1
|
Vafadar A, Tajbakhsh A, Hosseinpour-Soleimani F, Savardshtaki A, Hashempur MH. Phytochemical-mediated efferocytosis and autophagy in inflammation control. Cell Death Discov 2024; 10:493. [PMID: 39695119 DOI: 10.1038/s41420-024-02254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Efferocytosis, the clearance of apoptotic cells, is a critical process that maintains tissue homeostasis and immune regulation. Defective efferocytosis is linked to the development of chronic inflammatory conditions, including atherosclerosis, neurological disorders, and autoimmune diseases. Moreover, the interplay between autophagy and efferocytosis is crucial for inflammation control, as autophagy enhances the ability of phagocytic cells. Efficient efferocytosis, in turn, regulates autophagic pathways, fostering a balanced cellular environment. Dysregulation of this balance can contribute to the pathogenesis of various disorders. Phytochemicals, bioactive compounds found in plants, have emerged as promising therapeutic agents owing to their diverse pharmacological properties, including antioxidant, anti-inflammatory, and immunomodulatory effects. This review aims to highlight the pivotal role of phytochemicals in enhancing efferocytosis and autophagy and explore their potential in the prevention and treatment of related disorders. This study examines how phytochemicals influence key aspects of efferocytosis, including phagocytic cell activation, macrophage polarization, and autophagy induction. The therapeutic potential of phytochemicals in atherosclerosis and neurological diseases is highlighted, emphasizing their ability to enhance efferocytosis and autophagy and reduce inflammation. This review also discusses innovative approaches, such as nanoformulations and combination therapies to improve the targeting and bioavailability of phytochemicals. Ultimately, this study inspires further research and clinical applications in phytochemical-mediated efferocytosis enhancement for managing chronic inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Hosseinpour-Soleimani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardshtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Jin T, Gao H, Meng D, Luo M, Hu J. NSUN6 and HTR7 disturbed the stability of carotid atherosclerotic plaques by regulating the immune responses of macrophages. Open Med (Wars) 2024; 19:20241072. [PMID: 39450006 PMCID: PMC11500533 DOI: 10.1515/med-2024-1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Background Ischemic stroke associated with atherosclerosis is globally named atherothrombotic stroke. Presently, the underlying pathogenic genes promoting carotid atherosclerotic plaques transfer from a stable to unstable state remains elusive. This study aims to find the hub genes disturbing the stability of plaques and explore the primary cells affected by these hub genes. Methods The optimal hub genes from five datasets for unstable plaques were identified by overlapping genes derived from Boruta and LASSO algorithms. The hub genes' expression levels in stroke patients were confirmed through RT-qPCR. Visualization of the hub genes' expression across various cell clusters was achieved with the aid of the Seurat R package. Then, hub genes were overexpressed or knock-down by lentivirus and siRNA, respectively. The inflammatory factors in the culture medium were detected using an ELISA assay. Results Eight genes (APOD, ASXL1, COL4A5, HTR7, INF2, NSUN6, PDSS2, and RBBP7) were identified and confirmed by RT-qPCR. The prognostic model was built upon this eight-gene composite foundation, and the area under the curve was 0.98. Based on CIBERSORT findings, unstable plaques displayed a higher macrophage proportion compared to stable ones (P < 0.05). These eight genes also correlated with infiltrated immune cells, especially macrophages. Then, according to single-cell RNA-seq analysis, we found that the eight hub genes mainly expressed in macrophages. The cellular localization of two hub genes (NSUN6 and HTR7) with high distinguishability was confirmed, and gene set enrichment analysis also clarified the possible biological pathways regulated by them. The findings from the in vitro investigation revealed that TNF-α and IL-6 were reduced in macrophages with NSUN6 overexpression or HTR7 knockdown. Conclusion Eight hub genes, especially NSUN6 and HTR7, were found to promote the progression of plaques by regulating the immune responses of macrophages.
Collapse
Affiliation(s)
- Tingyu Jin
- Department of Neurology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Han Gao
- Department of Neurology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Danyang Meng
- Department of Neurology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Man Luo
- Department of Neurology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Jin Hu
- Department of Neurology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, 1882 Zhonghuan South Road, Chengnan Street, Jiaxing, Zhejiang, China
| |
Collapse
|
3
|
Martí-Carvajal AJ, Gemmato-Valecillos MA, Monge Martín D, Dayer M, Alegría-Barrero E, De Sanctis JB, Parise Vasco JM, Riera Lizardo RJ, Nicola S, Martí-Amarista CE, Correa-Pérez A. Interleukin-receptor antagonist and tumour necrosis factor inhibitors for the primary and secondary prevention of atherosclerotic cardiovascular diseases. Cochrane Database Syst Rev 2024; 9:CD014741. [PMID: 39297531 PMCID: PMC11411914 DOI: 10.1002/14651858.cd014741.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
BACKGROUND Atherosclerotic cardiovascular disease (ACVD) is worsened by chronic inflammatory diseases. Interleukin receptor antagonists (IL-RAs) and tumour necrosis factor-alpha (TNF) inhibitors have been studied to see if they can prevent cardiovascular events. OBJECTIVES The purpose of this study was to assess the clinical benefits and harms of IL-RAs and TNF inhibitors in the primary and secondary prevention of ACVD. SEARCH METHODS The Cochrane Heart Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE (including In-Process & Other Non-Indexed Citations), Ovid Embase, EBSCO CINAHL plus, and clinical trial registries for ongoing and unpublished studies were searched in February 2024. The reference lists of relevant studies, reviews, meta-analyses and health technology reports were searched to identify additional studies. No limitations on language, date of publication or study type were set. SELECTION CRITERIA RCTs that recruited people with and without pre-existing ACVD, comparing IL-RAs or TNF inhibitors versus placebo or usual care, were selected. The primary outcomes considered were all-cause mortality, myocardial infarction, unstable angina, and adverse events. DATA COLLECTION AND ANALYSIS Two or more review authors, working independently at each step, selected studies, extracted data, assessed the risk of bias and used GRADE to judge the certainty of evidence. MAIN RESULTS We included 58 RCTs (22,053 participants; 21,308 analysed), comparing medication efficacy with placebo or usual care. Thirty-four trials focused on primary prevention and 24 on secondary prevention. The interventions included IL-1 RAs (anakinra, canakinumab), IL-6 RA (tocilizumab), TNF-inhibitors (etanercept, infliximab) compared with placebo or usual care. The certainty of evidence was low to very low due to biases and imprecision; all trials had a high risk of bias. Primary prevention: IL-1 RAs The evidence is very uncertain about the effects of the intervention on all-cause mortality(RR 0.33, 95% CI 0.01 to 7.58, 1 trial), myocardial infarction (RR 0.71, 95% CI 0.04 to 12.48, I² = 39%, 2 trials), unstable angina (RR 0.24, 95% CI 0.03 to 2.11, I² = 0%, 2 trials), stroke (RR 2.42, 95% CI 0.12 to 50.15; 1 trial), adverse events (RR 0.85, 95% CI 0.59 to 1.22, I² = 54%, 3 trials), or infection (rate ratio 0.84, 95% 0.55 to 1.29, I² = 0%, 4 trials). Evidence is very uncertain about whether anakinra and cankinumab may reduce heart failure (RR 0.21, 95% CI 0.05 to 0.94, I² = 0%, 3 trials). Peripheral vascular disease (PVD) was not reported as an outcome. IL-6 RAs The evidence is very uncertain about the effects of the intervention on all-cause mortality (RR 0.68, 95% CI 0.12 to 3.74, I² = 30%, 3 trials), myocardial infarction (RR 0.27, 95% CI 0.04 to1.68, I² = 0%, 3 trials), heart failure (RR 1.02, 95% CI 0.11 to 9.63, I² = 0%, 2 trials), PVD (RR 2.94, 95% CI 0.12 to 71.47, 1 trial), stroke (RR 0.34, 95% CI 0.01 to 8.14, 1 trial), or any infection (rate ratio 1.10, 95% CI: 0.88 to 1.37, I2 = 18%, 5 trials). Adverse events may increase (RR 1.13, 95% CI 1.04 to 1.23, I² = 33%, 5 trials). No trial assessed unstable angina. TNF inhibitors The evidence is very uncertain about the effects of the intervention on all-cause mortality (RR 1.78, 95% CI 0.63 to 4.99, I² = 10%, 3 trials), myocardial infarction (RR 2.61, 95% CI 0.11 to 62.26, 1 trial), stroke (RR 0.46, 95% CI 0.08 to 2.80, I² = 0%; 3 trials), heart failure (RR 0.85, 95% CI 0.06 to 12.76, 1 trial). Adverse events may increase (RR 1.13, 95% CI 1.01 to 1.25, I² = 51%, 13 trials). No trial assessed unstable angina or PVD. Secondary prevention: IL-1 RAs The evidence is very uncertain about the effects of the intervention on all-cause mortality (RR 0.94, 95% CI 0.84 to 1.06, I² = 0%, 8 trials), unstable angina (RR 0.88, 95% CI 0.65 to 1.19, I² = 0%, 3 trials), PVD (RR 0.85, 95% CI 0.19 to 3.73, I² = 38%, 3 trials), stroke (RR 0.94, 95% CI 0.74 to 1.2, I² = 0%; 7 trials), heart failure (RR 0.91, 95% 0.5 to 1.65, I² = 0%; 7 trials), or adverse events (RR 0.92, 95% CI 0.78 to 1.09, I² = 3%, 4 trials). There may be little to no difference between the groups in myocardial infarction (RR 0.88, 95% CI 0.0.75 to 1.04, I² = 0%, 6 trials). IL6-RAs The evidence is very uncertain about the effects of the intervention on all-cause mortality (RR 1.09, 95% CI 0.61 to 1.96, I² = 0%, 2 trials), myocardial infarction (RR 0.46, 95% CI 0.07 to 3.04, I² = 45%, 3 trials), unstable angina (RR 0.33, 95% CI 0.01 to 8.02, 1 trial), stroke (RR 1.03, 95% CI 0.07 to 16.25, 1 trial), adverse events (RR 0.89, 95% CI 0.76 to 1.05, I² = 0%, 2 trials), or any infection (rate ratio 0.66, 95% CI 0.32 to 1.36, I² = 0%, 4 trials). No trial assessed PVD or heart failure. TNF inhibitors The evidence is very uncertain about the effect of the intervention on all-cause mortality (RR 1.16, 95% CI 0.69 to 1.95, I² = 47%, 5 trials), heart failure (RR 0.92, 95% 0.75 to 1.14, I² = 0%, 4 trials), or adverse events (RR 1.15, 95% CI 0.84 to 1.56, I² = 32%, 2 trials). No trial assessed myocardial infarction, unstable angina, PVD or stroke. Adverse events may be underestimated and benefits inflated due to inadequate reporting. AUTHORS' CONCLUSIONS This Cochrane review assessed the benefits and harms of using interleukin-receptor antagonists and tumour necrosis factor inhibitors for primary and secondary prevention of atherosclerotic diseases compared with placebo or usual care. However, the evidence for the predetermined outcomes was deemed low or very low certainty, so there is still a need to determine whether these interventions provide clinical benefits or cause harm from this perspective. In summary, the different biases and imprecision in the included studies limit their external validity and represent a limitation to determining the effectiveness of the intervention for both primary and secondary prevention of ACVD.
Collapse
Key Words
- humans
- angina, unstable
- angina, unstable/mortality
- angina, unstable/prevention & control
- antibodies, monoclonal, humanized
- antibodies, monoclonal, humanized/administration & dosage
- antibodies, monoclonal, humanized/adverse effects
- atherosclerosis
- atherosclerosis/mortality
- atherosclerosis/prevention & control
- bias
- cause of death
- myocardial infarction
- myocardial infarction/mortality
- myocardial infarction/prevention & control
- primary prevention
- primary prevention/methods
- randomized controlled trials as topic
- receptors, interleukin-1
- receptors, interleukin-1/antagonists & inhibitors
- secondary prevention
- secondary prevention/methods
- tumor necrosis factor-alpha
- tumor necrosis factor-alpha/antagonists & inhibitors
Collapse
Affiliation(s)
- Arturo J Martí-Carvajal
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Quito, Ecuador
- Facultad de Medicina (Centro Cochrane Madrid), Universidad Francisco de Vitoria, Madrid, Spain
- Cátedra Rectoral de Medicina Basada en la Evidencia, Universidad de Carabobo, Valencia , Venezuela
| | - Mario A Gemmato-Valecillos
- Icahn School of Medicine at Mount Sinai/ NYCHH Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, New York 11373, USA
| | | | - Mark Dayer
- Cardiovascular Research Institute, Mater Private Network, Dublin, Ireland
- Faculty of Health, University of Plymouth, Plymouth, UK
| | | | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Palacky University, Faculty of Medicine and Dentistry, Olomouc, Czech Republic
| | - Juan Marcos Parise Vasco
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Quito, Ecuador
| | - Ricardo J Riera Lizardo
- Cátedra Rectoral de Medicina Basada en la Evidencia, Universidad de Carabobo, Valencia, Venezuela
| | - Susana Nicola
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Quito, Ecuador
| | | | - Andrea Correa-Pérez
- Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
- Hospital Pharmacy and Medical Devices Department, Hospital Central de la Defensa "Gómez Ulla" CSVE, Madrid, Spain
| |
Collapse
|
4
|
Gordon S, Roberti A, Kaufmann SHE. Mononuclear Phagocytes, Cellular Immunity, and Nobel Prizes: A Historic Perspective. Cells 2024; 13:1378. [PMID: 39195266 PMCID: PMC11352343 DOI: 10.3390/cells13161378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The mononuclear phagocyte system includes monocytes, macrophages, some dendritic cells, and multinuclear giant cells. These cell populations display marked heterogeneity depending on their differentiation from embryonic and bone marrow hematopoietic progenitors, tissue location, and activation. They contribute to tissue homeostasis by interacting with local and systemic immune and non-immune cells through trophic, clearance, and cytocidal functions. During evolution, they contributed to the innate host defense before effector mechanisms of specific adaptive immunity emerged. Mouse macrophages appear at mid-gestation and are distributed throughout the embryo to facilitate organogenesis and clear cells undergoing programmed cell death. Yolk sac, AGM, and fetal liver-derived tissue-resident macrophages persist throughout postnatal and adult life, supplemented by bone marrow-derived blood monocytes, as required after injury and infection. Nobel awards to Elie Metchnikoff and Paul Ehrlich in 1908 drew attention to cellular phagocytic and humoral immunity, respectively. In 2011, prizes were awarded to Jules Hoffmann and Bruce Beutler for contributions to innate immunity and to Ralph Steinman for the discovery of dendritic cells and their role in antigen presentation to T lymphocytes. We trace milestones in the history of mononuclear phagocyte research from the perspective of Nobel awards bearing directly and indirectly on their role in cellular immunity.
Collapse
Affiliation(s)
- Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Annabell Roberti
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany;
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
5
|
Chen J, Xu F, Mo X, Cheng Y, Wang L, Yang H, Li J, Zhang S, Zhang S, Li N, Cao Y. Exploratory Study of Differentially Expressed Genes of Peripheral Blood Monocytes in Patients with Carotid Atherosclerosis. Comb Chem High Throughput Screen 2024; 27:1344-1357. [PMID: 37608666 DOI: 10.2174/1386207326666230822122045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND The abundance of circulating monocytes is closely associated with the development of atherosclerosis in humans. OBJECTIVE This study aimed to further research into diagnostic biomarkers and targeted treatment of carotid atherosclerosis (CAS). METHODS We performed transcriptomics analysis through weighted gene co-expression network analysis (WGCNA) of monocytes from patients in public databases with and without CAS. Differentially expressed genes (DEGs) were screened by R package limma. Diagnostic molecules were derived by the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) algorithms. NetworkAnalyst, miRWalk, and Star- Base databases assisted in the construction of diagnostic molecule regulatory networks. The Drug- Bank database predicted drugs targeting the diagnostic molecules. RT-PCR tested expression profiles. RESULTS From 14,369 hub genes and 61 DEGs, six differentially expressed monocyte-related hub genes were significantly associated with immune cells, immune responses, monocytes, and lipid metabolism. LASSO and SVM-RFE yielded five genes for CAS prediction. RT-PCR of these genes showed HMGB1 was upregulated, and CCL3, CCL3L1, CCL4, and DUSP1 were downregulated in CAS versus controls. Then, we constructed and visualized the regulatory networks of 9 transcription factors (TFs), which significantly related to 5 diagnostic molecules. About 11 miRNAs, 19 lncRNAs, and 39 edges centered on four diagnostic molecules (CCL3, CCL4, DUSP1, and HMGB1) were constructed and displayed. Eleven potential drugs were identified, including ibrutinib, CTI-01, roflumilast etc. Conclusion: A set of five biomarkers were identified for the diagnosis of CAS and for the study of potential therapeutic targets.
Collapse
Affiliation(s)
- Juhai Chen
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
- Internal Medicine Department Three Ward, Guiyang Public Health Clinical Center, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Fengyan Xu
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Xiangang Mo
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Yiju Cheng
- The Department of Respiratory and Critical Medicine, Guiyang Public Health Clinical Center, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Lan Wang
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Hui Yang
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Jiajing Li
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Shiyue Zhang
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Shuping Zhang
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Nannan Li
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Yang Cao
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| |
Collapse
|
6
|
Agarwal H, Tinsley B, Sarecha AK, Ozcan L. Rap1 in the Context of PCSK9, Atherosclerosis, and Diabetes. Curr Atheroscler Rep 2023; 25:931-937. [PMID: 37979063 DOI: 10.1007/s11883-023-01162-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW The focus of this article is to highlight the importance of the small GTPase, Ras-associated protein 1 (Rap1), in proprotein convertase subtilisin/kexin type 9 (PCSK9) regulation and atherosclerosis and type 2 diabetes etiology and discuss the potential therapeutic implications of targeting Rap1 in these disease areas. REVIEW FINDINGS Cardiometabolic disease characterized by obesity, glucose intolerance, dyslipidemia, and atherosclerotic cardiovascular disease remain an important cause of mortality. Evidence using mouse models of obesity and insulin resistance indicates that Rap1 deficiency increases proatherogenic PCSK9 and low-density lipoprotein cholesterol levels and predisposes these mice to develop obesity- and statin-induced hyperglycemia, which highlights Rap1's role in cardiometabolic dysfunction. Rap1 may also contribute to cardiovascular disease through its effects on vascular wall cells involved in the atherosclerosis progression. Rap1 activation, specifically in the liver, could be beneficial in the prevention of cardiometabolic perturbations, including type 2 diabetes, hypercholesterolemia, and atherosclerosis.
Collapse
Affiliation(s)
- Heena Agarwal
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Brea Tinsley
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Amesh K Sarecha
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Lale Ozcan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Vafadar A, Vosough P, Jahromi HK, Tajbakhsh A, Savardshtaki A, Butler AE, Sahebkar A. The role of efferocytosis and transplant rejection: Strategies in promoting transplantation tolerance using apoptotic cell therapy and/or synthetic particles. Cell Biochem Funct 2023; 41:959-977. [PMID: 37787641 DOI: 10.1002/cbf.3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
Recently, efforts have been made to recognize the precise reason(s) for transplant failure and the process of rejection utilizing the molecular signature. Most transplant recipients do not appreciate the unknown length of survival of allogeneic grafts with the existing standard of care. Two noteworthy immunological pathways occur during allogeneic transplant rejection. A nonspecific innate immune response predominates in the early stages of the immune reaction, and allogeneic antigens initiate a donor-specific adaptive reaction. Though the adaptive response is the major cause of allograft rejection, earlier pro-inflammatory responses that are part of the innate immune response are also regarded as significant in graft loss. The onset of the innate and adaptive immune response causes chronic and acute transplant rejection. Currently employed immunosuppressive medications have shown little or no influence on chronic rejection and, as a result, on overall long-term transplant survival. Furthermore, long-term pharmaceutical immunosuppression is associated with side effects, toxicity, and an increased risk of developing diseases, both infectious and metabolic. As a result, there is a need for the development of innovative donor-specific immunosuppressive medications to regulate the allorecognition pathways that induce graft loss and to reduce the side effects of immunosuppression. Efferocytosis is an immunomodulatory mechanism with fast and efficient clearance of apoptotic cells (ACs). As such, AC therapy strategies have been suggested to limit transplant-related sequelae. Efferocytosis-based medicines/treatments can also decrease the use of immunosuppressive drugs and have no detrimental side effects. Thus, this review aims to investigate the impact of efferocytosis on transplant rejection/tolerance and identify approaches using AC clearance to increase transplant viability.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Kargar Jahromi
- Research Center for Non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Tajbakhsh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardshtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland - Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Luan J, Ji X, Liu L. PPARγ in Atherosclerotic Endothelial Dysfunction: Regulatory Compounds and PTMs. Int J Mol Sci 2023; 24:14494. [PMID: 37833942 PMCID: PMC10572723 DOI: 10.3390/ijms241914494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The formation of atherosclerotic plaques is one of the main sources of cardiovascular disease. In addition to known risk factors such as dyslipidemia, diabetes, obesity, and hypertension, endothelial dysfunction has been shown to play a key role in the formation and progression of atherosclerosis. Peroxisome proliferator-activated receptor-gamma (PPARγ), a transcription factor belonging to the steroid superfamily, is expressed in the aorta and plays a critical role in protecting endothelial function. It thereby serves as a target for treating both diabetes and atherosclerosis. Although many studies have examined endothelial cell disorders in atherosclerosis, the role of PPARγ in endothelial dysfunction is still not well understood. In this review, we summarize the possible mechanisms of action behind PPARγ regulatory compounds and post-translational modifications (PTMs) of PPARγ in the control of endothelial function. We also explore the potential use of endothelial PPARγ-targeted agents in the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
| | | | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200082, China
| |
Collapse
|
9
|
Park JY, Park HM, Kim S, Jeon KB, Lim CM, Hong JT, Yoon DY. Human IL-32θA94V mutant attenuates monocyte-endothelial adhesion by suppressing the expression of ICAM-1 and VCAM-1 via binding to cell surface receptor integrin αVβ3 and αVβ6 in TNF-α-stimulated HUVECs. Front Immunol 2023; 14:1160301. [PMID: 37228610 PMCID: PMC10203490 DOI: 10.3389/fimmu.2023.1160301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Interleukin-32 (IL-32), first reported in 2005, and its isoforms have been the subject of numerous studies investigating their functions in virus infection, cancer, and inflammation. IL-32θ, one of the IL-32 isoforms, has been shown to modulate cancer development and inflammatory responses. A recent study identified an IL-32θ mutant with a cytosine to thymine replacement at position 281 in breast cancer tissues. It means that alanine was also replaced to valine at position 94 in amino acid sequence (A94V). In this study, we investigated the cell surface receptors of IL-32θA94V and evaluated their effect on human umbilical vein endothelial cells (HUVECs). Recombinant human IL-32θA94V was expressed, isolated, and purified using Ni-NTA and IL-32 mAb (KU32-52)-coupled agarose columns. We observed that IL-32θA94V could bind to the integrins αVβ3 and αVβ6, suggesting that integrins act as cell surface receptors for IL-32θA94V. IL-32θA94V significantly attenuated monocyte-endothelial adhesion by inhibiting the expression of Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor (TNF)-α-stimulated HUVECs. IL-32θA94V also reduced the TNF-α-induced phosphorylation of protein kinase B (AKT) and c-jun N-terminal kinases (JNK) by inhibiting phosphorylation of focal adhesion kinase (FAK). Additionally, IL-32θA94V regulated the nuclear translocation of nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which are involved in ICAM-1 and VCAM-1 expression. Monocyte-endothelial adhesion mediated by ICAM-1 and VCAM-1 is an important early step in atherosclerosis, which is a major cause of cardiovascular disease. Our findings suggest that IL-32θA94V binds to the cell surface receptors, integrins αVβ3 and αVβ6, and attenuates monocyte-endothelial adhesion by suppressing the expression of ICAM-1 and VCAM-1 in TNF-α-stimulated HUVECs. These results demonstrate that IL-32θA94V can act as an anti-inflammatory cytokine in a chronic inflammatory disease such as atherosclerosis.
Collapse
Affiliation(s)
- Jae-Young Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Seonhwa Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Kyeong-Bae Jeon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Chae-Min Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Benitez S, Puig N, Rives J, Solé A, Sánchez-Quesada JL. Can Electronegative LDL Act as a Multienzymatic Complex? Int J Mol Sci 2023; 24:ijms24087074. [PMID: 37108253 PMCID: PMC10138509 DOI: 10.3390/ijms24087074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Electronegative LDL (LDL(-)) is a minor form of LDL present in blood for which proportions are increased in pathologies with increased cardiovascular risk. In vitro studies have shown that LDL(-) presents pro-atherogenic properties, including a high susceptibility to aggregation, the ability to induce inflammation and apoptosis, and increased binding to arterial proteoglycans; however, it also shows some anti-atherogenic properties, which suggest a role in controlling the atherosclerotic process. One of the distinctive features of LDL(-) is that it has enzymatic activities with the ability to degrade different lipids. For example, LDL(-) transports platelet-activating factor acetylhydrolase (PAF-AH), which degrades oxidized phospholipids. In addition, two other enzymatic activities are exhibited by LDL(-). The first is type C phospholipase activity, which degrades both lysophosphatidylcholine (LysoPLC-like activity) and sphingomyelin (SMase-like activity). The second is ceramidase activity (CDase-like). Based on the complementarity of the products and substrates of these different activities, this review speculates on the possibility that LDL(-) may act as a sort of multienzymatic complex in which these enzymatic activities exert a concerted action. We hypothesize that LysoPLC/SMase and CDase activities could be generated by conformational changes in apoB-100 and that both activities occur in proximity to PAF-AH, making it feasible to discern a coordinated action among them.
Collapse
Affiliation(s)
- Sonia Benitez
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER of Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Núria Puig
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - José Rives
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Arnau Solé
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- CIBER of Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
11
|
Ho D, Lynd TO, Jun C, Shin J, Millican RC, Estep BK, Chen J, Zhang X, Brott BC, Kim DW, Sherwood JA, Hwang PTJ. MiR-146a encapsulated liposomes reduce vascular inflammatory responses through decrease of ICAM-1 expression, macrophage activation, and foam cell formation. NANOSCALE 2023; 15:3461-3474. [PMID: 36723042 DOI: 10.1039/d2nr03280e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Vascular insults can create an inflammatory cascade involving endothelial cell, smooth muscle cell, and macrophage activation which can eventually lead to vascular disease such as atherosclerosis. Several studies have identified microRNA 146a's (miR-146a) anti-inflammatory potential based on its role in regulating the nuclear factor kappa beta (NF-κβ) pathway. Therefore, in this study, we introduced exogenous miR-146a encapsulated by liposomes to lipopolysaccharide (LPS) stimulated vascular cells and macrophages to reduce inflammatory responses. First, the miR-146a encapsulated liposomes showed uniform size (radius 96.4 ± 4.22 nm) and round shape, long term stability (at least two months), high encapsulation efficiency (69.73 ± 0.07%), and were well transfected to human aortic endothelial cells (HAECs), human aortic smooth muscle cells (SMCs), and human differentiated monocytes (U937 cells). In addition, we demonstrated that miR-146a encapsulated liposomes reduced vascular inflammation responses in HAECs and SMCs through inhibition of ICAM-1 expression and decreased monocyte adhesion. In macrophages, miR-146a liposome treatment demonstrated decreased production of proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), as well as reduced oxidized low-density lipoprotein (ox-LDL) uptake and foam cell formation. Thus, based on these results, miR-146a encapsulated liposomes may be promising for reducing vascular inflammation by targeting its multiple associated mediators.
Collapse
Affiliation(s)
- Donald Ho
- Department of Pediatric Dentistry, University of Alabama at Birmingham, AL, 35294, USA
| | - Tyler O Lynd
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA
| | - Claire Jun
- School of Arts and Sciences, University of Pennsylvania, PA, 19104, USA
| | - Juhee Shin
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | | | - Benjamin K Estep
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA
| | - Jun Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA
| | - Xixi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA
| | - Brigitta C Brott
- Endomimetics, LLC, Birmingham, AL, 35242, USA.
- Department of Medicine and Division of Cardiovascular Disease, University of Alabama at Birmingham, AL, 35233, USA
| | - Dong Woon Kim
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | | | - Patrick T J Hwang
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA
- Endomimetics, LLC, Birmingham, AL, 35242, USA.
| |
Collapse
|
12
|
CD14 +-Monocytes Exposed to Apolipoprotein CIII Express Tissue Factor. Int J Mol Sci 2023; 24:ijms24032223. [PMID: 36768547 PMCID: PMC9916694 DOI: 10.3390/ijms24032223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Apolipoprotein CIII (ApoCIII) represents a key regulator of plasma lipid metabolism and a recognized risk factor for atherosclerosis and cardiovascular diseases. Beyond the regulation of lipoprotein trafficking, ApoCIII is also involved in endothelial dysfunction and monocyte recruitment related to atherothrombosis. With tissue factor (TF) being the primary initiator of the blood coagulation cascade, we hypothesized that ApoCIII-treated monocytes could express it. Hence, human CD14+-monocytes and autologous neutrophils were incubated with ApoCIII and sera from human subjects containing previously measured ApoCIII amounts. By RT-qPCR and ELISA, CD14+-monocytes, but not neutrophils, were found to show increased mRNA expression and production of TNFα, IL-1β and IL-6 as well as TF mRNA once exposed to ultra-purified ApoCIII. By flow cytometry, CD14+-monocytes were found to rapidly express TF on their cell surface membrane when incubated with either ApoCIII or sera with known concentrations of ApoCIII. Finally, preincubation with specific ApoCIII-neutralizing antibodies significantly reduced the ability of most sera with known concentrations of ApoCIII to upregulate TF protein, other than partially inhibiting cytokine release, in CD14+-monocytes. In sum, herein we demonstrate that ApoCIII activates CD14+-monocytes to express TF. The data identify a potential mechanism which links circulating apolipoproteins with inflammation and atherothrombosis-related processes underlying cardiovascular risk.
Collapse
|
13
|
Abstract
Systemic inflammation has been suggested to have a pivotal role in atherothrombosis, but the factors that trigger systemic inflammation have not been fully elucidated. Lipopolysaccharide (LPS) is a component of the membrane of Gram-negative bacteria present in the gut that can translocate into the systemic circulation, causing non-septic, low-grade endotoxaemia. Gut dysbiosis is a major determinant of low-grade endotoxaemia via dysfunction of the intestinal barrier scaffold, which is a prerequisite for LPS translocation into the systemic circulation. Experimental studies have demonstrated that LPS is present in atherosclerotic arteries but not in normal arteries. In atherosclerotic plaques, LPS promotes a pro-inflammatory status that can lead to plaque instability and thrombus formation. Low-grade endotoxaemia affects several cell types, including leukocytes, platelets and endothelial cells, leading to inflammation and clot formation. Low-grade endotoxaemia has been described in patients at risk of or with overt cardiovascular disease, in whom low-grade endotoxaemia was associated with atherosclerotic burden and its clinical sequelae. In this Review, we describe the mechanisms favouring the development of low-grade endotoxaemia, focusing on gut dysbiosis and changes in gut permeability; the plausible biological mechanisms linking low-grade endotoxaemia and atherothrombosis; the clinical studies suggesting that low-grade endotoxaemia is a risk factor for cardiovascular events; and the potential therapeutic tools to improve gut permeability and eventually eliminate low-grade endotoxaemia.
Collapse
|
14
|
Taylor EN, Huang N, Lin S, Mortazavi F, Wedeen VJ, Siamwala JH, Gilbert RJ, Hamilton JA. Lipid and smooth muscle architectural pathology in the rabbit atherosclerotic vessel wall using Q-space cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2022; 24:74. [PMID: 36544161 PMCID: PMC9773609 DOI: 10.1186/s12968-022-00897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Atherosclerosis is an arterial vessel wall disease characterized by slow, progressive lipid accumulation, smooth muscle disorganization, and inflammatory infiltration. Atherosclerosis often remains subclinical until extensive inflammatory injury promotes vulnerability of the atherosclerotic plaque to rupture with luminal thrombosis, which can cause the acute event of myocardial infarction or stroke. Current bioimaging techniques are unable to capture the pathognomonic distribution of cellular elements of the plaque and thus cannot accurately define its structural disorganization. METHODS We applied cardiovascular magnetic resonance spectroscopy (CMRS) and diffusion weighted CMR (DWI) with generalized Q-space imaging (GQI) analysis to architecturally define features of atheroma and correlated these to the microscopic distribution of vascular smooth muscle cells (SMC), immune cells, extracellular matrix (ECM) fibers, thrombus, and cholesteryl esters (CE). We compared rabbits with normal chow diet and cholesterol-fed rabbits with endothelial balloon injury, which accelerates atherosclerosis and produces advanced rupture-prone plaques, in a well-validated rabbit model of human atherosclerosis. RESULTS Our methods revealed new structural properties of advanced atherosclerosis incorporating SMC and lipid distributions. GQI with tractography portrayed the locations of these components across the atherosclerotic vessel wall and differentiated multi-level organization of normal, pro-inflammatory cellular phenotypes, or thrombus. Moreover, the locations of CE were differentiated from cellular constituents by their higher restrictive diffusion properties, which permitted chemical confirmation of CE by high field voxel-guided CMRS. CONCLUSIONS GQI with tractography is a new method for atherosclerosis imaging that defines a pathological architectural signature for the atheromatous plaque composed of distributed SMC, ECM, inflammatory cells, and thrombus and lipid. This provides a detailed transmural map of normal and inflamed vessel walls in the setting of atherosclerosis that has not been previously achieved using traditional CMR techniques. Although this is an ex-vivo study, detection of micro and mesoscale level vascular destabilization as enabled by GQI with tractography could increase the accuracy of diagnosis and assessment of treatment outcomes in individuals with atherosclerosis.
Collapse
Affiliation(s)
- Erik N Taylor
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
- Department of Radiology, UNM School of Medicine, The University of New Mexico, Albuquerque, NM, USA
| | - Nasi Huang
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Sunni Lin
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Farzad Mortazavi
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Van J Wedeen
- AA Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jamila H Siamwala
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Richard J Gilbert
- Research Service, Providence VA Medical Center and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - James A Hamilton
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
15
|
Singh B, Li K, Cui K, Peng Q, Cowan DB, Wang DZ, Chen K, Chen H. Defective efferocytosis of vascular cells in heart disease. Front Cardiovasc Med 2022; 9:1031293. [PMID: 36247464 PMCID: PMC9561431 DOI: 10.3389/fcvm.2022.1031293] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
The efficient phagocytic clearance of dying cells and apoptotic cells is one of the processes that is essential for the maintenance of physiologic tissue function and homeostasis, which is termed "efferocytosis." Under normal conditions, "find me" and "eat me" signals are released by apoptotic cells to stimulate the engulfment and efferocytosis of apoptotic cells. In contrast, abnormal efferocytosis is related to chronic and non-resolving inflammatory diseases such as atherosclerosis. In the initial steps of atherosclerotic lesion development, monocyte-derived macrophages display efficient efferocytosis that restricts plaque progression; however, this capacity is reduced in more advanced lesions. Macrophage reprogramming as a result of the accumulation of apoptotic cells and augmented inflammation accounts for this diminishment of efferocytosis. Furthermore, defective efferocytosis plays an important role in necrotic core formation, which triggers plaque rupture and acute thrombotic cardiovascular events. Recent publications have focused on the essential role of macrophage efferocytosis in cardiac pathophysiology and have pointed toward new therapeutic strategies to modulate macrophage efferocytosis for cardiac tissue repair. In this review, we discuss the molecular and cellular mechanisms that regulate efferocytosis in vascular cells, including macrophages and other phagocytic cells and detail how efferocytosis-related molecules contribute to the maintenance of vascular hemostasis and how defective efferocytosis leads to the formation and progression of atherosclerotic plaques.
Collapse
Affiliation(s)
- Bandana Singh
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Kathryn Li
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Qianman Peng
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Douglas B. Cowan
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Da-Zhi Wang
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, United States
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
16
|
Apolipoprotein E in Cardiometabolic and Neurological Health and Diseases. Int J Mol Sci 2022; 23:ijms23179892. [PMID: 36077289 PMCID: PMC9456500 DOI: 10.3390/ijms23179892] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
A preponderance of evidence obtained from genetically modified mice and human population studies reveals the association of apolipoprotein E (apoE) deficiency and polymorphisms with pathogenesis of numerous chronic diseases, including atherosclerosis, obesity/diabetes, and Alzheimer’s disease. The human APOE gene is polymorphic with three major alleles, ε2, ε3 and ε4, encoding apoE2, apoE3, and apoE4, respectively. The APOE gene is expressed in many cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, and in the brain. ApoE is present in subclasses of plasma lipoproteins, and it mediates the clearance of atherogenic lipoproteins from plasma circulation via its interaction with LDL receptor family proteins and heparan sulfate proteoglycans. Extracellular apoE also interacts with cell surface receptors and confers signaling events for cell regulation, while apoE expressed endogenously in various cell types regulates cell functions via autocrine and paracrine mechanisms. This review article focuses on lipoprotein transport-dependent and -independent mechanisms by which apoE deficiency or polymorphisms contribute to cardiovascular disease, metabolic disease, and neurological disorders.
Collapse
|
17
|
Howe KL, Cybulsky M, Fish JE. The Endothelium as a Hub for Cellular Communication in Atherogenesis: Is There Directionality to the Message? Front Cardiovasc Med 2022; 9:888390. [PMID: 35498030 PMCID: PMC9051343 DOI: 10.3389/fcvm.2022.888390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells line every blood vessel and thereby serve as an interface between the blood and the vessel wall. They have critical functions for maintaining homeostasis and orchestrating vascular pathogenesis. Atherosclerosis is a chronic disease where cholesterol and inflammatory cells accumulate in the artery wall below the endothelial layer and ultimately form plaques that can either progress to occlude the lumen or rupture with thromboembolic consequences - common outcomes being myocardial infarction and stroke. Cellular communication lies at the core of this process. In this review, we discuss traditional (e.g., cytokines, chemokines, nitric oxide) and novel (e.g., extracellular vesicles) modes of endothelial communication with other endothelial cells as well as circulating and vessel wall cells, including monocytes, macrophages, neutrophils, vascular smooth muscle cells and other immune cells, in the context of atherosclerosis. More recently, the growing appreciation of endothelial cell plasticity during atherogenesis suggests that communication strategies are not static. Here, emerging data on transcriptomics in cells during the development of atherosclerosis are considered in the context of how this might inform altered cell-cell communication. Given the unique position of the endothelium as a boundary layer that is activated in regions overlying vascular inflammation and atherosclerotic plaque, there is a potential to exploit the unique features of this group of cells to deliver therapeutics that target the cellular crosstalk at the core of atherosclerotic disease. Data are discussed supporting this concept, as well as inherent pitfalls. Finally, we briefly review the literature for other regions of the body (e.g., gut epithelium) where cells similarly exist as a boundary layer but provide discrete messages to each compartment to govern homeostasis and disease. In this light, the potential for endothelial cells to communicate in a directional manner is explored, along with the implications of this concept - from fundamental experimental design to biomarker potential and therapeutic targets.
Collapse
Affiliation(s)
- Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Myron Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Yin L, Wang L, Shi Z, Ji X, Liu L. The Role of Peroxisome Proliferator-Activated Receptor Gamma and Atherosclerosis: Post-translational Modification and Selective Modulators. Front Physiol 2022; 13:826811. [PMID: 35309069 PMCID: PMC8924581 DOI: 10.3389/fphys.2022.826811] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is the hallmark of cardiovascular disease (CVD) which is a leading cause of death in type 2 diabetes patients, and glycemic control is not beneficial in reducing the potential risk of CVD. Clinically, it was shown that Thiazolidinediones (TZDs), a class of peroxisome proliferator-activated receptor gamma (PPARγ) agonists, are insulin sensitizers with reducing risk of CVD, while the potential adverse effects, such as weight gain, fluid retention, bone loss, and cardiovascular risk, restricts its use in diabetic treatment. PPARγ, a ligand-activated nuclear receptor, has shown to play a crucial role in anti-atherosclerosis by promoting cholesterol efflux, repressing monocytes infiltrating into the vascular intima under endothelial layer, their transformation into macrophages, and inhibiting vascular smooth muscle cells proliferation as well as migration. The selective activation of subsets of PPARγ targets, such as through PPARγ post-translational modification, is thought to improve the safety profile of PPARγ agonists. Here, this review focuses on the significance of PPARγ activity regulation (selective activation and post-translational modification) in the occurrence, development and treatment of atherosclerosis, and further clarifies the value of PPARγ as a safe therapeutic target for anti-atherosclerosis especially in diabetic treatment.
Collapse
Affiliation(s)
- Liqin Yin
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lihui Wang
- Department of Medical Imaging, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University, Shanghai, China
| | - Zunhan Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaohui Ji
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Longhua Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Longhua Liu,
| |
Collapse
|
19
|
Ouyang S, Zhang O, Xiang H, Yao YH, Fang ZY. Curcumin improves atherosclerosis by inhibiting the epigenetic repression of lncRNA MIAT to miR-124. Vascular 2022; 30:1213-1223. [PMID: 34989253 DOI: 10.1177/17085381211040974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives: Atherosclerosis is a dominant cardiovascular disease. Curcumin has protective effect on atherosclerosis. However, the mechanisms remain to be explored. Methods: Atherosclerosis was induced by feeding mice with high-fat diet (HFD) and ox-low-density lipoprotein (LDL)-induced human umbilical vein endothelial cells (HUVECs) were structured. Oil Red O staining was used to evaluate the plaques in the artery. Quantitative real-time PCR (qRT-PCR) was conducted to detect the level of myocardial infarction associated transcript (MIAT), miR-124, and enhancer of zeste homolog 2 (EZH2). We performed western blotting and enzyme linked immunosorbent assay to examine the expression of EZH2 and cytokines including IL-1β, TNFα, IL-6, and IL-8, respectively. RNA immunoprecipitation and chromatin immunoprecipitation (ChIP) were used to validate the interaction between myocardial infarction associated transcript and EZH2. Flow cytometry and CCK-8 assay were used to examine cell apoptosis and proliferation, respectively. Results: Curcumin suppressed inflammation in atherosclerosis mouse model and ox-LDL-induced cell model. MIAT overexpression and miR-124 inhibition relieved the anti-inflammation effect of curcumin in ox-LDL-induced cell. MIAT regulated miR-124 by interacting with EZH2. Curcumin relieved ox-LDL-induced cell inflammation via regulating MIAT/miR-124 pathway. Conclusion: MIAT/miR-124 axis mediated the effect of curcumin on atherosclerosis and altered cell apoptosis and proliferation, both in vivo and in vitro. These data further support the application of curcumin in control of atherosclerosis advancement.
Collapse
Affiliation(s)
- Shang Ouyang
- Department of Interventional Vascular Surgery, People's Hospital of Hunan Province, Changsha, China
| | - Ou Zhang
- Department of Spinal Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha, China
| | - Hua Xiang
- Department of Interventional Vascular Surgery, People's Hospital of Hunan Province, Changsha, China
| | - Yuan-Hui Yao
- Department of Interventional Vascular Surgery, People's Hospital of Hunan Province, Changsha, China
| | - Zhi-Yong Fang
- Department of Interventional Vascular Surgery, People's Hospital of Hunan Province, Changsha, China
| |
Collapse
|
20
|
Ghanbarpour Rahdari F, Shahanipour K, Monajemi R, Adibnejad M. Comparison of the antisclerotic effect of hydroalcoholic extracts of Ocimum basilicum and Otostegia persica with quinacrine by inhibition of phospholipase A 2 in male Wistar rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:175-184. [PMID: 35614882 PMCID: PMC9090320 DOI: 10.22038/ajp.2021.19075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/06/2022]
Abstract
Objective Hypercholesterolemia is now considered a major risk factor for development of atherosclerosis. The phospholipase A2 superfamily of enzymes has causal involvement in atherosclerosis. Atherosclerosis is one of the main causes of mortality in developed countries and in some developing countries such as Iran. The present study was designed to investigate the antihypercholesterolemic and antiatherogenic potentiality of ethanolic extracts of Ocimum basilicum (O. basilicum) and Otostegia persica (O. persica) in high-fat diet-induced hypercholesterolemic rats. Materials and Methods In this study, 35 male rats were randomly divided into 1 normal diet and 4 high-fat diet groups. After two months of high-fat diet, measurement of cholesterol and LDL showed a significant difference between the groups. The 5 groups were as follows: Healthy rats receiving physiological serum, hypercholesterolemic rats without any treatment, hypercholesterolemic rats receiving quinacrine (30 mg/kg), hypercholesterolemic rats treated with extract of O. persica (300 mg/kg), and hypercholesterolemic rats treated with O. basilicum extract (300 mg/kg). Treatment was carried out for 40 days and finally, blood samples were collected and examined for cholesterol, triglyceride, high density lipoprotein, low density lipoprotein, C-reactive protein, phospholipase A2 , and interleukin-6 levels. Results Treatment of hypercholesterolemic rats with ethanolic extracts of O. persica and O. basilicum did not cause significant changes in cholesterol, triglyceride and LDL or HDL levels. They caused a significant decrease in the levels of inflammatory factors of IL-6, PLA2 and CRP (p <0.05). Conclusion Ethanolic extracts of O. persica and O. basilicum have antisclerotic effects by reducing the inflammatory factors and PLA2 activity.
Collapse
Affiliation(s)
| | - Kahin Shahanipour
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran,Corresponding Author: Tel: +98-03137420140, Fax: +98-03137420136,
| | - Ramesh Monajemi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Adibnejad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
21
|
Zhang Y, Wang Y, Ding J, Liu P. Efferocytosis in multisystem diseases (Review). Mol Med Rep 2022; 25:13. [PMID: 34779503 PMCID: PMC8600411 DOI: 10.3892/mmr.2021.12529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
Efferocytosis, the phagocytosis of apoptotic cells performed by both specialized phagocytes (such as macrophages) and non‑specialized phagocytes (such as epithelial cells), is involved in tissue repair and homeostasis. Effective efferocytosis prevents secondary necrosis, terminates inflammatory responses, promotes self‑tolerance and activates pro‑resolving pathways to maintain homeostasis. When efferocytosis is impaired, apoptotic cells that could not be cleared in time aggregate, resulting in the necrosis of apoptotic cells and release of pro‑inflammatory factors. In addition, defective efferocytosis inhibits the intracellular cholesterol reverse transportation pathways, which may lead to atherosclerosis, lung damage, non‑alcoholic fatty liver disease and neurodegenerative diseases. The uncleared apoptotic cells can also release autoantigens, which can cause autoimmune diseases. Cancer cells escape from phagocytosis via efferocytosis. Therefore, new treatment strategies for diseases related to defective efferocytosis are proposed. This review illustrated the mechanisms of efferocytosis in multisystem diseases and organismal homeostasis and the pathophysiological consequences of defective efferocytosis. Several drugs and treatments available to enhance efferocytosis are also mentioned in the review, serving as new evidence for clinical application.
Collapse
Affiliation(s)
- Yifan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jie Ding
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ping Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
22
|
Violi F, Nocella C, Loffredo L, Carnevale R, Pignatelli P. Interventional study with vitamin E in cardiovascular disease and meta-analysis. Free Radic Biol Med 2022; 178:26-41. [PMID: 34838937 DOI: 10.1016/j.freeradbiomed.2021.11.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is one of the major causes of morbidity and mortality and atherosclerosis is the common root to most of the CVD. Oxidative stress is one of the most important factors driving atherosclerosis and its complications. Thus, strategies for the prevention and treatment of cardiovascular events had oxidative changes as a potential target. Natural vitamin E consists of a family of eight different compounds, four tocopherols and four tocotrienols. All tocopherols and tocotrienols are potent antioxidants with lipoperoxyl radical-scavenging activities. In addition, α-tocopherol possesses also anti-inflammatory as well as anti-atherothrombotic effects by modulating platelet and clotting system. Experimental and in vitro studies described molecular and cellular signalling pathways regulated by vitamin E antithrombotic and antioxidant properties. While observational studies demonstrated an inverse association between vitamin E serum levels and CVD, interventional trials with vitamin supplements provided negative results. This review focus on the impact of vitamin E in the atherothrombotic process and describes the results of experimental and clinical studies with the caveats related to the interventional trials with vitamin E to prevent CVD.
Collapse
Affiliation(s)
- Francesco Violi
- Mediterranea Cardiocentro, Napoli, Italy; Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy.
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Roberto Carnevale
- Mediterranea Cardiocentro, Napoli, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100, Latina, Italy
| | - Pasquale Pignatelli
- Mediterranea Cardiocentro, Napoli, Italy; Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| |
Collapse
|
23
|
Mishra P, Beura S, Ghosh R, Modak R. Nutritional Epigenetics: How Metabolism Epigenetically Controls Cellular Physiology, Gene Expression and Disease. Subcell Biochem 2022; 100:239-267. [PMID: 36301497 DOI: 10.1007/978-3-031-07634-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The regulation of gene expression is a dynamic process that is influenced by both internal and external factors. Alteration in the epigenetic profile is a key mechanism in the regulation process. Epigenetic regulators, such as enzymes and proteins involved in posttranslational modification (PTM), use different cofactors and substrates derived from dietary sources. For example, glucose metabolism provides acetyl CoA, S-adenosylmethionine (SAM), α- ketoglutarate, uridine diphosphate (UDP)-glucose, adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD+), and fatty acid desaturase (FAD), which are utilized by chromatin-modifying enzymes in many intermediary metabolic pathways. Any alteration in the metabolic status of the cell results in the alteration of these metabolites, which causes dysregulation in the activity of chromatin regulators, resulting in the alteration of the epigenetic profile. Such long-term or repeated alteration of epigenetic profile can lead to several diseases, like cancer, insulin resistance and diabetes, cognitive impairment, neurodegenerative disease, and metabolic syndromes. Here we discuss the functions of key nutrients that contribute to epigenetic regulation and their role in pathophysiological conditions.
Collapse
Affiliation(s)
- Pragyan Mishra
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Shibangini Beura
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Ritu Ghosh
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Rahul Modak
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
24
|
Gil-Pulido J, Amézaga N, Jorgacevic I, Manthey HD, Rösch M, Brand T, Cidlinsky P, Schäfer S, Beilhack A, Saliba AE, Lorenz K, Boon L, Prinz I, Waisman A, Korn T, Cochain C, Zernecke A. Interleukin-23 receptor expressing γδ T cells locally promote early atherosclerotic lesion formation and plaque necrosis in mice. Cardiovasc Res 2021; 118:2932-2945. [PMID: 34897380 DOI: 10.1093/cvr/cvab359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS Atherosclerosis is a chronic inflammatory disease of the vessel wall controlled by local and systemic immune responses. The role of interleukin-23 receptor (IL-23R), expressed in adaptive immune cells (mainly T helper 17 cells) and γδ T cells, in atherosclerosis is only incompletely understood. Here we investigated the vascular cell types expressing IL-23R and addressed the function of IL-23R and γδ T cells in atherosclerosis. METHOD AND RESULTS IL-23R+ cells were frequently found in the aortic root in contrast to the aorta in low density lipoprotein receptor deficient IL-23R reporter mice (Ldlr-/-Il23rgfp/+), and mostly identified as γδ T cells that express IL-17 and GM-CSF. scRNA-seq confirmed γδ T cells as the main cell type expressing Il23r and Il17a in the aorta. Ldlr-/-Il23rgfp/gfp mice deficient in IL-23R showed a loss of IL-23R+ cells in the vasculature, and had reduced atherosclerotic lesion formation in the aortic root compared to Ldlr-/- controls after 6 weeks of high fat diet feeding. In contrast, Ldlr-/-Tcrδ-/- mice lacking all γδ T cells displayed unaltered early atherosclerotic lesion formation compared to Ldlr-/- mice. In both HFD-fed Ldlr-/-Il23rgfp/gfp and Ldlr-/-Tcrδ-/- mice a reduction in the plaque necrotic core area was noted as well as an expansion of splenic regulatory T cells. In vitro, exposure of bone marrow-derived macrophages to both IL-17A and GM-CSF induced cell necrosis, and necroptotic RIP3K and MLKL expression, as well as inflammatory mediators. CONCLUSIONS IL-23R+ γδ T cells are predominantly found in the aortic root rather than the aorta and promote early atherosclerotic lesion formation, plaque necrosis and inflammation at this site. Targeting IL-23R may thus be explored as a therapeutic approach to mitigate atherosclerotic lesion development. TRANSLATIONAL PERSPECTIVE The mechanisms and cell types contributing to early inflammation and lesion formation are incompletely understood. Here we demonstrate that the aortic root harbors a population of IL23R-dependent γδ T cells that can release IL-17 and GM-CSF, and both cytokines together induce macrophage inflammation and necroptosis. IL-23R+ γδ T cells locally promote early lesion formation in the aortic root and contribute to the expansion of the necrotic core, a hallmark of vulnerable atherosclerotic lesions. Targeting IL-23R or IL-23 itself could thus be further explored as a therapeutic option in early atherosclerosis.
Collapse
Affiliation(s)
- Jesus Gil-Pulido
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| | - Núria Amézaga
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| | - Ivana Jorgacevic
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| | - Helga D Manthey
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| | - Melanie Rösch
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| | - Theresa Brand
- Institute of Pharmacology and Toxicology,University of Würzburg, Würzburg, 97078 Germany
| | - Peter Cidlinsky
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| | - Sarah Schäfer
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology,University of Würzburg, Würzburg, 97078 Germany.,Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, 44139 Germany
| | - Louis Boon
- Polpharma Biologics, Utrecht, the Netherlands
| | - Immo Prinz
- Institute of Systems Immunology,University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Clément Cochain
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine,University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Ohmura Y, Ishimori N, Saito A, Yokota T, Horii S, Tokuhara S, Iwabuchi K, Tsutsui H. Natural Killer T Cells Are Involved in Atherosclerotic Plaque Instability in Apolipoprotein-E Knockout Mice. Int J Mol Sci 2021; 22:ijms222212451. [PMID: 34830332 PMCID: PMC8618636 DOI: 10.3390/ijms222212451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
The infiltration and activation of macrophages as well as lymphocytes within atherosclerotic lesion contribute to the pathogenesis of plaque rupture. We have demonstrated that invariant natural killer T (iNKT) cells, a unique subset of T lymphocytes that recognize glycolipid antigens, play a crucial role in atherogenesis. However, it remained unclear whether iNKT cells are also involved in plaque instability. Apolipoprotein E (apoE) knockout mice were fed a standard diet (SD) or a high-fat diet (HFD) for 8 weeks. Moreover, the SD- and the HFD-fed mice were divided into two groups according to the intraperitoneal injection of α-galactosylceramide (αGC) that specifically activates iNKT cells or phosphate-buffered saline alone (PBS). ApoE/Jα18 double knockout mice, which lack iNKT cells, were also fed an SD or HFD. Plaque instability was assessed at the brachiocephalic artery by the histological analysis. In the HFD group, αGC significantly enhanced iNKT cell infiltration and exacerbated atherosclerotic plaque instability, whereas the depletion of iNKT cells attenuated plaque instability compared to PBS-treated mice. Real-time PCR analyses in the aortic tissues showed that αGC administration significantly increased expressional levels of inflammatory genes such as IFN-γ and MMP-2, while the depletion of iNKT cells attenuated these expression levels compared to those in the PBS-treated mice. Our findings suggested that iNKT cells are involved in the exacerbation of plaque instability via the activation of inflammatory cells and upregulation of MMP-2 in the vascular tissues.
Collapse
MESH Headings
- Animals
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Atherosclerosis/pathology
- Brachial Artery/immunology
- Brachial Artery/pathology
- Cell Movement/drug effects
- Diet, High-Fat/adverse effects
- Galactosylceramides/pharmacology
- Gene Expression Regulation
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lymphocyte Activation
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/pathology
- Male
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/pathology
Collapse
Affiliation(s)
- Yoshinori Ohmura
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo 060-8638, Japan; (Y.O.); (A.S.); (T.Y.); (S.T.)
| | - Naoki Ishimori
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo 060-8638, Japan; (Y.O.); (A.S.); (T.Y.); (S.T.)
- Correspondence: ; Tel.: +81-11-706-6973
| | - Akimichi Saito
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo 060-8638, Japan; (Y.O.); (A.S.); (T.Y.); (S.T.)
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo 060-8638, Japan; (Y.O.); (A.S.); (T.Y.); (S.T.)
| | - Shunpei Horii
- Department of Cardiovascular Medicine, National Defense Medical College, Namiki 3-2, Tokorozawa 359-0042, Japan;
| | - Satoshi Tokuhara
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo 060-8638, Japan; (Y.O.); (A.S.); (T.Y.); (S.T.)
| | - Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara 252-0374, Japan;
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medicine, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan;
| |
Collapse
|
26
|
Martí-Carvajal AJ, De Sanctis JB, Dayer M, Martí-Amarista CE, Alegría E, Monge Martín D, Abd El Aziz M, Correa-Pérez A, Nicola S, Parise Vasco JM. Interleukin-receptor antagonist and tumor necrosis factor inhibitors for the primary and secondary prevention of atherosclerotic cardiovascular diseases. Hippokratia 2021. [DOI: 10.1002/14651858.cd014741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arturo J Martí-Carvajal
- Facultad de Ciencias de la Salud Eugenio Espejo (Centro Cochrane Ecuador); Universidad UTE; Quito Ecuador
- Facultad de Medicina (Centro Cochrane Madrid); Universidad Francisco de Vitoria; Madrid Spain
- Cátedra Rectoral de Medicina Basada en la Evidencia; Universidad de Carabobo; Valencia Venezuela
| | - Juan Bautista De Sanctis
- The Institute of Molecular and Translational Medicine; Palacky University Olomouc, Faculty of Medicine and Dentistry; Olomouc Czech Republic
| | - Mark Dayer
- Department of Cardiology; Somerset NHS Foundation Trust; Taunton UK
| | | | - Eduardo Alegría
- Faculty of Medicine; Universidad Francisco de Vitoria; Madrid Spain
| | | | - Mohamed Abd El Aziz
- Internal medicine; Texas Tech University Health Sciences Center El PasoPaul L. Foster School of Medicine; El Paso, Texas USA
| | - Andrea Correa-Pérez
- Faculty of Medicine; Universidad Francisco de Vitoria; Madrid Spain
- Clinical Biostatistics Unit; Hospital Universitario Ramón y Cajal (IRYCIS); Madrid Spain
| | - Susana Nicola
- Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC); Universidad UTE; Quito Ecuador
| | - Juan Marcos Parise Vasco
- Centro Asociado Cochrane Ecuador, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC); Universidad UTE; Quito Ecuador
| |
Collapse
|
27
|
Cross-Talk of Atherosclerosis and Ischemic Stroke: Dramatic Role of Neutrophils. ARCHIVES OF NEUROSCIENCE 2021. [DOI: 10.5812/ans.104433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Current investigations illustrate the increasing prevalence of atherosclerosis (AS) through the aggravating role of inappropriate lifestyle patterns. Atherosclerosis is the cause of important vascular-related diseases such as ischemic stroke (IS). Understanding AS pathophysiology can help reduce the incidence of AS-mediated diseases like ischemic stroke. Evidence Acquisition: For this narrative review article, we used the five mega databases of PubMed, Google Scholar, Scopus, Springer, and Science Direct. We searched from 2010 Jan to 2020 Dec and based on keywords and inclusion criteria, 77 articles were enrolled. Results: Based on prior articles on atherosclerosis and ischemic stroke pathophysiology, local and systemic inflammation is a vigorous factor in both diseasesIndeed, the fundamental inflammatory pathway involved atherosclerosis, and ischemic stroke is associated with the toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor-kappa B (TLR4/ Myd88/ NF-κB) cascade. The functional paw of these intricate mechanisms are pro-inflammatory mediators, such as interleukin-1 beta (IL-1β), tumor necrosis factor (TNF-α), and interleukin-18 (IL-18) incite inflammation. Besides, the essential structures termed inflammasomes (multi proteins components), and multiplicity of immune and non-immune cells (i.e., neutrophils, monocytes, platelets, and macrophages) are beneficial in the induction of inflammatory microenvironment. Conclusions: Neutrophils could be the most effective cells in the inflammation-based mechanism in IS and AS. It is clarified that neutrophils with the recruitment of own vesicles and granules can afford to amplify inflammatory conditions and be a key cell in AS and IS cross-talk. Therefore, utilizing methods to control neutrophils-mediated mechanisms could be an effective method for the prevention of AS and IS.
Collapse
|
28
|
Circulating Biomarkers Reflecting Destabilization Mechanisms of Coronary Artery Plaques: Are We Looking for the Impossible? Biomolecules 2021; 11:biom11060881. [PMID: 34198543 PMCID: PMC8231770 DOI: 10.3390/biom11060881] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022] Open
Abstract
Despite significant strides to mitigate the complications of acute coronary syndrome (ACS), this clinical entity still represents a major global health burden. It has so far been well-established that most of the plaques leading to ACS are not a result of gradual narrowing of the vessel lumen, but rather a result of sudden disruption of vulnerable atherosclerotic plaques. As most of the developed imaging modalities for vulnerable plaque detection are invasive, multiple biomarkers were proposed to identify their presence. Owing to the pivotal role of lipids and inflammation in the pathophysiology of atherosclerosis, most of the biomarkers originated from one of those processes, whereas recent advancements in molecular sciences shed light on the use of microRNAs. Yet, at present there are no clinically implemented biomarkers or any other method for that matter that could non-invasively, yet reliably, diagnose the vulnerable plaque. Hence, in this review we summarized the available knowledge regarding the pathophysiology of plaque instability, the current evidence on potential biomarkers associated with plaque destabilization and finally, we discussed if search for biomarkers could one day bring us to non-invasive, cost-effective, yet valid way of diagnosing the vulnerable, rupture-prone coronary artery plaques.
Collapse
|
29
|
Yin C, Heit B. Cellular Responses to the Efferocytosis of Apoptotic Cells. Front Immunol 2021; 12:631714. [PMID: 33959122 PMCID: PMC8093429 DOI: 10.3389/fimmu.2021.631714] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
The rapid and efficient phagocytic clearance of apoptotic cells, termed efferocytosis, is a critical mechanism in the maintenance of tissue homeostasis. Removal of apoptotic cells through efferocytosis prevents secondary necrosis and the resultant inflammation caused by the release of intracellular contents. The importance of efferocytosis in homeostasis is underscored by the large number of inflammatory and autoimmune disorders, including atherosclerosis and systemic lupus erythematosus, that are characterized by defective apoptotic cell clearance. Although mechanistically similar to the phagocytic clearance of pathogens, efferocytosis differs from phagocytosis in that it is immunologically silent and induces a tissue repair response. Efferocytes face unique challenges resulting from the internalization of apoptotic cells, including degradation of the apoptotic cell, dealing with the extra metabolic load imposed by the processing of apoptotic cell contents, and the coordination of an anti-inflammatory, pro-tissue repair response. This review will discuss recent advances in our understanding of the cellular response to apoptotic cell uptake, including trafficking of apoptotic cell cargo and antigen presentation, signaling and transcriptional events initiated by efferocytosis, the coordination of an anti-inflammatory response and tissue repair, unique cellular metabolic responses and the role of efferocytosis in host defense. A better understanding of how efferocytic cells respond to apoptotic cell uptake will be critical in unraveling the complex connections between apoptotic cell removal and inflammation resolution and maintenance of tissue homeostasis.
Collapse
Affiliation(s)
- Charles Yin
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Center for Human Immunology, Western University, London, ON, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Center for Human Immunology, Western University, London, ON, Canada
- Robarts Research Institute, London, ON, Canada
| |
Collapse
|
30
|
Purine-rich element binding protein B attenuates the coactivator function of myocardin by a novel molecular mechanism of smooth muscle gene repression. Mol Cell Biochem 2021; 476:2899-2916. [PMID: 33743134 DOI: 10.1007/s11010-021-04117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Myocardin is a potent transcriptional coactivator protein, which functions as the master regulator of vascular smooth muscle cell differentiation. The cofactor activity of myocardin is mediated by its physical interaction with serum response factor, a ubiquitously expressed transactivator that binds to CArG boxes in genes encoding smooth muscle-restricted proteins. Purine-rich element binding protein B (Purβ) represses the transcription of the smooth muscle α-actin gene (Acta2) in fibroblasts and smooth muscle cells by interacting with single-stranded DNA sequences flanking two 5' CArG boxes in the Acta2 promoter. In this study, the ability of Purβ to modulate the cofactor activity of myocardin was investigated using a combination of cellular and biochemical approaches. Results of smooth muscle gene promoter-reporter assays indicated that Purβ specifically inhibits the coactivator function of myocardin in a manner requiring the presence of all three single-stranded DNA binding domains in the Purβ homodimer. DNA binding analyses demonstrated that Purβ interacts with CArG-containing DNA elements with a much lower affinity compared to other purine-rich target sequences present in the Acta2 promoter. Co-immunoprecipitation and DNA pull-down assays revealed that Purβ associates with myocardin and serum response factor when free or bound to duplex DNA containing one or more CArG boxes. Functional analysis of engineered Purβ point mutants identified several amino acid residues essential for suppression of myocardin activity. Collectively, these findings suggest an inhibitory mechanism involving direct protein-protein interaction between the homodimeric Purβ repressor and the myocardin-serum response factor-CArG complex.
Collapse
|
31
|
Liu Y, Shen X, Pang M, Sun Z, Qian Y, Xue W, Wang Z, Li L. Role of histone deacetylase Sirt3 in the development and regression of atherosclerosis. Life Sci 2021; 272:119178. [PMID: 33610576 DOI: 10.1016/j.lfs.2021.119178] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 01/16/2023]
Abstract
Atherosclerosis (AS) is the most common cause of death in cardiovascular diseases and poses severe challenges to human life and safety. Epigenetics plays a vital role in every single link of AS. Whereas, how epigenetics regulates its development and regression is still unknown. Sirt3, a recognized histone deacetylase, having been reported to be involved in other acylation processes in recent years, is broadening its role in epigenetic modifications. Sirt3 is an important factor in the normal physiology of blood vessels through deacetylation of mitochondrial proteins and participates in various metabolic activities. Besides, medical research targeting Sirt3 is in full swing as well. This review combining histone deacetylase Sirt3 with AS, aims to clarify the latest progress in the significant role of Sirt3 in the development and regression of AS and to provide a novel prospect for a new regulatory factor and potential intervention target for AS.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xinyi Shen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mingchang Pang
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenxin Xue
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
32
|
Mantella LE, Colledanchise KN, Hétu MF, Feinstein SB, Abunassar J, Johri AM. Carotid intraplaque neovascularization predicts coronary artery disease and cardiovascular events. Eur Heart J Cardiovasc Imaging 2020; 20:1239-1247. [PMID: 31621834 DOI: 10.1093/ehjci/jez070] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/25/2019] [Indexed: 11/15/2022] Open
Abstract
AIMS It is thought that the majority of cardiovascular (CV) events are caused by vulnerable plaque. Such lesions are rupture prone, in part due to neovascularization. It is postulated that plaque vulnerability may be a systemic process and that vulnerable lesions may co-exist at multiple sites in the vascular bed. This study sought to examine whether carotid plaque vulnerability, characterized by contrast-enhanced ultrasound (CEUS)-assessed intraplaque neovascularization (IPN), was associated with significant coronary artery disease (CAD) and future CV events. METHODS AND RESULTS We investigated carotid IPN using carotid CEUS in 459 consecutive stable patients referred for coronary angiography. IPN was graded based on the presence and location of microbubbles within each plaque (0, not visible; 1, peri-adventitial; and 2, plaque core). The grades of each plaque were averaged to obtain an overall score per patient. Coronary plaque severity and complexity was also determined angiographically. Patients were followed for 30 days following their angiogram. This study found that a higher CEUS-assessed carotid IPN score was associated with significant CAD (≥50% stenosis) (1.8 ± 0.4 vs. 0.5 ± 0.6, P < 0.0001) and greater complexity of coronary lesions (1.7 ± 0.5 vs. 1.3 ± 0.8, P < 0.0001). Furthermore, an IPN score ≥1.25 could predict significant CAD with a high sensitivity (92%) and specificity (89%). The Kaplan-Meier analysis demonstrated a significantly higher proportion of participants having CV events with an IPN score ≥1.25 (P = 0.004). CONCLUSION Carotid plaque neovascularization was found to be predictive of significant and complex CAD and future CV events. CEUS-assessed carotid IPN is a clinically useful tool for CV risk stratification in high-risk cardiac patients.
Collapse
Affiliation(s)
- Laura E Mantella
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, Ontario, Canada
| | - Kayla N Colledanchise
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, Ontario, Canada
| | - Marie-France Hétu
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Kingston Health Sciences Centre, 76 Stuart Street, Kingston, Ontario, Canada
| | - Steven B Feinstein
- Department of Medicine, Rush University Medical Center, 1653 W Congress Pkwy, Chicago, IL, USA
| | - Joseph Abunassar
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Kingston Health Sciences Centre, 76 Stuart Street, Kingston, Ontario, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, Ontario, Canada.,Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Kingston Health Sciences Centre, 76 Stuart Street, Kingston, Ontario, Canada
| |
Collapse
|
33
|
Abstract
The development of potent cholesterol-reducing medications in the last decade of the twentieth century has altered the approach to prevention and treatment of cardiovascular disease (CVD). Initial experience with statins, and more recently with the addition of PCSK9 inhibitors, has proven that human CVD, like that in animal models, can be halted and regressed. Available clinical data show that the lower the achieved level of low-density lipoprotein cholesterol, the greater the regression of disease. Investigative studies are now aimed to understand those factors that both accelerate and impede this healing process. Some of these are likely to be modifiable, and the future of atherosclerotic CVD treatment is likely to be early screening, use of measures to repair atherosclerotic arteries, and prevention of most CVD events.
Collapse
Affiliation(s)
- Ira J Goldberg
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA;
| | - Gaurav Sharma
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA;
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
34
|
Chang TI, Wu X, Boström KI, Tran HA, Couto-Souza PH, Friedlander AH. Elevated White Blood Cell Count Resultant Atherogenesis is Associated With Panoramic-Imaged Carotid Plaque. J Oral Maxillofac Surg 2020; 79:1069-1073. [PMID: 33290724 DOI: 10.1016/j.joms.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Atherosclerotic plaques develop as a result of a low-grade, chronic, systemic inflammatory response to the injury of endothelial cells arising from lipid deposition within the intima. Increased white blood cell count (WBCC) is both a validated "biologic marker" of the extent of this inflammatory process and a key participant in the development of subsequent atherosclerotic ischemic heart disease manifesting as myocardial infarction. We sought to determine if calcified carotid artery plaque (CCAP) on a panoramic image (PI), also a validated risk indicator of future myocardial infarction, is associated with increased WBCC. PATIENTS AND METHODS We retrospectively evaluated the PI and medical records of White male military veterans aged 55 years and older treated by a VA dental service. Established were 2 cohorts of patients, 50 having plaques (CCAP+) and 50 without plaques (CCAP-). Predictor variable was CCAP+; outcome variable was WBCC. Bootstrapping analysis determined the differences in mean WBCCs between groups. Statistical significance set at ≤ 0.05. RESULTS The study group, (mean age 74; range 59 to 91 years) demonstrated a mean WBCC of 8,062 per mm3. The control group, (mean age 72 range; 57 to 94) evidenced a mean WBCC of 7,058 per mm3. Bootstrapping analysis of WBCC values demonstrated a significant (P = .012) difference (95% confidence interval of difference of mean, -806, 742; observed effect size, 1004) between groups. CONCLUSIONS The presence of CCAP demonstrated on PIs of older Caucasian men is associated with elevated WBCC. Concomitant presence of CCAP on PI and increased WBCC (≥7,800 per mm3) amplifies need for medical consultation before intravenous anesthesia and maxillofacial surgical procedures.
Collapse
Affiliation(s)
- Tina I Chang
- Director, Inpatient Oral and Maxillofacial Surgery at the Veterans Affairs Great Los Angeles Healthcare System and an Instructor in Oral and Maxillofacial Surgery, School of Dentistry, University of California, Los Angeles, CA
| | - Xiuju Wu
- Project Scientist, Division of Cardiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| | - Kristina I Boström
- Chief of Cardiology, VA Greater Los Angeles Healthcare System and Professor of Medicine/Cardiology, David Geffen School of Medicine at UCLA and at the Molecular Biology Institute, University of California, Los Angeles, CA
| | - Hoang-Anh Tran
- Periodontology Resident, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Paulo H Couto-Souza
- Professor, Maxillofacial Radiology, Graduate Program in Dentistry/School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Arthur H Friedlander
- Associate Chief of Staff and Director ofGraduate Medical Education, Veterans Affairs Greater Los Angeles Healthcare System, and Director of, Quality Assurance Hospital Dental Service, Ronald Reagan UCLA Medical Center and Professor-in-Residence of Oral and Maxillofacial Surgery, School of Dentistry, University of California, Los Angeles, CA.
| |
Collapse
|
35
|
Search for Reliable Circulating Biomarkers to Predict Carotid Plaque Vulnerability. Int J Mol Sci 2020; 21:ijms21218236. [PMID: 33153204 PMCID: PMC7662861 DOI: 10.3390/ijms21218236] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is responsible for 20% of ischemic strokes, and the plaques from the internal carotid artery the most frequently involved. Lipoproteins play a key role in carotid atherosclerosis since lipid accumulation contributes to plaque progression and chronic inflammation, both factors leading to plaque vulnerability. Carotid revascularization to prevent future vascular events is reasonable in some patients with high-grade carotid stenosis. However, the degree of stenosis alone is not sufficient to decide upon the best clinical management in some situations. In this context, it is essential to further characterize plaque vulnerability, according to specific characteristics (lipid-rich core, fibrous cap thinning, intraplaque hemorrhage). Although these features can be partly detected by imaging techniques, identifying carotid plaque vulnerability is still challenging. Therefore, the study of circulating biomarkers could provide adjunctive criteria to predict the risk of atherothrombotic stroke. In this regard, several molecules have been found altered, but reliable biomarkers have not been clearly established yet. The current review discusses the concept of vulnerable carotid plaque, and collects existing information about putative circulating biomarkers, being particularly focused on lipid-related and inflammatory molecules.
Collapse
|
36
|
Sterpetti AV. Inflammatory Cytokines and Atherosclerotic Plaque Progression. Therapeutic Implications. Curr Atheroscler Rep 2020; 22:75. [PMID: 33025148 PMCID: PMC7538409 DOI: 10.1007/s11883-020-00891-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE OF THE REVIEW Inflammatory cytokines play a major role in atherosclerotic plaque progression. This review summarizes the rationale for personalized anti-inflammatory therapy. RECENT FINDINGS Systemic inflammatory parameters may be used to follow the clinical outcome in primary and secondary prevention. Medical therapy, both in patients with stable cardiovascular disease, or with acute events, may be tailored taking into consideration the level and course of systemic inflammatory mediators. There is significant space for improvement in primary prevention and in the treatment of patients who have suffered from severe cardiovascular events, paying attention to not only blood pressure and cholesterol levels but also including inflammatory parameters in our clinical analysis. The potential exists to alter the course of atherosclerosis with anti-inflammatory drugs. With increased understanding of the specific mechanisms that regulate the relationship between inflammation and atherosclerosis, new, more effective and specific anti-inflammatory treatment may become available.
Collapse
Affiliation(s)
- Antonio V Sterpetti
- University of Rome Sapienza, Rome, Italy.
- AV Sterpetti- Policlinico Umberto I, Viale del Policlinico, 00167, Rome, Italy.
| |
Collapse
|
37
|
Vaisar T, Hu JH, Airhart N, Fox K, Heinecke J, Nicosia RF, Kohler T, Potter ZE, Simon GM, Dix MM, Cravatt BF, Gharib SA, Dichek DA. Parallel Murine and Human Plaque Proteomics Reveals Pathways of Plaque Rupture. Circ Res 2020; 127:997-1022. [PMID: 32762496 PMCID: PMC7508285 DOI: 10.1161/circresaha.120.317295] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE Plaque rupture is the proximate cause of most myocardial infarctions and many strokes. However, the molecular mechanisms that precipitate plaque rupture are unknown. OBJECTIVE By applying proteomic and bioinformatic approaches in mouse models of protease-induced plaque rupture and in ruptured human plaques, we aimed to illuminate biochemical pathways through which proteolysis causes plaque rupture and identify substrates that are cleaved in ruptured plaques. METHODS AND RESULTS We performed shotgun proteomics analyses of aortas of transgenic mice with macrophage-specific overexpression of urokinase (SR-uPA+/0 mice) and of SR-uPA+/0 bone marrow transplant recipients, and we used bioinformatic tools to evaluate protein abundance and functional category enrichment in these aortas. In parallel, we performed shotgun proteomics and bioinformatics studies on extracts of ruptured and stable areas of freshly harvested human carotid plaques. We also applied a separate protein-analysis method (protein topography and migration analysis platform) to attempt to identify substrates and proteolytic fragments in mouse and human plaque extracts. Approximately 10% of extracted aortic proteins were reproducibly altered in SR-uPA+/0 aortas. Proteases, inflammatory signaling molecules, as well as proteins involved with cell adhesion, the cytoskeleton, and apoptosis, were increased. ECM (Extracellular matrix) proteins, including basement-membrane proteins, were decreased. Approximately 40% of proteins were altered in ruptured versus stable areas of human carotid plaques, including many of the same functional categories that were altered in SR-uPA+/0 aortas. Collagens were minimally altered in SR-uPA+/0 aortas and ruptured human plaques; however, several basement-membrane proteins were reduced in both SR-uPA+/0 aortas and ruptured human plaques. Protein topography and migration analysis platform did not detect robust increases in proteolytic fragments of ECM proteins in either setting. CONCLUSIONS Parallel studies of SR-uPA+/0 mouse aortas and human plaques identify mechanisms that connect proteolysis with plaque rupture, including inflammation, basement-membrane protein loss, and apoptosis. Basement-membrane protein loss is a prominent feature of ruptured human plaques, suggesting a major role for basement-membrane proteins in maintaining plaque stability.
Collapse
Affiliation(s)
- Tomáš Vaisar
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Jie H Hu
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Nathan Airhart
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Kate Fox
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Jay Heinecke
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Roberto F Nicosia
- Departments of Pathology and Laboratory Medicine (D.A.D., R.F.N.), University of Washington, Seattle.,Departments of Pathology and Laboratory Medicine (R.F.N.), VA Puget Sound Health Care System, Seattle, WA
| | - Ted Kohler
- Departments of Surgery (T.K.), University of Washington, Seattle.,Departments of Surgery (T.K.), VA Puget Sound Health Care System, Seattle, WA
| | - Zachary E Potter
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | | | - Melissa M Dix
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | - Sina A Gharib
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - David A Dichek
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle.,Departments of Pathology and Laboratory Medicine (D.A.D., R.F.N.), University of Washington, Seattle
| |
Collapse
|
38
|
Gao S, Kaudimba KK, Guo S, Zhang S, Liu T, Chen P, Wang R. Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Cardiovascular Diseases. Front Physiol 2020; 11:836. [PMID: 32903613 PMCID: PMC7438729 DOI: 10.3389/fphys.2020.00836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease is one of the chronic conditions with the highest mortality rate in the world. Underlying conditions such as hypertension, metabolic disorders, and habits like smoking are contributors to the manifestation of cardiovascular diseases. The treatment of cardiovascular diseases is inseparable from the development of drugs. Consequently, this has led to many researchers to focus on the search for effective drug targets. The transient receptor potential channel Ankyrin 1 (TRPA1) subtype is a non-selective cation channel, which belongs to the transient receptor potential (TRP) ion channel. Previous studies have shown that members of the TRP family contribute significantly to cardiovascular disease. However, many researchers have not explored the role of TRPA1 as a potential target for the treatment of cardiovascular diseases. Furthermore, recent studies revealed that TRPA1 is commonly expressed in the vascular endothelium. The endothelium is linked to the causes of some cardiovascular diseases, such as atherosclerosis, myocardial fibrosis, heart failure, and arrhythmia. The activation of TRPA1 has a positive effect on atherosclerosis, but it has a negative effect on other cardiovascular diseases such as myocardial fibrosis and heart failure. This review introduces the structural and functional characteristics of TRPA1 and its importance on vascular physiology and common cardiovascular diseases. Moreover, this review summarizes some evidence that TRPA1 is correlated to cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Song Gao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | | | - Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shuang Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Institute of Sport Science, Harbin Sport University, Harbin, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Department of Endocrinology and Metabolism, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
39
|
MicroRNAs as sentinels and protagonists of carotid artery thromboembolism. Clin Sci (Lond) 2020; 134:169-192. [PMID: 31971230 DOI: 10.1042/cs20190651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Stroke is the leading cause of serious disability in the world and a large number of ischemic strokes are due to thromboembolism from unstable carotid artery atherosclerotic plaque. As it is difficult to predict plaque rupture and surgical treatment of asymptomatic disease carries a risk of stroke, carotid disease continues to present major challenges with regard to clinical decision-making and revascularization. There is therefore an imminent need to better understand the molecular mechanisms governing plaque instability and rupture, as this would allow for the development of biomarkers to identify at-risk asymptomatic carotid plaque prior to disease progression and stroke. Further, it would aid in creation of therapeutics to stabilize carotid plaque. MicroRNAs (miRNAs) have been implicated as key protagonists in various stages of atherosclerotic plaque initiation, development and rupture. Notably, they appear to play a crucial role in carotid artery thromboembolism. As the molecular pathways governing the role of miRNAs are being uncovered, we are learning that their involvement is complex, tissue- and stage-specific, and highly selective. Notably, miRNAs can be packaged and secreted in extracellular vesicles (EVs), where they participate in cell-cell communication. The measurement of EV-encapsulated miRNAs in the circulation may inform disease mechanisms occurring in the plaque itself, and therefore may serve as sentinels of unstable plaque as well as therapeutic targets.
Collapse
|
40
|
Bai Y, Huang R, Wan L, Zhao R. Association between CYP2C19 gene polymorphisms and lipid metabolism in Chinese patients with ischemic stroke. J Int Med Res 2020; 48:300060520934657. [PMID: 32644829 PMCID: PMC7350049 DOI: 10.1177/0300060520934657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/26/2020] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The CYP2C19 genetic variation may be involved in the development of atherosclerotic cardiovascular disease (ASCVD). Serum lipid levels are important risk factors for ASCVD, but the effect of the CYP2C19 gene on serum lipid metabolism remains unclear. This retrospective cohort study investigated the relationship between the CYP2C19 gene polymorphism and serum lipid levels in patients with ischemic stroke (IS). METHODS IS patients (n = 230) and control subjects (n = 100) were enrolled. All patients were diagnosed with IS via clinical manifestations and brain magnetic resonance imaging. All patients were genotyped. RESULTS Triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-c), and apolipoprotein B (ApoB) levels were significantly higher and high-density lipoprotein-cholesterol (HDL-c) and apolipoprotein A1 (ApoA1) levels were significantly lower in the IS group compared with the control group. Lower ApoA1 levels and higher ApoB levels were significant predictive factors for IS. Patients with higher ApoB levels had a higher risk of IS recurrence. Compared with extensive metabolizers, intermediate and poor CYP2C19 metabolizers had a higher risk of IS recurrence. CONCLUSIONS Our study indicates CYP2C19 gene polymorphisms are related to lipid metabolism in patients with IS. IS patients who are poor CYP2C19 metabolizers may have a higher risk of disease recurrence.
Collapse
Affiliation(s)
- Yunxue Bai
- Department of Laboratory Medicine, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruicheng Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lagen Wan
- Department of Laboratory Medicine, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Zhao
- Department of Laboratory Medicine, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
41
|
Doneen AL, Bale BF, Vigerust DJ, Leimgruber PP. Cardiovascular Prevention: Migrating From a Binary to a Ternary Classification. Front Cardiovasc Med 2020; 7:92. [PMID: 32528979 PMCID: PMC7256212 DOI: 10.3389/fcvm.2020.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
Migrating from a binary approach to risk assessment to a ternary model of disease identification allows for individualized, optimal disease management. Redefining the disease/inflammatory approach has been proven to identify, stabilize, and regress atherosclerosis while adding understanding to the progression of vascular disease. Our previously published results show the beneficial effect of comprehensive, evidence-based management on subclinical atherosclerosis and vulnerable plaque. We argue that this approach does not mitigate the value of utilizing standard risk factor identification, but rather augments it for the benefit of the individual patient.
Collapse
Affiliation(s)
- Amy Lynn Doneen
- College of Medicine, Washington State University, Spokane, WA, United States
| | - Bradley Field Bale
- College of Medicine, Washington State University, Spokane, WA, United States
| | | | | |
Collapse
|
42
|
Abstract
Previous studies reported an inverse association between healthy dietary patterns (such as Mediterranean diet) and the incidence of cardiovascular events. As the mechanism accounting for cardiovascular disease is prevalently due to the atherothrombosis, where a pivotal role is played by platelet activation, it would be arguable that diets with protective effects against cardiovascular disease exert an anti-atherothrombotic effect via inhibition of platelet activation. There are several and sparse typologies of studies, which investigated if single nutrients by diets recognized as having cardiovascular protection may exert an antithrombotic effect. The most investigated nutrients are key components of the Mediterranean diets such as fruits and vegetables, fish, olive oil, and wine; other diets with protective effects include nuts and cocoa. Here we summarize experimental and human interventional studies which investigated the antithrombotic effects of such nutrients in experimental models of thrombosis or analyzed biomarkers of clotting, platelet, and fibrinolysis activation in human; furthermore in vitro studies explored the underlying mechanism at level of several cell lines such as platelets or endothelial cells. In this context, we analyzed if nutrients affect simultaneously or separately clotting, platelet, and fibrinolysis pathways giving special attention to the relationship between oxidative stress and thrombosis as most nutrients are believed to possess antioxidant properties.
Collapse
Affiliation(s)
- Francesco Violi
- From the Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Italy (F.V., D.P., P.P.).,Mediterranea Cardiocentro, Napoli, Italy (F.V., P.P., R.C.)
| | - Daniele Pastori
- From the Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Italy (F.V., D.P., P.P.)
| | - Pasquale Pignatelli
- From the Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Italy (F.V., D.P., P.P.).,Mediterranea Cardiocentro, Napoli, Italy (F.V., P.P., R.C.)
| | - Roberto Carnevale
- Mediterranea Cardiocentro, Napoli, Italy (F.V., P.P., R.C.).,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy (R.C.)
| |
Collapse
|
43
|
Satoh K, Satoh T, Yaoita N, Shimokawa H. Recent Advances in the Understanding of Thrombosis. Arterioscler Thromb Vasc Biol 2020; 39:e159-e165. [PMID: 31116608 DOI: 10.1161/atvbaha.119.312003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taijyu Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhiro Yaoita
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
44
|
Wu C, Daugherty A, Lu HS. Updates on Approaches for Studying Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 39:e108-e117. [PMID: 30917052 DOI: 10.1161/atvbaha.119.312001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Congqing Wu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
45
|
van der Vorst EPC, Weber C. Novel Features of Monocytes and Macrophages in Cardiovascular Biology and Disease. Arterioscler Thromb Vasc Biol 2019; 39:e30-e37. [PMID: 30673349 DOI: 10.1161/atvbaha.118.312002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Emiel P C van der Vorst
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany (E.P.C.v.d.V., C.W.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany (E.P.C.v.d.V., C.W.).,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (C.W.).,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C.W.)
| |
Collapse
|
46
|
Robinson JG, Williams KJ, Gidding S, Borén J, Tabas I, Fisher EA, Packard C, Pencina M, Fayad ZA, Mani V, Rye KA, Nordestgaard BG, Tybjærg-Hansen A, Douglas PS, Nicholls SJ, Pagidipati N, Sniderman A. Eradicating the Burden of Atherosclerotic Cardiovascular Disease by Lowering Apolipoprotein B Lipoproteins Earlier in Life. J Am Heart Assoc 2019; 7:e009778. [PMID: 30371276 PMCID: PMC6474943 DOI: 10.1161/jaha.118.009778] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Samuel Gidding
- 3 Department of Pediatric Cardiology Nemours/Alfred I. duPont Hospital for Children DE
| | - Jan Borén
- 4 Department of Molecular and Clinical Medicine University of Gothenberg Sweden
| | - Ira Tabas
- 5 Department of Medicine Columbia University Medical Center New York NY
| | - Edward A Fisher
- 6 Department of Cell Biology New York University School of Medicine New York NY
| | - Chris Packard
- 7 Department of Biochemistry University of Glasgow Scotland
| | - Michael Pencina
- 8 Department of Biostatistics and Informatics Duke University Durham NC
| | - Zahi A Fayad
- 9 Department of Radiology Mount Sinai School of Medicine New York NY
| | - Venkatesh Mani
- 9 Department of Radiology Mount Sinai School of Medicine New York NY
| | - Kerry Anne Rye
- 10 Department of Pathology University of New South Wales Sydney Australia
| | | | | | | | | | | | - Allan Sniderman
- 14 Department of Medicine University of Montreal Montreal Canada
| |
Collapse
|
47
|
A Review of the Potential Benefits of Increasing Vitamin D Status in Mongolian Adults through Food Fortification and Vitamin D Supplementation. Nutrients 2019; 11:nu11102452. [PMID: 31615079 PMCID: PMC6835745 DOI: 10.3390/nu11102452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Serum 25-hydroxyvitamin D (25(OH)D) concentrations are low in Mongolia, averaging 22 ng/mL in summer and only 8 ng/mL in winter. Mongolians have high incidence and/or prevalence of several diseases linked to low 25(OH)D concentrations, including ischemic heart disease, malignant neoplasms, cirrhosis of the liver, ischemic stroke, lower respiratory tract infections, preterm birth complications, and diabetes mellitus. Fortifying regularly consumed foods such as flour, milk, and edible oils with vitamin D3 could raise 25(OH)D concentrations by about 10 ng/mL. However, to achieve 25(OH)D concentrations of 30–40 ng/mL in adults, vitamin D intakes of 1000 to 4000 IU/day would be required, making personal supplement use necessary. On the basis of prospective observational studies and clinical trials of disease incidence or known mortality rates and adverse pregnancy and birth outcomes, raising mean serum 25(OH)D concentrations to 40 ng/mL would likely reduce incidence and mortality rates for those and other diseases, reduce the rate of adverse pregnancy and birth outcomes, and increase mean life expectancy by one year or more.
Collapse
|
48
|
Cimen I, Yildirim Z, Dogan AE, Yildirim AD, Tufanli O, Onat UI, Nguyen U, Watkins SM, Weber C, Erbay E. Double bond configuration of palmitoleate is critical for atheroprotection. Mol Metab 2019; 28:58-72. [PMID: 31422082 PMCID: PMC6822256 DOI: 10.1016/j.molmet.2019.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Saturated and trans fat consumption is associated with increased cardiovascular disease (CVD) risk. Current dietary guidelines recommend low fat and significantly reduced trans fat intake. Full fat dairy can worsen dyslipidemia, but recent epidemiological studies show full-fat dairy consumption may reduce diabetes and CVD risk. This dairy paradox prompted a reassessment of the dietary guidelines. The beneficial metabolic effects in dairy have been claimed for a ruminant-derived, trans fatty acid, trans-C16:1n-7 or trans-palmitoleate (trans-PAO). A close relative, cis-PAO, is produced by de novo lipogenesis and mediates inter-organ crosstalk, improving insulin-sensitivity and alleviating atherosclerosis in mice. These findings suggest trans-PAO may be a useful substitute for full fat dairy, but a metabolic function for trans-PAO has not been shown to date. METHODS Using lipidomics, we directly investigated trans-PAO's impact on plasma and tissue lipid profiles in a hypercholesterolemic atherosclerosis mouse model. Furthermore, we investigated trans-PAO's impact on hyperlipidemia-induced inflammation and atherosclerosis progression in these mice. RESULTS Oral trans-PAO supplementation led to significant incorporation of trans-PAO into major lipid species in plasma and tissues. Unlike cis-PAO, however, trans-PAO did not prevent organelle stress and inflammation in macrophages or atherosclerosis progression in mice. CONCLUSIONS A significant, inverse correlation between circulating trans-PAO levels and diabetes incidence and cardiovascular mortality has been reported. Our findings show that trans-PAO can incorporate efficiently into the same pools that its cis counterpart is known to incorporate into. However, we found trans-PAO's anti-inflammatory and anti-atherosclerotic effects are muted due to its different structure from cis-PAO.
Collapse
Affiliation(s)
- Ismail Cimen
- Institute for Cardiovascular Prevention, LMU Munich, German Cardiovascular Research Centre (DZHK), Partner Site Munich Heart Alliance Munich, 80336, Germany
| | - Zehra Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey; National Nanotechnology Center, Bilkent University, Ankara, 06800, Turkey; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Asli Ekin Dogan
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey; National Nanotechnology Center, Bilkent University, Ankara, 06800, Turkey; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Asli Dilber Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey; National Nanotechnology Center, Bilkent University, Ankara, 06800, Turkey; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ozlem Tufanli
- New York University, Lagone Medical Center, New York, NY 10016, USA
| | - Umut Inci Onat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey; National Nanotechnology Center, Bilkent University, Ankara, 06800, Turkey
| | | | | | - Christian Weber
- Institute for Cardiovascular Prevention, LMU Munich, German Cardiovascular Research Centre (DZHK), Partner Site Munich Heart Alliance Munich, 80336, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Ebru Erbay
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey; National Nanotechnology Center, Bilkent University, Ankara, 06800, Turkey; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
49
|
Lu Y, Thavarajah T, Gu W, Cai J, Xu Q. Impact of miRNA in Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 38:e159-e170. [PMID: 30354259 DOI: 10.1161/atvbaha.118.310227] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yao Lu
- From the Center of Clinical Pharmacology (Y.L.)
| | - Tanuja Thavarajah
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (T.T., W.G., Q.X.)
| | - Wenduo Gu
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (T.T., W.G., Q.X.)
| | - Jingjing Cai
- Department of Cardiology (J.C., Q.X.), Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingbo Xu
- Department of Cardiology (J.C., Q.X.), Third Xiangya Hospital, Central South University, Changsha, China.,School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (T.T., W.G., Q.X.)
| |
Collapse
|
50
|
Cheng J, Wen J, Wang N, Wang C, Xu Q, Yang Y. Ion Channels and Vascular Diseases. Arterioscler Thromb Vasc Biol 2019; 39:e146-e156. [DOI: 10.1161/atvbaha.119.312004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jun Cheng
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| | - Jing Wen
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| | - Na Wang
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| | - Claire Wang
- Gonville and Caius College, University of Cambridge, United Kingdom (C.W.)
| | - Qingbo Xu
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
- School of Cardiovascular Medicine and Sciences, King’s College London BHF Centre, London, United Kingdom (Q.X.)
| | - Yan Yang
- From the Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China (J.C., J.W., N.W., Q.X., Y.Y.)
| |
Collapse
|