1
|
Olinger B, Banarjee R, Dey A, Tsitsipatis D, Tanaka T, Ram A, Nyunt T, Daya GN, Peng Z, Shrivastava M, Cui L, Candia J, Simonsick EM, Gorospe M, Walker KA, Ferrucci L, Basisty N. The secretome of senescent monocytes predicts age-related clinical outcomes in humans. NATURE AGING 2025:10.1038/s43587-025-00877-3. [PMID: 40461807 DOI: 10.1038/s43587-025-00877-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 04/17/2025] [Indexed: 06/11/2025]
Abstract
Cellular senescence increases with age and contributes to age-related declines and pathologies. We identified circulating biomarkers of senescence and related them to clinical traits in humans to facilitate future noninvasive assessment of individual senescence burden, and efficacy testing of novel senotherapeutics. Using a nanoparticle-based proteomic workflow, we profiled the senescence-associated secretory phenotype (SASP) in THP-1 monocytes and examined these proteins in 1,060 plasma samples from the Baltimore Longitudinal Study of Aging. Machine-learning models trained on THP-1 monocyte SASP associated SASP signatures with several age-related phenotypes in a test cohort, including body fat composition, blood lipids, inflammatory markers and mobility-related traits, among others. Notably, a subset of SASP-based predictions, including a high-impact SASP panel, were validated in InCHIANTI, an independent aging cohort. These results demonstrate the clinical relevance of the circulating SASP and identify potential senescence biomarkers that could inform future clinical studies.
Collapse
Affiliation(s)
- Bradley Olinger
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Reema Banarjee
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Amit Dey
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Anjana Ram
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Thedoe Nyunt
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Gulzar N Daya
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Zhongsheng Peng
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Mansi Shrivastava
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Linna Cui
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Julian Candia
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Eleanor M Simonsick
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Nathan Basisty
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
2
|
Domengé O, Deloux R, Revet G, Mazière L, Pillet-Michelland E, Commin L, Bonnefont-Rebeix C, Simon A, Mougenot N, Cavagnino A, Baraibar M, Saulnier N, Crépet A, Delair T, Agbulut O, Montembault A. Bio-functionalized hydrogel patches of chitosan for the functional recovery of infarcted myocardial tissue. Int J Biol Macromol 2024; 281:136400. [PMID: 39389478 DOI: 10.1016/j.ijbiomac.2024.136400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The aim of this work was to assess the potential benefits of the enrichment of a chitosan hydrogel patch with secretome and its epicardial implantation in a murine model of chronic ischemia, focusing on the potential to restore the functional capacity of the heart. Thus, a hydrogel with a final polymer concentration of 3 % was prepared from chitosan with an acetylation degree of 24 % and then bio-functionalized with a secretome produced by mesenchymal stromal cells. The identification of proteins in the secretomes showed the presence of several proteins known to have beneficial effects on cardiac muscle repair. Then chitosan hydrogels were immersed in secretome. The protein incorporation in the hydrogel and their release over time were studied, demonstrating the ability of the gel to retain and then deliver proteins (around 40 % was released in the first 6 h, and then a plateau was reached). Moreover, mechanical analysis exhibited that the patches remained suturable after enrichment. Finally, bio-functionalized hydrogel patches were sutured onto the surface of the infarcted myocardium in rat. Thirty days after, the presence of enriched hydrogels induced a reversion of cardiac function which seems to come mainly from an improvement of left ventricle systolic performance and contractility.
Collapse
Affiliation(s)
- O Domengé
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France
| | - R Deloux
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France
| | - G Revet
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France
| | - L Mazière
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - E Pillet-Michelland
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - L Commin
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - C Bonnefont-Rebeix
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - A Simon
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France
| | - N Mougenot
- Sorbonne Universite, UMS28 Plateforme d'Expérimentation Cœur, Muscles, Vaisseaux, 91 Bd de l'Hôpital, F-75013 Paris, France
| | - A Cavagnino
- Société OxiProteomics, 2 rue Antoine Etex, 94000 Créteil, France
| | - M Baraibar
- Société OxiProteomics, 2 rue Antoine Etex, 94000 Créteil, France
| | - N Saulnier
- Vetbiobank, 1 Avenue Bourgelat, 69280 Marcy-l'Étoile, France
| | - A Crépet
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France
| | - T Delair
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France
| | - O Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France.
| | - A Montembault
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France.
| |
Collapse
|
3
|
Olinger B, Banarjee R, Dey A, Tsitsipatis D, Tanaka T, Ram A, Nyunt T, Daya G, Peng Z, Cui L, Candia J, Simonsick EM, Gorospe M, Walker KA, Ferrucci L, Basisty N. A plasma proteomic signature links secretome of senescent monocytes to aging- and obesity-related clinical outcomes in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.01.24311368. [PMID: 39371126 PMCID: PMC11451660 DOI: 10.1101/2024.08.01.24311368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Cellular senescence increases with age and contributes to age-related declines and pathologies. We identified circulating biomarkers of senescence associated with diverse clinical traits in humans to facilitate future non-invasive assessment of individual senescence burden and efficacy testing of novel senotherapeutics. Using a novel nanoparticle-based proteomic workflow, we profiled the senescence-associated secretory phenotype (SASP) in monocytes and examined these proteins in plasma samples (N = 1060) from the Baltimore Longitudinal Study of Aging (BLSA). Machine learning models trained on monocyte SASP associated with several age-related phenotypes in a test cohort, including body fat composition, blood lipids, inflammation, and mobility-related traits, among others. Notably, a subset of SASP-based predictions, including a 'high impact' SASP panel that predicts age- and obesity-related clinical traits, were validated in InCHIANTI, an independent aging cohort. These results demonstrate the clinical relevance of the circulating SASP and identify relevant biomarkers of senescence that could inform future clinical studies.
Collapse
Affiliation(s)
- Bradley Olinger
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Reema Banarjee
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Amit Dey
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Anjana Ram
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Thedoe Nyunt
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Gulzar Daya
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Zhongsheng Peng
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Linna Cui
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Julián Candia
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Eleanor M. Simonsick
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Nathan Basisty
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Samiminemati A, Aprile D, Siniscalco D, Di Bernardo G. Methods to Investigate the Secretome of Senescent Cells. Methods Protoc 2024; 7:52. [PMID: 39051266 PMCID: PMC11270363 DOI: 10.3390/mps7040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
The word "secretome" was first used to describe the proteins that cells secrete under different circumstances; however, recent studies have proven the existence of other molecules such as RNA and chemical compounds in the secretome. The study of secretome has significance for the diagnosis and treatment of disease as it provides insight into cellular functions, including immune responses, development, and homeostasis. By halting cell division, cellular senescence plays a role in both cancer defense and aging by secreting substances known as senescence-associated secretory phenotypes (SASP). A variety of techniques could be used to analyze the secretome: protein-based approaches like mass spectrometry and protein microarrays, nucleic acid-based methods like RNA sequencing, microarrays, and in silico prediction. Each method offers unique advantages and limitations in characterizing secreted molecules. Top-down and bottom-up strategies for thorough secretome analysis are became possible by mass spectrometry. Understanding cellular function, disease causes, and proper treatment targets is aided by these methodologies. Their approaches, benefits, and drawbacks will all be discussed in this review.
Collapse
Affiliation(s)
- Afshin Samiminemati
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (A.S.); (D.A.); (D.S.)
| | - Domenico Aprile
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (A.S.); (D.A.); (D.S.)
| | - Dario Siniscalco
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (A.S.); (D.A.); (D.S.)
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (A.S.); (D.A.); (D.S.)
- Sbarro Health Research Organization, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
5
|
Ryoo H, Underhill GH. Spatially Defined Cell-Secreted Protein Detection Using Granular Hydrogels: μGeLISA. ACS Biomater Sci Eng 2023; 9:2317-2328. [PMID: 37070831 PMCID: PMC11135160 DOI: 10.1021/acsbiomaterials.2c01308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Intercellular communication through secreted proteins is necessary in essential processes such as embryo and limb development, disease progression, and immune responses. There exist many techniques to study bulk solution protein concentrations, but there is a limited set of tools to study the concentrations of cell-secreted proteins in situ within diverse cell platforms while retaining spatial information. In this study, we have developed a microgel system that is able to quantitatively measure the cell-secreted protein concentration within defined three-dimensional culture configurations with single-cell spatial resolution, called μGeLISA (microgel-linked immunosorbent assay). This system, which is based on the surface modification of polyethylene glycol microgels, was able to detect interleukin 6 (IL-6) concentrations of 2.21-21.86 ng/mL. Microgels were also able to detect cell spheroid-secreted IL-6 and distinguish between low- and high-secreting single cells. The system was also adapted to measure the concentration of cell-secreted matrix metalloproteinase-2 (MMP-2). μGeLISA represents a highly versatile system with a straightforward fabrication process that can be adapted toward the detection of secreted proteins within a diverse range of cell culture configurations.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Sun F, Suttapitugsakul S, Wu R. Systematic characterization of extracellular glycoproteins using mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:519-545. [PMID: 34047389 PMCID: PMC8627532 DOI: 10.1002/mas.21708] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 05/13/2023]
Abstract
Surface and secreted glycoproteins are essential to cells and regulate many extracellular events. Because of the diversity of glycans, the low abundance of many glycoproteins, and the complexity of biological samples, a system-wide investigation of extracellular glycoproteins is a daunting task. With the development of modern mass spectrometry (MS)-based proteomics, comprehensive analysis of different protein modifications including glycosylation has advanced dramatically. This review focuses on the investigation of extracellular glycoproteins using MS-based proteomics. We first discuss the methods for selectively enriching surface glycoproteins and investigating protein interactions on the cell surface, followed by the application of MS-based proteomics for surface glycoprotein dynamics analysis and biomarker discovery. We then summarize the methods to comprehensively study secreted glycoproteins by integrating various enrichment approaches with MS-based proteomics and their applications for global analysis of secreted glycoproteins in different biological samples. Collectively, MS significantly expands our knowledge of extracellular glycoproteins and enables us to identify extracellular glycoproteins as potential biomarkers for disease detection and drug targets for disease treatment.
Collapse
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
7
|
Arrell DK, Park S, Yamada S, Alekseev AE, Garmany A, Jeon R, Vuckovic I, Lindor JZ, Terzic A. K ATP channel dependent heart multiome atlas. Sci Rep 2022; 12:7314. [PMID: 35513538 PMCID: PMC9072320 DOI: 10.1038/s41598-022-11323-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
Plasmalemmal ATP sensitive potassium (KATP) channels are recognized metabolic sensors, yet their cellular reach is less well understood. Here, transgenic Kir6.2 null hearts devoid of the KATP channel pore underwent multiomics surveillance and systems interrogation versus wildtype counterparts. Despite maintained organ performance, the knockout proteome deviated beyond a discrete loss of constitutive KATP channel subunits. Multidimensional nano-flow liquid chromatography tandem mass spectrometry resolved 111 differentially expressed proteins and their expanded network neighborhood, dominated by metabolic process engagement. Independent multimodal chemometric gas and liquid chromatography mass spectrometry unveiled differential expression of over one quarter of measured metabolites discriminating the Kir6.2 deficient heart metabolome. Supervised class analogy ranking and unsupervised enrichment analysis prioritized nicotinamide adenine dinucleotide (NAD+), affirmed by extensive overrepresentation of NAD+ associated circuitry. The remodeled metabolome and proteome revealed functional convergence and an integrated signature of disease susceptibility. Deciphered cardiac patterns were traceable in the corresponding plasma metabolome, with tissue concordant plasma changes offering surrogate metabolite markers of myocardial latent vulnerability. Thus, Kir6.2 deficit precipitates multiome reorganization, mapping a comprehensive atlas of the KATP channel dependent landscape.
Collapse
Affiliation(s)
- D Kent Arrell
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Sungjo Park
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Satsuki Yamada
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Division of Geriatric Medicine & Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexey E Alekseev
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow Region, Russia
| | - Armin Garmany
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Mayo Clinic Alix School of Medicine, Regenerative Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ryounghoon Jeon
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ivan Vuckovic
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Metabolomics Core, Mayo Clinic, Rochester, MN, USA
| | - Jelena Zlatkovic Lindor
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Andre Terzic
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA. .,Marriott Family Comprehensive Cardiac Regenerative Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA. .,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Chouaib B, Cuisinier F, Collart-Dutilleul PY. Dental stem cell-conditioned medium for tissue regeneration: Optimization of production and storage. World J Stem Cells 2022; 14:287-302. [PMID: 35662860 PMCID: PMC9136565 DOI: 10.4252/wjsc.v14.i4.287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) effects on tissue regeneration are mainly mediated by their secreted substances (secretome), inducing their paracrine activity. This Conditioned medium (CM), including soluble factors (proteins, nucleic acids, lipids) and extracellular vesicles is emerging as a potential alternative to cell therapy. However, the manufacturing of CM suffers from variable procedures and protocols leading to varying results between studies. Besides, there is no well-defined optimized procedure targeting specific applications in regenerative medicine. AIM To focus on conditioned medium produced from dental MSC (DMSC-CM), we reviewed the current parameters and manufacturing protocols, in order to propose a standardization and optimization of these manufacturing procedures. METHODS We have selected all publications investigating the effects of dental MSC secretome in in vitro and in vivo models of tissue regeneration, in accordance with the PRISMA guidelines. RESULTS A total of 351 results were identified. And based on the inclusion criteria described above, 118 unique articles were included in the systematic review. DMSC-CM production was considered at three stages: before CM recovery (cell sources for CM), during CM production (culture conditions) and after production (CM treatment). CONCLUSION No clear consensus could be recovered as evidence-based methods, but we were able to describe the most commonly used protocols: donors under 30 years of age, dental pulp stem cells and exfoliated deciduous tooth stem cells with cell passage between 1 and 5, at a confluence of 70% to 80%. CM were often collected during 48 h, and stored at -80 °C. It is important to point out that the preconditioning environment had a significant impact on DMSC-CM content and efficiency.
Collapse
Affiliation(s)
- Batoul Chouaib
- Laboratory Bioengineering and Nanosciences UR_UM104, University of Montpellier, Montpellier 34000, France
| | - Frédéric Cuisinier
- Laboratory Bioengineering and Nanosciences UR_UM104, University of Montpellier, Montpellier 34000, France
| | | |
Collapse
|
9
|
Rosario FJ, Pardo S, Michelsen TM, Erickson K, Moore L, Powell TL, Weintraub ST, Jansson T. Characterization of the Primary Human Trophoblast Cell Secretome Using Stable Isotope Labeling With Amino Acids in Cell Culture. Front Cell Dev Biol 2021; 9:704781. [PMID: 34595166 PMCID: PMC8476785 DOI: 10.3389/fcell.2021.704781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022] Open
Abstract
The placental villus syncytiotrophoblast, the nutrient-transporting and hormone-producing epithelium of the human placenta, is a critical regulator of fetal development and maternal physiology. However, the identities of the proteins synthesized and secreted by primary human trophoblast (PHT) cells remain unknown. Stable Isotope Labeling with Amino Acids in Cell Culture followed by mass spectrometry analysis of the conditioned media was used to identify secreted proteins and obtain information about their relative rates of synthesis in syncytialized multinucleated PHT cells isolated from normal term placental villus tissue (n = 4/independent placenta). A total of 1,344 proteins were identified, most of which have not previously been reported to be secreted by the human placenta or trophoblast. The majority of secreted proteins are involved in energy and carbon metabolism, glycolysis, biosynthesis of amino acids, purine metabolism, and fatty acid degradation. Histone family proteins and mitochondrial proteins were among proteins with the slowest synthesis rate whereas proteins associated with signaling and the plasma membrane were synthesized rapidly. There was a significant overlap between the PHT secretome and proteins known be secreted to the fetal circulation by the human placenta in vivo. The generated data will guide future experiments to determine the function of individual secreted proteins and will help us better understand how the placenta controls maternal and fetal physiology.
Collapse
Affiliation(s)
- Fredrick J Rosario
- Division of Reproductive Sciences, Department of OB/GYN, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sammy Pardo
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Trond M Michelsen
- Division of Obstetrics and Gynecology, Department of Obstetrics Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Kathryn Erickson
- Division of Reproductive Sciences, Department of OB/GYN, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna Moore
- Division of Reproductive Sciences, Department of OB/GYN, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Theresa L Powell
- Division of Reproductive Sciences, Department of OB/GYN, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of OB/GYN, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
10
|
Abstract
Biomarkers factor into the diagnosis and treatment of almost every patient with cancer. The innovation in proteomics follows improvement of mass spectrometry techniques and data processing strategy. Recently, proteomics and typical biological studies have been the answer for clinical applications. The clinical proteomics techniques are now actively adapted to protein identification in large patient cohort, biomarker development for more sensitive and specific screening based on quantitative data. And, it is important for clinical, translational researchers to be acutely aware of the issues surrounding appropriate biomarker development, in order to facilitate entry of clinically useful biomarkers into the clinic. Here, we discuss in detail include the case research for clinical proteomics. Furthermore, we give an overview on the current developments and novel findings in proteomics-based cancer biomarker research.
Collapse
|
11
|
Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX. Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci 2020; 10:112. [PMID: 32983406 PMCID: PMC7510077 DOI: 10.1186/s13578-020-00475-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Background Spinal cord injury (SCI) is the damage to the spinal cord that can lead to temporary or permanent loss of function due to injury to the nerve. The SCI patients are often associated with poor quality of life. Results This review discusses the current status of mesenchymal stem cell (MSC) therapy for SCI, criteria to considering for the application of MSC therapy and novel biological therapies that can be applied together with MSCs to enhance its efficacy. Bone marrow-derived MSCs (BMSCs), umbilical cord-derived MSCs (UC-MSCs) and adipose tissue-derived MSCs (ADSCs) have been trialed for the treatment of SCI. Application of MSCs may minimize secondary injury to the spinal cord and protect the neural elements that survived the initial mechanical insult by suppressing the inflammation. Additionally, MSCs have been shown to differentiate into neuron-like cells and stimulate neural stem cell proliferation to rebuild the damaged nerve tissue. Conclusion These characteristics are crucial for the restoration of spinal cord function upon SCI as damaged cord has limited regenerative capacity and it is also something that cannot be achieved by pharmacological and physiotherapy interventions. New biological therapies including stem cell secretome therapy, immunotherapy and scaffolds can be combined with MSC therapy to enhance its therapeutic effects.
Collapse
Affiliation(s)
- Ling Ling Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | - Qi Hao Looi
- Ming Medical Services Sdn. Bhd., Pusat Perdagangan Dana 1, 47301 Petaling Jaya, Selangor Malaysia
| | - Wui Chuen Chia
- Ming Medical Services Sdn. Bhd., Pusat Perdagangan Dana 1, 47301 Petaling Jaya, Selangor Malaysia
| | - Thayaalini Subramaniam
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, JalanYaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, JalanYaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, JalanYaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Ding M, Tegel H, Sivertsson Å, Hober S, Snijder A, Ormö M, Strömstedt PE, Davies R, Holmberg Schiavone L. Secretome-Based Screening in Target Discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:535-551. [PMID: 32425085 PMCID: PMC7309359 DOI: 10.1177/2472555220917113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Secreted proteins and their cognate plasma membrane receptors regulate human physiology by transducing signals from the extracellular environment into cells resulting in different cellular phenotypes. Systematic use of secretome proteins in assays enables discovery of novel biology and signaling pathways. Several secretome-based phenotypic screening platforms have been described in the literature and shown to facilitate target identification in drug discovery. In this review, we summarize the current status of secretome-based screening. This includes annotation, production, quality control, and sample management of secretome libraries, as well as how secretome libraries have been applied to discover novel target biology using different disease-relevant cell-based assays. A workflow for secretome-based screening is shared based on the AstraZeneca experience. The secretome library offers several advantages compared with other libraries used for target discovery: (1) screening using a secretome library directly identifies the active protein and, in many cases, its cognate receptor, enabling a rapid understanding of the disease pathway and subsequent formation of target hypotheses for drug discovery; (2) the secretome library covers significant areas of biological signaling space, although the size of this library is small; (3) secretome proteins can be added directly to cells without additional manipulation. These factors make the secretome library ideal for testing in physiologically relevant cell types, and therefore it represents an attractive approach to phenotypic target discovery.
Collapse
Affiliation(s)
- Mei Ding
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Hanna Tegel
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Åsa Sivertsson
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Arjan Snijder
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Mats Ormö
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Per-Erik Strömstedt
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rick Davies
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
13
|
Xia J, Minamino S, Kuwabara K, Arai S. Stem cell secretome as a new booster for regenerative medicine. Biosci Trends 2020; 13:299-307. [PMID: 31527327 DOI: 10.5582/bst.2019.01226] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Stem cells are an undifferentiated cell population that has the ability to develop into many different cell types and also has the ability to repair damaged tissues in some cases. For a long time, the stem cell regenerative paradigm has been based on the assumption that progenitor cells play a critical role in tissue repair by means of their plasticity and differentiation potential. However, recent works suggest that the mechanism underlying the benefits of stem cell transplantation might relate to a paracrine modulatory effect rather than the replacement of affected cells at the site of injury. This paracrine modulatory effect derives from secretome which comprises a diverse host of growth factors, cytokines, chemokines, angiogenic factors, and exosomes which are extracellular vesicles that are produced in the endosomal compartment of most eukaryotic cells and are from about 30 to several hundred nanometers in diameter. The role of these factors is being increasingly recognized as key to the regulation of many physiological processes including leading endogenous and progenitor cells to sites of injury as well as mediating apoptosis, proliferation, migration, and angiogenesis. In reality, the immunomodulatory and paracrine role of these factors may mainly account for the therapeutic effects of stem cells and a number of in vitro and in vivo researches have proved limited stem cell engraftment at the site of injury. As a cell-free way for regenerative medicine therapies, stem cell secretome has shown great potential in a variety of clinical applications including prevention of cardiac disfunction, neurodegenerative disease, type 1 diabetes, hair loss, tumors, and joint osteoarthritis.
Collapse
Affiliation(s)
- Jufeng Xia
- Graduate School of Frontier Science, The University of Tokyo.,Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Shuichi Minamino
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Kazuma Kuwabara
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Shunichi Arai
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| |
Collapse
|
14
|
Sebastião MJ, Gomes-Alves P, Reis I, Sanchez B, Palacios I, Serra M, Alves PM. Bioreactor-based 3D human myocardial ischemia/reperfusion in vitro model: a novel tool to unveil key paracrine factors upon acute myocardial infarction. Transl Res 2020; 215:57-74. [PMID: 31541616 DOI: 10.1016/j.trsl.2019.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022]
Abstract
During acute myocardial infarction (AMI), Ischemia/Reperfusion (I/R) injury causes cardiomyocyte (CM) death and loss of tissue function, making AMI one of the major causes of death worldwide. Cell-based in vitro models of I/R injury have been increasingly used as a complementary approach to preclinical research. However, most approaches use murine cells in 2D culture setups, which are not able to recapitulate human cellular physiology, as well as nutrient and gas gradients occurring in the myocardium. In this work we established a novel human in vitro model of myocardial I/R injury using CMs derived from human induced pluripotent stem cells (hiPSC-CMs), which were cultured as 3D aggregates in stirred tank bioreactors. We were able to recapitulate important hallmarks of AMI, including loss of CM viability with disruption of cellular ultrastructure, increased angiogenic potential, and secretion of key proangiogenic and proinflammatory cytokines. Conditioned medium was further used to probe human cardiac progenitor cells (hCPCs) response to paracrine cues from injured hiPSC-CMs through quantitative whole proteome analysis (SWATH-MS). I/R injury hiPSC-CM conditioned media incubation caused upregulation of hCPC proteins associated with migration, proliferation, paracrine signaling, and stress response-related pathways, when compared to the control media incubation. Our results indicate that the model developed herein can serve as a novel tool to interrogate mechanisms of action of human cardiac populations upon AMI.
Collapse
Affiliation(s)
- Maria J Sebastião
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Patrícia Gomes-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ivo Reis
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Belén Sanchez
- Coretherapix, S.L.U. (Tigenix Group), Tres Cantos, Spain
| | | | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
15
|
Schira-Heinen J, Grube L, Waldera-Lupa DM, Baberg F, Langini M, Etemad-Parishanzadeh O, Poschmann G, Stühler K. Pitfalls and opportunities in the characterization of unconventionally secreted proteins by secretome analysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140237. [DOI: 10.1016/j.bbapap.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
|
16
|
Phenotypic Screen with the Human Secretome Identifies FGF16 as Inducing Proliferation of iPSC-Derived Cardiac Progenitor Cells. Int J Mol Sci 2019; 20:ijms20236037. [PMID: 31801200 PMCID: PMC6928864 DOI: 10.3390/ijms20236037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
Paracrine factors can induce cardiac regeneration and repair post myocardial infarction by stimulating proliferation of cardiac cells and inducing the anti-fibrotic, antiapoptotic, and immunomodulatory effects of angiogenesis. Here, we screened a human secretome library, consisting of 923 growth factors, cytokines, and proteins with unknown function, in a phenotypic screen with human cardiac progenitor cells. The primary readout in the screen was proliferation measured by nuclear count. From this screen, we identified FGF1, FGF4, FGF9, FGF16, FGF18, and seven additional proteins that induce proliferation of cardiac progenitor cells. FGF9 and FGF16 belong to the same FGF subfamily, share high sequence identity, and are described to have similar receptor preferences. Interestingly, FGF16 was shown to be specific for proliferation of cardiac progenitor cells, whereas FGF9 also proliferated human cardiac fibroblasts. Biosensor analysis of receptor preferences and quantification of receptor abundances suggested that FGF16 and FGF9 bind to different FGF receptors on the cardiac progenitor cells and cardiac fibroblasts. FGF16 also proliferated naïve cardiac progenitor cells isolated from mouse heart and human cardiomyocytes derived from induced pluripotent cells. Taken together, the data suggest that FGF16 could be a suitable paracrine factor to induce cardiac regeneration and repair.
Collapse
|
17
|
Liu XY, Wei MG, Liang J, Xu HH, Wang JJ, Wang J, Yang XP, Lv FF, Wang KQ, Duan JH, Tu Y, Zhang S, Chen C, Li XH. Injury-preconditioning secretome of umbilical cord mesenchymal stem cells amplified the neurogenesis and cognitive recovery after severe traumatic brain injury in rats. J Neurochem 2019; 153:230-251. [PMID: 31465551 DOI: 10.1111/jnc.14859] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/10/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a dominant cause of death and permanent disability worldwide. Although TBI could significantly increase the proliferation of adult neural stem cells in the hippocampus, the survival and maturation of newborn cells is markedly low. Increasing evidence suggests that the secretome derived from mesenchymal stem cells (MSCs) would be an ideal alternative to MSC transplantation. The successive and microenvironmentally responsive secretion in MSCs may be critical for the functional benefits provided by transplanted MSCs after TBI. Therefore, it is reasonable to hypothesize that the signaling molecules secreted in response to local tissue damage can further facilitate the therapeutic effect of the MSC secretome. To simulate the complex microenvironment in the injured brain well, we used traumatically injured brain tissue extracts to pretreat umbilical cord mesenchymal stem cells (UCMSCs) in vitro and stereotaxically injected the secretome from traumatic injury-preconditioned UCMSCs into the dentate gyrus of the hippocampus in a rat severe TBI model. The results revealed that compared with the normal secretome, the traumatic injury-preconditioned secretome could significantly further promote the differentiation, migration, and maturation of newborn cells in the dentate gyrus and ultimately improve cognitive function after TBI. Cytokine antibody array suggested that the increased benefits of secretome administration were attributable to the newly produced proteins and up-regulated molecules from the MSC secretome preconditioned by a traumatically injured microenvironment. Our study utilized the traumatic injury-preconditioned secretome to amplify neurogenesis and improve cognitive recovery, suggesting this method may be a novel and safer candidate for nerve repair. Cover Image for this issue: doi: 10.1111/jnc.14741.
Collapse
Affiliation(s)
- Xiao-Yin Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China.,Tianjin Medical University, Tianjin, China
| | - Meng-Guang Wei
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Jun Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Hai-Huan Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Xi-Ping Yang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Fang-Fang Lv
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Ke-Qiang Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jing-Hao Duan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yue Tu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| |
Collapse
|
18
|
Mizukami A, Thomé CH, Ferreira GA, Lanfredi GP, Covas DT, Pitteri SJ, Swiech K, Faça VM. Proteomic Identification and Time-Course Monitoring of Secreted Proteins During Expansion of Human Mesenchymal Stem/Stromal in Stirred-Tank Bioreactor. Front Bioeng Biotechnol 2019; 7:154. [PMID: 31297369 PMCID: PMC6607109 DOI: 10.3389/fbioe.2019.00154] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
The therapeutic potential of mesenchymal stem/stromal cells (MSC) is widely recognized for the treatment of several diseases, including acute graft-vs.-host disease (GVHD), hematological malignancies, cardiovascular, bone, and cartilage diseases. More recently, this therapeutic efficacy has been attributed to the bioactive molecules that these cells secrete (secretome), now being referred as medicinal signaling cells. This fact raises the opportunity of therapeutically using MSC-derived soluble factors rather than cells themselves, enabling their translation into the clinic. Indeed, many clinical trials are now studying the effects of MSC-secretome in the context of cell-free therapy. MSC secretome profile varies between donors, source, and culture conditions, making their therapeutic use very challenging. Therefore, identifying these soluble proteins and evaluating their production in a reproducible and scalable manner is even more relevant. In this work, we analyzed the global profile of proteins secreted by umbilical cord matrix (UCM) derived-MSC in static conditions by using mass spectrometry, enabling the identification of thousands of proteins. Afterwards, relevant proteins were chosen and monitored in the supernatant of a fully-controllable, closed and scalable system (bioreactor) by using multiple reaction monitoring (MRM) mass spectrometric technique in a time-dependent manner. The results showed that the majority of interesting proteins were enriched through time in culture, with the last day of culture being the ideal time for supernatant collection. The use of this regenerative "soup," which is frequently discarded, could represent a step toward a safe, robust and reproducible cell-free product to be used in the medical therapeutic field. The future use of chemically defined culture-media will certainly facilitate secretome production according to Good Manufacturing Practice (GMP) standards.
Collapse
Affiliation(s)
- Amanda Mizukami
- Faculty of Medicine of Ribeirão Preto, Hemotherapy Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Hassibe Thomé
- Faculty of Medicine of Ribeirão Preto, Hemotherapy Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Germano Aguiar Ferreira
- Faculty of Medicine of Ribeirão Preto, Hemotherapy Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Guilherme Pauperio Lanfredi
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Faculty of Medicine of Ribeirão Preto, Hemotherapy Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford, CA, United States
| | - Kamilla Swiech
- Faculty of Medicine of Ribeirão Preto, Hemotherapy Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vitor Marcel Faça
- Faculty of Medicine of Ribeirão Preto, Hemotherapy Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
19
|
Könemann S, Sartori LV, Gross S, Hadlich S, Kühn JP, Samal R, Bahls M, Felix SB, Wenzel K. Cardioprotective effect of the secretome of Sca-1+ and Sca-1− cells in heart failure: not equal, but equally important? Cardiovasc Res 2019; 116:566-575. [DOI: 10.1093/cvr/cvz140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/29/2019] [Accepted: 05/16/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Aims
Both progenitor and differentiated cells were previously shown to secrete cardioprotective substances, but so far there has been no direct comparison of the paracrine effects of the two cell types on heart failure. The study sought to compare the paracrine effect of selected progenitors and the corresponding non-progenitor mononuclear cardiac cells on the cardiac function of transgenic heart failure mice. In addition, we aimed to further enhance the paracrine effect of the cells via pretreatment with the heart failure mediator aldosterone.
Methods and results
Transgenic heart failure mice were injected with the supernatant of murine cardiac stem cell antigen-1 positive (Sca-1+) and negative (Sca-1−) cells with or without aldosterone pretreatment. Cardiac function was determined using small animal magnetic resonance imaging. In addition, heart failure markers were determined using enzyme-linked immunosorbent assay, RT–PCR, and bead-based multiplexing assay. While only the secretome of aldosterone pretreated Sca-1+ cells led to a significant improvement in cardiac function, N-terminal pro brain natriuretic peptide plasma levels were significantly lower and galectin-1 levels significantly higher in mice that were treated with either kind of secretome compared with untreated controls.
Conclusion
In this first direct comparison of the paracrine effects of progenitor cells and a heterogeneous population of mononuclear cardiac cells the supernatants of both cell types showed cardioprotective properties which might be of great relevance for endogenous repair. During heart failure raised aldosterone levels might further increase the paracrine effect of progenitor cells.
Collapse
Affiliation(s)
- Stephanie Könemann
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Luiz V Sartori
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
| | - Stefan Gross
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Stefan Hadlich
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
| | - Jens-Peter Kühn
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
| | - Rasmita Samal
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Martin Bahls
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Kristin Wenzel
- Department of Internal Medicine B, University Medicine Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| |
Collapse
|
20
|
Maguire G, Paler L, Green L, Mella R, Valcarcel M, Villace P. Rescue of degenerating neurons and cells by stem cell released molecules: using a physiological renormalization strategy. Physiol Rep 2019; 7:e14072. [PMID: 31050222 PMCID: PMC6497969 DOI: 10.14814/phy2.14072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that adult stem cell types and progenitor cells act collectively in a given tissue to maintain and heal organs, such as muscle, through a release of a multitude of molecules packaged into exosomes from the different cell types. Using this principle for the development of bioinspired therapeutics that induces homeostatic renormalization, here we show that the collection of molecules released from four cell types, including mesenchymal stem cells, fibroblast, neural stem cells, and astrocytes, rescues degenerating neurons and cells. Specifically, oxidative stress induced in a human recombinant TDP-43- or FUS-tGFP U2OS cell line by exposure to sodium arsenite was shown to be significantly reduced by our collection of molecules using in vitro imaging of FUS and TDP-43 stress granules. Furthermore, we also show that the collective secretome rescues cortical neurons from glutamate toxicity as evidenced by increased neurite outgrowth, reduced LDH release, and reduced caspase 3/7 activity. These data are the first in a series supporting the development of stem cell-based exosome systems therapeutics that uses a physiological renormalization strategy to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences, Inc.San DiegoCalifornia
- Auditory Sound Waves, LLCSan DiegoCalifornia
| | - Lee Paler
- BioRegenerative Sciences, Inc.San DiegoCalifornia
- Auditory Sound Waves, LLCSan DiegoCalifornia
| | - Linda Green
- BioRegenerative Sciences, Inc.San DiegoCalifornia
| | | | | | | |
Collapse
|
21
|
Sebastião MJ, Serra M, Pereira R, Palacios I, Gomes-Alves P, Alves PM. Human cardiac progenitor cell activation and regeneration mechanisms: exploring a novel myocardial ischemia/reperfusion in vitro model. Stem Cell Res Ther 2019; 10:77. [PMID: 30845956 PMCID: PMC6407246 DOI: 10.1186/s13287-019-1174-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/12/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Numerous studies from different labs around the world report human cardiac progenitor cells (hCPCs) as having a role in myocardial repair upon ischemia/reperfusion (I/R) injury, mainly through auto/paracrine signaling. Even though these cell populations are already being investigated in cell transplantation-based clinical trials, the mechanisms underlying their response are still poorly understood. METHODS To further investigate hCPC regenerative process, we established the first in vitro human heterotypic model of myocardial I/R injury using hCPCs and human-induced pluripotent cell-derived cardiomyocytes (hiPSC-CMs). The co-culture model was established using transwell inserts and evaluated in both ischemia and reperfusion phases regarding secretion of key cytokines, hiPSC-CM viability, and hCPC proliferation. hCPC proteome in response to I/R was further characterized using advanced liquid chromatography mass spectrometry tools. RESULTS This model recapitulates hallmarks of I/R, namely hiPSC-CM death upon insult, protective effect of hCPCs on hiPSC-CM viability (37.6% higher vs hiPSC-CM mono-culture), and hCPC proliferation (approximately threefold increase vs hCPCs mono-culture), emphasizing the importance of paracrine communication between these two populations. In particular, in co-culture supernatant upon injury, we report higher angiogenic functionality as well as a significant increase in the CXCL6 secretion rate, suggesting an important role of this chemokine in myocardial regeneration. hCPC whole proteome analysis allowed us to propose new pathways in the hCPC-mediated regenerative process, including cell cycle regulation, proliferation through EGF signaling, and reactive oxygen species detoxification. CONCLUSION This work contributes with new insights into hCPC biology in response to I/R, and the model established constitutes an important tool to study the molecular mechanisms involved in the myocardial regenerative process.
Collapse
Affiliation(s)
- Maria J. Sebastião
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Margarida Serra
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rute Pereira
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Itziar Palacios
- Coretherapix, S.L.U (Tigenix Group, Takeda), Parque Tecnológico de Madrid, Madrid, Spain
| | - Patrícia Gomes-Alves
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M. Alves
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
22
|
Megat Mohd Azlan PIH, Chin SF, Low TY, Neoh HM, Jamal R. Analyzing the Secretome of Gut Microbiota as the Next Strategy For Early Detection of Colorectal Cancer. Proteomics 2019; 19:e1800176. [PMID: 30557447 DOI: 10.1002/pmic.201800176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/02/2018] [Indexed: 12/20/2022]
Abstract
Dysbiosis of gut microbiome can contribute to inflammation, and subsequently initiation and progression of colorectal cancer (CRC). Throughout these stages, various proteins and metabolites are secreted to the external environment by microorganisms or the hosts themselves. Studying these proteins may help enhance our understanding of the host-microorganism relationship or they may even serve as useful biomarkers for CRC. However, secretomic studies of gut microbiome of CRC patients, until now, are scarcely performed. In this review article, the focus is on the roles of gut microbiome in CRC, the current findings on CRC secretome are highlighted, and the emerging challenges and strategies to drive forward this area of research are addressed.
Collapse
Affiliation(s)
| | - Siok-Fong Chin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hui-Min Neoh
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Seldin MM, Lusis AJ. Systems-based approaches for investigation of inter-tissue communication. J Lipid Res 2019; 60:450-455. [PMID: 30617149 PMCID: PMC6399495 DOI: 10.1194/jlr.s090316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/27/2018] [Indexed: 11/23/2022] Open
Abstract
Secreted proteins serve as crucial mediators of many physiology processes, and beginning with the discovery of insulin, studies have revealed numerous context-specific regulatory networks across various cell types. Here, we review “omics” approaches to deconvolute the complex milieu of proteins that are released from the cell. We emphasize a novel “systems genetics” approach our laboratory has developed to investigate mechanisms of tissue-tissue communication using population-based datasets. Finally, we highlight potential future directions for these studies, discuss several caveats, and propose new ways to investigate modes of endocrine communication.
Collapse
Affiliation(s)
- Marcus M Seldin
- Departments of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Aldons J Lusis
- Departments of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 .,Human Genetics University of California, Los Angeles, Los Angeles, CA 90095.,Microbiology, Immunology, and Molecular Genetics University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
24
|
Quantitative Secretomics Reveals Extrinsic Signals Involved in Human Pluripotent Stem Cell Cardiomyogenesis. Proteomics 2018; 18:e1800102. [DOI: 10.1002/pmic.201800102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/17/2018] [Indexed: 12/22/2022]
|
25
|
Liu B, Lee BW, Nakanishi K, Villasante A, Williamson R, Metz J, Kim J, Kanai M, Bi L, Brown K, Di Paolo G, Homma S, Sims PA, Topkara VK, Vunjak-Novakovic G. Cardiac recovery via extended cell-free delivery of extracellular vesicles secreted by cardiomyocytes derived from induced pluripotent stem cells. Nat Biomed Eng 2018; 2:293-303. [PMID: 30271672 PMCID: PMC6159913 DOI: 10.1038/s41551-018-0229-7] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
The ability of extracellular vesicles (EVs) to regulate a broad range of cellular processes has recently been exploited for the treatment of diseases. For example, EVs secreted by stem cells injected into infarcted hearts can induce recovery through the delivery of stem-cell-specific miRNAs. However, the retention of the EVs and the therapeutic effects are short-lived. Here, we show that an engineered hydrogel patch capable of slowly releasing EVs secreted from cardiomyocytes derived from induced pluripotent stem (iPS) cells reduced arrhythmic burden, promoted ejection-fraction recovery, decreased cardiomyocyte apoptosis 24 hours after infarction, and reduced infarct size and cell hypertrophy 4 weeks post-infarction when implanted onto infarcted rat hearts. We also show that the EVs are enriched with cardiac-specific miRNAs known to modulate cardiomyocyte-specific processes. The extended delivery of EVs secreted from iPS-cell-derived cardiomyocytes into the heart may help understand heart recovery and treat heart injury.
Collapse
Affiliation(s)
- Bohao Liu
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Benjamin W Lee
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Koki Nakanishi
- Department of Medicine, Columbia University, New York, NY, USA
| | - Aranzazu Villasante
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Rebecca Williamson
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jordan Metz
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Jinho Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Mariko Kanai
- Department of Medicine, Columbia University, New York, NY, USA
| | - Lynn Bi
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kristy Brown
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Shunichi Homma
- Department of Medicine, Columbia University, New York, NY, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Veli K Topkara
- Department of Medicine, Columbia University, New York, NY, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Columbia University, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Srivastava A, Singh S, Rajpurohit CS, Srivastava P, Pandey A, Kumar D, Khanna VK, Pant AB. Secretome of Differentiated PC12 Cells Restores the Monocrotophos-Induced Damages in Human Mesenchymal Stem Cells and SHSY-5Y Cells: Role of Autophagy and Mitochondrial Dynamics. Neuromolecular Med 2018; 20:233-251. [PMID: 29603067 DOI: 10.1007/s12017-018-8487-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/28/2018] [Indexed: 12/16/2022]
Abstract
A perturbed cellular homeostasis is a key factor associated with xenobiotic exposure resulting in various ailments. The local cellular microenvironment enriched with secretory components aids in cell-cell communication that restores this homeostasis. Deciphering the underlying mechanism behind this restorative potential of secretome could serve as a possible solution to many health hazards. We, therefore, explored the protective efficacy of the secretome of differentiated PC12 cells with emphasis on induction of autophagy and mitochondrial biogenesis. Monocrotophos (MCP), a widely used neurotoxic organophosphate, was used as the test compound at sublethal concentration. The conditioned medium (CM) of differentiated PC12 cells comprising of their secretome restored the cell viability, oxidative stress and apoptotic cell death in MCP-challenged human mesenchymal stem cells and SHSY-5Y, a human neuroblastoma cell line. Delving further to identify the underlying mechanism of this restorative effect we observed a marked increase in the expression of autophagy markers LC3, Beclin-1, Atg5 and Atg7. Exposure to autophagy inhibitor, 3-methyladenine, led to a reduced expression of these markers with a concomitant increase in the expression of pro-apoptotic caspase-3. Besides that, the increased mitochondrial fission in MCP-exposed cells was balanced with increased fusion in the presence of CM facilitated by AMPK/SIRT1/PGC-1α signaling cascade. Mitochondrial dysfunctions are strongly associated with autophagy activation and as per our findings, cellular secretome too induces autophagy. Therefore, connecting these three potential apices can be a major breakthrough in repair and rescue of xenobiotic-damaged tissues and cells.
Collapse
Affiliation(s)
- A Srivastava
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
| | - S Singh
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, India
| | - C S Rajpurohit
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, India
| | - P Srivastava
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
| | - A Pandey
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
| | - D Kumar
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, India
| | - V K Khanna
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, India
| | - A B Pant
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, India.
| |
Collapse
|
27
|
Waters R, Alam P, Pacelli S, Chakravarti AR, Ahmed RP, Paul A. Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomater 2018; 69:95-106. [PMID: 29281806 DOI: 10.1016/j.actbio.2017.12.025] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/30/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022]
Abstract
The objective of this study was to develop an injectable and biocompatible hydrogel that can deliver a cocktail of therapeutic biomolecules (secretome) secreted by human adipose-derived stem cells (hASCs) to the peri-infarct myocardium. Gelatin and Laponite® were combined to formulate a shear-thinning, nanocomposite hydrogel (nSi Gel) as an injectable carrier of secretome (nSi Gel+). The growth factor composition and the pro-angiogenic activity of the secretome were tested in vitro by evaluating the proliferation, migration and tube formation of human umbilical endothelial cells. The therapeutic efficacy of the nSi Gel + system was then investigated in vivo in rats by intramyocardial injection into the peri-infarct region. Subsequently, the inflammatory response, angiogenesis, scar formation, and heart function were assessed. Biocompatibility of the developed nSi Gel was confirmed by quantitative PCR and immunohistochemical tests which showed no significant differences in the level of inflammatory genes, microRNAs, and cell marker expression compared to the untreated control group. In addition, the only group that showed a significant increase in capillary density, reduction in scar area and improved cardiac function was treated with the nSi Gel+. Our in vitro and in vivo findings demonstrate the potential of this new secretome-loaded hydrogel as an alternative strategy to treat myocardial infarction. STATEMENT OF SIGNIFICANCE Stem cell based-therapies represent a possible solution to repair damaged myocardial tissue by promoting cardioprotection, angiogenesis, and reduced fibrosis. However, recent evidence indicates that most of the positive outcomes are likely due to the release of paracrine factors (cytokines, growth factors, and exosomes) from the cells and not because of the local engraftment of stem cells. This cocktail of essential growth factors and paracrine signals is known as secretome can be isolated in vitro, and the biomolecule composition can be controlled by varying stem-cell culture conditions. Here, we propose a straightforward strategy to deliver secretome produced from hASCs by using a nanocomposite injectable hydrogel made of gelatin and Laponite®. The designed secretome-loaded hydrogel represents a promising alternative to traditional stem cell therapy for the treatment of acute myocardial infarction.
Collapse
|
28
|
Vandergriff A, Huang K, Shen D, Hu S, Hensley MT, Caranasos TG, Qian L, Cheng K. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics 2018; 8:1869-1878. [PMID: 29556361 PMCID: PMC5858505 DOI: 10.7150/thno.20524] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 01/23/2018] [Indexed: 12/24/2022] Open
Abstract
Rationale: Cardiac stem cell-derived exosomes have been demonstrated to promote cardiac regeneration following myocardial infarction in preclinical studies. Recent studies have used intramyocardial injection in order to concentrate exosomes in the infarct. Though effective in a research setting, this method is not clinically appealing due to its invasive nature. We propose the use of a targeting peptide, cardiac homing peptide (CHP), to target intravenously-infused exosomes to the infarcted heart. Methods: Exosomes were conjugated with CHP through a DOPE-NHS linker. Ex vivo targeting was analyzed by incubating organ sections with the CHP exosomes and analyzing with fluorescence microscopy. In vitro assays were performed on neonatal rat cardiomyocytes and H9C2 cells. For the animal study, we utilized an ischemia/reperfusion rat model. Animals were treated with either saline, scramble peptide exosomes, or CHP exosomes 24 h after surgery. Echocardiography was performed 4 h after surgery and 21 d after surgery. At 21 d, animals were sacrificed, and organs were collected for analysis. Results: By conjugating the exosomes with CHP, we demonstrate increased retention of the exosomes within heart sections ex vivo and in vitro with neonatal rat cardiomyocytes. In vitro studies showed improved viability, reduced apoptosis and increased exosome uptake when using CHP-XOs. Using an animal model of ischemia/reperfusion injury, we measured the heart function, infarct size, cellular proliferation, and angiogenesis, with improved outcomes with the CHP exosomes. Conclusions: Our results demonstrate a novel method for increasing delivery of for treatment of myocardial infarction. By targeting exosomes to the infarcted heart, there was a significant improvement in outcomes with reduced fibrosis and scar size, and increased cellular proliferation and angiogenesis.
Collapse
Affiliation(s)
- Adam Vandergriff
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University
- Department of Molecular and Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Ke Huang
- Department of Molecular and Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Deliang Shen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shiqi Hu
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University
- Department of Molecular and Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Michael Taylor Hensley
- Department of Molecular and Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Thomas G. Caranasos
- Department of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ke Cheng
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University
- Department of Molecular and Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
29
|
KC P, Liu F, Zhe J, Zhang G. Development and Comparison of Two Immuno-disaggregation Based Bioassays for Cell Secretome Analysis. Am J Cancer Res 2018; 8:328-340. [PMID: 29290811 PMCID: PMC5743551 DOI: 10.7150/thno.21917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/17/2017] [Indexed: 01/09/2023] Open
Abstract
Cell secretome analysis has gained increasing attention towards the development of effective strategies for disease treatment. Analysis of cell secretome enables the platform to monitor the status of disease progression, facilitating therapeutic outcomes. However, cell secretome analysis is very challenging due to its versatile and dynamic composition. Here, we report the development of two immuno-disaggregation bioassays using functionalized microparticles for the quantitative analysis of the cell secretome. Methods: We evaluated the feasibility of our developed immuno-disaggregation bioassays using antibody-conjugated MPs and protein-conjugated MPs for the detection of target cell secretome protein. The vascular endothelial growth factor (VEGF)-165 protein was tested as a model cell secretome protein in the serum and serum-free conditions. The status of MP aggregates was examined with a light microscopy and AccuSizerTM 780 Optical Particle Sizer. The accuracy of our bioassays measurement was compared with standard ELISA method. Results: The developed bioassays successfully detected target VEGF protein present in serum-free buffer and serum-containing complete cell culture medium with high sensitivity and specificity. Additionally, the immuno-disaggregation bioassays using antibody-conjugated MPs and protein-conjugated MPs have a wide detection range from 0.01 ng/mL to 100 ng/mL and 0.5 ng/mL to 100 ng/mL, respectively. The sensitivity of the bioassay using antibody-conjugated MPs was approximately one order of magnitude higher than the bioassay using protein-conjugated MPs. Conclusion: Our promising results indicate the potential of the developed bioassays as powerful platforms for the quantitative analysis of cell secretome.
Collapse
|
30
|
Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int J Mol Sci 2017; 18:ijms18091852. [PMID: 28841158 PMCID: PMC5618501 DOI: 10.3390/ijms18091852] [Citation(s) in RCA: 854] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Earlier research primarily attributed the effects of mesenchymal stem cell (MSC) therapies to their capacity for local engrafting and differentiating into multiple tissue types. However, recent studies have revealed that implanted cells do not survive for long, and that the benefits of MSC therapy could be due to the vast array of bioactive factors they produce, which play an important role in the regulation of key biologic processes. Secretome derivatives, such as conditioned media or exosomes, may present considerable advantages over cells for manufacturing, storage, handling, product shelf life and their potential as a ready-to-go biologic product. Nevertheless, regulatory requirements for manufacturing and quality control will be necessary to establish the safety and efficacy profile of these products. Among MSCs, human uterine cervical stem cells (hUCESCs) may be a good candidate for obtaining secretome-derived products. hUCESCs are obtained by Pap cervical smear, which is a less invasive and painful method than those used for obtaining other MSCs (for example, from bone marrow or adipose tissue). Moreover, due to easy isolation and a high proliferative rate, it is possible to obtain large amounts of hUCESCs or secretome-derived products for research and clinical use.
Collapse
|
31
|
Hamilton SL, Ferando B, Eapen AS, Yu JC, Joy AR. Cancer Secretome May Influence BSP and DSP Expression in Human Salivary Gland Cells. J Histochem Cytochem 2016; 65:139-151. [PMID: 27881474 DOI: 10.1369/0022155416676064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the biggest challenges in managing head and neck cancers, especially salivary gland cancers, is the identification of secreted biomarkers of the disease that can be evaluated noninvasively. A relevant source of enriched tumor markers could potentially be found in the tumor secretome. Although numerous studies have evaluated secretomes from various cancers, the influence of the cancer secretome derived from salivary gland cancers on the behavior of normal cells has not yet been elucidated. Our data indicate that secretome derived from salivary gland cancer cells can influence the expression of two potential biomarkers of oral cancer-namely, bone sialoprotein (BSP) and dentin sialoprotein (DSP)-in normal salivary gland cells. Using routine immunohistochemistry, immunofluorescence, and immunoblotting techniques, we demonstrate an enrichment of BSP and DSP in human salivary gland (HSG) cancer tissue, unique localizations of BSP and DSP in HSG cancer cells, and enriched expression of BSP and DSP in normal salivary gland cells exposed to a cancer secretome. The secretome domain of the cancer microenvironment could alter signaling cascades responsible for normal cell proliferation, migration, and invasion, thus enhancing cancer cell survival and the potential for cancer progression. The cancer secretome may be critical in maintaining and stimulating "cancer-ness," thus potentially promoting specific hallmarks of metastasis.
Collapse
Affiliation(s)
- Samantha Lynn Hamilton
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ).,Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois (SLH, JCY, ARJ)
| | - Blake Ferando
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ)
| | - Asha Sarah Eapen
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ)
| | - Jennifer Chian Yu
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ).,Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois (SLH, JCY, ARJ)
| | - Anita Rose Joy
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ).,Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois (SLH, JCY, ARJ)
| |
Collapse
|
32
|
Dewey CM, Spitler KM, Ponce JM, Hall DD, Grueter CE. Cardiac-Secreted Factors as Peripheral Metabolic Regulators and Potential Disease Biomarkers. J Am Heart Assoc 2016; 5:e003101. [PMID: 27247337 PMCID: PMC4937259 DOI: 10.1161/jaha.115.003101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Colleen M Dewey
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Kathryn M Spitler
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jessica M Ponce
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Duane D Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Chad E Grueter
- Division of Cardiovascular Medicine, Department of Internal Medicine and François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA Fraternal Order of Eagles Diabetes Research Center, Papajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
33
|
Waters R, Pacelli S, Maloney R, Medhi I, Ahmed RPH, Paul A. Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration. NANOSCALE 2016; 8:7371-6. [PMID: 26876936 PMCID: PMC4863075 DOI: 10.1039/c5nr07806g] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A nanocomposite hydrogel with photocrosslinkable micro-porous networks and a nanoclay component was successfully prepared to control the release of growth factor-rich stem cell secretome. The proven pro-angiogenic and cardioprotective potential of this new bioactive system provides a valuable therapeutic platform for cardiac tissue repair and regeneration.
Collapse
Affiliation(s)
- Renae Waters
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA.
| | - Settimio Pacelli
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA.
| | - Ryan Maloney
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA.
| | - Indrani Medhi
- SRM University, Kattankulathur 603203, Tamilnadu, India
| | - Rafeeq P H Ahmed
- Department of Pathology, University of Cincinnati, 231-Albert Sabin Way, Cincinnati 45267, OH, USA
| | - Arghya Paul
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
34
|
Abstract
Much has changed since our survey of the landscape for myocardial regeneration powered by adult stem cells 4 years ago.(1) The intervening years since that first review has witnessed an explosive expansion of studies that advance both understanding and implementation of adult stem cells in promoting myocardial repair. Painstaking research from innumerable laboratories throughout the world is prying open doors that may lead to restoration of myocardial structure and function in the wake of pathological injury. This global effort has produced deeper mechanistic comprehension coupled with an evolving appreciation for the complexity of myocardial regeneration in the adult context. Undaunted by both known and (as yet) unknown challenges, pursuit of myocardial regenerative medicine mediated by adult stem cell therapy has gathered momentum fueled by tantalizing clues and visionary goals. This concise review takes a somewhat different perspective than our initial treatise, taking stock of the business sector that has become an integral part of the field while concurrently updating state of affairs in cutting edge research. Looking retrospectively at advancement over the years as all reviews eventually must, the fundamental lesson to be learned is best explained by Jonatan Mårtensson: "Success will never be a big step in the future. Success is a small step taken just now."
Collapse
Affiliation(s)
- Kathleen M Broughton
- From the San Diego State University Heart Institute and the Integrated Regenerative Research Institute, San Diego, CA
| | - Mark A Sussman
- From the San Diego State University Heart Institute and the Integrated Regenerative Research Institute, San Diego, CA.
| |
Collapse
|
35
|
Kumar A, Baycin-Hizal D, Wolozny D, Pedersen LE, Lewis NE, Heffner K, Chaerkady R, Cole RN, Shiloach J, Zhang H, Bowen MA, Betenbaugh MJ. Elucidation of the CHO Super-Ome (CHO-SO) by Proteoinformatics. J Proteome Res 2015; 14:4687-703. [PMID: 26418914 DOI: 10.1021/acs.jproteome.5b00588] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chinese hamster ovary (CHO) cells are the preferred host cell line for manufacturing a variety of complex biotherapeutic drugs including monoclonal antibodies. We performed a proteomics and bioinformatics analysis on the spent medium from adherent CHO cells. Supernatant from CHO-K1 culture was collected and subjected to in-solution digestion followed by LC/LC-MS/MS analysis, which allowed the identification of 3281 different host cell proteins (HCPs). To functionally categorize them, we applied multiple bioinformatics tools to the proteins identified in our study including SignalP, TargetP, SecretomeP, TMHMM, WoLF PSORT, and Phobius. This analysis provided information on the presence of signal peptides, transmembrane domains, and cellular localization and showed that both secreted and intracellular proteins were constituents of the supernatant. Identified proteins were shown to be localized to the secretory pathway including ones playing roles in cell growth, proliferation, and folding as well as those involved in protein degradation and removal. After combining proteins predicted to be secreted or having a signal peptide, we identified 1015 proteins, which we termed as CHO supernatant-ome (CHO-SO), or superome. As a part of this effort, we created a publically accessible web-based tool called GO-CHO to functionally categorize proteins found in CHO-SO and identify enriched molecular functions, biological processes, and cellular components. We also used a tool to evaluate the immunogenicity potential of high-abundance HCPs. Among enriched functions were catalytic activity and structural constituents of the cytoskeleton. Various transport related biological processes, such as vesicle mediated transport, were found to be highly enriched. Extracellular space and vesicular exosome associated proteins were found to be the most enriched cellular components. The superome also contained proteins secreted from both classical and nonclassical secretory pathways. The work and database described in our study will enable the CHO community to rapidly identify high-abundance HCPs in their cultures and therefore help assess process and purification methods used in the production of biologic drugs.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States.,Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases , National Institute of Health, Building 14A, Bethesda, Maryland 20892, United States
| | - Deniz Baycin-Hizal
- Antibody Discovery and Protein Engineering, MedImmune LLC , 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Daniel Wolozny
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , DK-2970 Hørsholm, Denmark
| | - Nathan E Lewis
- Department of Biology, Brigham Young University , Provo, Utah 84602, United States.,Department of Pediatrics, University of California , San Diego, California 92093, United States
| | - Kelley Heffner
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Raghothama Chaerkady
- Institute of Basic Biomedical Sciences, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205, United States
| | - Robert N Cole
- Institute of Basic Biomedical Sciences, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205, United States
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases , National Institute of Health, Building 14A, Bethesda, Maryland 20892, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins School of Medicine , 400 North Broadway Street, Baltimore, Maryland 21287, United States
| | - Michael A Bowen
- Antibody Discovery and Protein Engineering, MedImmune LLC , 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
36
|
Sivadasan P, Gupta MK, Sathe GJ, Balakrishnan L, Palit P, Gowda H, Suresh A, Kuriakose MA, Sirdeshmukh R. Human salivary proteome--a resource of potential biomarkers for oral cancer. J Proteomics 2015; 127:89-95. [PMID: 26073025 DOI: 10.1016/j.jprot.2015.05.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/09/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022]
Abstract
Proteins present in human saliva offer an immense potential for clinical applications. However, exploring salivary proteome is technically challenged due to the presence of amylase and albumin in high abundance. In this study, we used four workflows to analyze human saliva from healthy individuals which involved depletion of abundant proteins using affinity-based separation methods followed by protein or peptide fractionation and high resolution mass spectrometry analysis. We identified a total of 1256 human salivary proteins, 292 of them being reported for the first time. All identifications were verified for any shared proteins/peptides from the salivary microbiome that may conflict with the human protein identifications. On integration of our results with the analyses reported earlier, we arrived at an updated human salivary proteome containing 3449 proteins, 808 of them have been reported as differentially expressed proteins in oral cancer tissues. The secretory nature of 598 of the 808 proteins has also been supported on the basis of the presence of signal sequence, transmembrane domain or association with exosomes. From this subset, we provide a priority list of 139 proteins along with their proteotypic peptides, which may serve as a reference for targeted investigations as secretory markers for clinical applications in oral malignancies. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Priya Sivadasan
- Head and Neck Oncology, Mazumdar Shaw Medical Center, Narayana Health, Bangalore 560099, India; Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - Manoj Kumar Gupta
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - Gajanan J Sathe
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | | | - Priyanka Palit
- Head and Neck Oncology, Mazumdar Shaw Medical Center, Narayana Health, Bangalore 560099, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - Amritha Suresh
- Head and Neck Oncology, Mazumdar Shaw Medical Center, Narayana Health, Bangalore 560099, India; Mazumdar Shaw Center for Translational Research, Mazumdar Shaw Medical Foundation, Narayana Health, Bangalore 560099, India
| | - Moni Abraham Kuriakose
- Head and Neck Oncology, Mazumdar Shaw Medical Center, Narayana Health, Bangalore 560099, India; Mazumdar Shaw Center for Translational Research, Mazumdar Shaw Medical Foundation, Narayana Health, Bangalore 560099, India.
| | - Ravi Sirdeshmukh
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India; Mazumdar Shaw Center for Translational Research, Mazumdar Shaw Medical Foundation, Narayana Health, Bangalore 560099, India.
| |
Collapse
|
37
|
Yuan Y, Lau WB, Su H, Sun Y, Yi W, Du Y, Christopher T, Lopez B, Wang Y, Ma XL. C1q-TNF-related protein-9, a novel cardioprotetcive cardiokine, requires proteolytic cleavage to generate a biologically active globular domain isoform. Am J Physiol Endocrinol Metab 2015; 308:E891-8. [PMID: 25783894 PMCID: PMC4436995 DOI: 10.1152/ajpendo.00450.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/10/2015] [Indexed: 12/23/2022]
Abstract
Prevalence and severity of postmyocardial infarction heart failure continually escalate in type 2 diabetes via incompletely understood mechanisms. The discovery of the cardiac secretomes, collectively known as "cardiokines", has significantly enhanced appreciation of the local microenvironment's influence on disease development. Recent studies demonstrated that C1q-TNF-related protein-9 (CTRP9), a newly discovered adiponectin (APN) paralog, is highly expressed in the heart. However, its relationship with APN (concerning diabetic cardiovascular injury in particular) remains unknown. Plasma CTRP9 levels are elevated in APN knockout and reduced in diabetic mice. In contrast to APN, which circulates as full-length multimers, CTRP9 circulates in the plasma primarily in the globular domain isoform (gCTRP9). Recombinant full-length CTRP9 (fCTRP9) was cleaved when incubated with cardiac tissue extracts, generating gCTRP9, a process inhibited by protease inhibitor cocktail. gCTRP9 rapidly activates cardiac survival kinases, including AMPK, Akt, and endothelial NOS. However, fCTRP9-mediated kinase activation is much less potent and significantly delayed. Kinase activation by fCTRP9, but not gCTRP9, is inhibited by protease inhibitor cocktail. These results demonstrate for the first time that the novel cardiokine CTRP9 undergoes proteolytic cleavage to generate gCTRP9, the dominant circulatory and actively cardioprotective isoform. Enhancing cardiac CTRP9 production and/or its proteolytic posttranslational modification are of therapeutic potential, attenuating diabetic cardiac injury.
Collapse
Affiliation(s)
- Yuexing Yuan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Zhejiang Provincial Hospital of Chinese Traditional Medicine, Hangzhou, Zhejiang Province, China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yunhui Du
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Theodore Christopher
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Bernard Lopez
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| |
Collapse
|
38
|
Lee SC, Jeong HJ, Lee SK, Kim SJ. Lipopolysaccharide preconditioning of adipose-derived stem cells improves liver-regenerating activity of the secretome. Stem Cell Res Ther 2015; 6:75. [PMID: 25890074 PMCID: PMC4416308 DOI: 10.1186/s13287-015-0072-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Growing recognition of paracrine mechanisms in stem cell plasticity has resulted in considerable interest in stem cell-derived secretome. The aim of this study was to investigate the effects of lipopolysaccharide (LPS) preconditioning on the composition and hepatic regenerative activity of adipose-derived stem cell (ASC) secretome. METHODS Conditioned medium (CM) and LPS-CM were obtained after culturing human ASCs without or with low-dose LPS (0.5 ng/mL) for 24 hours. Untreated and thioacetamide-treated mouse AML12 hepatocytes were incubated for 24 hours with the control medium, LPS (0.5 ng/mL), CM, and LPS-CM and then cell viabilities were compared. CM and LPS-CM were also intravenously administered to partially hepatectomized mice, and their effects on liver regeneration were assessed by using liver weight measurements, immunohistochemistry, and Western blotting. RESULTS In the in vitro experiments, LPS preconditioning of ASCs enhanced the mRNA expression levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), hepatocyte growth factor, and vascular endothelial growth factor, which evoke inflammatory response or liver regeneration. LPS-CM significantly promoted thioacetamide-damaged AML12 cell viability compared with CM-incubated cells and the control cells (77%, 69%, and 65% P<0.05). In the in vivo experiment, LPS-CM infusion into the partially hepatectomized mice significantly reduced serum IL-6 and TNF-α levels compared with the other groups (P<0.05) on days 1 and 2 after partial hepatectomy. Moreover, LPS-CM infusion enhanced liver regeneration (based on the liver weight changes at day 7 after partial hepatectomy, 3.73% versus 3.22% in the CM group; P<0.05) and significantly reduced the elevated serum levels of aspartate transaminase and alanine transaminase (at day 1, P<0.05). CONCLUSIONS Our results suggest that LPS preconditioning effectively stimulates ASCs to produce the secretome beneficial to hepatic regeneration. Thus, optimizing ASC secretome profile by LPS preconditioning could be a promising approach to treat liver diseases by using stem cells.
Collapse
Affiliation(s)
- Sang Chul Lee
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-dong 520-2, Joong-gu, Daejeon, Republic of Korea.
| | - Hye Jin Jeong
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-dong 520-2, Joong-gu, Daejeon, Republic of Korea.
| | - Sang Kuon Lee
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-dong 520-2, Joong-gu, Daejeon, Republic of Korea.
| | - Say-June Kim
- Department of Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-dong 520-2, Joong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
39
|
Tran C, Damaser MS. Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev 2015; 82-83:1-11. [PMID: 25451858 DOI: 10.1016/j.addr.2014.10.007] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are a unique cell population defined by their ability to indefinitely self-renew, differentiate into multiple cell lineages, and form clonal cell populations. It was originally thought that this ability for broad plasticity defined the therapeutic potential of MSCs. However, an expanding body of recent literature has brought growing awareness to the remarkable array of bioactive molecules produced by stem cells. This protein milieu or "secretome" comprises a diverse host of cytokines, chemokines, angiogenic factors, and growth factors. The autocrine/paracrine role of these molecules is being increasingly recognized as key to the regulation of many physiological processes including directing endogenous and progenitor cells to sites of injury as well as mediating apoptosis, scarring, and tissue revascularization. In fact, the immunomodulatory and paracrine role of these molecules may predominantly account for the therapeutic effects of MSCs given that many in vitro and in vivo studies have demonstrated limited stem cell engraftment at the site of injury. While the study of such a vast protein array remains challenging, technological advances in the field of proteomics have greatly facilitated our ability to analyze and characterize the stem cell secretome. Thus, stem cells can be considered as tunable pharmacological storehouses useful for combinatorial drug manufacture and delivery. As a cell-free option for regenerative medicine therapies, stem cell secretome has shown great potential in a variety of clinical applications including the restoration of function in cardiovascular, neurodegenerative, oncologic, and genitourinary pathologies.
Collapse
|
40
|
Tran C, Damaser MS. The potential role of stem cells in the treatment of urinary incontinence. Ther Adv Urol 2015; 7:22-40. [PMID: 25642292 DOI: 10.1177/1756287214553968] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Voiding dysfunction encompasses a wide range of urologic disorders including stress urinary incontinence and overactive bladder that have a detrimental impact on the quality of life of millions of men and women worldwide. In recent years, we have greatly expanded our understanding of the pathophysiology of these clinical conditions. However, current gold standard therapies often provide symptomatic relief without targeting the underlying etiology of disease development. Recently, the use of stem cells to halt disease progression and reverse underlying pathology has emerged as a promising method to restore normal voiding function. Stem cells are classically thought to aid in tissue repair via their ability for multilineage differentiation and self-renewal. They may also exert a therapeutic effect via the secretion of bioactive factors that direct other stem and progenitor cells to the area of injury, and that also possess antiapoptotic, antiscarring, neovascularization, and immunomodulatory properties. Local injections of mesenchymal, muscle-derived, and adipose-derived stem cells have all yielded successful outcomes in animal models of mechanical, nerve, or external urethral sphincter injury in stress urinary incontinence. Similarly, direct injection of mesenchymal and adipose-derived stem cells into the bladder in animal models of bladder overactivity have demonstrated efficacy. Early clinical trials using stem cells for the treatment of stress urinary incontinence in both male and female patients have also achieved promising functional results with minimal adverse effects. Although many challenges remain to be addressed prior to the clinical implementation of this technology, novel stem-cell-based therapies are an exciting potential therapy for voiding dysfunction.
Collapse
Affiliation(s)
- Christine Tran
- Glickman Urological and Kidney Institute, The Cleveland Clinic, USA
| | - Margot S Damaser
- The Cleveland Clinic, Department of Biomedical Engineering, 9500 Euclid Avenue ND20, Cleveland, OH 44195, USA
| |
Collapse
|
41
|
Patel S, Ngounou Wetie AG, Darie CC, Clarkson BD. Cancer secretomes and their place in supplementing other hallmarks of cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:409-42. [PMID: 24952195 DOI: 10.1007/978-3-319-06068-2_20] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The secretome includes all macromolecules secreted by cells, in particular conditions at defined times, allowing cell-cell communication. Cancer cell secretomes that are altered compared to normal cells have shown significant potential for elucidating cancer biology. Proteins of secretomes are secreted by various secretory pathways and can be studied using different methods. Cancer secretomes seem to play an important role in known hallmarks of cancers such as excessive proliferation, reduced apoptosis, immune invasion, angioneogenesis, alteration in energy metabolism, and development of resistance against anti-cancer therapy [1, 2]. If a significant role of an altered secretome can be identified in cancer cells, using advanced mass spectrometry-based techniques, this may allow researchers to screen and characterize the secretome proteins involved in cancer progression and open up new opportunities to develop new therapies. We aim to elaborate upon recent advances in cancer cell secretome analysis using different proteomics techniques. In this review, we highlight the role of the altered secretome in contributing to already recognized and emerging hallmarks of cancer and we discuss new challenges in the field of secretome analysis.
Collapse
Affiliation(s)
- Sapan Patel
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, 415 East 68th Street, New York, NY, 10065, USA
| | | | | | | |
Collapse
|
42
|
Makridakis M, Roubelakis MG, Vlahou A. Stem cells: Insights into the secretome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2380-4. [DOI: 10.1016/j.bbapap.2013.01.032] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/19/2013] [Accepted: 01/23/2013] [Indexed: 01/06/2023]
|
43
|
Kupcova Skalnikova H. Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie 2013; 95:2196-211. [PMID: 23880644 DOI: 10.1016/j.biochi.2013.07.015] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/13/2013] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with a substantial potential in human regenerative medicine due to their ability to migrate to sites of injury, capability to suppress immune response and accessibility in large amount from patient's own bone marrow or fat tissue. It has been increasingly observed that the transplanted MSCs did not necessarily engraft and differentiate at the site of injury but might exert their therapeutic effects through secreted trophic signals. The MSCs secrete a variety of autocrine/paracrine factors, called secretome, that support regenerative processes in the damaged tissue, induce angiogenesis, protect cells from apoptotic cell death and modulate immune system. The cell culture medium conditioned by MSCs or osteogenic, chondrogenic as well as adipogenic precursors derived from MSCs has become a subject of intensive proteomic profiling in the search for and identification of released factors and microvesicles that might be applicable in regenerative medicine. Jointly with the methods for MSC isolation, expansion and differentiation, proteomic analysis of MSC secretome was enabled recently mainly due to the extensive development in protein separation techniques, mass spectrometry, immunological methods and bioinformatics. This review describes proteomic techniques currently applied or prospectively applicable in MSC secretomics, with a particular focus on preparation of the secretome sample, protein/peptide separation, mass spectrometry and protein quantification techniques, analysis of posttranslational modifications, immunological techniques, isolation and characterisation of secreted vesicles and exosomes, analysis of cytokine-encoding mRNAs and bioinformatics.
Collapse
Affiliation(s)
- Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, v.v.i., Rumburska 89, 277 21 Libechov, Czech Republic.
| |
Collapse
|
44
|
Ngounou Wetie AG, Sokolowska I, Woods AG, Wormwood KL, Dao S, Patel S, Clarkson BD, Darie CC. Automated Mass Spectrometry–Based Functional Assay for the Routine Analysis of the Secretome. ACTA ACUST UNITED AC 2013; 18:19-29. [DOI: 10.1177/2211068212454738] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Stastna M, Van Eyk JE. Optimized method for identification of the proteomes secreted by cardiac cells. Methods Mol Biol 2013; 1005:225-235. [PMID: 23606261 DOI: 10.1007/978-1-62703-386-2_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the past, various studies using different methods have been carried out to analyze proteins secreted by cells. There are several crucial steps that have to be followed to ensure successful secreted proteome detection and identification. Simultaneously with the optimization of the experimental conditions for various cell type culturing and subsequent cell conditioning to obtain conditioned medium with secreted proteins in vitro, the analytical separation methods for fractionation of complex protein mixture and mass spectrometry for protein identification are of high importance. The separation methods primarily used are either gel-based (e.g., 1-DE and 2-DE) or gel-free methods (e.g., liquid chromatography and capillary electrophoresis). Here we outline an optimized protocol for the preparation and analysis of conditioned medium containing proteins secreted by neonatal cardiac myocytes by using reversed-phase liquid chromatography (RPLC) followed by tandem mass spectrometry (LC-MS/MS). Although optimized for neonatal cardiac myocytes, the general steps described in the following chapter can be adapted to other cell types as well.
Collapse
Affiliation(s)
- Miroslava Stastna
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins Bayview Proteomics Center, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
46
|
Stastna M, Van Eyk JE. Secreted proteins as a fundamental source for biomarker discovery. Proteomics 2012; 12:722-35. [PMID: 22247067 DOI: 10.1002/pmic.201100346] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/26/2011] [Accepted: 08/10/2011] [Indexed: 12/18/2022]
Abstract
The proteins secreted by various cells (the secretomes) are a potential rich source of biomarkers as they reflect various states of the cells at real time and at given conditions. To have accessible, sufficient and reliable protein markers is desirable as they mark various stages of disease development and their presence/absence can be used for diagnosis, prognosis, risk stratification and therapeutic monitoring. As direct analysis of blood/plasma, a common and noninvasive patient screening method, can be difficult for candidate protein biomarker identification, the alternative/complementary approaches are required, one of them is the analysis of secretomes in cell conditioned media in vitro. As the proteins secreted by cells as a response to various stimuli are most likely secreted into blood/plasma, the identification and pre-selection of candidate protein biomarkers from cell secretomes with subsequent validation of their presence at higher levels in serum/plasma is a promising approach. In this review, we discuss the proteins secreted by three progenitor cell types (smooth muscle, endothelial and cardiac progenitor cells) and two adult cell types (neonatal rat ventrical myocytes and smooth muscle cells) which can be relevant to cardiovascular research and which have been recently published in the literature. We found, at least for secretome studies included in this review, that secretomes of progenitor and adult cells overlap by 48% but the secretomes are very distinct among progenitor cell themselves as well as between adult cells. In addition, we compared secreted proteins to protein identifications listed in the Human Plasma PeptideAtlas and in two reports with cardiovascular-related proteins and we performed the extensive literature search to find if any of these secreted proteins were identified in a biomarker study. As expected, many proteins have been identified as biomarkers in cancer but 18 proteins (out of 62) have been tested as biomarkers in cardiovascular diseases as well.
Collapse
Affiliation(s)
- Miroslava Stastna
- Johns Hopkins Bayview Proteomics Center, Department of Medicine, Division of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA.
| | | |
Collapse
|