1
|
Sadeghzadeh J, Hosseini L, Mobed A, Zangbar HS, Jafarzadeh J, Pasban J, Shahabi P. The Impact of Cerebral Ischemia on Antioxidant Enzymes Activity and Neuronal Damage in the Hippocampus. Cell Mol Neurobiol 2023; 43:3915-3928. [PMID: 37740074 PMCID: PMC11407731 DOI: 10.1007/s10571-023-01413-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Cerebral ischemia and subsequent reperfusion, leading to reduced blood supply to specific brain areas, remain significant contributors to neurological damage, disability, and mortality. Among the vulnerable regions, the subcortical areas, including the hippocampus, are particularly susceptible to ischemia-induced injuries, with the extent of damage influenced by the different stages of ischemia. Neural tissue undergoes various changes and damage due to intricate biochemical reactions involving free radicals, oxidative stress, inflammatory responses, and glutamate toxicity. The consequences of these processes can result in irreversible harm. Notably, free radicals play a pivotal role in the neuropathological mechanisms following ischemia, contributing to oxidative stress. Therefore, the function of antioxidant enzymes after ischemia becomes crucial in preventing hippocampal damage caused by oxidative stress. This study explores hippocampal neuronal damage and enzymatic antioxidant activity during ischemia and reperfusion's early and late stages.
Collapse
Affiliation(s)
- Jafar Sadeghzadeh
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ahmad Mobed
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Jaber Jafarzadeh
- Department of Community Nutrition Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Jamshid Pasban
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Parviz Shahabi
- Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
2
|
Xiao L, Liang Y, Liu G, Lin F, Wen X. Identification of antioxidant peptides after digestion and absorption of isinglass by serum peptidomics and cellular antioxidant activity analysis. Food Funct 2023; 14:2249-2259. [PMID: 36762544 DOI: 10.1039/d2fo03847a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Isinglass, a dried product of the swim bladder, has been widely used in traditional Chinese medicine. This study attempts to identify natural antioxidant peptides after digestion and absorption of isinglass in vivo. The antioxidant effects of dietary isinglass were demonstrated by evaluating the activities of SOD, CAT and MDA contents in the mouse liver. Four novel antioxidant-related peptides (RLLWENGNLL, GSKAENPTNPGP, SPVPDLVPGSF and VPDLVPGSF) were screened based on serum peptidomics and amino acid composition. Furthermore, pretreating with four peptides significantly increased the cell viability, and SOD and CAT activities of AML12 cells with H2O2-mediated oxidative damage, meanwhile, significantly reduced the ROS level, MDA content and apoptosis rate and attenuated DNA damage. Therefore, it was concluded that pretreatment of the identified peptides had a protective effect on oxidatively damaged cells. This result can aid in the recognition of active peptides from isinglass consumption for potential application in nutraceuticals or functional ingredients in food.
Collapse
Affiliation(s)
- Lanfei Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Yongjun Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| | - Geng Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Fan Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| | - Xiaobo Wen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
From Molecule to Patient Rehabilitation: The Impact of Transcranial Direct Current Stimulation and Magnetic Stimulation on Stroke-A Narrative Review. Neural Plast 2023; 2023:5044065. [PMID: 36895285 PMCID: PMC9991485 DOI: 10.1155/2023/5044065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 03/04/2023] Open
Abstract
Stroke is a major health problem worldwide, with numerous health, social, and economic implications for survivors and their families. One simple answer to this problem would be to ensure the best rehabilitation with full social reintegration. As such, a plethora of rehabilitation programs was developed and used by healthcare professionals. Among them, modern techniques such as transcranial magnetic stimulation and transcranial direct current stimulation are being used and seem to bring improvements to poststroke rehabilitation. This success is attributed to their capacity to enhance cellular neuromodulation. This modulation includes the reduction of the inflammatory response, autophagy suppression, antiapoptotic effects, angiogenesis enhancement, alterations in the blood-brain barrier permeability, attenuation of oxidative stress, influence on neurotransmitter metabolism, neurogenesis, and enhanced structural neuroplasticity. The favorable effects have been demonstrated at the cellular level in animal models and are supported by clinical studies. Thus, these methods proved to reduce infarct volumes and to improve motor performance, deglutition, functional independence, and high-order cerebral functions (i.e., aphasia and heminegligence). However, as with every therapeutic method, these techniques can also have limitations. Their regimen of administration, the phase of the stroke at which they are applied, and the patients' characteristics (i.e., genotype and corticospinal integrity) seem to influence the outcome. Thus, no response or even worsening effects were obtained under certain circumstances both in animal stroke model studies and in clinical trials. Overall, weighing up risks and benefits, the new transcranial electrical and magnetic stimulation techniques can represent effective tools with which to improve the patients' recovery after stroke, with minimal to no adverse effects. Here, we discuss their effects and the molecular and cellular events underlying their effects as well as their clinical implications.
Collapse
|
4
|
Vera J, Lippmann K. Post-stroke epileptogenesis is associated with altered intrinsic properties of hippocampal pyramidal neurons leading to increased theta resonance. Neurobiol Dis 2021; 156:105425. [PMID: 34119635 DOI: 10.1016/j.nbd.2021.105425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Brain insults like stroke, trauma or infections often lead to blood-brain barrier-dysfunction (BBBd) frequently resulting into epileptogenesis. Affected patients suffer from seizures and cognitive comorbidities that are potentially linked to altered network oscillations. It has been shown that a hippocampal BBBd in rats leads to in vivo seizures and increased power at theta (3-8 Hz), an important type of network oscillations. However, the underlying cellular mechanisms remain poorly understood. At membrane potentials close to the threshold for action potentials (APs) a subpopulation of CA1 pyramidal cells (PCs) displays intrinsic resonant properties due to an interplay of the muscarine-sensitive K+-current (IM) and the persistent Na+-current (INaP). Such resonant neurons are more excitable and generate more APs when stimulated at theta frequencies, being strong candidates for contributing to hippocampal theta oscillations during epileptogenesis. We tested this hypothesis by characterizing changes in intrinsic properties of hippocampal PCs one week after post-stroke epileptogenesis, a model associated with BBBd, using slice electrophysiology and computer modeling. We find a higher proportion of resonant neurons in BBBd compared to sham animals (47 vs. 29%), accompanied by an increase in their excitability. In contrast, BBBd non-resonant neurons showed a reduced excitability, presented with lower impedance and more positive AP threshold. We identify an increase in IM combined with either a reduction in INaP or an increase in ILeak as possible mechanisms underlying the observed changes. Our results support the hypothesis that a higher proportion of more excitable resonant neurons in the hippocampus contributes to increased theta oscillations and an increased likelihood of seizures in a model of post-stroke epileptogenesis.
Collapse
Affiliation(s)
- Jorge Vera
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kristina Lippmann
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA 02543, USA; Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, D-04103 Leipzig, Germany.
| |
Collapse
|
5
|
Hodoodi F, Allah-Tavakoli M, Tajik F, Fatemi I, Moghadam Ahmadi A. The effect of head cooling and remote ischemic conditioning on patients with traumatic brain injury. iScience 2021; 24:102472. [PMID: 34169235 PMCID: PMC8207229 DOI: 10.1016/j.isci.2021.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/12/2020] [Accepted: 04/22/2021] [Indexed: 11/17/2022] Open
Abstract
Cerebral impairment caused by an external force to the head is known as traumatic brain injury (TBI). The aim of this study was to determine the role of local hypothermia and remote ischemic conditioning (RIC) on oxidative stress, inflammatory response after TBI, and other involved variables. The present study is a clinical trial on 84 patients with TBI who were divided into 4 groups. The head cooling for 1.5 to 6 hr was performed in the first three days after TBI. RIC intervention was performed within the golden time after TBI in the form of four 5-min cycles with full cuff and 5 min of emptying of cuff. The group receiving the head cooling technique recovered better than the group receiving the RIC technique. Generally, combination of the two interventions of head cooling and RIC techniques is more effective on the improvement of clinical status of patients than each separate technique. The effect of the head cooling method in controlling secondary injury in patients with TBI. The effect of the RIC method in controlling secondary injury in patients with TBI. Comparison of two interventions of head cooling and RIC. Evaluation of clinical and paraclinical parameters.
Collapse
Affiliation(s)
- Fardin Hodoodi
- Department of Physiology and Pharmacology, Schoole of Medicine, Rafsanjan University of Medical Science, Rafsanjan, Iran
| | - Mohammad Allah-Tavakoli
- Department of Physiology and Pharmacology, Schoole of Medicine, Rafsanjan University of Medical Science, Rafsanjan, Iran
- Physiology-pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Farzad Tajik
- Department of Clinical Research Sciences, Department of Medicine, Rafsanjan University of Medical Science, Rafsanjan, Iran
- Department of Neurology, Department of Medicine, Rafsanjan University of Medical Science, Rafsanjan, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Moghadam Ahmadi
- Department of Neurology, Department of Medicine, Rafsanjan University of Medical Science, Rafsanjan, Iran
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Corresponding author
| |
Collapse
|
6
|
Zong X, Dong Y, Li Y, Yang L, Li Y, Yang B, Tucker L, Zhao N, Brann DW, Yan X, Hu S, Zhang Q. Beneficial Effects of Theta-Burst Transcranial Magnetic Stimulation on Stroke Injury via Improving Neuronal Microenvironment and Mitochondrial Integrity. Transl Stroke Res 2020; 11:450-467. [PMID: 31515743 DOI: 10.1007/s12975-019-00731-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022]
Abstract
Recent work suggests that repetitive transcranial magnetic stimulation (rTMS) may beneficially alter the pathological status of several neurological disorders, although the mechanism remains unclear. The current study was designed to investigate the effects of rTMS on behavioral deficits and potential underlying mechanisms in a rat photothrombotic (PT) stroke model. From day 0 (3 h) to day 5 after the establishment of PT stroke, 5-min daily continuous theta-burst rTMS (3 pulses of 50 Hz repeated every 200 ms, intensity at 200 G) was applied on the infarct hemisphere. We report that rTMS significantly attenuated behavioral deficits and infarct volume after PT stroke. Further investigation demonstrated that rTMS remarkably reduced synaptic loss and neuronal degeneration in the peri-infarct cortical region. Mechanistic studies displayed that beneficial effects of rTMS were associated with robust suppression of reactive micro/astrogliosis and the overproduction of pro-inflammatory cytokines, as well as oxidative stress and oxidative neuronal damage especially at the late stage following PT stroke. Intriguingly, rTMS could effectively induce a shift in microglial M1/M2 phenotype activation and an A1 to A2 switch in astrocytic phenotypes. In addition, the release of anti-inflammatory cytokines and mitochondrial MnSOD in peri-infarct regions were elevated following rTMS treatment. Finally, rTMS treatment efficaciously preserved mitochondrial membrane integrity and suppressed the intrinsic mitochondrial caspase-9/3 apoptotic pathway within the peri-infarct cortex. Our novel findings indicate that rTMS treatment exerted robust neuroprotection when applied at least 3 h after ischemic stroke. The underlying mechanisms are partially associated with improvement of the local neuronal microenvironment by altering inflammatory and oxidative status and preserving mitochondrial integrity in the peri-infarct zone. These findings provide strong support for the promising therapeutic effect of rTMS against ischemic neuronal injury and functional deficits following stroke.
Collapse
Affiliation(s)
- Xuemei Zong
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yuyu Li
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China
| | - Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Baocheng Yang
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Lorelei Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Ningjun Zhao
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Xianliang Yan
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China
| | - Shuqun Hu
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China.
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
7
|
Deng W, Faiq MA, Liu C, Adi V, Chan KC. Applications of Manganese-Enhanced Magnetic Resonance Imaging in Ophthalmology and Visual Neuroscience. Front Neural Circuits 2019; 13:35. [PMID: 31156399 PMCID: PMC6530364 DOI: 10.3389/fncir.2019.00035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Understanding the mechanisms of vision in health and disease requires knowledge of the anatomy and physiology of the eye and the neural pathways relevant to visual perception. As such, development of imaging techniques for the visual system is crucial for unveiling the neural basis of visual function or impairment. Magnetic resonance imaging (MRI) offers non-invasive probing of the structure and function of the neural circuits without depth limitation, and can help identify abnormalities in brain tissues in vivo. Among the advanced MRI techniques, manganese-enhanced MRI (MEMRI) involves the use of active manganese contrast agents that positively enhance brain tissue signals in T1-weighted imaging with respect to the levels of connectivity and activity. Depending on the routes of administration, accumulation of manganese ions in the eye and the visual pathways can be attributed to systemic distribution or their local transport across axons in an anterograde fashion, entering the neurons through voltage-gated calcium channels. The use of the paramagnetic manganese contrast in MRI has a wide range of applications in the visual system from imaging neurodevelopment to assessing and monitoring neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this review, we present four major domains of scientific inquiry where MEMRI can be put to imperative use — deciphering neuroarchitecture, tracing neuronal tracts, detecting neuronal activity, and identifying or differentiating glial activity. We deliberate upon each category studies that have successfully employed MEMRI to examine the visual system, including the delivery protocols, spatiotemporal characteristics, and biophysical interpretation. Based on this literature, we have identified some critical challenges in the field in terms of toxicity, and sensitivity and specificity of manganese enhancement. We also discuss the pitfalls and alternatives of MEMRI which will provide new avenues to explore in the future.
Collapse
Affiliation(s)
- Wenyu Deng
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Muneeb A Faiq
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Crystal Liu
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Vishnu Adi
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Kevin C Chan
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States.,Department of Radiology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States.,Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States
| |
Collapse
|
8
|
Prophylactic Zinc and Therapeutic Selenium Administration Increases the Antioxidant Enzyme Activity in the Rat Temporoparietal Cortex and Improves Memory after a Transient Hypoxia-Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9416432. [PMID: 30258527 PMCID: PMC6146673 DOI: 10.1155/2018/9416432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022]
Abstract
In the cerebral hypoxia-ischemia rat model, the prophylactic administration of zinc can cause either cytotoxicity or preconditioning effect, whereas the therapeutic administration of selenium decreases the ischemic damage. Herein, we aimed to explore whether supplementation of low doses of prophylactic zinc and therapeutic selenium could protect from a transient hypoxic-ischemic event. We administrated zinc (0.2 mg/kg of body weight; ip) daily for 14 days before a 10 min common carotid artery occlusion (CCAO). After CCAO, we administrated sodium selenite (6 μg/kg of body weight; ip) daily for 7 days. In the temporoparietal cerebral cortex, we determined nitrites by the Griess method and lipid peroxidation by the Gerard-Monnier assay. qPCR was used to measure mRNA of nitric oxide synthases, antioxidant enzymes, chemokines, and their receptors. We measured the enzymatic activity of SOD and GPx and protein levels of chemokines and their receptors by ELISA. We evaluated long-term memory using the Morris-Water maze test. Our results showed that prophylactic administration of zinc caused a preconditioning effect, decreasing nitrosative/oxidative stress and increasing GPx and SOD expression and activity, as well as eNOS expression. The therapeutic administration of selenium maintained this preconditioning effect up to the late phase of hypoxia-ischemia. Ccl2, Ccr2, Cxcl12, and Cxcr4 were upregulated, and long-term memory was improved. Pyknotic cells were decreased suggesting prevention of neuronal cell death. Our results show that the prophylactic zinc and therapeutic selenium administration induces effective neuroprotection in the early and late phases after CCAO.
Collapse
|
9
|
Chiha W, LeVaillant CJ, Bartlett CA, Hewitt AW, Melton PE, Fitzgerald M, Harvey AR. Retinal genes are differentially expressed in areas of primary versus secondary degeneration following partial optic nerve injury. PLoS One 2018; 13:e0192348. [PMID: 29425209 PMCID: PMC5806857 DOI: 10.1371/journal.pone.0192348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/20/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Partial transection (PT) of the optic nerve is an established experimental model of secondary degeneration in the central nervous system. After a dorsal transection, retinal ganglion cells (RGCs) with axons in ventral optic nerve are intact but vulnerable to secondary degeneration, whereas RGCs in dorsal retina with dorsal axons are affected by primary and secondary injuries. Using microarray, we quantified gene expression changes in dorsal and ventral retina at 1 and 7 days post PT, to characterize pathogenic pathways linked to primary and secondary degeneration. RESULTS In comparison to uninjured retina Cryba1, Cryba2 and Crygs, were significantly downregulated in injured dorsal retina at days 1 and 7. While Ecel1, Timp1, Mt2A and CD74, which are associated with reducing excitotoxicity, oxidative stress and inflammation, were significantly upregulated. Genes associated with oxygen binding pathways, immune responses, cytokine receptor activity and apoptosis were enriched in dorsal retina at day 1 after PT. Oxygen binding and apoptosis remained enriched at day 7, as were pathways involved in extracellular matrix modification. Fewer changes were observed in ventral retina at day 1 after PT, most associated with the regulation of protein homodimerization activity. By day 7, apoptosis, matrix organization and signal transduction pathways were enriched. Discriminant analysis was also performed for specific functional gene groups to compare expression intensities at each time point. Altered expression of selected genes (ATF3, GFAP, Ecel1, TIMP1, Tp53) and proteins (GFAP, ECEL1 and ATF3) were semi-quantitatively assessed by qRT-PCR and immunohistochemistry respectively. CONCLUSION There was an acute and complex primary injury response in dorsal retina indicative of a dynamic interaction between neuroprotective and neurodegenerative events; ventral retina vulnerable to secondary degeneration showed a delayed injury response. Both primary and secondary injury resulted in the upregulation of numerous genes linked to RGC death, but differences in the nature of these changes strongly suggest that death occurred via different molecular mechanisms.
Collapse
Affiliation(s)
- Wissam Chiha
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Chrisna J. LeVaillant
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Carole A. Bartlett
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Alex W. Hewitt
- Lions Eye Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Phillip E. Melton
- Curtin/UWA Centre for Genetic Origins of Health and Disease, School of Biomedical Science, The University of Western Australia and Curtin University, Bentley, WA, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Alan R. Harvey
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA, Australia
- * E-mail:
| |
Collapse
|
10
|
Chan KC, Zhou IY, Liu SS, van der Merwe Y, Fan SJ, Hung VK, Chung SK, Wu WT, So KF, Wu EX. Longitudinal Assessments of Normal and Perilesional Tissues in Focal Brain Ischemia and Partial Optic Nerve Injury with Manganese-enhanced MRI. Sci Rep 2017; 7:43124. [PMID: 28230106 PMCID: PMC5322351 DOI: 10.1038/srep43124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/19/2017] [Indexed: 01/07/2023] Open
Abstract
Although manganese (Mn) can enhance brain tissues for improving magnetic resonance imaging (MRI) assessments, the underlying neural mechanisms of Mn detection remain unclear. In this study, we used Mn-enhanced MRI to test the hypothesis that different Mn entry routes and spatiotemporal Mn distributions can reflect different mechanisms of neural circuitry and neurodegeneration in normal and injured brains. Upon systemic administration, exogenous Mn exhibited varying transport rates and continuous redistribution across healthy rodent brain nuclei over a 2-week timeframe, whereas in rodents following photothrombotic cortical injury, transient middle cerebral artery occlusion, or neonatal hypoxic-ischemic brain injury, Mn preferentially accumulated in perilesional tissues expressing gliosis or oxidative stress within days. Intravitreal Mn administration to healthy rodents not only allowed tracing of primary visual pathways, but also enhanced the hippocampus and medial amygdala within a day, whereas partial transection of the optic nerve led to MRI detection of degrading anterograde Mn transport at the primary injury site and the perilesional tissues secondarily over 6 weeks. Taken together, our results indicate the different Mn transport dynamics across widespread projections in normal and diseased brains. Particularly, perilesional brain tissues may attract abnormal Mn accumulation and gradually reduce anterograde Mn transport via specific Mn entry routes.
Collapse
Affiliation(s)
- Kevin C Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,New York University (NYU) Langone Eye Center, NYU Langone Medical Center, Department of Ophthalmology, NYU School of Medicine, New York, New York, United States.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Iris Y Zhou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States
| | - Stanley S Liu
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yolandi van der Merwe
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shu-Juan Fan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Victor K Hung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sookja K Chung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wu-Tian Wu
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwok-Fai So
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.,School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
11
|
Whole brain analysis of postmortem density changes of grey and white matter on computed tomography by statistical parametric mapping. Eur Radiol 2016; 27:2317-2325. [DOI: 10.1007/s00330-016-4633-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/17/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
|
12
|
MARES J, NOHEJLOVA K, STOPKA P, ROKYTA R. Direct Measurement of Free Radical Levels in the Brain After Cortical Ischemia Induced by Photothrombosis. Physiol Res 2016; 65:853-860. [DOI: 10.33549/physiolres.933124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tissue ischemia is connected with the production of free radicals (FR). This study was designed to directly measure of the amount of FR in rat brains related to a photothrombotic ischemic event shortly after establishing the lesion. A model of left hemisphere photothrombosis ischemia was used in the experiment. Brains of animals from the experimental group were removed and placed in liquid N2 for 60 min after the green laser exposure, the control group brains, exposed to the photosensitive dye Rose Bengal (RB), were placed in liquid N2 for 80 min after RB application, naïve control brains were also briefly stored in liquid N2. Spectroscopy of electron paramagnetic (spin) resonance was used to directly measure FR (hydroxyl (OH●) and nitroxyl (NO●). Compared to naïve controls, both the ischemia and RB groups had significantly higher levels of OH●, however, there were no differences between them. Comparison of hemispheres, i.e. with and without ischemia, in the experimental group did not show any significant difference in OH●. NO● were elevated in the ischemia and RB groups compare to naïve controls. Higher levels of NO● were found in hemispheres with ischemia compared to unexposed hemispheres. Increases in OH● were probably associated with the action of RB itself in this model of ischemia. Increases in NO● were closely related to the pathogenesis of photothrombotic ischemia and could be related to the activity of nitric oxide synthases.
Collapse
Affiliation(s)
| | - K. NOHEJLOVA
- Department of Normal Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University, Czech Republic
| | | | | |
Collapse
|
13
|
Ebselen reduces autophagic activation and cell death in the ipsilateral thalamus following focal cerebral infarction. Neurosci Lett 2015; 600:206-12. [DOI: 10.1016/j.neulet.2015.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/19/2022]
|
14
|
Lavrnja I, Parabucki A, Brkic P, Jovanovic T, Dacic S, Savic D, Pantic I, Stojiljkovic M, Pekovic S. Repetitive hyperbaric oxygenation attenuates reactive astrogliosis and suppresses expression of inflammatory mediators in the rat model of brain injury. Mediators Inflamm 2015; 2015:498405. [PMID: 25972624 PMCID: PMC4417949 DOI: 10.1155/2015/498405] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/05/2015] [Accepted: 03/08/2015] [Indexed: 01/16/2023] Open
Abstract
The exact mechanisms by which treatment with hyperbaric oxygen (HBOT) exerts its beneficial effects on recovery after brain injury are still unrevealed. Therefore, in this study we investigated the influence of repetitive HBOT on the reactive astrogliosis and expression of mediators of inflammation after cortical stab injury (CSI). CSI was performed on male Wistar rats, divided into control, sham, and lesioned groups with appropriate HBO. The HBOT protocol was as follows: 10 minutes of slow compression, 2.5 atmospheres absolute (ATA) for 60 minutes, and 10 minutes of slow decompression, once a day for 10 consecutive days. Data obtained using real-time polymerase chain reaction, Western blot, and immunohistochemical and immunofluorescence analyses revealed that repetitive HBOT applied after the CSI attenuates reactive astrogliosis and glial scarring, and reduces expression of GFAP (glial fibrillary acidic protein), vimentin, and ICAM-1 (intercellular adhesion molecule-1) both at gene and tissue levels. In addition, HBOT prevents expression of CD40 and its ligand CD40L on microglia, neutrophils, cortical neurons, and reactive astrocytes. Accordingly, repetitive HBOT, by prevention of glial scarring and limiting of expression of inflammatory mediators, supports formation of more permissive environment for repair and regeneration.
Collapse
Affiliation(s)
- Irena Lavrnja
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
| | - Ana Parabucki
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
| | - Predrag Brkic
- Institute of Medical Physiology “Richard Burian”, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Tomislav Jovanovic
- Institute of Medical Physiology “Richard Burian”, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Centre for Hyperbaric Medicine, 11040 Belgrade, Serbia
| | - Sanja Dacic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11001 Belgrade, Serbia
| | - Danijela Savic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
| | - Igor Pantic
- Institute of Medical Physiology “Richard Burian”, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirjana Stojiljkovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Pekovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
15
|
Ruszkiewicz J, Albrecht J. Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem Int 2015; 88:66-72. [PMID: 25576182 DOI: 10.1016/j.neuint.2014.12.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/21/2014] [Accepted: 12/29/2014] [Indexed: 12/30/2022]
Abstract
Oxidative and nitrosative stress (ONS) contributes to the pathogenesis of most brain maladies, and the magnitude of ONS is related to the ability of cellular antioxidants to neutralize the accumulating reactive oxygen and nitrogen species (ROS/RNS). While the major ROS/RNS scavengers and regenerators of bio-oxidized molecules, superoxide dysmutases (SODs), glutathione (GSH), thioredoxin (Trx) and peroxiredoxin (Prx), are distributed in all cellular compartments. This review specifically focuses on the role of the systems operating in mitochondria. There is a growing consensus that the mitochondrial SOD isoform - SOD2 and GSH are critical for the cellular antioxidant defense. Variable changes of the expression or activities of one or more of the mitochondrial antioxidant systems have been documented in the brains derived from human patients and/or in animal models of neurodegenerative diseases (Alzheimer's disease, Parkinson's disease), cerebral ischemia, toxic brain cell damage associated with overexposure to mercury or excitotoxins, or hepatic encephalopathy. In many cases, ambiguity of the responses of the different antioxidant systems in one and the same disease needs to be more conclusively evaluated before the balance of the changes is viewed as beneficial or detrimental. Modulation of the mitochondrial antioxidant systems may in the future become a target of antioxidant therapy.
Collapse
Affiliation(s)
- Joanna Ruszkiewicz
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
16
|
Lee JC, Won MH. Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils. Anat Cell Biol 2014; 47:149-56. [PMID: 25276473 PMCID: PMC4178189 DOI: 10.5115/acb.2014.47.3.149] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/20/2014] [Indexed: 11/27/2022] Open
Abstract
Experimentally transient global cerebral ischemia using animal models have been thoroughly studied and numerous reports suggest the involvement of oxidative stress in the pathogenesis of neuronal death in ischemic lesions. In animal models, during the reperfusion period after ischemia, increased oxygen supply results in the overproduction of reactive oxygen species (ROS), which are involved in the process of cell death. ROS, such as superoxide anions, hydroxyl free radicals, hydrogen peroxide and nitric oxide are produced as a consequence of metabolic reactions and central nervous system activity. These reactive species are directly involved in the oxidative damage of cellular macromolecules such as nucleic acids, lipids and proteins in ischemic tissues, which can lead to cell death. Antioxidant enzymes are believed to be among the major mechanisms by which cells counteract the deleterious effect of ROS after cerebral ischemia. Consequently, antioxidant strategies have been long suggested as a therapy for experimental ischemic stroke; however, clinical trials have not yet been able to promote the translation of this concept into patient treatment regimens. This article focuses on the contribution of oxidative stress or antioxidants to the post-ischemic neuronal death following transient global cerebral ischemia by using a gerbil model.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
17
|
Bihemispheric ischemic tolerance induced by a unilateral focal cortical lesion. Brain Res 2014; 1570:54-60. [DOI: 10.1016/j.brainres.2014.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/14/2014] [Accepted: 05/05/2014] [Indexed: 11/15/2022]
|
18
|
Selective neuronal loss in ischemic stroke and cerebrovascular disease. J Cereb Blood Flow Metab 2014; 34:2-18. [PMID: 24192635 PMCID: PMC3887360 DOI: 10.1038/jcbfm.2013.188] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/23/2023]
Abstract
As a sequel of brain ischemia, selective neuronal loss (SNL)-as opposed to pannecrosis (i.e. infarction)-is attracting growing interest, particularly because it is now detectable in vivo. In acute stroke, SNL may affect the salvaged penumbra and hamper functional recovery following reperfusion. Rodent occlusion models can generate SNL predominantly in the striatum or cortex, showing that it can affect behavior for weeks despite normal magnetic resonance imaging. In humans, SNL in the salvaged penumbra has been documented in vivo mainly using positron emission tomography and (11)C-flumazenil, a neuronal tracer validated against immunohistochemistry in rodent stroke models. Cortical SNL has also been documented using this approach in chronic carotid disease in association with misery perfusion and behavioral deficits, suggesting that it can result from chronic or unstable hemodynamic compromise. Given these consequences, SNL may constitute a novel therapeutic target. Selective neuronal loss may also develop at sites remote from infarcts, representing secondary 'exofocal' phenomena akin to degeneration, potentially related to poststroke behavioral or mood impairments again amenable to therapy. Further work should aim to better characterize the time course, behavioral consequences-including the impact on neurological recovery and contribution to vascular cognitive impairment-association with possible causal processes such as microglial activation, and preventability of SNL.
Collapse
|
19
|
Parabucki AB, Bozić ID, Bjelobaba IM, Lavrnja IC, Brkić PD, Jovanović TS, Savić DZ, Stojiljković MB, Peković SM. Hyperbaric oxygenation alters temporal expression pattern of superoxide dismutase 2 after cortical stab injury in rats. Croat Med J 2013; 53:586-97. [PMID: 23275324 PMCID: PMC3547292 DOI: 10.3325/cmj.2012.53.586] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aim To evaluate the effect of hyperbaric oxygen therapy (HBOT) on superoxide dismutase 2 (SOD2) expression pattern after the cortical stab injury (CSI). Methods CSI was performed on 88 male Wistar rats, divided into control, sham, lesioned, and HBO groups. HBOT protocol was the following: pressure applied was 2.5 absolute atmospheres, for 60 minutes, once a day for consecutive 3 or 10 days. The pattern of SOD2 expression and cellular localization was analyzed using real-time polymerase chain reaction, Western blot, and double-label fluorescence immunohistochemistry. Neurons undergoing degeneration were visualized with Fluoro-Jade®B. Results CSI induced significant transient increase in SOD2 protein levels at day 3 post injury, which was followed by a reduction toward control levels at post-injury day 10. At the same time points, mRNA levels for SOD2 in the injured cortex were down-regulated. Exposure to HBO for 3 days considerably down-regulated SOD2 protein levels in the injured cortex, while after 10 days of HBOT an up-regulation of SOD2 was observed. HBOT significantly increased mRNA levels for SOD2 at both time points compared to the corresponding L group, but they were still lower than in controls. Double immunofluorescence staining revealed that 3 days after CSI, up-regulation of SOD2 was mostly due to an increased expression in reactive astrocytes surrounding the lesion site. HBOT attenuated SOD2 expression both in neuronal and astroglial cells. Fluoro-Jade®B labeling showed that HBOT significantly decreased the number of degenerating neurons in the injured cortex. Conclusion HBOT alters SOD2 protein and mRNA levels after brain injury in a time-dependent manner.
Collapse
Affiliation(s)
- Ana B Parabucki
- Department of Neurobiology, Institute for Biological Research Sinisa Stankovic, University of Belgrade, Blvd Despota Stefana 142, 11060 Belgrade, Serbia.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bonova P, Burda J, Danielisova V, Nemethova M, Gottlieb M. Development of a pattern in biochemical parameters in the core and penumbra during infarct evolution after transient MCAO in rats. Neurochem Int 2013; 62:8-14. [DOI: 10.1016/j.neuint.2012.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/04/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
|
21
|
Cechetti F, Worm PV, Lovatel G, Moysés F, Siqueira IR, Netto CA. Environmental enrichment prevents behavioral deficits and oxidative stress caused by chronic cerebral hypoperfusion in the rat. Life Sci 2012; 91:29-36. [PMID: 22683434 DOI: 10.1016/j.lfs.2012.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 04/25/2012] [Accepted: 05/19/2012] [Indexed: 12/31/2022]
Abstract
AIMS The aim of the present study was to evaluate the neuroprotective effects of environmental enrichment (EE), assessed by cognitive activity in the Morris water maze, and on brain oxidative status, through measurement of macromolecules damage, lipid peroxidation levels, total cellular thiols and antioxidant enzymes in hippocampus, striatum and cerebral cortex. MAIN METHODS Adult male Wistar rats were submitted to the modified permanent bilateral occlusion of the common carotid arteries (2VO) method, with right common carotid artery being first occluded, and tested three months after the ischemic event. Cognitive and physical stimulation, named Environmental Enrichment, consisted of one-hour sessions run 3 times per week during 12weeks, following two different stimulation protocols: pre-ischemia and pre+post-ischemia. Rats were then tested for both reference and working spatial memory tasks in the water maze and later sacrificed for measurement of oxidative stress parameters. KEY FINDINGS A significant cognitive deficit was found in both spatial tasks after hypoperfusion; this effect was reversed in the 2VO enriched group. Moreover, hippocampal oxidative damage and antioxidant enzyme activity were decreased by environmental enrichment. SIGNIFICANCE These results suggest that both stimulation protocols exert a neuroprotective effect against the cognitive impairment and the reduction of biomarkers for oxidative damage caused by chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Fernanda Cechetti
- Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil.
| | | | | | | | | | | |
Collapse
|
22
|
Mršić-Pelčić J, Pilipović K, Pelčić G, Vitezić D, Župan G. Temporal and regional changes of superoxide dismutase and glutathione peroxidase activities in rats exposed to focal cerebral ischemia. Cell Biochem Funct 2012; 30:597-603. [PMID: 22570305 DOI: 10.1002/cbf.2839] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/17/2012] [Accepted: 04/12/2012] [Indexed: 12/27/2022]
Abstract
Reactive oxygen species are important cause of tissue injury during cerebral ischemia and reperfusion (I/R). Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) are intracellular enzymes responsible for endogenous antioxidant defense of tissues affected by I/R. The aim of this study was to examine temporal and regional changes of SOD and GSH-Px activities in animals exposed to transient focal cerebral ischemia. Male Wistar Hannover rats were subjected to the right middle cerebral artery occlusion for 2 h. The animals were sacrificed immediately, 0·5, 1, 2, 3, 6, 24, 48, 72 or 168 h after ischemic procedure. SOD and GSH-Px activities were determined spectrophotometrically in the hippocampus and parietal cortex, both unilaterally and contralaterally to the occlusion. Sham-operated animals were used as the control group. Our results indicated that transient focal cerebral ischemia causes significant changes in SOD activities in the hippocampus and parietal cortex such as in GSH-Px activities in the parietal cortex, unilaterally and contralaterally to the lesion in rats during different reperfusion periods. Statistically significant activation of GSH-Px was registered neither in the right nor in the left hippocampus of ischemic animals.
Collapse
Affiliation(s)
- Jasenka Mršić-Pelčić
- Department of Pharmacology, School of Medicine, University of Rijeka, Rijeka, Croatia.
| | | | | | | | | |
Collapse
|
23
|
The relationship between manganism and the workplace environment in China. Int J Occup Med Environ Health 2012; 25:501-5. [DOI: 10.2478/s13382-012-0049-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/15/2012] [Indexed: 11/20/2022] Open
Abstract
AbstractManganese is a trace element and a cofactor of many enzymes, so it is essential for physiologic functioning, but it is also a neurotoxin at high doses. Manganism is most often caused by occupational exposure. It is manifested by a myriad of signs and symptoms ranging from the neurasthenia syndrome, such as headache and dizziness, to the Parkinson-like syndrome, depending on the blood manganese levels as well as the duration of exposure. We are reporting a case of manganism using both clinical and occupational hygiene investigation methods. The patient presented the neurasthenia syndrome accompanied by hypertonicity of arm muscles and was diagnosed to have mild chronic manganism. Finally, the patient was discharged from the hospital after the treatment had improved her condition. In China, there are many chronic manganese cases, partly due to a rapid industrial development with great use of Mn and the low self-protection awareness among the workers and the factories management that cannot catch up with the speed of the economical development. Therefore, factories are responsible for improving the conditions at the workplace.
Collapse
|
24
|
Rubovitch V, Ten-Bosch M, Zohar O, Harrison CR, Tempel-Brami C, Stein E, Hoffer BJ, Balaban CD, Schreiber S, Chiu WT, Pick CG. A mouse model of blast-induced mild traumatic brain injury. Exp Neurol 2011; 232:280-9. [PMID: 21946269 DOI: 10.1016/j.expneurol.2011.09.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 09/01/2011] [Accepted: 09/09/2011] [Indexed: 01/10/2023]
Abstract
Improvised explosive devices (IEDs) are one of the main causes for casualties among civilians and military personnel in the present war against terror. Mild traumatic brain injury from IEDs induces various degrees of cognitive, emotional and behavioral disturbances but knowledge of the exact brain pathophysiology following exposure to blast is poorly understood. The study was aimed at establishing a murine model for a mild BI-TBI that isolates low-level blast pressure effects to the brain without systemic injuries. An open-field explosives detonation was used to replicate, as closely as possible, low-level blast trauma in the battlefield or at a terror-attack site. No alterations in basic neurological assessment or brain gross pathology were found acutely in the blast-exposed mice. At 7 days post blast, cognitive and behavioral tests revealed significantly decreased performance at both 4 and 7 m distance from the blast (5.5 and 2.5 PSI, respectively). At 30 days post-blast, clear differences were found in animals at both distances in the object recognition test, and in the 7 m group in the Y maze test. Using MRI, T1 weighted images showed an increased BBB permeability 1 month post-blast. DTI analysis showed an increase in fractional anisotropy (FA) and a decrease in radial diffusivity. These changes correlated with sites of up-regulation of manganese superoxide dismutase 2 in neurons and CXC-motif chemokine receptor 3 around blood vessels in fiber tracts. These results may represent brain axonal and myelin abnormalities. Cellular and biochemical studies are underway in order to further correlate the blast-induced cognitive and behavioral changes and to identify possible underlying mechanisms that may help develop treatment- and neuroprotective modalities.
Collapse
Affiliation(s)
- Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang J, Wu EX. Manganese-enhanced MRI of hypoxic-ischemic brain injuries using Mn-DPDP. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:4775-8. [PMID: 19964849 DOI: 10.1109/iembs.2009.5334210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, Mn-dipyridoxaldiphosphate (MnDPDP), a clinically approved manganese contrast agent for hepatic and pancreatic imaging, was demonstrated for the first time for manganese-enhanced MRI (MEMRI) in brains of normal young rats (n = 4) and rats with hypoxic-ischemic (H-I) insult at postnatal day 7 (n = 8). After a single intraperitoneal injection of low dosage with 0.1micromol/g in postnatal 14 days, 2D T1-weighted image (T1WIs), T1 maps, T2-weighted images (T2WIs) and T2 maps were acquired at 7 Tesla 1 day before, 1 day and 7 days after MnDPDP injection. The image contrast changes induced by MnDPDP appeared as the hyperintensity in T1WIs and the hypointensity in T2WIs. T1 and T2 values decreased in the regions of Mn enhancement. Such enhancement presented as a delayed pattern that was more pronounced in 7 day after MnDPDP injection, suggesting the sustained Mn accumulation due to MnDPDP. Moreover, the MnDPDP enhancement in H-I brains was more pronounced in the lesion sites and was easily detectable in T1WI, T1 map, T2WI and T2 map. The results demonstrated here support the possibility of using MnDPDP as a 'slow release' Mn(2+) for clinical diagnosis of various neuropathologies.
Collapse
Affiliation(s)
- Jian Yang
- Medical Imaging Center of the First Affiliated Hospital, School of Medicine of Xi'an Jiaotong University Xi'an, Shannxi Province, China.
| | | |
Collapse
|
26
|
Sidoryk-Węgrzynowicz M, Lee E, Albrecht J, Aschner M. Manganese disrupts astrocyte glutamine transporter expression and function. J Neurochem 2009; 110:822-30. [PMID: 19457077 PMCID: PMC2756186 DOI: 10.1111/j.1471-4159.2009.06172.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glutamine (Gln) plays an important role in brain energy metabolism and as a precursor for the synthesis of neurotransmitter glutamate and GABA. Previous studies have shown that astrocytic Gln transport is impaired following manganese (Mn) exposure. The present studies were performed to identify the transport routes and the respective Gln transporters contributing to the impairment. Rat neonatal cortical primary astrocytes treated with Mn displayed a significant decrease in Gln uptake mediated by the principle Gln transporting systems, N and ASC. Moreover, systems N, ASC and L were less efficient in Gln export after Mn treatment. Mn treatment caused a significant reduction of both in mRNA expression and protein levels of SNAT3 (system N), SNAT2 (system A) and LAT2 (system L), and lowered the protein but not mRNA expression of ASCT2 (system ASC). Mn exposure did not affect the expression of the less abundant systems N transporter SNAT5 and the system L transporter LAT1, at either the mRNA or protein level. Hence, Mn-induced decrease of inward and outward Gln transport can be largely ascribed to the loss of the specific Gln transporters. Consequently, deregulation of glutamate homeostasis and its diminished availability to neurons may lead to impairment in glutamatergic neurotransmission, a phenomenon characteristic of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
| | - Eunsook Lee
- Department of Neurology, Meharry Medical College, Nashville, Tennessee, USA
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Michael Aschner
- Departments of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Kennedy Center for Research on human Development, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
27
|
Chan KC, Cai KX, Su HX, Hung VK, Cheung MM, Chiu CT, Guo H, Jian Y, Chung SK, Wu WT, Wu EX. Early detection of neurodegeneration in brain ischemia by manganese-enhanced MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2008:3884-7. [PMID: 19163561 DOI: 10.1109/iembs.2008.4650058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study aims to employ in vivo manganese-enhanced MRI (MEMRI) to detect neurodegenerative changes in two models of brain ischemia, photothrombotic cortical injury (PCI) and transient middle cerebral artery occlusion (MCAO) in rodents. After systemic Mn(2+) injection to both ischemic models, a close pattern of T1-weighted hyperintensity was observed throughout different brain regions in comparison to the distribution of GFAP, MnSOD and GS immunoreactivities, whereby conventional MRI could hardly detect such. In addition, the infarct volumes in the posterior parts of the brain had significantly reduced after Mn(2+) injection to the MCAO model. It is suggested that exogenous Mn(2+) injection may provide enhanced MEMRI detection of oxidative stress and gliosis early after brain ischemia. Manganese may also mediate infarctions at remote brain regions in transient focal cerebral ischemia before delayed secondary damage takes place.
Collapse
Affiliation(s)
- Kevin C Chan
- Laboratory of Biomedical Imaging and Signal Processing and the Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ying YLM, Balaban CD. Regional distribution of manganese superoxide dismutase 2 (Mn SOD2) expression in rodent and primate spiral ganglion cells. Hear Res 2009; 253:116-24. [PMID: 19376215 DOI: 10.1016/j.heares.2009.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/02/2009] [Accepted: 04/02/2009] [Indexed: 12/11/2022]
Abstract
Manganese superoxide dismutase 2 (SOD2) is a key metabolic anti-oxidant enzyme for detoxifying free radicals inside mitochondria. This study documents a gradient in expression of SOD2 by spiral ganglion cells in basal versus apical turn of cochlea that is consistent with differential vulnerability of high frequency hearing to free radical damage. Immunohistochemical methods were used to identify distribution of SOD2 in temporal bone sections from mice, rats, macaques, and humans. In mice and rats, both the proportion of SOD2 immunopositive type 1 spiral ganglion cells and the intensity of immunoreactivity were elevated near cochlear apex. In macaques and humans, the proportion of SO2 immunopositive spiral ganglion cells was equal across cochlear turn, but the intensity of immunoreactivity remained highest for ganglion cells near cochlear apex. Strong SOD2 immunoreactivity was also observed in human type 1 spiral ganglion cells. The average area density of SOD2 immunoreactivity in ganglion cells for each species and cochlear turn showed an allometric relationship with body weight, which is consistent with a conserved basal metabolic characteristic. These findings suggest that spiral ganglion cell responses to ROS exposure may vary along cochlear spiral with lower response capacity at cochlear base contributing to cumulative susceptibility to high frequency hearing loss.
Collapse
Affiliation(s)
- Yu-Lan Mary Ying
- Department of Otolaryngology, University of Pittsburgh, 200 Lothrop Street, Suite # 500, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
29
|
Pereira LO, Nabinger PM, Strapasson ACP, Nardin P, Gonçalves CAS, Siqueira IR, Netto CA. Long-term effects of environmental stimulation following hypoxia–ischemia on the oxidative state and BDNF levels in rat hippocampus and frontal cortex. Brain Res 2009; 1247:188-95. [DOI: 10.1016/j.brainres.2008.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/30/2008] [Accepted: 10/04/2008] [Indexed: 10/21/2022]
|
30
|
Widerøe M, Olsen Ø, Pedersen TB, Goa PE, Kavelaars A, Heijnen C, Skranes J, Brubakk AM, Brekken C. Manganese-enhanced magnetic resonance imaging of hypoxic-ischemic brain injury in the neonatal rat. Neuroimage 2008; 45:880-90. [PMID: 19138750 DOI: 10.1016/j.neuroimage.2008.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 11/28/2022] Open
Abstract
Hypoxic-ischemic injury (HI) to the neonatal brain results in delayed neuronal death with accompanying inflammation for days after the initial insult. The aim of this study was to depict delayed neuronal death after HI using Manganese-enhanced MRI (MEMRI) and to evaluate the specificity of MEMRI in detection of cells related to injury by comparison with histology and immunohistochemistry. 7-day-old Wistar rat pups were subjected to HI (occlusion of right carotid artery and 8% O(2) for 75 min). 16 HI (HI+Mn) and 6 sham operated (Sham+Mn) pups were injected with MnCl(2) (100 mM, 40 mg/kg) and 10 HI-pups (HI+Vehicle) received NaCl i.p. 6 h after HI. 3D T(1)-weighted images (FLASH) and 2D T(2)-maps (MSME) were acquired at 7 T 1, 3 and 7 days after HI. Pups were sacrificed after MR-scanning and brain slices were cut and stained for CD68, GFAP, MAP-2, Caspase-3 and Fluorojade B. No increased manganese-enhancement (ME) was detectable in the injured hemisphere on day 1 or 3 when immunohistochemistry showed massive ongoing neuronal death. 7 days after HI, increased ME was seen on T(1)-w images in parts of the injured cortex, hippocampus and thalamus among HI+Mn pups, but not among HI+Vehicle or Sham+Mn pups. Comparison with immunohistochemistry showed delayed neuronal death and inflammation in these areas with late ME. Areas with increased ME corresponded best with areas with high concentrations of activated microglia. Thus, late manganese-enhancement seems to be related to accumulation of manganese in activated microglia in areas of neuronal death rather than depicting neuronal death per se.
Collapse
Affiliation(s)
- Marius Widerøe
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang J, Khong PL, Wang Y, Chu ACY, Ho SL, Cheung PT, Wu EX. Manganese-enhanced MRI detection of neurodegeneration in neonatal hypoxic-ischemic cerebral injury. Magn Reson Med 2008; 59:1329-39. [DOI: 10.1002/mrm.21484] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Stroev SA, Tjulkova EI, Tugoy IA, Gluschenko TS, Samoilov MO, Pelto-Huikko M. Effects of preconditioning by mild hypobaric hypoxia on the expression of manganese superoxide dismutase in the rat hippocampus. NEUROCHEM J+ 2007. [DOI: 10.1134/s1819712407040083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Ebselen attenuates oxidative DNA damage and enhances its repair activity in the thalamus after focal cortical infarction in hypertensive rats. Brain Res 2007; 1181:83-92. [DOI: 10.1016/j.brainres.2007.08.072] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/17/2007] [Accepted: 08/25/2007] [Indexed: 12/20/2022]
|
34
|
Post-conditioning exacerbates the MnSOD immune-reactivity after experimental cerebral global ischemia and reperfusion in the rat brain hippocampus. Cell Biol Int 2007; 32:128-35. [PMID: 17936646 DOI: 10.1016/j.cellbi.2007.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 06/25/2007] [Accepted: 08/27/2007] [Indexed: 11/23/2022]
Abstract
This study monitored the effects of sub-lethal ischemia (post-conditioning) applied after a previous ischemic attack by way of the MnSOD immune-reactivity examined in CA1 and dentate gyrus of the rat hippocampus. The experimental 10 min transient cerebral ischemia was followed by 2 days of reperfusion, the rats then underwent a second ischemia (4 or 6 min post-conditioning). MnSOD immune-reactivity was evaluated after 5 h, 1 and 2 days. Results obtained by computer microdensitometric image analysis indicated that 4 min of ischemic post-conditioning caused higher MnSOD immune-reactivity than 6 min. However, higher viability of CA1 neurons after stronger (6 min) post-conditioning when production of MnSOD is lower, as well as differences between MnSOD in CA1 and dentate gyrus indicates another mechanism switching pro-apoptotic destination of CA1 neurons to anti-apoptotic.
Collapse
|
35
|
Bayir H, Kagan VE, Clark RSB, Janesko-Feldman K, Rafikov R, Huang Z, Zhang X, Vagni V, Billiar TR, Kochanek PM. Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury. J Neurochem 2007; 101:168-81. [PMID: 17394464 DOI: 10.1111/j.1471-4159.2006.04353.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Manganese superoxide dismutase (MnSOD) provides the first line of defense against superoxide generated in mitochondria. SOD competes with nitric oxide for reaction with superoxide and prevents generation of peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. Thus, sufficient amounts of catalytically competent MnSOD are required to prevent mitochondrial damage. Increased nitrotyrosine immunoreactivity has been reported after traumatic brain injury (TBI); however, the specific protein targets containing modified tyrosine residues and functional consequence of this modification have not been identified. In this study, we show that MnSOD is a target of tyrosine nitration that is associated with a decrease in its enzymatic activity after TBI in mice. Similar findings were obtained in temporal lobe cortical samples obtained from TBI cases versus control patients who died of causes not related to CNS trauma. Increased nitrotyrosine immunoreactivity was detected at 2 h and 24 h versus 72 h after experimental TBI and co-localized with the neuronal marker NeuN. Inhibition and/or genetic deficiency of neuronal nitric oxide synthase (nNOS) but not endothelial nitric oxide synthase (eNOS) attenuated MnSOD nitration after TBI. At 24 h after TBI, there was predominantly polymorphonuclear leukocytes accumulation in mouse brain whereas macrophages were the predominant inflammatory cell type at 72 h after injury. However, a selective inhibitor or genetic deficiency of inducible nitric oxide synthase (iNOS) failed to affect MnSOD nitration. Nitration of MnSOD is a likely consequence of peroxynitrite within the intracellular milieu of neurons after TBI. Nitration and inactivation of MnSOD could lead to self-amplification of oxidative stress in the brain progressively enhancing peroxynitrite production and secondary damage.
Collapse
Affiliation(s)
- Hülya Bayir
- Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Urbach A, Bruehl C, Witte OW. Microarray‐based long‐term detection of genes differentially expressed after cortical spreading depression. Eur J Neurosci 2006; 24:841-56. [PMID: 16930413 DOI: 10.1111/j.1460-9568.2006.04862.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spreading depression (SD) is a slowly propagating wave of neuronal depolarization altering ion homeostasis, blood flow and energy metabolism without causing irreversible damage of the tissue. As SD has been implicated in several neurological diseases including migraine and stroke, understanding these disorders requires systematic knowledge of the processes modified by SD. Thus, we induced repetitive SD in the rat cerebral cortex by topical application of 3 m KCl for approximately 2 h and evaluated the kinetics of SD-induced changes in cortical gene expression for up to 30 days using Affymetrix RAE230A arrays. The temporal profile showed a rapid expression of immediate early genes, genes associated with inflammation, metabolism, stress and DNA repair, ion transport, and genes that play a role in growth/differentiation. Stress-response genes could still be detected after 24 h. At this time, induced genes were mainly related to the cell membrane and adhesion, or to the cytoskeleton. A subset of genes was still affected even 30 days after SD. Real-time polymerase chain reactions and immunohistochemistry confirmed the microarray results for several of the transcripts. Our findings demonstrate a temporal pattern of gene expression which might promote tissue remodeling and cortical plasticity, and might probably account for the mediation of neuronal tolerance towards subsequent ischemia.
Collapse
Affiliation(s)
- Anja Urbach
- Department of Neurology, Friedrich-Schiller-University, Erlanger Allee 101, 07747 Jena, Germany.
| | | | | |
Collapse
|
37
|
Blankenberg FG, Kalinyak J, Liu L, Koike M, Cheng D, Goris ML, Green A, Vanderheyden JL, Tong DC, Yenari MA. 99mTc-HYNIC-annexin V SPECT imaging of acute stroke and its response to neuroprotective therapy with anti-Fas ligand antibody. Eur J Nucl Med Mol Imaging 2006; 33:566-74. [PMID: 16477433 DOI: 10.1007/s00259-005-0046-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE The first aim of the study was to determine whether (99m)Tc-HYNIC-annexin V, a marker of cellular stress and apoptosis, can detect ischemic injury in patients with acute stroke. Secondly, we wished to test radiolabeled annexin's ability to monitor therapy in a rodent model of focal ischemic injury. METHODS SPECT imaging of patients was performed between 1 and 2 h after intravenous injection of 30 mCi (1,110 MBq) of tracer. Eight MFL4 (anti-FasL) antibody-treated (400 microg i.p. days 0 and 3) and 21 control adult male Sprague-Dawley rats underwent small animal SPECT imaging with 5-10 mCi (185-370 MBq) of tracer, 1 and 6 days after a 2-h intraluminal thread occlusion of the left middle cerebral artery. RESULTS Two patients with acute stroke had regions of multifocal annexin uptake that correlated with sites of restricted diffusion on MRI. Anti-FasL antibody treatment significantly reduced annexin uptake by 92% with a 60% decrease in the number of caspase-8 staining (apoptotic) neurons on day 1. On day 6, treated animals had an 80% reduction in tracer uptake with a 75% decrease in infarct size as compared with controls. Annexin uptake in controls and treated animals (day 6) linearly correlated with infarct size (r (2)=0.603, p=0.0036) and the number of TUNEL-positive (apoptotic) nuclei (r (2)=0.728, p=0.00084). CONCLUSION Annexin imaging shows foci of increased uptake at sites of ischemic injury in patients with acute stroke. Annexin imaging can assess the effects of therapy for ischemic cerebral injury in rats, suggesting its potential as a non-invasive indicator of drug efficacy in future clinical trials.
Collapse
Affiliation(s)
- Francis G Blankenberg
- Division of Pediatric Radiology/Department of Radiology, Stanford University Hospital, 725 Welch Road, Rm #1673, Lucile Packard Children's Hospital, Palo Alto, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Block F, Dihné M, Loos M. Inflammation in areas of remote changes following focal brain lesion. Prog Neurobiol 2005; 75:342-65. [PMID: 15925027 DOI: 10.1016/j.pneurobio.2005.03.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/15/2005] [Accepted: 03/31/2005] [Indexed: 11/22/2022]
Abstract
Focal brain lesions can lead to metabolic and structural changes in areas distant from but connected to the lesion site. After focal ischemic or excitotoxic lesions of the cortex and/or striatum, secondary changes have been observed in the thalamus, substantia nigra pars reticulata, hippocampus and spinal cord. In all these regions, inflammatory changes characterized by activation of microglia and astrocytes appear. In the thalamus, substantia nigra pars reticulata and hippocampus, an expression of proinflammatory cytokine like tumor necrosis factor-alpha and interleukin-1beta is induced. However, time course of expression and cellular localisation differ between these regions. Neuronal damage has consistently been observed in the thalamus, substantia nigra and spinal cord. It can be present in the hippocampus depending on the procedure of induction of focal cerebral ischemia. This secondary neuronal damage has been linked to antero- and retrograde degeneration. Anterograde degeneration is associated with somewhat later expression of cytokines, which is localised in neurons. In case of retrograde degeneration, the expression of cytokines is earlier and is localised in astrocytes. Pharmacological intervention aiming at reducing expression of tumor necrosis factor-alpha leads to reduction of secondary neuronal damage. These first results suggest that the inflammatory changes in remote areas might be involved in the pathogenesis of secondary neuronal damage.
Collapse
Affiliation(s)
- F Block
- Department of Neurology UK Aachen, Pauwelsstr. 30, D-52057 Aachen, Germany.
| | | | | |
Collapse
|
39
|
Shanina EV, Redecker C, Reinecke S, Schallert T, Witte OW. Long-term effects of sequential cortical infarcts on scar size, brain volume and cognitive function. Behav Brain Res 2005; 158:69-77. [PMID: 15680195 DOI: 10.1016/j.bbr.2004.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 08/10/2004] [Accepted: 08/16/2004] [Indexed: 02/04/2023]
Abstract
Focal ischemia induces long-term pathophysiological consequences in widespread brain areas. Here we analyzed long-term effects of sequential cortical lesions on brain volume and cognitive function. Rats received either single photothrombotic lesions in the forelimb sensorimotor cortex (SL) or two lesions in sequence either immediately (DL0), 2 days (DL2), 7 days (DL7), or 10 days (DL10) after the first surgery in the homotopic contralateral area. Infarct and global brain volume were measured 7 days (SL and DL2 groups) and one month (all groups) after the last period of ischemia. In the weeks following a stroke, the single lesion shrank considerably. This shrinkage was accentuated by a further lesion received either earlier or later. Thirty-one days after obtaining the second lesion, the lesion scars on both sides had a mean volume of 5.8 +/- 2.3 mm3 in DL2 as compared to 8.5 +/- 3.5 mm3 in SL-animals. In addition, there was a super-additive loss of residual brain volume by 2.2-8.0% in each hemisphere in animals with sequential lesions. In the watermaze, this loss of brain volume corresponded to a slight but significant impairment in performance. The present study revealed a complex interaction of lesions in animals with sequential strokes associated with global reduction of brain volume and cognitive impairment indicating degenerative processes beyond the lesions itself.
Collapse
Affiliation(s)
- Elena V Shanina
- Department of Neurology, Friedrich Schiller University, Erlanger Allee 101, D-07747 Jena, Germany
| | | | | | | | | |
Collapse
|
40
|
Mishima K, Ikeda T, Aoo N, Takai N, Takahashi S, Egashira N, Ikenoue T, Iwasaki K, Fujiwara M. Hypoxia-ischemic insult in neonatal rats induced slowly progressive brain damage related to memory impairment. Neurosci Lett 2004; 376:194-9. [PMID: 15721220 DOI: 10.1016/j.neulet.2004.11.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 11/18/2004] [Accepted: 11/18/2004] [Indexed: 11/26/2022]
Abstract
The present study was designed to determine potential associations between the brain damage induced by hypoxic-ischemic (HI) insult and spatial learning impairment in an eight-arm radial maze task. We first determined the pathological outcomes after 2, 5, 9, and 17 weeks of recovery following the HI insult. The results show that the brain damage progressed from 2 up to 17 weeks of recovery. To clarify the time course of the brain damage changes, we investigated the histological changes of the same individual with magnetic resonance imaging (MRI) after 5, 9, and 57 weeks of recovery following the HI insult. The MRI changes were similar to the histological changes, and the brain damages were exacerbated in the contralateral hemisphere after 57 weeks of recovery following the HI insult. To investigate whether alteration in brain function was correlated with MRI and histological changes, the rats were made to find their way through an eight-arm radial maze was performed at either 7th or 16th weeks of recovery. According to the results, the spatial learning impairments of rats in the maze starting at 16 weeks of recovery were more severe than those at 7 weeks of recovery, indicating that the impairments were progressive and depended on the degree of brain damage. The results of the present study are the first demonstration that the evolutional and specific brain damage following the HI insult is slowly and progressively exacerbated to the contralateral hemisphere and rats who experience the HI are at risk for showing a late impairment of brain function.
Collapse
Affiliation(s)
- Kenichi Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Nanakuma 8-19-1, Fukuoka city, Fukuoka 814-0180 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
López F, Hernández-Palazón J, López R, Alarcón E, Martínez-Lage JF. [Activity of copper-zinc superoxide dismutase in a global ischemic brain lesion model without arterial hypotension]. Neurocirugia (Astur) 2004; 15:151-8. [PMID: 15159793 DOI: 10.1016/s1130-1473(04)70495-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To determine the behavior of the copper-zinc superoxide dismutase enzyme (SOD/Cu/Zn) in tissue homogenates of rat brains with ischemic lesions produced following the model of global cerebral ischemia without arterial hypotension. MATERIAL AND METHODS Thirty rats were randomly assigned to five groups of six animals each. Bilateral carotid occlusion was temporarily produced in 24 rats (4 groups) during periods of 5, 15, 30 and 60 minutes, respectively. All the animals were then submitted to reperfusion for 30 minutes and after that, they were sacrificed. A control group of 6 rats was not exposed to arterial occlusion. Cerebral homogenates of the rats' brain were obtained and submitted to spectrophotometer analysis. RESULT The control group showed the lowest mean values in SOD/Cu/Zn activity (40.60+/-11.42 U/mg of protein), while the highest mean values (60.34+/- 13.52 U/mg of protein) corresponded to the rats submitted to ischemia for 60 minutes, what indicates a statistically significant difference (p = 0.016) between the two groups. CONCLUSIONS SOD/Cu/Zn activity in rats increases during the production of ischemic cerebral lesions. The analysis of SOD/Cu/Zn activity showed an important tendency to rise from the 30 minutes period of ischemic lesion and reached statistically significant values at 60 minutes from the beginning of the ischemic injury. The experimental model of global brain ischemia without arterial hypotension used in this study constitutes a reliable method for researching cerebral ischemia.
Collapse
Affiliation(s)
- F López
- Servicio Regional de Neurocirugía y Laboratorio de Cirugía Experimental, Hospital Universitario Virgen de la Arrixaca, Murcia
| | | | | | | | | |
Collapse
|
42
|
Radenovic L, Selakovic V, Kartelija G, Todorovic N, Nedeljkovic M. Differential effects of NMDA and AMPA/kainate receptor antagonists on superoxide production and MnSOD activity in rat brain following intrahippocampal injection. Brain Res Bull 2004; 64:85-93. [PMID: 15275961 DOI: 10.1016/j.brainresbull.2004.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 05/31/2004] [Accepted: 06/01/2004] [Indexed: 11/17/2022]
Abstract
The involvement of NMDA and AMPA/kainate receptors in the induction of superoxide radical production in the rat brain was examined after injection of kainate, non-NMDA receptor agonist, kainate plus 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), selective AMPA/kainate receptor antagonist, or kainate plus 2-amino-5-phosphonopentanoic acid (APV), selective NMDA receptor antagonist. Competitive glutamate receptor antagonists were injected with kainate unilaterally into the CA3 region of the rat hippocampus. We investigated superoxide production and mitochondrial MnSOD activity after injection. The measurements took place at different times (5, 15 min, 2, 48 h and 7 days) in the ipsi- and contralateral hippocampus, forebrain cortex, striatum, and cerebellum homogenates. Used glutamate antagonists APV and CNQX both expressed sufficient neuroprotection in sense of decreasing superoxide production and increasing MnSOD levels, but with differential effect in mechanisms and time dynamics. Our findings suggest that NMDA and AMPA/kainate receptors are differentially involved in superoxide production. Following intrahippocampal antagonists injection they, also, interpose different neuroprotection effect on the induction of MnSOD activity in distinct brain regions affected by the injury, which are functionally connected via afferents and efferents. It suggests that MnSOD protects the cells in these regions from superoxide-induced damage and therefore may limit the retrograde and anterograde spread of neurotoxicity.
Collapse
Affiliation(s)
- L Radenovic
- Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, p.f. 52, Studentski trg 16, 11000 Belgrade, Serbia and Montenegro.
| | | | | | | | | |
Collapse
|
43
|
Mrsić-Pelcić J, Pelcić G, Peternel S, Pilipović K, Simonić A, Zupan G. Effects of the hyperbaric oxygen treatment on the Na+,K+ -ATPase and superoxide dismutase activities in the optic nerves of global cerebral ischemia-exposed rats. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:667-76. [PMID: 15276692 DOI: 10.1016/j.pnpbp.2004.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 11/18/2022]
Abstract
The effects of hyperbaric oxygen (HBO) treatment on the Na+,K+ -ATPase and superoxide dismutase (SOD) activities were examined in the optic nerves of the rats exposed to global cerebral ischemia. Animals were exposed to global cerebral ischemia of 20-min duration and were either sacrificed or exposed to the first HBO treatment immediately, 0.5, 1, 2, 6, 24, 48, 72 or 168 h after ischemic procedure (for Na+,K+ -ATPase activities measurement) or 2, 24, 48 or 168 h after ischemia (for SOD activities measurement). HBO procedure was repeated for 7 consecutive days. It was found that global cerebral ischemia induced a statistically significant decrease in the Na+,K+ -ATPase activity of the optic nerves, starting from 0.5 to 168 h of reperfusion. Maximal enzymatic inhibition was registered 24 h after the ischemic damage. The decline in the Na+,K+ -ATPase activity was prevented in the animals exposed to HBO treatment within the first 6 h of reperfusion. The results of the presented experiments demonstrated also a statistically significant increase in the SOD activity after 24, 48 and 168 h of reperfusion in the optic nerves of non-HBO-treated ischemic animals as well as in the ischemic animals treated with HBO. Our results indicate that global cerebral ischemia induced a significant alterations in the Na+,K+ -ATPase and SOD activities in the optic nerves during different periods of reperfusion. HBO treatment, started within the first 6 h of reperfusion, prevented ischemia-induced changes in the Na+,K+ -ATPase activity, while the level of the SOD activity in the ischemic animals was not changed after HBO administration.
Collapse
Affiliation(s)
- Jasenka Mrsić-Pelcić
- Department of Pharmacology, School of Medicine, University of Rijeka, Brace Brancheta 20/1, 51 000, Croatia.
| | | | | | | | | | | |
Collapse
|
44
|
Schneider A, Fischer A, Krüger C, Aronowski J. Identification of regulated genes during transient cortical ischemia in mice by restriction-mediated differential display (RMDD). ACTA ACUST UNITED AC 2004; 124:20-8. [PMID: 15093682 DOI: 10.1016/j.molbrainres.2004.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2004] [Indexed: 01/07/2023]
Abstract
Cerebral ischemia induces transcriptional changes in a number of pathophysiologically important genes. Here we have systematically studied gene expression changes in the cortex after 150 min of focal cortical ischemia and 2 and 6 h reperfusion in the mouse by a fragment display technique (restriction-mediated differential display, RMDD). We identified 57 transcriptionally altered genes, of which 46 were known genes, and 11 unknown sequences. Of note, 14% of the regulated genes detected at 2 h reperfusion time were co-regulated in the contralateral cortex. Four genes were verified to be upregulated by quantitative PCR. These were Metallothionein-II (mt2), Receptor (calcitonin)-activity modifying protein 2 (ramp2), Mitochondrial phosphoprotein 65 (MIPP65), and the transcription elongation factor B2/elongin B (tceb). We could identify several genes that are known to be induced by cerebral ischemia, such as the metallothioneins and c-fos. Many of the genes identified provide hints to potential new mechanisms in ischemic pathophysiology. We discuss the identity of the regulated genes in view of their possible usefulness for pharmacological intervention in cerebral ischemia.
Collapse
Affiliation(s)
- Armin Schneider
- Department of Molecular Neurology and Technology, Axaron Bioscience AG, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
45
|
Badhwar A, Bihari A, Dungey AA, Scott JR, Albion CD, Forbes TL, Harris KA, Potter RF. Protective mechanisms during ischemic tolerance in skeletal muscle. Free Radic Biol Med 2004; 36:371-9. [PMID: 15036356 DOI: 10.1016/j.freeradbiomed.2003.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 10/22/2003] [Accepted: 11/20/2003] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to test specific mechanisms of protection afforded the rat extensor digitorum longus (EDL) muscle during ischemic tolerance. Two days following five cycles of 10 min ischemia and 10 min reperfusion, heme oxygenase (HO) and calcium-dependent nitric oxide synthase (cNOS) activities were increased 2- and 2.5-fold (p <.05), respectively. Interestingly, calcium-independent NOS (iNOS) activity was completely downregulated (p <.05). The levels of superoxide dismutase (SOD) and catalase were increased 2-fold (p <.05), while glutathione peroxidase activity remained unchanged from non-preconditioned controls. Using intravital microscopy combined with chromium mesoporphyrin (CrMP), a selective HO inhibitor, and l-NAME, a NOS inhibitor, the roles of HO and cNOS were evaluated. Ischemic tolerance in the EDL muscle, 48 h after the preconditioning stimulus, was characterized by complete protection from both microvascular perfusion deficits and tissue injury after a 2-h period of ischemia. Removal of NOS activity completely removed the benefit afforded microvascular perfusion, while inhibition of HO activity prevented the parenchymal protection. These data suggest that ischemic tolerance within skeletal muscle is associated with the upregulation of specific cytoprotective proteins and that the benefits afforded by cNOS and HO activity are spatially discrete to the microvasculature and parenchyma, respectively.
Collapse
Affiliation(s)
- Amit Badhwar
- Department of Medical Biophysics, The University of Western Ontario, and The Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kharlamov EA, Jukkola PI, Schmitt KL, Kelly KM. Electrobehavioral characteristics of epileptic rats following photothrombotic brain infarction. Epilepsy Res 2004; 56:185-203. [PMID: 14643003 DOI: 10.1016/j.eplepsyres.2003.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The goal of this study was to characterize the electroencephalographic (EEG) and behavioral properties of young adult rats during extended video-EEG monitoring following photothrombotic brain infarction. Two-month-old male Sprague-Dawley rats underwent photothrombotic brain infarction of the left sensorimotor cortex with the photosensitive dye rose bengal (n=10) or were used as controls (n=9). Qualitative and quantitative EEG analysis was performed on digital video-EEG records obtained during 6 months of recording. The main finding of this study was that 5/10 (50%) lesioned animals developed focal epileptic seizures ipsilateral to the cortical infarct characterized by rhythmic spike-wave discharges with or without behavioral change. Epileptic animals demonstrated increased delta, theta, and low beta-range power ipsilateral to the infarct that reliably distinguished them from lesioned nonepileptic and control animals. Lesioned animals (epileptic and nonepileptic) also demonstrated a distinct pattern of focal rhythmic theta activity before or after generalized high beta-range discharges. Electrical and behavioral characteristics common to both lesioned and control animals included: (1) focal rhythmic theta activity in either hemisphere; (2) focal low beta-range discharges in either hemisphere; (3) generalized high beta-range discharges; (4) absence seizures; (5) generalized pseudoperiodic spike discharges associated with mild multifocal body jerks; (6) tonic-clonic seizures (one nai;ve control; one lesioned animal). Cresyl violet staining of lesioned animals' brains showed consistent infarcts of the sensorimotor cortex extending to the subcortical white matter. These results provide an expanded electrobehavioral description of young adult rats following photothrombotic brain infarction and augment further investigation into the molecular, cellular, and network alterations that contribute to the establishment of post-stroke epilepsy.
Collapse
Affiliation(s)
- E A Kharlamov
- Department of Neurology, Allegheny-Singer Research Institute, Allegheny General Hospital, 940 South Tower, 320 E. North Avenue, Pittsburgh, PA 15212-4772, USA
| | | | | | | |
Collapse
|
47
|
Mollace V, Iannone M, Muscoli C, Palma E, Granato T, Modesti A, Nisticò R, Rotiroti D, Salvemini D. The protective effect of M40401, a superoxide dismutase mimetic, on post-ischemic brain damage in Mongolian gerbils. BMC Pharmacol 2003; 3:8. [PMID: 12809567 PMCID: PMC165580 DOI: 10.1186/1471-2210-3-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Accepted: 06/16/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Overproduction of free radical species has been shown to occur in brain tissues after ischemia-reperfusion injury. However, most of free radical scavengers known to antagonize oxidative damage (e.g. superoxide dismutase, catalase), are unable to protect against ischemia-reperfusion brain injury when given in vivo, an effect mainly due to their difficulty to gain access to brain tissues. Here we studied the effect of a low molecular weight superoxide dismutase mimetic (M40401) in brain damage subsequent to ischemia-reperfusion injury in Mongolian gerbils. RESULTS In animals undergoing ischemia-reperfusion injury, neuropathological and ultrastructural changes were monitored for 1-7 days either in the presence or in the absence of M40401 after bilateral common carotid artery occlusion (BCCO). Administration of M40401 (1-40 mg/kg, given i.p. 1 h after BCCO) protected against post-ischemic, ultrastructural and neuropathological changes occurring within the hippocampal CA1 area. The protective effect of M40401 was associated with a significant reduction of the levels of malondialdehyde (MDA; a marker of lipid peroxidation) in ischemic brain tissues after ischemia-reperfusion. CONCLUSION Taken together, these results demonstrate that M40401 provides protective effects when given early after the induction of ischemia-reperfusion of brain tissues and suggest the possible use of such compounds in the treatment of neurological dysfunction subsequent to cerebral flow disturbances.
Collapse
Affiliation(s)
- Vincenzo Mollace
- Faculty of Pharmacy, University of Catanzaro "Magna Graecia", Roccelletta di Borgia, Catanzaro Italy
| | - Michelangelo Iannone
- Institute of Neurological Science ISN – Section of Pharmacology, CNR, Roccelletta di Borgia, Catanzaro, Italy
| | - Carolina Muscoli
- Faculty of Pharmacy, University of Catanzaro "Magna Graecia", Roccelletta di Borgia, Catanzaro Italy
- Metaphore Pharmaceuticals, 1910 Innerbelt Business Center Dr, St Louis MO 63114, USA
| | - Ernesto Palma
- Faculty of Pharmacy, University of Catanzaro "Magna Graecia", Roccelletta di Borgia, Catanzaro Italy
| | - Teresa Granato
- Institute of Neurological Science ISN – Section of Pharmacology, CNR, Roccelletta di Borgia, Catanzaro, Italy
| | - Andrea Modesti
- Department of Experimental Medicine and Biochemical Science, University of Rome "Tor Vergata", Rome 00161, Italy
| | - Robert Nisticò
- Faculty of Pharmacy, University of Calabria – Arcavacata di Rende (CS), Italy
| | - Domenicantonio Rotiroti
- Faculty of Pharmacy, University of Catanzaro "Magna Graecia", Roccelletta di Borgia, Catanzaro Italy
| | - Daniela Salvemini
- Metaphore Pharmaceuticals, 1910 Innerbelt Business Center Dr, St Louis MO 63114, USA
| |
Collapse
|
48
|
Leker RR, Neufeld MY. Anti-epileptic drugs as possible neuroprotectants in cerebral ischemia. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 42:187-203. [PMID: 12791439 DOI: 10.1016/s0165-0173(03)00170-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many similarities exist between cerebral ischemia and epilepsy regarding brain-damaging and auto-protective mechanisms that are activated following the injurious insult. Therefore, drugs that are effective in minimizing seizure-induced brain damage may also be useful in minimizing ischemic injury. Use of such drugs in stroke victims may have important clinical and financial advantages. Therefore, the authors conducted a Medline search of studies involving the use of anti-epileptic drugs (AEDs) as possible neuroprotectants and summarize the data. Most AEDs have been tested in animal models of focal or global ischemia and some were already tested in humans, for a possible neuroprotective effect. The existing data is rather scant and insufficient but it appears that only drugs that have multiple mechanisms of action seem to have some potential in conferring a degree of neuroprotection that could be clinically applicable to stroke patients. In conclusion, some of the newer AEDs show promise as possible neuroprotectants in the setup of acute ischemic stroke but more studies are needed before clinical trials in humans could be undertaken.
Collapse
Affiliation(s)
- R R Leker
- Department of Neurology and the Agnes Ginges Center for Human Neurogenetics, Hebrew University-Hadassah Medical School, Hadassah University Hospital, Jerusalem, Israel.
| | | |
Collapse
|
49
|
Reinecke S, Dinse HR, Reinke H, Witte OW. Induction of bilateral plasticity in sensory cortical maps by small unilateral cortical infarcts in rats. Eur J Neurosci 2003; 17:623-7. [PMID: 12581180 DOI: 10.1046/j.1460-9568.2003.02459.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Behavioural impairments caused by brain lesions show a considerable, though often incomplete, recovery. It is hypothesized that cortical and subcortical plasticity of sensory representations contribute to this recovery. In the hindpaw representation of somatosensory cortex of adult rats we investigated the effects of focal unilateral cortical lesions on remote areas. Cortical lesions with a diameter of approximately 2 mm were induced in the parietal cortex by photothrombosis with the photosensitive dye Rose Bengal. Subsequently, animals were kept in standard cages for 7 days. On day seven, animals were anaesthetized and cutaneous receptive fields in the cortical hindpaw representations ipsi- and contralateral to the lesion were constructed from extracellular recordings of neurons in layer IV using glass microelectrodes. Receptive fields in the lesioned animals were compared to receptive fields measured in nonlesioned animals serving as controls. Quantitative analysis of receptive fields revealed a significant increase in size in the lesioned animals. This doubling in receptive field size was observed equally in the hemispheres ipsi- and contralateral to the lesion. The results indicate that the functional consequences of restricted cortical lesions are not limited to the area surrounding the lesion, but affect the cortical maps on the contralateral, nonlesioned hemisphere.
Collapse
Affiliation(s)
- S Reinecke
- Department of Neurology, Friedrich-Schiller-University, FZL, Erlanger Allee 101, 07740 Jena, Germany
| | | | | | | |
Collapse
|
50
|
Maier CM, Sun GH, Cheng D, Yenari MA, Chan PH, Steinberg GK. Effects of mild hypothermia on superoxide anion production, superoxide dismutase expression, and activity following transient focal cerebral ischemia. Neurobiol Dis 2002; 11:28-42. [PMID: 12460544 DOI: 10.1006/nbdi.2002.0513] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Following a transient ischemic insult there is a marked increase in free radical (FR) production within the first 10-15 min of reperfusion and again at the peak of the inflammatory process. Hypothermia decreases lipid peroxidation following global ischemia, raising the possibility that it may act by reducing FR production early on and by maintaining or increasing endogenous antioxidant systems. By means of FR fluorescence, Western blot, immunohistochemistry, and enzymatic assay, we studied the effects of mild hypothermia on superoxide (O(-*)(2)) anion production, superoxide dismutase SOD expression, and activity following focal cerebral ischemia in rats. Mild hypothermia significantly reduced O(-*)(2) generation in the ischemic penumbra and corresponding contralateral region, but did not alter the bilateral SOD expression. SOD enzymatic activity in the ischemic core was slightly reduced in hypothermia-treated animals compared with normothermic controls. Our results suggest that the neuroprotective effect of mild hypothermia may be due, in part, to a reduction in neuronal and endothelial O(-*)(2) production during early reperfusion.
Collapse
Affiliation(s)
- Carolina M Maier
- Department of Neurosurgery, Stanford University, California 94305-5487, USA
| | | | | | | | | | | |
Collapse
|