1
|
Li YH, Hu YN, Huang TC, Huang MS, Chung HC. Expression of tumor endothelial marker 1 in cardiac fibroblast contributes to atrial fibrosis in atrial fibrillation. Sci Rep 2025; 15:8685. [PMID: 40082498 PMCID: PMC11906773 DOI: 10.1038/s41598-025-92719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Atrial fibrosis is associated with atrial fibrillation (AF) and stroke. Tumor endothelial marker 1 (TEM1/CD248) is a transmembrane protein that appears in mesenchymal lineage-derived cells only during embryogenesis. Re-upregulation of TEM1 in fibroblasts plays an important role in organ fibrosis. We evaluated TEM1 expression in atrial fibrosis of AF patients and its physiological significance. Left atrial (LA) appendages were collected from 30 AF patients (mean age 64.0 years, 76.7% male) who underwent indicated cardiac surgery. Immunofluorescence staining showed TEM1 expression in the atrial cardiac fibroblasts in AF but not in normal atrial tissue. Western blot could detect TEM1 expression in the LA tissues of all 30 AF patients. There was a positive correlation between the levels of TEM1 expression in western blot with the severity of atrial fibrosis. In animal experiment, angiotensin II (Ang II) infusion induced TEM1 expression and atrial fibrosis in mice. Atrial fibrosis was less severe in TEM1-deficient transgenic mice after Ang II infusion. TEM1 activated cardiac fibroblast and increased its proliferation, survival and migration. Our study results indicate that TEM1 re-expression in cardiac fibroblasts in AF is associated with severity of atrial fibrosis. TEM1 changes the cell behaviors of cardiac fibroblasts and contributes to atrial fibrosis.
Collapse
Affiliation(s)
- Yi-Heng Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Road, Tainan, Taiwan.
| | - Yu-Ning Hu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Chun Huang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Road, Tainan, Taiwan
| | - Mu-Shiang Huang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Road, Tainan, Taiwan
| | - Hsing-Chun Chung
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng Li Road, Tainan, Taiwan
| |
Collapse
|
2
|
Wang Z, Li X, Moura AK, Hu JZ, Wang YT, Zhang Y. Lysosome Functions in Atherosclerosis: A Potential Therapeutic Target. Cells 2025; 14:183. [PMID: 39936975 PMCID: PMC11816498 DOI: 10.3390/cells14030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Lysosomes in mammalian cells are recognized as key digestive organelles, containing a variety of hydrolytic enzymes that enable the processing of both endogenous and exogenous substrates. These organelles digest various macromolecules and recycle them through the autophagy-lysosomal system. Recent research has expanded our understanding of lysosomes, identifying them not only as centers of degradation but also as crucial regulators of nutrient sensing, immunity, secretion, and other vital cellular functions. The lysosomal pathway plays a significant role in vascular regulation and is implicated in diseases such as atherosclerosis. During atherosclerotic plaque formation, macrophages initially engulf large quantities of lipoproteins, triggering pathogenic responses that include lysosomal dysfunction, foam cell formation, and subsequent atherosclerosis development. Lysosomal dysfunction, along with the inefficient degradation of apoptotic cells and the accumulation of modified low-density lipoproteins, negatively impacts atherosclerotic lesion progression. Recent studies have highlighted that lysosomal dysfunction contributes critically to atherosclerosis in a cell- and stage-specific manner. In this review, we discuss the mechanisms of lysosomal biogenesis and its regulatory role in atherosclerotic lesions. Based on these lysosomal functions, we propose that targeting lysosomes could offer a novel therapeutic approach for atherosclerosis, shedding light on the connection between lysosomal dysfunction and disease progression while offering new insights into potential anti-atherosclerotic strategies.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Alexandra K. Moura
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Jenny Z. Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| |
Collapse
|
3
|
Rombouts KB, van Merrienboer TAR, Henneman AA, Knol JC, Pham TV, Piersma SR, Jimenez CR, Bogunovic N, van der Velden J, Yeung KK. Insight in the (Phospho)proteome of Vascular Smooth Muscle Cells Derived From Patients With Abdominal Aortic Aneurysm Reveals Novel Disease Mechanisms. Arterioscler Thromb Vasc Biol 2024; 44:2226-2243. [PMID: 39206541 DOI: 10.1161/atvbaha.124.321087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is characterized by weakening and dilatation of the aortic wall in the abdomen. The aim of this study was to gain insight into cell-specific mechanisms involved in AAA pathophysiology by analyzing the (phospho)proteome of vascular smooth muscle cells derived from patients with AAA compared with those of healthy donors. METHODS A (phospho)proteomics analysis based on tandem mass spectrometry was performed on vascular smooth muscle cells derived from patients with AAA (n=24) and healthy, control individuals (C-SMC, n=8). Following protein identification and quantification using MaxQuant, integrative inferred kinase activity analysis was used to calculate kinase activity scores. RESULTS Expression differences between vascular smooth muscle cells derived from patients with AAA and healthy, control individuals were predominantly found in proteins involved in ECM (extracellular matrix) remodeling (THSD4 [thrombospondin type-1 domain-containing protein 4] and ADAMTS1 [A disintegrin and metalloproteinase with thrombospondin motifs 1]), energy metabolism (GYS1 [glycogen synthase 1] and PCK2 [phosphoenolpyruvate carboxykinase 2, mitochondrial]), and contractility (CACNA2D1 [calcium voltage-dependent channel subunit α-2/δ-1] and TPM1 [tropomyosin α-1 chain]). Phosphorylation patterns on proteins related to actin cytoskeleton organization dominated the phosphoproteome of vascular smooth muscle cells derived from patients with AAA . Besides, phosphorylation changes on proteins related to energy metabolism (GYS1), contractility (PARVA [α-parvin], PPP1R12A [protein phosphatase 1 regulatory subunit 12A], and CALD1 [caldesmon 1]), and intracellular communication (GJA1 [gap junction α-1 protein]) were seen. Kinase activity of NUAK1 (NUAK family SNF1-like kinase 1), FYN (tyrosine-protein kinase Fyn), MAPK7 (mitogen-activated protein kinase 7), and STK10 (serine/threonine kinase 10) was different in vascular smooth muscle cells derived from patients with AAA compared with those from healthy, control individuals. CONCLUSIONS This study revealed changes in expression and phosphorylation levels of proteins involved in various processes responsible for AAA progression and development (eg, energy metabolism, ECM remodeling, actin cytoskeleton organization, contractility, intracellular communication, and cell adhesion). These newly identified proteins, phosphosites, and related kinases provide further insight into the underlying mechanism of vascular smooth muscle cell dysfunction within the aneurysmal wall. Our omics data thereby offer the opportunity to study the relevance, either as drug target or biomarker, of these proteins in AAA development.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proteomics/methods
- Male
- Aged
- Cells, Cultured
- Phosphorylation
- Case-Control Studies
- Proteome
- Female
- Vascular Remodeling
- Middle Aged
- Phosphoproteins/metabolism
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Energy Metabolism
- Tandem Mass Spectrometry
- Signal Transduction
Collapse
Affiliation(s)
- Karlijn B Rombouts
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Tara A R van Merrienboer
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Alex A Henneman
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Jaco C Knol
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Thang V Pham
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Sander R Piersma
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Connie R Jimenez
- Department of Laboratory Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Location VU Medical Center, Cancer Center Amsterdam, the Netherlands (A.A.H., J.C.K., T.V.P., S.R.P., C.R.J.)
| | - Natalija Bogunovic
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location Vrije Universiteit (VU) Medical Center and Academic Medical Centre (AMC), the Netherlands (K.B.R., T.A.R.v.M., N.B., K.K.Y.)
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands (K.B.R., T.A.R.v.M., N.B., J.v.d.V., K.K.Y.)
| |
Collapse
|
4
|
Kishimoto Y, Saita E, Ohmori R, Kondo K, Momiyama Y. High plasma levels of endosialin and cardiovascular events in patients undergoing coronary angiography. Heart Vessels 2024; 39:837-841. [PMID: 38189922 DOI: 10.1007/s00380-023-02353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Endosialin, also known as tumor endothelial marker-1, is a transmembrane glycoprotein that plays a role in inflammation and tumor progression. Endosialin is upregulated in atherosclerotic lesions. To elucidate the association between blood endosialin levels and cardiovascular events, we measured plasma endosialin levels in 389 patients undergoing coronary angiography who were followed up for a mean follow-up of 6.4 ± 4.2 years for cardiovascular events (cardiovascular death, myocardial infarction, unstable angina, heart failure, stroke, or need for coronary revascularization). Of the 389 patients, 223 had coronary artery disease (CAD). No significant difference was found in plasma endosialin levels between patients with and without CAD (median 0.92 vs. 0.92 ng/mL). During the follow-up, cardiovascular events occurred in 62 patients. Compared with patients without events, those with events had higher endosialin levels (1.12 vs. 0.89 ng/mL), and more often had endosialin level of > 1.1 ng/mL (53% vs. 31%) (P < 0.01). A Kaplan-Meier analysis showed lower event-free survival in patients with endosialin > 1.1 ng/mL than those with ≤ 1.1 ng/mL (P < 0.01). In a multivariate Cox regression analysis, endosialin > 1.1 ng/mL was an independent predictor of cardiovascular events (hazard ratio = 2.00; 95%CI = 1.21-3.32; P < 0.01). Thus, high plasma endosialin levels were associated with an increased risk of cardiovascular events in patients undergoing coronary angiography.
Collapse
Affiliation(s)
- Yoshimi Kishimoto
- Department of Food Science and Human Nutrition, Setsunan University, Osaka, Japan
| | - Emi Saita
- Research Institute of Environmental Medicine, Nagoya University, Aichi, Nagoya, Japan
| | - Reiko Ohmori
- Faculty of Regional Design, Utsunomiya University, Tochigi, Utsunomiya, Japan
| | | | - Yukihiko Momiyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan.
| |
Collapse
|
5
|
Hong YK, Lin YC, Cheng TL, Lai CH, Chang YH, Huang YL, Hung CY, Wu CH, Hung KS, Ku YC, Ho YT, Tang MJ, Lin SW, Shi GY, McGrath JA, Wu HL, Hsu CK. TEM1/endosialin/CD248 promotes pathologic scarring and TGF-β activity through its receptor stability in dermal fibroblasts. J Biomed Sci 2024; 31:12. [PMID: 38254097 PMCID: PMC10804696 DOI: 10.1186/s12929-024-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Pathologic scars, including keloids and hypertrophic scars, represent a common form of exaggerated cutaneous scarring that is difficult to prevent or treat effectively. Additionally, the pathobiology of pathologic scars remains poorly understood. We aim at investigating the impact of TEM1 (also known as endosialin or CD248), which is a glycosylated type I transmembrane protein, on development of pathologic scars. METHODS To investigate the expression of TEM1, we utilized immunofluorescence staining, Western blotting, and single-cell RNA-sequencing (scRNA-seq) techniques. We conducted in vitro cell culture experiments and an in vivo stretch-induced scar mouse model to study the involvement of TEM1 in TGF-β-mediated responses in pathologic scars. RESULTS The levels of the protein TEM1 are elevated in both hypertrophic scars and keloids in comparison to normal skin. A re-analysis of scRNA-seq datasets reveals that a major profibrotic subpopulation of keloid and hypertrophic scar fibroblasts greatly expresses TEM1, with expression increasing during fibroblast activation. TEM1 promotes activation, proliferation, and ECM production in human dermal fibroblasts by enhancing TGF-β1 signaling through binding with and stabilizing TGF-β receptors. Global deletion of Tem1 markedly reduces the amount of ECM synthesis and inflammation in a scar in a mouse model of stretch-induced pathologic scarring. The intralesional administration of ontuxizumab, a humanized IgG monoclonal antibody targeting TEM1, significantly decreased both the size and collagen density of keloids. CONCLUSIONS Our data indicate that TEM1 plays a role in pathologic scarring, with its synergistic effect on the TGF-β signaling contributing to dermal fibroblast activation. Targeting TEM1 may represent a novel therapeutic approach in reducing the morbidity of pathologic scars.
Collapse
Affiliation(s)
- Yi-Kai Hong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Lin
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Lin Cheng
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Professional Studies, National Pingtung University of Science Technology, Pingtung, Taiwan
| | - Chao-Han Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Han Chang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Lun Huang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yi Hung
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chen-Han Wu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Shu Hung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chu Ku
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ting Ho
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ming-Jer Tang
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University Hospital, Taipei, Taiwan
| | - Guey-Yueh Shi
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Hua-Lin Wu
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Zheng C, Chen S, Deng YY, Qian XP, Chen YY, Hong CZ, Zeng YF, Li QM, Pan LH, Luo JP, Li XY, Zha XQ. Purification, structural characteristics and anti-atherosclerosis activity of a novel green tea polysaccharide. Int J Biol Macromol 2024; 254:127705. [PMID: 37913884 DOI: 10.1016/j.ijbiomac.2023.127705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/01/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
A new homogeneous polysaccharide (TPS3A) was isolated and purified from Tianzhu Xianyue fried green tea by DEAE-52 cellulose and Sephacryl S-500 column chromatography. Structural characterization indicated that TPS3A mainly consisted of arabinose, galactose, galacturonic acid and rhamnose in a molar ratio of 5.84: 4.15: 2.06: 1, with an average molecular weight of 1.596 × 104 kDa. The structure of TPS3A was characterized as a repeating unit consisting of 1,3-Galp, 1,4-Galp, 1,3,6-Galp, 1,3-Araf, 1,5-Araf, 1,2,4-Rhap and 1-GalpA, with two branches on the C6 of 1,3,6-Galp and C2 of 1,2,4-Rhap, respectively. To investigate the preventive effects of TPS3A on atherosclerosis, TPS3A was administered orally to ApoE-deficient (ApoE-/-) mice. Results revealed that TPS3A intervention could effectively delay the atherosclerotic plaque progression, modulate dyslipidemia, and reduce the transformation of vascular smooth muscle cells (VSMCs) from contractile phenotype to synthetic phenotype by activating the expression of contractile marker alpha-smooth muscle actin (α-SMA) and inhibiting the expression of synthetic marker osteopontin (OPN) in high-fat diet-induced ApoE-/- mice. Our findings suggested that TPS3A markedly alleviated atherosclerosis by regulating dyslipidemia and phenotypic transition of VSMCs, and might be used as a novel functional ingredient to promote cardiovascular health.
Collapse
Affiliation(s)
- Chao Zheng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Shun Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Yuan-Yuan Deng
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, People's Republic of China
| | - Xin-Ping Qian
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Cheng-Zhi Hong
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ya-Fan Zeng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
7
|
Benedet PO, Safikhan NS, Pereira MJ, Lum BM, Botezelli JD, Kuo CH, Wu HL, Craddock BP, Miller WT, Eriksson JW, Yue JTY, Conway EM. CD248 promotes insulin resistance by binding to the insulin receptor and dampening its insulin-induced autophosphorylation. EBioMedicine 2024; 99:104906. [PMID: 38061240 PMCID: PMC10750038 DOI: 10.1016/j.ebiom.2023.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND In spite of new treatments, the incidence of type 2 diabetes (T2D) and its morbidities continue to rise. The key feature of T2D is resistance of adipose tissue and other organs to insulin. Approaches to overcome insulin resistance are limited due to a poor understanding of the mechanisms and inaccessibility of drugs to relevant intracellular targets. We previously showed in mice and humans that CD248, a pre/adipocyte cell surface glycoprotein, acts as an adipose tissue sensor that mediates the transition from healthy to unhealthy adipose, thus promoting insulin resistance. METHODS Molecular mechanisms by which CD248 regulates insulin signaling were explored using in vivo insulin clamp studies and biochemical analyses of cells/tissues from CD248 knockout (KO) and wild-type (WT) mice with diet-induced insulin resistance. Findings were validated with human adipose tissue specimens. FINDINGS Genetic deletion of CD248 in mice, overcame diet-induced insulin resistance with improvements in glucose uptake and lipolysis in white adipose tissue depots, effects paralleled by increased adipose/adipocyte GLUT4, phosphorylated AKT and GSK3β, and reduced ATGL. The insulin resistance of the WT mice could be attributed to direct interaction of the extracellular domains of CD248 and the insulin receptor (IR), with CD248 acting to block insulin binding to the IR. This resulted in dampened insulin-mediated autophosphorylation of the IR, with reduced downstream signaling/activation of intracellular events necessary for glucose and lipid homeostasis. INTERPRETATION Our discovery of a cell-surface CD248-IR complex that is accessible to pharmacologic intervention, opens research avenues toward development of new agents to prevent/reverse insulin resistance. FUNDING Funded by Canadian Institutes of Health Research (CIHR), Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundations for Innovation (CFI), the Swedish Diabetes Foundation, Family Ernfors Foundation and Novo Nordisk Foundation.
Collapse
Affiliation(s)
- Patricia O Benedet
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Nooshin S Safikhan
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetology & Metabolism, Uppsala University, Sweden
| | - Bryan M Lum
- Department of Physiology, Alberta Diabetes Institute and Group on Molecular and Cell Biology of Lipids, University of Alberta, Canada
| | - José Diego Botezelli
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Barbara P Craddock
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA; Veterans Affairs Medical Center, Northport, NY, USA
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetology & Metabolism, Uppsala University, Sweden
| | - Jessica T Y Yue
- Department of Physiology, Alberta Diabetes Institute and Group on Molecular and Cell Biology of Lipids, University of Alberta, Canada
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Medicine and Pathology and Laboratory Medicine, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
8
|
Liu H, Zhang J, Xue Z, Chang M, Feng X, Cai Y, Bai L, Wang W, Liu E, Zhao S, Wang R. Deficiency of protein inhibitor of activated STAT3 exacerbates atherosclerosis by modulating VSMC phenotypic switching. Atherosclerosis 2023; 380:117195. [PMID: 37586220 DOI: 10.1016/j.atherosclerosis.2023.117195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND AND AIMS Phenotypic switching of vascular smooth muscle cells (VSMCs) plays an essential role in the development of atherosclerosis. Protein inhibitor of activated STAT (Pias) regulates VSMCs phenotype via acting as sumo E3 ligase to promote protein sumoylation. Our previous study indicated that Pias3 expression decreased in atherosclerotic lesions. Therefore, this study aimed to explore the role of Pias3 on VSMCs phenotype switching during atherosclerosis. METHODS ApoE-/- and ApoE-/-Pias3-/- double-deficient mice were fed with high-fat/high-cholesterol diet to induce atherosclerosis. Aorta tissues and primary VSMCs were collected to assess plaque formation and VSMCs phenotype. In vitro, Pias3 was overexpressed in A7r5, a VSMCs cell line, by transfection with Pias3 plasmid. Real-time quantitative PCR, immunoblotting, immunoprecipitation, were used to analyze the effect of Pias3 on VSMCs phenotypic switching. RESULTS Pias3 deficiency significantly exacerbated atherosclerotic plaque formation and promoted VSMCs phenotypic switching to a synthetic state within lesion. In vitro, overexpressing Pias3 in VSMCs increased the expression of contractile markers (myosin heavy chain 11, calponin 1), while it decreased the level of synthetic marker (vimentin). Additionally, Pias3 overexpression blocked PDGF-BB-induced VSMCs proliferation and migration. Immunoprecipitation and mass spectrometry results showed that Pias3 enhanced sumoylation and ubiquitination of vimentin, and shortened its half-life. Moreover, the ubiquitination level of vimentin was impaired by 2-D08, a sumoylation inhibitor. This suggests that Pias3 might accelerate the ubiquitination-degradation of vimentin by promoting its sumoylation. CONCLUSIONS These results indicate that Pias3 might ameliorate atherosclerosis progression by suppressing VSMCs phenotypic switching and reducing vimentin protein stability.
Collapse
Affiliation(s)
- Haole Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jingyi Zhang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ziyang Xue
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingke Chang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xinxin Feng
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yifan Cai
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Liang Bai
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Weirong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Enqi Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Rong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
9
|
Krishnan S, Manoharan J, Wang H, Gupta D, Fatima S, Yu Y, Mathew A, Li Z, Kohli S, Schwab C, Körner A, Mertens PR, Nawroth P, Shahzad K, Naumann M, Isermann B, Biemann R. CD248 induces a maladaptive unfolded protein response in diabetic kidney disease. Kidney Int 2023; 103:304-319. [PMID: 36309126 DOI: 10.1016/j.kint.2022.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
Dysfunction of mesangial cells plays a major role in the pathogenesis of diabetic kidney disease (DKD), the leading cause of kidney failure. However, the underlying molecular mechanisms are incompletely understood. By unbiased gene expression analysis of glucose-exposed mesangial cells, we identified the transmembrane receptor CD248 as the most upregulated gene, and the maladaptive unfolded protein response (UPR) as one of the most stimulated pathways. Upregulation of CD248 was further confirmed in glucose-stressed mesangial cells in vitro, in kidney glomeruli isolated from diabetic mice (streptozotocin; STZ and db/db models, representing type 1 and type 2 diabetes mellitus, respectively) in vivo, and in glomerular kidney sections from patients with DKD. Time course analysis revealed that glomerular CD248 induction precedes the onset of albuminuria, mesangial matrix expansion and maladaptive UPR activation (hallmarked by transcription factor C/EBP homologous protein (CHOP) induction) but is paralleled by loss of the adaptive UPR regulator spliced X box binding protein (XBP1). Mechanistically, CD248 promoted maladaptive UPR signaling via inhibition of the inositol requiring enzyme 1α (IRE1α)-mediated transcription factor XBP1 splicing in vivo and in vitro. CD248 induced a multiprotein complex comprising heat shock protein 90, BH3 interacting domain death agonist (BID) and IRE1α, in which BID impedes IRE1α-mediated XBP1 splicing and induced CHOP mediated maladaptive UPR signaling. While CD248 knockout ameliorated DKD-associated glomerular dysfunction and reverses maladaptive unfolded protein response signaling, concomitant XBP1 deficiency abolished the protective effect in diabetic CD248 knockout mice, supporting a functional interaction of CD248 and XBP1 in vivo. Hence, CD248 is a novel mesangial cell receptor inducing maladaptive UPR signaling in DKD.
Collapse
Affiliation(s)
- Shruthi Krishnan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Hongjie Wang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yanfei Yu
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Zhen Li
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Constantin Schwab
- Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany
| | - Antje Körner
- Leipzig University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
10
|
Patrick K, Tian X, Cartwright D, Heising S, Glover MS, Northall EN, Cazares L, Hess S, Baker D, Church C, Davies G, Lavery G, Naylor AJ. Sex-specific effects of CD248 on metabolism and the adipose tissue lipidome. PLoS One 2023; 18:e0284012. [PMID: 37115796 PMCID: PMC10146461 DOI: 10.1371/journal.pone.0284012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Cd248 has recently been associated with adipose tissue physiology, demonstrated by reduced weight gain in high fat diet-fed mice with genetic deletion of Cd248 relative to controls. Here we set out to determine the metabolic consequences of loss of Cd248. Strikingly, we find these to be sex specific; By subjecting Cd248-/- and Cd248+/+ mice to a high fat diet and indirect calorimetry study, we identified that only male Cd248-/- mice show reduced weight gain compared to littermate control wildtype mice. In addition, male (but not female) mice showed a lower respiratory exchange ratio on both chow and high fat diets, indicating a predisposition to metabolise lipid. Lipidomic studies on specific fat depots found reduced triglyceride and diglyceride deposition in male Cd248-/- mice, and this was supported by reduced expression of lipogenic and adipogenic genes. Finally, metabolomic analysis of isolated, differentiated preadipocytes found alterations in metabolic pathways associated with lipid deposition in cells isolated from male, but not female, Cd248-/- mice. Overall, our results highlight the importance of sex controls in animal studies and point to a role for Cd248 in sex- and depot-specific regulation of lipid metabolism.
Collapse
Affiliation(s)
- Kieran Patrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Xiang Tian
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States of America
| | - David Cartwright
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Silke Heising
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Matthew S Glover
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States of America
| | - Ellie N Northall
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Lisa Cazares
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States of America
| | - Sonja Hess
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States of America
| | - David Baker
- BioPharmaceuticals R&D, Cardiovascular, Renal and Metabolism (CVRM), Cambridge, United Kingdom
| | - Christopher Church
- BioPharmaceuticals R&D, Cardiovascular, Renal and Metabolism (CVRM), Cambridge, United Kingdom
| | - Graeme Davies
- BioPharmaceuticals R&D, Cardiovascular, Renal and Metabolism (CVRM), Cambridge, United Kingdom
| | - Gareth Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Amy J Naylor
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Li X, Guo R, Yang S, Zhang X, Yin X, Teng L, Zhang S, Ji G, Li H. Cd248a and Cd248b in zebrafish participate in innate immune responses. Front Immunol 2022; 13:970626. [PMID: 36119065 PMCID: PMC9471012 DOI: 10.3389/fimmu.2022.970626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
CD248, also known as endosialin or tumor endothelial marker 1, is a type I single transmembrane glycoprotein. CD248 has been demonstrated to be upregulated in cancers, tumors and many fibrotic diseases in human and mice, such as liver damage, pulmonary fibrosis, renal fibrosis, arthritis and tumor neovascularization. However, no definite CD248 orthologs in fish have been documented so far. In this study, we report the identification of cd248a and cd248b in the zebrafish. Both the phylogenetic analysis and the conserved synteny strongly suggested that zebrafish cd248a and cd248b are orthologs of the human CD248. Both cd248a and cd248b exhibited similar and dynamic expression pattern in early development, both genes had weak maternal expression, the zygotic transcripts were first seen in anterior somites and head mesenchyme, then shifted to eyes and head mesenchyme, later expanded to branchial arches, and gradually declined with development. The expression profiles of cd248a and cd248b were upregulated upon LPS (Lipopolysaccharide) challenge. Both Cd248a protein and Cd248b protein were localized on the cell membrane and cytoplasm, and overexpression of cd248a and cd248b induced the expression of pro-inflammatory cytokines, in vitro and in vivo. Moreover, deficiency of cd248a or cd248b both downregulated the expression of pro-inflammatory cytokines and upregulated anti-inflammatory cytokine. Additionally, loss of cd248a or cd248b both downregulated the expression of pro-inflammatory cytokines after LPS treatment. Taken together, these results indicated that cd248a and cd248b in zebrafish were involved in immune response and would provide further information to understand functions of Cd248 protein in innate immunity of fish.
Collapse
Affiliation(s)
- Xianpeng Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Ruitong Guo
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shuaiqi Yang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiangmin Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiu Yin
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lei Teng
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shicui Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Guangdong Ji
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- *Correspondence: Hongyan Li, ; Guangdong Ji,
| | - Hongyan Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Hongyan Li, ; Guangdong Ji,
| |
Collapse
|
12
|
Tumor endothelial marker 1 is upregulated in heart after cardiac injury and participates in cardiac remodeling. Sci Rep 2022; 12:10532. [PMID: 35732643 PMCID: PMC9218118 DOI: 10.1038/s41598-022-14567-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor endothelial marker 1 (TEM1) is a transmembrane glycoprotein that appears on mesenchymal lineage-derived cells during embryogenesis, but its expression greatly reduces after birth. Re-upregulation of TEM1 is found in tumor angiogenesis, organ fibrosis and wound healing indicating its potential role in tissue remodeling and repair. The expression level and function of TEM1 in adult heart are unknown. In explanted hearts from heart failure (HF) patients received cardiac transplantation, immunofluorescence staining showed TEM1 was expressed in cardiomyocytes (CMs) and cardiac fibroblasts. Bioinformatics analysis showed TEM1 upregulation in mouse heart after coronary ligation. Cardiac TEM1 expression was reconfirmed in mouse HF induced by coronary ligation or doxorubicin injection. TEM1 expression increased in cultured CMs stimulated with mechanical stretch, doxorubicin and hypoxia. Further studies showed recombinant TEM1 (rTEM1) was a functional protein that influenced cell behaviors of CMs. It directly activated Erk and Akt through interaction with PDGF receptor. TEM1lacZ/lacZ mice had less collagen deposition and worse cardiac function than wild type mice. These results indicate that TEM1 expression increases in the heart after cardiac injury and works as a functional protein that participates in cardiac remodeling.
Collapse
|
13
|
Li X, Yang Y, Wang Z, Jiang S, Meng Y, Song X, Zhao L, Zou L, Li M, Yu T. Targeting non-coding RNAs in unstable atherosclerotic plaques: Mechanism, regulation, possibilities, and limitations. Int J Biol Sci 2021; 17:3413-3427. [PMID: 34512156 PMCID: PMC8416736 DOI: 10.7150/ijbs.62506] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) caused by arteriosclerosis are the leading cause of death and disability worldwide. In the late stages of atherosclerosis, the atherosclerotic plaque gradually expands in the blood vessels, resulting in vascular stenosis. When the unstable plaque ruptures and falls off, it blocks the vessel causing vascular thrombosis, leading to strokes, myocardial infarctions, and a series of other serious diseases that endanger people's lives. Therefore, regulating plaque stability is the main means used to address the high mortality associated with CVDs. The progression of the atherosclerotic plaque is a complex integration of vascular cell apoptosis, lipid metabolism disorders, inflammatory cell infiltration, vascular smooth muscle cell migration, and neovascular infiltration. More recently, emerging evidence has demonstrated that non-coding RNAs (ncRNAs) play a significant role in regulating the pathophysiological process of atherosclerotic plaque formation by affecting the biological functions of the vasculature and its associated cells. The purpose of this paper is to comprehensively review the regulatory mechanisms involved in the susceptibility of atherosclerotic plaque rupture, discuss the limitations of current approaches to treat plaque instability, and highlight the potential clinical value of ncRNAs as novel diagnostic biomarkers and potential therapeutic strategies to improve plaque stability and reduce the risk of major cardiovascular events.
Collapse
Affiliation(s)
- Xiaoxin Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Yanyan Yang
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Liang Zhao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lu Zou
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Min Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Tao Yu
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
14
|
Chen MY, Ke JF, Zhang ZH, Li MF, Wang JW, Lu JX, Xu PP, Xia XT, Guo MG, Li LX. Deletion of Fam172a accelerates advanced atherosclerosis and induces plaque instability. Atherosclerosis 2021; 333:39-47. [PMID: 34425526 DOI: 10.1016/j.atherosclerosis.2021.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIMS Vascular smooth muscle cells (VSMCs) play a critical role in atherosclerosis. The family with sequence similarity 172, member A (FAM172A) is a novel protein and its role in atherosclerosis has not been explored so far. Therefore, our aim is to investigate whether FAM172A affects atheroprogression through VSMCs and its possible mechanism. METHODS Fam172a-/- mice were generated using CRISPR/Cas9 technology. Fam172a-/- and Apoe-/- double knockout (Fam172a-/-/Apoe-/-) mice and their littermates (Fam172a+/+/Apoe-/-) were fed with a Western diet for 18 weeks to induce advanced atherosclerotic lesions. The role and mechanism of Fam172a in phenotypic switching, proliferation and migration of VSMCs were investigated through in vivo and in vitro experiments. RESULTS Compared with Fam172a+/+/Apoe-/- mice, Fam172a-/-/Apoe-/- mice showed increased atherosclerotic lesion size and plaque instability such as increased necrotic core area and decreased fiber deposition. Additionally, knockout of Fam172a promoted expression of CD68 and KLF4 and decreased expression of α-SMA and SM22α in atherosclerotic lesions. Furthermore, overexpression of Fam172a promoted Movas cells proliferation and migration, increased expression of α-SMA and SM22α and decreased expression of KLF4. Meanwhile, knockdown of Fam172a in Movas cells and deletion of Fam172a in VSMCs from Fam172a-/-/Apoe-/- mice showed opposite phenotypes. Similar phenotypes were also observed in human aortic smooth muscle cells. CONCLUSIONS Our results provide the first direct evidence that Fam172a has a protective role in advanced atherosclerosis by increasing atherosclerotic plaque stability and inhibiting transition of VSMCs from contractile to synthetic phenotype, which may be through KLF4-dependent pathway.
Collapse
Affiliation(s)
- Ming-Yun Chen
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, 200233, Shanghai, China; Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Jiang-Feng Ke
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, 200233, Shanghai, China
| | - Zhi-Hui Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, 200233, Shanghai, China
| | - Mei-Fang Li
- Department of Emergency, Shanghai Jiao Tong University Affiliated Sixth People's Hospital; 600 Yishan Road, Shanghai, 200233, China
| | - Jun-Wei Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, 200233, Shanghai, China
| | - Jun-Xi Lu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, 200233, Shanghai, China
| | - Pei-Pei Xu
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xiao-Tian Xia
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Ming-Gao Guo
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Lian-Xi Li
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, 200233, Shanghai, China.
| |
Collapse
|
15
|
Kapopara PR, Safikhan NS, Huang JL, Meixner SC, Gonzalez K, Loghmani H, Ruf W, Mast AE, Lei V, Pryzdial EL, Conway EM. CD248 enhances tissue factor procoagulant function, promoting arterial and venous thrombosis in mouse models. J Thromb Haemost 2021; 19:1932-1947. [PMID: 33830628 PMCID: PMC8571649 DOI: 10.1111/jth.15338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND CD248 is a pro-inflammatory, transmembrane glycoprotein expressed by vascular smooth muscle cells (VSMC), monocytes/macrophages, and other cells of mesenchymal origin. Its distribution and properties are reminiscent of those of the initiator of coagulation, tissue factor (TF). OBJECTIVE We examined whether CD248 also participates in thrombosis. METHODS We evaluated the role of CD248 in coagulation using mouse models of vascular injury, and by assessing its functional interaction with the TF-factor VIIa (FVIIa)-factor X (FX) complex. RESULTS The time to ferric chloride-induced occlusion of the carotid artery in CD248 knockout (KO) mice was significantly longer than in wild-type (WT) mice. In an inferior vena cava (IVC) stenosis model of thrombosis, lack of CD248 conferred relative resistance to thrombus formation compared to WT mice. Levels of circulating cells and coagulation factors, prothrombin time, activated partial thromboplastin time, and tail bleeding times were similar in both groups. Proximity ligation assays revealed that TF and CD248 are <40 nm apart, suggesting a potential functional relationship. Expression of CD248 by murine and human VSMCs, and by a monocytic cell line, significantly augmented TF-FVIIa-mediated activation of FX, which was not due to differential expression or encryption of TF, altered exposure of phosphatidylserine or differences in tissue factor pathway inhibitor expression. Rather, conformation-specific antibodies showed that CD248 induces allosteric changes in the TF-FVIIa-FX complex that facilitates FX activation by TF-FVIIa. CONCLUSION CD248 is a newly uncovered protein partner and potential therapeutic target in the TF-FVIIa-FX macromolecular complex that modulates coagulation.
Collapse
Affiliation(s)
- Piyushkumar R. Kapopara
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nooshin S. Safikhan
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenny L. Huang
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott C. Meixner
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Canadian Blood Services, Centre for Innovation, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Gonzalez
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Canadian Blood Services, Centre for Innovation, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Houra Loghmani
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfram Ruf
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Alan E. Mast
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
| | - Victor Lei
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward L.G. Pryzdial
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Canadian Blood Services, Centre for Innovation, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward M. Conway
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Zhang S, Xu M, Zhang W, Liu C, Chen S. Natural Polyphenols in Metabolic Syndrome: Protective Mechanisms and Clinical Applications. Int J Mol Sci 2021; 22:ijms22116110. [PMID: 34204038 PMCID: PMC8201163 DOI: 10.3390/ijms22116110] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) is a chronic disease, including abdominal obesity, dyslipidemia, hyperglycemia, and hypertension. It should be noted that the occurrence of MetS is closely related to oxidative stress-induced mitochondrial dysfunction, ectopic fat accumulation, and the impairment of the antioxidant system, which in turn further aggravates the intracellular oxidative imbalance and inflammatory response. As enriched anti-inflammatory and antioxidant components in plants, natural polyphenols exhibit beneficial effects, including improving liver fat accumulation and dyslipidemia, reducing blood pressure. Hence, they are expected to be useful in the prevention and management of MetS. At present, epidemiological studies indicate a negative correlation between polyphenol intake and MetS incidence. In this review, we summarized and discussed the most promising natural polyphenols (including flavonoid and non-flavonoid drugs) in the precaution and treatment of MetS, including their anti-inflammatory and antioxidant properties, as well as their regulatory functions involved in glycolipid homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Siyu Chen
- Correspondence: ; Tel./Fax: +86-25-86185645
| |
Collapse
|
17
|
Cheng TL, Lin YS, Hong YK, Ma CY, Tsai HW, Shi GY, Wu HL, Lai CH. Role of tumor endothelial marker 1 (Endosialin/CD248) lectin-like domain in lipopolysaccharide-induced macrophage activation and sepsis in mice. Transl Res 2021; 232:150-162. [PMID: 33737161 DOI: 10.1016/j.trsl.2021.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Deleterious hyper-inflammation resulting from macrophage activation may aggravate sepsis and lead to lethality. Tumor endothelial marker 1 (TEM1), a type I transmembrane glycoprotein containing six functional domains, has been implicated in cancer and chronic sterile inflammatory disorders. However, the role of TEM1 in acute sepsis remains to be determined. Herein we explored the functional significance of the TEM1 lectin-like domain (TEM1D1) in monocyte/macrophage activation and sepsis using TEM1D1-deleted (TEM1LeD/LeD) transgenic mice and recombinant TEM1D1 (rTEM1D1) protein. Under stimulation with lipopolysaccharides (LPS) or several other toll-like receptor agonists, TEM1LeD/LeD macrophages produced lower levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 than wild-type TEM1wt/wt macrophages. Compared with TEM1wt/wt macrophages, LPS-macrophage binding and intracellular mitogen-activated protein kinase (MAPK)/nuclear factor (NF)-κB activation were suppressed in TEM1LeD/LeD macrophages. In vivo, TEM1D1 deletion improved survival in LPS-challenged mice with reduction of circulating TNF-α and IL-6 and alleviation of lung injury and pulmonary leukocyte accumulation. In contrast, rTEM1D1 could bind to LPS and markedly suppress LPS-macrophage binding, MAPK/NF-κB signaling in macrophages and proinflammatory cytokine production. Treatment with rTEM1D1 improved survival and attenuated circulating TNF-α and IL-6, lung injury and pulmonary accumulation of leukocytes in LPS-challenged mice. These findings demonstrated differential roles for the TEM1 lectin-like domain in macrophages and soluble TEM1 lectin-like domain in sepsis. TEM1 in macrophages mediates LPS-induced inflammation via its lectin-like domain, whereas rTEM1D1 interferes with LPS-induced macrophage activation and sepsis.
Collapse
Affiliation(s)
- Tsung-Lin Cheng
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Orthopedic Research Center, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Syuan Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Kai Hong
- Department of Dermatology, National Cheng Kung University hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yuan Ma
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Guey-Yueh Shi
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Han Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
18
|
Vesprey A, Suh ES, Aytürk DG, Yang X, Rogers M, Sosa B, Niu Y, Kalajzic I, Ivashkiv LB, Bostrom MPG, Ayturk UM. Tmem100- and Acta2-Lineage Cells Contribute to Implant Osseointegration in a Mouse Model. J Bone Miner Res 2021; 36:1000-1011. [PMID: 33528844 PMCID: PMC8715516 DOI: 10.1002/jbmr.4264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/11/2022]
Abstract
Metal implants are commonly used in orthopedic surgery. The mechanical stability and longevity of implants depend on adequate bone deposition along the implant surface. The cellular and molecular mechanisms underlying peri-implant bone formation (ie, osseointegration) are incompletely understood. Herein, our goal was to determine the specific bone marrow stromal cell populations that contribute to bone formation around metal implants. To do this, we utilized a mouse tibial implant model that is clinically representative of human joint replacement procedures. Using a lineage-tracing approach, we found that both Acta2.creERT2 and Tmem100.creERT2 lineage cells are involved in peri-implant bone formation, and Pdgfra- and Ly6a/Sca1-expressing stromal cells (PαS cells) are highly enriched in both lineages. Single-cell RNA-seq analysis indicated that PαS cells are quiescent in uninjured bone tissue; however, they express markers of proliferation and osteogenic differentiation shortly after implantation surgery. Our findings indicate that PαS cells are mobilized to repair bone tissue and participate in implant osseointegration after surgery. Biologic therapies targeting PαS cells might improve osseointegration in patients undergoing orthopedic procedures. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | | | | | - Xu Yang
- Hospital for Special Surgery, New York, NY, USA
| | | | | | - Yingzhen Niu
- Hospital for Special Surgery, New York, NY, USA
- Department of Joint Surgery, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, China
| | - Ivo Kalajzic
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| | - Lionel B Ivashkiv
- Hospital for Special Surgery, New York, NY, USA
- Departments of Medicine and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Mathias PG Bostrom
- Hospital for Special Surgery, New York, NY, USA
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Ugur M Ayturk
- Hospital for Special Surgery, New York, NY, USA
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
19
|
Armitage EG, Barnes A, Patrick K, Bechar J, Harrison MJ, Lavery GG, Rainger GE, Buckley CD, Loftus NJ, Wilson ID, Naylor AJ. Metabolic consequences for mice lacking Endosialin: LC-MS/MS-based metabolic phenotyping of serum from C56Bl/6J Control and CD248 knock-out mice. Metabolomics 2021; 17:14. [PMID: 33462674 PMCID: PMC7813710 DOI: 10.1007/s11306-020-01764-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The Endosialin/CD248/TEM1 protein is expressed in adipose tissue and its expression increases with obesity. Recently, genetic deletion of CD248 has been shown to protect mice against atherosclerosis on a high fat diet. OBJECTIVES We investigated the effect of high fat diet feeding on visceral fat pads and circulating lipid profiles in CD248 knockout mice compared to controls. METHODS From 10 weeks old, CD248-/- and +/+ mice were fed either chow (normal) diet or a high fat diet for 13 weeks. After 13 weeks the metabolic profiles and relative quantities of circulating lipid species were assessed using ultra high performance liquid chromatography-quadrupole time-of flight mass spectrometry (UHPLC-MS) with high resolution accurate mass (HRAM) capability. RESULTS We demonstrate a specific reduction in the size of the perirenal fat pad in CD248-/- mice compared to CD248+/+, despite similar food intake. More strikingly, we identify significant, diet-dependent differences in the serum metabolic phenotypes of CD248 null compared to age and sex-matched wildtype control mice. Generalised protection from HFD-induced lipid accumulation was observed in CD248 null mice compared to wildtype, with particular reduction noted in the lysophosphatidylcholines, phosphatidylcholines, cholesterol and carnitine. CONCLUSIONS Overall these results show a clear and protective metabolic consequence of CD248 deletion in mice, implicating CD248 in lipid metabolism or trafficking and opening new avenues for further investigation using anti-CD248 targeting agents.
Collapse
Affiliation(s)
| | | | - Kieran Patrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Janak Bechar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Matthew J Harrison
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - G Ed Rainger
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Christopher D Buckley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | | | - Ian D Wilson
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, UK
| | - Amy J Naylor
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
20
|
Ansari SA, Keshava S, Pendurthi UR, Rao LVM. Oxidative Stress Product, 4-Hydroxy-2-Nonenal, Induces the Release of Tissue Factor-Positive Microvesicles From Perivascular Cells Into Circulation. Arterioscler Thromb Vasc Biol 2021; 41:250-265. [PMID: 33028097 PMCID: PMC7752210 DOI: 10.1161/atvbaha.120.315187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE TF (Tissue factor) plays a key role in hemostasis, but an aberrant expression of TF leads to thrombosis. The objective of the present study is to investigate the effect of 4-hydroxy-2-nonenal (HNE), the most stable and major oxidant produced in various disease conditions, on the release of TF+ microvesicles into the circulation, identify the source of TF+ microvesicles origin, and assess their effect on intravascular coagulation and inflammation. Approach and Results: C57BL/6J mice were administered with HNE intraperitoneally, and the release of TF+ microvesicles into circulation was evaluated using coagulation assays and nanoparticle tracking analysis. Various cell-specific markers were used to identify the cellular source of TF+ microvesicles. Vascular permeability was analyzed by the extravasation of Evans blue dye or fluorescein dextran. HNE administration to mice markedly increased the levels of TF+ microvesicles and thrombin generation in the circulation. HNE administration also increased the number of neutrophils in the lungs and elevated the levels of inflammatory cytokines in plasma. Administration of an anti-TF antibody blocked not only HNE-induced thrombin generation but also HNE-induced inflammation. Confocal microscopy and immunoblotting studies showed that HNE does not induce TF expression either in vascular endothelium or circulating monocytes. Microvesicles harvested from HNE-administered mice stained positively with CD248 and α-smooth muscle actin, the markers that are specific to perivascular cells. HNE was found to destabilize endothelial cell barrier integrity. CONCLUSIONS HNE promotes the release of TF+ microvesicles from perivascular cells into the circulation. HNE-induced increased TF activity contributes to intravascular coagulation and inflammation.
Collapse
Affiliation(s)
- Shabbir A. Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Usha R. Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - L. Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| |
Collapse
|
21
|
Truong R, Thankam FG, Agrawal DK. Immunological mechanisms underlying sterile inflammation in the pathogenesis of atherosclerosis: potential sites for intervention. Expert Rev Clin Immunol 2020; 17:37-50. [PMID: 33280442 DOI: 10.1080/1744666x.2020.1860757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Innate and adaptive immunity play a critical role in the underlying pathological mechanisms of atherosclerosis and potential target sites of sterile inflammation open opportunities to develop novel therapeutics. In response to oxidized LDL in the intimal layer, T cell subsets are recruited and activated at the site of atheroma to upregulate pro-atherogenic cytokines which exacerbate plaque formation instability.Areas covered: A systematic search of PubMed and the Web of Science was performed between January 2001- September 2020 and relevant articles in sterile inflammation and atherosclerosis were critically reviewed. The original information was collected on the interconnection between danger associated molecular patterns (DAMPs) as the mediators of sterile inflammation and the receptor complex of CD36-TLR4-TLR6 that primes and activates inflammasomes in the pathophysiology of atherosclerosis. Mediators of sterile inflammation are identified to target therapeutic strategies in the management of atherosclerosis.Expert opinion: Sterile inflammation via NLRP3 inflammasome is perpetuated by the activation of IL-1β and IL-18 and induction of pyroptosis resulting in the release of additional inflammatory cytokines and DAMPs. Challenges with current inhibitors of the NLRP3 inflammasome lie in the specificity, stability, and efficacy in targeting the NLRP3 inflammasome constituents without ameliorating upstream or downstream responses necessary for survival.
Collapse
Affiliation(s)
- Roland Truong
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
22
|
The Emerging Role of Microbiota and Microbiome in Pancreatic Ductal Adenocarcinoma. Biomedicines 2020; 8:biomedicines8120565. [PMID: 33287196 PMCID: PMC7761686 DOI: 10.3390/biomedicines8120565] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignant tumors due to the absence of biomarkers for early-stage detection and poor response to therapy. Since mounting evidence supports the role of microbiota composition in tumorigenesis and cancer treatment, the link between microbiome and PDAC has been described. In this review, we summarize the current knowledge regarding the impact of the gut and oral microbiome on the risk of PDAC development. Microenvironment-driven therapy and immune system interactions are also discussed. More importantly, we provide an overview of the clinical trials evaluating the microbiota role in the risk, prognosis, and treatment of patients suffering from PDAC and solid tumors. According to the research findings, immune tolerance might result from the microbiota-derived remodeling of pancreatic tumor microenvironment. Thus, microbiome profiling and targeting represent the potential trend to enhance antitumor immunity and improve the efficacy of PDAC treatment.
Collapse
|
23
|
Heidary Moghaddam R, Samimi Z, Moradi SZ, Little PJ, Xu S, Farzaei MH. Naringenin and naringin in cardiovascular disease prevention: A preclinical review. Eur J Pharmacol 2020; 887:173535. [DOI: 10.1016/j.ejphar.2020.173535] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022]
|
24
|
Bedoui Y, Lebeau G, Guillot X, Dargai F, Guiraud P, Neal JW, Ralandison S, Gasque P. Emerging Roles of Perivascular Mesenchymal Stem Cells in Synovial Joint Inflammation. J Neuroimmune Pharmacol 2020; 15:838-851. [PMID: 32964324 DOI: 10.1007/s11481-020-09958-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
In contrast to the significant advances in our understanding of the mesenchymal stem cell (MSC) populations in bone marrow (BM), little is known about the MSCs that are resident in the synovial joint and their possible roles in the tissue homeostasis, chronic inflammation as well as in repair. Neural crest is a transient embryonic structure, generating multipotential MSC capable of migrating along peripheral nerves and blood vessels to colonize most tissue types. In adult, these MSC can provide functional stromal support as a stem cell niche for lymphocyte progenitors for instance in the BM and the thymus. Critically, MSC have major immunoregulatory activities to control adverse inflammation and infection. These MSC will remain associated to vessels (perivascular (p) MSC) and their unique expression of markers such as myelin P0 and transcription factors (e.g. Gli1 and FoxD1) has been instrumental to develop transgenic mice to trace the fate of these cells in health and disease conditions. Intriguingly, recent investigations of chronic inflammatory diseases argue for an emerging role of pMSC in several pathological processes. In response to tissue injuries and with the release of host cell debris (e.g. alarmins), pMSC can detach from vessels and proliferate to give rise to either lipofibroblasts, osteoblasts involved in the ossification of arteries and myofibroblasts contributing to fibrosis. This review will discuss currently available data that suggest a role of pMSC in tissue homeostasis and pathogenesis of the synovial tissue and joints. Graphical abstract.
Collapse
Affiliation(s)
- Yosra Bedoui
- Unité de recherche EPI (Etudes Pharmacoimmunologiques), Université de la Réunion, 97400, St Denis, La Réunion, France
| | - Grégorie Lebeau
- Unité de recherche EPI (Etudes Pharmacoimmunologiques), Université de la Réunion, 97400, St Denis, La Réunion, France
| | - Xavier Guillot
- Service de Rhumatologie, CHU Bellepierre, Felix Guyon et Unité de recherche EPI, 97400, St Denis, La Réunion, France
| | - Farouk Dargai
- Chirurgie orthopédique et traumatologie, CHU Bellepierre, Felix Guyon, St Denis, La Réunion, France
| | - Pascale Guiraud
- Unité de recherche EPI (Etudes Pharmacoimmunologiques), Université de la Réunion, 97400, St Denis, La Réunion, France
| | - Jim W Neal
- Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, CF14 4XN, UK
| | - Stéphane Ralandison
- Service de Rhumatologie- Médecine Interne, CHU Morafeno, Toamasina, Madagascar
| | - Philippe Gasque
- Unité de recherche EPI (Etudes Pharmacoimmunologiques), Université de la Réunion, 97400, St Denis, La Réunion, France. .,Pôle de Biologie, Laboratoire d'Immunologique Clinique et expérimentale ZOI, LICE-OI, CHU Bellepierre, Felix Guyon, St Denis, La Réunion, France.
| |
Collapse
|
25
|
Xu T, Shao L, Wang A, Liang R, Lin Y, Wang G, Zhao Y, Hu J, Liu S. CD248 as a novel therapeutic target in pulmonary arterial hypertension. Clin Transl Med 2020; 10:e175. [PMID: 32997414 PMCID: PMC7507048 DOI: 10.1002/ctm2.175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/05/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary vascular remodeling is the most important pathological characteristic of pulmonary arterial hypertension (PAH). No effective treatment for PAH is currently available because the mechanism underlying vascular remodeling is not completely clear. CD248, also known as endosialin, is a transmembrane protein that is highly expressed in pericytes and fibroblasts. Here, we evaluated the role of CD248 in pulmonary vascular remodeling and the processes of PAH pathogenesis. Activation of CD248 in pulmonary artery smooth muscle cells (PASMCs) was found to be proportional to the severity of PAH. CD248 contributed to platelet-derived growth factor-BB (PDGF-BB)-induced PASMC proliferation and migration along with the shift to more synthetic phenotypes. In contrast, treatment with Cd248 siRNA or the anti-CD248 therapeutic antibody (ontuxizumab) significantly inhibited the PDGF signaling pathway, obstructed NF-κB p65-mediated transcription of Nox4, and decreased reactive oxygen species production induced by PDGF-BB in PAMSCs. In addition, knockdown of CD248 alleviated pulmonary vascular remodeling in rat PAH models. This study provides novel insights into the dysfunction of PASMCs leading to pulmonary vascular remodeling, and provides evidence for anti-remodeling treatment for PAH via the immediate targeting of CD248.
Collapse
Affiliation(s)
- Tao Xu
- Life Science InstituteJinzhou Medical UniversityJinzhouP. R. China
| | - Lei Shao
- Department of CardiologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Aimei Wang
- Department of PhysiologyJinzhou Medical UniversityJinzhouP. R. China
| | - Rui Liang
- Department of PhysiologyJinzhou Medical UniversityJinzhouP. R. China
| | - Yuhan Lin
- Department of PhysiologyJinzhou Medical UniversityJinzhouP. R. China
| | - Guan Wang
- Life Science InstituteJinzhou Medical UniversityJinzhouP. R. China
| | - Yan Zhao
- Life Science InstituteJinzhou Medical UniversityJinzhouP. R. China
| | - Jing Hu
- Life Science InstituteJinzhou Medical UniversityJinzhouP. R. China
| | - Shuangyue Liu
- Department of PhysiologyJinzhou Medical UniversityJinzhouP. R. China
| |
Collapse
|
26
|
Pyrogallol-Phloroglucinol-6,6-Bieckolon Attenuates Vascular Smooth Muscle Cell Proliferation and Phenotype Switching in Hyperlipidemia through Modulation of Chemokine Receptor 5. Mar Drugs 2020; 18:md18080393. [PMID: 32727125 PMCID: PMC7460451 DOI: 10.3390/md18080393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022] Open
Abstract
Hyperlipidemia induces vascular smooth muscle cell (VSMC) proliferation and phenotype switching from contractile to synthetic. This process is involved in arterial remodeling via the chemokine ligand 5 (CCL5)/chemokine receptor 5 (CCR5) pathway. Arterial remodeling is related to atherosclerosis or intimal hyperplasia. The purpose of this study was to evaluate whether pyrogallol-phloroglucinol-6,6-bieckol (PPB) from E. cava reduces VSMC proliferation and phenotype switching via the CCL5/CCR5 pathway. The CCL5/CCR5 expression, VSMC proliferation and phenotypic alterations were evaluated using a cell model of VSMC exposed in hyperlipidemia, and an animal model of mice fed a high-fat-diet (HFD). The expression of CCL5/CCR5 increased in both the cell and animal models of hyperlipidemia. Treatment with PPB decreased CCL5/CCR5 expression in both models. The expression of contractile markers of VSMCs, including alpha-smooth muscle actin (α-SMA), smooth muscle myosin heavy chain (SM-MHC), and smooth muscle protein 22 alpha (SM22α), were decreased by hyperlipidemia and restored after treatment with PPB. The silencing of CCR5 attenuated the effects of PPB treatment. VSMC proliferation and the intima-media thickness of the aortas, increased with HFD and decreased after treatment with PPB. The VSMC proliferation ratio and messenger ribonucleic acid (mRNA) expression of cell cycle regulatory factors increased in the in vitro model and were restored after treatment with PPB. PPB treatment reduced VSMC proliferation and phenotype switching induced by hyperlipidemia through inhibition of the CCL5/CCR5 pathway.
Collapse
|
27
|
Wu C, Daugherty A, Lu HS. Updates on Approaches for Studying Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 39:e108-e117. [PMID: 30917052 DOI: 10.1161/atvbaha.119.312001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Congqing Wu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
28
|
MESH Headings
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/physiopathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Gene Expression Regulation
- Humans
- MicroRNAs/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Vascular Diseases/genetics
- Vascular Diseases/pathology
- Vascular Diseases/physiopathology
- Vascular Remodeling/physiology
Collapse
Affiliation(s)
- Ning Shi
- Department of Surgery, University of Missouri, Columbia, MO
- Department of Physiology & pharmacology, The University of Georgia, Athens, GA
| | - Xiaohan Mei
- Department of Physiology & pharmacology, The University of Georgia, Athens, GA
| | - Shi-You Chen
- Department of Surgery, University of Missouri, Columbia, MO
- Department of Physiology & pharmacology, The University of Georgia, Athens, GA
- Correspondence to: Shi-You Chen, PhD, Department of Surgery, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, , Tel: (573) 882-3137, Fax: (573)884-4585
| |
Collapse
|
29
|
Wang W, Wang YR, Chen J, Chen YJ, Wang ZX, Geng M, Xu DC, Wang ZY, Li JH, Xu ZD, Pan LL, Sun J. Pterostilbene Attenuates Experimental Atherosclerosis through Restoring Catalase-Mediated Redox Balance in Vascular Smooth Muscle Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12752-12760. [PMID: 31642668 DOI: 10.1021/acs.jafc.9b05373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atherosclerosis, the major risk of cardiovascular events, is a chronic vascular inflammatory disease. Pterostilbene is a naturally occurring dimethylated analogue of resveratrol and has recently been demonstrated to be beneficial against cardiovascular diseases. However, the underlying mechanisms of pterostilbene on atherosclerosis remain elusive. Experimental atherosclerosis was induced by a high-fat diet (HFD) in apolipoprotein E knockout (ApoE-/-) mice. Pterostilbene was administered intragastrically for 16 weeks. We found that pterostilbene significantly attenuated thoracic and abdominal atherosclerotic plaque formation in HFD-fed ApoE-/-mice, accompanied by modulated lipid profiles and reduced production of proinflammatory cytokines (including IL-6, IFN-γ, and TNF-α). In addition, pterostilbene restored vascular redox balance in thoracic and abdominal aorta, evidenced by enhanced catalase (CAT) expression and activities, and decreased malondialdehyde and H2O2 production. Notably, pterostilbene specifically induced CAT expression and activities in the vascular smooth muscle cells (VSMCs) of thoracic and abdominal aorta. In vitro, pterostilbene markedly promoted the expression and activity of CAT and decreased ox-low-density lipoprotein (LDL)-mediated VSMC proliferation and intracellular H2O2 production, which was abolished by CAT siRNA knockdown or inhibition. Pterostilbene-induced CAT expression was associated with inhibition of Akt, PRAS40, and GSK-3β signaling activation and upregulation of PTEN. Our data clearly demonstrated that pterostilbene exerted an antiatherosclerotic effect by inducing CAT and modulating the VSMC function.
Collapse
Affiliation(s)
- Wei Wang
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Ya-Ru Wang
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Jing Chen
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Ya-Jun Chen
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Zhao-Xia Wang
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Ming Geng
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - De-Cong Xu
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Zi-Ying Wang
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Jin-Hua Li
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Zhong-Dong Xu
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | | | | |
Collapse
|
30
|
Zhang X, Huang T, Zhai H, Peng W, Zhou Y, Li Q, Yang H. Inhibition of lysine-specific demethylase 1A suppresses neointimal hyperplasia by targeting bone morphogenetic protein 2 and mediating vascular smooth muscle cell phenotype. Cell Prolif 2019; 53:e12711. [PMID: 31737960 PMCID: PMC6985674 DOI: 10.1111/cpr.12711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Vascular disorders are associated with phenotypical switching of vascular smooth muscle cells (VSMCs). We investigated the effect of bone morphogenetic protein (BMP)-2 in controlling VSMC phenotype and vascular disorder progression. Lysine (K)-specific demethylase 1A (KDM1A) has been identified to target BMP-2 and is employed as a therapeutic means of regulating BMP-2 expression in VSMCs. MATERIALS AND METHODS VSMCs were stimulated with angiotensin II, and the expression of KDM1A and BMP-2 was detected. VSMC proliferation, apoptosis, and phenotype were evaluated. An in vivo aortic injury model was established, and VSMC behaviour was evaluated by the expression of key markers. The activation of BMP-2-associated signalling pathways was examined. RESULTS We confirmed the inhibitory effect of KDM1A on BMP-2 activity and demonstrated that KDM1A inhibition prevented VSMC transformation from a contractile to synthetic phenotype. In angiotensin II-treated VSMCs, KDM1A inhibition triggered a decrease in cell proliferation and inflammatory response. In vivo, KDM1A inhibition alleviated post-surgery neointimal formation and collagen deposition, preventing VSMCs from switching into a synthetic phenotype and suppressing disease onset. These processes were mediated by BMP-2 through canonical small mothers against decapentaplegic signalling, which was associated with the activation of BMP receptors 1A and 1B. CONCLUSIONS The regulatory correlation between KDM1A and BMP-2 offers insights into vascular remodelling and VSMC phenotypic modulation. The reported findings contribute to the development of innovative strategies against vascular disorders.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Huang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhai
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenpeng Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haifeng Yang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
32
|
Khan KA, McMurray JL, Mohammed F, Bicknell R. C-type lectin domain group 14 proteins in vascular biology, cancer and inflammation. FEBS J 2019; 286:3299-3332. [PMID: 31287944 PMCID: PMC6852297 DOI: 10.1111/febs.14985] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
The C‐type lectin domain (CTLD) group 14 family of transmembrane glycoproteins consist of thrombomodulin, CD93, CLEC14A and CD248 (endosialin or tumour endothelial marker‐1). These cell surface proteins exhibit similar ectodomain architecture and yet mediate a diverse range of cellular functions, including but not restricted to angiogenesis, inflammation and cell adhesion. Thrombomodulin, CD93 and CLEC14A can be expressed by endothelial cells, whereas CD248 is expressed by vasculature associated pericytes, activated fibroblasts and tumour cells among other cell types. In this article, we review the current literature of these family members including their expression profiles, interacting partners, as well as established and speculated functions. We focus primarily on their roles in the vasculature and inflammation as well as their contributions to tumour immunology. The CTLD group 14 family shares several characteristic features including their ability to be proteolytically cleaved and engagement of some shared extracellular matrix ligands. Each family member has strong links to tumour development and in particular CD93, CLEC14A and CD248 have been proposed as attractive candidate targets for cancer therapy.
Collapse
Affiliation(s)
- Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Canada
| | - Jack L McMurray
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Roy Bicknell
- Institutes of Cardiovascular Sciences and Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK
| |
Collapse
|
33
|
Chen Z, Wu Q, Yan C, Du J. COL6A1 knockdown suppresses cell proliferation and migration in human aortic vascular smooth muscle cells. Exp Ther Med 2019; 18:1977-1984. [PMID: 31410158 PMCID: PMC6676143 DOI: 10.3892/etm.2019.7798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) migration is an important pathophysiological signature of neointimal hyperplasia. The aim of the present study was to investigate the effects of collagen type VI α1 chain (COL6A1) on VSMC migration. COL6A1 expression was silenced in platelet-derived growth factor (PDGF-BB)-stimulated VSMCs. Cell counting kit-8, wound healing and Transwell assays were used to measure cell viability, migration and invasion, respectively. Reverse transcription-quantitative PCR and western blot analysis were performed to analyze the expression of factors associated with metastasis. COL6A1 silencing attenuated PDGF-BB-induced increases in cell viability and invasive abilities of VSMCs, in addition to partially reversing the increased expression of fibronectin (FN), matrix metalloproteinase (MMP)-2 and MMP-9 induced by PDGF-BB stimulation. The silencing of COL6A also overturned PDGF-BB-induced reduction in tissue inhibitor of metalloproteinase 2 expression in VSMCs. PDGF-BB activated the AKT/mTOR pathway, which was also inhibited by COL6A1 knockdown. Taken together, these findings suggest that COL6A1 silencing inhibited VSMC viability and migration by inhibiting AKT/mTOR activation.
Collapse
Affiliation(s)
- Zongxiang Chen
- Emergency Department, Jining 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Qingjian Wu
- Emergency Department, Jining 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Chengjun Yan
- Emergency Department, Jining 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Juan Du
- Emergency Department, Jining 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
34
|
Wang J, Wu Q, Yu J, Cao X, Xu Z. miR-125a-5p inhibits the expression of NLRP3 by targeting CCL4 in human vascular smooth muscle cells treated with ox-LDL. Exp Ther Med 2019; 18:1645-1652. [PMID: 31410121 PMCID: PMC6676174 DOI: 10.3892/etm.2019.7717] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/31/2019] [Indexed: 12/04/2022] Open
Abstract
Recent findings have revealed that aberrant miR-125a-5p expression is involved in the development of atherosclerosis. The present study aimed to investigate the precise mechanism of microRNA (miR)-125a-5p in atherosclerosis. Human vascular smooth muscle cells (HVSMCs) were treated with 20 µg/ml oxidized low-density lipoprotein (ox-LDL) for 24 h and were employed as in vitro models of atherosclerosis. Reverse transcription quantitative (RT-qPCR) assays were used to detect miR-125a-5p levels. Immunofluorescence analysis was conducted to assess α-smooth muscle actin (α-SMA) expression. Western blotting and RT-qPCR assays were performed to measure the expression levels of NACHT, LRR and PYD domains-containing protein 3 (NLRP3), apoptosis associated speck-like protein (ASC), caspase-1, active interleukin (IL)-1β and C-C motif chemokine 4-like (CCL4). Furthermore, the association between miR-125a-5p and CCL4 was assessed using a double luciferase analysis. In addition, VSMCs were transfected with miR-125a-5p mimics (30 nM), miR-125a-5p inhibitor (100 nM) or small interfering RNA against CCL4 (si-CCL4, 50 pM), respectively to further investigate the function of miR-125a-5p in ox-LDL-treated HVSMCs. The present study found that the expression levels of miR-125a-5p were significantly downregulated in HVSMCs, whereas the expression levels of α-SMA, NLRP3, ASC, caspase-1, IL-1β and CCL4 were markedly upregulated following ox-LDL treatment. Overexpression of miR-125a-5p in the absence of ox-LDL treatment decreased NLRP3, IL-1β and CCL4 expression, whereas inhibition of miR-125a-5p exhibited the opposite effects. The results of double luciferase analysis confirmed that CCL4 was a direct target of miR-125a-5p. Moreover, transfection of si-CCL4 into HVSMCs significantly decreased the ox-LDL-induced expression of NLRP3, ASC, caspase-1 and IL-1β proteins. Taken collectively, the results of the present study suggested that miR-125a-5p could negatively regulate the NLRP3 inflammasome by targeting CCL4 in ox-LDL-treated HVSMCs. The data provide new insight to the inhibition of atherosclerosis progression.
Collapse
Affiliation(s)
- Jiawang Wang
- Department of Cardiology, Cangzhou Teaching Hospital of Tianjin Medical University, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Qiong Wu
- Department of Clinical Laboratory, Cangzhou Teaching Hospital of Tianjin Medical University, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Jing Yu
- Department of Cardiology, Cangzhou Teaching Hospital of Tianjin Medical University, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Xufen Cao
- Department of Cardiology, Cangzhou Teaching Hospital of Tianjin Medical University, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Zesheng Xu
- Department of Cardiology, Cangzhou Teaching Hospital of Tianjin Medical University, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
35
|
Specific loss of adipocyte CD248 improves metabolic health via reduced white adipose tissue hypoxia, fibrosis and inflammation. EBioMedicine 2019; 44:489-501. [PMID: 31221584 PMCID: PMC6606747 DOI: 10.1016/j.ebiom.2019.05.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A positive energy balance promotes white adipose tissue (WAT) expansion which is characterized by activation of a repertoire of events including hypoxia, inflammation and extracellular matrix remodelling. The transmembrane glycoprotein CD248 has been implicated in all these processes in different malignant and inflammatory diseases but its potential impact in WAT and metabolic disease has not been explored. METHODS The role of CD248 in adipocyte function and glucose metabolism was evaluated by omics analyses in human WAT, gene knockdowns in human in vitro differentiated adipocytes and by adipocyte-specific and inducible Cd248 gene knockout studies in mice. FINDINGS CD248 is upregulated in white but not brown adipose tissue of obese and insulin-resistant individuals. Gene ontology analyses showed that CD248 expression associated positively with pro-inflammatory/pro-fibrotic pathways. By combining data from several human cohorts with gene knockdown experiments in human adipocytes, our results indicate that CD248 acts as a microenvironmental sensor which mediates part of the adipose tissue response to hypoxia and is specifically perturbed in white adipocytes in the obese state. Adipocyte-specific and inducible Cd248 knockouts in mice, both before and after diet-induced obesity and insulin resistance/glucose intolerance, resulted in increased microvascular density as well as attenuated hypoxia, inflammation and fibrosis without affecting fat cell volume. This was accompanied by significant improvements in insulin sensitivity and glucose tolerance. INTERPRETATION CD248 exerts detrimental effects on WAT phenotype and systemic glucose homeostasis which may be reversed by suppression of adipocyte CD248. Therefore, CD248 may constitute a target to treat obesity-associated co-morbidities.
Collapse
|
36
|
Vasculogenic properties of adventitial Sca-1 +CD45 + progenitor cells in mice: a potential source of vasa vasorum in atherosclerosis. Sci Rep 2019; 9:7286. [PMID: 31086203 PMCID: PMC6513996 DOI: 10.1038/s41598-019-43765-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/30/2019] [Indexed: 02/02/2023] Open
Abstract
The cellular origins of vasa vasorum are ill-defined and may involve circulating or local progenitor cells. We previously discovered that murine aortic adventitia contains Sca-1+CD45+ progenitors that produce macrophages. Here we investigated whether they are also vasculogenic. In aortas of C57BL/6 mice, Sca-1+CD45+ cells were localised to adventitia and lacked surface expression of endothelial markers (<1% for CD31, CD144, TIE-2). In contrast, they did show expression of CD31, CD144, TIE-2 and VEGFR2 in atherosclerotic ApoE-/- aortas. Although Sca-1+CD45+ cells from C57BL/6 aorta did not express CD31, they formed CD31+ colonies in endothelial differentiation media and produced interconnecting vascular-like cords in Matrigel that contained both endothelial cells and a small population of macrophages, which were located at branch points. Transfer of aortic Sca-1+CD45+ cells generated endothelial cells and neovessels de novo in a hindlimb model of ischaemia and resulted in a 50% increase in perfusion compared to cell-free control. Similarly, their injection into the carotid adventitia of ApoE-/- mice produced donor-derived adventitial and peri-adventitial microvessels after atherogenic diet, suggestive of newly formed vasa vasorum. These findings show that beyond its content of macrophage progenitors, adventitial Sca-1+CD45+ cells are also vasculogenic and may be a source of vasa vasorum during atherogenesis.
Collapse
|
37
|
Volobueva A, Zhang D, Grechko AV, Orekhov AN. Foam cell formation and cholesterol trafficking and metabolism disturbances in atherosclerosis. COR ET VASA 2019. [DOI: 10.1016/j.crvasa.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Teicher BA. CD248: A therapeutic target in cancer and fibrotic diseases. Oncotarget 2019; 10:993-1009. [PMID: 30847027 PMCID: PMC6398180 DOI: 10.18632/oncotarget.26590] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/22/2018] [Indexed: 01/07/2023] Open
Abstract
CD248/endosialin/TEM1 is a type 1 transmembrane glycoprotein found on the plasma membrane of activated mesenchymal cells. CD248 functions during embryo development and is either not expressed or found at very low levels in adult tissues. CD248 is expressed at high levels by malignant sarcoma cells, by the pericyte component of tumor vasculature and by mesenchymal cells in some fibrotic diseases. CD248 is being targeted by several experimental therapeutics including antibodies, antibody drug conjugates, as an antigen for CART cells and in therapeutic vaccines. Although the function of CD248 has yet to be fully elucidated, this protein is a potential broad scope therapeutic target.
Collapse
Affiliation(s)
- Beverly A Teicher
- Molecular Pharmacology Branch, Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda 20892, MD, USA
| |
Collapse
|
39
|
Majesky MW. Vascular Development. Arterioscler Thromb Vasc Biol 2019; 38:e17-e24. [PMID: 29467221 DOI: 10.1161/atvbaha.118.310223] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The vascular system forms as a branching network of endothelial cells that acquire identity as arterial, venous, hemogenic, or lymphatic. Endothelial specification depends on gene targets transcribed by Ets domain-containing factors, including Ets variant gene 2 (Etv2), together with the activity of chromatin-remodeling complexes containing Brahma-related gene-1 (Brg1). Once specified and assembled into vessels, mechanisms regulating lumen diameter and axial growth ensure that the structure of the branching vascular network matches the need for perfusion of target tissues. In addition, blood vessels provide important morphogenic cues that guide or direct the development of organs forming around them. As the embryo grows and lumen diameters increase, smooth muscle cells wrap around the nascent vessel walls to provide mechanical strength and vasomotor control of the circulation. Increasing mechanical stretch and wall strain promote smooth muscle cell differentiation via coupling of actin cytoskeletal remodeling to myocardin and serum response factor-dependent transcription. Remodeling of artery walls by developmental signaling pathways reappears in postnatal blood vessels during physiological and pathological adaptation to vessel wall injury, inflammation, or chronic hypoxia. Recent reports providing insights into major steps in vascular development are reviewed here with a particular emphasis on studies that have been recently published in Arteriosclerosis, Thrombosis, and Vascular Biology.
Collapse
Affiliation(s)
- Mark W Majesky
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, WA; and Departments of Pediatrics and Pathology, University of Washington, Seattle.
| |
Collapse
|
40
|
Affiliation(s)
- Jacqueline S Dron
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Julieta Lazarte
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Robert A Hegele
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
41
|
Zhou W, Tian D, He J, Yan X, Zhao J, Yuan X, Peng S. Prolonged exposure to carbon nanoparticles induced methylome remodeling and gene expression in zebrafish heart. J Appl Toxicol 2018; 39:322-332. [PMID: 30289172 DOI: 10.1002/jat.3721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 01/15/2023]
Abstract
Growing black carbon (BC) emission has become one of the major urgent environmental issues facing human beings. Usually, BC or BC-containing carbon nanoparticles (CNPs) were recognized as non-directly toxic components of atmospheric particulate matter. However, epidemiology studies have provided much evidence of the associations of exposure of particulate-containing carbon particles with cardiovascular diseases. There are still no related studies to support the epidemiological conclusions. Hence, in this article we exposed adult zebrafish to CNPs for 60 days, and then explored the heart location and potential adverse effects on cardiac tissues of these nanosized carbon particles. Our results first showed direct visualization of cardiac endothelial uptake and heart deposition of CNPs in zebrafish. In addition, CNPs caused significant ultrastructural alterations in myocardial tissue and induced the expression of inflammatory cytokines in a dose-dependent manner, resulting in sub-endocardial inflammation and cell apoptosis. Moreover, our data demonstrated the perturbations caused by CNPs on DNA methylation, suggesting that DNA methylome remodeling might play a critical role in CNP-induced cardiotoxicity in zebrafish heart. Therefore, this study not only proved a laboratory link between CNP exposure and cardiotoxicity in vivo, but also indicated a possible toxicity mechanism involved.
Collapse
Affiliation(s)
- Wei Zhou
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, PLA, Beijing, 100071, China.,Academy of Military Medical Sciences, Beijing, 100850, China
| | - Dongdong Tian
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, PLA, Beijing, 100071, China.,Department of Pharmacy, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Jun He
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, PLA, Beijing, 100071, China.,Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xiabei Yan
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, PLA, Beijing, 100071, China.,Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jun Zhao
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, PLA, Beijing, 100071, China.,Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xiaoyan Yuan
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, PLA, Beijing, 100071, China.,Academy of Military Medical Sciences, Beijing, 100850, China
| | - Shuangqing Peng
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, PLA, Beijing, 100071, China.,Academy of Military Medical Sciences, Beijing, 100850, China
| |
Collapse
|
42
|
Pan S, Liu H, Gao F, Luo H, Lin H, Meng L, Jiang C, Guo Y, Chi J, Guo H. Folic acid delays development of atherosclerosis in low-density lipoprotein receptor-deficient mice. J Cell Mol Med 2018; 22:3183-3191. [PMID: 29571225 PMCID: PMC5980198 DOI: 10.1111/jcmm.13599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022] Open
Abstract
Many studies support the cardioprotective effects of folic acid (FA). We aimed to evaluate the utility of FA supplementation in preventing the development of atherosclerotic in low‐density lipoprotein receptor‐deficient (LDLR−/−) mice and to elucidate the molecular processes underlying this effect. LDLR−/− mice were randomly distributed into four groups: control group, HF group, HF + FA group and the HF + RAPA group. vascular smooth muscle cells (VSMCs) were divided into the following four groups: control group, PDGF group, PDGF + FA group and PDGF + FA + RAPA group. Blood lipid levels, oxidative stress and inflammatory cytokines were measured. Atherosclerosis severity was evaluated with oil red O staining. Haematoxylin and eosin (H&E) staining was used to assess atherosclerosis progression. Immunohistochemical staining was performed with antismooth muscle α‐actin (α‐SMA) antibodies and anti‐osteopontin (OPN) antibodies that demonstrate VSMC dedifferentiation. The protein expression of α‐SMA, OPN and mechanistic target of rapamycin (mTOR)/p70S6K signalling was detected by Western blot analysis. FA and rapamycin reduced serum levels of total cholesterol, triacylglycerol, LDL, inhibiting oxidative stress and the inflammatory response. Oil red O and H&E staining demonstrated that FA and rapamycin inhibited atherosclerosis. FA and rapamycin treatment inhibited VSMC dedifferentiation in vitro and in vivo, and FA and rapamycin attenuated the mTOR/p70S6K signalling pathway. Our findings suggest that FA attenuates atherosclerosis development and inhibits VSMC dedifferentiation in high‐fat‐fed LDLR−/− mice by reduced lipid levels and inhibiting oxidative stress and the inflammatory response through mTOR/p70S6K signalling pathway.
Collapse
Affiliation(s)
- Sunlei Pan
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Huahua Liu
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Feidan Gao
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Hangqi Luo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Hui Lin
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Chengjian Jiang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Yan Guo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Jufang Chi
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Hangyuan Guo
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| |
Collapse
|
43
|
Nowak WN, Deng J, Ruan XZ, Xu Q. Reactive Oxygen Species Generation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:e41-e52. [DOI: 10.1161/atvbaha.117.309228] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Witold N. Nowak
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Jiacheng Deng
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Xiong Z. Ruan
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Qingbo Xu
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| |
Collapse
|
44
|
Döring Y, Noels H, van der Vorst EPC, Neideck C, Egea V, Drechsler M, Mandl M, Pawig L, Jansen Y, Schröder K, Bidzhekov K, Megens RTA, Theelen W, Klinkhammer BM, Boor P, Schurgers L, van Gorp R, Ries C, Kusters PJH, van der Wal A, Hackeng TM, Gäbel G, Brandes RP, Soehnlein O, Lutgens E, Vestweber D, Teupser D, Holdt LM, Rader DJ, Saleheen D, Weber C. Vascular CXCR4 Limits Atherosclerosis by Maintaining Arterial Integrity: Evidence From Mouse and Human Studies. Circulation 2017; 136:388-403. [PMID: 28450349 DOI: 10.1161/circulationaha.117.027646] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/17/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND The CXCL12/CXCR4 chemokine ligand/receptor axis controls (progenitor) cell homeostasis and trafficking. So far, an atheroprotective role of CXCL12/CXCR4 has only been implied through pharmacological intervention, in particular, because the somatic deletion of the CXCR4 gene in mice is embryonically lethal. Moreover, cell-specific effects of CXCR4 in the arterial wall and underlying mechanisms remain elusive, prompting us to investigate the relevance of CXCR4 in vascular cell types for atheroprotection. METHODS We examined the role of vascular CXCR4 in atherosclerosis and plaque composition by inducing an endothelial cell (BmxCreERT2-driven)-specific or smooth muscle cell (SMC, SmmhcCreERT2- or TaglnCre-driven)-specific deficiency of CXCR4 in an apolipoprotein E-deficient mouse model. To identify underlying mechanisms for effects of CXCR4, we studied endothelial permeability, intravital leukocyte adhesion, involvement of the Akt/WNT/β-catenin signaling pathway and relevant phosphatases in VE-cadherin expression and function, vascular tone in aortic rings, cholesterol efflux from macrophages, and expression of SMC phenotypic markers. Finally, we analyzed associations of common genetic variants at the CXCR4 locus with the risk for coronary heart disease, along with CXCR4 transcript expression in human atherosclerotic plaques. RESULTS The cell-specific deletion of CXCR4 in arterial endothelial cells (n=12-15) or SMCs (n=13-24) markedly increased atherosclerotic lesion formation in hyperlipidemic mice. Endothelial barrier function was promoted by CXCL12/CXCR4, which triggered Akt/WNT/β-catenin signaling to drive VE-cadherin expression and stabilized junctional VE-cadherin complexes through associated phosphatases. Conversely, endothelial CXCR4 deficiency caused arterial leakage and inflammatory leukocyte recruitment during atherogenesis. In arterial SMCs, CXCR4 sustained normal vascular reactivity and contractile responses, whereas CXCR4 deficiency favored a synthetic phenotype, the occurrence of macrophage-like SMCs in the lesions, and impaired cholesterol efflux. Regression analyses in humans (n=259 796) identified the C-allele at rs2322864 within the CXCR4 locus to be associated with increased risk for coronary heart disease. In line, C/C risk genotype carriers showed reduced CXCR4 expression in carotid artery plaques (n=188), which was furthermore associated with symptomatic disease. CONCLUSIONS Our data clearly establish that vascular CXCR4 limits atherosclerosis by maintaining arterial integrity, preserving endothelial barrier function, and a normal contractile SMC phenotype. Enhancing these beneficial functions of arterial CXCR4 by selective modulators might open novel therapeutic options in atherosclerosis.
Collapse
Affiliation(s)
| | - Heidi Noels
- From Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (Y.D., E.P.C.v.d.V., C.N., V.E., M.D., M.M., Y.J., K.B., R.T.A.M., C.R., O.S., E.T., C.W.); Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany (H.N., L.P., W.T.); Institute for Cardiovascular Physiology, Vascular Research Centre, Goethe University, Frankfurt am Main, Germany (K.S., R.P.B.); Division of Nephrology and Immunology, RWTH Aachen University Hospital, Germany (B.M.K., P.B.); Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, the Netherlands (R.T.A.M., R.v.G., T.M.H., C.W.); Academic Medical Center, Department of Pathology and Department of Medical Biochemistry, Amsterdam University, the Netherlands (P.J.H.K., A.v.D.W., E.T.); Department of Vascular and Endovascular Surgery, LMU Munich, Germany (G.G.); DZHK (German Centre for Cardiovascular Research), partner site Frankfurt am Main, Germany (R.P.B.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (O.S., C.W.); Department of Physiology and Pharmacology, Karolinksa Institutet, Stockholm, Sweden (O.S.); Max-Plank-Institute for Molecular Biomedicine, Münster, Germany (D.V.); Institute for Laboratory Medicine, LMU Munich, Germany (D.T., L.M.H.); and Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (D.J.R., D.S.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|