1
|
Sherstnev I, Judina A, Luciani GB, Ghigo A, Hirsch E, Gorelik J. Role of PDE4 Family in Cardiomyocyte Physiology and Heart Failure. Cells 2025; 14:460. [PMID: 40136709 PMCID: PMC11941749 DOI: 10.3390/cells14060460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
Phosphodiesterase 4 (PDE4) is a key regulator of cyclic adenosine monophosphate (cAMP) signalling in cardiomyocytes, controlling contractility, calcium handling, and hypertrophic responses. PDE4 provides spatial and temporal precision to cAMP signalling, particularly under β-adrenergic stimulation, through its compartmentalised activity in subcellular nanodomains, including the sarcoplasmic reticulum, plasma membrane and nuclear envelope. This review highlights the cardiac PDE4 isoforms PDE4A, PDE4B and PDE4D, focusing on their distinct localisation and contributions to cardiac physiology and pathophysiology, particularly in heart failure and arrhythmias. Although PDE4 plays a smaller role in overall cAMP hydrolysis in human hearts than in rodents, its compartmentalised function remains critical. Recent therapeutic advances have shifted from pan-PDE4 inhibitors to isoform-specific approaches to enhance efficacy while minimising systemic toxicity. We discuss the potential of selective PDE4 modulators, gene therapies and combination strategies in restoring cAMP compartmentation and preventing maladaptive cardiac remodelling. By integrating rodent and human studies, this review underscores the translational challenges and therapeutic opportunities surrounding PDE4, positioning it as both a key regulator of cardiac signalling and a promising target for heart failure therapies.
Collapse
Affiliation(s)
- Ivan Sherstnev
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (I.S.); (A.J.)
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37126 Verona, Italy;
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Torino, 10126 Torino, Italy; (A.G.); (E.H.)
| | - Aleksandra Judina
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (I.S.); (A.J.)
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37126 Verona, Italy;
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Torino, 10126 Torino, Italy; (A.G.); (E.H.)
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Torino, 10126 Torino, Italy; (A.G.); (E.H.)
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK; (I.S.); (A.J.)
| |
Collapse
|
2
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
3
|
Lai P, Hille SS, Subramanian H, Wiegmann R, Roser P, Müller OJ, Nikolaev VO, De Jong KA. Remodelling of cAMP dynamics within the SERCA2a microdomain in heart failure with preserved ejection fraction caused by obesity and type 2 diabetes. Cardiovasc Res 2024; 120:273-285. [PMID: 38099489 PMCID: PMC10939460 DOI: 10.1093/cvr/cvad178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/03/2023] [Accepted: 09/23/2023] [Indexed: 02/10/2024] Open
Abstract
AIMS Despite massive efforts, we remain far behind in our attempts to identify effective therapies to treat heart failure with preserved ejection fraction (HFpEF). Diastolic function is critically regulated by sarcoplasmic/endoplasmic reticulum (SR) calcium ATPase 2a (SERCA2a), which forms a functional cardiomyocyte (CM) microdomain where 3',5'-cyclic adenosine monophosphate (cAMP) produced upon β-adrenergic receptor (β-AR) stimulation leads to phospholamban (PLN) phosphorylation and facilitated Ca2+ re-uptake. METHODS AND RESULTS To visualize real-time cAMP dynamics in the direct vicinity of SERCA2a in healthy and diseased myocytes, we generated a novel mouse model on the leprdb background that stably expresses the Epac1-PLN Förster resonance energy transfer biosensor. Mice homozygous for the leprdb mutation (db/db) developed obesity and type 2 diabetes and presented with a HFpEF phenotype, evident by mild left ventricular hypertrophy and elevated left atria filling pressures. Live cell imaging uncovered a substantial β2-AR subtype stimulated cAMP response within the PLN/SERCA2a microdomain of db/db but not healthy control (db/+) CMs, which was accompanied by increased PLN phosphorylation and accelerated calcium re-uptake. Importantly, db/db CMs also exhibited a desensitization of β1-AR stimulated cAMP pools within the PLN/SERCA2a microdomain, which was accompanied by a blunted lusitropic effect, suggesting that the increased β2-AR control is an intrinsic compensatory mechanism to maintain PLN/SERCA2a-mediated calcium dynamics and cardiac relaxation. Mechanistically, this was due to a local loss of cAMP-degrading phosphodiesterase 4 associated specifically with the PLN/SERCA2a complex. CONCLUSION These newly identified alterations of cAMP dynamics at the subcellular level in HFpEF should provide mechanistic understanding of microdomain remodelling and pave the way towards new therapies.
Collapse
Affiliation(s)
- Ping Lai
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, 341000 Ganzhou, China
| | - Susanne S Hille
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, University of Kiel, Arnold-Heller-Str. 3, D-24105, Kiel, Germany
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
| | - Robert Wiegmann
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
| | - Pia Roser
- Department of Endocrinology and Diabetes, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg D-20246, Germany
| | - Oliver J Müller
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, University of Kiel, Arnold-Heller-Str. 3, D-24105, Kiel, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
| | - Kirstie A De Jong
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
| |
Collapse
|
4
|
Britto-Júnior J, Lima AT, Fuguhara V, Monica FZ, Antunes E, De Nucci G. Investigation on the positive chronotropic action of 6-nitrodopamine in the rat isolated atria. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1279-1290. [PMID: 36719453 DOI: 10.1007/s00210-023-02394-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023]
Abstract
6-Nitrodopamine (6-ND) is released from rat isolated atria being 100 times more potent than noradrenaline and adrenaline, and 10,000 times more potent than dopamine as a positive chronotropic agent. The present study aimed to investigate the interactions of 6-ND with the classical catecholamines, phosphodiesterase (PDE)-3 and PDE4, and the protein kinase A in rat isolated atria. Atrial incubation with 1 pM of dopamine, noradrenaline, or adrenaline had no effect on atrial frequency. Similar results were observed when the atria were incubated with 0.01 pM of 6-ND. However, co-incubation of 6-ND (0.01 pM) with dopamine, noradrenaline, or adrenaline (1 pM each) resulted in significant increases in atrial rate, which persisted over 30 min after washout of the agonists. The increased atrial frequency induced by co-incubation of 6-ND with the catecholamines was significantly reduced by the voltage-gated sodium channel blocker tetrodotoxin (1 µM, 30 min), indicating that the positive chronotropic effect of 6-ND is due in part to activation of nerve terminals. Pre-treatment of the animals with reserpine had no effect on the positive chronotropic effect induced by dopamine, noradrenaline, or adrenaline; however, reserpine markedly reduced the 6-ND (1 pM)-induced positive chronotropic effect. Incubation of the rat isolated atria with the protein kinase A inhibitor H-89 (1 µM, 30 min) abolished the increased atrial frequency induced by dopamine, noradrenaline, and adrenaline, but only attenuated the increases induced by 6-ND. 6-ND induces catecholamine release from adrenergic terminals and increases atrial frequency independently of PKA activation.
Collapse
Affiliation(s)
- José Britto-Júnior
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil.
| | - Antonio Tiago Lima
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Vivian Fuguhara
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Fabiola Z Monica
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
- Department of Pharmacology, Faculty of Medicine, São Leopoldo Mandic, Campinas, SP, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
5
|
Skogestad J, Albert I, Hougen K, Lothe GB, Lunde M, Eken OS, Veras I, Huynh NTT, Børstad M, Marshall S, Shen X, Louch WE, Robinson EL, Cleveland JC, Ambardekar AV, Schwisow JA, Jonas E, Calejo AI, Morth JP, Taskén K, Melleby AO, Lunde PK, Sjaastad I, Carlson CR, Aronsen JM. Disruption of Phosphodiesterase 3A Binding to SERCA2 Increases SERCA2 Activity and Reduces Mortality in Mice With Chronic Heart Failure. Circulation 2023; 147:1221-1236. [PMID: 36876489 DOI: 10.1161/circulationaha.121.054168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Increasing SERCA2 (sarco[endo]-plasmic reticulum Ca2+ ATPase 2) activity is suggested to be beneficial in chronic heart failure, but no selective SERCA2-activating drugs are available. PDE3A (phosphodiesterase 3A) is proposed to be present in the SERCA2 interactome and limit SERCA2 activity. Disruption of PDE3A from SERCA2 might thus be a strategy to develop SERCA2 activators. METHODS Confocal microscopy, 2-color direct stochastic optical reconstruction microscopy, proximity ligation assays, immunoprecipitations, peptide arrays, and surface plasmon resonance were used to investigate colocalization between SERCA2 and PDE3A in cardiomyocytes, map the SERCA2/PDE3A interaction sites, and optimize disruptor peptides that release PDE3A from SERCA2. Functional experiments assessing the effect of PDE3A-binding to SERCA2 were performed in cardiomyocytes and HEK293 vesicles. The effect of SERCA2/PDE3A disruption by the disruptor peptide OptF (optimized peptide F) on cardiac mortality and function was evaluated during 20 weeks in 2 consecutive randomized, blinded, and controlled preclinical trials in a total of 148 mice injected with recombinant adeno-associated virus 9 (rAAV9)-OptF, rAAV9-control (Ctrl), or PBS, before undergoing aortic banding (AB) or sham surgery and subsequent phenotyping with serial echocardiography, cardiac magnetic resonance imaging, histology, and functional and molecular assays. RESULTS PDE3A colocalized with SERCA2 in human nonfailing, human failing, and rodent myocardium. Amino acids 277-402 of PDE3A bound directly to amino acids 169-216 within the actuator domain of SERCA2. Disruption of PDE3A from SERCA2 increased SERCA2 activity in normal and failing cardiomyocytes. SERCA2/PDE3A disruptor peptides increased SERCA2 activity also in the presence of protein kinase A inhibitors and in phospholamban-deficient mice, and had no effect in mice with cardiomyocyte-specific inactivation of SERCA2. Cotransfection of PDE3A reduced SERCA2 activity in HEK293 vesicles. Treatment with rAAV9-OptF reduced cardiac mortality compared with rAAV9-Ctrl (hazard ratio, 0.26 [95% CI, 0.11 to 0.63]) and PBS (hazard ratio, 0.28 [95% CI, 0.09 to 0.90]) 20 weeks after AB. Mice injected with rAAV9-OptF had improved contractility and no difference in cardiac remodeling compared with rAAV9-Ctrl after aortic banding. CONCLUSIONS Our results suggest that PDE3A regulates SERCA2 activity through direct binding, independently of the catalytic activity of PDE3A. Targeting the SERCA2/PDE3A interaction prevented cardiac mortality after AB, most likely by improving cardiac contractility.
Collapse
Affiliation(s)
- Jonas Skogestad
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Ingrid Albert
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Karina Hougen
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Gustav B Lothe
- Department of Pharmacology, Oslo University Hospital, Norway (G.B.L.)
- Bjørknes College, Oslo, Norway (G.B.L., J.M.A.)
| | - Marianne Lunde
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Olav Søvik Eken
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Ioanni Veras
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Ngoc Trang Thi Huynh
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Mira Børstad
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Serena Marshall
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Emma Louise Robinson
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Joseph C Cleveland
- Department of Surgery (J.C.C.), University of Colorado Anschutz Medical Campus, Aurora
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Jessica A Schwisow
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Eric Jonas
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Ana I Calejo
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership (A.I.C.C., J.P.M., K.T.), Oslo University Hospital and University of Oslo, Norway
| | - Jens Preben Morth
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership (A.I.C.C., J.P.M., K.T.), Oslo University Hospital and University of Oslo, Norway
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby (J.P.M.)
| | - Kjetil Taskén
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership (A.I.C.C., J.P.M., K.T.), Oslo University Hospital and University of Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital and Institute for Clinical Medicine, University of Oslo, Norway (K.T.)
| | - Arne Olav Melleby
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Per Kristian Lunde
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
- Bjørknes College, Oslo, Norway (G.B.L., J.M.A.)
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| |
Collapse
|
6
|
Subramanian H, Nikolaev VO. A-Kinase Anchoring Proteins in Cardiac Myocytes and Their Roles in Regulating Calcium Cycling. Cells 2023; 12:cells12030436. [PMID: 36766777 PMCID: PMC9913689 DOI: 10.3390/cells12030436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The rate of calcium cycling and calcium transient amplitude are critical determinants for the efficient contraction and relaxation of the heart. Calcium-handling proteins in the cardiac myocyte are altered in heart failure, and restoring the proper function of those proteins is an effective potential therapeutic strategy. The calcium-handling proteins or their regulators are phosphorylated by a cAMP-dependent kinase (PKA), and thereby their activity is regulated. A-Kinase Anchoring Proteins (AKAPs) play a seminal role in orchestrating PKA and cAMP regulators in calcium handling and contractile machinery. This cAMP/PKA orchestration is crucial for the increased force and rate of contraction and relaxation of the heart in response to fight-or-flight. Knockout models and the few available preclinical models proved that the efficient targeting of AKAPs offers potential therapies tailor-made for improving defective calcium cycling. In this review, we highlight important studies that identified AKAPs and their regulatory roles in cardiac myocyte calcium cycling in health and disease.
Collapse
Affiliation(s)
- Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck
- Correspondence: (H.S.); (V.O.N.); Tel.: +49(0)40-7410-57383 (V.O.N.)
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck
- Correspondence: (H.S.); (V.O.N.); Tel.: +49(0)40-7410-57383 (V.O.N.)
| |
Collapse
|
7
|
Xu B, Wang Y, Bahriz SMFM, Zhao M, Zhu C, Xiang YK. Probing spatiotemporal PKA activity at the ryanodine receptor and SERCA2a nanodomains in cardomyocytes. Cell Commun Signal 2022; 20:143. [PMID: 36104752 PMCID: PMC9472443 DOI: 10.1186/s12964-022-00947-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/23/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractSpatiotemporal regulation of subcellular protein kinase A (PKA) activity for precise substrate phosphorylation is essential for cellular responses to hormonal stimulation. Ryanodine receptor 2 (RyR2) and (sarco)endoplasmic reticulum calcium ATPase 2a (SERCA2a) represent two critical targets of β adrenoceptor (βAR) signaling on the sarcoplasmic reticulum membrane for cardiac excitation and contraction coupling. Using novel biosensors, we show that cardiac β1AR signals to both RyR2 and SERCA2a nanodomains in cardiomyocytes from mice, rats, and rabbits, whereas the β2AR signaling is restricted from these nanodomains. Phosphodiesterase 4 (PDE4) and PDE3 control the baseline PKA activity and prevent β2AR signaling from reaching the RyR2 and SERCA2a nanodomains. Moreover, blocking inhibitory G protein allows β2AR signaling to the RyR2 but not the SERCA2a nanodomains. This study provides evidence for the differential roles of inhibitory G protein and PDEs in controlling the adrenergic subtype signaling at the RyR2 and SERCA2a nanodomains in cardiomyocytes.
Collapse
|
8
|
Xia Y, He F, Moukeila Yacouba MB, Zhou H, Li J, Xiong Y, Zhang J, Li H, Wang Y, Ke J. Adenosine A2a Receptor Regulates Autophagy Flux and Apoptosis to Alleviate Ischemia-Reperfusion Injury via the cAMP/PKA Signaling Pathway. Front Cardiovasc Med 2022; 9:755619. [PMID: 35571159 PMCID: PMC9099415 DOI: 10.3389/fcvm.2022.755619] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Exploring effective methods to lessen myocardial ischemia-reperfusion injury still has positive significance. The adenosine A2a receptor (A2aR) has played a crucial part in cardiac ischemia-reperfusion injury. Previous studies revealed that the adenosine A2a receptor regulated autophagy, but the specific mechanism in myocardial ischemia-reperfusion injury was still unclear. We established an ischemia-reperfusion model (30 min of ischemia and 2 h of reperfusion) in vivo and a model with oxygen-glucose deprivation for 6 h and reoxygenation for 18 h (OGDR) in vitro. The ischemia-reperfusion injury resulted in prolonged QTc interval, left ventricular systolic dysfunction, and myocardial infarction. In vitro model, we found that the OGDR-induced autophagosomes and apoptosis caused myocardial cell death, as evidenced by a significant increase in the generation of lactate dehydrogenase and creatine kinase-MB. Furthermore, overactivated autophagy with rapamycin showed an anti-apoptotic effect. The interaction between autophagy and apoptosis in myocardial ischemia-reperfusion injury was complex and variable. We discovered that the activation of adenosine A2a receptor could promote the expression of Bcl-2 to inhibit the levels of Beclin-1 and LC3II. The number of autophagosomes exceeded that of autolysosomes under OGDR, but the result reversed after A2aR activation. Activated A2aR with its agonist CGS21680 before reperfusion saved cellular survival through anti-apoptosis and anti-autophagy effect, thus improving ventricular contraction disorders, and visibly reducing myocardial infarction size. The myocardial protection of adenosine A2a receptor after ischemia may involve the cAMP-PKA signaling pathway and the interaction of Bcl-2-Beclin-1.
Collapse
|
9
|
Harvey RD, Clancy CE. Mechanisms of cAMP compartmentation in cardiac myocytes: experimental and computational approaches to understanding. J Physiol 2021; 599:4527-4544. [PMID: 34510451 DOI: 10.1113/jp280801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
The small diffusible second messenger 3',5'-cyclic adenosine monophosphate (cAMP) is found in virtually every cell in our bodies, where it mediates responses to a variety of different G protein coupled receptors (GPCRs). In the heart, cAMP plays a critical role in regulating many different aspects of cardiac myocyte function, including gene transcription, cell metabolism, and excitation-contraction coupling. Yet, not all GPCRs that stimulate cAMP production elicit the same responses. Subcellular compartmentation of cAMP is essential to explain how different receptors can utilize the same diffusible second messenger to elicit unique functional responses. However, the mechanisms contributing to this behaviour and its significance in producing physiological and pathological responses are incompletely understood. Mathematical modelling has played an essential role in gaining insight into these questions. This review discusses what we currently know about cAMP compartmentation in cardiac myocytes and questions that are yet to be answered.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, NV, 89557, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
10
|
Hanna R, Nour-Eldine W, Saliba Y, Dagher-Hamalian C, Hachem P, Abou-Khalil P, Mika D, Varin A, El Hayek MS, Pereira L, Farès N, Vandecasteele G, Abi-Gerges A. Cardiac Phosphodiesterases Are Differentially Increased in Diabetic Cardiomyopathy. Life Sci 2021; 283:119857. [PMID: 34339715 DOI: 10.1016/j.lfs.2021.119857] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
AIM Diabetic cardiomyopathy (DCM) accomodates a spectrum of cardiac abnormalities. This study aims to investigate whether DCM is associated with changes in cyclic adenosine 3'-5' monophosphate (cAMP) signaling, particularly cyclic nucleotide phosphodiesterases (PDEs). MAIN METHODS Type 1 diabetes (T1D) was induced in rats by streptozotocin (STZ, 65 mg/kg) injection. Myocardial remodeling, structure and function were evaluated by histology and echocardiography, respectively. We delineated the sequential changes affecting cAMP signaling and characterized the expression pattern of the predominant cardiac PDE isoforms (PDE 1-5) and β-adrenergic (β-AR) receptors at 4, 8 and 12 weeks following diabetes induction, by real-time quantitative PCR and Western blot. cAMP levels were measured by immunoassays. KEY FINDINGS T1D-induced DCM was associated with cardiac remodeling, steatosis and fibrosis. Upregulation of β1-AR receptor transcripts was noted in diabetic hearts at 4 weeks along with an increase in cAMP levels and an upregulation in the ejection fraction and fraction shortening. However, β2-AR receptors expression remained unchanged regardless of the disease stage. Moreover, we noted an early and specific upregulation of cardiac PDE1A, PDE2A, PDE4B, PDE4D and PDE5A expression at week 4, followed by increases in PDE3A levels in diabetic hearts at week 8. However, DCM was not associated with changes in PDE4A gene expression irrespective of the disease stage. SIGNIFICANCE We show for the first time differential and time-specific regulations in cardiac PDEs, data that may prove useful in proposing new therapeutic approaches in T1D-induced DCM.
Collapse
Affiliation(s)
- Rita Hanna
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Wared Nour-Eldine
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Youakim Saliba
- Faculté de Médecine, Laboratoire de Recherche en Physiologie et Physiopathologie, LRPP, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
| | - Carole Dagher-Hamalian
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Pia Hachem
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Pamela Abou-Khalil
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Delphine Mika
- Signaling and Cardiovascular Pathophysiology, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Audrey Varin
- Signaling and Cardiovascular Pathophysiology, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Magali Samia El Hayek
- Signaling and Cardiovascular Pathophysiology, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Laëtitia Pereira
- Signaling and Cardiovascular Pathophysiology, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Nassim Farès
- Faculté de Médecine, Laboratoire de Recherche en Physiologie et Physiopathologie, LRPP, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
| | - Grégoire Vandecasteele
- Signaling and Cardiovascular Pathophysiology, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Aniella Abi-Gerges
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon.
| |
Collapse
|
11
|
De Jong KA, Nikolaev VO. Multifaceted remodelling of cAMP microdomains driven by different aetiologies of heart failure. FEBS J 2021; 288:6603-6622. [DOI: 10.1111/febs.15706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Kirstie A. De Jong
- Institute of Experimental Cardiovascular Research University Medical Center Hamburg‐Eppendorf Hamburg Germany
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck D‐20246 Hamburg Germany
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research University Medical Center Hamburg‐Eppendorf Hamburg Germany
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck D‐20246 Hamburg Germany
| |
Collapse
|
12
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Abstract
The cyclic nucleotides cyclic adenosine-3′,5′-monophosphate (cAMP) and cyclic guanosine-3′,5′-monophosphate (cGMP) maintain physiological cardiac contractility and integrity. Cyclic nucleotide–hydrolysing phosphodiesterases (PDEs) are the prime regulators of cAMP and cGMP signalling in the heart. During heart failure (HF), the expression and activity of multiple PDEs are altered, which disrupt cyclic nucleotide levels and promote cardiac dysfunction. Given that the morbidity and mortality associated with HF are extremely high, novel therapies are urgently needed. Herein, the role of PDEs in HF pathophysiology and their therapeutic potential is reviewed. Attention is given to PDEs 1–5, and other PDEs are briefly considered. After assessing the role of each PDE in cardiac physiology, the evidence from pre-clinical models and patients that altered PDE signalling contributes to the HF phenotype is examined. The potential of pharmacologically harnessing PDEs for therapeutic gain is considered.
Collapse
|
14
|
Okatan EN, Turan B. The contribution of phosphodiesterases to cardiac dysfunction in rats with metabolic syndrome induced by a high-carbohydrate diet. Can J Physiol Pharmacol 2019; 97:1064-1072. [PMID: 31299169 DOI: 10.1139/cjpp-2019-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metabolic syndrome (MetS) is a cluster of risk factors, including insulin resistance among others, underlying the development of diabetes and (or) cardiovascular diseases. Studies show a close relationship between cardiac dysfunction and abnormal cAMP catabolism, which contributes to pathological remodelling. Stimulating the synthesis of cAMP via suppression of phosphodiesterases (PDEs) has positive therapeutic effects. Therefore, we examined the role of PDEs on cardiac dysfunction in high-carbohydrate diet-induced MetS rats. We first demonstrated significantly high expression levels of PDE3 and PDE4, the most highly expressed subtypes, together with depressed cAMP levels in heart tissue from MetS rats. Second, we demonstrated the activity of these PDEs by using either their basal or PDE inhibitor-induced intracellular levels of cAMP and Ca2+, the transient intracellular Ca2+ changes under electrical stimulation, isometric contractions in papillary muscle strips and some key signalling proteins (such as RyR2, PLN, PP1A, and PKA) are responsible for the Ca2+ homeostasis in isolated cardiomyocytes from MetS rats. The clear recovery in decreased basal cAMP levels, increased protein expression levels of PDE3 and PDE4, and positive responses in the altered Ca2+ homeostasis to PDE inhibitors as seen in our study can provide important insights about the roles of activated PDEs in depressed contractile activity in hearts from MetS rats.
Collapse
Affiliation(s)
- Esma N Okatan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey.,Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey.,Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| |
Collapse
|
15
|
cAMP/PKA signaling compartmentalization in cardiomyocytes: Lessons from FRET-based biosensors. J Mol Cell Cardiol 2019; 131:112-121. [PMID: 31028775 DOI: 10.1016/j.yjmcc.2019.04.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/29/2022]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger produced in response to the stimulation of G protein-coupled receptors (GPCRs). It regulates a plethora of pathophysiological processes in different organs, including the cardiovascular system. It is now clear that cAMP is not uniformly distributed within cardiac myocytes but confined in specific subcellular compartments where it modulates key players of the excitation-contraction coupling as well as other processes including gene transcription, mitochondrial homeostasis and cell death. This review will cover the major cAMP microdomains in cardiac myocytes. We will describe recent work using pioneering tools developed for investigating the organization and the function of the major cAMP microdomains in cardiomyocytes, including the plasma membrane, the sarcoplasmic reticulum, the myofilaments, the nucleus and the mitochondria.
Collapse
|
16
|
Huang H, Xie M, Gao L, Zhang W, Zhu X, Wang Y, Li W, Wang R, Chen K, Boutjdir M, Chen L. Rolipram, a PDE4 Inhibitor, Enhances the Inotropic Effect of Rat Heart by Activating SERCA2a. Front Pharmacol 2019; 10:221. [PMID: 30967774 PMCID: PMC6439224 DOI: 10.3389/fphar.2019.00221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
This study was designed to investigate the hemodynamic effect of rolipram, a phosphodiesterase type 4 (PDE4) inhibitor, in normal rat hearts both in vivo and in vitro and its underlying mechanism. The pressure-volume loop, isolated heart, and Ca2+ transients triggered by field stimulation or caffeine were used to analyze the hemodynamic mechanism of rolipram. The results demonstrated that rolipram (3 mg/kg, ip) significantly increased the in vivo rat heart contractility by enhancing stroke work, cardiac output, stroke volume, end-systolic volume, end-diastolic volume, end-systolic pressure, heart rate, ejection fraction, peak rate of rise of left pressure (+dp/dtmax), the slopes of end-systolic pressure-volume relationship (slope of ESPVR) named as left ventricular end-systolic elastance, and reduced the slopes of end-diastolic pressure-volume relationship (slope of EDPVR). Meanwhile, the systolic blood pressure, diastolic blood pressure, and pulse pressure were significantly enhanced by rolipram. Also, rolipram deviated normal ventricular-arterial coupling without changing the arterial elastance. Furthermore, rolipram (0.1, 1, 10 μM) also exerted positive inotropic effect in isolated rat hearts by increasing the left ventricular development pressure, and +dp/dtmax in non-paced and paced modes. Rolipram (10 μM) increased the SERCA2a activity, Ca2+ content, and Ca2+ leak rate without changing diastolic Ca2+ level. Rolipram had significant positive inotropic effect with less effect on peripheral vascular elastance and its underlying mechanism was mediated by increasing SERCA2a activity. PDE4 inhibition by rolipram resulted in a positive inotropic effect and might serve as a target for developing agents for the treatment of heart failure in clinical settings.
Collapse
Affiliation(s)
- Huili Huang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Xie
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Gao
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenhui Zhang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojia Zhu
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwei Wang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Wang
- Dalian Institute of Chemical Physics, Dalian, China.,Chinese Academy of Sciences Biomedical Innovation Institute of China Medical City, Taizhou, China
| | - Kesu Chen
- Department of Respiratory, Inpatient Wards for Senior Cadres, Nanjing General Hospital of Nanjing Military Command Region, Nanjing, China
| | - Mohamed Boutjdir
- VA New York Harbor Healthcare System, New York, NY, United States.,State University of New York Downstate Medical Center, New York, NY, United States.,NYU School of Medicine, New York, NY, United States
| | - Long Chen
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Institute of Chinese Medicine of Taizhou China Medical City, Taizhou, China
| |
Collapse
|
17
|
Vinogradova TM, Kobrinsky E, Lakatta EG. Dual Activation of Phosphodiesterases 3 and 4 Regulates Basal Spontaneous Beating Rate of Cardiac Pacemaker Cells: Role of Compartmentalization? Front Physiol 2018; 9:1301. [PMID: 30356755 PMCID: PMC6189467 DOI: 10.3389/fphys.2018.01301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022] Open
Abstract
Spontaneous firing of sinoatrial (SA) node cells (SANCs) is regulated by cyclic adenosine monophosphate (cAMP)-mediated, protein kinase A (PKA)-dependent (cAMP/PKA) local subsarcolemmal Ca2+ releases (LCRs) from ryanodine receptors (RyR). The LCRs occur during diastolic depolarization (DD) and activate an inward Na+/Ca2+ exchange current that accelerates the DD rate prompting the next action potential (AP). Basal phosphodiesterases (PDEs) activation degrades cAMP, reduces basal cAMP/PKA-dependent phosphorylation, and suppresses normal spontaneous firing of SANCs. The cAMP-degrading PDE1, PDE3, and PDE4 represent major PDE activities in rabbit SANC, and PDE inhibition by 3-isobutyl-1-methylxanthine (IBMX) increases spontaneous firing of SANC by ∼50%. Though inhibition of single PDE1–PDE4 only moderately increases spontaneous SANC firing, dual PDE3 + PDE4 inhibition produces a synergistic effect hastening the spontaneous SANC beating rate by ∼50%. Here, we describe the expression and distribution of different PDE subtypes within rabbit SANCs, several specific targets (L-type Ca2+ channels and phospholamban) regulated by basal concurrent PDE3 + PDE4 activation, and critical importance of RyR Ca2+ releases for PDE-dependent regulation of spontaneous SANC firing. Colocalization of PDE3 and PDE4 beneath sarcolemma or in striated patterns inside SANCs strongly suggests that PDE-dependent regulation of cAMP/PKA signaling might be executed at the local level; this idea, however, requires further verification.
Collapse
Affiliation(s)
- Tatiana M Vinogradova
- Laboratory of Cardiovascular Science, Intramural Research Program, NIA, NIH, Baltimore, MD, United States
| | - Evgeny Kobrinsky
- Laboratory of Cardiovascular Science, Intramural Research Program, NIA, NIH, Baltimore, MD, United States
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, NIA, NIH, Baltimore, MD, United States
| |
Collapse
|
18
|
Movsesian M, Ahmad F, Hirsch E. Functions of PDE3 Isoforms in Cardiac Muscle. J Cardiovasc Dev Dis 2018; 5:jcdd5010010. [PMID: 29415428 PMCID: PMC5872358 DOI: 10.3390/jcdd5010010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
Isoforms in the PDE3 family of cyclic nucleotide phosphodiesterases have important roles in cyclic nucleotide-mediated signalling in cardiac myocytes. These enzymes are targeted by inhibitors used to increase contractility in patients with heart failure, with a combination of beneficial and adverse effects on clinical outcomes. This review covers relevant aspects of the molecular biology of the isoforms that have been identified in cardiac myocytes; the roles of these enzymes in modulating cAMP-mediated signalling and the processes mediated thereby; and the potential for targeting these enzymes to improve the profile of clinical responses.
Collapse
Affiliation(s)
- Matthew Movsesian
- Department of Internal Medicine/Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT 841132, USA.
| | - Faiyaz Ahmad
- Vascular Biology and Hypertension Branch, Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA.
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Center for Molecular Biotechnology, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
19
|
Moura ALD, Hyslop S, Grassi-Kassisse DM, Spadari RC. Functional β2-adrenoceptors in rat left atria: effect of foot-shock stress. Can J Physiol Pharmacol 2017; 95:999-1008. [DOI: 10.1139/cjpp-2016-0622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Altered sensitivity to the chronotropic effect of catecholamines and a reduction in the β1/β2-adrenoceptor ratio have previously been reported in right atria of stressed rats, human failing heart, and aging. In this report, we investigated whether left atrial inotropism was affected by foot-shock stress. Male rats were submitted to 3 foot-shock sessions and the left atrial inotropic response, adenylyl cyclase activity, and β-adrenoceptor expression were investigated. Left atria of stressed rats were supersensitive to isoprenaline when compared with control rats and this effect was abolished by ICI118,551, a selective β2-receptor antagonist. Schild plot slopes for the antagonism between CGP20712A (a selective β1-receptor antagonist) and isoprenaline differed from unity in atria of stressed but not control rats. Atrial sensitivity to norepinephrine, as well as basal and forskolin- or isoprenaline-stimulated adenylyl cyclase activities were not altered by stress. The effect of isoprenaline on adenylyl cyclase stimulation was partially blocked by ICI118,551 in atrial membranes of stressed rats. These findings indicate that foot-shock stress equally affects inotropism and chronotropism and that β2-adrenoceptor upregulation contributes to the enhanced inotropic response to isoprenaline.
Collapse
Affiliation(s)
- André Luiz de Moura
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Stephen Hyslop
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Dora M. Grassi-Kassisse
- Department of Physiology and Biophysics, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Regina C. Spadari
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| |
Collapse
|
20
|
Abstract
Receptor signaling relays on intracellular events amplified by secondary and tertiary messenger molecules. In cardiomyocytes and smooth muscle cells, cyclic AMP (cAMP) and subsequent calcium (Ca2+) fluxes are the best characterized receptor-regulated signaling events. However, most of receptors able to modify contractility and other intracellular responses signal through a variety of other messengers, and whether these signaling events are interconnected has long remained unclear. For example, the PI3K (phosphoinositide 3-kinase) pathway connected to the production of the lipid second messenger PIP3/PtdIns(3,4,5)P3 (phosphatidylinositol (3,4,5)-trisphosphate) is potentially involved in metabolic regulation, activation of hypertrophy, and survival pathways. Recent studies, highlighted in this review, started to interconnect PI3K pathway activation to Ca2+ signaling. This interdependency, by balancing contractility with metabolic control, is crucial for cells of the cardiovascular system and is emerging to play key roles in disease development. Better understanding of the interplay between Ca2+ and PI3K signaling is, thus, expected to provide new ground for therapeutic intervention. This review explores the emerging molecular mechanisms linking Ca2+ and PI3K signaling in health and disease.
Collapse
Affiliation(s)
- Alessandra Ghigo
- From the Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Italy (A.G., M. Li, E.H.); and INSERM U1048, I2MC and Université Toulouse III, France (M. Laffargue)
| | - Muriel Laffargue
- From the Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Italy (A.G., M. Li, E.H.); and INSERM U1048, I2MC and Université Toulouse III, France (M. Laffargue)
| | - Mingchuan Li
- From the Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Italy (A.G., M. Li, E.H.); and INSERM U1048, I2MC and Université Toulouse III, France (M. Laffargue)
| | - Emilio Hirsch
- From the Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Italy (A.G., M. Li, E.H.); and INSERM U1048, I2MC and Université Toulouse III, France (M. Laffargue).
| |
Collapse
|
21
|
Parks RJ, Bogachev O, Mackasey M, Ray G, Rose RA, Howlett SE. The impact of ovariectomy on cardiac excitation-contraction coupling is mediated through cAMP/PKA-dependent mechanisms. J Mol Cell Cardiol 2017; 111:51-60. [PMID: 28778766 DOI: 10.1016/j.yjmcc.2017.07.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 12/18/2022]
Abstract
Ovariectomy (OVX) promotes sarcoplasmic reticulum (SR) Ca2+ overload in ventricular myocytes. We hypothesized that the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway contributes to this Ca2+ dysregulation. Myocytes were isolated from adult female C57BL/6 mice following either OVX or sham surgery (surgery at ≈1mos). Contractions, Ca2+ concentrations (fura-2) and ionic currents were measured simultaneously (37°C, 2Hz) in voltage-clamped myocytes. Intracellular cAMP levels were determined with an enzyme immunoassay; phosphodiesterase (PDE) and adenylyl cyclase (AC) isoform expression was examined with qPCR. Ca2+ currents were similar in myocytes from sham and OVX mice but Ca2+ transients, excitation-contraction (EC)-coupling gain, SR content and contractions were larger in OVX than sham cells. To determine if the cAMP/PKA pathway mediated OVX-induced alterations in EC-coupling, cardiomyocytes were incubated with the PKA inhibitor H-89 (2μM), which abolished baseline differences. While basal intracellular cAMP did not differ, levels were higher in OVX than sham in the presence of a non-selective PDE inhibitor (300μM IBMX), or an AC activator (10μM forskolin). This suggests the production of cAMP by AC and its breakdown by PDE were enhanced by OVX. Consistent with this, mRNA levels for both AC5 and PDE4A were higher in OVX in comparison to sham. Differences in Ca2+ homeostasis and contractions were abolished when sham and OVX cells were dialyzed with patch pipettes containing the same concentration of 8-bromoadenosine-cAMP (50μM). Interestingly, selective inhibition of PDE4 increased Ca2+ current only in OVX cells. Together, these findings suggest that estrogen suppresses SR Ca2+ release and that this is regulated, at least in part, by the cAMP/PKA pathway. These changes in the cAMP/PKA pathway may promote Ca2+ dysregulation and cardiovascular disease when ovarian estrogen levels fall. These results advance our understanding of female-specific cardiomyocyte mechanisms that may affect responses to therapeutic interventions in older women.
Collapse
Affiliation(s)
- Randi J Parks
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| | - Oleg Bogachev
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| | - Martin Mackasey
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| | - Gibanananda Ray
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| | - Robert A Rose
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| | - Susan E Howlett
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada; Department of Medicine (Geriatric Medicine), Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| |
Collapse
|
22
|
Phosphodiesterases 3 and 4 Differentially Regulate the Funny Current, I f, in Mouse Sinoatrial Node Myocytes. J Cardiovasc Dev Dis 2017; 4. [PMID: 28868308 PMCID: PMC5573264 DOI: 10.3390/jcdd4030010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiac pacemaking, at rest and during the sympathetic fight-or-flight response, depends on cAMP (3',5'-cyclic adenosine monophosphate) signaling in sinoatrial node myocytes (SAMs). The cardiac "funny current" (If) is among the cAMP-sensitive effectors that drive pacemaking in SAMs. If is produced by hyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channels. Voltage-dependent gating of HCN channels is potentiated by cAMP, which acts either by binding directly to the channels or by activating the cAMP-dependent protein kinase (PKA), which phosphorylates them. PKA activity is required for signaling between β adrenergic receptors (βARs) and HCN channels in SAMs but the mechanism that constrains cAMP signaling to a PKA-dependent pathway is unknown. Phosphodiesterases (PDEs) hydrolyze cAMP and form cAMP signaling domains in other types of cardiomyocytes. Here we examine the role of PDEs in regulation of If in SAMs. If was recorded in whole-cell voltage-clamp experiments from acutely-isolated mouse SAMs in the absence or presence of PDE and PKA inhibitors, and before and after βAR stimulation. General PDE inhibition caused a PKA-independent depolarizing shift in the midpoint activation voltage (V1/2) of If at rest and removed the requirement for PKA in βAR-to-HCN signaling. PDE4 inhibition produced a similar PKA-independent depolarizing shift in the V1/2 of If at rest, but did not remove the requirement for PKA in βAR-to-HCN signaling. PDE3 inhibition produced PKA-dependent changes in If both at rest and in response to βAR stimulation. Our results suggest that PDE3 and PDE4 isoforms create distinct cAMP signaling domains that differentially constrain access of cAMP to HCN channels and establish the requirement for PKA in signaling between βARs and HCN channels in SAMs.
Collapse
|
23
|
Bolger GB. The PDE4 cAMP-Specific Phosphodiesterases: Targets for Drugs with Antidepressant and Memory-Enhancing Action. ADVANCES IN NEUROBIOLOGY 2017; 17:63-102. [PMID: 28956330 DOI: 10.1007/978-3-319-58811-7_4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The PDE4 cyclic nucleotide phosphodiesterases are essential regulators of cAMP abundance in the CNS through their ability to regulate PKA activity, the phosphorylation of CREB, and other important elements of signal transduction. In pre-clinical models and in early-stage clinical trials, PDE4 inhibitors have been shown to have antidepressant and memory-enhancing activity. However, the development of clinically-useful PDE4 inhibitors for CNS disorders has been limited by variable efficacy and significant side effects. Recent structural studies have greatly enhanced our understanding of the molecular configuration of PDE4 enzymes, especially the "long" PDE4 isoforms that are abundant in the CNS. The new structural data provide a rationale for the development of a new generation of PDE4 inhibitors that specifically act on long PDE4 isoforms. These next generation PDE4 inhibitors may also be capable of targeting the interactions of select long forms with their "partner" proteins, such as RACK1, β-arrestin, and DISC1. They would therefore have the ability to affect cAMP levels in specific cellular compartments and target localized cellular functions, such as synaptic plasticity. These new agents might also be able to target PDE4 populations in select regions of the CNS that are implicated in learning and memory, affect, and cognition. Potential therapeutic uses of these agents could include affective disorders, memory enhancement, and neurogenesis.
Collapse
Affiliation(s)
- Graeme B Bolger
- Departments of Medicine and Pharmacology, University of Alabama at Birmingham, 1720 2nd Avenue South, NP 2501, Birmingham, AL, 35294-3300, USA.
| |
Collapse
|
24
|
Subcellular Targeting of PDE4 in Cardiac Myocytes and Generation of Signaling Compartments. MICRODOMAINS IN THE CARDIOVASCULAR SYSTEM 2017. [DOI: 10.1007/978-3-319-54579-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Kokkonen K, Kass DA. Nanodomain Regulation of Cardiac Cyclic Nucleotide Signaling by Phosphodiesterases. Annu Rev Pharmacol Toxicol 2016; 57:455-479. [PMID: 27732797 DOI: 10.1146/annurev-pharmtox-010716-104756] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) form an 11-member superfamily comprising 100 different isoforms that regulate the second messengers cyclic adenosine or guanosine 3',5'-monophosphate (cAMP or cGMP). These PDE isoforms differ with respect to substrate selectivity and their localized control of cAMP and cGMP within nanodomains that target specific cellular pools and synthesis pathways for the cyclic nucleotides. Seven PDE family members are physiologically relevant to regulating cardiac function, disease remodeling of the heart, or both: PDE1 and PDE2, both dual-substrate (cAMP and cGMP) esterases; PDE3, PDE4, and PDE8, which principally hydrolyze cAMP; and PDE5A and PDE9A, which target cGMP. New insights regarding the different roles of PDEs in health and disease and their local signaling control are broadening the potential therapeutic utility for PDE-selective inhibitors. In this review, we discuss these PDEs, focusing on the different mechanisms by which they control cardiac function in health and disease by regulating intracellular nanodomains.
Collapse
Affiliation(s)
- Kristen Kokkonen
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; .,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
26
|
Kolic J, Manning Fox JE, Chepurny OG, Spigelman AF, Ferdaoussi M, Schwede F, Holz GG, MacDonald PE. PI3 kinases p110α and PI3K-C2β negatively regulate cAMP via PDE3/8 to control insulin secretion in mouse and human islets. Mol Metab 2016; 5:459-471. [PMID: 27408772 PMCID: PMC4921792 DOI: 10.1016/j.molmet.2016.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/26/2016] [Accepted: 05/04/2016] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Phosphatidylinositol-3-OH kinase (PI3K) signalling in the endocrine pancreas contributes to glycaemic control. However, the mechanism by which PI3K modulates insulin secretion from the pancreatic beta cell is poorly understood. Thus, our objective was two-fold; to determine the signalling pathway by which acute PI3K inhibition enhances glucose-stimulated insulin secretion (GSIS) and to examine the role of this pathway in islets from type-2 diabetic (T2D) donors. METHODS Isolated islets from mice and non-diabetic or T2D human donors, or INS 832/13 cells, were treated with inhibitors of PI3K and/or phosphodiesterases (PDEs). The expression of PI3K-C2β was knocked down using siRNA. We measured insulin release, single-cell exocytosis, intracellular Ca(2+) responses ([Ca(2+)]i) and Ca(2+) channel currents, intracellular cAMP concentrations ([cAMP]i), and activation of cAMP-dependent protein kinase A (PKA) and protein kinase B (PKB/AKT). RESULTS The non-specific PI3K inhibitor wortmannin amplifies GSIS, raises [cAMP]i and activates PKA, but is without effect in T2D islets. Direct inhibition of specific PDE isoforms demonstrates a role for PDE3 (in humans and mice) and PDE8 (in mice) downstream of PI3K, and restores glucose-responsiveness of T2D islets. We implicate a role for the Class II PI3K catalytic isoform PI3K-C2β in this effect by limiting beta cell exocytosis. CONCLUSIONS PI3K limits GSIS via PDE3 in human islets. While inhibition of p110α or PIK-C2β signalling per se, may promote nutrient-stimulated insulin release, we now suggest that this signalling pathway is perturbed in islets from T2D donors.
Collapse
Affiliation(s)
- Jelena Kolic
- Department of Pharmacology, and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | - Jocelyn E Manning Fox
- Department of Pharmacology, and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Aliya F Spigelman
- Department of Pharmacology, and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mourad Ferdaoussi
- Department of Pharmacology, and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Frank Schwede
- BIOLOG Life Science Institute, 28199 Bremen, Germany
| | - George G Holz
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA; Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Patrick E MacDonald
- Department of Pharmacology, and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| |
Collapse
|
27
|
Grinshpon M, Bondarenko VE. Simulation of the effects of moderate stimulation/inhibition of the β1-adrenergic signaling system and its components in mouse ventricular myocytes. Am J Physiol Cell Physiol 2016; 310:C844-56. [DOI: 10.1152/ajpcell.00002.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/02/2016] [Indexed: 01/08/2023]
Abstract
The β1-adrenergic signaling system is one of the most important protein signaling systems in cardiac cells. It regulates cardiac action potential duration, intracellular Ca2+concentration ([Ca2+]i) transients, and contraction force. In this paper, a comprehensive experimentally based mathematical model of the β1-adrenergic signaling system for mouse ventricular myocytes is explored to simulate the effects of moderate stimulations of β1-adrenergic receptors (β1-ARs) on the action potential, Ca2+and Na+dynamics, as well as the effects of inhibition of protein kinase A (PKA) and phosphodiesterase of type 4 (PDE4). Simulation results show that the action potential prolongations reach saturating values at relatively small concentrations of isoproterenol (∼0.01 μM), while the [Ca2+]itransient amplitude saturates at significantly larger concentrations (∼0.1–1.0 μM). The differences in the response of Ca2+and Na+fluxes to moderate stimulation of β1-ARs are also observed. Sensitivity analysis of the mathematical model is performed and the model limitations are discussed. The investigated model reproduces most of the experimentally observed effects of moderate stimulation of β1-ARs, PKA, and PDE4 inhibition on the L-type Ca2+current, [Ca2+]itransients, and the sarcoplasmic reticulum Ca2+load and makes testable predictions for the action potential duration and [Ca2+]itransients as functions of isoproterenol concentration.
Collapse
Affiliation(s)
- Mark Grinshpon
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia; and
| | - Vladimir E. Bondarenko
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia; and
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
28
|
Odnoshivkina YG, Sytchev VI, Petrov AM. Cholesterol regulates contractility and inotropic response to β2-adrenoceptor agonist in the mouse atria: Involvement of G i-protein-Akt-NO-pathway. J Mol Cell Cardiol 2016; 107:27-40. [PMID: 27170493 DOI: 10.1016/j.yjmcc.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
Majority of cardiac β2-adrenoceptors is located in cholesterol-rich microdomains. Here, we have investigated the underlying mechanisms by which a slight to moderate cholesterol depletion with methyl-β-cyclodextrin (MβCD, 1 and 5mM) interferes with contractility and inotropic effect of β2-adrenergic agonist (fenoterol, 50μM) in the mouse atria. Treatment with MβCD itself increased amplitude of Ca2+ transient but did not change the contraction amplitude due to a clamping action of elevated NO. Cholesterol depletion significantly attenuated the positive inotropic response to fenoterol which is accompanied by increase in NO generation and decrease in Ca2+ transient. Influence of 1mM MβCD on the fenoterol-driven changes in both contractility and NO level was strongly attenuated by inhibition of Gi-protein (pertussis toxin), Akt (Akt 1/2 kinase inhibitor) or NO-synthase (L-NAME). After exposure to 5mM MβCD, pertussis toxin or Akt inhibitor could recover the β2-agonist effects on contractility, NO production and Ca2+ transient, while L-NAME only reduced NO level. An adenylyl cyclase activator (forskolin, 50nM) had no influence on the MβCD-induced changes in the β2-agonist effects. Obtained results suggest that slight cholesterol depletion upregulates Gi-protein/Akt/NO-synthase signaling that attenuates the positive inotropic response to β2-adrenergic stimulation without altering the Ca2+ transient. Whilst moderate cholesterol depletion additionally could suppress the enhancement of the Ca2+ transient amplitude caused by the β2-adrenergic agonist administration in Gi-protein/Akt-dependent but NO-independent manner.
Collapse
Affiliation(s)
- Yulia G Odnoshivkina
- Department of Normal Physiology, Kazan State Medical University, Kazan 420012, Russia
| | - Vaycheslav I Sytchev
- Department of Normal Physiology, Kazan State Medical University, Kazan 420012, Russia
| | - Alexey M Petrov
- Department of Normal Physiology, Kazan State Medical University, Kazan 420012, Russia.
| |
Collapse
|
29
|
Cyclic nucleotide phosphodiesterases (PDEs): coincidence detectors acting to spatially and temporally integrate cyclic nucleotide and non-cyclic nucleotide signals. Biochem Soc Trans 2015; 42:250-6. [PMID: 24646226 DOI: 10.1042/bst20130268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cyclic nucleotide second messengers cAMP and cGMP each affect virtually all cellular processes. Although these hydrophilic small molecules readily diffuse throughout cells, it is remarkable that their ability to activate their multiple intracellular effectors is spatially and temporally selective. Studies have identified a critical role for compartmentation of the enzymes which hydrolyse and metabolically inactivate these second messengers, the PDEs (cyclic nucleotide phosphodiesterases), in this specificity. In the present article, we describe several examples from our work in which compartmentation of selected cAMP- or cGMP-hydrolysing PDEs co-ordinate selective activation of cyclic nucleotide effectors, and, as a result, selectively affect cellular functions. It is our belief that therapeutic strategies aimed at targeting PDEs within these compartments will allow greater selectivity than those directed at inhibiting these enzymes throughout the cells.
Collapse
|
30
|
Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proc Natl Acad Sci U S A 2015; 112:E2253-62. [PMID: 25877153 DOI: 10.1073/pnas.1416230112] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although inhibition of cyclic nucleotide phosphodiesterase type 3 (PDE3) has been reported to protect rodent heart against ischemia/reperfusion (I/R) injury, neither the specific PDE3 isoform involved nor the underlying mechanisms have been identified. Targeted disruption of PDE3 subfamily B (PDE3B), but not of PDE3 subfamily A (PDE3A), protected mouse heart from I/R injury in vivo and in vitro, with reduced infarct size and improved cardiac function. The cardioprotective effect in PDE3B(-/-) heart was reversed by blocking cAMP-dependent PKA and by paxilline, an inhibitor of mitochondrial calcium-activated K channels, the opening of which is potentiated by cAMP/PKA signaling. Compared with WT mitochondria, PDE3B(-/-) mitochondria were enriched in antiapoptotic Bcl-2, produced less reactive oxygen species, and more frequently contacted transverse tubules where PDE3B was localized with caveolin-3. Moreover, a PDE3B(-/-) mitochondrial fraction containing connexin-43 and caveolin-3 was more resistant to Ca(2+)-induced opening of the mitochondrial permeability transition pore. Proteomics analyses indicated that PDE3B(-/-) heart mitochondria fractions were enriched in buoyant ischemia-induced caveolin-3-enriched fractions (ICEFs) containing cardioprotective proteins. Accumulation of proteins into ICEFs was PKA dependent and was achieved by ischemic preconditioning or treatment of WT heart with the PDE3 inhibitor cilostamide. Taken together, these findings indicate that PDE3B deletion confers cardioprotective effects because of cAMP/PKA-induced preconditioning, which is associated with the accumulation of proteins with cardioprotective function in ICEFs. To our knowledge, our study is the first to define a role for PDE3B in cardioprotection against I/R injury and suggests PDE3B as a target for cardiovascular therapies.
Collapse
|
31
|
Ballou LM, Lin RZ, Cohen IS. Control of cardiac repolarization by phosphoinositide 3-kinase signaling to ion channels. Circ Res 2015; 116:127-37. [PMID: 25552692 DOI: 10.1161/circresaha.116.303975] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Upregulation of phosphoinositide 3-kinase (PI3K) signaling is a common alteration in human cancer, and numerous drugs that target this pathway have been developed for cancer treatment. However, recent studies have implicated inhibition of the PI3K signaling pathway as the cause of a drug-induced long-QT syndrome in which alterations in several ion currents contribute to arrhythmogenic drug activity. Surprisingly, some drugs that were thought to induce long-QT syndrome by direct block of the rapid delayed rectifier (IKr) also seem to inhibit PI3K signaling, an effect that may contribute to their arrhythmogenicity. The importance of PI3K in regulating cardiac repolarization is underscored by evidence that QT interval prolongation in diabetes mellitus also may result from changes in multiple currents because of decreased insulin activation of PI3K in the heart. How PI3K signaling regulates ion channels to control the cardiac action potential is poorly understood. Hence, this review summarizes what is known about the effect of PI3K and its downstream effectors, including Akt, on sodium, potassium, and calcium currents in cardiac myocytes. We also refer to some studies in noncardiac cells that provide insight into potential mechanisms of ion channel regulation by this signaling pathway in the heart. Drug development and safety could be improved with a better understanding of the mechanisms by which PI3K regulates cardiac ion channels and the extent to which PI3K inhibition contributes to arrhythmogenic susceptibility.
Collapse
Affiliation(s)
- Lisa M Ballou
- From the Department of Physiology and Biophysics and the Institute for Molecular Cardiology, Stony Brook University, NY (L.M.B., R.Z.L., I.S.C.); and the Medical Service, Northport VA Medical Center, NY (R.Z.L.)
| | - Richard Z Lin
- From the Department of Physiology and Biophysics and the Institute for Molecular Cardiology, Stony Brook University, NY (L.M.B., R.Z.L., I.S.C.); and the Medical Service, Northport VA Medical Center, NY (R.Z.L.).
| | - Ira S Cohen
- From the Department of Physiology and Biophysics and the Institute for Molecular Cardiology, Stony Brook University, NY (L.M.B., R.Z.L., I.S.C.); and the Medical Service, Northport VA Medical Center, NY (R.Z.L.).
| |
Collapse
|
32
|
Page CP. Phosphodiesterase inhibitors for the treatment of asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol 2014; 165:152-64. [PMID: 25532037 DOI: 10.1159/000368800] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Xanthines like theophylline have long been recognised as being effective drugs for the treatment of asthma and chronic obstructive pulmonary disease (COPD). They are of interest as they possess both anti-inflammatory and bronchodilator activity in the same molecule. Since the discovery of phosphodiesterases (PDEs) in the late 1950s, it has been suggested that xanthines work, in part, by acting as non-selective PDE inhibitors. However, it has also been suggested that the ability of xanthines to non-selectively inhibit PDEs contributes to their many unwanted side effects, thus limiting their use since the arrival of inhaled drugs with more favourable safety profiles. As our understanding of PDEs has improved over the last 30 years, and with the recognition that the distribution of different PDEs varies across different cell types, this family of enzymes has been widely investigated as targets for novel drugs. In particular, PDE3 in airway smooth muscle and PDE4 and PDE7 in inflammatory cells have been targeted to provide new bronchodilators and anti-inflammatory agents, respectively. This review discusses the progress made in this field over the last decade in the development of selective PDE inhibitors to treat COPD and asthma.
Collapse
Affiliation(s)
- Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
33
|
Ahmad F, Murata T, Shimizu K, Degerman E, Maurice D, Manganiello V. Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets. Oral Dis 2014; 21:e25-50. [PMID: 25056711 DOI: 10.1111/odi.12275] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 02/06/2023]
Abstract
By catalyzing hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. As these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A, and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multimolecular signaling/regulatory complexes, called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners.
Collapse
Affiliation(s)
- F Ahmad
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
34
|
Lefkimmiatis K, Zaccolo M. cAMP signaling in subcellular compartments. Pharmacol Ther 2014; 143:295-304. [PMID: 24704321 PMCID: PMC4117810 DOI: 10.1016/j.pharmthera.2014.03.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 01/11/2023]
Abstract
In the complex microcosm of a cell, information security and its faithful transmission are critical for maintaining internal stability. To achieve a coordinated response of all its parts to any stimulus the cell must protect the information received from potentially confounding signals. Physical segregation of the information transmission chain ensures that only the entities able to perform the encoded task have access to the relevant information. The cAMP intracellular signaling pathway is an important system for signal transmission responsible for the ancestral 'flight or fight' response and involved in the control of critical functions including frequency and strength of heart contraction, energy metabolism and gene transcription. It is becoming increasingly apparent that the cAMP signaling pathway uses compartmentalization as a strategy for coordinating the large number of key cellular functions under its control. Spatial confinement allows the formation of cAMP signaling "hot spots" at discrete subcellular domains in response to specific stimuli, bringing the information in proximity to the relevant effectors and their recipients, thus achieving specificity of action. In this report we discuss how the different constituents of the cAMP pathway are targeted and participate in the formation of cAMP compartmentalized signaling events. We illustrate a few examples of localized cAMP signaling, with a particular focus on the nucleus, the sarcoplasmic reticulum and the mitochondria. Finally, we discuss the therapeutic potential of interventions designed to perturb specific cAMP cascades locally.
Collapse
Affiliation(s)
| | - Manuela Zaccolo
- Department Of Physiology, Anatomy & Genetics, University of Oxford, UK.
| |
Collapse
|
35
|
Sex differences in SR Ca(2+) release in murine ventricular myocytes are regulated by the cAMP/PKA pathway. J Mol Cell Cardiol 2014; 75:162-73. [PMID: 25066697 DOI: 10.1016/j.yjmcc.2014.07.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/26/2014] [Accepted: 07/15/2014] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that ventricular myocytes from female rats have smaller contractions and Ca(2+) transients than males. As cardiac contraction is regulated by the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway, we hypothesized that sex differences in cAMP contribute to differences in Ca(2+) handling. Ca(2+) transients (fura-2) and ionic currents were measured simultaneously (37°C, 2Hz) in ventricular myocytes from adult male and female C57BL/6 mice. Under basal conditions, diastolic Ca(2+), sarcoplasmic reticulum (SR) Ca(2+) stores, and L-type Ca(2+) current did not differ between the sexes. However, female myocytes had smaller Ca(2+) transients (26% smaller), Ca(2+) sparks (6% smaller), and excitation-contraction coupling gain in comparison to males (23% smaller). Interestingly, basal levels of intracellular cAMP were lower in female myocytes (0.7±0.1 vs. 1.7±0.2fmol/μg protein; p<0.001). Importantly, PKA inhibition (2μM H-89) eliminated male-female differences in Ca(2+) transients and gain, as well as Ca(2+) spark amplitude. Western blots showed that PKA inhibition also reduced the ratio of phospho:total RyR2 in male hearts, but not in female hearts. Stimulation of cAMP production with 10μM forskolin abolished sex differences in cAMP levels, as well as differences in Ca(2+) transients, sparks, and gain. To determine if the breakdown of cAMP differed between the sexes, phosphodiesterase (PDE) mRNA levels were measured. PDE3 expression was similar in males and females, but PDE4B expression was higher in female ventricles. The inhibition of cAMP breakdown by PDE4 (10μM rolipram) abolished differences in Ca(2+) transients and gain. These findings suggest that female myocytes have lower levels of basal cAMP due, in part, to higher expression of PDE4B. Lower cAMP levels in females may attenuate PKA phosphorylation of Ca(2+) handling proteins in females, and may limit positive inotropic responses to stimulation of the cAMP/PKA pathway in female hearts.
Collapse
|
36
|
Frister A, Schmidt C, Schneble N, Brodhun M, Gonnert FA, Bauer M, Hirsch E, Müller JP, Wetzker R, Bauer R. Phosphoinositide 3-kinase γ affects LPS-induced disturbance of blood-brain barrier via lipid kinase-independent control of cAMP in microglial cells. Neuromolecular Med 2014; 16:704-13. [PMID: 25033932 DOI: 10.1007/s12017-014-8320-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 07/10/2014] [Indexed: 02/05/2023]
Abstract
The breakdown of the blood-brain barrier (BBB) is a key event in the development of sepsis-induced brain damage. BBB opening allows blood-born immune cells to enter the CNS to provoke a neuroinflammatory response. Abnormal expression and activation of matrix metalloproteinases (MMP) was shown to contribute to BBB opening. Using different mouse genotypes in a model of LPS-induced systemic inflammation, our present report reveals phosphoinositide 3-kinase γ (PI3Kγ) as a mediator of BBB deterioration and concomitant generation of MMP by microglia. Unexpectedly, microglia expressing lipid kinase-deficient mutant PI3Kγ exhibited similar MMP regulation as wild-type cells. Our data suggest kinase-independent control of cAMP phosphodiesterase activity by PI3Kγ as a crucial mediator of microglial cell activation, MMP expression and subsequent BBB deterioration. The results identify the suppressive effect of PI3Kγ on cAMP as a critical mediator of immune cell functions.
Collapse
Affiliation(s)
- Adrian Frister
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, 07745, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Molina CE, Johnson DM, Mehel H, Spätjens RLHMG, Mika D, Algalarrondo V, Slimane ZH, Lechêne P, Abi-Gerges N, van der Linde HJ, Leroy J, Volders PGA, Fischmeister R, Vandecasteele G. Interventricular differences in β-adrenergic responses in the canine heart: role of phosphodiesterases. J Am Heart Assoc 2014; 3:e000858. [PMID: 24904016 PMCID: PMC4309082 DOI: 10.1161/jaha.114.000858] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background RV and LV have different embryologic, structural, metabolic, and electrophysiologic characteristics, but whether interventricular differences exist in β‐adrenergic (β‐AR) responsiveness is unknown. In this study, we examine whether β‐AR response and signaling differ in right (RV) versus left (LV) ventricles. Methods and Results Sarcomere shortening, Ca2+ transients, ICa,L and IKs currents were recorded in isolated dog LV and RV midmyocytes. Intracellular [cAMP] and PKA activity were measured by live cell imaging using FRET‐based sensors. Isoproterenol increased sarcomere shortening ≈10‐fold and Ca2+‐transient amplitude ≈2‐fold in LV midmyocytes (LVMs) versus ≈25‐fold and ≈3‐fold in RVMs. FRET imaging using targeted Epac2camps sensors revealed no change in subsarcolemmal [cAMP], but a 2‐fold higher β‐AR stimulation of cytoplasmic [cAMP] in RVMs versus LVMs. Accordingly, β‐AR regulation of ICa,L and IKs were similar between LVMs and RVMs, whereas cytoplasmic PKA activity was increased in RVMs. Both PDE3 and PDE4 contributed to the β‐AR regulation of cytoplasmic [cAMP], and the difference between LVMs and RVMs was abolished by PDE3 inhibition and attenuated by PDE4 inhibition. Finally LV and RV intracavitary pressures were recorded in anesthetized beagle dogs. A bolus injection of isoproterenol increased RV dP/dtmax≈5‐fold versus 3‐fold in LV. Conclusion Canine RV and LV differ in their β‐AR response due to intrinsic differences in myocyte β‐AR downstream signaling. Enhanced β‐AR responsiveness of the RV results from higher cAMP elevation in the cytoplasm, due to a decreased degradation by PDE3 and PDE4 in the RV compared to the LV.
Collapse
Affiliation(s)
- Cristina E Molina
- INSERM UMR-S 769, LabEx LERMIT, DHU TORINO, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.) Université Paris-Sud, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.)
| | - Daniel M Johnson
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, 6202 AZ, Maastricht, The Netherlands (D.M.J., R.G.S., P.A.V.)
| | - Hind Mehel
- INSERM UMR-S 769, LabEx LERMIT, DHU TORINO, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.) Université Paris-Sud, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.)
| | - Roel L H M G Spätjens
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, 6202 AZ, Maastricht, The Netherlands (D.M.J., R.G.S., P.A.V.)
| | - Delphine Mika
- INSERM UMR-S 769, LabEx LERMIT, DHU TORINO, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.) Université Paris-Sud, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.)
| | - Vincent Algalarrondo
- INSERM UMR-S 769, LabEx LERMIT, DHU TORINO, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.) Université Paris-Sud, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.)
| | - Zeineb Haj Slimane
- INSERM UMR-S 769, LabEx LERMIT, DHU TORINO, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.) Université Paris-Sud, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.)
| | - Patrick Lechêne
- INSERM UMR-S 769, LabEx LERMIT, DHU TORINO, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.) Université Paris-Sud, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.)
| | - Najah Abi-Gerges
- Department of Translational Safety, DrugSafety and Metabolism, AstraZeneca R&D Innovative Medicines and Early Development, Alderley Park, Macclesfield, SK10 4TG, Cheshire, UK (N.A.G.)
| | - Henk J van der Linde
- Global Safety Research, Preclinical Development & Safety, Discovery Sciences, Janssen Research & Development, Beerse, Belgium (H.J.L.)
| | - Jérôme Leroy
- INSERM UMR-S 769, LabEx LERMIT, DHU TORINO, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.) Université Paris-Sud, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.)
| | - Paul G A Volders
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, 6202 AZ, Maastricht, The Netherlands (D.M.J., R.G.S., P.A.V.)
| | - Rodolphe Fischmeister
- INSERM UMR-S 769, LabEx LERMIT, DHU TORINO, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.) Université Paris-Sud, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.)
| | - Grégoire Vandecasteele
- INSERM UMR-S 769, LabEx LERMIT, DHU TORINO, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.) Université Paris-Sud, Châtenay-Malabry, France (C.E.M., H.M., D.M., V.A., Z.H.S., P.L., L., R.F., G.V.)
| |
Collapse
|
38
|
Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 2014; 13:290-314. [PMID: 24687066 DOI: 10.1038/nrd4228] [Citation(s) in RCA: 593] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants.
Collapse
Affiliation(s)
- Donald H Maurice
- Biomedical and Molecular Sciences, Queen's University, Kingston K7L3N6, Ontario, Canada
| | - Hengming Ke
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Faiyaz Ahmad
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yousheng Wang
- Beijing Technology and Business University, Beijing 100048, China
| | - Jay Chung
- Genetics and Developmental Biology Center, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vincent C Manganiello
- Cardiovascular and Pulmonary Branch, The National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
39
|
Therapeutic potential of PDE modulation in treating heart disease. Future Med Chem 2014; 5:1607-20. [PMID: 24047267 DOI: 10.4155/fmc.13.127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Altered cyclic nucleotide-mediated signaling plays a critical role in the development of cardiovascular pathology. By degrading cAMP/cGMP, the action of cyclic nucleotide PDEs is essential for controlling cyclic nucleotide-mediated signaling intensity, duration, and specificity. Altered expression, localization and action of PDEs have all been implicated in causing changes in cyclic nucleotide signaling in cardiovascular disease. Accordingly, pharmacological inhibition of PDEs has gained interest as a treatment strategy and as an area of drug development. While targeting of certain PDEs has the potential to ameliorate cardiovascular disease, inhibition of others might actually worsen it. This review will highlight recent research on the physiopathological role of cyclic nucleotide signaling, especially with regard to PDEs. While the physiological roles and biochemical properties of cardiovascular PDEs will be summarized, the primary emphasis will be pathological. Research into the potential benefits and hazards of PDE inhibition will also be discussed.
Collapse
|
40
|
Abbott-Banner KH, Page CP. Dual PDE3/4 and PDE4 inhibitors: novel treatments for COPD and other inflammatory airway diseases. Basic Clin Pharmacol Toxicol 2014; 114:365-76. [PMID: 24517491 DOI: 10.1111/bcpt.12209] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/30/2014] [Indexed: 12/31/2022]
Abstract
Selective phosphodiesterase (PDE) 4 and dual PDE3/4 inhibitors have attracted considerable interest as potential therapeutic agents for the treatment of respiratory diseases, largely by virtue of their anti-inflammatory (PDE4) and bifunctional bronchodilator/anti-inflammatory (PDE3/4) effects. Many of these agents have, however, failed in early development for various reasons, including dose-limiting side effects when administered orally and lack of sufficient activity when inhaled. Indeed, only one selective PDE4 inhibitor, the orally active roflumilast-n-oxide, has to date received marketing authorization. The majority of the compounds that have failed were, however, orally administered and non-selective for either PDE3 (A,B) or PDE4 (A,B,C,D) subtypes. Developing an inhaled dual PDE3/4 inhibitor that is rapidly cleared from the systemic circulation, potentially with subtype specificity, may represent one strategy to improve the therapeutic index and also exhibit enhanced efficacy versus inhibition of either PDE3 or PDE4 alone, given the potential positive interactions with regard to anti-inflammatory and bronchodilator effects that have been observed pre-clinically with dual inhibition of PDE3 and PDE4 compared with inhibition of either isozyme alone. This MiniReview will summarize recent clinical data obtained with PDE inhibitors and the potential for these drugs to treat COPD and other inflammatory airways diseases such as asthma and cystic fibrosis.
Collapse
|
41
|
Mika D, Bobin P, Pomérance M, Lechêne P, Westenbroek RE, Catterall WA, Vandecasteele G, Leroy J, Fischmeister R. Differential regulation of cardiac excitation-contraction coupling by cAMP phosphodiesterase subtypes. Cardiovasc Res 2013; 100:336-46. [PMID: 23933582 DOI: 10.1093/cvr/cvt193] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Multiple phosphodiesterases (PDEs) hydrolyze cAMP in cardiomyocytes, but the functional significance of this diversity is not well understood. Our goal here was to characterize the involvement of three different PDEs (PDE2-4) in cardiac excitation-contraction coupling (ECC). METHODS AND RESULTS Sarcomere shortening and Ca(2+) transients were recorded simultaneously in adult rat ventricular myocytes and ECC protein phosphorylation by PKA was determined by western blot analysis. Under basal conditions, selective inhibition of PDE2 or PDE3 induced a small but significant increase in Ca(2+) transients, sarcomere shortening, and troponin I phosphorylation, whereas PDE4 inhibition had no effect. PDE3 inhibition, but not PDE2 or PDE4, increased phospholamban phosphorylation. Inhibition of either PDE2, 3, or 4 increased phosphorylation of the myosin-binding protein C, but neither had an effect on L-type Ca(2+) channel or ryanodine receptor phosphorylation. Dual inhibition of PDE2 and PDE3 or PDE2 and PDE4 further increased ECC compared with individual PDE inhibition, but the most potent combination was obtained when inhibiting simultaneously PDE3 and PDE4. This combination also induced a synergistic induction of ECC protein phosphorylation. Submaximal β-adrenergic receptor stimulation increased ECC, and this effect was potentiated by individual PDE inhibition with the rank order of potency PDE4 = PDE3 > PDE2. Identical results were obtained on ECC protein phosphorylation. CONCLUSION Our results demonstrate that PDE2, PDE3, and PDE4 differentially regulate ECC in adult cardiomyocytes. PDE2 and PDE3 play a more prominent role than PDE4 in regulating basal cardiac contraction and Ca(2+) transients. However, PDE4 becomes determinant when cAMP levels are elevated, for instance, upon β-adrenergic stimulation or PDE3 inhibition.
Collapse
|
42
|
Mika D, Leroy J, Fischmeister R, Vandecasteele G. Rôle des phosphodiestérases des nucléotides cycliques de types 3 et 4 dans le couplage excitation-contraction et les arythmies cardiaques. Med Sci (Paris) 2013; 29:617-22. [DOI: 10.1051/medsci/2013296014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
43
|
Perera RK, Nikolaev VO. Compartmentation of cAMP signalling in cardiomyocytes in health and disease. Acta Physiol (Oxf) 2013; 207:650-62. [PMID: 23383621 DOI: 10.1111/apha.12077] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/27/2012] [Accepted: 01/30/2013] [Indexed: 12/13/2022]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger critically involved in the regulation of heart function. It has been shown to act in discrete subcellular signalling compartments formed by differentially localized receptors, phosphodiesterases and protein kinases. Cardiac diseases such as hypertrophy or heart failure are associated with structural and functional remodelling of these microdomains which leads to changes in cAMP compartmentation. In this review, we will discuss recent key findings which provided new insights into cAMP compartmentation in cardiomyocytes with a particular focus on its alterations in heart disease.
Collapse
Affiliation(s)
- R. K. Perera
- Emmy Noether Group of the DFG, Department of Cardiology and Pneumology, European Heart Research Insitute Göttingen, Georg August University Medical Center; University of Göttingen; Göttingen; Germany
| | - V. O. Nikolaev
- Emmy Noether Group of the DFG, Department of Cardiology and Pneumology, European Heart Research Insitute Göttingen, Georg August University Medical Center; University of Göttingen; Göttingen; Germany
| |
Collapse
|
44
|
McLean BA, Zhabyeyev P, Pituskin E, Paterson I, Haykowsky MJ, Oudit GY. PI3K Inhibitors as Novel Cancer Therapies: Implications for Cardiovascular Medicine. J Card Fail 2013; 19:268-82. [DOI: 10.1016/j.cardfail.2013.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/07/2013] [Accepted: 02/27/2013] [Indexed: 01/09/2023]
|
45
|
Beca S, Ahmad F, Shen W, Liu J, Makary S, Polidovitch N, Sun J, Hockman S, Chung YW, Movesian M, Murphy E, Manganiello V, Backx PH. Phosphodiesterase type 3A regulates basal myocardial contractility through interacting with sarcoplasmic reticulum calcium ATPase type 2a signaling complexes in mouse heart. Circ Res 2013; 112:289-97. [PMID: 23168336 PMCID: PMC3579621 DOI: 10.1161/circresaha.111.300003] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/19/2012] [Indexed: 11/16/2022]
Abstract
RATIONALE cAMP is an important regulator of myocardial function, and regulation of cAMP hydrolysis by cyclic nucleotide phosphodiesterases (PDEs) is a critical determinant of the amplitude, duration, and compartmentation of cAMP-mediated signaling. The role of different PDE isozymes, particularly PDE3A vs PDE3B, in the regulation of heart function remains unclear. OBJECTIVE To determine the relative contribution of PDE3A vs PDE3B isozymes in the regulation of heart function and to dissect the molecular basis for this regulation. METHODS AND RESULTS Compared with wild-type littermates, cardiac contractility and relaxation were enhanced in isolated hearts from PDE3A(-/-), but not PDE3B(-/-), mice. Furthermore, PDE3 inhibition had no effect on PDE3A(-/-) hearts but increased contractility in wild-type (as expected) and PDE3B(-/-) hearts to levels indistinguishable from PDE3A(-/-). The enhanced contractility in PDE3A(-/-) hearts was associated with cAMP-dependent elevations in Ca(2+) transient amplitudes and increased sarcoplasmic reticulum (SR) Ca(2+) content, without changes in L-type Ca(2+) currents of cardiomyocytes, as well as with increased SR Ca(2+)-ATPase type 2a activity, SR Ca(2+) uptake rates, and phospholamban phosphorylation in SR fractions. Consistent with these observations, PDE3 activity was reduced ≈8-fold in SR fractions from PDE3A(-/-) hearts. Coimmunoprecipitation experiments further revealed that PDE3A associates with both SR calcium ATPase type 2a and phospholamban in a complex that also contains A-kinase anchoring protein-18, protein kinase type A-RII, and protein phosphatase type 2A. CONCLUSIONS Our data support the conclusion that PDE3A is the primary PDE3 isozyme modulating basal contractility and SR Ca(2+) content by regulating cAMP in microdomains containing macromolecular complexes of SR calcium ATPase type 2a-phospholamban-PDE3A.
Collapse
Affiliation(s)
- Sanja Beca
- Department of Physiology, University of Toronto, Toronto, Ontario
| | - Faiyaz Ahmad
- The Cardiovascular Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, Bethesda
| | - Weixing Shen
- The Cardiovascular Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, Bethesda
| | - Jie Liu
- Department of Physiology, University of Toronto, Toronto, Ontario
| | - Samy Makary
- Department of Physiology, University of Toronto, Toronto, Ontario
- Division of Cardiology, University Health Network, Toronto, Ontario
| | | | - Junhui Sun
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda
| | - Steven Hockman
- The Cardiovascular Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, Bethesda
| | - Youn Wook Chung
- The Cardiovascular Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, Bethesda
| | - Matthew Movesian
- Cardiology Section, VA Salt Lake City Health Care System, Salt Lake City, UT
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda
| | - Vincent Manganiello
- The Cardiovascular Pulmonary Branch, National Heart, Lung and Blood Institute, NIH, Bethesda
| | - Peter H. Backx
- Department of Physiology, University of Toronto, Toronto, Ontario
- Department of Medicine, University of Toronto, Toronto, Ontario
- Division of Cardiology, University Health Network, Toronto, Ontario
| |
Collapse
|
46
|
Harvey RD, Hell JW. CaV1.2 signaling complexes in the heart. J Mol Cell Cardiol 2012; 58:143-52. [PMID: 23266596 DOI: 10.1016/j.yjmcc.2012.12.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 01/08/2023]
Abstract
L-type Ca(2+) channels (LTCCs) are essential for generation of the electrical and mechanical properties of cardiac muscle. Furthermore, regulation of LTCC activity plays a central role in mediating the effects of sympathetic stimulation on the heart. The primary mechanism responsible for this regulation involves β-adrenergic receptor (βAR) stimulation of cAMP production and subsequent activation of protein kinase A (PKA). Although it is well established that PKA-dependent phosphorylation regulates LTCC function, there is still much we do not understand. However, it has recently become clear that the interaction of the various signaling proteins involved is not left to completely stochastic events due to random diffusion. The primary LTCC expressed in cardiac muscle, CaV1.2, forms a supramolecular signaling complex that includes the β2AR, G proteins, adenylyl cyclases, phosphodiesterases, PKA, and protein phosphatases. In some cases, the protein interactions with CaV1.2 appear to be direct, in other cases they involve scaffolding proteins such as A kinase anchoring proteins and caveolin-3. Functional evidence also suggests that the targeting of these signaling proteins to specific membrane domains plays a critical role in maintaining the fidelity of receptor mediated LTCC regulation. This information helps explain the phenomenon of compartmentation, whereby different receptors, all linked to the production of a common diffusible second messenger, can vary in their ability to regulate LTCC activity. The purpose of this review is to examine our current understanding of the signaling complexes involved in cardiac LTCC regulation.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
47
|
Distinct patterns of constitutive phosphodiesterase activity in mouse sinoatrial node and atrial myocardium. PLoS One 2012; 7:e47652. [PMID: 23077656 PMCID: PMC3471891 DOI: 10.1371/journal.pone.0047652] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/14/2012] [Indexed: 01/13/2023] Open
Abstract
Phosphodiesterases (PDEs) are critical regulators of cyclic nucleotides in the heart. In ventricular myocytes, the L-type Ca(2+) current (I(Ca,L)) is a major target of regulation by PDEs, particularly members of the PDE2, PDE3 and PDE4 families. Conversely, much less is known about the roles of PDE2, PDE3 and PDE4 in the regulation of action potential (AP) properties and I(Ca,L) in the sinoatrial node (SAN) and the atrial myocardium, especially in mice. Thus, the purpose of our study was to measure the effects of global PDE inhibition with Isobutyl-1-methylxanthine (IBMX) and selective inhibitors of PDE2, PDE3 and PDE4 on AP properties in isolated mouse SAN and right atrial myocytes. We also measured the effects of these inhibitors on I(Ca,L) in SAN and atrial myocytes in comparison to ventricular myocytes. Our data demonstrate that IBMX markedly increases spontaneous AP frequency in SAN myocytes and AP duration in atrial myocytes. Spontaneous AP firing in SAN myocytes was also increased by the PDE2 inhibitor erythro-9-[2-hydroxy-3-nonyl] adenine (EHNA), the PDE3 inhibitor milrinone (Mil) and the PDE4 inhibitor rolipram (Rol). In contrast, atrial AP duration was increased by EHNA and Rol, but not by Mil. IBMX also potently, and similarly, increased I(Ca,L) in SAN, atrial and ventricular myocytes; however, important differences emerged in terms of which inhibitors could modulate I(Ca,L) in each myocyte type. Consistent with our AP measurements, EHNA, Mil and Rol each increased I(Ca,L) in SAN myocytes. Also, EHNA and Rol, but not Mil, increased atrial I(Ca,L). In complete contrast, no selective PDE inhibitors increased I(Ca,L) in ventricular myocytes when given alone. Thus, our data show that the effects of selective PDE2, PDE3 and PDE4 inhibitors are distinct in the different regions of the myocardium indicating important differences in how each PDE family constitutively regulates ion channel function in the SAN, atrial and ventricular myocardium.
Collapse
|
48
|
Ghigo A, Perino A, Mehel H, Zahradníková A, Morello F, Leroy J, Nikolaev VO, Damilano F, Cimino J, De Luca E, Richter W, Westenbroek R, Catterall WA, Zhang J, Yan C, Conti M, Gomez AM, Vandecasteele G, Hirsch E, Fischmeister R. Phosphoinositide 3-kinase γ protects against catecholamine-induced ventricular arrhythmia through protein kinase A-mediated regulation of distinct phosphodiesterases. Circulation 2012; 126:2073-83. [PMID: 23008439 DOI: 10.1161/circulationaha.112.114074] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Phosphoinositide 3-kinase γ (PI3Kγ) signaling engaged by β-adrenergic receptors is pivotal in the regulation of myocardial contractility and remodeling. However, the role of PI3Kγ in catecholamine-induced arrhythmia is currently unknown. METHODS AND RESULTS Mice lacking PI3Kγ (PI3Kγ(-/-)) showed runs of premature ventricular contractions on adrenergic stimulation that could be rescued by a selective β(2)-adrenergic receptor blocker and developed sustained ventricular tachycardia after transverse aortic constriction. Consistently, fluorescence resonance energy transfer probes revealed abnormal cAMP accumulation after β(2)-adrenergic receptor activation in PI3Kγ(-/-) cardiomyocytes that depended on the loss of the scaffold but not of the catalytic activity of PI3Kγ. Downstream from β-adrenergic receptors, PI3Kγ was found to participate in multiprotein complexes linking protein kinase A to the activation of phosphodiesterase (PDE) 3A, PDE4A, and PDE4B but not of PDE4D. These PI3Kγ-regulated PDEs lowered cAMP and limited protein kinase A-mediated phosphorylation of L-type calcium channel (Ca(v)1.2) and phospholamban. In PI3Kγ(-/-) cardiomyocytes, Ca(v)1.2 and phospholamban were hyperphosphorylated, leading to increased Ca(2+) spark occurrence and amplitude on adrenergic stimulation. Furthermore, PI3Kγ(-/-) cardiomyocytes showed spontaneous Ca(2+) release events and developed arrhythmic calcium transients. CONCLUSIONS PI3Kγ coordinates the coincident signaling of the major cardiac PDE3 and PDE4 isoforms, thus orchestrating a feedback loop that prevents calcium-dependent ventricular arrhythmia.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Biofeedback, Psychology/physiology
- Calcium Signaling/genetics
- Catecholamines/toxicity
- Class Ib Phosphatidylinositol 3-Kinase/deficiency
- Class Ib Phosphatidylinositol 3-Kinase/genetics
- Class Ib Phosphatidylinositol 3-Kinase/physiology
- Cyclic AMP-Dependent Protein Kinases/physiology
- Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism
- Gene Knock-In Techniques
- Isoenzymes/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Myocytes, Cardiac/enzymology
- Tachycardia, Ventricular/enzymology
- Tachycardia, Ventricular/prevention & control
Collapse
Affiliation(s)
- Alessandra Ghigo
- Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The second messengers cAMP and cGMP exist in multiple discrete compartments and regulate a variety of biological processes in the heart. The cyclic nucleotide phosphodiesterases, by catalyzing the hydrolysis of cAMP and cGMP, play crucial roles in controlling the amplitude, duration, and compartmentalization of cyclic nucleotide signaling. Over 60 phosphodiesterase isoforms, grouped into 11 families, have been discovered to date. In the heart, both cAMP- and cGMP-hydrolyzing phosphodiesterases play important roles in physiology and pathology. At least 7 of the 11 phosphodiesterase family members appear to be expressed in the myocardium, and evidence supports phosphodiesterase involvement in regulation of many processes important for normal cardiac function including pacemaking and contractility, as well as many pathological processes including remodeling and myocyte apoptosis. Pharmacological inhibitors for a number of phosphodiesterase families have also been used clinically or preclinically to treat several types of cardiovascular disease. In addition, phosphodiesterase inhibitors are also being considered for treatment of many forms of disease outside the cardiovascular system, raising the possibility of cardiovascular side effects of such agents. This review will discuss the roles of phosphodiesterases in the heart, in terms of expression patterns, regulation, and involvement in physiological and pathological functions. Additionally, the cardiac effects of various phosphodiesterase inhibitors, both potentially beneficial and detrimental, will be discussed.
Collapse
Affiliation(s)
- W. E. Knight
- Department of Pharmacology and Physiology, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - C. Yan
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
50
|
|