 6 hours for the acute experiment and for 7 days for the sub-chronic test. In the other set, the vasorelaxant effect of RMAPAE on the contractile response was observed in the isolated thoracic aorta. RESULTS The results indicated that the RMAPAE extract significantly decreased SBP, MBP, DBP and heart rate in L-NAME-induced hypertensive rats. Furthermore, RMAPAE was demonstrated to induce a dose-dependent relaxation in the aorta precontracted with Epinephrine or KCl. More interestingly, this vasorelaxant activity of RMAPAE seems to be probably mediated through the prostaglandins pathway. CONCLUSION The present study illustrates the beneficial action of Ruta montana on hypertension and supports its use as an antihypertensive agent.
Collapse
Affiliation(s)
- Fadwa El-Ouady
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000, Errachidia, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000, Errachidia, Morocco
| |
Collapse
|
17
|
Ceddia RP, Downey JD, Morrison RD, Kraemer MP, Davis SE, Wu J, Lindsley CW, Yin H, Daniels JS, Breyer RM. The effect of the EP3 antagonist DG-041 on male mice with diet-induced obesity. Prostaglandins Other Lipid Mediat 2019; 144:106353. [PMID: 31276827 DOI: 10.1016/j.prostaglandins.2019.106353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS The prostaglandin E2 (PGE2) EP3 receptor has a multifaceted role in metabolism. Drugs targeting EP3 have been proposed as therapeutics for diabetes; however, studies utilizing global EP3 knockout mice suggest that EP3 blockade increases obesity and insulin resistance. The present studies attempt to determine the effect of acute EP3 antagonist treatment on the diabetic phenotype. METHODS DG-041 was confirmed to be a high affinity antagonist at the mouse EP3 receptor by competition radioligand binding and by blockade of EP3-mediated responses. DG-041 pharmacokinetic studies were performed to determine the most efficacious route of administration. Male C57BL/6 × BALB/c (CB6F1) mice were fed diets containing 10%, 45%, or 60% calories from fat to induce obesity. Changes to the metabolic phenotype in these mice were evaluated after one week treatment with DG-041. RESULTS Subcutaneous injections of DG-041 at 20 mg/kg blocked the sulprostone-evoked rise in mean arterial pressure confirming the efficacy of this administration regime. Seven day treatment with DG-041 had minimal effect on body composition or glycemic control. DG-041 administration caused a reduction in skeletal muscle triglyceride content while showing a trend toward increased hepatic triglycerides. CONCLUSION Short term EP3 administration of DG-041 produced effective blockade of the EP3 receptor and decreased skeletal muscle triglyceride content but had no significant effects on the diabetic phenotype.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jason D Downey
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan D Morrison
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Maria P Kraemer
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah E Davis
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jing Wu
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Huiyong Yin
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J Scott Daniels
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
PGE 2 signaling via the neuronal EP2 receptor increases injury in a model of cerebral ischemia. Proc Natl Acad Sci U S A 2019; 116:10019-10024. [PMID: 31036664 DOI: 10.1073/pnas.1818544116] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inflammatory prostaglandin E2 (PGE2) EP2 receptor is a master suppressor of beneficial microglial function, and myeloid EP2 signaling ablation reduces pathology in models of inflammatory neurodegeneration. Here, we investigated the role of PGE2 EP2 signaling in a model of stroke in which the initial cerebral ischemic event is followed by an extended poststroke inflammatory response. Myeloid lineage cell-specific EP2 knockdown in Cd11bCre;EP2lox/lox mice attenuated brain infiltration of Cd11b+CD45hi macrophages and CD45+Ly6Ghi neutrophils, indicating that inflammatory EP2 signaling participates in the poststroke immune response. Inducible global deletion of the EP2 receptor in adult ROSA26-CreERT2 (ROSACreER);EP2lox/lox mice also reduced brain myeloid cell trafficking but additionally reduced stroke severity, suggesting that nonimmune EP2 receptor-expressing cell types contribute to cerebral injury. EP2 receptor expression was highly induced in neurons in the ischemic hemisphere, and postnatal deletion of the neuronal EP2 receptor in Thy1Cre;EP2lox/lox mice reduced cerebral ischemic injury. These findings diverge from previous studies of congenitally null EP2 receptor mice where a global deletion increases cerebral ischemic injury. Moreover, ROSACreER;EP2lox/lox mice, unlike EP2-/- mice, exhibited normal learning and memory, suggesting a confounding effect from congenital EP2 receptor deletion. Taken together with a precedent that inhibition of EP2 signaling is protective in inflammatory neurodegeneration, these data lend support to translational approaches targeting the EP2 receptor to reduce inflammation and neuronal injury that occur after stroke.
Collapse
|
19
|
VSMC-specific EP4 deletion exacerbates angiotensin II-induced aortic dissection by increasing vascular inflammation and blood pressure. Proc Natl Acad Sci U S A 2019; 116:8457-8462. [PMID: 30948641 DOI: 10.1073/pnas.1902119116] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prostaglandin E2 (PGE2) plays an important role in vascular homeostasis. Its receptor, E-prostanoid receptor 4 (EP4) is essential for physiological remodeling of the ductus arteriosus (DA). However, the role of EP4 in pathological vascular remodeling remains largely unknown. We found that chronic angiotensin II (AngII) infusion of mice with vascular smooth muscle cell (VSMC)-specific EP4 gene knockout (VSMC-EP4-/-) frequently developed aortic dissection (AD) with severe elastic fiber degradation and VSMC dedifferentiation. AngII-infused VSMC-EP4-/- mice also displayed more profound vascular inflammation with increased monocyte chemoattractant protein-1 (MCP-1) expression, macrophage infiltration, matrix metalloproteinase-2 and -9 (MMP2/9) levels, NADPH oxidase 1 (NOX1) activity, and reactive oxygen species production. In addition, VSMC-EP4-/- mice exhibited higher blood pressure under basal and AngII-infused conditions. Ex vivo and in vitro studies further revealed that VSMC-specific EP4 gene deficiency significantly increased AngII-elicited vasoconstriction of the mesenteric artery, likely by stimulating intracellular calcium release in VSMCs. Furthermore, EP4 gene ablation and EP4 blockade in cultured VSMCs were associated with a significant increase in MCP-1 and NOX1 expression and a marked reduction in α-SM actin (α-SMA), SM22α, and SM differentiation marker genes myosin heavy chain (SMMHC) levels and serum response factor (SRF) transcriptional activity. To summarize, the present study demonstrates that VSMC EP4 is critical for vascular homeostasis, and its dysfunction exacerbates AngII-induced pathological vascular remodeling. EP4 may therefore represent a potential therapeutic target for the treatment of AD.
Collapse
|
20
|
Herrera M, Yang T, Sparks MA, Manning MW, Koller BH, Coffman TM. Complex Role for E-Prostanoid 4 Receptors in Hypertension. J Am Heart Assoc 2019; 8:e010745. [PMID: 30764697 PMCID: PMC6405651 DOI: 10.1161/jaha.118.010745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/22/2019] [Indexed: 12/24/2022]
Abstract
Background Prostaglandin E2 ( PGE 2) is a major prostanoid with multiple actions that potentially affect blood pressure ( BP ). PGE 2 acts through 4 distinct E-prostanoid ( EP ) receptor isoforms: EP 1 to EP 4. The EP 4 receptor ( EP 4R) promotes PGE 2-dependent vasodilation, but its role in the pathogenesis of hypertension is not clear. Methods and Results To address this issue, we studied mice after temporal- and cell-specific deletion of EP 4R. First, using a mouse line with loss of EP 4 expression induced universally after birth, we confirm that EP 4R mediates a major portion of the acute vasodilatory effects of infused PGE 2. In addition, EP 4 contributes to control of resting BP , which was increased by 5±1 mm Hg in animals with generalized deficiency of this receptor. We also show that EP 4 is critical for limiting elevations in BP caused by high salt feeding and long-term infusion of angiotensin II . To more precisely identify the mechanism for these actions, we generated mice in which EP 4R loss is induced after birth and is limited to smooth muscle. In these mice, acute PGE 2-dependent vasodilation was attenuated, indicating that this response is mediated by EP 4R in vascular smooth muscle cells. However, absence of EP 4R only in this vascular compartment had a paradoxical effect of lowering resting BP , whereas the protective effect of EP 4R on limiting angiotensin II-dependent hypertension was unaffected. Conclusions Taken together, our findings support a complex role for EP 4R in regulation of BP and in hypertension, which appears to involve actions of the EP 4R in tissues beyond vascular smooth muscle cells.
Collapse
Affiliation(s)
- Marcela Herrera
- Division of NephrologyDepartment of MedicineDuke UniversityDurhamNC
| | - Ting Yang
- Division of NephrologyDepartment of MedicineDuke UniversityDurhamNC
| | - Matthew A. Sparks
- Division of NephrologyDepartment of MedicineDuke UniversityDurhamNC
- Renal SectionDurham VA Medical CenterDurhamNC
| | | | | | - Thomas M. Coffman
- Division of NephrologyDepartment of MedicineDuke UniversityDurhamNC
- Renal SectionDurham VA Medical CenterDurhamNC
- Cardiovascular and Metabolic Disorders Research ProgramDuke–National University of Singapore Graduate Medical SchoolSingapore
| |
Collapse
|
21
|
Song CY, Khan NS, Liao FF, Wang B, Shin JS, Bonventre JV, Malik KU. Brain Cytosolic Phospholipase A2α Mediates Angiotensin II-Induced Hypertension and Reactive Oxygen Species Production in Male Mice. Am J Hypertens 2018; 31:622-629. [PMID: 29342227 PMCID: PMC5905655 DOI: 10.1093/ajh/hpy009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recently, we reported that angiotensin II (Ang II)-induced hypertension is mediated by group IV cytosolic phospholipase A2α (cPLA2α) via production of prohypertensive eicosanoids. Since Ang II increases blood pressure (BP) via its action in the subfornical organ (SFO), it led us to investigate the expression and possible contribution of cPLA2α to oxidative stress and development of hypertension in this brain area. METHODS Adenovirus (Ad)-green fluorescence protein (GFP) cPLA2α short hairpin (sh) RNA (Ad-cPLA2α shRNA) and its control Ad-scrambled shRNA (Ad-Scr shRNA) or Ad-enhanced cyan fluorescence protein cPLA2α DNA (Ad-cPLA2α DNA) and its control Ad-GFP DNA were transduced into SFO of cPLA2α+/+ and cPLA2α−/− male mice, respectively. Ang II (700 ng/kg/min) was infused for 14 days in these mice, and BP was measured by tail-cuff and radio telemetry. cPLA2 activity, reactive oxygen species production, and endoplasmic reticulum stress were measured in the SFO. RESULTS Transduction of SFO with Ad-cPLA2α shRNA, but not Ad-Scr shRNA in cPLA2α+/+ mice, minimized expression of cPLA2α, Ang II-induced cPLA2α activity and oxidative stress in the SFO, BP, and cardiac and renal fibrosis. In contrast, Ad-cPLA2α DNA, but not its control Ad-GFP DNA in cPLA2α−/− mice, restored the expression of cPLA2α, and Ang II-induced increase in cPLA2 activity and oxidative stress in the SFO, BP, cardiac, and renal fibrosis. CONCLUSIONS These data suggest that cPLA2α in the SFO is crucial in mediating Ang II-induced hypertension and associated pathogenesis. Therefore, development of selective cPLA2α inhibitors could be useful in treating hypertension and its pathogenesis.
Collapse
Affiliation(s)
- Chi Young Song
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| | - Nayaab S Khan
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| | - Bin Wang
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| | - Ji Soo Shin
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee HSC, Memphis, Tennessee, USA
| |
Collapse
|
22
|
An Update of Microsomal Prostaglandin E Synthase-1 and PGE2 Receptors in Cardiovascular Health and Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5249086. [PMID: 27594972 PMCID: PMC4993943 DOI: 10.1155/2016/5249086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/19/2016] [Accepted: 06/26/2016] [Indexed: 12/16/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), especially cyclooxygenase-2 (COX-2) selective inhibitors, are among the most widely used drugs to treat pain and inflammation. However, clinical trials have revealed that these inhibitors predisposed patients to a significantly increased cardiovascular risk, consisting of thrombosis, hypertension, myocardial infarction, heart failure, and sudden cardiac death. Thus, microsomal prostaglandin E (PGE) synthase-1 (mPGES-1), the key terminal enzyme involved in the synthesis of inflammatory prostaglandin E2 (PGE2), and the four PGE2 receptors (EP1-4) have gained much attention as alternative targets for the development of novel analgesics. The cardiovascular consequences of targeting mPGES-1 and the PGE2 receptors are substantially studied. Inhibition of mPGES-1 has displayed a relatively innocuous or preferable cardiovascular profile. The modulation of the four EP receptors in cardiovascular system is diversely reported as well. In this review, we highlight the most recent advances from our and other studies on the regulation of PGE2, particularly mPGES-1 and the four PGE2 receptors, in cardiovascular function, with a particular emphasis on blood pressure regulation, atherosclerosis, thrombosis, and myocardial infarction. This might lead to new avenues to improve cardiovascular disease management strategies and to seek optimized anti-inflammatory therapeutic options.
Collapse
|
23
|
Kraemer MP, Choi H, Reese J, Lamb FS, Breyer RM. Regulation of arterial reactivity by concurrent signaling through the E-prostanoid receptor 3 and angiotensin receptor 1. Vascul Pharmacol 2016; 84:47-54. [PMID: 27260940 DOI: 10.1016/j.vph.2016.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/20/2016] [Accepted: 05/30/2016] [Indexed: 12/28/2022]
Abstract
Prostaglandin E2 (PGE2), a cyclooxygenase metabolite that generally acts as a systemic vasodepressor, has been shown to have vasopressor effects under certain physiologic conditions. Previous studies have demonstrated that PGE2 receptor signaling modulates angiotensin II (Ang II)-induced hypertension, but the interaction of these two systems in the regulation of vascular reactivity is incompletely characterized. We hypothesized that Ang II, a principal effector of the renin-angiotensin-aldosterone system, potentiates PGE2-mediated vasoconstriction. Here we demonstrate that pre-treatment of arterial rings with 1nM Ang II potentiated PGE2-evoked constriction in a concentration dependent manner (AUC-Ang II 2.778±2.091, AUC+Ang II 22.830±8.560, ***P<0.001). Using genetic deletion models and pharmacological antagonists, we demonstrate that this potentiation effect is mediated via concurrent signaling between the angiotensin II receptor 1 (AT1) and the PGE2 E-prostanoid receptor 3 (EP3) in the mouse femoral artery. EP3 receptor-mediated vasoconstriction is shown to be dependent on extracellular calcium in combination with proline-rich tyrosine kinase 2 (Pyk2) and Rho-kinase. Thus, our findings reveal a novel mechanism through which Ang II and PGE2 regulate peripheral vascular reactivity.
Collapse
Affiliation(s)
- Maria P Kraemer
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, United States.
| | - Hyehun Choi
- Department of Pediatrics, Division of Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jeff Reese
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fred S Lamb
- Department of Pediatrics, Division of Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Richard M Breyer
- Department of Medicine, Veterans Affairs Hospital, Nashville, TN, United States; Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
24
|
Jones VC, Birrell MA, Maher SA, Griffiths M, Grace M, O'Donnell VB, Clark SR, Belvisi MG. Role of EP2 and EP4 receptors in airway microvascular leak induced by prostaglandin E2. Br J Pharmacol 2016; 173:992-1004. [PMID: 26639895 PMCID: PMC4831025 DOI: 10.1111/bph.13400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/21/2015] [Accepted: 11/30/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Airway microvascular leak (MVL) involves the extravasation of proteins from post-capillary venules into surrounding tissue. MVL is a cardinal sign of inflammation and an important feature of airway inflammatory diseases such as asthma. PGE2, a product of COX-mediated metabolism of arachidonic acid, binds to four receptors, termed EP1–4. PGE2 has a wide variety of effects within the airway, including modulation of inflammation, sensory nerve activation and airway tone. However, the effect of PGE2 on airway MVL and the receptor/s that mediate this have not been described. EXPERIMENTAL APPROACH Evans Blue dye was used as a marker of airway MVL, and selective EP receptor agonists and antagonists were used alongside EP receptor-deficient mice to define the receptor subtype involved. KEY RESULTS PGE2 induced significant airway MVL in mice and guinea pigs. A significant reduction in PGE2-induced MVL was demonstrated in Ptger2−/− and Ptger4−/− mice and in wild-type mice pretreated simultaneously with EP2 (PF-04418948) and EP4 (ER-819762) receptor antagonists. In a model of allergic asthma, an increase in airway levels of PGE2 was associated with a rise in MVL; this change was absent in Ptger2−/− and Ptger4−/− mice. CONCLUSIONS AND IMPLICATIONS PGE2 is a key mediator produced by the lung and has widespread effects according to the EP receptor activated. Airway MVL represents a response to injury and under ‘disease’ conditions is a prominent feature of airway inflammation. The data presented highlight a key role for EP2 and EP4 receptors in MVL induced by PGE2.
Collapse
MESH Headings
- Allergens
- Animals
- Asthma/metabolism
- Azetidines/pharmacology
- Benzazepines/pharmacology
- Bronchi/metabolism
- Capillary Permeability
- Dinoprostone/analogs & derivatives
- Dinoprostone/metabolism
- Dinoprostone/pharmacology
- Guinea Pigs
- Imidazoles/pharmacology
- Male
- Methyl Ethers/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Ovalbumin
- Receptors, Prostaglandin E, EP2 Subtype/agonists
- Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/agonists
- Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Trachea/metabolism
Collapse
|
25
|
Khan NS, Song CY, Thirunavukkarasu S, Fang XR, Bonventre JV, Malik KU. Cytosolic Phospholipase A2α Is Essential for Renal Dysfunction and End-Organ Damage Associated With Angiotensin II-Induced Hypertension. Am J Hypertens 2016; 29:258-65. [PMID: 26045535 DOI: 10.1093/ajh/hpv083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/13/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The kidney plays an important role in regulating blood pressure (BP). cPLA2α in the kidney is activated by various agents including angiotensin II (Ang II) and selectively releases arachidonic acid (AA) from tissue lipids, generating pro- and antihypertensive eicosanoids. Since activation of cPLA2α is the rate-limiting step in AA release, this study was conducted to determine its contribution to renal dysfunction and end-organ damage associated with Ang II-induced hypertension. METHODS cPLA2α(+/+) and cPLA2α(-/-) mice were infused with Ang II (700 ng/ kg/min) or its vehicle for 13 days. Mice were placed in metabolic cages to monitor their food and water intake, and urine was collected and its volume was measured. Doppler imaging was performed to assess renal hemodynamics. On the 13th day of Ang II infusion, mice were sacrificed and their tissues and blood collected for further analysis. RESULTS Ang II increased renal vascular resistance, water intake, and urine output and Na(+) excretion, decreased urine osmolality, and produced proteinuria in cPLA2α(+/+) mice. Ang II also caused accumulation of F4/80(+) macrophages and CD3(+) T cells and renal fibrosis, and increased oxidative stress in the kidneys of cPLA2α(+/+) mice. All these effects of Ang II were minimized in cPLA2α(-/-) mice. CONCLUSION cPLA2α contributes to renal dysfunction, inflammation, and end-organ damage, most likely via the action of pro-hypertensive eicosanoids and increased oxidative stress associated with Ang II-induced hypertension. Thus, cPLA2α could serve as a potential therapeutic target for treating renal dysfunction and end-organ damage in hypertension.
Collapse
Affiliation(s)
- Nayaab S Khan
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chi Young Song
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shyamala Thirunavukkarasu
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Xiao R Fang
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital Boston, Harvard Medical School, Harvard Institute of Medicine, Boston, Massachusetts, USA
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| |
Collapse
|
26
|
Khan NS, Song CY, Jennings BL, Estes AM, Fang XR, Bonventre JV, Malik KU. Cytosolic phospholipase A2α is critical for angiotensin II-induced hypertension and associated cardiovascular pathophysiology. Hypertension 2015; 65:784-92. [PMID: 25667212 DOI: 10.1161/hypertensionaha.114.04803] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiotensin II activates cytosolic phospholipase A(2)α (cPLA2α) and releases arachidonic acid from tissue phospholipids, which mediate or modulate ≥1 cardiovascular effects of angiotensin II and has been implicated in hypertension. Because arachidonic acid release is the rate limiting step in eicosanoid production, cPLA2α might play a central role in the development of angiotensin II-induced hypertension. To test this hypothesis, we investigated the effect of angiotensin II infusion for 13 days by micro-osmotic pumps on systolic blood pressure and associated pathogenesis in wild type (cPLA2α(+/+)) and cPLA2α(-/-) mice. Angiotensin II-induced increase in systolic blood pressure in cPLA2α(+/+) mice was abolished in cPLA2α(-/-) mice; increased systolic blood pressure was also abolished by the arachidonic acid metabolism inhibitor, 5,8,11,14-eicosatetraynoic acid in cPLA2α(+/+) mice. Angiotensin II in cPLA2α(+/+) mice increased cardiac cPLA2 activity and urinary eicosanoid excretion, decreased cardiac output, caused cardiovascular remodeling with endothelial dysfunction, and increased vascular reactivity in cPLA2α(+/+) mice; these changes were diminished in cPLA2α(-/-) mice. Angiotensin II also increased cardiac infiltration of F4/80(+) macrophages and CD3(+) T lymphocytes, cardiovascular oxidative stress, expression of endoplasmic reticulum stress markers p58(IPK), and CHOP in cPLA2α(+/+) but not cPLA2α(-/-) mice. Angiotensin II increased cardiac activity of ERK1/2 and cSrc in cPLA2α(+/+) but not cPLA2α(-/-) mice. These data suggest that angiotensin II-induced hypertension and associated cardiovascular pathophysiological changes are mediated by cPLA2α activation, most likely through the release of arachidonic acid and generation of eicosanoids with predominant prohypertensive effects and activation of ≥1 signaling molecules, including ERK1/2 and cSrc.
Collapse
Affiliation(s)
- Nayaab S Khan
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Chi Young Song
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Brett L Jennings
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Anne M Estes
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Xiao R Fang
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Joseph V Bonventre
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.)
| | - Kafait U Malik
- From the Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN (N.S.K., C.Y.S., B.L.J., A.M.E., X.R.F., K.U.M.); and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institute of Medicine, Boston, MA (J.V.B.).
| |
Collapse
|
27
|
Role of COX-2/mPGES-1/prostaglandin E2 cascade in kidney injury. Mediators Inflamm 2015; 2015:147894. [PMID: 25729216 PMCID: PMC4333324 DOI: 10.1155/2015/147894] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/19/2015] [Indexed: 12/26/2022] Open
Abstract
COX-2/mPGES-1/PGE2 cascade plays critical roles in modulating many physiological and pathological actions in different organs. In the kidney, this cascade is of high importance in regulating fluid metabolism, blood pressure, and renal hemodynamics. Under some disease conditions, this cascade displays various actions in response to the different pathological insults. In the present review, the roles of this cascade in the pathogenesis of kidney injuries including diabetic and nondiabetic kidney diseases and acute kidney injuries were introduced and discussed. The new insights from this review not only increase the understanding of the pathological role of the COX-2/mPGES-1/PGE2 pathway in kidney injuries, but also shed new light on the innovation of the strategies for the treatment of kidney diseases.
Collapse
|
28
|
Sun Y, Huang Y, Zhang R, Chen Q, Chen J, Zong Y, Liu J, Feng S, Liu AD, Holmberg L, Liu D, Tang C, Du J, Jin H. Hydrogen sulfide upregulates KATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats. J Mol Med (Berl) 2014; 93:439-55. [PMID: 25412775 DOI: 10.1007/s00109-014-1227-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 10/26/2014] [Accepted: 11/03/2014] [Indexed: 01/23/2023]
Abstract
UNLABELLED The study was designed to investigate whether H2S could upregulate expression of KATP channels in vascular smooth muscle cells (VSMCs), and by this mechanism enhances vasorelaxation in spontaneously hypertensive rats (SHR). Blood pressure, vascular structure, and vasorelaxation were analyzed. Plasma H2S was detected using polarographic sensor. SUR2B and Kir6.1 expressions were detected in VSMCs of SHR and in A7r5 cells as well as primarily cultured ASMCs using real-time PCR, western blot, immunofluorescence, and confocal imaging. Nuclear translocation of forkhead transcription factors FOXO1 and FOXO3a in ASMCs was detected using laser confocal microscopy, and their binding activity with SUR2B and Kir6.1 promoters was examined by chromatin immunoprecipitation. SHR developed hypertension at 18 weeks. They showed downregulated vascular SUR2B and Kir6.1 expressions in association with a decreased plasma H2S level. H2S donor, however, could upregulate vascular SUR2B and Kir6.1 expressions, causing a left shift of the vasorelaxation curve to pinacidil and lowered tail artery pressure in the SHR. Also, H2S antagonized endothelin-1 (ET-1)-inhibited KATP expression in A7r5 cells and cultured ASMCs. Mechanistically, H2S inhibited ET-1-stimulated p-FOXO1 and p-FOXO3a expressions (inactivated forms), but increased their nuclear translocation and the ET-1-inhibited binding of FOXO1 and FOXO3a with Kir6.1 and SUR2B promoters in ASMCs. Hence, H2S promotes vasorelaxation of SHR, at least in part, through upregulating the expression of KATP subunits by inhibiting phosphorylation of FOXO1 and FOXO3a, and stimulating FOXO1 and FOXO3a nuclear translocation and their binding activity with SUR2B and Kir6.1 promoters. KEY MESSAGES H2S increased vascular SUR2B and Kir6.1 expression of SHR, promoting vasorelaxation. H2S antagonized ET-1-inhibited KATP expression in A7r5 cells and cultured ASMCs. H2S inhibited ET-1-induced FOXO1 and FOXO3a phosphorylation in ASMCs. H2S promoted FOXO1 and FOXO3a nuclear translocation and binding with target gene promoters.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pediatrics, Peking University First Hospital, Xi-An Men Street No. 1, West District, Beijing, 100034, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Taniguchi H, Anacker C, Wang Q, Andreasson K. Protection by vascular prostaglandin E2 signaling in hypoxic-ischemic encephalopathy. Exp Neurol 2014; 255:30-7. [PMID: 24560715 DOI: 10.1016/j.expneurol.2014.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 01/13/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) in neonates is a leading cause of neurological impairment. Significant progress has been achieved investigating the pathologic contributions of excitotoxicity, oxidative stress, and neuroinflammation to cerebral injury in HIE. Less extensively investigated has been the contribution of vascular dysfunction, and whether modulation of cerebral perfusion may improve HIE outcome. Here, we investigated the function of the prostaglandin E2 (PGE2) EP4 receptor, a vasoactive Gαs-protein coupled receptor (GPCR), in rodent models of neonatal HIE. The function of PGE2 signaling through the EP4 receptor was investigated using pharmacological and conditional knockout genetic strategies in vivo in rodent models of HIE. Pharmacologic activation of the EP4 receptor with a selective agonist was significantly cerebroprotective both acutely and after 7days. Measurement of cerebral perfusion during and after hypoxia-ischemia demonstrated that EP4 receptor activation improved cerebral perfusion in both the contralateral and ipsilateral hypoxic-ischemic hemispheres. To test whether vascular EP4 signaling exerted a critical function in HIE injury, cell specific conditional knockout mouse pups were generated in which endothelial EP4 receptor was selectively deleted postnatally. VE-Cadherin Cre-ER(T2);EP4(lox/lox) pups demonstrated significant increases in cerebral injury as compared to VE-Cadherin Cre-ER(T2);EP4(+/+) control littermates, indicating that endothelial EP4 signaling is protective in HIE. Our findings identify vascular PGE2 signaling through its EP4 receptor as protective in HIE. Given the pharmacologic accessibility of endothelial EP4 GPCRs, these data support further investigation into novel approaches to target cerebral perfusion in neonatal HIE.
Collapse
Affiliation(s)
- Hidetoshi Taniguchi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christoph Anacker
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Qian Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
30
|
Abstract
In the mammalian kidney, prostaglandins (PGs) are important mediators of physiologic processes, including modulation of vascular tone and salt and water. PGs arise from enzymatic metabolism of free arachidonic acid (AA), which is cleaved from membrane phospholipids by phospholipase A2 activity. The cyclooxygenase (COX) enzyme system is a major pathway for metabolism of AA in the kidney. COX are the enzymes responsible for the initial conversion of AA to PGG2 and subsequently to PGH2, which serves as the precursor for subsequent metabolism by PG and thromboxane synthases. In addition to high levels of expression of the "constitutive" rate-limiting enzyme responsible for prostanoid production, COX-1, the "inducible" isoform of cyclooxygenase, COX-2, is also constitutively expressed in the kidney and is highly regulated in response to alterations in intravascular volume. PGs and thromboxane A2 exert their biological functions predominantly through activation of specific 7-transmembrane G-protein-coupled receptors. COX metabolites have been shown to exert important physiologic functions in maintenance of renal blood flow, mediation of renin release and regulation of sodium excretion. In addition to physiologic regulation of prostanoid production in the kidney, increases in prostanoid production are also seen in a variety of inflammatory renal injuries, and COX metabolites may serve as mediators of inflammatory injury in renal disease.
Collapse
Affiliation(s)
- Raymond C Harris
- George M. O'Brien Kidney and Urologic Diseases Center and Division of Nephrology, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA.
| | | |
Collapse
|
31
|
Chen L, Yang G, Xu X, Grant G, Lawson JA, Bohlooly-Y M, FitzGerald GA. Cell selective cardiovascular biology of microsomal prostaglandin E synthase-1. Circulation 2012. [PMID: 23204105 DOI: 10.1161/circulationaha.112.119479] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Global deletion of microsomal prostaglandin E synthase 1 (mPGES-1) in mice attenuates the response to vascular injury without a predisposition to thrombogenesis or hypertension. However, enzyme deletion results in cell-specific differential use by prostaglandin synthases of the accumulated prostaglandin H(2) substrate. Here, we generated mice deficient in mPGES-1 in vascular smooth muscle cells, endothelial cells, and myeloid cells further to elucidate the cardiovascular function of this enzyme. METHODS AND RESULTS Vascular smooth muscle cell and endothelial cell mPGES-1 deletion did not alter blood pressure at baseline or in response to a high-salt diet. The propensity to evoked macrovascular and microvascular thrombogenesis was also unaltered. However, both vascular smooth muscle cell and endothelial cell mPGES-1-deficient mice exhibited a markedly exaggerated neointimal hyperplastic response to wire injury of the femoral artery in comparison to their littermate controls. The hyperplasia was associated with increased proliferating cell nuclear antigen and tenascin-C expression. In contrast, the response to injury was markedly suppressed by myeloid cell depletion of mPGES-1 with decreased hyperplasia, leukocyte infiltration, and expression of proliferating cell nuclear antigen and tenascin-C. Conditioned medium derived from mPGES-1-deficient macrophages less potently induced vascular smooth muscle cell proliferation and migration than that from wild-type macrophages. CONCLUSIONS Deletion of mPGES-1 in the vasculature and myeloid cells differentially modulates the response to vascular injury, implicating macrophage mPGES-1 as a cardiovascular drug target.
Collapse
Affiliation(s)
- Lihong Chen
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Chen L, Miao Y, Zhang Y, Dou D, Liu L, Tian X, Yang G, Pu D, Zhang X, Kang J, Gao Y, Wang S, Breyer MD, Wang N, Zhu Y, Huang Y, Breyer RM, Guan Y. Inactivation of the E-prostanoid 3 receptor attenuates the angiotensin II pressor response via decreasing arterial contractility. Arterioscler Thromb Vasc Biol 2012; 32:3024-32. [PMID: 23065824 DOI: 10.1161/atvbaha.112.254052] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The present studies aimed at elucidating the role of prostaglandin E(2) receptor subtype 3 (E-prostanoid [EP] 3) in regulating blood pressure. METHODS AND RESULTS Mice bearing a genetic disruption of the EP3 gene (EP(3)(-/-)) exhibited reduced baseline mean arterial pressure monitored by both tail-cuff and carotid arterial catheterization. The pressor responses induced by EP3 agonists M&B28767 and sulprostone were markedly attenuated in EP3(-/-) mice, whereas the reduction of blood pressure induced by prostaglandin E(2) was comparable in both genotypes. Vasopressor effect of acute or chronic infusion of angiotensin II (Ang II) was attenuated in EP3(-/-) mice. Ang II-induced vasoconstriction in mesenteric arteries decreased in EP3(-/-) group. In mesenteric arteries from wild-type mice, Ang II-induced vasoconstriction was inhibited by EP3 selective antagonist DG-041 or L798106. The expression of Arhgef-1 is attenuated in EP3 deficient mesenteric arteries. EP3 antagonist DG-041 diminished Ang II-induced phosphorylation of myosin light chain 20 and myosin phosphatase target subunit 1 in isolated mesenteric arteries. Furthermore, in vascular smooth muscle cells, Ang II-induced intracellular Ca(2+) increase was potentiated by EP3 agonist sulprostone but inhibited by DG-041. CONCLUSIONS Activation of the EP3 receptor raises baseline blood pressure and contributes to Ang II-dependent hypertension at least partially via enhancing Ca(2+) sensitivity and intracellular calcium concentration in vascular smooth muscle cells. Selective targeting of the EP3 receptor may represent a potential therapeutic target for the treatment of hypertension.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Haidian District, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Distinct roles of central and peripheral prostaglandin E2 and EP subtypes in blood pressure regulation. Am J Hypertens 2012; 25:1042-9. [PMID: 22695507 DOI: 10.1038/ajh.2012.67] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prostaglandin E(2) (PGE(2)) is a major prostanoid with a wide variety of biological activities. PGE(2) can influence blood pressure (BP) both positively and negatively. In particular, centrally administered PGE(2) induces hypertension whereas systemic administration of PGE(2) produces a hypotensive effect. These physiologically opposing effects are generated by the existence of multiple EP receptors, namely EP(1-4), which are G protein-coupled receptors with distinct signaling properties. This review highlights the distinct roles of PGE(2) in BP regulation and the involvement of specific EP receptor subtypes.
Collapse
|
34
|
Bartlett CS, Boyd KL, Harris RC, Zent R, Breyer RM. EP1 disruption attenuates end-organ damage in a mouse model of hypertension. Hypertension 2012; 60:1184-91. [PMID: 23006735 DOI: 10.1161/hypertensionaha.112.199026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostaglandin E(2) is a major prostanoid found in the kidney and vasculature contributing to the regulation of blood pressure. The prostaglandin E(2) receptor EP1 has been shown to contribute to hypertension by mediating angiotensin II-dependent vasoconstriction, although its precise role is incompletely characterized. Disruption of the EP1 receptor in C57BL/6J mice reduced the incidence of mortality during severe hypertension induced by uninephrectomy, deoxycorticosterone acetate, and angiotensin II. Mortality was dependent on all components of the model. Death was a result of aortic aneurysm rupture or occurred after development of anasarca, each of which was reduced in EP1-/- mice. Mean arterial pressure was increased in treated EP1+/+ and EP1-/- mice; however, this elevation was significantly lower in EP1-/- mice. Blood pressure reduction via administration of hydralazine phenocopied EP1-/- mice. Thus, reduction in blood pressure by disruption of EP1 reduced incidence of mortality and decreased organ damage, suggesting that EP1 receptor blockade may be a viable target for antihypertensive therapy.
Collapse
Affiliation(s)
- Christina S Bartlett
- Department of Pharmacology, Vanderbilt University Medical Center, 1161 21 Ave, Medical Center North # B3214, Nashville, TN 37232-2372, USA
| | | | | | | | | |
Collapse
|
35
|
Liang X, Lin L, Woodling NS, Wang Q, Anacker C, Pan T, Merchant M, Andreasson K. Signaling via the prostaglandin E₂ receptor EP4 exerts neuronal and vascular protection in a mouse model of cerebral ischemia. J Clin Invest 2011; 121:4362-71. [PMID: 21965326 DOI: 10.1172/jci46279] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 08/10/2011] [Indexed: 11/17/2022] Open
Abstract
Stroke is the third leading cause of death in the United States. Fewer than 5% of patients benefit from the only intervention approved to treat stroke. Thus, there is an enormous need to identify new therapeutic targets. The role of inducible cyclooxygenase (COX-2) activity in stroke and other neurologic diseases is complex, as both activation and sustained inhibition can engender cerebral injury. Whether COX-2 induces cerebroprotective or injurious effects is probably dependent on which downstream prostaglandin receptors are activated. Here, we investigated the function of the PGE2 receptor EP4 in a mouse model of cerebral ischemia. Systemic administration of a selective EP4 agonist after ischemia reduced infarct volume and ameliorated long-term behavioral deficits. Expression of EP4 was robust in neurons and markedly induced in endothelial cells after ischemia-reperfusion, suggesting that neuronal and/or endothelial EP4 signaling imparts cerebroprotection. Conditional genetic inactivation of neuronal EP4 worsened stroke outcome, consistent with an endogenous protective role of neuronal EP4 signaling in vivo. However, endothelial deletion of EP4 also worsened stroke injury and decreased cerebral reperfusion. Systemic administration of an EP4 agonist increased levels of activated eNOS in cerebral microvessels, an effect that was abolished with conditional deletion of endothelial EP4. Thus, our data support the concept of targeting protective prostaglandin receptors therapeutically after stroke.
Collapse
Affiliation(s)
- Xibin Liang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Swan CE, Breyer RM. Prostaglandin E2 modulation of blood pressure homeostasis: studies in rodent models. Prostaglandins Other Lipid Mediat 2011; 96:10-3. [PMID: 21801847 DOI: 10.1016/j.prostaglandins.2011.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/08/2011] [Accepted: 07/12/2011] [Indexed: 11/16/2022]
Abstract
Hypertension is a well established risk factor for cardiovascular diseases such as stroke and is the leading cause of chronic kidney failure. Although a number of pharmacologic agents are available for the treatment of hypertension including agents that affect the renin-angiotensin-aldosterone system (RAAS), unmet needs in the treatment of hypertension suggest that identification of novel pharmacological targets would be an important healthcare goal. One potential target is prostaglandin E(2) (PGE(2)), a potent lipid mediator with a diverse and sometimes opposing range of biological effects. PGE(2) signals through four subtypes of G-protein coupled receptors designated EP1 through EP4. PGE(2) functions primarily as a vasodepressor; under certain conditions PGE(2) administration mediates vasopressor activity. This review focuses on the current understanding of the roles of PGE(2) receptors in vascular reactivity, hypertension and end-organ damage.
Collapse
Affiliation(s)
- Christina E Swan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-2372, USA
| | | |
Collapse
|
37
|
Downey JD, Sanders CR, Breyer RM. Evidence for the presence of a critical disulfide bond in the mouse EP3γ receptor. Prostaglandins Other Lipid Mediat 2011; 94:53-8. [PMID: 21236356 DOI: 10.1016/j.prostaglandins.2010.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 12/30/2010] [Accepted: 12/30/2010] [Indexed: 11/29/2022]
Abstract
To determine the contribution of cysteines to the function of the mouse E-prostanoid subtype 3 gamma (mEP3γ), we tested a series of cysteine-to-alanine mutants. Two of these mutants, C107A and C184A, showed no agonist-dependent activation in a cell-based reporter assay for mEP3γ, whereas none of the other cysteine-to-alanine mutations disrupted mEP3γ signal transduction. Total cell membranes prepared from HEK293 cells transfected with mEP3γ C107A or C184A had no detectable radioligand binding. Other mutant mEP3γ receptors had radioligand affinities and receptor densities similar to wild-type. Cell-surface ELISA against the N-terminal HA-tag of C107A and C184A demonstrated 40% and 47% reductions respectively in receptor protein expression at the cell surface, and no radioligand binding was detected as assessed by intact cell radioligand binding experiments. These data suggest a key role for C107 and C184 in both receptor structure/stability and function and is consistent with the presence of a conserved disulfide bond between C107 and C184 in mouse EP3 that is required for normal receptor expression and function. Our results also indicate that if a second disulfide bond is present in the native receptor it is non-essential for receptor assembly or function.
Collapse
Affiliation(s)
- Jason D Downey
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | | |
Collapse
|
38
|
Enhanced pressor response to acute Ang II infusion in mice lacking membrane-associated prostaglandin E2 synthase-1. Acta Pharmacol Sin 2010; 31:1284-92. [PMID: 20871624 DOI: 10.1038/aps.2010.99] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIM To examine the contribution of vascular membrane-associated prostaglandin E2 synthase-1 (mPGES-1) to acute blood pressure homeostasis. METHODS Angiotensin II (AngII, 75 pmol·kg⁻¹·min⁻¹) was continuously infused via the jugular vein into wild-type and mPGES-1(-/-) mice for 30 min, and blood pressure was measured by carotid arterial catheterization. RT-PCR and immunohistochemistry were performed to detect the expression and localization of mPGES-1 in the mouse arterial vessels. Mesenteric arteries were dissected from mice of both genotypes to study vessel tension and measure vascular PGE2 levels. RESULTS Wild-type and mPGES-1(-/-) mice showed similar blood pressure levels at baseline, and the acute intravenous infusion of AngII caused a greater increase in mean arterial pressure in the mPGES-1(-/-) group, with a similar diuretic and natriuretic response in both groups. mPGES-1 was constitutively expressed in the aortic and mesenteric arteries and vascular smooth muscle cells of wild-type mice. Strong staining was detected in the smooth muscle layer of arterial vessels. Ex vivo treatment of mesenteric arteries with AngII produced more vasodilatory PGE2 in wild-type than in mPGES-1(-/-) mice. In vitro tension assays further revealed that the mesenteric arteries of mPGES-1(-/-) mice exhibited a greater vasopressor response to AngII than those arteries of wild-type mice. CONCLUSION Vascular mPGES-1 acts as an important tonic vasodilator, contributing to acute blood pressure regulation.
Collapse
|
39
|
E Prostanoid-1 receptor regulates renal medullary alphaENaC in rats infused with angiotensin II. Biochem Biophys Res Commun 2009; 389:372-7. [PMID: 19732740 DOI: 10.1016/j.bbrc.2009.08.157] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 08/28/2009] [Indexed: 11/20/2022]
Abstract
E Prostanoid (EP) receptors play an important role in urinary Na(+) excretion. In the kidney, the epithelial sodium channel (ENaC) is the rate-limiting-step for Na(+) reabsorption. We hypothesized that activation of EP1/EP3 regulates the expression of ENaC in the face of renin-angiotensin-aldosterone-system (RAAS) activation. In primary cultures of inner medullary collecting duct (IMCD) cells, sulprostone (EP1>EP3 agonist, 1 microM) and 17 Phenyl trinor (17 Pt, EP1 agonist, 10 microM) prevented the up-regulation of alphaENaC mRNA induced by aldosterone (10 nM). In Sprague-Dawley rats infused with angiotensin II (0.4 microg/kg/min), alphaENaC expression was up-regulated in renal cortex and medulla coincidently with high plasma aldosterone levels. Sulprostone and/or 17 Pt prevented this effect in renal medulla but not in cortex. Immunocytochemistry demonstrated that IMCD cells express EP1. Our results suggest that specific activation of EP1 receptor during RAAS activation antagonizes the action of aldosterone on alphaENaC expression in the renal medulla.
Collapse
|
40
|
Tsai MC, Chen L, Zhou J, Tang Z, Hsu TF, Wang Y, Shih YT, Peng HH, Wang N, Guan Y, Chien S, Chiu JJ. Shear stress induces synthetic-to-contractile phenotypic modulation in smooth muscle cells via peroxisome proliferator-activated receptor alpha/delta activations by prostacyclin released by sheared endothelial cells. Circ Res 2009; 105:471-80. [PMID: 19628794 DOI: 10.1161/circresaha.109.193656] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RATIONALE Phenotypic modulation of smooth muscle cells (SMCs), which are located in close proximity to endothelial cells (ECs), is critical in regulating vascular function. The role of flow-induced shear stress in the modulation of SMC phenotype has not been well defined. OBJECTIVE The objective was to elucidate the role of shear stress on ECs in modulating SMC phenotype and its underlying mechanism. METHODS AND RESULTS Application of shear stress (12 dyn/cm2) to ECs cocultured with SMCs modulated SMC phenotype from synthetic to contractile state, with upregulation of contractile markers, downregulation of proinflammatory genes, and decreased percentage of cells in the synthetic phase. Treating SMCs with media from sheared ECs induced peroxisome proliferator-activated receptor (PPAR)-alpha, -delta, and -gamma ligand binding activities; transfecting SMCs with specific small interfering (si)RNAs of PPAR-alpha and -delta, but not -gamma, inhibited shear induction of contractile markers. ECs exposed to shear stress released prostacyclin (PGI2). Transfecting ECs with PGI2 synthase-specific siRNA inhibited shear-induced activation of PPAR-alpha/delta, upregulation of contractile markers, downregulation of proinflammatory genes, and decrease in percentage of SMCs in synthetic phase. Mice with PPAR-alpha deficiency (compared with control littermates) showed altered SMC phenotype toward a synthetic state, with increased arterial contractility in response to angiotensin II. CONCLUSIONS These results indicate that laminar shear stress induces synthetic-to-contractile phenotypic modulation in SMCs through the activation of PPAR-alpha/delta by the EC-released PGI2. Our findings provide insights into the mechanisms underlying the EC-SMC interplays and the protective homeostatic function of laminar shear stress in modulating SMC phenotype.
Collapse
Affiliation(s)
- Min-Chien Tsai
- Division of Medical Engineering Research, National Health Research Institutes, Miaoli 350, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jugus MJ, Jaworski JP, Patra PB, Jin J, Morrow DM, Laping NJ, Edwards RM, Thorneloe KS. Dual modulation of urinary bladder activity and urine flow by prostanoid EP3 receptors in the conscious rat. Br J Pharmacol 2009; 158:372-81. [PMID: 19486006 DOI: 10.1111/j.1476-5381.2009.00275.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Cyclooxygenase inhibitors function to reduce levels of prostaglandin E(2) (PGE(2)) and are broadly efficacious in models of bladder overactivity. We therefore investigated a regulation of urinary bladder function in conscious rats by modulation of the EP(3) receptor for PGE(2). EXPERIMENTAL APPROACH The activity of the EP(3) receptor agonist GR63799X, and EP(3) receptor antagonists, CM9 and DG041, at recombinant EP(3) receptors was evaluated in vitro. In vivo, intraduodenal dosing during conscious, continuous-filling cystometry of spontaneously hypertensive rats was utilized to determine the urodynamic effect of EP(3) receptor modulation. KEY RESULTS GR63799X dose-dependently (0.001-1 mg x kg(-1)) reduced bladder capacity, as indicated by a reduction in both the micturition interval and volume of urine per void. In contrast, CM9 (10 and 30 mg x kg(-1)) and DG041 (30 mg x kg(-1)) enhanced bladder capacity, as indicated by significantly longer micturition intervals and larger void volumes. CM9 and DG041 inhibited the responses to GR63799X supporting the in vivo activity of these pharmacological agents at the EP(3) receptor. In addition to its effect on bladder capacity, GR63799X increased endogenous urine production. Intra-arterial infusion of saline mimicked the enhancement of urine flow observed with GR63799X, and the response was inhibited by CM9. CONCLUSIONS AND IMPLICATIONS These data support the EP(3) receptor as a modulator of urinary bladder activity in the conscious rat, and in addition, indicate a role for EP(3) receptor activity in regulating urine flow.
Collapse
Affiliation(s)
- M J Jugus
- Urogenital Biology, Cardiovascular and Urogenital Center for Excellence in Drug Discovery, GlaxoSmithKline Pharmaceuticals, King of Prussia, PA 19406, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Andreasson K. Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediat 2009; 91:104-12. [PMID: 19808012 DOI: 10.1016/j.prostaglandins.2009.04.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/25/2009] [Accepted: 04/02/2009] [Indexed: 01/08/2023]
Abstract
This review presents an overview of the emerging field of prostaglandin signaling in neurological diseases, focusing on PGE(2) signaling through its four E-prostanoid (EP) receptors. A large number of studies have demonstrated a neurotoxic function of the inducible cyclooxygenase COX-2 in a broad spectrum of neurological disease models in the central nervous system (CNS), from models of cerebral ischemia to models of neurodegeneration and inflammation. Since COX-1 and COX-2 catalyze the first committed step in prostaglandin synthesis, an effort is underway to identify the downstream prostaglandin signaling pathways that mediate the toxic effect of COX-2. Recent epidemiologic studies demonstrate that chronic COX-2 inhibition can produce adverse cerebrovascular and cardiovascular effects, indicating that some prostaglandin signaling pathways are beneficial. Consistent with this concept, recent studies demonstrate that in the CNS, specific prostaglandin receptor signaling pathways mediate toxic effects in brain but a larger number appear to mediate paradoxically protective effects. Further complexity is emerging, as exemplified by the PGE(2) EP2 receptor, where cerebroprotective or toxic effects of a particular prostaglandin signaling pathway can differ depending on the context of cerebral injury, for example, in excitotoxicity/hypoxia paradigms versus inflammatory-mediated secondary neurotoxicity. The divergent effects of prostaglandin receptor signaling will likely depend on distinct patterns and dynamics of receptor expression in neurons, endothelial cells, and glia and the specific ways in which these cell types participate in particular models of neurological injury.
Collapse
Affiliation(s)
- Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Rutkai I, Feher A, Erdei N, Henrion D, Papp Z, Edes I, Koller A, Kaley G, Bagi Z. Activation of prostaglandin E2 EP1 receptor increases arteriolar tone and blood pressure in mice with type 2 diabetes. Cardiovasc Res 2009; 83:148-54. [PMID: 19299433 DOI: 10.1093/cvr/cvp098] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Type 2 diabetes mellitus is frequently associated with hypertension, but the underlying mechanisms are not completely understood. We tested the hypothesis that activation of type 1 prostaglandin E(2) (PGE(2)) receptor (EP1) increases skeletal muscle arteriolar tone and blood pressure in mice with type 2 diabetes. METHODS AND RESULTS In 12-week-old, male db/db mice (with homozygote mutation in leptin receptor), systolic blood pressure was significantly elevated, compared with control heterozygotes. Isolated, pressurized gracilis muscle arterioles ( approximately 90 microm) of db/db mice exhibited an enhanced pressure- and angiotensin II (0.1-10 nM)-induced tone, which was reduced by the selective EP1 receptor antagonist, AH6809 (10 microM), to the level observed in arterioles of control mice. Exogenous application of PGE(2) (10 pM-100 nM) or the selective agonist of the EP1 receptor, 17-phenyl-trinor-PGE(2) (10 pM-100 nM), elicited arteriolar constrictions that were significantly enhanced in db/db mice (max: 31 +/- 4 and 29 +/- 5%), compared with controls (max: 20 +/- 2 and 14 +/- 3%, respectively). In the aorta of db/db mice, an increased protein expression of EP1, but not EP4, receptor was also detected by western immunoblotting. Moreover, we found that oral administration of the EP1 receptor antagonist, AH6809 (10 mg/kg/day, for 4 days), significantly reduced the systolic blood pressure in db/db, but not in control mice. CONCLUSION Activation of EP1 receptors increases arteriolar tone, which could contribute to the development of hypertension in the db/db mice.
Collapse
Affiliation(s)
- Ibolya Rutkai
- Division of Clinical Physiology, Institute of Cardiology, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Akaneya Y. The Remarkable Mechanism of Prostaglandin E 2 on Synaptic Plasticity. GENE REGULATION AND SYSTEMS BIOLOGY 2008. [DOI: 10.1177/117762500700100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prostanoids have a broad spectrum of biological activities in a variety of organs including the brain. However, their effects on synaptic plasticity in the brain, which have been recently revealed, are ambiguous in comparison to those in the other organs. Prostaglandin E2 (PGE2) is a prostanoid produced from arachidonic acid in the cellular membrane, and knowledge about its functions is increasing. Recently, a novel function of PGE2 in the brain has shed light on aspects of synaptic plasticity such as long-term potentiation (LTP). More recently, we have proposed a hypothesis for the mechanisms of this PGE2-related form of synaptic plasticity in the visual cortex. This involves the dynamics of two subtypes of PGE2 receptors that have opposing functions in intracellular signal transduction. Consequently, mechanisms that increase the level of cyclic AMP in the cytosol may explain for the mechanisms of LTP in the visual cortex. The current notion of bidirectional trafficking of PGE2 receptors under this hypothesis is reminiscent of the “silent synapse” mechanism of LTP on the trafficking of the AMPA receptors between the membrane and cytosol. Moreover, we propose the hypothesis that PGE2 acts as a “post-to-postsynaptic messenger” for the induction of LTP in the visual cortex. This review describes a complex mode of action of PGE2 receptors in synaptic plasticity in the brain.
Collapse
Affiliation(s)
- Yukio Akaneya
- Division of Neurophysiology, Department of Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871 Japan
| |
Collapse
|
46
|
Zhao H, Ohinata K, Yoshikawa M. Rubimetide (Met-Arg-Trp) derived from Rubisco exhibits anxiolytic-like activity via the DP1 receptor in male ddY mice. Peptides 2008; 29:629-32. [PMID: 18243414 DOI: 10.1016/j.peptides.2007.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/11/2007] [Accepted: 12/14/2007] [Indexed: 11/24/2022]
Abstract
In this study, we found that Met-Arg-Trp (rubimetide), which had been isolated as a hypotensive peptide from a pepsin-pancreatin digest of spinach ribulose bisphosphate carboxylase/oxygenase (Rubisco), has anxiolytic-like activity in the elevated plus-maze test at a dose of 0.1mg/kg (i.p.) or 1.0mg/kg (p.o.) in mice with p<0.01 and p<0.05, respectively. The anxiolytic-like activity of rubimetide (0.1mg/kg, i.p.) was blocked by BW A868C (60microg/kg, i.p.), an antagonist for the DP1 receptor, suggesting the anxiolytic-like activity of rubimetide is mediated by prostaglandin D2 and the DP1 receptor.
Collapse
Affiliation(s)
- Hui Zhao
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
47
|
Zhao H, Usui H, Ohinata K, Yoshikawa M. Met-Arg-Trp derived from Rubisco lowers blood pressure via prostaglandin D(2)-dependent vasorelaxation in spontaneously hypertensive rats. Peptides 2008; 29:345-9. [PMID: 18180074 DOI: 10.1016/j.peptides.2007.11.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 11/24/2022]
Abstract
Met-Arg-Trp (MRW) has been isolated as an inhibitor for angiotensin I-converting enzyme (ACE) from a pepsin-pancreatin digest of spinach ribulose bisphosphate carboxylase/oxygenase (Rubisco) (IC(50)=0.6 microM). It has been reported that hypotensive activity of ACE-inhibitory peptides derived from food proteins are weakened in spontaneously hypertensive rats older than 25 weeks (old SHR). However, MRW reduced blood pressure after oral administration at a dose of 5 mg/kg in old SHR as well as in younger SHR. MRW exhibited vasorelaxing activity above 1 microM in isolated mesenteric artery from adult and old SHR. The vasorelaxing activity of MRW was blocked by indomethacin and BW A868C, a cyclooxygenase inhibitor and an antagonist for DP(1) receptor, respectively. However, N(G)-nitro-L-arginine methyl ester, an inhibitor for nitric oxide synthase, had no effect on the relaxation. The hypotensive activity of MRW was also blocked by indomethacin and BW A868C, respectively, in adult and old SHR. Taken together, the vasorelaxing and hypotensive activities of MRW may be mediated by prostaglandin D(2) and the DP(1) receptor. These findings suggest that the hypotensive activity of MRW is mainly caused by vasorelaxation rather than by ACE-inhibition.
Collapse
Affiliation(s)
- Hui Zhao
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto, Japan
| | | | | | | |
Collapse
|
48
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
49
|
Saleem S, Li RC, Wei G, Doré S. Effects of EP1 receptor on cerebral blood flow in the middle cerebral artery occlusion model of stroke in mice. J Neurosci Res 2007; 85:2433-40. [PMID: 17600836 PMCID: PMC2291148 DOI: 10.1002/jnr.21399] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The lipid mediator prostaglandin E2 (PGE2) exhibits diverse biologic activity in a variety of tissues. Four PGE2 receptor subtypes (EP1-4) are involved in various physiologic and pathophysiologic conditions, but differ in tissue distribution, ligand-binding affinity, and coupling to intracellular signaling pathways. To characterize the role of the EP1 receptor, physiologic parameters (mean arterial blood pressure, pH, blood gases PaO2 and PaCO2, and body temperature), cerebral blood flow (CBF), and neuronal cell death were studied in a middle cerebral artery occlusion model of ischemic stroke in wild-type (WT) and EP1 knockout (EP1-/-) mice. The right middle cerebral artery was occluded for 60 min, and absolute CBF was measured by [14C] iodoantipyrine autoradiography. The effect of EP1 receptor on oxidative stress in neuronal cultures was investigated. Although no differences were observed in the physiologic parameters, CBF was significantly (P < 0.01) higher in EP1-/- mice than in WT mice, suggesting a role for this receptor in physiologic and pathophysiologic control of vascular tone. Similarly, neuronal cultures derived from EP1-/- mice were more resistant (90.6 +/- 5.8% viability) to tert-butyl hydroperoxide-induced oxidative stress than neurons from WT mice (39.6 +/- 17.2% viability). The EP1 receptor antagonist SC-51089 and calcium channel blocker verapamil each attenuated the neuronal cell death induced by PGE2. Thus, the prostanoid EP1 receptor plays a significant role in regulating CBF and neuronal cell death. These findings suggest that pharmacologic modulation of the EP1 receptor might be a means to improve CBF and neuronal survival during ischemic stroke.
Collapse
Affiliation(s)
- Sofiyan Saleem
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rung-chi Li
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guo Wei
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sylvain Doré
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Correspondence to: Sylvain Doré, PhD, Associate Professor, Departments of Anesthesiology/Critical Care Medicine and Neuroscience, Johns Hopkins University, 720 Rutland Ave, Ross 365, Baltimore, MD 21205. E-mail:
| |
Collapse
|
50
|
Guan Y, Zhang Y, Wu J, Qi Z, Yang G, Dou D, Gao Y, Chen L, Zhang X, Davis LS, Wei M, Fan X, Carmosino M, Hao C, Imig JD, Breyer RM, Breyer MD. Antihypertensive effects of selective prostaglandin E2 receptor subtype 1 targeting. J Clin Invest 2007; 117:2496-505. [PMID: 17710229 PMCID: PMC1940235 DOI: 10.1172/jci29838] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 05/29/2007] [Indexed: 11/17/2022] Open
Abstract
Clinical use of prostaglandin synthase-inhibiting NSAIDs is associated with the development of hypertension; however, the cardiovascular effects of antagonists for individual prostaglandin receptors remain uncharacterized. The present studies were aimed at elucidating the role of prostaglandin E2 (PGE2) E-prostanoid receptor subtype 1 (EP1) in regulating blood pressure. Oral administration of the EP1 receptor antagonist SC51322 reduced blood pressure in spontaneously hypertensive rats. To define whether this antihypertensive effect was caused by EP1 receptor inhibition, an EP1-null mouse was generated using a "hit-and-run" strategy that disrupted the gene encoding EP1 but spared expression of protein kinase N (PKN) encoded at the EP1 locus on the antiparallel DNA strand. Selective genetic disruption of the EP1 receptor blunted the acute pressor response to Ang II and reduced chronic Ang II-driven hypertension. SC51322 blunted the constricting effect of Ang II on in vitro-perfused preglomerular renal arterioles and mesenteric arteriolar rings. Similarly, the pressor response to EP1-selective agonists sulprostone and 17-phenyltrinor PGE2 were blunted by SC51322 and in EP1-null mice. These data support the possibility of targeting the EP1 receptor for antihypertensive therapy.
Collapse
Affiliation(s)
- Youfei Guan
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yahua Zhang
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jing Wu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zhonghua Qi
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Guangrui Yang
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dou Dou
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yuansheng Gao
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lihong Chen
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaoyan Zhang
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Linda S. Davis
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mingfeng Wei
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xuefeng Fan
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Monica Carmosino
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Chuanming Hao
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John D. Imig
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Richard M. Breyer
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew D. Breyer
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, People’s Republic of China.
Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
Department of Pharmacology and
Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|