1
|
Naidu D, Althaf Umar KP, Muhsina K, Augustine S, Jeengar MK, S K K. Zingiberaceae in Cardiovascular Health: A review of adipokine modulation and endothelial protection via adipocyte-endothelial crosstalk mechanism. Curr Nutr Rep 2025; 14:66. [PMID: 40366476 DOI: 10.1007/s13668-025-00656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE OF THE REVIEW Although adipose tissue controls metabolism and protects vital organs, its importance to general health is being highlighted by the rise in type 2 diabetes and cardiovascular disease. Adipokines produced by adipose cells are essential regulators of metabolism, glucose homeostasis, and inflammatory response. It also protects vascular endothelial cells for its potential implications for cardiovascular protection. Understanding its intricate involvement in adipose tissue-endothelial communication is critical in developing targeted therapeutics to treat cardiovascular conditions linked with obesity and metabolic dysregulation. Spices from the Zingiberaceae family, such as cardamom, turmeric, and ginger, have anti-inflammatory and anti-oxidant properties that help reduce oxidative stress, vascular dysfunction, and adipocyte-endothelial crosstalk which are all linked to the etiology of CVD. Comprehensive molecular insights into how they modulate adipokine signalling, inflammatory pathways, and ROS-induced adipocyte-vascular interactions remain unexplored, demanding additional translational and clinical validation. With an emphasis on patients with obesity and metabolic dysregulation, the investigation aims to elucidate the mechanisms by which the spice as whole/bioactive constituents of the Zingiberaceae family may provide protection against CVD by integrating previous studies. RECENT FINDINGS Current research continues to support the use of spices from the Zingiberaceae family, such as ginger, turmeric, cardamom, and pepper, as potential therapeutic agents for addressing metabolic complications like obesity, type II diabetes, and CVDs. These natural remedies may modulate adipocyte-endothelial crosstalk and inflammation by modulating important signalling pathways such as AMPK, AKT, PPAR, and NF-κB.. CONCLUSION This review provides a complete summary of existing knowledge, opening the way for future research and prospective therapeutic applications of Zingiberaceae spices in cardiovascular health management.
Collapse
Affiliation(s)
- Disha Naidu
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - K P Althaf Umar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - K Muhsina
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sanu Augustine
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Manish Kumar Jeengar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Kanthlal S K
- Department of Pharmacology, Sree Krishna College of Pharmacy and Research Centre, Parassala, Thiruvananthapuram, Kerala, 695502, India.
| |
Collapse
|
2
|
Kay N, Huang CY, Yu YC, Chen CC, Chang CC, Huang SJ. The Involvement of Mitochondrial Dysfunction during the Development of Adenomyosis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:861-874. [PMID: 40010668 DOI: 10.1016/j.ajpath.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/10/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
The etiology of adenomyosis remains unclear. The association between epithelial-mesenchymal transition (EMT) and mitochondrial dysfunction is involved in fibrotic diseases. Adenomyosis is defined as the existence of endometrial glands and stroma in the myometrium with EMT and ultimate fibrosis. This study was designed to investigate the involvement of mitochondrial dysfunction in fibrotic adenomyosis. Mitochondrial integrity was examined in mouse and human adenomyotic tissues. Control and tamoxifen-treated mice were treated with 3-nitropropionic acid (a mitochondrial dysfunction inducer) and NG-nitro-L-arginine methyl ester (a mitochondrial dysfunction inhibitor), respectively, at postnatal day 21, followed by an evaluation of adenomyosis, EMT, and fibrosis as well as the expression of mitophagy, oxidative stress, and transforming growth factor-β1 (TGF-β1). The gene profiles of adenomyotic uteri were examined at postnatal day 42. Adenomyotic mice exhibited increased development of EMT and fibrosis. Adenomyotic tissues showed consistent mitochondrial destruction with increased fission, mitophagosomes, and lysosomes. Besides, mitophagy, oxidative stress, and TGF-β1 levels were consistently increased. The mitochondrial dysfunction, the development of mitophagy and fibrosis, and TGF-β1 expression were induced by 3-nitropropionic acid in control uteri. In contrast, NG-nitro-L-arginine methyl ester attenuated mitochondrial dysfunction, mitophagy, fibrosis, and TGF-β1 in adenomyotic uteri. Gene profiling demonstrated increased expression of mitochondrial dysfunction-related genes in adenomyotic uteri. This indicates that mitochondrial dysfunction-induced TGF-β1 dysregulation and fibrosis are associated with the development of adenomyosis.
Collapse
Affiliation(s)
- Nari Kay
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chun-Yen Huang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ya-Chun Yu
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Chen Chen
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chi-Chang Chang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - S Joseph Huang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida.
| |
Collapse
|
3
|
Theodorakis N, Kreouzi M, Hitas C, Anagnostou D, Nikolaou M. Adipokines and Cardiometabolic Heart Failure with Preserved Ejection Fraction: A State-of-the-Art Review. Diagnostics (Basel) 2024; 14:2677. [PMID: 39682585 PMCID: PMC11640255 DOI: 10.3390/diagnostics14232677] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Cardiometabolic heart failure with preserved ejection fraction (HFpEF) is largely driven by obesity-related factors, including adipokines and bioactive peptides primarily secreted by the adipose tissue, such as leptin, adiponectin, and resistin. These molecules link metabolic dysregulation to cardiovascular dysfunction, influencing HFpEF progression and patient outcomes Methods: A comprehensive literature search was conducted in PubMed up to 20 November 2024, using keywords and MeSH terms, such as "HFpEF", "adipokines", "leptin", "adiponectin", and "resistin", yielding 723 results. Boolean operators refined the search, and reference lists of key studies were reviewed. After screening for duplicates and irrelevant studies, 103 articles were included, providing data on adipokines' roles in HFpEF pathophysiology, biomarkers, and therapeutic implications. RESULTS Both preclinical and clinical studies have demonstrated that adipokines play a role in modulating cardiovascular function, thereby contributing to the development of cardiometabolic HFpEF. Leptin promotes myocardial hypertrophy, fibrosis, endothelial dysfunction, and inflammation, though contradictory evidence suggests potential cardioprotective roles in subgroups like obese African American women. Adiponectin generally offers protective effects but presents a paradox, where elevated levels may correlate with worse outcomes, which may reflect either a compensatory response to cardiac dysfunction or a maladaptive state characterized by adiponectin resistance. Resistin is associated with increased cardiovascular risk through pro-inflammatory and pro-fibrotic effects, though its role in HFpEF requires further clarification. Other adipokines, like retinol-binding protein 4 and omentin-1, have emerged as potential contributors. Despite growing insights, clinical translation remains limited, underscoring a significant gap between experimental evidence and therapeutic application. CONCLUSIONS Future research should focus on targeted interventions that modulate adipokine pathways to potentially improve HFpEF outcomes. Innovative treatment strategies addressing underlying metabolic disturbances and adipokine dysregulation are essential for advancing the management of this challenging condition.
Collapse
Affiliation(s)
- Nikolaos Theodorakis
- School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece;
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, 14 25is Martiou Str., 15127 Melissia, Greece; (C.H.); (D.A.)
| | - Magdalini Kreouzi
- Department of Internal Medicine, Sismanogleio-Amalia Fleming General Hospital, 14 25is Martiou Str., 15127 Melissia, Greece;
| | - Christos Hitas
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, 14 25is Martiou Str., 15127 Melissia, Greece; (C.H.); (D.A.)
| | - Dimitrios Anagnostou
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, 14 25is Martiou Str., 15127 Melissia, Greece; (C.H.); (D.A.)
| | - Maria Nikolaou
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, 14 25is Martiou Str., 15127 Melissia, Greece; (C.H.); (D.A.)
| |
Collapse
|
4
|
Vanni E, Beauloye C, Horman S, Bertrand L. AMPK and O-GlcNAcylation: interplay in cardiac pathologies and heart failure. Essays Biochem 2024; 68:363-377. [PMID: 39319471 DOI: 10.1042/ebc20240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Heart failure (HF) represents a multifaceted clinical syndrome characterized by the heart's inability to pump blood efficiently to meet the body's metabolic demands. Despite advances in medical management, HF remains a major cause of morbidity and mortality worldwide. In recent years, considerable attention has been directed toward understanding the molecular mechanisms underlying HF pathogenesis, with a particular focus on the role of AMP-activated protein kinase (AMPK) and protein O-GlcNAcylation. This review comprehensively examines the current understanding of AMPK and O-GlcNAcylation signalling pathways in HF, emphasizing their interplay and dysregulation. We delve into the intricate molecular mechanisms by which AMPK and O-GlcNAcylation contribute to cardiac energetics, metabolism, and remodelling, highlighting recent preclinical and clinical studies that have explored novel therapeutic interventions targeting these pathways.
Collapse
Affiliation(s)
- Ettore Vanni
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
5
|
Naushad S, Gaucher J, Mezdari Z, Détrait M, Belaidi E, Zhang Y, Vial G, Bouyon S, Czibik G, Pini M, Aldekwer S, Liang H, Pelloux V, Aron-Wisnewsky J, Tamisier R, Pépin JL, Derumeaux G, Sawaki D, Arnaud C. Chronic intermittent hypoxia triggers cardiac fibrosis: Role of epididymal white adipose tissue senescent remodeling? Acta Physiol (Oxf) 2024; 240:e14231. [PMID: 39263916 DOI: 10.1111/apha.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024]
Abstract
AIM Obstructive sleep apnea (OSA) is a growing health problem affecting nearly 1 billion people worldwide. The landmark feature of OSA is chronic intermittent hypoxia (CIH), accounting for multiple organ damage, including heart disease. CIH profoundly alters both visceral white adipose tissue (WAT) and heart structure and function, but little is known regarding inter-organ interaction in the context of CIH. We recently showed that visceral WAT senescence drives myocardial alterations in aged mice without CIH. Here, we aimed at investigating whether CIH induces a premature visceral WAT senescent phenotype, triggering subsequent cardiac remodeling. METHODS In a first experiment, 10-week-old C57bl6J male mice (n = 10/group) were exposed to 14 days of CIH (8 h daily, 5%-21% cyclic inspired oxygen fraction, 60 s per cycle). In a second series, mice were submitted to either epididymal WAT surgical lipectomy or sham surgery before CIH exposure. Finally, we used p53 deficient mice or Wild-type (WT) littermates, also exposed to the same CIH protocol. Epididymal WAT was assessed for fibrosis, DNA damages, oxidative stress, markers of senescence (p16, p21, and p53), and inflammation by RT-qPCR and histology, and myocardium was assessed for fibrosis and cardiomyocyte hypertrophy. RESULTS CIH-induced epididymal WAT remodeling characterized by increased fibrosis, oxidative stress, DNA damage response, inflammation, and increased expression of senescent markers. CIH-induced epididymal WAT remodeling was associated with subtle and early myocardial interstitial fibrosis. Both epididymal WAT surgical lipectomy and p53 deletion prevented CIH-induced myocardial fibrosis. CONCLUSION Short-term exposure to CIH induces epididymal WAT senescent remodeling and cardiac interstitial fibrosis, the latter being prevented by lipectomy. This finding strongly suggests visceral WAT senescence as a new target to mitigate OSA-related cardiac disorders.
Collapse
Affiliation(s)
- Suzain Naushad
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Jonathan Gaucher
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Zaineb Mezdari
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Maximin Détrait
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Elise Belaidi
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Yanyan Zhang
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Guillaume Vial
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Sophie Bouyon
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Gabor Czibik
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Maria Pini
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Sahar Aldekwer
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Hao Liang
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Véronique Pelloux
- Nutrition and Obesities, Systemic Approaches, NutriOmics, Laboratory, Sorbonne University, Paris, France
- Nutrition Department, CRNH Ile de France, AP-HP, Pitie-Salpêtrière Hospital, Paris, France
| | - Judith Aron-Wisnewsky
- Nutrition and Obesities, Systemic Approaches, NutriOmics, Laboratory, Sorbonne University, Paris, France
- Nutrition Department, CRNH Ile de France, AP-HP, Pitie-Salpêtrière Hospital, Paris, France
| | - Renaud Tamisier
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Jean-Louis Pépin
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Geneviève Derumeaux
- Université Paris Est Créteil, INSERM U955, Créteil, France
- Department of Physiology, AP-HP, Henri Mondor Hospital, FHU-SENEC, Créteil, France
| | - Daigo Sawaki
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Claire Arnaud
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| |
Collapse
|
6
|
McDowell JA, Kosmacek EA, Baine MJ, Adebisi O, Zheng C, Bierman MM, Myers MS, Chatterjee A, Liermann-Wooldrik KT, Lim A, Dickinson KA, Oberley-Deegan RE. Exogenous APN protects normal tissues from radiation-induced oxidative damage and fibrosis in mice and prostate cancer patients with higher levels of APN have less radiation-induced toxicities. Redox Biol 2024; 73:103219. [PMID: 38851001 PMCID: PMC11201354 DOI: 10.1016/j.redox.2024.103219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
Radiation causes damage to normal tissues that leads to increased oxidative stress, inflammation, and fibrosis, highlighting the need for the selective radioprotection of healthy tissues without hindering radiotherapy effectiveness in cancer. This study shows that adiponectin, an adipokine secreted by adipocytes, protects normal tissues from radiation damage invitro and invivo. Specifically, adiponectin (APN) reduces chronic oxidative stress and fibrosis in irradiated mice. Importantly, APN also conferred no protection from radiation to prostate cancer cells. Adipose tissue is the primary source of circulating endogenous adiponectin. However, this study shows that adipose tissue is sensitive to radiation exposure exhibiting morphological changes and persistent oxidative damage. In addition, radiation results in a significant and chronic reduction in blood APN levels from adipose tissue in mice and human prostate cancer patients exposed to pelvic irradiation. APN levels negatively correlated with bowel toxicity and overall toxicities associated with radiotherapy in prostate cancer patients. Thus, protecting, or modulating APN signaling may improve outcomes for prostate cancer patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Joshua A McDowell
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michael J Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Oluwaseun Adebisi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Cheng Zheng
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Madison M Bierman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Molly S Myers
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Arpita Chatterjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kia T Liermann-Wooldrik
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Andrew Lim
- College of Nursing, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kristin A Dickinson
- College of Nursing, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
7
|
Zhao YQ, Ren YF, Li BB, Wei C, Yu B. The mysterious association between adiponectin and endometriosis. Front Pharmacol 2024; 15:1396616. [PMID: 38813109 PMCID: PMC11133721 DOI: 10.3389/fphar.2024.1396616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Adiponectin is a pleiotropic cytokine predominantly derived from adipose tissue. In addition to its role in regulating energy metabolism, adiponectin may also be related to estrogen-dependent diseases, and many studies have confirmed its involvement in mediating diverse biological processes, including apoptosis, autophagy, inflammation, angiogenesis, and fibrosis, all of which are related to the pathogenesis of endometriosis. Although many researchers have reported low levels of adiponectin in patients with endometriosis and suggested that it may serve as a protective factor against the development of the disease. Therefore, the purpose of this review was to provide an up-to-date summary of the roles of adiponectin and its downstream cytokines and signaling pathways in the aforementioned biological processes. Further systematic studies on the molecular and cellular mechanisms of action of adiponectin may provide novel insights into the pathophysiology of endometriosis as well as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Bing-Bing Li
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining, Shandong Province, China
| | | | | |
Collapse
|
8
|
Zamora Z, Wang S, Chen YW, Diamante G, Yang X. Systematic transcriptome-wide meta-analysis across endocrine disrupting chemicals reveals shared and unique liver pathways, gene networks, and disease associations. ENVIRONMENT INTERNATIONAL 2024; 183:108339. [PMID: 38043319 PMCID: PMC11216742 DOI: 10.1016/j.envint.2023.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
Cardiometabolic disorders (CMD) are a growing public health problem across the world. Among the known cardiometabolic risk factors are compounds that induce endocrine and metabolic dysfunctions, such as endocrine disrupting chemicals (EDCs). To date, how EDCs influence molecular programs and cardiometabolic risks has yet to be fully elucidated, especially considering the complexity contributed by species-, chemical-, and dose-specific effects. Moreover, different experimental and analytical methodologies employed by different studies pose challenges when comparing findings across studies. To explore the molecular mechanisms of EDCs in a systematic manner, we established a data-driven computational approach to meta-analyze 30 human, mouse, and rat liver transcriptomic datasets for 4 EDCs, namely bisphenol A (BPA), bis(2-ethylhexyl) phthalate (DEHP), tributyltin (TBT), and perfluorooctanoic acid (PFOA). Our computational pipeline uniformly re-analyzed pre-processed quality-controlled microarray data and raw RNAseq data, derived differentially expressed genes (DEGs) and biological pathways, modeled gene regulatory networks and regulators, and determined CMD associations based on gene overlap analysis. Our approach revealed that DEHP and PFOA shared stable transcriptomic signatures that are enriched for genes associated with CMDs, suggesting similar mechanisms of action such as perturbations of peroxisome proliferator-activated receptor gamma (PPARγ) signaling and liver gene network regulators VNN1 and ACOT2. In contrast, TBT exhibited highly divergent gene signatures, pathways, network regulators, and disease associations from the other EDCs. In addition, we found that the rat, mouse, and human BPA studies showed highly variable transcriptomic patterns, providing molecular support for the variability in BPA responses. Our work offers insights into the commonality and differences in the molecular mechanisms of various EDCs and establishes a streamlined data-driven workflow to compare molecular mechanisms of environmental substances to elucidate the underlying connections between chemical exposure and disease risks.
Collapse
Affiliation(s)
- Zacary Zamora
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Susanna Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yen-Wei Chen
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Xia Yang
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
An Y, Cao B, Li K, Xu Y, Zhao W, Zhao D, Ke J. A Prediction Model for Sight-Threatening Diabetic Retinopathy Based on Plasma Adipokines among Patients with Mild Diabetic Retinopathy. J Diabetes Res 2023; 2023:8831609. [PMID: 37920605 PMCID: PMC10620016 DOI: 10.1155/2023/8831609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 11/04/2023] Open
Abstract
Background Accumulating evidence has suggested a link between adipokines and diabetic retinopathy (DR). This study is aimed at investigating the risk factors for sight-threatening DR (STDR) and establishing a prognostic model for predicting STDR among a high-risk population of patients with type 2 diabetes mellitus (T2DM). Methods Plasma concentrations of adipokines were determined by enzyme-linked immunosorbent assay. In the case-control set, principal component analysis (PCA) was performed to select optimal predictive cytokines for STDR, involving severe nonproliferative DR (NPDR) and proliferative DR. Support vector machine (SVM) was used to examine the possible combination of baseline plasma adipokines to discriminate the patients with mild NPDR who will later develop STDR. An individual prospective cohort with a follow-up period of 3 years was used for the external validation. Results In both training and testing sets, involving 306 patients with T2DM, median levels of plasma adiponectin (APN), leptin, and fatty acid-binding protein 4 (FABP4) were significantly higher in the STDR group than those in mild NPDR. Except for adipsin, the other three adipokines, FABP4, APN, and leptin, were selected by PCA and integrated into SVM. The accuracy of the multivariate SVM classification model was acceptable in both the training set (AUC = 0.81, sensitivity = 71%, and specificity = 91%) and the testing set (AUC = 0.77, sensitivity = 61%, and specificity = 92%). 110 T2DM patients with mild NPDR, the high-risk population of STDR, were enrolled for external validation. Based on the SVM, the risk of each patient was calculated. More STDR occurred in the high-risk group than in the low-risk group, which were grouped by the median value of APN, FABP4, and leptin, respectively. The model was validated in an individual cohort using SVM with the AUC, sensitivity, and specificity reaching 0.77, 64%, and 91%, respectively. Conclusions Adiponectin, leptin, and FABP4 were demonstrated to be associated with the severity of DR and maybe good predictors for STDR, suggesting that adipokines may play an important role in the pathophysiology of DR development.
Collapse
Affiliation(s)
- Yaxin An
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Bin Cao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Kun Li
- Beijing Key Laboratory of Diabetes Research and Care, Beijing 101149, China
| | - Yongsong Xu
- Beijing Key Laboratory of Diabetes Research and Care, Beijing 101149, China
| | - Wenying Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing 101149, China
| | - Jing Ke
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
10
|
Preda A, Carbone F, Tirandi A, Montecucco F, Liberale L. Obesity phenotypes and cardiovascular risk: From pathophysiology to clinical management. Rev Endocr Metab Disord 2023; 24:901-919. [PMID: 37358728 PMCID: PMC10492705 DOI: 10.1007/s11154-023-09813-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/27/2023]
Abstract
Obesity epidemic reached the dimensions of a real global health crisis with more than one billion people worldwide living with obesity. Multiple obesity-related mechanisms cause structural, functional, humoral, and hemodynamic alterations with cardiovascular (CV) deleterious effects. A correct assessment of the cardiovascular risk in people with obesity is critical for reducing mortality and preserving quality of life. The correct identification of the obesity status remains difficult as recent evidence suggest that different phenotypes of obesity exist, each one associated with different degrees of CV risk. Diagnosis of obesity cannot depend only on anthropometric parameters but should include a precise assessment of the metabolic status. Recently, the World Heart Federation and World Obesity Federation provided an action plan for management of obesity-related CV risk and mortality, stressing for the instauration of comprehensive structured programs encompassing multidisciplinary teams. In this review we aim at providing an updated summary regarding the different obesity phenotypes, their specific effects on CV risk and differences in clinical management.
Collapse
Affiliation(s)
| | - Federico Carbone
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
- Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy
| | - Amedeo Tirandi
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
- Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy.
- Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy.
| | - Luca Liberale
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
- Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy
| |
Collapse
|
11
|
Fang L, Ohashi K, Hayakawa S, Ogawa H, Otaka N, Kawanishi H, Takikawa T, Ozaki Y, Takahara K, Tatsumi M, Takefuji M, Shimizu Y, Bando YK, Fujishima Y, Maeda N, Shimomura I, Murohara T, Ouchi N. Adipolin protects against renal injury via PPARα-dependent reduction of inflammasome activation. iScience 2023; 26:106591. [PMID: 37250342 PMCID: PMC10214396 DOI: 10.1016/j.isci.2023.106591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 04/04/2023] [Indexed: 05/31/2023] Open
Abstract
Although chronic kidney disease (CKD) is a major health problem worldwide, its underlining mechanism is incompletely understood. We previously identified adipolin as an adipokine which provides benefits for cardiometabolic diseases. Here, we investigated the role of adipolin in the development of CKD. Adipolin-deficiency exacerbated urinary albumin excretion, tubulointerstitial fibrosis and oxidative stress of remnant kidneys in mice after subtotal nephrectomy through inflammasome activation. Adipolin positively regulated the production of ketone body, β-hydroxybutyrate (BHB) and expression of a catalytic enzyme producing BHB, HMGCS2 in the remnant kidney. Treatment of proximal tubular cells with adipolin attenuated inflammasome activation through the PPARα/HMGCS2-dependent pathway. Furthermore, systemic administration of adipolin to wild-type mice with subtotal nephrectomy ameliorated renal injury, and these protective effects of adipolin were diminished in PPARα-deficient mice. Thus, adipolin protects against renal injury by reducing renal inflammasome activation through its ability to induce HMGCS2-dependent ketone body production via PPARα activation.
Collapse
Affiliation(s)
- Lixin Fang
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Hayakawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hayato Ogawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Otaka
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kawanishi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonobu Takikawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Ozaki
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kunihiko Takahara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Minako Tatsumi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuko K. Bando
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuya Fujishima
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
12
|
Demirel O, Berezin AE, Mirna M, Boxhammer E, Gharibeh SX, Hoppe UC, Lichtenauer M. Biomarkers of Atrial Fibrillation Recurrence in Patients with Paroxysmal or Persistent Atrial Fibrillation Following External Direct Current Electrical Cardioversion. Biomedicines 2023; 11:1452. [PMID: 37239123 PMCID: PMC10216298 DOI: 10.3390/biomedicines11051452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Atrial fibrillation (AF) is associated with atrial remodeling, cardiac dysfunction, and poor clinical outcomes. External direct current electrical cardioversion is a well-developed urgent treatment strategy for patients presenting with recent-onset AF. However, there is a lack of accurate predictive serum biomarkers to identify the risks of AF relapse after electrical cardioversion. We reviewed the currently available data and interpreted the findings of several studies revealing biomarkers for crucial elements in the pathogenesis of AF and affecting cardiac remodeling, fibrosis, inflammation, endothelial dysfunction, oxidative stress, adipose tissue dysfunction, myopathy, and mitochondrial dysfunction. Although there is ample strong evidence that elevated levels of numerous biomarkers (such as natriuretic peptides, C-reactive protein, galectin-3, soluble suppressor tumorigenicity-2, fibroblast growth factor-23, turn-over collagen biomarkers, growth differential factor-15) are associated with AF occurrence, the data obtained in clinical studies seem to be controversial in terms of their predictive ability for post-cardioversion outcomes. Novel circulating biomarkers are needed to elucidate the modality of this approach compared with conventional predictive tools. Conclusions: Biomarker-based strategies for predicting events after AF treatment require extensive investigation in the future, especially in the presence of different gender and variable comorbidity profiles. Perhaps, a multiple biomarker approach exerts more utilization for patients with different forms of AF than single biomarker use.
Collapse
Affiliation(s)
- Ozan Demirel
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
- Internal Medicine Department, Zaporozhye State Medical University, 69035 Zaporozhye, Ukraine
| | - Moritz Mirna
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Sarah X. Gharibeh
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Uta C. Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| |
Collapse
|
13
|
Pan KL, Hsu YC, Chang ST, Chung CM, Lin CL. The Role of Cardiac Fibrosis in Diabetic Cardiomyopathy: From Pathophysiology to Clinical Diagnostic Tools. Int J Mol Sci 2023; 24:8604. [PMID: 37239956 PMCID: PMC10218088 DOI: 10.3390/ijms24108604] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia due to inadequate insulin secretion, resistance, or both. The cardiovascular complications of DM are the leading cause of morbidity and mortality in diabetic patients. There are three major types of pathophysiologic cardiac remodeling including coronary artery atherosclerosis, cardiac autonomic neuropathy, and DM cardiomyopathy in patients with DM. DM cardiomyopathy is a distinct cardiomyopathy characterized by myocardial dysfunction in the absence of coronary artery disease, hypertension, and valvular heart disease. Cardiac fibrosis, defined as the excessive deposition of extracellular matrix (ECM) proteins, is a hallmark of DM cardiomyopathy. The pathophysiology of cardiac fibrosis in DM cardiomyopathy is complex and involves multiple cellular and molecular mechanisms. Cardiac fibrosis contributes to the development of heart failure with preserved ejection fraction (HFpEF), which increases mortality and the incidence of hospitalizations. As medical technology advances, the severity of cardiac fibrosis in DM cardiomyopathy can be evaluated by non-invasive imaging modalities such as echocardiography, heart computed tomography (CT), cardiac magnetic resonance imaging (MRI), and nuclear imaging. In this review article, we will discuss the pathophysiology of cardiac fibrosis in DM cardiomyopathy, non-invasive imaging modalities to evaluate the severity of cardiac fibrosis, and therapeutic strategies for DM cardiomyopathy.
Collapse
Affiliation(s)
- Kuo-Li Pan
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan; (K.-L.P.); (S.-T.C.); (C.-M.C.)
- College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Heart Failure Center, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan
| | - Yung-Chien Hsu
- Department of Nephrology, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan;
| | - Shih-Tai Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan; (K.-L.P.); (S.-T.C.); (C.-M.C.)
- College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Chang-Min Chung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan; (K.-L.P.); (S.-T.C.); (C.-M.C.)
- College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Chun-Liang Lin
- College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Nephrology, Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi Branch, Chiayi City 613, Taiwan;
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung City 833, Taiwan
| |
Collapse
|
14
|
Peng J, Chen Q, Wu C. The role of adiponectin in cardiovascular disease. Cardiovasc Pathol 2023; 64:107514. [PMID: 36634790 DOI: 10.1016/j.carpath.2022.107514] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease (CVD) is a common disease that seriously threatens the health of human beings, especially middle-aged and elderly people over 50 years old. It has the characteristics of high prevalence, high disability rate and high mortality rate. Previous studies have shown that adiponectin has therapeutic effects on a variety of CVDs. As a key adipokine, adiponectin, is an abundant peptide-regulated hormone that is mainly released by adipocytes and cardiomyocytes, as well as endothelial and skeletal cells. Adiponectin can protect against CVD by improving lipid metabolism, protecting vascular endothelial cells and inhibiting foam cell formation and vascular smooth muscle cell proliferation. Further investigation of the molecular and cellular mechanisms underlying the adiponectin system may provide new ideas for the treatment of CVD. Herein, this review aims to describe the structure and function of adiponectin and adiponectin receptors, introduce the function of adiponectin in the protection of cardiovascular disease and analyze the potential use and clinical significance of this hormone in the protection and treatment of cardiovascular disease, which shows that adiponectin can be expected to become a new therapeutic target and biomarker for the diagnosis and treatment of CVD.
Collapse
Affiliation(s)
- Jin Peng
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qian Chen
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chuncao Wu
- Insititution of Chinese Materia Medica Preparation, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.
| |
Collapse
|
15
|
Lee SY, Kuo YH, Du CX, Huang CW, Ku HC. A novel caffeic acid derivative prevents angiotensin II-induced cardiac remodeling. Biomed Pharmacother 2023; 162:114709. [PMID: 37084559 DOI: 10.1016/j.biopha.2023.114709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023] Open
Abstract
Differentiation of cardiac fibroblasts into myofibroblasts is a critical event in the progression of cardiac fibrosis that causes pathological cardiac remodeling. Cardiac fibrosis is a hallmark of heart disease and is associated with a stiff myocardium and heart failure. This study investigated the effect of caffeic acid ethanolamide (CAEA), a novel caffeic acid derivative, on cardiac remodeling. Angiotensin (Ang) II was used to induce cardiac remodeling both in cell and animal studies. Treating cardiac fibroblast with CAEA in Ang II-exposed cell cultures reduced the expression of fibrotic marker α-smooth muscle actin (α-SMA) and collagen and the production of superoxide, indicating that CAEA inhibited the differentiation of fibroblast into myofibroblast after Ang II exposure. CAEA protects against Ang II-induced cardiac fibrosis and dysfunction in vivo, characterized by the alleviation of collagen accumulation and the recovery of ejection fraction. In addition, CAEA decreased Ang II-induced transforming growth factor-β (TGF-β) expression and reduced NOX4 expression and oxidative stress in a SMAD-dependent pathway. CAEA participated in the regulation of Ang II-induced TGF-β/SMAD/NOX4 signaling to prevent the differentiation of fibroblast into myofibroblast and thus exerted a cardioprotective effect. Our data support the administration of CAEA as a viable method for preventing the progression of Ang II-induced cardiac remodeling.
Collapse
Affiliation(s)
- Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chen-Xuan Du
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
16
|
Jung HR, Oh Y, Jang D, Shin S, Lee SJ, Kim J, Lee SE, Oh J, Jang G, Kwon O, Lee Y, Lee HY, Cho SY. Gut bacteria-derived 3-phenylpropionylglycine mitigates adipocyte differentiation of 3T3-L1 cells by inhibiting adiponectin-PPAR pathway. Genes Genomics 2023; 45:71-81. [PMID: 36434390 DOI: 10.1007/s13258-022-01332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Gut microbiota provide numerous types of metabolites that humans cannot produce and have a huge influence on the host metabolism. Accordingly, gut bacteria-derived metabolites can be employed as a resource to develop anti-obesity and metabolism-modulating drugs. OBJECTIVE This study aimed to examine the anti-adipogenic effect of 3-phenylpropionylglycine (PPG), which is a glycine conjugate of bacteria-derived 3-phenylpropionic acid (PPA). METHODS The effect of PPG on preadipocyte-to-adipocyte differentiation was evaluated in 3T3-L1 differentiation models and the degree of the differentiation was estimated by Oil red O staining. The molecular mechanisms of the PPG effect were investigated with transcriptome analyses using RNA-sequencing and quantitative real-time PCR. RESULTS PPG suppressed lipid droplet accumulation during the adipogenic differentiation of 3T3-L1 cells, which is attributed to down-regulation of lipogenic genes such as acetyl CoA carboxylase 1 (Acc1) and fatty acid synthase (Fasn). However, other chemicals with chemical structures similar to PPG, including cinnamoylglycine and hippuric acid, had little effect on the lipid accumulation of 3T3-L1 cells. In transcriptomic analysis, PPG suppressed the expression of adipogenesis and metabolism-related gene sets, which is highly associated with downregulation of the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Protein-protein association network analysis suggested adiponectin as a hub gene in the network of genes that were differentially expressed genes in response to PPG treatment. CONCLUSION PPG inhibits preadipocyte-to-adipocyte differentiation by suppressing the adiponectin-PPAR pathway. These data provide a potential candidate from bacteria-derived metabolites with anti-adipogenic effects.
Collapse
Affiliation(s)
- Hae Rim Jung
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yumi Oh
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dongjun Jang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seungjae Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Soo-Jin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jiwon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sang Eun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaeik Oh
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Giyong Jang
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Obin Kwon
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yeonmi Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea
| | - Hui-Young Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.,Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Sung-Yup Cho
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
17
|
Han W, Yang S, Xiao H, Wang M, Ye J, Cao L, Sun G. Role of Adiponectin in Cardiovascular Diseases Related to Glucose and Lipid Metabolism Disorders. Int J Mol Sci 2022; 23:15627. [PMID: 36555264 PMCID: PMC9779180 DOI: 10.3390/ijms232415627] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Lifestyle changes have led to increased incidence of cardiovascular disease (CVD); therefore, potential targets against CVD should be explored to mitigate its risks. Adiponectin (APN), an adipokine secreted by adipose tissue, has numerous beneficial effects against CVD related to glucose and lipid metabolism disorders, including regulation of glucose and lipid metabolism, increasing insulin sensitivity, reduction of oxidative stress and inflammation, protection of myocardial cells, and improvement in endothelial cell function. These effects demonstrate the anti-atherosclerotic and antihypertensive properties of APN, which could aid in improving myocardial hypertrophy, and reducing myocardial ischemia/reperfusion (MI/R) injury and myocardial infarction. APN can also be used for diagnosing and predicting heart failure. This review summarizes and discusses the role of APN in the treatment of CVD related to glucose and lipid metabolism disorders, and explores future APN research directions and clinical application prospects. Future studies should elucidate the signaling pathway network of APN cardiovascular protective effects, which will facilitate clinical trials targeting APN for CVD treatment in a clinical setting.
Collapse
Affiliation(s)
- Wen Han
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shuxian Yang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Haiyan Xiao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingxue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Li Cao
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing 100193, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
18
|
Xia W, Li X, Wu Q, Xu A, Zhang L, Xia Z. The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy. Front Immunol 2022; 13:951381. [PMID: 36405687 PMCID: PMC9666770 DOI: 10.3389/fimmu.2022.951381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
The diabetic population has been increasing in the past decades and diabetic cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac remodeling and dysfunction without conventional cardiac risk factors such as hypertension and coronary heart diseases, would eventually lead to fatal heart failure in the absence of effective treatment. Impaired insulin signaling, commonly known as insulin resistance, plays an important role in the development of DCM. A family of integral membrane proteins named caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a protein hormone adiponectin (APN) have all been shown to be important for maintaining normal insulin signaling. Abnormalities in caveolins and APN have respectively been demonstrated to cause DCM. This review aims to summarize recent research findings of the roles and mechanisms of caveolins and APN in the development of DCM, and also explore the possible interplay between caveolins and APN.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Wang SX, Feng YN, Feng S, Wu JM, Zhang M, Xu WL, Zhang YY, Zhu HB, Xiao H, Dong ED. IMM-H007 attenuates isoprenaline-induced cardiac fibrosis through targeting TGFβ1 signaling pathway. Acta Pharmacol Sin 2022; 43:2542-2549. [PMID: 35354962 PMCID: PMC9525664 DOI: 10.1038/s41401-022-00899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 11/08/2022]
Abstract
Upon chronic stress, β-adrenergic receptor activation induces cardiac fibrosis and leads to heart failure. The small molecule compound IMM-H007 has demonstrated protective effects in cardiovascular diseases via activation of AMP-activated protein kinase (AMPK). This study aimed to investigate IMM-H007 effects on cardiac fibrosis induced by β-adrenergic receptor activation. Because adenosine analogs also exert AMPK-independent effects, we assessed AMPK-dependent and -independent IMM-H007 effects in murine models of cardiac fibrosis. Continual subcutaneous injection of isoprenaline for 7 days caused cardiac fibrosis and cardiac dysfunction in mice in vivo. IMM-H007 attenuated isoprenaline-induced cardiac fibrosis, diastolic dysfunction, α-smooth muscle actin expression, and collagen I deposition in both wild-type and AMPKα2-/- mice. Moreover, IMM-H007 inhibited transforming growth factor β1 (TGFβ1) expression in wild-type, but not AMPKα2-/- mice. By contrast, IMM-H007 inhibited Smad2/3 signaling downstream of TGFβ1 in both wild-type and AMPKα2-/- mice. Surface plasmon resonance and molecular docking experiments showed that IMM-H007 directly interacts with TGFβ1, inhibits its binding to TGFβ type II receptors, and downregulates the Smad2/3 signaling pathway downstream of TGFβ1. These findings suggest that IMM-H007 inhibits isoprenaline-induced cardiac fibrosis via both AMPKα2-dependent and -independent mechanisms. IMM-H007 may be useful as a novel TGFβ1 antagonist.
Collapse
Affiliation(s)
- Shuai-Xing Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Ye-Nan Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Shan Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Ji-Min Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Mi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Wen-Li Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - You-Yi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Hai-Bo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| | - Er-Dan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| |
Collapse
|
20
|
Abstract
It is important to understand how different human organs coordinate and interact with each other. Since obesity and cardiac disease frequently coincide, the crosstalk between adipose tissues and heart has drawn attention. We appreciate that specific peptides/proteins, lipids, nucleic acids, and even organelles shuttle between the adipose tissues and heart. These bioactive components can profoundly affect the metabolism of cells in distal organs, including heart. Importantly, this process can be dysregulated under pathophysiological conditions. This also opens the door to efforts targeting these mediators as potential therapeutic strategies to treat patients who manifest diabetes and cardiovascular disease. Here, we summarize the recent progress toward a better understanding of how the adipose tissues and heart interact with each other.
Collapse
|
21
|
Singh R, Rathore SS, Khan H, Karale S, Chawla Y, Iqbal K, Bhurwal A, Tekin A, Jain N, Mehra I, Anand S, Reddy S, Sharma N, Sidhu GS, Panagopoulos A, Pattan V, Kashyap R, Bansal V. Association of Obesity With COVID-19 Severity and Mortality: An Updated Systemic Review, Meta-Analysis, and Meta-Regression. Front Endocrinol (Lausanne) 2022; 13:780872. [PMID: 35721716 PMCID: PMC9205425 DOI: 10.3389/fendo.2022.780872] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Background Obesity affects the course of critical illnesses. We aimed to estimate the association of obesity with the severity and mortality in coronavirus disease 2019 (COVID-19) patients. Data Sources A systematic search was conducted from the inception of the COVID-19 pandemic through to 13 October 2021, on databases including Medline (PubMed), Embase, Science Web, and Cochrane Central Controlled Trials Registry. Preprint servers such as BioRxiv, MedRxiv, ChemRxiv, and SSRN were also scanned. Study Selection and Data Extraction Full-length articles focusing on the association of obesity and outcome in COVID-19 patients were included. Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines were used for study selection and data extraction. Our Population of interest were COVID-19 positive patients, obesity is our Intervention/Exposure point, Comparators are Non-obese vs obese patients The chief outcome of the study was the severity of the confirmed COVID-19 positive hospitalized patients in terms of admission to the intensive care unit (ICU) or the requirement of invasive mechanical ventilation/intubation with obesity. All-cause mortality in COVID-19 positive hospitalized patients with obesity was the secondary outcome of the study. Results In total, 3,140,413 patients from 167 studies were included in the study. Obesity was associated with an increased risk of severe disease (RR=1.52, 95% CI 1.41-1.63, p<0.001, I2 = 97%). Similarly, high mortality was observed in obese patients (RR=1.09, 95% CI 1.02-1.16, p=0.006, I2 = 97%). In multivariate meta-regression on severity, the covariate of the female gender, pulmonary disease, diabetes, older age, cardiovascular diseases, and hypertension was found to be significant and explained R2 = 40% of the between-study heterogeneity for severity. The aforementioned covariates were found to be significant for mortality as well, and these covariates collectively explained R2 = 50% of the between-study variability for mortality. Conclusions Our findings suggest that obesity is significantly associated with increased severity and higher mortality among COVID-19 patients. Therefore, the inclusion of obesity or its surrogate body mass index in prognostic scores and improvement of guidelines for patient care management is recommended.
Collapse
Affiliation(s)
- Romil Singh
- Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, PA, United States
| | - Sawai Singh Rathore
- Department of Internal Medicine, Dr. Sampurnanand Medical College, Jodhpur, India
| | - Hira Khan
- Department of Neurology, Allegheny General Hospital, Pittsburgh, PA, United States
| | - Smruti Karale
- Department of Internal Medicine, Government Medical College-Kolhapur, Kolhapur, India
| | - Yogesh Chawla
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Kinza Iqbal
- Department of Internal Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Abhishek Bhurwal
- Department of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, United States
| | - Aysun Tekin
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Rochester, MN, United States
| | - Nirpeksh Jain
- Department of Emergency Medicine, Marshfield Clinic, Marshfield, WI, United States
| | - Ishita Mehra
- Department of Internal Medicine, North Alabama Medical Center, Florence, AL, United States
| | - Sohini Anand
- Department of Internal Medicine, Patliputra Medical College and Hospital, Dhanbad, India
| | - Sanjana Reddy
- Department of Internal Medicine, Gandhi Medical College, Secunderabad, India
| | - Nikhil Sharma
- Department of Nephrology, Mayo Clinic, Rochester, MI, United States
| | - Guneet Singh Sidhu
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MI, United States
| | | | - Vishwanath Pattan
- Department of Medicine, Division of Endocrinology and Metabolism, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Rahul Kashyap
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Rochester, MN, United States
| | - Vikas Bansal
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MI, United States
| |
Collapse
|
22
|
Cardiomyocyte peroxisome proliferator-activated receptor α is essential for energy metabolism and extracellular matrix homeostasis during pressure overload-induced cardiac remodeling. Acta Pharmacol Sin 2022; 43:1231-1242. [PMID: 34376812 PMCID: PMC9061810 DOI: 10.1038/s41401-021-00743-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/11/2021] [Indexed: 01/03/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα), a ligand-activated nuclear receptor critical for systemic lipid homeostasis, has been shown closely related to cardiac remodeling. However, the roles of cardiomyocyte PPARα in pressure overload-induced cardiac remodeling remains unclear because of lacking a cardiomyocyte-specific Ppara-deficient (PparaΔCM) mouse model. This study aimed to determine the specific role of cardiomyocyte PPARα in transverse aortic constriction (TAC)-induced cardiac remodeling using an inducible PparaΔCM mouse model. PparaΔCM and Pparafl/fl mice were randomly subjected to sham or TAC for 2 weeks. Cardiomyocyte PPARα deficiency accelerated TAC-induced cardiac hypertrophy and fibrosis. Transcriptome analysis showed that genes related to fatty acid metabolism were dramatically downregulated, but genes critical for glycolysis were markedly upregulated in PparaΔCM hearts. Moreover, the hypertrophy-related genes, including genes involved in extracellular matrix (ECM) remodeling, cell adhesion, and cell migration, were upregulated in hypertrophic PparaΔCM hearts. Western blot analyses demonstrated an increased HIF1α protein level in hypertrophic PparaΔCM hearts. PET/CT analyses showed an enhanced glucose uptake in hypertrophic PparaΔCM hearts. Bioenergetic analyses further revealed that both basal and maximal oxygen consumption rates and ATP production were significantly increased in hypertrophic Pparafl/fl hearts; however, these increases were markedly blunted in PparaΔCM hearts. In contrast, hypertrophic PparaΔCM hearts exhibited enhanced extracellular acidification rate (ECAR) capacity, as reflected by increased basal ECAR and glycolysis but decreased glycolytic reserve. These results suggest that cardiomyocyte PPARα is crucial for the homeostasis of both energy metabolism and ECM during TAC-induced cardiac remodeling, thus providing new insights into potential therapeutics of cardiac remodeling-related diseases.
Collapse
|
23
|
Remodeling and Fibrosis of the Cardiac Muscle in the Course of Obesity-Pathogenesis and Involvement of the Extracellular Matrix. Int J Mol Sci 2022; 23:ijms23084195. [PMID: 35457013 PMCID: PMC9032681 DOI: 10.3390/ijms23084195] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 12/16/2022] Open
Abstract
Obesity is a growing epidemiological problem, as two-thirds of the adult population are carrying excess weight. It is a risk factor for the development of cardiovascular diseases (hypertension, ischemic heart disease, myocardial infarct, and atrial fibrillation). It has also been shown that chronic obesity in people may be a cause for the development of heart failure with preserved ejection fraction (HFpEF), whose components include cellular hypertrophy, left ventricular diastolic dysfunction, and increased extracellular collagen deposition. Several animal models with induced obesity, via the administration of a high-fat diet, also developed increased heart fibrosis as a result of extracellular collagen accumulation. Excessive collagen deposition in the extracellular matrix (ECM) in the course of obesity may increase the stiffness of the myocardium and thereby deteriorate the heart diastolic function and facilitate the occurrence of HFpEF. In this review, we include a rationale for that process, including a discussion about possible putative factors (such as increased renin–angiotensin–aldosterone activity, sympathetic overdrive, hemodynamic alterations, hypoadiponectinemia, hyperleptinemia, and concomitant heart diseases). To address the topic clearly, we include a description of the fundamentals of ECM turnover, as well as a summary of studies assessing collagen deposition in obese individuals.
Collapse
|
24
|
Sakaue TA, Fujishima Y, Fukushima Y, Tsugawa-Shimizu Y, Fukuda S, Kita S, Nishizawa H, Ranscht B, Nishida K, Maeda N, Shimomura I. Adiponectin accumulation in the retinal vascular endothelium and its possible role in preventing early diabetic microvascular damage. Sci Rep 2022; 12:4159. [PMID: 35264685 PMCID: PMC8907357 DOI: 10.1038/s41598-022-08041-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Adiponectin (APN), a protein abundantly secreted from adipocytes, has been reported to possess beneficial effects on cardiovascular diseases in association with its accumulation on target organs and cells by binding to T-cadherin. However, little is known about the role of APN in the development of diabetic microvascular complications, such as diabetic retinopathy (DR). Here we investigated the impact of APN on the progression of early retinal vascular damage using a streptozotocin (STZ)-induced diabetic mouse model. Our immunofluorescence results clearly showed T-cadherin-dependent localization of APN in the vascular endothelium of retinal arterioles, which was progressively decreased during the course of diabetes. Such reduction of retinal APN accompanied the early features of DR, represented by increased vascular permeability, and was prevented by glucose-lowering therapy with dapagliflozin, a selective sodium-glucose co-transporter 2 inhibitor. In addition, APN deficiency resulted in severe vascular permeability under relatively short-term hyperglycemia, together with a significant increase in vascular cellular adhesion molecule-1 (VCAM-1) and a reduction in claudin-5 in the retinal endothelium. The present study demonstrated a possible protective role of APN against the development of DR.
Collapse
Affiliation(s)
- Taka-Aki Sakaue
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yuya Fujishima
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Yoko Fukushima
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yuri Tsugawa-Shimizu
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shiro Fukuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Department of Adipose Management, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Barbara Ranscht
- Sanford Burnham Prebys Medical Discovery Institute, NIH-Designated Cancer Center, Development, Aging and Regeneration Program, La Jolla, CA, USA
| | - Kohji Nishida
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Department of Metabolism and Atherosclerosis, Graduate School of Medicine Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
25
|
Sharma A, Mah M, Ritchie RH, De Blasio MJ. The adiponectin signalling pathway - A therapeutic target for the cardiac complications of type 2 diabetes? Pharmacol Ther 2021; 232:108008. [PMID: 34610378 DOI: 10.1016/j.pharmthera.2021.108008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with an increased risk of heart failure (HF). This is commonly termed diabetic cardiomyopathy and is often characterised by increased cardiac fibrosis, pathological hypertrophy, increased oxidative and endoplasmic reticulum stress as well as diastolic dysfunction. Adiponectin is a cardioprotective adipokine that is downregulated in settings of type 2 diabetes (T2D) and obesity. Furthermore, both adiponectin receptors (AdipoR1 and R2) are also downregulated in these settings which further results in impaired cardiac adiponectin signalling and reduced cardioprotection. In many cardiac pathologies, adiponectin signalling has been shown to protect against cardiac remodelling and lipotoxicity, however its cardioprotective actions in T2D-induced cardiomyopathy remain unresolved. Diabetic cardiomyopathy has historically lacked effective treatment options. In this review, we summarise the current evidence for links between the suppressed adiponectin signalling pathway and cardiac dysfunction, in diabetes. We describe adiponectin receptor-mediated signalling pathways that are normally associated with cardioprotection, as well as current and potential future therapeutic approaches that could target this pathway as possible interventions for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abhipree Sharma
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael Mah
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; Department of Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
26
|
Sowka A, Dobrzyn P. Role of Perivascular Adipose Tissue-Derived Adiponectin in Vascular Homeostasis. Cells 2021; 10:cells10061485. [PMID: 34204799 PMCID: PMC8231548 DOI: 10.3390/cells10061485] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
Studies of adipose tissue biology have demonstrated that adipose tissue should be considered as both passive, energy-storing tissue and an endocrine organ because of the secretion of adipose-specific factors, called adipokines. Adiponectin is a well-described homeostatic adipokine with metabolic properties. It regulates whole-body energy status through the induction of fatty acid oxidation and glucose uptake. Adiponectin also has anti-inflammatory and antidiabetic properties, making it an interesting subject of biomedical studies. Perivascular adipose tissue (PVAT) is a fat depot that is conterminous to the vascular wall and acts on it in a paracrine manner through adipokine secretion. PVAT-derived adiponectin can act on the vascular wall through endothelial cells and vascular smooth muscle cells. The present review describes adiponectin's structure, receptors, and main signaling pathways. We further discuss recent studies of the extent and nature of crosstalk between PVAT-derived adiponectin and endothelial cells, vascular smooth muscle cells, and atherosclerotic plaques. Furthermore, we argue whether adiponectin and its receptors may be considered putative therapeutic targets.
Collapse
|
27
|
Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166044. [PMID: 33378699 PMCID: PMC7867637 DOI: 10.1016/j.bbadis.2020.166044] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Diabetes-associated morbidity and mortality is predominantly due to complications of the disease that may cause debilitating conditions, such as heart and renal failure, hepatic insufficiency, retinopathy or peripheral neuropathy. Fibrosis, the excessive and inappropriate deposition of extracellular matrix in various tissues, is commonly found in patients with advanced type 1 or type 2 diabetes, and may contribute to organ dysfunction. Hyperglycemia, lipotoxic injury and insulin resistance activate a fibrotic response, not only through direct stimulation of matrix synthesis by fibroblasts, but also by promoting a fibrogenic phenotype in immune and vascular cells, and possibly also by triggering epithelial and endothelial cell conversion to a fibroblast-like phenotype. High glucose stimulates several fibrogenic pathways, triggering reactive oxygen species generation, stimulating neurohumoral responses, activating growth factor cascades (such as TGF-β/Smad3 and PDGFs), inducing pro-inflammatory cytokines and chemokines, generating advanced glycation end-products (AGEs) and stimulating the AGE-RAGE axis, and upregulating fibrogenic matricellular proteins. Although diabetes-activated fibrogenic signaling has common characteristics in various tissues, some organs, such as the heart, kidney and liver develop more pronounced and clinically significant fibrosis. This review manuscript summarizes current knowledge on the cellular and molecular pathways involved in diabetic fibrosis, discussing the fundamental links between metabolic perturbations and fibrogenic activation, the basis for organ-specific differences, and the promises and challenges of anti-fibrotic therapies for diabetic patients.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
28
|
Marino A, Hausenloy DJ, Andreadou I, Horman S, Bertrand L, Beauloye C. AMP-activated protein kinase: A remarkable contributor to preserve a healthy heart against ROS injury. Free Radic Biol Med 2021; 166:238-254. [PMID: 33675956 DOI: 10.1016/j.freeradbiomed.2021.02.047] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
Heart failure is one of the leading causes of death and disability worldwide. Left ventricle remodeling, fibrosis, and ischemia/reperfusion injury all contribute to the deterioration of cardiac function and predispose to the onset of heart failure. Adenosine monophosphate-activated protein kinase (AMPK) is the universally recognized energy sensor which responds to low ATP levels and restores cellular metabolism. AMPK activation controls numerous cellular processes and, in the heart, it plays a pivotal role in preventing onset and progression of disease. Excessive reactive oxygen species (ROS) generation, known as oxidative stress, can activate AMPK, conferring an additional role of AMPK as a redox-sensor. In this review, we discuss recent insights into the crosstalk between ROS and AMPK. We describe the molecular mechanisms by which ROS activate AMPK and how AMPK signaling can further prevent heart failure progression. Ultimately, we review the potential therapeutic approaches to target AMPK for the treatment of cardiovascular disease and prevention of heart failure.
Collapse
Affiliation(s)
- Alice Marino
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Division of Cardiology, Cliniques universitaires Saint Luc, Brussels, Belgium.
| |
Collapse
|
29
|
Poly TN, Islam MM, Yang HC, Lin MC, Jian WS, Hsu MH, Jack Li YC. Obesity and Mortality Among Patients Diagnosed With COVID-19: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:620044. [PMID: 33634150 PMCID: PMC7901910 DOI: 10.3389/fmed.2021.620044] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has already raised serious concern globally as the number of confirmed or suspected cases have increased rapidly. Epidemiological studies reported that obesity is associated with a higher rate of mortality in patients with COVID-19. Yet, to our knowledge, there is no comprehensive systematic review and meta-analysis to assess the effects of obesity and mortality among patients with COVID-19. We, therefore, aimed to evaluate the effect of obesity, associated comorbidities, and other factors on the risk of death due to COVID-19. We did a systematic search on PubMed, EMBASE, Google Scholar, Web of Science, and Scopus between January 1, 2020, and August 30, 2020. We followed Cochrane Guidelines to find relevant articles, and two reviewers extracted data from retrieved articles. Disagreement during those stages was resolved by discussion with the main investigator. The random-effects model was used to calculate effect sizes. We included 17 articles with a total of 543,399 patients. Obesity was significantly associated with an increased risk of mortality among patients with COVID-19 (RRadjust: 1.42 (95%CI: 1.24-1.63, p < 0.001). The pooled risk ratio for class I, class II, and class III obesity were 1.27 (95%CI: 1.05-1.54, p = 0.01), 1.56 (95%CI: 1.11-2.19, p < 0.01), and 1.92 (95%CI: 1.50-2.47, p < 0.001), respectively). In subgroup analysis, the pooled risk ratio for the patients with stroke, CPOD, CKD, and diabetes were 1.80 (95%CI: 0.89-3.64, p = 0.10), 1.57 (95%CI: 1.57-1.91, p < 0.001), 1.34 (95%CI: 1.18-1.52, p < 0.001), and 1.19 (1.07-1.32, p = 0.001), respectively. However, patients with obesity who were more than 65 years had a higher risk of mortality (RR: 2.54; 95%CI: 1.62-3.67, p < 0.001). Our study showed that obesity was associated with an increased risk of death from COVID-19, particularly in patients aged more than 65 years. Physicians should aware of these risk factors when dealing with patients with COVID-19 and take early treatment intervention to reduce the mortality of COVID-19 patients.
Collapse
Affiliation(s)
- Tahmina Nasrin Poly
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Md. Mohaimenul Islam
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsuan Chia Yang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming Chin Lin
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Professional Master Program in Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institution, Taipei Medical University, Taipei, Taiwan
| | - Wen-Shan Jian
- School of Health Care Administration, Taipei Medical University, Taipei, Taiwan
| | - Min-Huei Hsu
- Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chuan Jack Li
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Dermatology, Wan Fang Hospital, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
30
|
Tsugawa-Shimizu Y, Fujishima Y, Kita S, Minami S, Sakaue TA, Nakamura Y, Okita T, Kawachi Y, Fukada S, Namba-Hamano T, Takabatake Y, Isaka Y, Nishizawa H, Ranscht B, Maeda N, Shimomura I. Increased vascular permeability and severe renal tubular damage after ischemia-reperfusion injury in mice lacking adiponectin or T-cadherin. Am J Physiol Endocrinol Metab 2021; 320:E179-E190. [PMID: 33284092 PMCID: PMC8260375 DOI: 10.1152/ajpendo.00393.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Adiponectin (APN) is a circulating protein specifically produced by adipocytes. Native APN specifically binds to T-cadherin, a glycosylphosphatidylinositol-anchored protein, mediating the exosome-stimulating effects of APN in endothelial, muscle, and mesenchymal stem cells. It was previously reported that APN has beneficial effects on kidney diseases, but the role of T-cadherin has not been clarified yet. Here, our immunofluorescence study indicated the existence of both T-cadherin and APN protein in pericytes, subsets of tissue-resident mesenchymal stem/progenitor cells positive for platelet-derived growth factor receptor β (PDGFRβ), surrounding peritubular capillaries. In an acute renal ischemia-reperfusion (I/R) model, T-cadherin-knockout (Tcad-KO) mice, similar to APN-KO mice, exhibited the more progressive phenotype of renal tubular damage and increased vascular permeability than wild-type mice. In addition, in response to I/R-injury, the renal PDGFRβ-positive cell area increased in wild-type mice, but opposingly decreased in both Tcad-KO and APN-KO mice, suggesting severe pericyte loss. Mouse primary pericytes also expressed T-cadherin. APN promoted exosome secretion in a T-cadherin-dependent manner. Such exosome production from pericytes may play an important role in maintaining the capillary network and APN-mediated inhibition of renal tubular injury. In summary, our study suggested that APN protected the kidney in an acute renal injury model by binding to T-cadherin.NEW & NOTEWORTHY In the kidney, T-cadherin-associated adiponectin protein existed on peritubular capillary pericytes. In an acute renal ischemia-reperfusion model, deficiency of adiponectin or T-cadherin exhibited the more progressive phenotype of renal tubular damage and increased vascular permeability, accompanied by severe pericyte loss. In vitro, adiponectin promoted exosome secretion from mouse primary pericytes in a T-cadherin-dependent manner. Adiponectin plays an important role in maintaining the capillary network and amelioration of renal tubular injury by binding to T-cadherin.
Collapse
Affiliation(s)
- Yuri Tsugawa-Shimizu
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Yuya Fujishima
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
- Department of Adipose Management, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Satoshi Minami
- Department of Nephrology, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Taka-Aki Sakaue
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Yuto Nakamura
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Tomonori Okita
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Yusuke Kawachi
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Shiro Fukada
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Barbara Ranscht
- Development, Aging and Regeneration Program, NIH-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
- Department of Metabolism and Atherosclerosis, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
31
|
Jiang Z, Feng T, Lu Z, Wei Y, Meng J, Lin CP, Zhou B, Liu C, Zhang H. PDGFRb + mesenchymal cells, but not NG2 + mural cells, contribute to cardiac fat. Cell Rep 2021; 34:108697. [PMID: 33535029 DOI: 10.1016/j.celrep.2021.108697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/01/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Understanding cellular origins of cardiac adipocytes (CAs) can offer important implications for the treatment of fat-associated cardiovascular diseases. Here, we perform lineage tracing studies by using various genetic models and find that cardiac mesenchymal cells (MCs) contribute to CAs in postnatal development and adult homeostasis. Although PDGFRa+ and PDGFRb+ MCs both give rise to intramyocardial adipocytes, PDGFRb+ MCs are demonstrated to be the major source of intramyocardial adipocytes. Moreover, we find that PDGFRb+ cells are heterogenous, as PDGFRb is expressed not only in pericytes and smooth muscle cells (SMCs) but also in some subendocardial, pericapillary, or adventitial PDGFRa+ fibroblasts. Dual-recombinase-mediated intersectional genetic lineage tracing reveals that PDGFRa+PDGFRb+ double-positive periendothelial fibroblasts contribute to intramyocardial adipocytes. In contrast, SMCs and NG2+ pericytes do not contribute to CAs. These in vivo findings demonstrate that PDGFRb+ MCs, but not NG2+ coronary vascular mural cells, are the major source of intramyocardial adipocytes.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengkai Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanxin Wei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jufeng Meng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bin Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
32
|
Mohseni Z, Derksen E, Oben J, Al-Nasiry S, Spaanderman MEA, Ghossein-Doha C. Cardiac dysfunction after preeclampsia; an overview of pro- and anti-fibrotic circulating effector molecules. Pregnancy Hypertens 2020; 23:140-154. [PMID: 33388730 DOI: 10.1016/j.preghy.2020.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/29/2020] [Accepted: 12/08/2020] [Indexed: 01/09/2023]
Abstract
Preeclampsia (PE) is strongly associated with heart failure (HF) later in life. The aberrant cardiac remodelling is likely initiated or amplified during preeclamptic pregnancy. Aberrant remodelling often persists after delivery and is known to relate strongly to cardiac fibrosis. This review provides an overview of pro- and anti- fibrotic circulating effector molecules that are involved in cardiac fibrosis and their association with PE. Women with PE complicated pregnancies show increased ANG-II sensitivity and elevated levels of the pro-fibrotic factors IL-6, TNF-α, TGs and FFAs compared to uncomplicated pregnancies. In the postpartum period, PE pregnancies compared to uncomplicated pregnancies have increased ANG-II sensitivity, elevated levels of the pro-fibrotic factors IL-6, TNF-α, LDL cholesterol and leptin, as well as decreased levels of the anti-fibrotic factor adiponectin. The review revealed several profibrotic molecules that associate to cardiac fibrosis during and after PE. The role that these fibrotic factors have on the heart during and after PE may improve the understanding of the link between PE and HF. Furthermore they may provide insight into the pathways in which the relation between both diseases can be understood as potential mechanisms which interfere in the process of cardiovascular disease (CVD). Unravelling the molecular mechanism and pathways involved might bring the diagnostic and therapeutic abilities of those factors a step closer.
Collapse
Affiliation(s)
- Zenab Mohseni
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC+), The Netherlands.
| | - Elianne Derksen
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC+), The Netherlands
| | - Jolien Oben
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC+), The Netherlands
| | - Salwan Al-Nasiry
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC+), The Netherlands
| | - Marc E A Spaanderman
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC+), The Netherlands; Department of Obstetrics and Gynecology, Radboud University Nijmegen Medical Center, The Netherlands
| | - Chahinda Ghossein-Doha
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC+), The Netherlands; Department of Cardiology, Maastricht University Medical Centre (MUMC+), The Netherlands
| |
Collapse
|
33
|
Tartof SY, Qian L, Hong V, Wei R, Nadjafi RF, Fischer H, Li Z, Shaw SF, Caparosa SL, Nau CL, Saxena T, Rieg GK, Ackerson BK, Sharp AL, Skarbinski J, Naik TK, Murali SB. Obesity and Mortality Among Patients Diagnosed With COVID-19: Results From an Integrated Health Care Organization. Ann Intern Med 2020; 173:773-781. [PMID: 32783686 PMCID: PMC7429998 DOI: 10.7326/m20-3742] [Citation(s) in RCA: 379] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity, race/ethnicity, and other correlated characteristics have emerged as high-profile risk factors for adverse coronavirus disease 2019 (COVID-19)-associated outcomes, yet studies have not adequately disentangled their effects. OBJECTIVE To determine the adjusted effect of body mass index (BMI), associated comorbidities, time, neighborhood-level sociodemographic factors, and other factors on risk for death due to COVID-19. DESIGN Retrospective cohort study. SETTING Kaiser Permanente Southern California, a large integrated health care organization. PATIENTS Kaiser Permanente Southern California members diagnosed with COVID-19 from 13 February to 2 May 2020. MEASUREMENTS Multivariable Poisson regression estimated the adjusted effect of BMI and other factors on risk for death at 21 days; models were also stratified by age and sex. RESULTS Among 6916 patients with COVID-19, there was a J-shaped association between BMI and risk for death, even after adjustment for obesity-related comorbidities. Compared with patients with a BMI of 18.5 to 24 kg/m2, those with BMIs of 40 to 44 kg/m2 and greater than 45 kg/m2 had relative risks of 2.68 (95% CI, 1.43 to 5.04) and 4.18 (CI, 2.12 to 8.26), respectively. This risk was most striking among those aged 60 years or younger and men. Increased risk for death associated with Black or Latino race/ethnicity or other sociodemographic characteristics was not detected. LIMITATION Deaths occurring outside a health care setting and not captured in membership files may have been missed. CONCLUSION Obesity plays a profound role in risk for death from COVID-19, particularly in male patients and younger populations. Our capitated system with more equalized health care access may explain the absence of effect of racial/ethnic and socioeconomic disparities on death. Our data highlight the leading role of severe obesity over correlated risk factors, providing a target for early intervention. PRIMARY FUNDING SOURCE Roche-Genentech.
Collapse
Affiliation(s)
- Sara Y Tartof
- Kaiser Permanente Southern California, Pasadena, California (S.Y.T., L.Q., V.H., R.W., H.F., Z.L., S.F.S., S.L.C., C.L.N.)
| | - Lei Qian
- Kaiser Permanente Southern California, Pasadena, California (S.Y.T., L.Q., V.H., R.W., H.F., Z.L., S.F.S., S.L.C., C.L.N.)
| | - Vennis Hong
- Kaiser Permanente Southern California, Pasadena, California (S.Y.T., L.Q., V.H., R.W., H.F., Z.L., S.F.S., S.L.C., C.L.N.)
| | - Rong Wei
- Kaiser Permanente Southern California, Pasadena, California (S.Y.T., L.Q., V.H., R.W., H.F., Z.L., S.F.S., S.L.C., C.L.N.)
| | - Ron F Nadjafi
- Kaiser Permanente Southern California Clinical Informatics, Pasadena, California (R.F.N.)
| | - Heidi Fischer
- Kaiser Permanente Southern California, Pasadena, California (S.Y.T., L.Q., V.H., R.W., H.F., Z.L., S.F.S., S.L.C., C.L.N.)
| | - Zhuoxin Li
- Kaiser Permanente Southern California, Pasadena, California (S.Y.T., L.Q., V.H., R.W., H.F., Z.L., S.F.S., S.L.C., C.L.N.)
| | - Sally F Shaw
- Kaiser Permanente Southern California, Pasadena, California (S.Y.T., L.Q., V.H., R.W., H.F., Z.L., S.F.S., S.L.C., C.L.N.)
| | - Susan L Caparosa
- Kaiser Permanente Southern California, Pasadena, California (S.Y.T., L.Q., V.H., R.W., H.F., Z.L., S.F.S., S.L.C., C.L.N.)
| | - Claudia L Nau
- Kaiser Permanente Southern California, Pasadena, California (S.Y.T., L.Q., V.H., R.W., H.F., Z.L., S.F.S., S.L.C., C.L.N.)
| | - Tanmai Saxena
- Southern California Permanente Medical Group, Anaheim, California (T.S.)
| | - Gunter K Rieg
- Southern California Permanente Medical Group, Harbor City, California (G.K.R., B.K.A.)
| | - Bradley K Ackerson
- Southern California Permanente Medical Group, Harbor City, California (G.K.R., B.K.A.)
| | - Adam L Sharp
- Kaiser Permanente Southern California, Pasadena, California, and Southern California Permanente Medical Group, Los Angeles, California (A.L.S.)
| | | | - Tej K Naik
- Southern California Permanente Medical Group, Ontario, California (T.K.N.)
| | - Sameer B Murali
- Southern California Permanente Medical Group, Fontana, California (S.B.M.)
| |
Collapse
|
34
|
Mado H, Szczurek W, Gąsior M, Szyguła-Jurkiewicz B. Adiponectin in heart failure. Future Cardiol 2020; 17:757-764. [PMID: 32915067 DOI: 10.2217/fca-2020-0095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The adipose tissue, apart from storing energy, plays a role of an endocrine organ. One of the most important adipokines secreted by adipose tissue is adiponectin, which is also produced by cardiomyocytes and connective tissue cells within the heart. Adiponectin is known for its beneficial effect on the metabolism and cardiovascular system and its low level is a factor of development of many cardiovascular diseases. Paradoxically, in the course of heart failure, adiponectin level gradually increases with the severity of the disease and higher adiponectin level is a factor of poor prognosis. As a result, there is a growing interest in adiponectin as a marker of heart failure progression and a predictor of prognosis in the course of this disease.
Collapse
Affiliation(s)
- Hubert Mado
- Student Scientific Society, 3rd Department of Cardiology, School of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | | | - Mariusz Gąsior
- 3rd Department of Cardiology, School of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Bożena Szyguła-Jurkiewicz
- 3rd Department of Cardiology, School of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
35
|
Harvey AP, Robinson E, Edgar KS, McMullan R, O’Neill KM, Alderdice M, Amirkhah R, Dunne PD, McDermott BJ, Grieve DJ. Downregulation of PPARα during Experimental Left Ventricular Hypertrophy Is Critically Dependent on Nox2 NADPH Oxidase Signalling. Int J Mol Sci 2020; 21:E4406. [PMID: 32575797 PMCID: PMC7352162 DOI: 10.3390/ijms21124406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Pressure overload-induced left ventricular hypertrophy (LVH) is initially adaptive but ultimately promotes systolic dysfunction and chronic heart failure. Whilst underlying pathways are incompletely understood, increased reactive oxygen species generation from Nox2 NADPH oxidases, and metabolic remodelling, largely driven by PPARα downregulation, are separately implicated. Here, we investigated interaction between the two as a key regulator of LVH using in vitro, in vivo and transcriptomic approaches. Phenylephrine-induced H9c2 cardiomyoblast hypertrophy was associated with reduced PPARα expression and increased Nox2 expression and activity. Pressure overload-induced LVH and systolic dysfunction induced in wild-type mice by transverse aortic constriction (TAC) for 7 days, in association with Nox2 upregulation and PPARα downregulation, was enhanced in PPARα-/- mice and prevented in Nox2-/- mice. Detailed transcriptomic analysis revealed significantly altered expression of genes relating to PPARα, oxidative stress and hypertrophy pathways in wild-type hearts, which were unaltered in Nox2-/- hearts, whilst oxidative stress pathways remained dysregulated in PPARα-/- hearts following TAC. Network analysis indicated that Nox2 was essential for PPARα downregulation in this setting and identified preferential inflammatory pathway modulation and candidate cytokines as upstream Nox2-sensitive regulators of PPARα signalling. Together, these data suggest that Nox2 is a critical driver of PPARα downregulation leading to maladaptive LVH.
Collapse
Affiliation(s)
- Adam P. Harvey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - Emma Robinson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - Kevin S. Edgar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - Ross McMullan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - Karla M. O’Neill
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - Matthew Alderdice
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT7 1NN, UK; (M.A.); (R.A.); (P.D.D.)
| | - Raheleh Amirkhah
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT7 1NN, UK; (M.A.); (R.A.); (P.D.D.)
| | - Philip D. Dunne
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT7 1NN, UK; (M.A.); (R.A.); (P.D.D.)
| | - Barbara J. McDermott
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - David J. Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| |
Collapse
|
36
|
Mechanisms linking adipose tissue inflammation to cardiac hypertrophy and fibrosis. Clin Sci (Lond) 2020; 133:2329-2344. [PMID: 31777927 DOI: 10.1042/cs20190578] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Adipose tissue is classically recognized as the primary site of lipid storage, but in recent years has garnered appreciation for its broad role as an endocrine organ comprising multiple cell types whose collective secretome, termed as adipokines, is highly interdependent on metabolic homeostasis and inflammatory state. Anatomical location (e.g. visceral, subcutaneous, epicardial etc) and cellular composition of adipose tissue (e.g. white, beige, and brown adipocytes, macrophages etc.) also plays a critical role in determining its response to metabolic state, the resulting secretome, and its potential impact on remote tissues. Compared with other tissues, the heart has an extremely high and constant demand for energy generation, of which most is derived from oxidation of fatty acids. Availability of this fatty acid fuel source is dependent on adipose tissue, but evidence is mounting that adipose tissue plays a much broader role in cardiovascular physiology. In this review, we discuss the impact of the brown, subcutaneous, and visceral white, perivascular (PVAT), and epicardial adipose tissue (EAT) secretome on the development and progression of cardiovascular disease (CVD), with a particular focus on cardiac hypertrophy and fibrosis.
Collapse
|
37
|
Khorrami E, Hosseinzadeh‐Attar MJ, Esmaillzadeh A, Alipoor E, Hosseini M, Emkanjou Z, Kolahdouz Mohammadi R, Moradmand S. Effect of fish oil on circulating asymmetric dimethylarginine and adiponectin in overweight or obese patients with atrial fibrillation. Food Sci Nutr 2020; 8:2165-2172. [PMID: 32328283 PMCID: PMC7174212 DOI: 10.1002/fsn3.1518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity and adipose-derived peptides might be involved in the pathogenesis of atrial fibrillation (AF). Adiponectin plays a major role in the modulation of several metabolic pathways, and asymmetric dimethylarginine (ADMA) has been suggested to be predictive of AF and associated adverse events. The aim of this study was to investigate the effect of fish oil supplementation on circulating adiponectin and ADMA in overweight or obese patients with persistent AF. In this randomized, double-blind, placebo-controlled trial, 80 overweight or obese (body mass index (BMI) ≥ 25 kg/m2) patients with persistent AF were randomly assigned to two groups to receive either 2 g/day fish oil or placebo, for 8 weeks. Serum levels of adiponectin and ADMA, and anthropometric indexes were measured. This study showed that serum adiponectin concentrations increased significantly following fish oil supplementation compared with the placebo group (13.15 ± 7.33 vs. 11.88 ± 6.94 µg/ml; p = .026). A significant reduction was also observed in serum ADMA levels in the fish oil compared with the placebo group following the intervention (0.6 ± 0.13 vs. 0.72 ± 0.15 µmol/L; p = .001). The changes in serum adiponectin and ADMA concentrations remained significant after adjustments for baseline values, age, sex, and changes of BMI and waist circumference (p = .011 and p = .001, respectively). In conclusion, 8 weeks supplementation with fish oil increased serum adiponectin and decreased ADMA concentrations in overweight or obese patients with persistent AF. As adiponectin and ADMA are suggested to be involved in many pathways associated with AF, the current findings might be promising in the clinical management of this disease, an issue that needs further investigations.
Collapse
Affiliation(s)
- Elnaz Khorrami
- Department of Clinical NutritionSchool of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
| | - Mohammad Javad Hosseinzadeh‐Attar
- Department of Clinical NutritionSchool of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
- Cardiac Primary Prevention Research Center (CPPRC)Tehran Heart CenterTehran University of Medical SciencesTehranIran
- Centre of Research Excellence in Translating Nutritional Science to Good HealthThe University of AdelaideAdelaideAustralia
| | - Ahmad Esmaillzadeh
- Department of Community NutritionSchool of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
| | - Elham Alipoor
- Department of NutritionSchool of Public HealthIran University of Medical SciencesTehranIran
| | - Mostafa Hosseini
- Department of Epidemiology and BiostatisticsSchool of Public HealthTehran University of Medical SciencesTehranIran
| | - Zahra Emkanjou
- Department of CardiologyShahid Rajaei Heart CenterIran University of Medical SciencesTehranIran
| | | | - Sina Moradmand
- Department of CardiologyTehran University of Medical SciencesTehranIran
| |
Collapse
|
38
|
Fu Q, Lu Z, Fu X, Ma S, Lu X. MicroRNA 27b promotes cardiac fibrosis by targeting the FBW7/Snail pathway. Aging (Albany NY) 2019; 11:11865-11879. [PMID: 31881012 PMCID: PMC6949061 DOI: 10.18632/aging.102465] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/08/2019] [Indexed: 04/09/2023]
Abstract
Our study aspires to understand the impact of miR-27b on myocardial fibrosis as well as its functional mechanism. 12 days post the ligation of coronary artery in rats, the expression of miR-27b in the peri-infarction region was elevated. Treating cultivated rat neonatal cardiac fibroblasts (CFs) with angiotensin II (AngII) also enhanced the miR-27b expression. Forced expression of miR-27b promoted the proliferation and collagen production in rat neonatal CFs, as revealed by cell counting, MTT assay, and quantitative reverse transcription-polymerase chain reaction. FBW7 was found to be the miR-27b's target since the overexpression of miR-27b reduced the transcriptional level of FBW7. The enhanced expression of FBW7 protein abrogated the effects of miR-27b in cultured CFs, while the siRNA silence of FBW7 promoted the pro-fibrosis activity of AngII. As to the mechanism, we found that the expression of FBW7 led to the degradation of Snail, which is an important regulator of cardiac epithelial-mesenchymal transitions. Importantly, inhibition of miR-27b abrogated the coronary artery ligation (CAL) induced cardiac fibrosis in vivo, suggesting that it might be a potential target for the treatment of fibrosis associated cardiac diseases.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Cardiovascular Surgery, The General Hospital of Tianjin Medical University, Tianjin, China
| | - Zhihong Lu
- Department of Anatomy and Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiao Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shitang Ma
- College of Life and Health Sciences, Anhui Science and Technology University, Chuzhou, Anhui, China
| | - Xiaochun Lu
- Department of Cardiology, The 2nd Medical Centre, PLA General Hospital, Beijing, China
| |
Collapse
|
39
|
Ding DZ, Jia YN, Zhang B, Guan CM, Zhou S, Li X, Cui X. C‑type natriuretic peptide prevents angiotensin II‑induced atrial connexin 40 and 43 dysregulation by activating AMP‑activated kinase signaling. Mol Med Rep 2019; 20:5091-5099. [PMID: 31638216 PMCID: PMC6854524 DOI: 10.3892/mmr.2019.10744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
C‑type natriuretic peptide (CNP), from the family of natriuretic peptides (NPs), has been shown to induce antihypertrophic and antifibrotic effects in cardiomyocytes. However, the roles of CNP in the atrial dysregulation of connexin (Cx)40 and Cx43 remain to be elucidated. The present study aimed to investigate the effects of CNP on angiotensin (Ang) II‑induced Cx40 and Cx43 dysregulation in isolated perfused beating rat left atria. A rat isolated perfused beating atrial model was used and the protein levels were determined via western blotting. Ang II significantly upregulated NF‑κB, activator protein‑1, transforming growth factor‑β1 (TGF‑β1), collagen I and matrix metalloproteinase 2, leading to atrial fibrosis, and downregulated expression of Cx40 and Cx43. The changes in Cx40 and Cx43 induced by Ang II were abolished by CNP through upregulation of phosphorylated AMP‑activated kinase a1 (AMPK) and downregulation of TGF‑β1. The effects of CNP on AMPK and TGF‑β1 levels were inhibited by KT5823 and pertussis toxin, inhibitors of protein kinase G (PKG) and NP receptor type C (NPR‑C), respectively. Thus, CNP can prevent Ang II‑induced dysregulation of Cx40 and Cx43 through activation of AMPK via the CNP‑PKG and CNP‑NPR‑C pathways in isolated beating rat atria. The present findings suggested that CNP may be therapeutically useful for clinical conditions involving cardiac dysregulation of Cx expression‑related diseases.
Collapse
Affiliation(s)
- Da-Zhi Ding
- Department of Cardiology, Institute of Clinical Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Ya-Nan Jia
- Department of Cardiology, Institute of Clinical Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Bo Zhang
- Department of Physiology, College of Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Cheng-Ming Guan
- Department of Cardiology, Institute of Clinical Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Shuai Zhou
- Department of Physiology, College of Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Xiang Li
- Department of Physiology, College of Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Xun Cui
- Department of Physiology, College of Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
- Key Laboratory of Organism Functional Factors of The Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, P.R. China
- Cellular Function Research Center, Yanbian University, Yanji, Jilin 133002, P.R. China
| |
Collapse
|
40
|
Maeda N, Funahashi T, Matsuzawa Y, Shimomura I. Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis 2019; 292:1-9. [PMID: 31731079 DOI: 10.1016/j.atherosclerosis.2019.10.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/01/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022]
Abstract
Visceral fat accumulation has a marked impact on atherosclerotic cardiovascular diseases and metabolic syndrome clustering diabetes, dyslipidemia, and hypertension. Adiponectin, an adipocyte-derived circulating protein, is a representative adipocytokine and uniquely possesses two major properties: 1) its circulating concentration is approximately 3-6 orders of magnitude greater than ordinary hormones and cytokines; 2) its concentration inversely correlates with body fat mass despite its adipocyte-specific production. Low serum levels of adiponectin correlate with cardiometabolic diseases. Extensive experimental evidence has demonstrated that adiponectin possesses multiple properties, such as anti-atherosclerotic, anti-diabetic, and anti-inflammatory activities. It has been shown to play a central role against the development of metabolic syndrome and its complications. However, even approximately 25 years after its discovery, the properties of adiponectin, including how and why it exerts multiple beneficial effects on various tissues and/or organs, remain unclear. Furthermore, the mechanisms responsible for the very high circulating concentrations of adiponectin in the bloodstream have not been elucidated. Several adiponectin-binding partners, such as AdipoR1/2, have been identified, but do not fully explain the multi-functional and beneficial properties of adiponectin. Recent advances in adiponectin research may resolve these issues. Adiponectin binds to and covers cell surfaces with T-cadherin, a unique glycosylphosphatidylinositol (GPI)-anchored cadherin. The adiponectin/T-cadherin complex enhances exosomal production and release, excreting cell-toxic products from cells, particularly in the vasculature. In this review, we discuss adiponectin and the role of the adiponectin/T-cadherin system in the maintenance of whole body homeostasis and cardiovascular protection.
Collapse
Affiliation(s)
- Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan; Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Tohru Funahashi
- Division of Osaka Health Support Center, Sumitomo Mitsui Banking Corporation, 6-5, Kitahama 4-chome, Chuo-ku, Osaka, Osaka, 541-0041, Japan
| | - Yuji Matsuzawa
- Department of Endocrinology and Metabolism, Sumitomo Hospital, 5-3-20, Nakanoshima, Kita-ku, Osaka, Osaka, 530-0005, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
41
|
Liu M, Li W, Wang H, Yin L, Ye B, Tang Y, Huang C. CTRP9 Ameliorates Atrial Inflammation, Fibrosis, and Vulnerability to Atrial Fibrillation in Post-Myocardial Infarction Rats. J Am Heart Assoc 2019; 8:e013133. [PMID: 31623508 PMCID: PMC6898814 DOI: 10.1161/jaha.119.013133] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Inflammation and fibrosis play an important role in the pathogenesis of atrial fibrillation (AF) after myocardial infarction (MI). CTRP9 (C1q/tumor necrosis factor‐related protein‐9) as a secreted glycoprotein can reverse left ventricle remodeling post‐MI, but its effects on MI‐induced atrial inflammation, fibrosis, and associated AF are unknown. Methods and Results MI model rats received adenoviral supplementation of CTRP9 (Ad‐CTRP9) by jugular‐vein injection. Cardiac function, inflammatory, and fibrotic indexes and related signaling pathways, electrophysiological properties, and AF inducibility of atria in vivo and ex vivo were detected in 3 or 7 days after MI. shCTRP9 (short hairpin CTRP9) and shRNA were injected into rat and performed similar detection at day 5 or 10. Adverse atrial inflammation and fibrosis, cardiac dysfunction were induced in both MI and Ad‐GFP (adenovirus‐encoding green fluorescent protein)+MI rats. Systemic CTRP9 treatment improved cardiac dysfunction post‐MI. CTRP9 markedly ameliorated macrophage infiltration and attenuated the inflammatory responses by downregulating interleukin‐1β and interleukin‐6, and upregulating interleukin‐10, in 3 days post‐MI; depressed left atrial fibrosis by decreasing the expressions of collagen types I and III, α‐SMA, and transforming growth factor β1 in 7 days post‐MI possibly through depressing the Toll‐like receptor 4/nuclear factor‐κB and Smad2/3 signaling pathways. Electrophysiologic recordings showed that increased AF inducibility and duration, and prolongation of interatrial conduction time induced by MI were attenuated by CTRP9; moreover, CTRP9 was negatively correlated with interleukin‐1β and AF duration. Downregulation of CTRP9 aggravated atrial inflammation, fibrosis, susceptibility of AF and prolonged interatrial conduction time, without affecting cardiac function. Conclusions CTRP9 is effective at attenuating atrial inflammation and fibrosis, possibly via its inhibitory effects on the Toll‐like receptor 4/nuclear factor‐κB and Smad2/3 signaling pathways, and may be an original upstream therapy for AF in early phase of MI.
Collapse
Affiliation(s)
- Mingxin Liu
- Department of Cardiology Renmin Hospital of Wuhan University Hubei China.,Cardiovascular Research Institute of Wuhan University Hubei China.,Hubei Key Laboratory of Cardiology Hubei China
| | - Wei Li
- Department of Cardiology Renmin Hospital of Wuhan University Hubei China.,Cardiovascular Research Institute of Wuhan University Hubei China.,Hubei Key Laboratory of Cardiology Hubei China
| | - Huibo Wang
- Department of Cardiology Renmin Hospital of Wuhan University Hubei China.,Cardiovascular Research Institute of Wuhan University Hubei China.,Hubei Key Laboratory of Cardiology Hubei China
| | - Lin Yin
- Department of Cardiology Renmin Hospital of Wuhan University Hubei China.,Cardiovascular Research Institute of Wuhan University Hubei China.,Hubei Key Laboratory of Cardiology Hubei China
| | - Bingjie Ye
- Department of Cardiology Renmin Hospital of Wuhan University Hubei China.,Cardiovascular Research Institute of Wuhan University Hubei China.,Hubei Key Laboratory of Cardiology Hubei China
| | - Yanhong Tang
- Department of Cardiology Renmin Hospital of Wuhan University Hubei China.,Cardiovascular Research Institute of Wuhan University Hubei China.,Hubei Key Laboratory of Cardiology Hubei China
| | - Congxin Huang
- Department of Cardiology Renmin Hospital of Wuhan University Hubei China.,Cardiovascular Research Institute of Wuhan University Hubei China.,Hubei Key Laboratory of Cardiology Hubei China
| |
Collapse
|
42
|
Han X, Wang Y, Fu M, Song Y, Wang J, Cui X, Fan Y, Cao J, Luo J, Sun A, Zou Y, Hu K, Zhou J, Ge J. Effects of Adiponectin on Diastolic Function in Mice Underwent Transverse Aorta Constriction. J Cardiovasc Transl Res 2019; 13:225-237. [PMID: 31621035 PMCID: PMC7166206 DOI: 10.1007/s12265-019-09913-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Abstract
Diastolic dysfunction is common in various cardiovascular diseases, which could be affected by adiponectin (APN). Nevertheless, the effects of APN on diastolic dysfunction in pressure overload model induced by transverse aorta constriction (TAC) remain to be further elucidated. Here, we demonstrated that treatment of APN attenuated diastolic dysfunction and cardiac hypertrophy in TAC mice. Notably, APN also improved active relaxation of adult cardiomyocytes, increased N2BA/N2B ratios of titin isoform, and reduced collagen type I to type III ratio and lysyl oxidase (Lox) expressions in the myocardial tissue. Moreover, APN supplementation suppressed TAC-induced oxidative stress. In vitro, inhibition of AMPK by compound C (Cpc) abrogated the effect of APN on modulation of titin isoform shift and the anti-hypertrophic effect of APN on cardiomyocytes induced by AngII. In summary, our findings indicate that APN could attenuate diastolic dysfunction in TAC mice, which are at least partially mediated by AMPK pathway.
Collapse
Affiliation(s)
- Xueting Han
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanyan Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingqiang Fu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Song
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingfeng Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaotong Cui
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuyuan Fan
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Juan Cao
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jie Luo
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Aijun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingmin Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
43
|
Hulshoff MS, Xu X, Krenning G, Zeisberg EM. Epigenetic Regulation of Endothelial-to-Mesenchymal Transition in Chronic Heart Disease. Arterioscler Thromb Vasc Biol 2019; 38:1986-1996. [PMID: 30354260 DOI: 10.1161/atvbaha.118.311276] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a process in which endothelial cells lose their properties and transform into fibroblast-like cells. This transition process contributes to cardiac fibrosis, a common feature of patients with chronic heart failure. To date, no specific therapies to halt or reverse cardiac fibrosis are available, so knowledge of the underlying mechanisms of cardiac fibrosis is urgently needed. In addition, EndMT contributes to other cardiovascular pathologies such as atherosclerosis and pulmonary hypertension, but also to cancer and organ fibrosis. Remarkably, the molecular mechanisms driving EndMT are largely unknown. Epigenetics play an important role in regulating gene transcription and translation and have been implicated in the EndMT process. Therefore, epigenetics might be the missing link in unraveling the underlying mechanisms of EndMT. Here, we review the involvement of epigenetic regulators during EndMT in the context of cardiac fibrosis. The role of DNA methylation, histone modifications (acetylation and methylation), and noncoding RNAs (microRNAs, long noncoding RNAs, and circular RNAs) in the facilitation and inhibition of EndMT are discussed, and potential therapeutic epigenetic targets will be highlighted.
Collapse
Affiliation(s)
- Melanie S Hulshoff
- From the Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Germany (M.S.H., X.X., E.M.Z.).,German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (M.S.H., X.X., E.M.Z.).,Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands (M.S.H., G.K.)
| | - Xingbo Xu
- From the Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Germany (M.S.H., X.X., E.M.Z.).,German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (M.S.H., X.X., E.M.Z.)
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, The Netherlands (M.S.H., G.K.)
| | - Elisabeth M Zeisberg
- From the Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August University, Germany (M.S.H., X.X., E.M.Z.).,German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (M.S.H., X.X., E.M.Z.)
| |
Collapse
|
44
|
Li X, Liu J, Lu Q, Ren D, Sun X, Rousselle T, Tan Y, Li J. AMPK: a therapeutic target of heart failure-not only metabolism regulation. Biosci Rep 2019; 39:BSR20181767. [PMID: 30514824 PMCID: PMC6328861 DOI: 10.1042/bsr20181767] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is a serious disease with high mortality. The incidence of this disease has continued to increase over the past decade. All cardiovascular diseases causing dysfunction of various physiological processes can result in HF. AMP-activated protein kinase (AMPK), an energy sensor, has pleiotropic cardioprotective effects and plays a critical role in the progression of HF. In this review, we highlight that AMPK can not only improve the energy supply in the failing heart by promoting ATP production, but can also regulate several important physiological processes to restore heart function. In addition, we discuss some aspects of some potential clinical drugs which have effects on AMPK activation and may have value in treating HF. More studies, especially clinical trials, should be done to evaluate manipulation of AMPK activation as a potential means of treating HF.
Collapse
Affiliation(s)
- Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Jia Liu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| | - Qingguo Lu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, 37 Guoxue Lane, Chengdu 610041, China
| | - Di Ren
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Xiaodong Sun
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Thomas Rousselle
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Yi Tan
- Pediatic Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, U.S.A
- Wendy L. Novak Diabetes Care Center, University of Louisville, Louisville, KY, U.S.A
| | - Ji Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A.
| |
Collapse
|
45
|
Chen RR, Fan XH, Chen G, Zeng GW, Xue YG, Liu XT, Wang CY. Irisin attenuates angiotensin II-induced cardiac fibrosis via Nrf2 mediated inhibition of ROS/ TGFβ1/Smad2/3 signaling axis. Chem Biol Interact 2019; 302:11-21. [PMID: 30703374 DOI: 10.1016/j.cbi.2019.01.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/10/2019] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
Abstract
Angiotensin II-related cardiac fibrosis is one of the key pathological changes of the hypertrophied left ventricle in various heart disease. Irisin was recently reported to confer cardio-protective and anti-oxidative effects, while whether it can reverse the renin-angiotensin-aldosterone system(RAAS) activation related(angiotensin II-induced) cardiac fibrosis is unknown. In this study, we found that angiotensin II-induced cardiac dysfunction and fibrotic responses were dampened by irisin treatment in mice. Mechanistically, angiotensin II induced robust ROS generation, which in turn triggered activation of pro-fibrotic TGFβ1-Smad2/3 signaling and subsequent collagen synthesis and fibroblast-myofibroblast transformation in cardiac fibroblasts. In contrast, Irisin treatment suppressed angiotensin II-induced ROS generation, TGFβ1 activation, collagen synthesis and fibroblast-myofibroblast transformation, the effects of which was accompanied by Nrf2 activation and also abolished by a Nrf2 targeted siRNA. Taken together, we here identified irisin as a promising anti-fibrotic therapeutic for angiotensin II-related cardiac fibrosis.
Collapse
Affiliation(s)
- Rui-Rui Chen
- Department of Cardiology, Second Affiliated Hospital of Air Forced Military Medical University, Xi'an, Shaanxi Province, 710068, China; Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710068, China
| | - Xue-Hui Fan
- Department of Cardiology, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Gang Chen
- Department of Cardiac Surgery, Second Affiliated Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, China
| | - Guang-Wei Zeng
- Department of Cardiology, Second Affiliated Hospital of Air Forced Military Medical University, Xi'an, Shaanxi Province, 710068, China; Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710068, China
| | - Yu-Gang Xue
- Department of Cardiology, Second Affiliated Hospital of Air Forced Military Medical University, Xi'an, Shaanxi Province, 710068, China; Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710068, China
| | - Xiong-Tao Liu
- Department of Cardiology, Second Affiliated Hospital of Air Forced Military Medical University, Xi'an, Shaanxi Province, 710068, China; Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710068, China
| | - Chi-Yao Wang
- Department of Cardiology, Second Affiliated Hospital of Air Forced Military Medical University, Xi'an, Shaanxi Province, 710068, China; Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710068, China.
| |
Collapse
|
46
|
Adiponectin promotes muscle regeneration through binding to T-cadherin. Sci Rep 2019; 9:16. [PMID: 30626897 PMCID: PMC6327035 DOI: 10.1038/s41598-018-37115-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/29/2018] [Indexed: 11/08/2022] Open
Abstract
Skeletal muscle has remarkable regenerative potential and its decline with aging is suggested to be one of the important causes of loss of muscle mass and quality of life in elderly adults. Metabolic abnormalities such as obesity were linked with decline of muscle regeneration. On the other hand, plasma levels of adiponectin are decreased in such metabolic conditions. However, plasma levels of adiponectin have been shown to inversely correlate with muscle mass and strength in elderly people especially with chronic heart failure (CHF). Here we have addressed whether adiponectin has some impact on muscle regeneration after cardiotoxin-induced muscle injury in mice. Muscle regeneration was delayed by angiotensin II infusion, mimicking aging and CHF as reported. Adiponectin overexpression in vivo decreased necrotic region and increased regenerating myofibers. Such enhanced regeneration by excess adiponectin was also observed in adiponectin null mice, but not in T-cadherin null mice. Mechanistically, adiponectin accumulated on plasma membrane of myofibers both in mice and human, and intracellularly colocalized with endosomes positive for a multivesicular bodies/exosomes marker CD63 in regenerating myofibers. Purified high-molecular multimeric adiponectin similarly accumulated intracellularly and colocalized with CD63-positive endosomes and enhanced exosome secretion in differentiating C2C12 myotubes but not in undifferentiated myoblasts. Knockdown of T-cadherin in differentiating C2C12 myotubes attenuated both adiponectin-accumulation and adiponectin-mediated exosome production. Collectively, our studies have firstly demonstrated that adiponectin stimulates muscle regeneration through T-cadherin, where intracellular accumulation and exosome-mediated process of adiponectin may have some roles.
Collapse
|
47
|
Ma L, Li X, Bai Z, Lin X, Lin K. AdipoRs- a potential therapeutic target for fibrotic disorders. Expert Opin Ther Targets 2018; 23:93-106. [PMID: 30569772 DOI: 10.1080/14728222.2019.1559823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Fibrotic disorders are a leading cause of morbidity and mortality; hence effective treatments are still vigorously sought. AdipoRs (AdipoR1 and Adipo2) are responsible for the antifibrotic effects of adiponectin (APN). APN exerts antifibrotic effects by binding to its receptors. APN concentration and AdipoR expression are closely associated with fibrotic disorders. Decreased AdipoR expression may reduce APN-AdipoR signaling, while the upregulation of AdipoR expression may restore the anti-fibrotic effects of APN. Loss of APN signaling exacerbates fibrosis in vivo and in vitro. Areas covered: We assess the relationship between APN and fibrotic disorders, the structure of receptors for APN and the pathways accounting for APN or its analogs blocking fibrotic disorders. This article also discusses designed APN products and their therapeutic prospects for fibrotic disorders. Expert opinion: AdipoRs have a critical role in blocking fibrosis. The development of small-molecule agonists toward this target represents a valid drug development pathway.
Collapse
Affiliation(s)
- Lingman Ma
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Xuanyi Li
- b Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Zhaoshi Bai
- c Department of pharmacy , Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University , Nanjing , China
| | - Xinhao Lin
- d Department of pharmacy , Class 154010, China Pharmaceutical University , Nanjing , China
| | - Kejiang Lin
- b Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
48
|
Yamashita T, Lakota K, Taniguchi T, Yoshizaki A, Sato S, Hong W, Zhou X, Sodin-Semrl S, Fang F, Asano Y, Varga J. An orally-active adiponectin receptor agonist mitigates cutaneous fibrosis, inflammation and microvascular pathology in a murine model of systemic sclerosis. Sci Rep 2018; 8:11843. [PMID: 30087356 PMCID: PMC6081386 DOI: 10.1038/s41598-018-29901-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
The hallmarks of systemic sclerosis (SSc) are autoimmunity, microangiopathy and fibrosis. Skin fibrosis is accompanied by attrition of the dermal white adipose tissue layer, and alterations in the levels and function of adiponectin. Since these findings potentially implicate adiponectin in the pathogenesis of SSc, we employed a novel pharmacological approach to augment adiponectin signaling using AdipoRon, an orally active adiponectin receptor agonist. Chronic treatment with AdipoRon significantly ameliorated bleomycin-induced dermal fibrosis in mice. AdipoRon attenuated fibroblast activation, adipocyte-to-myofibroblast transdifferentiation, Th2/Th17-skewed polarization of the immune response, vascular injury and endothelial-to-mesenchymal transition within the lesional skin. In vitro, AdipoRon abrogated profibrotic responses elicited by TGF-β in normal fibroblasts, and reversed the inherently-activated profibrotic phenotype of SSc fibroblasts. In view of these broadly beneficial effects on all three cardinal pathomechanisms underlying the clinical manifestations of SSc, pharmacological augmentation of adiponectin signaling might represent a novel strategy for the treatment of SSc.
Collapse
Affiliation(s)
- Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, USA
| | - Takashi Taniguchi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Wen Hong
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, USA
| | - Xingchun Zhou
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, USA
| | - Snezn Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Feng Fang
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, USA
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
49
|
Jenke A, Schur R, Röger C, Karadeniz Z, Grüger M, Holzhauser L, Savvatis K, Poller W, Schultheiss HP, Landmesser U, Skurk C. Adiponectin attenuates profibrotic extracellular matrix remodeling following cardiac injury by up-regulating matrix metalloproteinase 9 expression in mice. Physiol Rep 2018; 5:5/24/e13523. [PMID: 29263115 PMCID: PMC5742698 DOI: 10.14814/phy2.13523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/05/2017] [Indexed: 01/25/2023] Open
Abstract
Adiponectin (APN) is a multifunctional adipocytokine that inhibits myocardial fibrosis, dilatation, and left ventricular (LV) dysfunction after myocardial infarction (MI). Coxsackievirus B3 (CVB3) myocarditis is associated with intense extracellular matrix (ECM) remodeling which might progress to dilated cardiomyopathy. Here, we investigated in experimental CVB3 myocarditis whether APN inhibits adverse ECM remodeling following cardiac injury by affecting matrix metalloproteinase (MMP) expression. Cardiac injury was induced by CVB3 infection in APN knockout (APN-KO) and wild-type (WT) mice. Expression and activity of MMPs was quantified by qRT-PCR and zymography, respectively. Activation of protein kinases was assessed by immunoblot. In cardiac myocytes and fibroblasts APN up-regulates MMP-9 expression via activation of 5' adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-regulated kinase (ERK)1/2 which function as master regulators of inflammation-induced MMP-9 expression. Correspondingly, APN further increased up-regulation of MMP-9 expression triggered by tumor necrosis factor (TNF)α, lipopolysaccharide (LPS) and R-848 in cardiac fibroblasts. In vivo, compared to WT mice cardiac MMP-9 activity and serum levels of carboxy-terminal telopeptide of type I collagen (ICTP) were attenuated in APN-KO mice in subacute (day 7 p.i.) CVB3 myocarditis. Moreover, on day 3 and day 7 post CVB3 infection splenic MMP-9 expression was diminished in APN-KO mice correlating with attenuated myocardial immune cell infiltration in subacute CVB3 myocarditis. These results indicate that APN attenuates adverse cardiac remodeling following cardiac injury by up-regulating MMP-9 expression in cardiac and immune cells. Thus, APN mediates intensified collagen cleavage that might explain inhibition of LV fibrosis and dysfunction.
Collapse
Affiliation(s)
- Alexander Jenke
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Robert Schur
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Carsten Röger
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Zehra Karadeniz
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Mathias Grüger
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Luise Holzhauser
- Department of Internal Medicine, Albert-Einstein College of Medicine, Bronx, New York
| | - Kostas Savvatis
- Department of Cardiology, Barts Heart Centre Barts Health NHS Trust, London, United Kingdom
| | - Wolfgang Poller
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Heinz-Peter Schultheiss
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
50
|
Pal China S, Sanyal S, Chattopadhyay N. Adiponectin signaling and its role in bone metabolism. Cytokine 2018; 112:116-131. [PMID: 29937410 DOI: 10.1016/j.cyto.2018.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 12/14/2022]
Abstract
Adiponectin, the most prevalent adipo-cytokine in plasma plays critical metabolic and anti-inflammatory roles is fast emerging as an important molecular target for the treatment of metabolic disorders. Adiponectin action is critical in multiple organs including cardio-vascular system, muscle, liver, adipose tissue, brain and bone. Adiponectin signaling in bone has been a topic of active investigation lately. Human association studies and multiple mice models of gene deletion/modification failed to define a clear cause and effect of adiponectin signaling in bone. The most plausible reason could be the multimeric forms of adiponectin that display differential binding to receptors (adipoR1 and adipoR2) with cell-specific receptor variants in bone. Discovery of small molecule agonist of adipoR1 suggested a salutary role of this receptor in bone metabolism. The downstream signaling of adipoR1 in osteoblasts involves stimulation of oxidative phosphorylation leading to increased differentiation via the likely suppression of wnt inhibitor, sclerostin. On the other hand, the inflammation modulatory effect of adiponectin signaling suppresses the RANKL (receptor activator of nuclear factor κ-B ligand) - to - OPG (osteprotegerin) ratio in osteoblasts leading to the suppression of osteoclastogenic response. This review will discuss the adiponectin signaling and its role in skeletal homeostasis and critically assess whether adipoR1 could be a therapeutic target for the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Shyamsundar Pal China
- Division of Endocrinology and CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, India.
| |
Collapse
|