1
|
Chan JMS, Park SJ, Ng M, Chen WC, Chan WY, Bhakoo K, Chong TT. Translational Molecular Imaging Tool of Vulnerable Carotid Plaque: Evaluate Effects of Statin Therapy on Plaque Inflammation and American Heart Association-Defined Risk Levels in Cuff-Implanted Apolipoprotein E-Deficient Mice. Transl Stroke Res 2024; 15:110-126. [PMID: 36481841 PMCID: PMC10796420 DOI: 10.1007/s12975-022-01114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Identification of high-risk carotid plaques in asymptomatic patients remains a challenging but crucial step in stroke prevention. The challenge is to accurately monitor the development of high-risk carotid plaques and promptly identify patients, who are unresponsive to best medical therapy, and hence targeted for carotid surgical interventions to prevent stroke. Inflammation is a key operator in destabilisation of plaques prior to clinical sequelae. Currently, there is a lack of imaging tool in routine clinical practice, which allows assessment of inflammatory activity within the atherosclerotic plaque. Herein, we have used a periarterial cuff to generate a progressive carotid atherosclerosis model in apolipoprotein E-deficient mice. This model produced clinically relevant plaques with different levels of risk, fulfilling American Heart Association (AHA) classification, at specific timepoints and locations, along the same carotid artery. Exploiting this platform, we have developed smart molecular magnetic resonance imaging (MRI) probes consisting of dual-targeted microparticles of iron oxide (DT-MPIO) against VCAM-1 and P-selectin, to evaluate the anti-inflammatory effect of statin therapy on progressive carotid atherosclerosis. We demonstrated that in vivo DT-MPIO-enhanced MRI can (i) quantitatively track plaque inflammation from early to advanced stage; (ii) identify and characterise high-risk inflamed, vulnerable plaques; and (iii) monitor the response to statin therapy longitudinally. Moreover, this molecular imaging-defined therapeutic response was validated using AHA classification of human plaques, a clinically relevant parameter, approximating the clinical translation of this tool. Further development and translation of this molecular imaging tool into the clinical arena may potentially facilitate more accurate risk stratification, permitting timely identification of the high-risk patients for prophylactic carotid intervention, affording early opportunities for stroke prevention in the future.
Collapse
Affiliation(s)
- Joyce M S Chan
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 , Singapore, 138667, Helios, Singapore.
- Department of Vascular Surgery, Singapore General Hospital, SingHealth, Outram Road, Singapore, 169608, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Sung-Jin Park
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 , Singapore, 138667, Helios, Singapore
| | - Michael Ng
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 , Singapore, 138667, Helios, Singapore
| | - Way Cherng Chen
- Bruker Singapore Pte. Ltd, 30 Biopolis Street, #09-01, Singapore, 138671, Matrix, Singapore
| | - Wan Ying Chan
- Division of Oncologic Imaging, National Cancer Centre, Singapore, Singapore
| | - Kishore Bhakoo
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02, Singapore, 138667, Helios, Singapore
| | - Tze Tec Chong
- Department of Vascular Surgery, Singapore General Hospital, SingHealth, Outram Road, Singapore, 169608, Singapore
| |
Collapse
|
2
|
MRI Contrast Agents in Glycobiology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238297. [PMID: 36500389 PMCID: PMC9735696 DOI: 10.3390/molecules27238297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Molecular recognition involving glycoprotein-mediated interactions is ubiquitous in both normal and pathological natural processes. Therefore, visualization of these interactions and the extent of expression of the sugars is a challenge in medical diagnosis, monitoring of therapy, and drug design. Here, we review the literature on the development and validation of probes for magnetic resonance imaging using carbohydrates either as targeting vectors or as a target. Lectins are important targeting vectors for carbohydrate end groups, whereas selectins, the asialoglycoprotein receptor, sialic acid end groups, hyaluronic acid, and glycated serum and hemoglobin are interesting carbohydrate targets.
Collapse
|
3
|
Li YX, Wang HB, Li J, Jin JB, Hu JB, Yang CL. Targeting pulmonary vascular endothelial cells for the treatment of respiratory diseases. Front Pharmacol 2022; 13:983816. [PMID: 36110525 PMCID: PMC9468609 DOI: 10.3389/fphar.2022.983816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Pulmonary vascular endothelial cells (VECs) are the main damaged cells in the pathogenesis of various respiratory diseases and they mediate the development and regulation of the diseases. Effective intervention targeting pulmonary VECs is of great significance for the treatment of respiratory diseases. A variety of cell markers are expressed on the surface of VECs, some of which can be specifically combined with the drugs or carriers modified by corresponding ligands such as ICAM-1, PECAM-1, and P-selectin, to achieve effective delivery of drugs in lung tissues. In addition, the great endothelial surface area of the pulmonary vessels, the “first pass effect” of venous blood in lung tissues, and the high volume and relatively slow blood perfusion rate of pulmonary capillaries further promote the drug distribution in lung tissues. This review summarizes the representative markers at the onset of respiratory diseases, drug delivery systems designed to target these markers and their therapeutic effects.
Collapse
Affiliation(s)
- Yi-Xuan Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Hong-Bo Wang
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jing Li
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jian-Bo Jin
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jing-Bo Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
- *Correspondence: Jing-Bo Hu, ; Chun-Lin Yang,
| | - Chun-Lin Yang
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
- *Correspondence: Jing-Bo Hu, ; Chun-Lin Yang,
| |
Collapse
|
4
|
Park SJ, Chan WY, Ng M, Chung YC, Chong TT, Bhakoo K, Chan JMS. Development of Molecular Magnetic Resonance Imaging Tools for Longitudinal Tracking of Carotid Atherosclerotic Disease Using Fast Imaging with Steady-State Precession. Transl Stroke Res 2022; 14:357-363. [PMID: 35856131 PMCID: PMC10159972 DOI: 10.1007/s12975-022-01067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/31/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
Identification of patients with high-risk asymptomatic carotid plaques remains a challenging but essential step in stroke prevention. Current selection criteria for intervention in carotid disease are still determined by symptomatology and degree of luminal stenosis. This strategy has been less effective in identifying the high-risk asymptomatic individual patients. Inflammation is the key factor that drives plaque instability causing clinical sequelae. Currently, there is no imaging tool in routine clinical practice to assess the inflammatory status within atherosclerotic plaques. Herein we describe the development of a novel molecular magnetic resonance imaging (MRI) strategy to interrogate plaque inflammation, and hence its vulnerability in vivo, using dual-targeted iron particle-based probes and fast imaging with steady-state precession (FISP) sequence, adding further prognostic information to luminal stenosis alone. A periarterial cuff was used to generate high-risk plaques at specific timepoints and location of the carotid artery in an apolipoprotein-E-deficient mouse model. Using this platform, we demonstrated that in vivo dual-targeted iron particles with enhanced FISP can (i) target and characterise high-risk vulnerable plaques and (ii) quantitatively report and track the inflammatory activity within carotid plaques longitudinally. This molecular imaging tool may permit (i) accurate monitoring of the risk of carotid plaques and (ii) timely identification of high-risk asymptomatic patients for prophylactic carotid intervention, achieving early stroke prevention.
Collapse
Affiliation(s)
- Sung-Jin Park
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wan Ying Chan
- Division of Oncologic Imaging, National Cancer Centre, Singapore, Singapore
| | - Michael Ng
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Tze Tec Chong
- Department of Vascular Surgery, Singapore General Hospital, SingHealth, Singapore, Singapore
| | - Kishore Bhakoo
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joyce M S Chan
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Vascular Surgery, Singapore General Hospital, SingHealth, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
5
|
Chan JM, Park SJ, Ng M, Chen WC, Garnell J, Bhakoo K. Predictive mouse model reflects distinct stages of human atheroma in a single carotid artery. Transl Res 2022; 240:33-49. [PMID: 34478893 DOI: 10.1016/j.trsl.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Identification of patients with high-risk asymptomatic atherosclerotic plaques remains an elusive but essential step in preventing stroke. However, there is a lack of animal model that provides a reproducible method to predict where, when and what types of plaque formation, which fulfils the American Heart Association (AHA) histological classification of human plaques. We have developed a predictive mouse model that reflects different stages of human plaques in a single carotid artery by means of shear-stress modifying cuff. Validated with over 30000 histological sections, the model generates a specific pattern of plaques with different risk levels along the same artery depending on their position relative to the cuff. The further upstream of the cuff-implanted artery, the lower the magnitude of shear stress, the more unstable the plaques of higher grade according to AHA classification; with characteristics including greater degree of vascular remodeling, plaque size, plaque vulnerability and inflammation, resulting in higher risk plaques. By weeks 20 and 30, this model achieved 80% and near 100% accuracy respectively, in predicting precisely where, when and what stages/AHA types of plaques develop along the same carotid artery. This model can generate clinically-relevant plaques with varying phenotypes fulfilling AHA classification and risk levels, in specific locations of the single artery with near 100% accuracy of prediction. The model offers a promising tool for development of diagnostic tools to target high-risk plaques, increasing accuracy in predicting which individual patients may require surgical intervention to prevent stroke, paving the way for personalized management of carotid atherosclerotic disease.
Collapse
Affiliation(s)
- Joyce Ms Chan
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Sung-Jin Park
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Michael Ng
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Joanne Garnell
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kishore Bhakoo
- Translational Imaging Laboratory, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
6
|
Chan JMS, Jin PS, Ng M, Garnell J, Ying CW, Tec CT, Bhakoo K. Development of Molecular Magnetic Resonance Imaging Tools for Risk Stratification of Carotid Atherosclerotic Disease Using Dual-Targeted Microparticles of Iron Oxide. Transl Stroke Res 2021; 13:245-256. [PMID: 34304360 PMCID: PMC8918460 DOI: 10.1007/s12975-021-00931-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022]
Abstract
Identification of patients with high-risk asymptomatic carotid plaques remains a challenging but crucial step in stroke prevention. Inflammation is the key factor that drives plaque instability. Currently, there is no imaging tool in routine clinical practice to assess the inflammatory status within atherosclerotic plaques. We have developed a molecular magnetic resonance imaging (MRI) tool to quantitatively report the inflammatory activity in atherosclerosis using dual-targeted microparticles of iron oxide (DT-MPIO) against P-selectin and VCAM-1 as a smart MRI probe. A periarterial cuff was used to generate plaques with varying degree of phenotypes, inflammation and risk levels at specific locations along the same single carotid artery in an Apolipoprotein-E-deficient mouse model. Using this platform, we demonstrated that in vivo DT-MPIO-enhanced MRI can (i) target high-risk vulnerable plaques, (ii) differentiate the heterogeneity (i.e. high vs intermediate vs low-risk plaques) within the asymptomatic plaque population and (iii) quantitatively report the inflammatory activity of local plaques in carotid artery. This novel molecular MRI tool may allow characterisation of plaque vulnerability and quantitative reporting of inflammatory status in atherosclerosis. This would permit accurate risk stratification by identifying high-risk asymptomatic individual patients for prophylactic carotid intervention, expediting early stroke prevention and paving the way for personalised management of carotid atherosclerotic disease.
Collapse
Affiliation(s)
- Joyce M S Chan
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,Department of Vascular Surgery, Singapore General Hospital, SingHealth, Singapore, Singapore.
| | - Park Sung Jin
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Michael Ng
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joanne Garnell
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chan Wan Ying
- Division of Oncologic Imaging, National Cancer Centre, SingHealth, Singapore, Singapore
| | - Chong Tze Tec
- Department of Vascular Surgery, Singapore General Hospital, SingHealth, Singapore, Singapore
| | - Kishore Bhakoo
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
7
|
Dai T, He W, Yao C, Ma X, Ren W, Mai Y, Wu A. Applications of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis. Biomater Sci 2020; 8:3784-3799. [PMID: 32469010 DOI: 10.1039/d0bm00196a] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is a chronic progressive disease, which may result in serious clinical outcomes, such as acute heart events or stroke with high mortality. At present, the clinical problems of atherosclerosis mainly consist of the difficulty in confirming the plaques or identifying the stability of the plaques in the early phase and the shortage of valid treatments. Fortunately, with the development of nanotechnology, various inorganic nanoparticles with imaging enhancement and noninvasive therapy functions have been studied in the imaging and treatment of atherosclerosis, which has brought new hope to patients. This review focuses on the recent progress in the use of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis, including the key processes in the development of atherosclerosis and the mainly involved cells, inorganic nanoparticle-based dual-mode imaging methods classified by the types of targeting cells, and inorganic nanoparticle-based therapeutic approaches, such as photothermal therapy (PTT), photodynamic therapy (PDT), sonodynamic therapy (SDT), drug delivery, gene therapy and imaging-guided therapy for atherosclerosis. Finally, this review discusses the challenges and directions of inorganic nanoparticles in potential clinical translation of anti-atherosclerosis in future. We believe this review will enable readers to systematically understand the progress of the inorganic nanoparticle-based imaging and therapy of atherosclerosis and therefore promote the further development of anti-atherosclerosis.
Collapse
Affiliation(s)
- Ting Dai
- Department of Cardiology, The Affiliated Hospital of Medical school of Ningbo University, 247 Renmin Road, Jiangbei District, Ningbo, Zhejiang Province 315020, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Gilchrist S, Kinchesh P, Zarghami N, Khrapitchev AA, Sibson NR, Kersemans V, Smart SC. Improved detection of molecularly targeted iron oxide particles in mouse brain using B 0 field stabilised high resolution MRI. Magn Reson Imaging 2020; 67:101-108. [PMID: 31935444 PMCID: PMC7049896 DOI: 10.1016/j.mri.2020.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE High resolution multi-gradient echo (MGE) scanning is typically used for detection of molecularly targeted iron oxide particles. The images of individual echoes are often combined to generate a composite image with improved SNR from the early echoes and boosted contrast from later echoes. In 3D implementations prolonged scanning at high gradient duty cycles induces a B0 shift that predominantly affects image alignment in the slow phase encoding dimension of 3D MGE images. The effect corrupts the composite echo image and limits the image resolution that is realised. A real-time adaptive B0 stabilisation during respiration gated 3D MGE scanning is shown to reduce image misalignment and improve detection of molecularly targeted iron oxide particles in composite images of the mouse brain. METHODS An optional B0 measurement block consisting of a 16 μs hard pulse with FA 1°, an acquisition delay of 3.2 ms, followed by gradient spoiling in all three axes was added to a respiration gated 3D MGE scan. During the acquisition delay of each B0 measurement block the NMR signal was routed to a custom built B0 stabilisation unit which mixed the signal to an audio frequency nominally centred around 1000 Hz to enable an Arduino based single channel receiver to measure frequency shifts. The frequency shift was used to effect correction to the main magnetic field via the B0 coil. The efficacy of B0 stabilisation and respiration gating was validated in vivo and used to improve detection of molecularly targeted microparticles of iron oxide (MPIO) in a mouse model of acute neuroinflammation. RESULTS Without B0 stabilisation 3D MGE image data exhibit varying mixtures of translation, scaling and blurring, which compromise the fidelity of the composite image. The real-time adaptive B0 stabilisation minimises corruption of the composite image as the images from the different echoes are properly aligned. The improved detection of molecularly targeted MPIO easily compensates for the scan time penalty of 14% incurred by the B0 stabilisation method employed. Respiration gating of the B0 measurement and the MRI scan was required to preserve high resolution detail, especially towards the back of the brain. CONCLUSIONS High resolution imaging for the detection of molecularly targeted iron oxide particles in the mouse brain requires good stabilisation of the main B0 field, and can benefit from a respiration gated image acquisition strategy.
Collapse
Affiliation(s)
- Stuart Gilchrist
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom.
| | - Paul Kinchesh
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Niloufar Zarghami
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Alexandre A Khrapitchev
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Veerle Kersemans
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| | - Sean C Smart
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, United Kingdom
| |
Collapse
|
9
|
Fayad ZA, Swirski FK, Calcagno C, Robbins CS, Mulder W, Kovacic JC. Monocyte and Macrophage Dynamics in the Cardiovascular System: JACC Macrophage in CVD Series (Part 3). J Am Coll Cardiol 2019; 72:2198-2212. [PMID: 30360828 DOI: 10.1016/j.jacc.2018.08.2150] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
It has long been recognized that the bone marrow is the primary site of origin for circulating monocytes that may later become macrophages in atherosclerotic lesions. However, only in recent times has the complex relationship among the bone marrow, monocytes/macrophages, and atherosclerotic plaques begun to be understood. Moreover, the systemic nature of these interactions, which also involves additional compartments such as extramedullary hematopoietic sites (i.e., spleen), is only just becoming apparent. In parallel, progressive advances in imaging and cell labeling techniques have opened new opportunities for in vivo imaging of monocyte/macrophage trafficking in atherosclerotic lesions and at the systemic level. In this Part 3 of a 4-part review series covering the macrophage in cardiovascular disease, the authors intersect systemic biology with advanced imaging techniques to explore monocyte and macrophage dynamics in the cardiovascular system, with an emphasis on how events at the systemic level might affect local atherosclerotic plaque biology.
Collapse
Affiliation(s)
- Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Clinton S Robbins
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Peter Munk Cardiac Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Willem Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
10
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 953] [Impact Index Per Article: 158.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
11
|
Constantinescu CA, Fuior EV, Rebleanu D, Deleanu M, Simion V, Voicu G, Escriou V, Manduteanu I, Simionescu M, Calin M. Targeted Transfection Using PEGylated Cationic Liposomes Directed Towards P-Selectin Increases siRNA Delivery into Activated Endothelial Cells. Pharmaceutics 2019; 11:E47. [PMID: 30669699 PMCID: PMC6359248 DOI: 10.3390/pharmaceutics11010047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
: The progress in small-interfering RNA (siRNA) therapeutics depends on the development of suitable nanocarriers to perform specific and effective delivery to dysfunctional cells. In this paper, we questioned whether P-selectin, a cell adhesion molecule specifically expressed on the surface of activated endothelial cells (EC) could be employed as a target for nanotherapeutic intervention. To this purpose, we developed and characterized P-selectin targeted PEGylated cationic liposomes able to efficiently pack siRNA and to function as efficient vectors for siRNA delivery to tumour necrosis factor-α (TNF-α) activated EC. Targeted cationic liposomes were obtained by coupling a peptide with high affinity for P-selectin to a functionalized PEGylated phospholipid inserted in the liposomes' bilayer (Psel-lipo). As control, scrambled peptide coupled cationic liposomes (Scr-lipo) were used. The lipoplexes obtained by complexation of Psel-lipo with siRNA (Psel-lipo/siRNA) were taken up specifically and at a higher extent by TNF-α activated b.End3 endothelial cells as compared to non-targeted Scr-lipo/siRNA. The Psel-lipo/siRNA delivered with high efficiency siRNA into the cells. The lipoplexes were functional as demonstrated by the down-regulation of the selected gene (GAPDH). The results demonstrate an effective targeted delivery of siRNA into cultured activated endothelial cells using P-selectin directed PEGylated cationic liposomes, which subsequently knock-down the desired gene.
Collapse
Affiliation(s)
- Cristina Ana Constantinescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
- University of Agronomic Sciences and Veterinary Medicine (UASVM), Faculty of Veterinary Medicine, 050097 Bucharest, Romania.
| | - Elena Valeria Fuior
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
| | - Daniela Rebleanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
| | - Mariana Deleanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
- University of Agronomic Sciences and Veterinary Medicine (UASVM), Faculty of Biotechnologies, 011464 Bucharest, Romania.
| | - Viorel Simion
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
| | - Geanina Voicu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
| | - Virginie Escriou
- Centre National de la Recherche Scientifique (CNRS), Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS) UMR 8258, 75006 Paris, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS) U 1022, 75006 Paris, France.
- Université Paris Descartes, Sorbonne-Paris-Cité University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), 75006 Paris, France.
- Chimie ParisTech, PSL Research University, UTCBS, 75005 Paris, France.
| | - Ileana Manduteanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
| | - Manuela Calin
- Institute of Cellular Biology and Pathology "Nicolae Simionescu," 050568 Bucharest, Romania.
| |
Collapse
|
12
|
Molecular Imaging of a New Multimodal Microbubble for Adhesion Molecule Targeting. Cell Mol Bioeng 2018; 12:15-32. [PMID: 31719897 PMCID: PMC6816780 DOI: 10.1007/s12195-018-00562-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Introduction Inflammation is an important risk-associated component of many diseases and can be diagnosed by molecular imaging of specific molecules. The aim of this study was to evaluate the possibility of targeting adhesion molecules on inflammation-activated endothelial cells and macrophages using an innovative multimodal polyvinyl alcohol-based microbubble (MB) contrast agent developed for diagnostic use in ultrasound, magnetic resonance, and nuclear imaging. Methods We assessed the binding efficiency of antibody-conjugated multimodal contrast to inflamed murine or human endothelial cells (ECs), and to peritoneal macrophages isolated from rats with peritonitis, utilizing the fluorescence characteristics of the MBs. Single-photon emission tomography (SPECT) was used to illustrate 99mTc-labeled MB targeting and distribution in an experimental in vivo model of inflammation. Results Flow cytometry and confocal microscopy showed that binding of antibody-targeted MBs to the adhesion molecules ICAM-1, VCAM-1, or E-selectin, expressed on cytokine-stimulated ECs, was up to sixfold higher for human and 12-fold higher for mouse ECs, compared with that of non-targeted MBs. Under flow conditions, both VCAM-1- and E-selectin-targeted MBs adhered more firmly to stimulated human ECs than to untreated cells, while VCAM-1-targeted MBs adhered best to stimulated murine ECs. SPECT imaging showed an approximate doubling of signal intensity from the abdomen of rats with peritonitis, compared with healthy controls, after injection of anti-ICAM-1-MBs. Conclusions This novel multilayer contrast agent can specifically target adhesion molecules expressed as a result of inflammatory stimuli in vitro, and has potential for use in disease-specific multimodal diagnostics in vivo using antibodies against targets of interest.
Collapse
|
13
|
Zarghami N, Khrapitchev AA, Perez-Balderas F, Soto MS, Larkin JR, Bau L, Sibson NR. Optimization of molecularly targeted MRI in the brain: empirical comparison of sequences and particles. Int J Nanomedicine 2018; 13:4345-4359. [PMID: 30100719 PMCID: PMC6064157 DOI: 10.2147/ijn.s158071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Molecular MRI is an evolving field of research with strong translational potential. Selection of the appropriate MRI sequence, field strength and contrast agent depend largely on the application. The primary aims of the current study were to: 1) assess the sensitivity of different MRI sequences for detection of iron oxide particles in mouse brain; 2) determine the effect of magnetic field strength on detection of iron oxide particles in vivo; and 3) compare the sensitivity of targeted microparticles of iron oxide (MPIO) or ultra-small superparamagnetic iron oxide (USPIO) for detection of vascular cell adhesion molecule-1 (VCAM-1) in vivo. METHODS Mice were injected intrastriatally with interleukin 1β to induce VCAM-1 expression on the cerebral vasculature. Subsequently, animals were injected intravenously with either VCAM-MPIO or VCAM-USPIO and imaged 1 or 13 hours post-injection, respectively. MRI was performed at 4.7, 7.0, or 9.4 T, using three different T2*-weighted sequences: single gradient echo 3D (GE3D), multi-gradient echo 3D (MGE3D) and balanced steady-state free precession 3D (bSSFP3D). RESULTS MGE3D yielded the highest signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for the detection of iron oxide particles. All sequences showed a significant increase in SNR and CNR from 4.7 to 7.0 T, but no further improvement at 9.4 T. However, whilst targeted MPIO enabled sensitive detection of VCAM-1 expression on the cerebral vasculature, the long half-life (16.5 h vs 1.2 min) and lower relaxivity per particle (1.29×10-14 vs 1.18×10-9 Hz L/particle) of USPIO vs. MPIO rendered them impractical for molecular MRI. CONCLUSION These findings demonstrate clear advantages of MPIO compared to USPIO for molecularly-targeted MRI, and indicate that the MGE3D sequence is optimal for MPIO detection. Moreover, higher field strengths (7.0/9.4 T) showed enhanced sensitivity over lower field strengths (4.7 T). With the development of biodegradable MPIO, these agents hold promise for clinical translation.
Collapse
Affiliation(s)
- Niloufar Zarghami
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK,
| | - Alexandre A Khrapitchev
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK,
| | - Francisco Perez-Balderas
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK,
| | - Manuel Sarmiento Soto
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK,
| | - James R Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK,
| | - Luca Bau
- Institute of Biomedical Engineering, Department of Engineering Sciences, University of Oxford, Oxford, UK
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK,
| |
Collapse
|
14
|
Chan JMS, Monaco C, Wylezinska-Arridge M, Tremoleda JL, Cole JE, Goddard M, Cheung MSH, Bhakoo KK, Gibbs RGJ. Imaging vulnerable plaques by targeting inflammation in atherosclerosis using fluorescent-labeled dual-ligand microparticles of iron oxide and magnetic resonance imaging. J Vasc Surg 2018; 67:1571-1583.e3. [PMID: 28648478 DOI: 10.1016/j.jvs.2017.04.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/01/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Identification of patients with high-risk asymptomatic carotid plaques remains an elusive but essential step in stroke prevention. Inflammation is a key process in plaque destabilization and a prelude to clinical sequelae. There are currently no clinical imaging tools to assess the inflammatory activity within plaques. This study characterized inflammation in atherosclerosis using dual-targeted microparticles of iron oxide (DT-MPIO) as a magnetic resonance imaging (MRI) probe. METHODS DT-MPIO were used to detect and characterize inflammatory markers, vascular cell adhesion molecule 1 (VCAM-1). and P-selectin on (1) tumor necrosis factor-α-treated cells by immunocytochemistry and (2) aortic root plaques of apolipoprotein-E deficient mice by in vivo MRI. Furthermore, apolipoprotein E-deficient mice with focal carotid plaques of different phenotypes were developed by means of periarterial cuff placement to allow in vivo molecular MRI using these probes. The association between biomarkers and the magnetic resonance signal in different contrast groups was assessed longitudinally in these models. RESULTS Immunocytochemistry confirmed specificity and efficacy of DT-MPIO to VCAM-1 and P-selectin. Using this in vivo molecular MRI strategy, we demonstrated (1) the DT-MPIO-induced magnetic resonance signal tracked with VCAM-1 (r = 0.69; P = .014), P-selectin (r = 0.65; P = .022), and macrophage content (r = 0.59; P = .045) within aortic root plaques and (2) high-risk inflamed plaques were distinguished from noninflamed plaques in the murine carotid artery within a practical clinical imaging time frame. CONCLUSIONS These molecular MRI probes constitute a novel imaging tool for in vivo characterization of plaque vulnerability and inflammatory activity in atherosclerosis. Further development and translation into the clinical arena will facilitate more accurate risk stratification in carotid atherosclerotic disease in the future.
Collapse
Affiliation(s)
- Joyce M S Chan
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, United Kingdom; Regional Vascular Unit, St Mary's Hospital, Imperial College Healthcare National Health Service Trust, Imperial College London, London, United Kingdom; The Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (ASTAR), Singapore.
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Marzena Wylezinska-Arridge
- Neuroradiological Academic Unit, University of College London Institute of Neurology, University College London, London, United Kingdom
| | - Jordi L Tremoleda
- Medical Research Council-Clinical Sciences Centre, Imperial College London, and Centre for Trauma Sciences, Queen Mary University of London, London, United Kingdom
| | - Jennifer E Cole
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Michael Goddard
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Maggie S H Cheung
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, United Kingdom
| | - Kishore K Bhakoo
- The Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (ASTAR), Singapore
| | - Richard G J Gibbs
- Regional Vascular Unit, St Mary's Hospital, Imperial College Healthcare National Health Service Trust, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Qiao R, Qiao H, Zhang Y, Wang Y, Chi C, Tian J, Zhang L, Cao F, Gao M. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Vivo with Osteopontin-Specific Upconversion Nanoprobes. ACS NANO 2017; 11:1816-1825. [PMID: 28121134 DOI: 10.1021/acsnano.6b07842] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Owing to the high mortality rate of cardiovascular diseases, developing novel noninvasive diagnostic methods becomes urgent and mandatory. It is well-known that the rupture of vulnerable plaques directly leads to deadly consequences. However, differentiating vulnerable plaques from stable plaques remains challenging in the clinic. In the current study, osteopontin (OPN), a secreted biomarker associated with macrophages and foamy macrophages, was selected as a target for identifying the vulnerable plaques. A dual modality imaging probe was constructed by covalently attaching an OPN antibody to NaGdF4:Yb,Er@NaGdF4 upconversion nanoparticles. Upon intravenous injection of the resulting probes, upconversion optical imaging was performed to visualize the plaques induced by altering the shear stress in carotid arteries of a mouse model. The imaging studies revealed that the signals of vulnerable and stable plagues induced by lowered shear stress and oscillatory shear stress, respectively, presented significantly different signal intensities, implying that the current probe and imaging strategy are potentially useful for a precise diagnosis of atherosclerosis plaques.
Collapse
Affiliation(s)
- Ruirui Qiao
- Institute of Chemistry, Chinese Academy of Sciences , Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, P. R. China
| | - Hongyu Qiao
- Department of Cardiology, Chinese PLA General Hospital , No. 28 Fuxing Road, Beijing 100853, P. R. China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University , Xi'an 710032, P. R. China
| | - Yan Zhang
- Department of Cardiology, Chinese PLA General Hospital , No. 28 Fuxing Road, Beijing 100853, P. R. China
| | - Yabin Wang
- Department of Cardiology, Chinese PLA General Hospital , No. 28 Fuxing Road, Beijing 100853, P. R. China
| | - Chongwei Chi
- Key Laboratory of Molecular Imaging, Chinese Academy of Sciences , No. 95 Zhong Guan Cun East Road, Beijing 100190, P. R. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Chinese Academy of Sciences , No. 95 Zhong Guan Cun East Road, Beijing 100190, P. R. China
| | - Lifang Zhang
- Institute of Chemistry, Chinese Academy of Sciences , Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, P. R. China
| | - Feng Cao
- Department of Cardiology, Chinese PLA General Hospital , No. 28 Fuxing Road, Beijing 100853, P. R. China
| | - Mingyuan Gao
- Institute of Chemistry, Chinese Academy of Sciences , Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, P. R. China
| |
Collapse
|
16
|
Advances in Monitoring Cell-Based Therapies with Magnetic Resonance Imaging: Future Perspectives. Int J Mol Sci 2017; 18:ijms18010198. [PMID: 28106829 PMCID: PMC5297829 DOI: 10.3390/ijms18010198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/07/2023] Open
Abstract
Cell-based therapies are currently being developed for applications in both regenerative medicine and in oncology. Preclinical, translational, and clinical research on cell-based therapies will benefit tremendously from novel imaging approaches that enable the effective monitoring of the delivery, survival, migration, biodistribution, and integration of transplanted cells. Magnetic resonance imaging (MRI) offers several advantages over other imaging modalities for elucidating the fate of transplanted cells both preclinically and clinically. These advantages include the ability to image transplanted cells longitudinally at high spatial resolution without exposure to ionizing radiation, and the possibility to co-register anatomical structures with molecular processes and functional changes. However, since cellular MRI is still in its infancy, it currently faces a number of challenges, which provide avenues for future research and development. In this review, we describe the basic principle of cell-tracking with MRI; explain the different approaches currently used to monitor cell-based therapies; describe currently available MRI contrast generation mechanisms and strategies for monitoring transplanted cells; discuss some of the challenges in tracking transplanted cells; and suggest future research directions.
Collapse
|
17
|
Chan JMS, Cheung MSH, Gibbs RGJ, Bhakoo KK. MRI detection of endothelial cell inflammation using targeted superparamagnetic particles of iron oxide (SPIO). Clin Transl Med 2017; 6:1. [PMID: 28044245 PMCID: PMC5206220 DOI: 10.1186/s40169-016-0134-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/21/2016] [Indexed: 01/10/2023] Open
Abstract
Background There is currently no clinical imaging technique available to assess the degree of inflammation associated with atherosclerotic plaques. This study aims to develop targeted superparamagnetic particles of iron oxide (SPIO) as a magnetic resonance imaging (MRI) probe for detecting inflamed endothelial cells. Methods The in vitro study consists of the characterisation and detection of inflammatory markers on activated endothelial cells by immunocytochemistry and MRI using biotinylated anti-P-selectin and anti-VCAM-1 (vascular cell adhesion molecule 1) antibody and streptavidin conjugated SPIO. Results Established an in vitro cellular model of endothelial inflammation induced with TNF-α (tumor necrosis factor alpha). Inflammation of endothelial cells was confirmed with both immunocytochemistry and MRI. These results revealed both a temporal and dose dependent expression of the inflammatory markers, P-selectin and VCAM-1, on exposure to TNF-α. Conclusion This study has demonstrated the development of an in vitro model to characterise and detect inflamed endothelial cells by immunocytochemistry and MRI. This will allow the future development of contrast agents and protocols for imaging vascular inflammation in atherosclerosis. This work may form the basis for a translational study to provide clinicians with a novel tool for the in vivo assessment of atherosclerosis.
Collapse
Affiliation(s)
- Joyce M S Chan
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China. .,Regional Vascular Unit, St Mary's Hospital, Imperial College Healthcare NHS Trust, Imperial College London, London, UK. .,Translational Molecular Imaging Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, Helios, 138667, Singapore.
| | - Maggie S H Cheung
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Richard G J Gibbs
- Regional Vascular Unit, St Mary's Hospital, Imperial College Healthcare NHS Trust, Imperial College London, London, UK
| | - Kishore K Bhakoo
- Translational Molecular Imaging Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, Helios, 138667, Singapore
| |
Collapse
|
18
|
Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol 2016; 14:133-144. [PMID: 27905474 DOI: 10.1038/nrcardio.2016.185] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammatory processes are firmly established as central to the development and complications of cardiovascular diseases. Elevated levels of inflammatory markers have been shown to be predictive of future cardiovascular events. The specific targeting of these processes in experimental models has been shown to attenuate myocardial and arterial injury, reduce disease progression, and promote healing. However, the translation of these observations and the demonstration of clear efficacy in clinical practice have been disappointing. A major limitation might be that tools currently used to measure 'inflammation' are insufficiently precise and do not provide information about disease site and activity, or discriminate between functionally important activation pathways. The challenge, therefore, is to make measures of inflammation that are more meaningful, and which can guide specific targeted therapies. In this Review, we consider the roles of inflammatory processes in the related pathologies of atherosclerosis and acute myocardial infarction, by providing an evaluation of the known and emerging inflammatory pathways. We highlight contemporary techniques to characterize and quantify inflammation, and consider how they might be used to guide specific treatments. Finally, we discuss emerging opportunities in the field, including their current limitations and challenges that are the focus of ongoing study.
Collapse
Affiliation(s)
- Neil Ruparelia
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU, UK
| | - Joshua T Chai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU, UK.,Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Edward A Fisher
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU, UK.,The Center for the Prevention of Cardiovascular Disease and the Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU, UK.,Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| |
Collapse
|
19
|
Quenault A, Martinez de Lizarrondo S, Etard O, Gauberti M, Orset C, Haelewyn B, Segal HC, Rothwell PM, Vivien D, Touzé E, Ali C. Molecular magnetic resonance imaging discloses endothelial activation after transient ischaemic attack. Brain 2016; 140:146-157. [PMID: 28031221 DOI: 10.1093/brain/aww260] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 09/02/2016] [Indexed: 12/28/2022] Open
Abstract
SEE SUN ET AL DOI101093/AWW306 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: About 20% of patients with ischaemic stroke have a preceding transient ischaemic attack, which is clinically defined as focal neurological symptoms of ischaemic origin resolving spontaneously. Failure to diagnose transient ischaemic attack is a wasted opportunity to prevent recurrent disabling stroke. Unfortunately, diagnosis can be difficult, due to numerous mimics, and to the absence of a specific test. New diagnostic tools are thus needed, in particular for radiologically silent cases, which correspond to the recommended tissue-based definition of transient ischaemic attack. As endothelial activation is a hallmark of cerebrovascular events, we postulated that this may also be true for transient ischaemic attack, and that it would be clinically relevant to develop non-invasive in vivo imaging to detect this endothelial activation. Using transcriptional and immunohistological analyses for adhesion molecules in a mouse model, we identified brain endothelial P-selectin as a potential biomarker for transient ischaemic attack. We thus developed ultra-sensitive molecular magnetic resonance imaging using antibody-based microparticles of iron oxide targeting P-selectin. This highly sensitive imaging strategy unmasked activated endothelial cells after experimental transient ischaemic attack and allowed discriminating transient ischaemic attack from epilepsy and migraine, two important transient ischaemic attack mimics. We provide preclinical evidence that combining conventional magnetic resonance imaging with molecular magnetic resonance imaging targeting P-selectin might aid in the diagnosis of transient ischaemic attack.
Collapse
Affiliation(s)
- Aurélien Quenault
- 1 Normandie Univ, UNICAEN, INSERM U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Cyceron, 14000 Caen, France
| | - Sara Martinez de Lizarrondo
- 1 Normandie Univ, UNICAEN, INSERM U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Cyceron, 14000 Caen, France
| | - Olivier Etard
- 2 CHU de Caen, Laboratoire des Explorations Fonctionnelles du Système Nerveux, 14000 Caen, France.,3 Medical School, CHU de Caen, 14000 Caen, France
| | - Maxime Gauberti
- 1 Normandie Univ, UNICAEN, INSERM U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Cyceron, 14000 Caen, France
| | - Cyrille Orset
- 1 Normandie Univ, UNICAEN, INSERM U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Cyceron, 14000 Caen, France
| | - Benoît Haelewyn
- 4 Centre Universitaire de Ressources Biologiques, Université Caen-Normandie, Caen, France
| | - Helen C Segal
- 5 Stroke Prevention Research Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Peter M Rothwell
- 5 Stroke Prevention Research Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Denis Vivien
- 1 Normandie Univ, UNICAEN, INSERM U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Cyceron, 14000 Caen, France.,6 CHU Caen, Department of Clinical Research, CHU Caen Côte de Nacre, 14000 Caen, France
| | - Emmanuel Touzé
- 1 Normandie Univ, UNICAEN, INSERM U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Cyceron, 14000 Caen, France.,7 CHU Caen, Stroke Unit, Department of Neurology, CHU Caen Côte de Nacre, 14000 Caen, France
| | - Carine Ali
- 1 Normandie Univ, UNICAEN, INSERM U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Cyceron, 14000 Caen, France
| |
Collapse
|
20
|
Abstract
Molecular imaging offers great potential for noninvasive visualization and quantitation of the cellular and molecular components involved in atherosclerotic plaque stability. In this chapter, we review emerging molecular imaging modalities and approaches for quantitative, noninvasive detection of early biological processes in atherogenesis, including vascular endothelial permeability, endothelial adhesion molecule up-regulation, and macrophage accumulation, with special emphasis on mouse models. We also highlight a number of targeted imaging nanomaterials for assessment of advanced atherosclerotic plaques, including extracellular matrix degradation, proteolytic enzyme activity, and activated platelets using mouse models of atherosclerosis. The potential for clinical translation of molecular imaging nanomaterials for assessment of atherosclerotic plaque biology, together with multimodal approaches is also discussed.
Collapse
|
21
|
Preclinical models of atherosclerosis. The future of Hybrid PET/MR technology for the early detection of vulnerable plaque. Expert Rev Mol Med 2016; 18:e6. [PMID: 27056676 DOI: 10.1017/erm.2016.5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are the leading cause of death in developed countries. The aetiology is currently multifactorial, thus making them very difficult to prevent. Preclinical models of atherothrombotic diseases, including vulnerable plaque-associated complications, are now providing significant insights into pathologies like atherosclerosis, and in combination with the most recent advances in new non-invasive imaging technologies, they have become essential tools to evaluate new therapeutic strategies, with which can forecast and prevent plaque rupture. Positron emission tomography (PET)/computed tomography imaging is currently used for plaque visualisation in clinical and pre-clinical cardiovascular research, albeit with significant limitations. However, the combination of PET and magnetic resonance imaging (MRI) technologies is still the best option available today, as combined PET/MRI scans provide simultaneous data acquisition together with high quality anatomical information, sensitivity and lower radiation exposure for the patient. The coming years may represent a new era for the implementation of PET/MRI in clinical practice, but first, clinically efficient attenuation correction algorithms and research towards multimodal reagents and safety issues should be validated at the preclinical level.
Collapse
|
22
|
Kaczyńska A, Guzdek K, Derszniak K, Karewicz A, Lewandowska-Łańcucka J, Mateuszuk Ł, Skórka T, Banasik T, Jasiński K, Kapusta C, Chlopicki S, Nowakowska M. Novel nanostructural contrast for magnetic resonance imaging of endothelial inflammation: targeting SPIONs to vascular endothelium. RSC Adv 2016. [DOI: 10.1039/c6ra10994b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study aimed to develop superparamagnetic iron oxide nanoparticles (SPIONs) targeted to the areas of vascular endothelium changed in the initial inflammation process, a first step of numerous cardiovascular diseases.
Collapse
|
23
|
Sobczynski DJ, Fish MB, Fromen CA, Carasco-Teja M, Coleman RM, Eniola-Adefeso O. Drug carrier interaction with blood: a critical aspect for high-efficient vascular-targeted drug delivery systems. Ther Deliv 2015; 6:915-34. [PMID: 26272334 PMCID: PMC4618056 DOI: 10.4155/tde.15.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vascular wall endothelial cells control several physiological processes and are implicated in many diseases, making them an attractive candidate for drug targeting. Vascular-targeted drug carriers (VTCs) offer potential for reduced side effects and improved therapeutic efficacy, however, only limited therapeutic success has been achieved to date. This is perhaps due to complex interactions of VTCs with blood components, which dictate VTC transport and adhesion to endothelial cells. This review focuses on VTC interaction with blood as well as novel 'bio-inspired' designs to mimic and exploit features of blood in VTC development. Advanced approaches for enhancing VTCs are discussed along with applications in regenerative medicine, an area of massive potential growth and expansion of VTC utility in the near future.
Collapse
Affiliation(s)
- Daniel J Sobczynski
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Margaret B Fish
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Catherine A Fromen
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Mariana Carasco-Teja
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Rhima M Coleman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 48109
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 48109
| |
Collapse
|
24
|
Bakermans AJ, Abdurrachim D, Moonen RPM, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K. Small animal cardiovascular MR imaging and spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:1-47. [PMID: 26282195 DOI: 10.1016/j.pnmrs.2015.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abdallah G Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
25
|
Juenet M, Varna M, Aid-Launais R, Chauvierre C, Letourneur D. Nanomedicine for the molecular diagnosis of cardiovascular pathologies. Biochem Biophys Res Commun 2015; 468:476-84. [PMID: 26129770 DOI: 10.1016/j.bbrc.2015.06.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/20/2015] [Indexed: 11/15/2022]
Abstract
Predicting acute clinical events caused by atherosclerotic plaque rupture remains a clinical challenge. Anatomic mapping of the vascular tree provided by standard imaging technologies is not always sufficient for a robust diagnosis. Yet biological mechanisms leading to unstable plaques have been identified and corresponding biomarkers have been described. Nanosystems charged with contrast agents and targeted towards these specific biomarkers have been developed for several types of imaging modalities. The first systems that have reached the clinic are ultrasmall superparamagnetic iron oxides for Magnetic Resonance Imaging. Their potential relies on their passive accumulation by predominant physiological mechanisms in rupture-prone plaques. Active targeting strategies are under development to improve their specificity and set up other types of nanoplatforms. Preclinical results show a huge potential of nanomedicine for cardiovascular diagnosis, as long as the safety of these nanosystems in the body is studied in depth.
Collapse
Affiliation(s)
- Maya Juenet
- Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris, France; Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris, France
| | - Mariana Varna
- Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris, France; Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris, France
| | - Rachida Aid-Launais
- Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris, France; Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris, France
| | - Cédric Chauvierre
- Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris, France; Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris, France.
| | - Didier Letourneur
- Inserm, U1148, Cardiovascular Bio-Engineering, X. Bichat Hospital, 75018, Paris, France; Université Paris 13, Institut Galilée, Sorbonne Paris Cité, 75018, Paris, France
| |
Collapse
|
26
|
Bar A, Skorka T, Jasinski K, Chlopicki S. MRI-based assessment of endothelial function in mice in vivo. Pharmacol Rep 2015; 67:765-70. [PMID: 26321279 DOI: 10.1016/j.pharep.2015.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/08/2015] [Accepted: 05/13/2015] [Indexed: 12/28/2022]
Abstract
While a healthy endothelium serves to maintain vascular haemostasis, a malfunctioning endothelium leads to various cardiovascular diseases, including atherothrombosis. Endothelial dysfunction is characterized by increased vascular permeability, impaired endothelium-dependent responses and various pro-inflammatory and pro-thrombotic changes in endothelial phenotype, all of which could provide the basis for an in vivo diagnosis of endothelial dysfunction. In the present review, we briefly summarize the magnetic resonance imaging (MRI)-based methods available for assessing endothelial function in animal models, especially in mice. These methods are aimed to assess biochemical phenotype using molecular imaging, endothelium-dependent responses or changes in endothelial permeability. All these approaches provide a complementary insight into the endothelial dysfunction in vivo and may offer a unique opportunity to study endothelium-based mechanisms of diseases and endothelial response to treatment.
Collapse
Affiliation(s)
- Anna Bar
- Department of MRI, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland; Department of Experimental Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Skorka
- Department of MRI, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland.
| | - Krzysztof Jasinski
- Department of MRI, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Stefan Chlopicki
- Department of Experimental Pharmacology, Jagiellonian University Medical College, Kraków, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| |
Collapse
|
27
|
Affiliation(s)
- Ziad Mallat
- From the Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom; and Institut National de la Santé et de la Recherche Médicale, U970, Paris, France.
| |
Collapse
|
28
|
Melemenidis S, Jefferson A, Ruparelia N, Akhtar AM, Xie J, Allen D, Hamilton A, Larkin JR, Perez-Balderas F, Smart SC, Muschel RJ, Chen X, Sibson NR, Choudhury RP. Molecular magnetic resonance imaging of angiogenesis in vivo using polyvalent cyclic RGD-iron oxide microparticle conjugates. Theranostics 2015; 5:515-29. [PMID: 25767618 PMCID: PMC4350013 DOI: 10.7150/thno.10319] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/12/2015] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is an essential component of tumour growth and, consequently, an important target both therapeutically and diagnostically. The cell adhesion molecule α(v)β(3) integrin is a specific marker of angiogenic vessels and the most prevalent vascular integrin that binds the amino acid sequence arginine-glycine-aspartic acid (RGD). Previous studies using RGD-targeted nanoparticles (20-50 nm diameter) of iron oxide (NPIO) for magnetic resonance imaging (MRI) of tumour angiogenesis, have identified a number of limitations, including non-specific extravasation, long blood half-life (reducing specific contrast) and low targeting valency. The aim of this study, therefore, was to determine whether conjugation of a cyclic RGD variant [c(RGDyK)], with enhanced affinity for α(v)β(3), to microparticles of iron oxide (MPIO) would provide a more sensitive contrast agent for imaging of angiogenic tumour vessels. Cyclic RGD [c(RGDyK)] and RAD [c(RADyK)] based peptides were coupled to 2.8 μm MPIO, and binding efficacy tested both in vitro and in vivo. Significantly greater specific binding of c(RGDyK)-MPIO to S-nitroso-n-acetylpenicillamine (SNAP)-stimulated human umbilical vein endothelial cells in vitro than PBS-treated cells was demonstrated under both static (14-fold increase; P < 0.001) and flow (44-fold increase; P < 0.001) conditions. Subsequently, mice bearing subcutaneous colorectal (MC38) or melanoma (B16F10) derived tumours underwent in vivo MRI pre- and post-intravenous administration of c(RGDyK)-MPIO or c(RADyK)-MPIO. A significantly greater volume of MPIO-induced hypointensities were found in c(RGDyK)-MPIO injected compared to c(RADyK)-MPIO injected mice, in both tumour models (P < 0.05). Similarly, administration of c(RGDyK)-MPIO induced a greater reduction in mean tumour T(2)* relaxation times than the control agent in both tumour models (melanoma P < 0.001; colorectal P < 0.0001). Correspondingly, MPIO density per tumour volume assessed immunohistochemically was significantly greater for c(RGDyK)-MPIO than c(RADyK)-MPIO injected animals, in both melanoma (P < 0.05) and colorectal (P < 0.0005) tumours. In both cases, binding of c(RGDyK)-MPIO co-localised with α(v)β(3) expression. Comparison of RGD-targeted and dynamic contrast enhanced (DCE) MRI assessment of tumour perfusion indicated sensitivity to different vascular features. This study demonstrates specific binding of c(RGDyK)-MPIO to α(v)β(3) expressing neo-vessels, with marked and quantifiable contrast and rapid clearance of unbound particles from the blood circulation compared to NPIO. Combination of this molecular MRI approach with conventional DCE MRI will enable integrated molecular, anatomical and perfusion tumour imaging.
Collapse
Affiliation(s)
- Stavros Melemenidis
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew Jefferson
- 1. Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Neil Ruparelia
- 1. Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Asim M Akhtar
- 1. Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Jin Xie
- 3. Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Danny Allen
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Alastair Hamilton
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - James R Larkin
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Francisco Perez-Balderas
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Sean C Smart
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Ruth J Muschel
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Xiaoyuan Chen
- 3. Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Nicola R Sibson
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Robin P Choudhury
- 1. Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
29
|
Martinez FO, Gordon S. The evolution of our understanding of macrophages and translation of findings toward the clinic. Expert Rev Clin Immunol 2014; 11:5-13. [PMID: 25434688 DOI: 10.1586/1744666x.2015.985658] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
'There is at bottom only one genuinely scientific treatment for all diseases, and that is to stimulate the phagocytes,' so declaimed Sir Ralph Bloomfield Bonington in The Doctor's Dilemma, Act 1, by George Bernard Shaw (1906). More often nowadays, the need is to calm the phagocytes, given their role in inflammation and tissue damage. In spite of the growth of cellular and molecular information gained from studies in macrophage cell culture, mouse models and, to a lesser extent, human investigations, and the importance of macrophages in pathogenesis in a wide range of chronic disease processes, there is still a substantial shortfall in terms of clinical applications. In this review, we summarize concepts derived from macrophage studies and suggest possible properties suitable for diagnosis, prognosis and selective targeting of macrophage pathogenic functions.
Collapse
Affiliation(s)
- Fernando O Martinez
- Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | | |
Collapse
|
30
|
Gauberti M, Montagne A, Quenault A, Vivien D. Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci 2014; 8:389. [PMID: 25505871 PMCID: PMC4245913 DOI: 10.3389/fncel.2014.00389] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/31/2014] [Indexed: 01/09/2023] Open
Abstract
Although the blood-brain barrier (BBB) was thought to protect the brain from the effects of the immune system, immune cells can nevertheless migrate from the blood to the brain, either as a cause or as a consequence of central nervous system (CNS) diseases, thus contributing to their evolution and outcome. Accordingly, as the interface between the CNS and the peripheral immune system, the BBB is critical during neuroinflammatory processes. In particular, endothelial cells are involved in the brain response to systemic or local inflammatory stimuli by regulating the cellular movement between the circulation and the brain parenchyma. While neuropathological conditions differ in etiology and in the way in which the inflammatory response is mounted and resolved, cellular mechanisms of neuroinflammation are probably similar. Accordingly, neuroinflammation is a hallmark and a decisive player of many CNS diseases. Thus, molecular magnetic resonance imaging (MRI) of inflammatory processes is a central theme of research in several neurological disorders focusing on a set of molecules expressed by endothelial cells, such as adhesion molecules (VCAM-1, ICAM-1, P-selectin, E-selectin, …), which emerge as therapeutic targets and biomarkers for neurological diseases. In this review, we will present the most recent advances in the field of preclinical molecular MRI. Moreover, we will discuss the possible translation of molecular MRI to the clinical setting with a particular emphasis on myeloperoxidase imaging, autologous cell tracking, and targeted iron oxide particles (USPIO, MPIO).
Collapse
Affiliation(s)
- Maxime Gauberti
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Axel Montagne
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Aurélien Quenault
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Denis Vivien
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| |
Collapse
|
31
|
Sadat U, Jaffer FA, van Zandvoort MAMJ, Nicholls SJ, Ribatti D, Gillard JH. Inflammation and neovascularization intertwined in atherosclerosis: imaging of structural and molecular imaging targets. Circulation 2014; 130:786-94. [PMID: 25156914 DOI: 10.1161/circulationaha.114.010369] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Umar Sadat
- From the Cambridge Vascular Unit (U.S.) and University Department of Radiology (U.S., J.H.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, MA (F.A.J.); Advanced Microscopy Unit, Department of Genetics and Cell Biology-Molecular Cell Biology, Maastricht University, Maastricht, The Netherlands (M.A.M.J.v.Z.); Institute for Molecular Cardiovascular Research, Aachen University, Aachen, Germany (M.A.M.J.v.Z.); South Australian Health and Medical Research Institute and Heart Foundation Heart Health, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.J.N.); Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy (D.R.); and National Cancer Institute "Giovanni Paolo II," Bari, Italy (D.R.).
| | - Farouc A Jaffer
- From the Cambridge Vascular Unit (U.S.) and University Department of Radiology (U.S., J.H.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, MA (F.A.J.); Advanced Microscopy Unit, Department of Genetics and Cell Biology-Molecular Cell Biology, Maastricht University, Maastricht, The Netherlands (M.A.M.J.v.Z.); Institute for Molecular Cardiovascular Research, Aachen University, Aachen, Germany (M.A.M.J.v.Z.); South Australian Health and Medical Research Institute and Heart Foundation Heart Health, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.J.N.); Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy (D.R.); and National Cancer Institute "Giovanni Paolo II," Bari, Italy (D.R.)
| | - Marc A M J van Zandvoort
- From the Cambridge Vascular Unit (U.S.) and University Department of Radiology (U.S., J.H.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, MA (F.A.J.); Advanced Microscopy Unit, Department of Genetics and Cell Biology-Molecular Cell Biology, Maastricht University, Maastricht, The Netherlands (M.A.M.J.v.Z.); Institute for Molecular Cardiovascular Research, Aachen University, Aachen, Germany (M.A.M.J.v.Z.); South Australian Health and Medical Research Institute and Heart Foundation Heart Health, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.J.N.); Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy (D.R.); and National Cancer Institute "Giovanni Paolo II," Bari, Italy (D.R.)
| | - Stephen J Nicholls
- From the Cambridge Vascular Unit (U.S.) and University Department of Radiology (U.S., J.H.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, MA (F.A.J.); Advanced Microscopy Unit, Department of Genetics and Cell Biology-Molecular Cell Biology, Maastricht University, Maastricht, The Netherlands (M.A.M.J.v.Z.); Institute for Molecular Cardiovascular Research, Aachen University, Aachen, Germany (M.A.M.J.v.Z.); South Australian Health and Medical Research Institute and Heart Foundation Heart Health, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.J.N.); Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy (D.R.); and National Cancer Institute "Giovanni Paolo II," Bari, Italy (D.R.)
| | - Domenico Ribatti
- From the Cambridge Vascular Unit (U.S.) and University Department of Radiology (U.S., J.H.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, MA (F.A.J.); Advanced Microscopy Unit, Department of Genetics and Cell Biology-Molecular Cell Biology, Maastricht University, Maastricht, The Netherlands (M.A.M.J.v.Z.); Institute for Molecular Cardiovascular Research, Aachen University, Aachen, Germany (M.A.M.J.v.Z.); South Australian Health and Medical Research Institute and Heart Foundation Heart Health, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.J.N.); Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy (D.R.); and National Cancer Institute "Giovanni Paolo II," Bari, Italy (D.R.)
| | - Jonathan H Gillard
- From the Cambridge Vascular Unit (U.S.) and University Department of Radiology (U.S., J.H.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, MA (F.A.J.); Advanced Microscopy Unit, Department of Genetics and Cell Biology-Molecular Cell Biology, Maastricht University, Maastricht, The Netherlands (M.A.M.J.v.Z.); Institute for Molecular Cardiovascular Research, Aachen University, Aachen, Germany (M.A.M.J.v.Z.); South Australian Health and Medical Research Institute and Heart Foundation Heart Health, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia (S.J.N.); Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy (D.R.); and National Cancer Institute "Giovanni Paolo II," Bari, Italy (D.R.)
| |
Collapse
|
32
|
Bonnard T, Serfaty JM, Journé C, Ho Tin Noe B, Arnaud D, Louedec L, Derkaoui SM, Letourneur D, Chauvierre C, Le Visage C. Leukocyte mimetic polysaccharide microparticles tracked in vivo on activated endothelium and in abdominal aortic aneurysm. Acta Biomater 2014; 10:3535-45. [PMID: 24769117 DOI: 10.1016/j.actbio.2014.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/08/2014] [Accepted: 04/15/2014] [Indexed: 12/24/2022]
Abstract
We have developed injectable microparticles functionalized with fucoidan, in which sulfated groups mimic the anchor sites of P-selectin glycoprotein ligand-1 (PSGL-1), one of the principal receptors supporting leukocyte adhesion. These targeted microparticles were combined with a fluorescent dye and a T2(∗) magnetic resonance imaging (MRI) contrast agent, and then tracked in vivo with small animal imaging methods. Microparticles of 2.5μm were obtained by a water-in-oil emulsification combined with a cross-linking process of polysaccharide dextran, fluorescein isothiocyanate dextran, pullulan and fucoidan mixed with ultrasmall superparamagnetic particles of iron oxide. Fluorescent intravital microscopy observation revealed dynamic adsorption and a leukocyte-like behaviour of fucoidan-functionalized microparticles on a calcium ionophore induced an activated endothelial layer of a mouse mesentery vessel. We observed 20times more adherent microparticles on the activated endothelium area after the injection of functionalized microparticles compared to non-functionalized microparticles (197±11 vs. 10±2). This imaging tool was then applied to rats presenting an elastase perfusion model of abdominal aortic aneurysm (AAA) and 7.4T in vivo MRI was performed. Visual analysis of T2(∗)-weighted MR images showed a significant contrast enhancement on the inner wall of the aneurysm from 30min to 2h after the injection. Histological analysis of AAA cryosections revealed microparticles localized inside the aneurysm wall, in the same areas in which immunostaining shows P-selectin expression. The developed leukocyte mimetic imaging tool could therefore be relevant for molecular imaging of vascular diseases and for monitoring biologically active areas prone to rupture in AAA.
Collapse
|
33
|
Combination-targeting to multiple endothelial cell adhesion molecules modulates binding, endocytosis, and in vivo biodistribution of drug nanocarriers and their therapeutic cargoes. J Control Release 2014; 188:87-98. [PMID: 24933603 DOI: 10.1016/j.jconrel.2014.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/24/2014] [Accepted: 06/07/2014] [Indexed: 01/11/2023]
Abstract
Designing of drug nanocarriers to aid delivery of therapeutics is an expanding field that can improve medical treatments. Nanocarriers are often functionalized with elements that recognize cell-surface molecules involved in subcellular transport to improve targeting and endocytosis of therapeutics. Combination-targeting using several affinity elements further modulates this outcome. The most studied example is endothelial targeting via multiple cell adhesion molecules (CAMs), which mimics the strategy of leukocytes to adhere and traverse the vascular endothelium. Yet, the implications of this strategy on intracellular transport and in vivo biodistribution remain uncharacterized. We examined this using nanocarriers functionalized for dual- or triple-targeting to intercellular, platelet-endothelial, and/or vascular CAMs (ICAM-1, PECAM-1, VCAM-1). These molecules differ in expression level, location, pathological stimulation, and/or endocytic pathway. In endothelial cells, binding of PECAM-1/VCAM-1-targeted nanocarriers was intermediate to single-targeted counterparts and enhanced in disease-like conditions. ICAM-1/PECAM-1-targeted nanocarriers surpassed PECAM-1/VCAM-1 in control, but showed lower selectivity toward disease-like conditions. Triple-targeting resulted in binding similar to ICAM-1/PECAM-1 combination and displayed the highest selectivity in disease-like conditions. All combinations were effectively internalized by the cells, with slightly better performance when targeting receptors of different endocytic pathways. In vivo, ICAM-1/PECAM-1-targeted nanocarriers outperformed PECAM-1/VCAM-1 in control and disease-like conditions, and triple-targeted counterparts slightly enhanced this outcome in some organs. As a result, delivery of a model therapeutic cargo (acid sphingomyelinase, deficient in Niemann-Pick disease A-B) was enhanced to all affected organs by triple-targeted nanocarriers, particularly in disease-like conditions. Therefore, multi-CAM targeting may aid the optimization of some therapeutic nanocarriers, where the combination and multiplicity of the affinity moieties utilized allow modulation of targeting performance.
Collapse
|
34
|
Bonnard T, Yang G, Petiet A, Ollivier V, Haddad O, Arnaud D, Louedec L, Bachelet-Violette L, Derkaoui SM, Letourneur D, Chauvierre C, Visage CL. Abdominal aortic aneurysms targeted by functionalized polysaccharide microparticles: a new tool for SPECT imaging. Am J Cancer Res 2014; 4:592-603. [PMID: 24723981 PMCID: PMC3982130 DOI: 10.7150/thno.7757] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/16/2013] [Indexed: 02/02/2023] Open
Abstract
Aneurysm diagnostic is nowadays limited by the lack of technology that enables early detection and rupture risk prediction. New non invasive tools for molecular imaging are still required. In the present study, we present an innovative SPECT diagnostic tool for abdominal aortic aneurysm (AAA) produced from injectable polysaccharide microparticles radiolabeled with technetium 99m (99mTc) and functionalized with fucoidan, a sulfated polysaccharide with the ability to target P-Selectin. P-Selectin is a cell adhesion molecule expressed on activated endothelial cells and platelets which can be found in the thrombus of aneurysms, as well as in other vascular pathologies. Microparticles with a maximum hydrodynamic diameter of 4 µm were obtained by crosslinking the polysaccharides dextran and pullulan. They were functionalized with fucoidan. In vitro interactions with human activated platelets were assessed by flow cytometry that demonstrated a specific affinity of fucoidan functionalized microparticles for P-Selectin expressed by activated platelets. For in vivo AAA imaging, microparticles were radiolabeled with 99mTc and intravenously injected into healthy and AAA rats obtained by elastase perfusion through the aorta wall. Animals were scanned by SPECT imaging. A strong contrast enhancement located in the abdominal aorta of AAA rats was obtained, while no signal was obtained in healthy rats or in AAA rats after injection of non-functionalized control microparticles. Histological studies revealed that functionalized radiolabeled polysaccharide microparticles were localized in the AAA wall, in the same location where P-Selectin was expressed. These microparticles therefore constitute a promising SPECT imaging tool for AAA and potentially for other vascular diseases characterized by P-Selectin expression. Future work will focus on validating the efficiency of the microparticles to diagnose these other pathologies and the different stages of AAA. Incorporation of a therapeutic molecule is also considered.
Collapse
|
35
|
Chan JMS, Monaco C, Wylezinska-Arridge M, Tremoleda JL, Gibbs RGJ. Imaging of the vulnerable carotid plaque: biological targeting of inflammation in atherosclerosis using iron oxide particles and MRI. Eur J Vasc Endovasc Surg 2014; 47:462-9. [PMID: 24594295 DOI: 10.1016/j.ejvs.2014.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/21/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Identification of those patients with high-risk asymptomatic carotid plaques remains an elusive but essential step in stroke prevention. Inflammation is a key process in plaque destabilization and the propensity of atherosclerotic lesions to cause clinical sequelae. There is currently no clinical imaging technique available to assess the degree of inflammation associated with plaques. This study aims at visualizing and characterizing atherosclerosis using antibody-conjugated superparamagnetic iron oxide (SPIO) particles as an MRI probe to assess inflammation in human atherosclerotic plaques. METHODS Atherosclerotic plaques were collected from 20 consecutive patients (n=10 from symptomatic patients, n=10 from asymptomatic patients) undergoing carotid endarterectomy (CEA) for extracranial high-grade internal carotid artery (ICA) stenosis (>70% luminal narrowing). Inflammatory markers on human atherosclerotic plaques were detected and characterized by ex vivo magnetic resonance imaging (MRI) using anti-VCAM-1 antibody and anti-E-selectin antibody-conjugated SPIO with confirmatory immunohistochemistry. RESULTS Inflammation associated with human ex vivo atherosclerotic plaques could be imaged using dual antibody-conjugated SPIO by MRI. Symptomatic plaques could be distinguished from asymptomatic ones by the degree of inflammation, and the MR contrast effect was significantly correlated with the degree of plaque inflammation (r=.64, p<.001). The asymptomatic plaque population exhibited heterogeneity in terms of inflammation. The dual-targeted SPIO-induced MR signal not only tracked closely with endothelial activation (i.e. endothelial expression of VCAM-1 and E-selectin), but also reflected the macrophage burden within plaque lesions, offering a potential imaging tool for quantitative MRI of inflammatory activity in atherosclerosis. CONCLUSIONS These functional molecular MRI probes constitute a novel imaging tool for ex vivo characterization of atherosclerosis at a molecular level. Further development and translation into the clinical arena will facilitate more accurate risk stratification in carotid artery disease in the future.
Collapse
Affiliation(s)
- J M S Chan
- Regional Vascular Unit, St Mary's Hospital, Imperial College Healthcare NHS Trust, Imperial College London, UK
| | - C Monaco
- Cytokine Biology of Atherosclerosis, Kennedy Institute of Rheumatology, Imperial College London, UK
| | - M Wylezinska-Arridge
- Biological Imaging Centre, Clinical Sciences Centre, Medical Research Council, Imperial College London, UK
| | - J L Tremoleda
- Biological Imaging Centre, Clinical Sciences Centre, Medical Research Council, Imperial College London, UK
| | - R G J Gibbs
- Regional Vascular Unit, St Mary's Hospital, Imperial College Healthcare NHS Trust, Imperial College London, UK.
| |
Collapse
|
36
|
Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. NATURE MATERIALS 2014; 13:125-38. [PMID: 24452356 DOI: 10.1038/nmat3780] [Citation(s) in RCA: 579] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 09/17/2013] [Indexed: 05/02/2023]
Abstract
Nanomaterials have much to offer, not only in deciphering innate immune cell biology and tracking cells, but also in advancing personalized clinical care by providing diagnostic and prognostic information, quantifying treatment efficacy and designing better therapeutics. This Review presents different types of nanomaterial, their biological properties and their applications for imaging macrophages in human diseases, including cancer, atherosclerosis, myocardial infarction, aortic aneurysm, diabetes and other conditions. We anticipate that future needs will include the development of nanomaterials that are specific for immune cell subsets and can be used as imaging surrogates for nanotherapeutics. New in vivo imaging clinical tools for noninvasive macrophage quantification are thus ultimately expected to become relevant to predicting patients' clinical outcome, defining treatment options and monitoring responses to therapy.
Collapse
Affiliation(s)
- Ralph Weissleder
- 1] Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, USA [2] Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA [3] Department of Radiology, Massachusetts General Hospital, 32 Fruit Street, Boston, Massachusetts 02114, USA
| | - Matthias Nahrendorf
- 1] Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, USA [2] Department of Radiology, Massachusetts General Hospital, 32 Fruit Street, Boston, Massachusetts 02114, USA
| | - Mikael J Pittet
- 1] Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, USA [2] Department of Radiology, Massachusetts General Hospital, 32 Fruit Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
37
|
Wildgruber M, Swirski FK, Zernecke A. Molecular imaging of inflammation in atherosclerosis. Am J Cancer Res 2013; 3:865-84. [PMID: 24312156 PMCID: PMC3841337 DOI: 10.7150/thno.5771] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/29/2013] [Indexed: 01/13/2023] Open
Abstract
Acute rupture of vulnerable plaques frequently leads to myocardial infarction and stroke. Within the last decades, several cellular and molecular players have been identified that promote atherosclerotic lesion formation, maturation and plaque rupture. It is now widely recognized that inflammation of the vessel wall and distinct leukocyte subsets are involved throughout all phases of atherosclerotic lesion development. The mechanisms that render a stable plaque unstable and prone to rupture, however, remain unknown and the identification of the vulnerable plaque remains a major challenge in cardiovascular medicine. Imaging technologies used in the clinic offer minimal information about the underlying biology and potential risk for rupture. New imaging technologies are therefore being developed, and in the preclinical setting have enabled new and dynamic insights into the vessel wall for a better understanding of this complex disease. Molecular imaging has the potential to track biological processes, such as the activity of cellular and molecular biomarkers in vivo and over time. Similarly, novel imaging technologies specifically detect effects of therapies that aim to stabilize vulnerable plaques and silence vascular inflammation. Here we will review the potential of established and new molecular imaging technologies in the setting of atherosclerosis, and discuss the cumbersome steps required for translating molecular imaging approaches into the clinic.
Collapse
|
38
|
Jefferson A, Ruparelia N, Choudhury RP. Exogenous microparticles of iron oxide bind to activated endothelial cells but, unlike monocytes, do not trigger an endothelial response. Theranostics 2013; 3:428-36. [PMID: 23781289 PMCID: PMC3677413 DOI: 10.7150/thno.5895] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/10/2013] [Indexed: 12/11/2022] Open
Abstract
Targeting particles to sites of inflammation is of considerable interest for applications relating to molecular imaging and drug delivery. We and others have described micron-sized particles of iron oxide (MPIO) that can be directed using specific ligands (e.g. antibodies, peptides and oligosaccharides) to bind to mediators of vascular inflammation in vivo. Since leukocyte binding to these molecules can induce changes in the target cell, an outstanding question has been whether the binding of imaging particles to these mediators induces biologically significant changes in the endothelial cells, potentially initiating or propagating inflammation. Here, we address these questions by looking for changes in endothelial cells following binding of contrast agent. Specifically, we have quantified calcium flux, rearrangement of the actin cytoskeleton, production of reactive oxygen species (ROS), apoptosis and potential secondary changes, such as changes in gene and protein expression follow binding events to primary endothelial cells in vitro. Although leukocytes induced changes to endothelial cell function, we did not see any significant changes to endothelial calcium flux, cytoskeletal organisation, production of ROS or induction of apoptosis in response to antibody-MPIO binding. Furthermore, there were no changes to gene expression monitored via real-time RT-PCR or presentation of protein on the cell surface measured using flow cytometry. Our experiments demonstrate that whilst antibody-targeted microparticles mimic the binding capability of leukocytes to inflamed endothelium, they do not trigger the same cellular responses and do not appear to initiate or compound inflammation. These properties are desirable for targeted therapeutic and diagnostic agents.
Collapse
Affiliation(s)
| | | | - Robin P Choudhury
- Department of Cardiovascular Medicine and Oxford Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
39
|
Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice. Biochem Biophys Res Commun 2013; 433:47-51. [PMID: 23485468 DOI: 10.1016/j.bbrc.2013.02.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 02/15/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Sensitive detection and qualitative analysis of atherosclerotic plaques are in high demand in cardiovascular clinical settings. The leukocyte-endothelial interaction mediated by an adhesion molecule P-selectin participates in arterial wall inflammation and atherosclerosis. METHODS AND RESULTS A (64)Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid conjugated anti-P-selectin monoclonal antibody ((64)Cu-DOTA-anti-P-selectin mAb) probe was prepared by conjugating an anti-P-selectin monoclonal antibody with DOTA followed by (64)Cu labeling. Thirty-six hours prior to PET and CT fusion imaging, 3MBq of (64)Cu-DOTA-anti-P-selectin mAb was intravenously injected into low density lipoprotein receptor-deficient Ldlr-/- mice. After a 180min PET scan, autoradiography and biodistribution of (64)Cu-DOTA-anti-P-selectin monoclonal antibody was examined using excised aortas. In Ldlr-/- mice fed with a high cholesterol diet for promotion of atherosclerotic plaque development, PET and CT fusion imaging revealed selective and prominent accumulation of the probe in the aortic root. Autoradiography of aortas that demonstrated probe uptake into atherosclerotic plaques was confirmed by Oil red O staining for lipid droplets. In Ldlr-/- mice fed with a chow diet to develop mild atherosclerotic plaques, probe accumulation was barely detectable in the aortic root on PET and CT fusion imaging. Probe biodistribution in aortas was 6.6-fold higher in Ldlr-/- mice fed with a high cholesterol diet than in those fed with a normal chow diet. (64)Cu-DOTA-anti-P-selectin mAb accumulated selectively in aortic atherosclerotic plaques and was detectable by PET and CT fusion imaging in Ldlr-/- mice. CONCLUSIONS P-selectin is a candidate target molecule for early-phase detection by PET and CT fusion imaging of atherosclerotic plaques.
Collapse
|
40
|
|
41
|
McAteer MA, Choudhury RP. Targeted molecular imaging of vascular inflammation in cardiovascular disease using nano- and micro-sized agents. Vascul Pharmacol 2013; 58:31-8. [DOI: 10.1016/j.vph.2012.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 01/15/2023]
|
42
|
Phinikaridou A, Andia ME, Shah AM, Botnar RM. Advances in molecular imaging of atherosclerosis and myocardial infarction: shedding new light on in vivo cardiovascular biology. Am J Physiol Heart Circ Physiol 2012; 303:H1397-410. [PMID: 23064836 DOI: 10.1152/ajpheart.00583.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular imaging of the cardiovascular system heavily relies on the development of new imaging probes and technologies to facilitate visualization of biological processes underlying or preceding disease. Molecular imaging is a highly active research discipline that has seen tremendous growth over the past decade. It has broadened our understanding of oncologic, neurologic, and cardiovascular diseases by providing new insights into the in vivo biology of disease progression and therapeutic interventions. As it allows for the longitudinal evaluation of biological processes, it is ideally suited for monitoring treatment response. In this review, we will concentrate on the major accomplishments and advances in the field of molecular imaging of atherosclerosis and myocardial infarction with a special focus on magnetic resonance imaging.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- Division of Imaging Science and Biomedical Engineering, King's College London, United Kingdom.
| | | | | | | |
Collapse
|
43
|
Molecular Imaging of Selectins in Endothelial Activation. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012. [DOI: 10.1007/s12410-012-9143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|