1
|
Toh R. Genetic Determinants of High-density Lipoprotein Cholesterol Efflux Capacity: Insights from Paraoxonase 1 Polymorphisms. J Atheroscler Thromb 2024; 31:1260-1262. [PMID: 38910119 PMCID: PMC11374540 DOI: 10.5551/jat.ed267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Affiliation(s)
- Ryuji Toh
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| |
Collapse
|
2
|
Landfors F, Henneman P, Chorell E, Nilsson SK, Kersten S. Drug-target Mendelian randomization analysis supports lowering plasma ANGPTL3, ANGPTL4, and APOC3 levels as strategies for reducing cardiovascular disease risk. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae035. [PMID: 38895109 PMCID: PMC11182694 DOI: 10.1093/ehjopen/oeae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024]
Abstract
Aims APOC3, ANGPTL3, and ANGPTL4 are circulating proteins that are actively pursued as pharmacological targets to treat dyslipidaemia and reduce the risk of atherosclerotic cardiovascular disease. Here, we used human genetic data to compare the predicted therapeutic and adverse effects of APOC3, ANGPTL3, and ANGPTL4 inactivation. Methods and results We conducted drug-target Mendelian randomization analyses using variants in proximity to the genes associated with circulating protein levels to compare APOC3, ANGPTL3, and ANGPTL4 as drug targets. We obtained exposure and outcome data from large-scale genome-wide association studies and used generalized least squares to correct for linkage disequilibrium-related correlation. We evaluated five primary cardiometabolic endpoints and screened for potential side effects across 694 disease-related endpoints, 43 clinical laboratory tests, and 11 internal organ MRI measurements. Genetically lowering circulating ANGPTL4 levels reduced the odds of coronary artery disease (CAD) [odds ratio, 0.57 per s.d. protein (95% CI 0.47-0.70)] and Type 2 diabetes (T2D) [odds ratio, 0.73 per s.d. protein (95% CI 0.57-0.94)]. Genetically lowering circulating APOC3 levels also reduced the odds of CAD [odds ratio, 0.90 per s.d. protein (95% CI 0.82-0.99)]. Genetically lowered ANGPTL3 levels via common variants were not associated with CAD. However, meta-analysis of protein-truncating variants revealed that ANGPTL3 inactivation protected against CAD (odds ratio, 0.71 per allele [95%CI, 0.58-0.85]). Analysis of lowered ANGPTL3, ANGPTL4, and APOC3 levels did not identify important safety concerns. Conclusion Human genetic evidence suggests that therapies aimed at reducing circulating levels of ANGPTL3, ANGPTL4, and APOC3 reduce the risk of CAD. ANGPTL4 lowering may also reduce the risk of T2D.
Collapse
Affiliation(s)
- Fredrik Landfors
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, B41, Norrlands universitetssjukhus, S-901 87 Umeå, Sweden
- Lipigon Pharmaceuticals AB, Tvistevägen 48C, S-907 36 Umeå, Sweden
| | - Peter Henneman
- Department of Human Genetics, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, B41, Norrlands universitetssjukhus, S-901 87 Umeå, Sweden
| | - Stefan K Nilsson
- Lipigon Pharmaceuticals AB, Tvistevägen 48C, S-907 36 Umeå, Sweden
- Department of Medical Biosciences, Umeå University, B41, Norrlands universitetssjukhus, S-901 87 Umeå, Sweden
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics group, Division of Human Nutrition and Health, Wageningen University, 6708WE Wageningen, the Netherlands
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Klobučar I, Klobučar L, Lechleitner M, Trbušić M, Pregartner G, Berghold A, Habisch H, Madl T, Frank S, Degoricija V. Associations between Endothelial Lipase and Apolipoprotein B-Containing Lipoproteins Differ in Healthy Volunteers and Metabolic Syndrome Patients. Int J Mol Sci 2023; 24:10681. [PMID: 37445857 PMCID: PMC10341652 DOI: 10.3390/ijms241310681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
The association between serum levels of endothelial lipase (EL) and the serum levels and composition of apolipoprotein B (apoB)-containing lipoproteins in healthy subjects and patients with metabolic syndrome (MS) remained unexplored. Therefore, in the present study, we determined the serum levels and lipid content of apoB-containing lipoproteins using nuclear magnetic resonance (NMR) spectroscopy and examined their association with EL serum levels in healthy volunteers (HVs) and MS patients. EL was significantly negatively correlated with the serum levels of cholesterol in large very low-density lipoprotein (VLDL) particles, as well as with total-cholesterol-, free-cholesterol-, triglyceride-, and phospholipid-contents of VLDL and intermediate-density lipoprotein particles in MS patients but not in HVs. In contrast, EL serum levels were significantly positively correlated with the serum levels of apoB, triglycerides, and phospholipids in large low-density lipoprotein particles in HVs but not in MS patients. EL serum levels as well as the serum levels and lipid content of the majority of apoB-containing lipoprotein subclasses were markedly different in MS patients compared with HVs. We conclude that EL serum levels are associated with the serum levels and lipid content of apoB-containing lipoproteins and that these associations are markedly affected by MS.
Collapse
Affiliation(s)
- Iva Klobučar
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
| | - Lucija Klobučar
- Department of Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia;
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
| | - Matias Trbušić
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Hansjörg Habisch
- Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
| | - Tobias Madl
- Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Department of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (M.L.); (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Vesna Degoricija
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Klobučar I, Stadler JT, Klobučar L, Lechleitner M, Trbušić M, Pregartner G, Berghold A, Habisch H, Madl T, Marsche G, Frank S, Degoricija V. Associations between Endothelial Lipase, High-Density Lipoprotein, and Endothelial Function Differ in Healthy Volunteers and Metabolic Syndrome Patients. Int J Mol Sci 2023; 24:2073. [PMID: 36768410 PMCID: PMC9916974 DOI: 10.3390/ijms24032073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Metabolic syndrome (MS) is characterized by endothelial- and high-density lipoprotein (HDL) dysfunction and increased endothelial lipase (EL) serum levels. We examined the associations between EL serum levels, HDL (serum levels, lipid content, and function), and endothelial function in healthy volunteers (HV) and MS patients. Flow-mediated dilation (FMD), nitroglycerin-mediated dilation (NMD), serum levels of HDL subclasses (measured by nuclear magnetic resonance (NMR) spectroscopy), and EL serum levels differed significantly between HV and MS patients. The serum levels of triglycerides in large HDL particles were significantly positively correlated with FMD and NMD in HV, but not in MS patients. Cholesterol (C) and phospholipid (PL) contents of large HDL particles, calculated as HDL1-C/HDL1-apoA-I and HDL1-PL/HDL1-apoA-I, respectively, were significantly negatively correlated with FMD in HV, but not in MS patients. Cholesterol efflux capacity and arylesterase activity of HDL, as well as EL, were correlated with neither FMD nor NMD. EL was significantly negatively correlated with HDL-PL/HDL-apoA-I in HV, but not in MS patients, and with serum levels of small dense HDL containing apolipoprotein A-II in MS patients, but not in HV. We conclude that MS modulates the association between HDL and endothelial function, as well as between EL and HDL. HDL cholesterol efflux capacity and arylesterase activity, as well as EL serum levels, are not associated with endothelial function in HV or MS patients.
Collapse
Affiliation(s)
- Iva Klobučar
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| | - Julia T. Stadler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Lucija Klobučar
- Department of Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Matias Trbušić
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, 8036 Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, 8036 Graz, Austria
| | - Hansjörg Habisch
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Vesna Degoricija
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Pan-Lizcano R, Mariñas-Pardo L, Núñez L, Rebollal-Leal F, López-Vázquez D, Pereira A, Molina-Nieto A, Calviño R, Vázquez-Rodríguez JM, Hermida-Prieto M. Rare Variants in Genes of the Cholesterol Pathway Are Present in 60% of Patients with Acute Myocardial Infarction. Int J Mol Sci 2022; 23:ijms232416127. [PMID: 36555767 PMCID: PMC9786046 DOI: 10.3390/ijms232416127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Acute myocardial infarction (AMI) is a pandemic in which conventional risk factors are inadequate to detect who is at risk early in the asymptomatic stage. Although gene variants in genes related to cholesterol, which may increase the risk of AMI, have been identified, no studies have systematically screened the genes involved in this pathway. In this study, we included 105 patients diagnosed with AMI with an elevation of the ST segment (STEMI) and treated with primary percutaneous coronary intervention (PPCI). Using next-generation sequencing, we examined the presence of rare variants in 40 genes proposed to be involved in lipid metabolism and we found that 60% of AMI patients had a rare variant in the genes involved in the cholesterol pathway. Our data show the importance of considering the wide scope of the cholesterol pathway in order to assess the genetic risk related to AMI.
Collapse
Affiliation(s)
- Ricardo Pan-Lizcano
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Luis Mariñas-Pardo
- Facultad de Ciencias de la Salud, Universidad Internacional de Valencia (VIU), 46002 Valencia, Spain
| | - Lucía Núñez
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Departamento de Ciencias de la Salud, GRINCAR Research Group, Universidade da Coruña, 15403 A Coruña, Spain
- Correspondence: ; Tel.: +34-981-178-150
| | - Fernando Rebollal-Leal
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Domingo López-Vázquez
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Ana Pereira
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Aranzazu Molina-Nieto
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| | - Ramón Calviño
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- CIBERCV (Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose Manuel Vázquez-Rodríguez
- Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- CIBERCV (Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Hermida-Prieto
- Grupo de Investigación en Cardiología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC-SERGAS), GRINCAR-Universidade da Coruña (UDC), 15006 A Coruña, Spain
| |
Collapse
|
6
|
Pisciotta L, Ossoli A, Ronca A, Garuti A, Fresa R, Favari E, Calabresi L, Calandra S, Bertolini S. Plasma HDL pattern, cholesterol efflux and cholesterol loading capacity of serum in carriers of a novel missense variant (Gly176Trp) of endothelial lipase. J Clin Lipidol 2022; 16:694-703. [PMID: 36002365 DOI: 10.1016/j.jacl.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Loss of function variants of LIPG gene encoding endothelial lipase (EL) are associated with primary hyperalphalipoproteinemia (HALP), a lipid disorder characterized by elevated plasma levels of high density lipoprotein cholesterol (HDL-C). OBJECTIVE Aim of the study was the phenotypic and genotypic characterization of a family with primary HALP. METHODS HDL subclasses distribution was determined by polyacrylamide gradient gel electrophoresis. Serum content of preβ-HDL was assessed by (2D)-electrophoresis. Cholesterol efflux capacity (CEC) of serum mediated by ABCA1, ABCG1 or SR-BI was assessed using cells expressing these proteins. Cholesterol loading capacity (CLC) of serum was assayed using cultured human macrophages. Next generation sequencing was used for DNA analysis. Plasma EL mass was determined by ELISA. RESULTS Three family members had elevated plasma HDL-C, apoA-I and total phospholipids, as well as a reduced content of preβ-HDL. These subjects were heterozygous carriers of a novel variant of LIPG gene [c.526 G>T, p.(Gly176Trp)] found to be deleterious in silico. Plasma EL mass in carriers was lower than in controls. CEC of sera mediated by ABCA1 and ABCG1 transporters was substantially reduced in the carriers. This effect was maintained after correction for serum HDL concentration. The sera of carriers were found to have a higher CLC in cultured human macrophages than control sera. CONCLUSION The novel p.(Gly176Trp) variant of endothelial lipase is associated with changes in HDL composition and subclass distribution as well as with functional changes affecting cholesterol efflux capacity of serum which suggest a defect in the early steps of revere cholesterol transport.
Collapse
Affiliation(s)
- Livia Pisciotta
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini); Dietetics and Clinical Nutrition Unit, IRCCS-Polyclinic Hospital San Martino, Genoa, Italy (Dr Pisciotta).
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy (Dr Ossoli)
| | - Annalisa Ronca
- Department of Food and Drug, University of Parma, Parma, Italy (Drs Ronca and Favari)
| | - Anna Garuti
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini)
| | - Raffaele Fresa
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini)
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy (Drs Ronca and Favari)
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy (Dr Ossoli)
| | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy (Dr Calandra)
| | - Stefano Bertolini
- Department of Internal Medicine, University of Genoa, Genoa, Italy (Drs Pisciotta, Garuti, and Bertolini)
| |
Collapse
|
7
|
Thomas SR, Zhang Y, Rye KA. The pleiotropic effects of high-density lipoproteins and apolipoprotein A-I. Best Pract Res Clin Endocrinol Metab 2022; 37:101689. [PMID: 36008277 DOI: 10.1016/j.beem.2022.101689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The high density lipoprotein (HDL) fraction of human plasma consists of multiple subpopulations of spherical particles that are structurally uniform, but heterogeneous in terms of size, composition and function. Numerous epidemiological studies have established that an elevated high density lipoprotein cholesterol (HDL-C) level is associated with decreased cardiovascular risk. However, with several recent randomised clinical trials of HDL-C raising agents failing to reduce cardiovascular events, contemporary research is transitioning towards clinical development of the cardioprotective functions of HDLs and the identification of functions that can be exploited for treatment of other diseases. This review describes the origins of HDLs and the causes of their compositional and functional heterogeneity. It then summarises current knowledge of how cardioprotective and other functions of HDLs are regulated. The final section of the review summarises recent advances in the clinical development of HDL-targeted therapies.
Collapse
Affiliation(s)
- Shane R Thomas
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Yunjia Zhang
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Kerry-Anne Rye
- Cardiometabolic Disease Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Ruff CT, Koren MJ, Grimsby J, Rosenbaum AI, Tu X, Karathanasis SK, Falloon J, Hsia J, Guan Y, Conway J, Tsai LF, Hummer BT, Hirshberg B, Kuder JF, Murphy SA, George RT, Sabatine MS. LEGACY: Phase 2a Trial to Evaluate the Safety, Pharmacokinetics, and Pharmacodynamic Effects of the Anti-EL (Endothelial Lipase) Antibody MEDI5884 in Patients With Stable Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2021; 41:3005-3014. [PMID: 34706556 DOI: 10.1161/atvbaha.120.315757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Functional HDL (high-density lipoprotein) particles that facilitate cholesterol efflux may be cardioprotective. EL (endothelial lipase) hydrolyzes phospholipids promoting catabolism of HDL and subsequent renal excretion. MEDI5884 is a selective, humanized, monoclonal, EL-neutralizing antibody. We sought to determine the safety, pharmacokinetics, and pharmacodynamic effects of multiple doses of MEDI5884 in patients with stable coronary artery disease. Approach and Results: LEGACY was a phase 2a, double-blind, placebo-controlled, parallel-design trial that randomized 132 patients with stable coronary artery disease receiving high-intensity statin therapy to 3 monthly doses of 1 of 5 dose levels of MEDI5884 (50, 100, 200, 350, or 500 mg SC) or matching placebo. The primary end point was the safety and tolerability of MEDI5884 through the end of the study (day 151). Additional end points included change in HDL cholesterol and cholesterol efflux from baseline to day 91, hepatic uptake of cholesterol at day 91, changes in various other lipid parameters. The incidence of adverse events was similar between the placebo and MEDI5884 groups. In a dose-dependent manner, MEDI5884 increased HDL cholesterol up to 51.4% (P<0.0001) and global cholesterol efflux up to 26.2% ([95% CI, 14.3-38.0] P<0.0001). MEDI5884 increased HDL particle number up to 14.4%. At the highest dose tested, an increase in LDL (low-density lipoprotein) cholesterol up to 28.7% (P<0.0001) and apoB (apolipoprotein B) up to 13.1% (P=0.04) was observed with MEDI5884. However, at the potential target doses for future studies, there was no meaningful increase in LDL cholesterol or apoB. CONCLUSIONS Inhibition of EL by MEDI5884 increases the quantity and quality of functional HDL in patients with stable coronary artery disease on high-intensity statin therapy without an adverse safety signal at the likely dose to be used. These data support further clinical investigation. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03351738.
Collapse
Affiliation(s)
- Christian T Ruff
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.T.R., J.F.K., S.A.M., M.S.S.)
| | | | - Joseph Grimsby
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (J.G., S.K.K.), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology (A.I.R., Y.G.), Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA
| | - Xiao Tu
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (X.T., J.F., B.H., R.T.G.), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD
| | - Sotirios K Karathanasis
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (J.G., S.K.K.), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD
| | - Judith Falloon
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (X.T., J.F., B.H., R.T.G.), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD
| | - Judith Hsia
- Research and Early Development, Cardiovascular, Renal and Metabolism (J.H.), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD
| | - Ye Guan
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology (A.I.R., Y.G.), Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA
| | - James Conway
- Bioinformatics, Translational Medicine, Research and Early Development, Oncology R&D, AstraZeneca, Gaithersburg, MD (J.C.)
| | - Lan-Feng Tsai
- Early CVRM Biometrics, Research and Early Development, Cardiovascular, Renal and Metabolism (L.-F.T.), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD
| | - B Timothy Hummer
- Cardiovascular, Renal and Metabolism Safety (B.T.H.), Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA
| | - Boaz Hirshberg
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (X.T., J.F., B.H., R.T.G.), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD
| | - Julia F Kuder
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.T.R., J.F.K., S.A.M., M.S.S.)
| | - Sabina A Murphy
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.T.R., J.F.K., S.A.M., M.S.S.)
| | - Richard T George
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (X.T., J.F., B.H., R.T.G.), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD
| | - Marc S Sabatine
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.T.R., J.F.K., S.A.M., M.S.S.)
| |
Collapse
|
9
|
Kardassis D, Thymiakou E, Chroni A. Genetics and regulation of HDL metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159060. [PMID: 34624513 DOI: 10.1016/j.bbalip.2021.159060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
The inverse association between plasma HDL cholesterol (HDL-C) levels and risk for cardiovascular disease (CVD) has been demonstrated by numerous epidemiological studies. However, efforts to reduce CVD risk by pharmaceutically manipulating HDL-C levels failed and refused the HDL hypothesis. HDL-C levels in the general population are highly heterogeneous and are determined by a combination of genetic and environmental factors. Insights into the causes of HDL-C heterogeneity came from the study of monogenic HDL deficiency syndromes but also from genome wide association and Μendelian randomization studies which revealed the contribution of a large number of loci to low or high HDL-C cases in the general or in restricted ethnic populations. Furthermore, HDL-C levels in the plasma are under the control of transcription factor families acting primarily in the liver including members of the hormone nuclear receptors (PPARs, LXRs, HNF-4) and forkhead box proteins (FOXO1-4) and activating transcription factors (ATFs). The effects of certain lipid lowering drugs used today are based on the modulation of the activity of specific members of these transcription factors. During the past decade, the roles of small or long non-coding RNAs acting post-transcriptionally on the expression of HDL genes have emerged and provided novel insights into HDL regulation and new opportunities for therapeutic interventions. In the present review we summarize recent progress made in the genetics and the regulation (transcriptional and post-transcriptional) of HDL metabolism.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| | - Efstathia Thymiakou
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| |
Collapse
|
10
|
Khetarpal SA, Vitali C, Levin MG, Klarin D, Park J, Pampana A, Millar JS, Kuwano T, Sugasini D, Subbaiah PV, Billheimer JT, Natarajan P, Rader DJ. Endothelial lipase mediates efficient lipolysis of triglyceride-rich lipoproteins. PLoS Genet 2021; 17:e1009802. [PMID: 34543263 PMCID: PMC8483387 DOI: 10.1371/journal.pgen.1009802] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/30/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Triglyceride-rich lipoproteins (TRLs) are circulating reservoirs of fatty acids used as vital energy sources for peripheral tissues. Lipoprotein lipase (LPL) is a predominant enzyme mediating triglyceride (TG) lipolysis and TRL clearance to provide fatty acids to tissues in animals. Physiological and human genetic evidence support a primary role for LPL in hydrolyzing TRL TGs. We hypothesized that endothelial lipase (EL), another extracellular lipase that primarily hydrolyzes lipoprotein phospholipids may also contribute to TRL metabolism. To explore this, we studied the impact of genetic EL loss-of-function on TRL metabolism in humans and mice. Humans carrying a loss-of-function missense variant in LIPG, p.Asn396Ser (rs77960347), demonstrated elevated plasma TGs and elevated phospholipids in TRLs, among other lipoprotein classes. Mice with germline EL deficiency challenged with excess dietary TG through refeeding or a high-fat diet exhibited elevated TGs, delayed dietary TRL clearance, and impaired TRL TG lipolysis in vivo that was rescued by EL reconstitution in the liver. Lipidomic analyses of postprandial plasma from high-fat fed Lipg-/- mice demonstrated accumulation of phospholipids and TGs harboring long-chain polyunsaturated fatty acids (PUFAs), known substrates for EL lipolysis. In vitro and in vivo, EL and LPL together promoted greater TG lipolysis than either extracellular lipase alone. Our data positions EL as a key collaborator of LPL to mediate efficient lipolysis of TRLs in humans and mice.
Collapse
Affiliation(s)
- Sumeet A. Khetarpal
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Cecilia Vitali
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael G. Levin
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Derek Klarin
- Boston VA Healthcare System, Boston, Massachusetts, United States of America,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Joseph Park
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Akhil Pampana
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America,Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John S. Millar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Takashi Kuwano
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dhavamani Sugasini
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago; Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Papasani V. Subbaiah
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago; Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Jeffrey T. Billheimer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America,Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel J. Rader
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America,* E-mail:
| |
Collapse
|
11
|
Le Lay JE, Du Q, Mehta MB, Bhagroo N, Hummer BT, Falloon J, Carlson G, Rosenbaum AI, Jin C, Kimko H, Tsai LF, Novick S, Cook B, Han D, Han CY, Vaisar T, Chait A, Karathanasis SK, Rhodes CJ, Hirshberg B, Damschroder MM, Hsia J, Grimsby JS. Blocking endothelial lipase with monoclonal antibody MEDI5884 durably increases high density lipoprotein in nonhuman primates and in a phase 1 trial. Sci Transl Med 2021; 13:13/590/eabb0602. [PMID: 33883272 DOI: 10.1126/scitranslmed.abb0602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) is the leading global cause of death, and treatments that further reduce CV risk remain an unmet medical need. Epidemiological studies have consistently identified low high-density lipoprotein cholesterol (HDL-C) as an independent risk factor for CVD, making HDL elevation a potential clinical target for improved CVD resolution. Endothelial lipase (EL) is a circulating enzyme that regulates HDL turnover by hydrolyzing HDL phospholipids and driving HDL particle clearance. Using MEDI5884, a first-in-class, EL-neutralizing, monoclonal antibody, we tested the hypothesis that pharmacological inhibition of EL would increase HDL-C by enhancing HDL stability. In nonhuman primates, MEDI5884 treatment resulted in lasting, dose-dependent elevations in HDL-C and circulating phospholipids, confirming the mechanism of EL action. We then showed that a favorable lipoprotein profile of elevated HDL-C and reduced low-density lipoprotein cholesterol (LDL-C) could be achieved by combining MEDI5884 with a PCSK9 inhibitor. Last, when tested in healthy human volunteers, MEDI5884 not only raised HDL-C but also increased HDL particle numbers and average HDL size while enhancing HDL functionality, reinforcing EL neutralization as a viable clinical approach aimed at reducing CV risk.
Collapse
Affiliation(s)
- John E Le Lay
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Qun Du
- Biologic Therapeutics, Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Minal B Mehta
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Nicholas Bhagroo
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - B Timothy Hummer
- CVRM Safety, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Judith Falloon
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Glenn Carlson
- Clinical CV, Late Stage Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - ChaoYu Jin
- Clinical Immunology and Bioanalysis, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - Holly Kimko
- Clinical Pharmacology and DMPK, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Lan-Feng Tsai
- CVRM Biometrics, Data Sciences and AI, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Steven Novick
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Bill Cook
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - David Han
- Parexel International, Glendale, CA 91206, USA
| | - Chang Yeop Han
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98915, USA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98915, USA
| | - Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98915, USA
| | - Sotirios K Karathanasis
- Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Christopher J Rhodes
- Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Boaz Hirshberg
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Melissa M Damschroder
- Biologic Therapeutics, Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Judith Hsia
- Clinical Development, Research and Early Development, CVRM, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Joseph S Grimsby
- Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
| |
Collapse
|
12
|
Giammanco A, Noto D, Barbagallo CM, Nardi E, Caldarella R, Ciaccio M, Averna MR, Cefalù AB. Hyperalphalipoproteinemia and Beyond: The Role of HDL in Cardiovascular Diseases. Life (Basel) 2021; 11:581. [PMID: 34207236 PMCID: PMC8235218 DOI: 10.3390/life11060581] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Hyperalphalipoproteinemia (HALP) is a lipid disorder characterized by elevated plasma high-density lipoprotein cholesterol (HDL-C) levels above the 90th percentile of the distribution of HDL-C values in the general population. Secondary non-genetic factors such as drugs, pregnancy, alcohol intake, and liver diseases might induce HDL increases. Primary forms of HALP are caused by mutations in the genes coding for cholesteryl ester transfer protein (CETP), hepatic lipase (HL), apolipoprotein C-III (apo C-III), scavenger receptor class B type I (SR-BI) and endothelial lipase (EL). However, in the last decades, genome-wide association studies (GWAS) have also suggested a polygenic inheritance of hyperalphalipoproteinemia. Epidemiological studies have suggested that HDL-C is inversely correlated with cardiovascular (CV) risk, but recent Mendelian randomization data have shown a lack of atheroprotective causal effects of HDL-C. This review will focus on primary forms of HALP, the role of polygenic inheritance on HDL-C, associated risk for cardiovascular diseases and possible treatment options.
Collapse
Affiliation(s)
- Antonina Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Davide Noto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Carlo Maria Barbagallo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Emilio Nardi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Rosalia Caldarella
- Department of Laboratory Medicine, Unit of Laboratory Medicine CoreLab, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
| | - Marcello Ciaccio
- Department of Laboratory Medicine, Unit of Laboratory Medicine CoreLab, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Maurizio Rocco Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| | - Angelo Baldassare Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties–University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (A.G.); (D.N.); (C.M.B.); (E.N.); (M.R.A.)
| |
Collapse
|
13
|
Schilcher I, Stadler JT, Lechleitner M, Hrzenjak A, Berghold A, Pregartner G, Lhomme M, Holzer M, Korbelius M, Reichmann F, Springer A, Wadsack C, Madl T, Kratky D, Kontush A, Marsche G, Frank S. Endothelial Lipase Modulates Paraoxonase 1 Content and Arylesterase Activity of HDL. Int J Mol Sci 2021; 22:E719. [PMID: 33450841 PMCID: PMC7828365 DOI: 10.3390/ijms22020719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/26/2023] Open
Abstract
Endothelial lipase (EL) is a strong modulator of the high-density lipoprotein (HDL) structure, composition, and function. Here, we examined the impact of EL on HDL paraoxonase 1 (PON1) content and arylesterase (AE) activity in vitro and in vivo. The incubation of HDL with EL-overexpressing HepG2 cells decreased HDL size, PON1 content, and AE activity. The EL modification of HDL did not diminish the capacity of HDL to associate with PON1 when EL-modified HDL was incubated with PON1-overexpressing cells. The overexpression of EL in mice significantly decreased HDL serum levels but unexpectedly increased HDL PON1 content and HDL AE activity. Enzymatically inactive EL had no effect on the PON1 content of HDL in mice. In healthy subjects, EL serum levels were not significantly correlated with HDL levels. However, HDL PON1 content was positively associated with EL serum levels. The EL-induced changes in the HDL-lipid composition were not linked to the HDL PON1 content. We conclude that primarily, the interaction of enzymatically active EL with HDL, rather than EL-induced alterations in HDL size and composition, causes PON1 displacement from HDL in vitro. In vivo, the EL-mediated reduction of HDL serum levels and the consequently increased PON1-to-HDL ratio in serum increase HDL PON1 content and AE activity in mice. In humans, additional mechanisms appear to underlie the association of EL serum levels and HDL PON1 content.
Collapse
Affiliation(s)
- Irene Schilcher
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Julia T. Stadler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
| | - Margarete Lechleitner
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 16, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (A.B.); (G.P.)
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (A.B.); (G.P.)
| | - Marie Lhomme
- ICANalytics Lipidomics, Institute of Cardiometabolism and Nutrition, 75013 Paris, France;
| | - Michael Holzer
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
| | - Melanie Korbelius
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Florian Reichmann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
| | - Anna Springer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Anatol Kontush
- INSERM Research Unit 1166—ICAN, Sorbonne University, 75013 Paris, France;
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
14
|
Cole J, Blackhurst DM, Solomon GAE, Ratanjee BD, Benjamin R, Marais AD. Atherosclerotic cardiovascular disease in hyperalphalipoproteinemia due to LIPG variants. J Clin Lipidol 2021; 15:142-150.e2. [PMID: 33414088 DOI: 10.1016/j.jacl.2020.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND High density lipoprotein cholesterol (HDL-C) concentration correlates inversely with atherosclerotic cardiovascular disease (ASCVD) risk and is included in risk calculations. Endothelial lipase (EL) is a phospholipase that remodels HDL. Deficiency of EL due to mutations in its gene, LIPG, is associated with hyperalphalipoproteinemia. The effects of EL on HDL function and ASCVD risk remain poorly understood. OBJECTIVES To determine whether hyperalphalipoproteinemia due to EL deficiency is protective against ASCVD. METHODS We identified LIPG variants amongst patients with severe hyperalphalipoproteinemia (HDL-C >2.5 mmol/L) attending a referral lipid clinic in the Western Cape Province of South Africa. We analysed the clinical and biochemical phenotypes amongst primary hyperalphalipoproteinemia cases (males HDL-C >1.6 mmol/L; females HDL-C >1.8 mmol/L) due to LIPG variants, and the distribution of variants in normal and hyperalphalipoproteinemia ranges of HDL-C. RESULTS 1007 patients with HDL-C concentration ranging from 1.2 to 4.5 mmol/L were included. Seventeen females had primary hyperalphalipoproteinemia. Vascular disease was prominent, but not associated with HDL-C concentration, LDL-C concentration or carotid artery intima media thickness. Two novel and three known LIPG variants were identified in severe hyperalphalipoproteinemia. Four additional variants were identified in the extended cohort. Two common variants appeared normally distributed across the HDL-C concentration range, while six less-common variants were found only at higher HDL-C concentrations. One rare variant had a moderate effect. CONCLUSION Hyperalphalipoproteinemia due to LIPG variants is commoner in females and may not protect against ASCVD. Use of current risk calculations may be inappropriate in patients with hyperalphalipoproteinemia due to EL deficiency. Our study cautions targeting EL to reduce risk.
Collapse
Affiliation(s)
- Justine Cole
- Division of Chemical Pathology, University of Cape Town Faculty of Health Sciences, Anzio Road, Observatory, 7925, Cape Town, South Africa; Chemical Pathology, National Health Laboratory Service, C17 Groote Schuur Hospital, Main Road, Observatory, 7925, Cape Town, South Africa.
| | - Diane Mary Blackhurst
- Division of Chemical Pathology, University of Cape Town Faculty of Health Sciences, Anzio Road, Observatory, 7925, Cape Town, South Africa
| | - Gabriele Anna Eva Solomon
- Division of Chemical Pathology, University of Cape Town Faculty of Health Sciences, Anzio Road, Observatory, 7925, Cape Town, South Africa
| | - Bharati Dhanluxmi Ratanjee
- Division of Chemical Pathology, University of Cape Town Faculty of Health Sciences, Anzio Road, Observatory, 7925, Cape Town, South Africa
| | - Ryan Benjamin
- Division of Chemical Pathology, University of Cape Town Faculty of Health Sciences, Anzio Road, Observatory, 7925, Cape Town, South Africa; Chemical Pathology, National Health Laboratory Service, C17 Groote Schuur Hospital, Main Road, Observatory, 7925, Cape Town, South Africa
| | - Adrian David Marais
- Division of Chemical Pathology, University of Cape Town Faculty of Health Sciences, Anzio Road, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
15
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
16
|
Hong C, Deng R, Wang P, Lu X, Zhao X, Wang X, Cai R, Lin J. LIPG: an inflammation and cancer modulator. Cancer Gene Ther 2020; 28:27-32. [PMID: 32572177 DOI: 10.1038/s41417-020-0188-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
Endothelial lipase (LIPG/EL) performs fundamental and vital roles in the human body, including cell composition, cytokine expression, and energy provision. Since LIPG predominantly functions as a phospholipase as well as presents low levels of triglyceride lipase activity, it plays an essential role in lipoprotein metabolism, and involves in the metabolic syndromes such as inflammatory response and atherosclerosis. Cytokines significantly affect LIPG expression in endothelial cells in many diseases. Recently, it is suggested that LIPG contributes to cancer initiation and progression, and LIPG attached increasing importance to its potential for future targeted therapy.
Collapse
Affiliation(s)
- Chang Hong
- The First Clinical Medical School (Nanfang Hospital), Southern Medical University, Guangzhou, 510515, PR China
| | - Ruxia Deng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Ping Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiansheng Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xin Zhao
- The First Clinical Medical School (Nanfang Hospital), Southern Medical University, Guangzhou, 510515, PR China
| | - Xiaoyu Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Rui Cai
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jie Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
17
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
18
|
Abstract
Our understanding of the role of the vascular endothelium has evolved over the past 2 decades, with the recognition that it is a dynamically regulated organ and that it plays a nodal role in a variety of physiological and pathological processes. Endothelial cells (ECs) are not only a barrier between the circulation and peripheral tissues, but also actively regulate vascular tone, blood flow, and platelet function. Dysregulation of ECs contributes to pathological conditions such as vascular inflammation, atherosclerosis, hypertension, cardiomyopathy, retinopathy, neuropathy, and cancer. The close anatomic relationship between vascular endothelium and highly vascularized metabolic organs/tissues suggests that the crosstalk between ECs and these organs is vital for both vascular and metabolic homeostasis. Numerous reports support that hyperlipidemia, hyperglycemia, and other metabolic stresses result in endothelial dysfunction and vascular complications. However, how ECs may regulate metabolic homeostasis remains poorly understood. Emerging data suggest that the vascular endothelium plays an unexpected role in the regulation of metabolic homeostasis and that endothelial dysregulation directly contributes to the development of metabolic disorders. Here, we review recent studies about the pivotal role of ECs in glucose and lipid homeostasis. In particular, we introduce the concept that the endothelium adjusts its barrier function to control the transendothelial transport of fatty acids, lipoproteins, LPLs (lipoprotein lipases), glucose, and insulin. In addition, we summarize reports that ECs communicate with metabolic cells through EC-secreted factors and we discuss how endothelial dysregulation contributes directly to the development of obesity, insulin resistance, dyslipidemia, diabetes mellitus, cognitive defects, and fatty liver disease.
Collapse
Affiliation(s)
- Xinchun Pi
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Liang Xie
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Cam Patterson
- University of Arkansas for Medical Sciences, Little Rock (C.P.)
| |
Collapse
|
19
|
Nagao M, Miyashita K, Mori K, Irino Y, Toh R, Hara T, Hirata KI, Shinohara M, Nakajima K, Ishida T. Serum concentration of full-length- and carboxy-terminal fragments of endothelial lipase predicts future cardiovascular risks in patients with coronary artery disease. J Clin Lipidol 2019; 13:839-846. [PMID: 31473149 DOI: 10.1016/j.jacl.2019.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/18/2019] [Accepted: 07/21/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Endothelial lipase (EL), a regulator of plasma high-density lipoprotein cholesterol (HDL-C), is secreted as a 68-kDa mature glycoprotein, and then cleaved by proprotein convertases. However, the clinical significance of the circulating EL fragments remains unclear. OBJECTIVE The objective of this study was to analyze the impact of serum EL fragments on HDL-C levels and major adverse cardiovascular events (MACE). METHODS Using novel monoclonal antibodies (RC3A6) against carboxy-terminal EL protein, we have established a new enzyme-linked immunosorbent assay (ELISA) system, which can detect both full-length EL protein (full EL) and carboxy-terminal truncated fragments (total EL) in serum. The previous sandwich ELISA detected only full EL. The full and total EL mass were measured in 556 patients with coronary artery disease. Among them, 272 patients who underwent coronary intervention were monitored for 2 years for MACE. RESULTS There was a significant correlation between serum full and total EL mass (R = 0.45, P < .0001). However, the total EL mass showed a stronger inverse correlation with serum HDL-cholesterol concentration than the full EL mass (R = -0.17 vs -0.02). Kaplan-Meier analysis documented an association of serum total EL mass and MACE (log-rank P = .037). When an optimal cutoff value was set at 96.23 ng/mL, total EL mass was an independent prognostic factor for MACE in the Cox proportional hazard model (HR; 1.75, 95% CI; 1.10-2.79, P = .018). CONCLUSION Serum total EL mass could be a predictor for MACE in patients with coronary artery disease. This novel ELISA will be useful for further clarifying the impact of EL on HDL metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Manabu Nagao
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Kenta Mori
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiro Irino
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Ryuji Toh
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Tetsuya Hara
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Katsuyuki Nakajima
- Laboratory of Clinical Nutrition and Medicine, Kagawa Nutrition University, Tokyo, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The inverse association between plasma high-density lipoprotein cholesterol (HDL-C) concentration and the incidence of cardiovascular disease (CVD) has been unequivocally proven by many epidemiological studies. There are several genetic disorders affecting HDL-C plasma levels, either providing atheroprotection or predisposing to premature atherosclerosis. However, up to date, there has not been any pharmacological intervention modulating HDL-C levels, which has been clearly shown to prevent the progression of CVD. Thus, clarifying the exact underlying mechanisms of inheritance of these genetic disorders that affect HDL is a current goal of the research, as key roles of molecular components of HDL metabolism and function can be revealed and become targets for the discovery of novel medications for the prevention and treatment of CVD. RECENT FINDINGS Primary genetic disorders of HDL can be either associated with longevity or, in contrast, may lead to premature CVD, causing high morbidity and mortality to their carriers. A large body of recent research has closely examined the genetic disorders of HDL and new promising therapeutic strategies have been developed, which may be proven beneficial in patients predisposed to CVD in the near future. SUMMARY We have reviewed recent findings on the inheritance of genetic disorders associated with high and low HDL-C plasma levels and we have discussed their clinical features, as well as information about new promising HDL-C-targeted therapies that are under clinical trials.
Collapse
Affiliation(s)
| | - Constantine E Kosmas
- Department of Medicine, Division of Cardiology, Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
21
|
Yun SM, Park JY, Seo SW, Song J. Association of plasma endothelial lipase levels on cognitive impairment. BMC Psychiatry 2019; 19:187. [PMID: 31216999 PMCID: PMC6585097 DOI: 10.1186/s12888-019-2174-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/05/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Peripheral high-density lipoprotein cholesterol (HDL-C) has been known to influx into the brain and be inversely associated with the risk of Alzheimer's disease (AD). However, recent prospective studies of the association between HDL-C and AD have yielded inconsistent results. Here, we examined the association between the endothelial lipase (EL), which is known to be major determinant of HDL-C levels, and cognitive function. METHOD We compared plasma from 20 patients with Alzheimer's disease (AD), 38 persons with mild cognitive impairment, and 51 cognitively normal controls. Plasma EL levels were measured using the enzyme-linked immunosorbent assay. RESULTS EL levels were inversely correlated with HDL-C, as previously reported; however, there were no mean differences in plasma EL between the diagnostic groups. An analysis by classification of dementia severity according to clinical dementia rating (CDR) showed that the EL levels were significantly higher in the CDR1 group (mild dementia), as compared to CDR0 (no dementia), CDR0.5 (very mild), and CDR2 (moderate) groups. Prior to moderate dementia stage, trends analysis showed that EL levels tended to increase with increasing severity (p for trend = 0.013). Consistently, elevated EL levels were significantly correlated with the mini-mental state examination (MMSE) score (r = - 0.29, p = 0.003). Logistic regression for association between plasma EL and cognitive impairment (MMSE score ≤ 25) showed that participants with EL levels in the upper range (> 31.6 ng/ml) have a higher adjusted odds ratio of cognitive impairment than those within the lower EL range. CONCLUSION Findings from the present study reflect the association of EL and cognition, suggesting that the individuals with elevated plasma EL concentration are at an increased risk of cognitive impairment.
Collapse
Affiliation(s)
- Sang-Moon Yun
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea.
| | - Jee-Yun Park
- 0000 0004 0647 4899grid.415482.eDivision of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| | - Sang Won Seo
- 0000 0001 2181 989Xgrid.264381.aDepartment of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351 Republic of Korea
| | - Jihyun Song
- 0000 0004 0647 4899grid.415482.eDivision of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do 28159 Republic of Korea
| |
Collapse
|
22
|
Chroni A, Kardassis D. HDL Dysfunction Caused by Mutations in apoA-I and Other Genes that are Critical for HDL Biogenesis and Remodeling. Curr Med Chem 2019. [DOI: 10.2174/0929867325666180313114950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The “HDL hypothesis” which suggested that an elevation in HDL cholesterol
(HDL-C) levels by drugs or by life style changes should be paralleled by a decrease in the
risk for Cardiovascular Disease (CVD) has been challenged by recent epidemiological and
clinical studies using HDL-raising drugs. HDL components such as proteins, lipids or small
RNA molecules, but not cholesterol itself, possess various atheroprotective functions in different
cell types and accumulating evidence supports the new hypothesis that HDL functionality
is more important than HDL-C levels for CVD risk prediction. Thus, the detailed characterization
of changes in HDL composition and functions in various pathogenic conditions
is critically important in order to identify new biomarkers for diagnosis, prognosis and therapy
monitoring of CVD. Here we provide an overview of how HDL composition, size and
functionality are affected in patients with monogenic disorders of HDL metabolism due to
mutations in genes that participate in the biogenesis and the remodeling of HDL. We also review
the findings from various mouse models with genetic disturbances in the HDL biogenesis
pathway that have been generated for the validation of the data obtained in human patients
and how these models could be utilized for the evaluation of novel therapeutic strategies such
as the use of adenovirus-mediated gene transfer technology that aim to correct HDL abnormalities.
Collapse
Affiliation(s)
- Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research , Greece
| | - Dimitris Kardassis
- Department of Basic Medical Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 71003, Greece
| |
Collapse
|
23
|
Kobayashi J. Which is the Best Predictor for the Development of Atherosclerosis Among Circulating Lipoprotein Lipase, Hepatic Lipase, and Endothelial Lipase? J Atheroscler Thromb 2019; 26:758-759. [PMID: 30814386 PMCID: PMC6753242 DOI: 10.5551/jat.ed108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
24
|
Matsuura Y, Kanter JE, Bornfeldt KE. Highlighting Residual Atherosclerotic Cardiovascular Disease Risk. Arterioscler Thromb Vasc Biol 2019; 39:e1-e9. [PMID: 30586334 PMCID: PMC6310032 DOI: 10.1161/atvbaha.118.311999] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yunosuke Matsuura
- From the Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle (Y.M., J.E.K., K.E.B.)
| | - Jenny E Kanter
- From the Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle (Y.M., J.E.K., K.E.B.)
| | - Karin E Bornfeldt
- From the Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle (Y.M., J.E.K., K.E.B.)
- Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle (K.E.B.)
| |
Collapse
|
25
|
Hu CH, Wang TC, Qiao JX, Haque L, Chen AY, Taylor DS, Ying X, Onorato JM, Galella M, Shen H, Huang CS, Toussaint N, Li YX, Abell L, Adam LP, Gordon D, Wexler RR, Finlay HJ. Discovery and synthesis of tetrahydropyrimidinedione-4-carboxamides as endothelial lipase inhibitors. Bioorg Med Chem Lett 2018; 28:3721-3725. [DOI: 10.1016/j.bmcl.2018.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/08/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
26
|
Kosmas CE, Silverio D, Sourlas A, Garcia F, Montan PD, Guzman E. Primary genetic disorders affecting high density lipoprotein (HDL). Drugs Context 2018; 7:212546. [PMID: 30214464 PMCID: PMC6135231 DOI: 10.7573/dic.212546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/21/2023] Open
Abstract
There is extensive evidence demonstrating that there is a clear inverse correlation between plasma high density lipoprotein cholesterol (HDL-C) concentration and cardiovascular disease (CVD). On the other hand, there is also extensive evidence that HDL functionality plays a very important role in atheroprotection. Thus, genetic disorders altering certain enzymes, lipid transfer proteins, or specific receptors crucial for the metabolism and adequate function of HDL, may positively or negatively affect the HDL-C levels and/or HDL functionality and subsequently either provide protection or predispose to atherosclerotic disease. This review aims to describe certain genetic disorders associated with either low or high plasma HDL-C and discuss their clinical features, associated risk for cardiovascular events, and treatment options.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Division of Cardiology, Department of Medicine, Mount Sinai Hospital, New York, NY, USA
| | - Delia Silverio
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | | | - Frank Garcia
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | - Peter D Montan
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | - Eliscer Guzman
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
27
|
Takiguchi S, Ayaori M, Yakushiji E, Nishida T, Nakaya K, Sasaki M, Iizuka M, Uto-Kondo H, Terao Y, Yogo M, Komatsu T, Ogura M, Ikewaki K. Hepatic Overexpression of Endothelial Lipase Lowers High-Density Lipoprotein but Maintains Reverse Cholesterol Transport in Mice: Role of Scavenger Receptor Class B Type I/ATP-Binding Cassette Transporter A1-Dependent Pathways. Arterioscler Thromb Vasc Biol 2018; 38:1454-1467. [PMID: 29748333 PMCID: PMC6039415 DOI: 10.1161/atvbaha.118.311056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 04/11/2018] [Indexed: 01/06/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Reverse cholesterol transport (RCT) is a major mechanism by which HDL (high-density lipoprotein) protects against atherosclerosis. Endothelial lipase (EL) reportedly reduces HDL levels, which, in theory, would increase atherosclerosis. However, it remains unclear whether EL affects RCT in vivo. Approach and Results— Adenoviral vectors expressing EL or luciferase were intravenously injected into mice, and a macrophage RCT assay was performed. As expected, hepatic EL overexpression markedly reduced HDL levels. In parallel, plasma 3H-cholesterol counts from the EL-expressing mice decreased by 85% compared with control. Surprisingly, there was no difference in fecal 3H-cholesterol excretion between the groups. Kinetic studies revealed increased catabolism/hepatic uptake of 3HDL-cholesteryl ether, resulting in no change in fecal HDL-cholesteryl ester excretion in the mice. To explore underlying mechanisms for the preservation of RCT despite low HDL levels in the EL-expressing mice, we investigated the effects of hepatic SR-BI (scavenger receptor class B type I) knockdown. RCT assay revealed that knockdown of SR-BI alone reduced fecal excretion of macrophage-derived 3H-cholesterol. Interestingly, hepatic EL overexpression under SR-BI inhibition further attenuated fecal tracer counts as compared with control. Finally, we observed that EL overexpression enhanced in vivo RCT under pharmacological inhibition of hepatic ABCA1 (ATP-binding cassette transporter A1) by probucol. Conclusions— Hepatic EL expression compensates for reduced macrophage-derived cholesterol efflux to plasma because of low HDL levels by promoting cholesterol excretion to bile/feces via an SR-BI pathway, maintaining overall RCT in vivo. In contrast, EL-modified HDL might negatively regulate RCT via hepatic ABCA1. Despite extreme hypoalphalipoproteinemia, RCT is maintained in EL-expressing mice via SR-BI/ABCA1-dependent pathways.
Collapse
Affiliation(s)
- Shunichi Takiguchi
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Makoto Ayaori
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Emi Yakushiji
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Takafumi Nishida
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Kazuhiro Nakaya
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Makoto Sasaki
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Maki Iizuka
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Harumi Uto-Kondo
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Yoshio Terao
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Makiko Yogo
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Tomohiro Komatsu
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center, Osaka, Japan (M.O.)
| | - Katsunori Ikewaki
- From the Division of Anti-Aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan (S.T., M.A., E.Y., T.N., K.N., M.S., M.I., H.U.-K., Y.T., M.Y., T.K., K.I.)
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Rare large-effect genetic variants underlie monogenic dyslipidemias, whereas common small-effect genetic variants - single nucleotide polymorphisms (SNPs) - have modest influences on lipid traits. Over the past decade, these small-effect SNPs have been shown to cumulatively exert consistent effects on lipid phenotypes under a polygenic framework, which is the focus of this review. RECENT FINDINGS Several groups have reported polygenic risk scores assembled from lipid-associated SNPs, and have applied them to their respective phenotypes. For lipid traits in the normal population distribution, polygenic effects quantified by a score that integrates several common polymorphisms account for about 20-30% of genetic variation. Among individuals at the extremes of the distribution, that is, those with clinical dyslipidemia, the polygenic component includes both rare variants with large effects and common polymorphisms: depending on the trait, 20-50% of susceptibility can be accounted for by this assortment of genetic variants. SUMMARY Accounting for polygenic effects increases the numbers of dyslipidemic individuals who can be explained genetically, but a substantial proportion of susceptibility remains unexplained. Whether documenting the polygenic basis of dyslipidemia will affect outcomes in clinical trials or prospective observational studies remains to be determined.
Collapse
|
29
|
Vitali C, Khetarpal SA, Rader DJ. HDL Cholesterol Metabolism and the Risk of CHD: New Insights from Human Genetics. Curr Cardiol Rep 2017; 19:132. [PMID: 29103089 DOI: 10.1007/s11886-017-0940-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Elevated high-density lipoprotein cholesterol levels in the blood (HDL-C) represent one of the strongest epidemiological surrogates for protection against coronary heart disease (CHD), but recent human genetic and pharmacological intervention studies have raised controversy about the causality of this relationship. Here, we review recent discoveries from human genome studies using new analytic tools as well as relevant animal studies that have both addressed, and in some cases, fueled this controversy. RECENT FINDINGS Methodologic developments in genotyping and sequencing, such as genome-wide association studies (GWAS), exome sequencing, and exome array genotyping, have been applied to the study of HDL-C and risk of CHD in large, multi-ethnic populations. Some of these efforts focused on population-wide variation in common variants have uncovered new polymorphisms at novel loci associated with HDL-C and, in some cases, CHD risk. Other efforts have discovered loss-of-function variants for the first time in genes previously implicated in HDL metabolism through common variant studies or animal models. These studies have allowed the genetic relationship between these pathways, HDL-C and CHD to be explored in humans for the first time through analysis tools such as Mendelian randomization. We explore these discoveries for selected key HDL-C genes CETP, LCAT, LIPG, SCARB1, and novel loci implicated from GWAS including GALNT2, KLF14, and TTC39B. Recent human genetics findings have identified new nodes regulating HDL metabolism while reshaping our current understanding of known candidate genes to HDL and CHD risk through the study of critical variants across model systems. Despite their effect on HDL-C, variants in many of the reviewed genes were found to lack any association with CHD. These data collectively indicate that HDL-C concentration, which represents a static picture of a very dynamic and heterogeneous metabolic milieu, is unlikely to be itself causally protective against CHD. In this context, human genetics represent an extremely valuable tool to further explore the biological mechanisms regulating HDL metabolism and investigate what role, if any, HDL plays in the pathogenesis of CHD.
Collapse
Affiliation(s)
- Cecilia Vitali
- Perelman School of Medicine at the University of Pennsylvania, 11-162 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Sumeet A Khetarpal
- Perelman School of Medicine at the University of Pennsylvania, 11-162 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Daniel J Rader
- Perelman School of Medicine at the University of Pennsylvania, 11-162 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA. .,Departments of Genetics and Medicine, Cardiovascular Institute, and Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 11-125 TRC, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Dron JS, Wang J, Low-Kam C, Khetarpal SA, Robinson JF, McIntyre AD, Ban MR, Cao H, Rhainds D, Dubé MP, Rader DJ, Lettre G, Tardif JC, Hegele RA. Polygenic determinants in extremes of high-density lipoprotein cholesterol. J Lipid Res 2017; 58:2162-2170. [PMID: 28870971 PMCID: PMC5665671 DOI: 10.1194/jlr.m079822] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/31/2017] [Indexed: 11/24/2022] Open
Abstract
HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia.
Collapse
Affiliation(s)
- Jacqueline S Dron
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Cécile Low-Kam
- Montréal Heart Institute et Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Sumeet A Khetarpal
- Departments of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John F Robinson
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Adam D McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Matthew R Ban
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Henian Cao
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David Rhainds
- Montréal Heart Institute et Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie-Pierre Dubé
- Montréal Heart Institute et Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Daniel J Rader
- Departments of Genetics, Medicine, and Pediatrics, the Cardiovascular Institute, and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Guillaume Lettre
- Montréal Heart Institute et Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Claude Tardif
- Montréal Heart Institute et Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Robert A Hegele
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
31
|
Common, low-frequency, and rare genetic variants associated with lipoprotein subclasses and triglyceride measures in Finnish men from the METSIM study. PLoS Genet 2017; 13:e1007079. [PMID: 29084231 PMCID: PMC5679656 DOI: 10.1371/journal.pgen.1007079] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 11/09/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022] Open
Abstract
Lipid and lipoprotein subclasses are associated with metabolic and cardiovascular diseases, yet the genetic contributions to variability in subclass traits are not fully understood. We conducted single-variant and gene-based association tests between 15.1M variants from genome-wide and exome array and imputed genotypes and 72 lipid and lipoprotein traits in 8,372 Finns. After accounting for 885 variants at 157 previously identified lipid loci, we identified five novel signals near established loci at HIF3A, ADAMTS3, PLTP, LCAT, and LIPG. Four of the signals were identified with a low-frequency (0.005<minor allele frequency [MAF]<0.05) or rare (MAF<0.005) variant, including Arg123His in LCAT. Gene-based associations (P<10-10) support a role for coding variants in LIPC and LIPG with lipoprotein subclass traits. 30 established lipid-associated loci had a stronger association for a subclass trait than any conventional trait. These novel association signals provide further insight into the molecular basis of dyslipidemia and the etiology of metabolic disorders.
Collapse
|
32
|
Schilcher I, Kern S, Hrzenjak A, Eichmann TO, Stojakovic T, Scharnagl H, Duta-Mare M, Kratky D, Marsche G, Frank S. Impact of Endothelial Lipase on Cholesterol Efflux Capacity of Serum and High-density Lipoprotein. Sci Rep 2017; 7:12485. [PMID: 28970555 PMCID: PMC5624901 DOI: 10.1038/s41598-017-12882-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
Endothelial lipase (EL) is a potent modulator of the structural and functional properties of HDL. Impact of EL on cholesterol efflux capacity (CEC) of serum and isolated HDL is not well understood and apparently contradictory data were published. Here, we systematically examined the impact of EL on composition and CEC of serum and isolated HDL, in vitro and in vivo, using EL-overexpressing cells and EL-overexpressing mice. CEC was examined in a validated assay using 3H-cholesterol labelled J774 macrophages. In vitro EL-modification of serum resulted in complex alterations, including enrichment of serum with lipid-free/-poor apoA-I, decreased size of human (but not mouse) HDL and altered HDL lipid composition. EL-modification of serum increased CEC, in line with increased lipid-free/-poor apoA-I formation. In contrast, CEC of isolated HDL was decreased likely through altered lipid composition. In contrast to in vitro results, EL-overexpression in mice markedly decreased HDL-cholesterol and apolipoprotein A-I serum levels associated with a decreased CEC of serum. HDL lipid composition was altered, but HDL particle size and CEC were not affected. Our study highlights the multiple and complex effects of EL on HDL composition and function and may help to clarify the seemingly contradictory data found in published articles.
Collapse
Affiliation(s)
- Irene Schilcher
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Sabine Kern
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 20, 8036, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010, Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31, 8010, Graz, Austria
| | - Tatjana Stojakovic
- Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Hubert Scharnagl
- Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Madalina Duta-Mare
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Saša Frank
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
33
|
Paththinige CS, Sirisena ND, Dissanayake V. Genetic determinants of inherited susceptibility to hypercholesterolemia - a comprehensive literature review. Lipids Health Dis 2017; 16:103. [PMID: 28577571 PMCID: PMC5457620 DOI: 10.1186/s12944-017-0488-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 02/08/2023] Open
Abstract
Hypercholesterolemia is a strong determinant of mortality and morbidity associated with cardiovascular diseases and a major contributor to the global disease burden. Mutations in four genes (LDLR, APOB, PCSK9 and LDLRAP1) account for the majority of cases with familial hypercholesterolemia. However, a substantial proportion of adults with hypercholesterolemia do not have a mutation in any of these four genes. This indicates the probability of having other genes with a causative or contributory role in the pathogenesis of hypercholesterolemia and suggests a polygenic inheritance of this condition. Here in, we review the recent evidence of association of the genetic variants with hypercholesterolemia and the three lipid traits; total cholesterol (TC), HDL-cholesterol (HDL-C) and LDL-cholesterol (LDL-C), their biological pathways and the associated pathogenetic mechanisms. Nearly 80 genes involved in lipid metabolism (encoding structural components of lipoproteins, lipoprotein receptors and related proteins, enzymes, lipid transporters, lipid transfer proteins, and activators or inhibitors of protein function and gene transcription) with single nucleotide variants (SNVs) that are recognized to be associated with hypercholesterolemia and serum lipid traits in genome-wide association studies and candidate gene studies were identified. In addition, genome-wide association studies in different populations have identified SNVs associated with TC, HDL-C and LDL-C in nearly 120 genes within or in the vicinity of the genes that are not known to be involved in lipid metabolism. Over 90% of the SNVs in both these groups are located outside the coding regions of the genes. These findings indicates that there might be a considerable number of unrecognized processes and mechanisms of lipid homeostasis, which when disrupted, would lead to hypercholesterolemia. Knowledge of these molecular pathways will enable the discovery of novel treatment and preventive methods as well as identify the biochemical and molecular markers for the risk prediction and early detection of this common, yet potentially debilitating condition.
Collapse
Affiliation(s)
- C S Paththinige
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka.
| | - N D Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| | - Vhw Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| |
Collapse
|
34
|
Metabolic Syndrome Modulates Association between Endothelial Lipase and Lipid/Lipoprotein Plasma Levels in Acute Heart Failure Patients. Sci Rep 2017; 7:1165. [PMID: 28446761 PMCID: PMC5430647 DOI: 10.1038/s41598-017-01367-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/29/2017] [Indexed: 01/04/2023] Open
Abstract
We hypothesised that the established association of endothelial lipase (EL) plasma levels with atherogenic lipid profile is altered in acute heart failure (AHF) and additionally affected by overlapping metabolic syndrome (MetS). We examined the association of EL plasma levels and lipid/lipoprotein plasma levels in AHF patients without and with overlapping MetS. The study was performed as a single-centre, observational study on 152 AHF patients, out of which 85 had overlapping MetS. In the no-MetS group, EL plasma levels were significantly positively correlated with plasma levels of atherogenic lipids/lipoproteins, including total cholesterol, low-density lipoprotein (LDL)-cholesterol, total LDL particles and triglycerides, but also with plasma levels of antiatherogenic high-density lipoprotein (HDL)-cholesterol, total HDL particles and small HDL particles. In the MetS group, EL plasma levels were positively correlated with triglyceride and small LDL-particle levels, and significantly negatively correlated with plasma levels of large HDL particles as well as with LDL- and HDL-particle size, respectively. EL- and lipid/lipoprotein- plasma levels were different in the no-MetS patients, compared to MetS patients. The association of EL with atherogenic lipid profile is altered in AHF and additionally modified by MetS, which strongly modulates EL- and lipid/lipoprotein-plasma levels in AHF.
Collapse
|
35
|
Yue X, Wu M, Jiang H, Hao J, Zhao Q, Zhu Q, Saren G, Zhang Y, Zhang X. Endothelial lipase is upregulated by interleukin-6 partly via the p38 MAPK and p65 NF-κB signaling pathways. Mol Med Rep 2016; 14:1979-85. [PMID: 27430252 PMCID: PMC4991746 DOI: 10.3892/mmr.2016.5457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/15/2016] [Indexed: 01/18/2023] Open
Abstract
To investigate the effects of inflammatory factor interleukin (IL)‑6 on the expression of endothelial lipase (EL) and its potential signaling pathways in atherosclerosis, a primary culture of human umbilical vein endothelial cells (HUVECs) was established and treated as follows: i) Control group without any treatment; ii) recombinant human (rh)IL‑6 treatment (10 ng/ml) for 0, 4, 8, 12 and 24 h; iii) p38 mitogen‑activated protein kinases (MAPKs) inhibitor (SB203580, 10 µmol/l) pretreatment for 1 h prior to rhIL‑6 (10 ng/ml) treatment; iv) nuclear factor (NF)‑κB activation inhibitor (pyrrolidine dithiocarbamate, 10 mmol/l) pretreatment for 1 h prior to rhIL‑6 (10 ng/ml) treatment. EL levels were detected by immunocytochemical staining and western blot analysis. Proliferation of HUVECs was detected by immunostaining of proliferating cell nuclear antigen (PCNA) and an MTT assay. p38 MAPK and NF‑κB p65 levels were detected by western blotting. The results showed that rhIL‑6 treatment increased EL expression and proliferation of HUVECs. NF‑κB p65 and MAPK p38 protein levels also increased in a time‑dependent manner in HUVECs after rhIL‑6 treatment. NF‑κB inhibitor and MAPK p38 inhibitor prevented the effects of rhIL‑6 on EL expression. In conclusion, inflammatory factor IL‑6 may participate in the pathogenesis of atherosclerosis by increasing EL expression and the proliferation of endothelial cells via the p38 MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xin Yue
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Minghui Wu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Hong Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology & Embryology, Medical College, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qinghao Zhao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology & Embryology, Medical College, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing Zhu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Gaowa Saren
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University
| | - Xiaoli Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology & Embryology, Medical College, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
36
|
Tani M, Horvath KV, Lamarche B, Couture P, Burnett JR, Schaefer EJ, Asztalos BF. High-density lipoprotein subpopulation profiles in lipoprotein lipase and hepatic lipase deficiency. Atherosclerosis 2016; 253:7-14. [PMID: 27573733 DOI: 10.1016/j.atherosclerosis.2016.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/01/2016] [Accepted: 08/18/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Our aim was to gain insight into the role that lipoprotein lipase (LPL) and hepatic lipase (HL) plays in HDL metabolism and to better understand LPL- and HL-deficiency states. METHODS We examined the apolipoprotein (apo) A-I-, A-II-, A-IV-, C-I-, C-III-, and E-containing HDL subpopulation profiles, assessed by native 2-dimensional gel-electrophoresis and immunoblotting, in 6 homozygous and 11 heterozygous LPL-deficient, 6 homozygous and 4 heterozygous HL-deficient, and 50 control subjects. RESULTS LPL-deficient homozygotes had marked hypertriglyceridemia and significant decreases in LDL-C, HDL-C, and apoA-I. Their apoA-I-containing HDL subpopulation profile was shifted toward small HDL particles compared to controls. HL-deficient homozygotes had moderate hypertriglyceridemia, modest increases in LDL-C and HDL-C level, but normal apoA-I concentration. HL-deficient homozygotes had a unique distribution of apoA-I-containing HDL particles. The normally apoA-I:A-II, intermediate-size (α-2 and α-3) particles were significantly decreased, while the normally apoA-I only (very large α-1, small α-4, and very small preβ-1) particles were significantly elevated. In contrast to control subjects, the very large α-1 particles of HL-deficient homozygotes were enriched in apoA-II. Homozygous LPL- and HL-deficient subjects also had abnormal distributions of apo C-I, C-III, and E in HDL particles. Values for all measured parameters in LPL- and HL-deficient heterozygotes were closer to values measured in controls than in homozygotes. CONCLUSIONS Our data are consistent with the concept that LPL is important for the maturation of small discoidal HDL particles into large spherical HDL particles, while HL is important for HDL remodeling of very large HDL particles into intermediate-size HDL particles.
Collapse
Affiliation(s)
- Mariko Tani
- Cardiovascular Nutrition Laboratory, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Katalin V Horvath
- Cardiovascular Nutrition Laboratory, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Benoit Lamarche
- Institute on Nutraceuticals and Functional Foods, Laval University, Québec, Canada
| | - Patrick Couture
- Institute on Nutraceuticals and Functional Foods, Laval University, Québec, Canada
| | - John R Burnett
- Department of Clinical Biochemistry, Path West Laboratory Medicine, Royal Perth and Fiona Stanley Hospital Network and School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Ernst J Schaefer
- Cardiovascular Nutrition Laboratory, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Bela F Asztalos
- Cardiovascular Nutrition Laboratory, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| |
Collapse
|
37
|
Dávalos A, Chroni A. Antisense oligonucleotides, microRNAs, and antibodies. Handb Exp Pharmacol 2015; 224:649-89. [PMID: 25523006 DOI: 10.1007/978-3-319-09665-0_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The specificity of Watson-Crick base pairing and the development of several chemical modifications to oligonucleotides have enabled the development of novel drug classes for the treatment of different human diseases. This review focuses on promising results of recent preclinical or clinical studies on targeting HDL metabolism and function by antisense oligonucleotides and miRNA-based therapies. Although many hurdles regarding basic mechanism of action, delivery, specificity, and toxicity need to be overcome, promising results from recent clinical trials and recent approval of these types of therapy to treat dyslipidemia suggest that the treatment of HDL dysfunction will benefit from these unique clinical opportunities. Moreover, an overview of monoclonal antibodies (mAbs) developed for the treatment of dyslipidemia and cardiovascular disease and currently being tested in clinical studies is provided. Initial studies have shown that these compounds are generally safe and well tolerated, but ongoing large clinical studies will assess their long-term safety and efficacy.
Collapse
Affiliation(s)
- Alberto Dávalos
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA)-Food, Ctra. de Cantoblanco 8, 28049, Madrid, Spain,
| | | |
Collapse
|
38
|
Brunham LR, Hayden MR. Human genetics of HDL: Insight into particle metabolism and function. Prog Lipid Res 2015; 58:14-25. [DOI: 10.1016/j.plipres.2015.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|
39
|
Zannis VI, Fotakis P, Koukos G, Kardassis D, Ehnholm C, Jauhiainen M, Chroni A. HDL biogenesis, remodeling, and catabolism. Handb Exp Pharmacol 2015; 224:53-111. [PMID: 25522986 DOI: 10.1007/978-3-319-09665-0_2] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118, USA,
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhang X, Wu M, Jiang H, Hao J, Zhang Q, Zhu Q, Saren G, Zhang Y, Meng X, Yue X. Angiotensin II upregulates endothelial lipase expression via the NF-kappa B and MAPK signaling pathways. PLoS One 2014; 9:e107634. [PMID: 25250890 PMCID: PMC4175466 DOI: 10.1371/journal.pone.0107634] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 08/18/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Angiotensin II (AngII) participates in endothelial damage and inflammation, and accelerates atherosclerosis. Endothelial lipase (EL) is involved in the metabolism and clearance of high density lipoproteins (HDL), the serum levels of which correlate negatively with the onset of cardiovascular diseases including atherosclerosis. However, the relationship between AngII and EL is not yet fully understood. In this study, we investigated the effects of AngII on the expression of EL and the signaling pathways that mediate its effects in human umbilical vein endothelial cells (HUVECs). METHODS AND FINDINGS HUVECs were cultured in vitro with different treatments as follows: 1) The control group without any treatment; 2) AngII treatment for 0 h, 4 h, 8 h, 12 h and 24 h; 3) NF-κB activation inhibitor pyrrolidine dithiocarbamate (PDTC) pretreatment for 1 h before AngII treatment; and 4) mitogen-activated protein kinase (MAPK) p38 inhibitor (SB203580) pretreatment for 1 h before AngII treatment. EL levels in each group were detected by immunocytochemical staining and western blotting. HUVECs proliferation was detected by MTT and proliferating cell nuclear antigen (PCNA) immunofluorescence staining. NF-kappa B (NF-κB) p65, MAPK p38, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and phosphorylated extracellular signal-regulated kinase (p-ERK) expression levels were assayed by western blotting. The results showed that the protein levels of EL, NF-κB p65, MAPK p38, JNK, and p-ERK protein levels, in addition to the proliferation of HUVECs, were increased by AngII. Both the NF-kB inhibitor (PDTC) and the MAPK p38 inhibitor (SB203580) partially inhibited the effects of AngII on EL expression. CONCLUSION AngII may upregulate EL protein expression via the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Jinan, China
| | - Minghui Wu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Hong Jiang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Jing Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Jinan, China
| | - Qingli Zhang
- Department of Morphology Laboratory, School of Medicine, Shandong University, Jinan, China
| | - Qing Zhu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Gaowa Saren
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Yun Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Xiaohui Meng
- Institute of Diagnostics, School of Medicine, Shandong University, Jinan, China
| | - Xin Yue
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| |
Collapse
|
41
|
Abstract
There is compelling evidence from human population studies that plasma levels of high-density lipoprotein (HDL) cholesterol correlate inversely with cardiovascular risk. Identification of this relationship has stimulated research designed to understand how HDL metabolism is regulated. The ultimate goal of these studies has been to develop HDL-raising therapies that have the potential to decrease the morbidity and mortality associated with atherosclerotic cardiovascular disease. However, the situation has turned out to be much more complex than originally envisaged. This is partly because the HDL fraction consists of multiple subpopulations of particles that vary in terms of shape, size, composition, and surface charge, as well as in their potential cardioprotective properties. This heterogeneity is a consequence of the continual remodeling and interconversion of HDL subpopulations by multiple plasma factors. Evidence that the remodeling of HDLs may impact on their cardioprotective properties is beginning to emerge. This serves to highlight the importance of understanding not only how the remodeling and interconversion of HDL subpopulations is regulated but also how these processes are affected by agents that increase HDL levels. This review provides an overview of what is currently understood about HDL metabolism and how the subpopulation distribution of these lipoproteins is regulated.
Collapse
Affiliation(s)
- Kerry-Anne Rye
- From the Lipid Research Group, Centre for Vascular Research, Lowy Center, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
42
|
Affiliation(s)
- Federico Oldoni
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Richard J. Sinke
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Albert Kuivenhoven
- From the Departments of Molecular Genetics (F.O., J.A.K.) and Genetics (R.J.S.), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
43
|
Sun L, Ishida T, Miyashita K, Kinoshita N, Mori K, Yasuda T, Toh R, Nakajima K, Imamura S, Hirata KI. Plasma activity of endothelial lipase impacts high-density lipoprotein metabolism and coronary risk factors in humans. J Atheroscler Thromb 2013; 21:313-21. [PMID: 24369272 DOI: 10.5551/jat.20131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Endothelial lipase (EL) is a determinant of plasma levels of high-density lipoprotein cholesterol (HDL-C). However, little is known about the impact of EL activity on plasma lipid profile. We aimed to establish a new method to evaluate EL-specific phospholipase activity in humans. METHODS Plasma samples were obtained from 115 patients with coronary artery disease (CAD) and 154 patients without CAD. Plasma EL protein was immunoprecipitated using an anti-EL monoclonal antibody after plasma non-specific immunoglobulins were removed by incubation with ProteinA. The phospholipase activity of the immunoprecipitated samples was measured using a fluorogenic phospholipase substrate, Bis-BODIPY FL C11-PC. RESULTS The EL-specific phospholipase assay revealed that plasma EL activity was inversely correlated with HDL-C levels (R = -0.3088, p<0.0001). In addition, the EL activity was associated with cigarette smoking. Furthermore, EL activity in CAD patients was significantly higher than that in nonCAD patients. Concomitantly, the HDL-C level in CAD patients were significantly lower than that in non-CAD patients. CONCLUSION We have established a method for human plasma EL-specific phospholipase activity by combination of EL immunoprecipitation and a fluorogenic phospholipid substrate. Plasma EL activity was associated with not only plasma HDL-C levels but also the risks for CAD.
Collapse
Affiliation(s)
- Li Sun
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
van Capelleveen JC, Bochem AE, Motazacker MM, Hovingh GK, Kastelein JJP. Genetics of HDL-C: a causal link to atherosclerosis? Curr Atheroscler Rep 2013; 15:326. [PMID: 23591671 DOI: 10.1007/s11883-013-0326-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prospective epidemiological studies have consistently reported an inverse association between HDL cholesterol (HDL-C) levels and the risk of cardiovascular disease (CVD). However, large intervention trials on HDL-C-increasing drugs and recent Mendelian randomization studies have questioned a causal relationship between HDL-C and atherosclerosis. HDL-C levels have been shown to be highly heritable, and the combination of HDL-C-associated SNPs in recent large-scale genome-wide association studies (GWAS) only explains a small proportion of this heritability. As a large part of our current understanding of HDL metabolism comes from genetic studies, further insights in this research field may aid us in elucidating HDL functionality in relation to CVD risk. In this review we focus on the question of whether genetically defined HDL-C levels are associated with risk of atherosclerosis. We also discuss the latest insights for HDL-C-associated genes and recent GWAS data.
Collapse
Affiliation(s)
- Julian C van Capelleveen
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Larach DB, Cuchel M, Rader DJ. Monogenic causes of elevated HDL cholesterol and implications for development of new therapeutics. CLINICAL LIPIDOLOGY 2013; 8:635-648. [PMID: 25374625 PMCID: PMC4217288 DOI: 10.2217/clp.13.73] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Identification of the CETP, LIPG (encoding endothelial lipase) and APOC3 genes, and ana lysis of rare genetic variants in them, have allowed researchers to increase understanding of HDL metabolism significantly. However, development of cardiovascular risk-reducing therapeutics targeting the proteins encoded by these genes has been less straightforward. The failure of two CETP inhibitors is complex but illustrates a possible over-reliance on HDL cholesterol as a marker of therapeutic efficacy. The case of endothelial lipase exemplifies the importance of utilizing population-wide genetic studies of rare variants in potential therapeutic targets to gain information on cardiovascular disease end points. Similar population-wide studies of cardiovascular end points make apoC-III a potentially attractive target for lipid-related drug discovery. These three cases illustrate the positives and negatives of single-gene studies relating to HDL-related cardiovascular drug discovery; such studies should focus not only on HDL cholesterol and other components of the lipid profile, but also on the effect genetic variants have on cardiovascular end points.
Collapse
Affiliation(s)
- Daniel B Larach
- Division of Translational Medicine & Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Marina Cuchel
- Division of Translational Medicine & Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Daniel J Rader
- Division of Translational Medicine & Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, PA, USA
- 11–125 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, PA 19104–5158, USA
| |
Collapse
|
46
|
Sun S, Dean R, Jia Q, Zenova A, Zhong J, Grayson C, Xie C, Lindgren A, Samra P, Sojo L, van Heek M, Lin L, Percival D, Fu JM, Winther MD, Zhang Z. Discovery of XEN445: a potent and selective endothelial lipase inhibitor raises plasma HDL-cholesterol concentration in mice. Bioorg Med Chem 2013; 21:7724-34. [PMID: 24211162 DOI: 10.1016/j.bmc.2013.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/08/2013] [Accepted: 10/17/2013] [Indexed: 10/26/2022]
Abstract
Endothelial lipase (EL) activity has been implicated in HDL metabolism and in atherosclerotic plaque development; inhibitors are proposed to be efficacious in the treatment of dyslipidemia related cardiovascular disease. We describe here the discovery of a novel class of anthranilic acids EL inhibitors. XEN445 (compound 13) was identified as a potent and selective EL inhibitor, that showed good ADME and PK properties, and demonstrated in vivo efficacy in raising plasma HDLc concentrations in mice.
Collapse
Affiliation(s)
- Shaoyi Sun
- Xenon Pharmaceuticals Inc, 200-3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Robert J, Lehner M, Frank S, Perisa D, von Eckardstein A, Rohrer L. Interleukin 6 stimulates endothelial binding and transport of high-density lipoprotein through induction of endothelial lipase. Arterioscler Thromb Vasc Biol 2013; 33:2699-706. [PMID: 24115033 DOI: 10.1161/atvbaha.113.301363] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE In the reverse cholesterol transport pathway, high-density lipoprotein (HDL) passes the endothelial cell barrier by mechanisms involving the scavenger receptor class B type I and the ATP-binding cassette G1. However, little is known on how inflammation influences this transendothelial transport. APPROACH AND RESULTS On stimulation with interleukin-6, cultivated primary endothelial cells showed increased binding and transport of (125)I-HDL without changing the expression of scavenger receptor class B type I and ATP-binding cassette G1. Therefore, we analyzed the involvement of endothelial lipase (EL), a known HDL-binding protein expressed by endothelial cells. Here, we show an increased EL expression after interleukin-6 stimulation. Moreover, using pharmacological inhibitors or RNA interference against EL, we demonstrated its participation in HDL binding and transport through the endothelium. Furthermore, adenovirus-mediated transfection of endothelial cells with either catalytically active or nonactive EL revealed that EL facilitates the endothelial binding and transport by both bridging and lipolysis of HDL. EL was also found responsible for the reduction of HDL particle size occurring during the specific transport through a monolayer of endothelial cells. Finally, pharmacological inhibition of EL reversed the inducing effect of interleukin-6 on HDL binding and transport. CONCLUSIONS Interleukin-6 stimulates the translocation of HDL through the endothelium, the first step in reverse cholesterol transport pathway, by enhancing EL expression. In addition, we demonstrated the role of EL in the transendothelial transport of HDL.
Collapse
Affiliation(s)
- Jérôme Robert
- From the Institute of Clinical Chemistry, University Hospital of Zurich, Zurich, Switzerland (J.R., M.L., D.P., A.v.E., L.R.); Zurich Center of Integrated Human Physiology, University of Zurich, Zurich, Switzerland (J.R., D.P., A.v.E., L.R.); and Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, Graz, Austria (S.F.)
| | | | | | | | | | | |
Collapse
|
48
|
Riwanto M, Landmesser U. High density lipoproteins and endothelial functions: mechanistic insights and alterations in cardiovascular disease. J Lipid Res 2013; 54:3227-43. [PMID: 23873269 DOI: 10.1194/jlr.r037762] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prospective population studies in the primary prevention setting have shown that reduced plasma levels of HDL cholesterol are associated with an increased risk of coronary disease and myocardial infarction. Experimental and translational studies have further revealed several potential anti-atherogenic effects of HDL, including protective effects on endothelial cell functions. HDL has been suggested to protect endothelial cell functions by prevention of oxidation of LDL and its adverse endothelial effects. Moreover, HDL from healthy subjects can directly stimulate endothelial cell production of nitric oxide and anti-inflammatory, anti-apoptotic, and anti-thrombotic effects as well as endothelial repair processes. However, several recent clinical trials using HDL cholesterol-raising agents, such as torcetrapib, dalcetrapib, and niacin, did not demonstrate a significant reduction of cardiovascular events in patients with coronary disease. Of note, growing evidence suggests that the vascular effects of HDL can be highly heterogeneous and vasoprotective properties of HDL are altered in patients with coronary disease. Characterization of underlying mechanisms and understanding of the clinical relevance of this "HDL dysfunction" is currently an active field of cardiovascular research. Notably, in some recent studies no clear association of higher HDL cholesterol levels with a reduced risk of cardiovascular events was observed in patients with already established coronary disease. A greater understanding of mechanisms of action of HDL and its altered vascular effects is therefore critical within the context of HDL-targeted therapies. In this review, we will address different effects of HDL on endothelial cell functions potentially relevant to atherosclerotic vascular disease and explore molecular mechanisms leading to "dysfunctional HDL".
Collapse
Affiliation(s)
- Meliana Riwanto
- Cardiology, University Heart Center, University Hospital Zurich and Cardiovascular Research, Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
49
|
Hydrolysis products generated by lipoprotein lipase and endothelial lipase differentially impact THP-1 macrophage cell signalling pathways. Lipids 2013; 48:769-778. [PMID: 23794138 DOI: 10.1007/s11745-013-3810-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/06/2013] [Indexed: 12/11/2022]
Abstract
Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes--most associated with atherosclerotic processes--was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products.
Collapse
|
50
|
Motazacker MM, Peter J, Treskes M, Shoulders CC, Kuivenhoven JA, Hovingh GK. Evidence of a polygenic origin of extreme high-density lipoprotein cholesterol levels. Arterioscler Thromb Vasc Biol 2013; 33:1521-8. [PMID: 23685560 DOI: 10.1161/atvbaha.113.301505] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE There are several known monogenic causes of high and low high-density lipoprotein cholesterol (HDL-C) levels, but traditional sequencing studies have had limited success in identifying mutations in the majority of individuals with extreme HDL-C levels. The aim of this study was to assess the power of a targeted high-throughput sequencing strategy to elucidate the genetic basis of extreme HDL-C phenotypes. APPROACH AND RESULTS We sequenced 195 genes with either established or implicated roles in lipid and lipoprotein metabolism plus 78 lipid-unrelated genes in patients with HDL-C <1st (n=40) or >99th (n=40) percentile values, and the results were compared with those of 498 individuals representative of the Dutch general population and 95 subjects with normal HDL-C (between 40th and 60th percentile values). The extreme HDL cohort carried more rare nonsynonymous variants in the lipid geneset than both the general population (odds ratio, 1.39; P=0.019) and normal HDL-C (odds ratio, 1.43; P=0.040) cohorts. The prevalence of such variants in the lipid-related and lipid-unrelated genesets was similar in the control groups, indicative of equal mutation rates. In the extreme HDL cohort, however, there was enrichment of rare nonsynonymous variants in the lipid versus the control geneset (odds ratio, 2.23; P<0.0001), and 70% of the lipid-related variants altered conserved nucleotides. The lipid geneset comprised 4 nonsense, 10 splice-site, and 8 coding indel variants, whereas the control geneset contained only 1 such variant. In the lipid geneset, 87% and 28% of the patients carried ≥ 2 and ≥ 5 rare variants. CONCLUSIONS This study suggests that most extreme HDL-C phenotypes have a polygenic origin.
Collapse
|