1
|
Shinozaki K, Honda T, Yamaji K, Nishijima E, Ichi I, Yamane D. Impaired ApoB secretion triggers enhanced secretion of ApoE to maintain triglyceride homeostasis in hepatoma cells. J Lipid Res 2025; 66:100795. [PMID: 40180213 DOI: 10.1016/j.jlr.2025.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025] Open
Abstract
Apolipoprotein B (ApoB) is essential for the assembly and secretion of triglyceride (TG)-rich VLDL particles, and its dysfunction is linked to metabolic disorders, including dyslipidemia and liver steatosis. However, less attention has been paid to whether and how other apolipoproteins play redundant or compensatory roles when the ApoB function is compromised. Here, we investigated the effects of microsomal triglyceride transfer protein (MTP), which mediates lipidation of nascent ApoB, on ApoE function. We observed a paradoxical increase in ApoE secretion resulting from increased expression in MTP inhibitor (MTPi)-treated human hepatoma cells. This phenotype was recapitulated in APOB-knockout cells and was associated with impaired ApoB secretion. While MTP-dependent transfer of neutral lipids is dispensable for ApoE secretion, TG biosynthesis, redundantly catalyzed by DGAT1 and DGAT2, is required for efficient ApoE secretion in hepatoma cells. ApoE colocalizes with lipid droplets near the Golgi apparatus and mediates TG export in an ApoB-independent fashion. We found that simultaneous inhibition of both ApoE and ApoB, but not inhibition of either alone, led to TG accumulation in hepatoma cells, indicating that both proteins function redundantly to control TG content. Validation studies in primary human hepatocytes (PHHs) demonstrated DGAT2-dependent secretion of ApoE. While MTPi treatment did not elevate ApoE secretion, it induced increased sialylation of ApoE in the supernatants of PHHs. These results show that enhanced ApoE secretion compensates for the impaired ApoB function to maintain the lipid homeostasis, providing an alternative route to modulate lipid turnover in hepatoma cells.
Collapse
Affiliation(s)
- Kotomi Shinozaki
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Nutrition and Food Science, Ochanomizu University, Tokyo, Japan
| | - Tomoko Honda
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kenzaburo Yamaji
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Emi Nishijima
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Ikuyo Ichi
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Daisuke Yamane
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan.
| |
Collapse
|
2
|
Milstein JL, Kulas JA, Kamal A, Lo AB, Ferris HA. Regulation of glial ApoE secretion by the mevalonate pathway is independent of ApoE isoform. J Alzheimers Dis 2025; 104:473-487. [PMID: 39994996 DOI: 10.1177/13872877251317732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
BackgroundLipids synthesized in astrocytes are distributed to other brain cells in high-density lipoprotein-like ApoE particles. ApoE, which is a powerful genetic risk factor for developing Alzheimer's disease, is secreted differently depending on genotype. Secretion of ApoE from mouse astrocytes is regulated by the mevalonate pathway.ObjectiveWe aimed to understand if the regulation of ApoE secretion from astrocytes by the mevalonate pathway was the same between mouse ApoE and ApoE from humanized mice, and if this is impacted by ApoE isoform.MethodsAstrocyte-enriched glial cultures from wild-type and humanized ApoE targeted-replacement mice were treated with pharmacological inhibitors of various steps along the mevalonate pathway and ApoE in the conditioned media was measured.ResultsWe show that statins and prenylation inhibitors, but not specific cholesterol inhibitors, reduce extracellular ApoE lipoparticle levels in astrocyte-enriched glial cultures, and that this occurs in cells harboring either the mouse ApoE or any of the three human ApoE genotypes to a similar extent. We find that geranylgeranylation modulates ApoE release from astrocytes, and it does so independent of ApoE genotype.ConclusionsOur results suggest that prenylation broadly regulates ApoE secretion from astrocytes regardless of ApoE genotype, and that this is mediated specifically by geranylgeranylation. Therefore, our data implicates geranylgeranylation as a general mechanism modulating ApoE release from astrocytes, but likely is not responsible for the reported baseline differences in ApoE secretion seen in vivo and in vitro across genotypes.
Collapse
Affiliation(s)
- Joshua L Milstein
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Joshua A Kulas
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Aria Kamal
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - An B Lo
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Heather A Ferris
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Stoolman JS, Grant RA, Billingham LK, Poor TA, Weinberg SE, Harding MC, Lu Z, Miska J, Szibor M, Budinger GRS, Chandel NS. Mitochondria complex III-generated superoxide is essential for IL-10 secretion in macrophages. SCIENCE ADVANCES 2025; 11:eadu4369. [PMID: 39841842 PMCID: PMC11753406 DOI: 10.1126/sciadv.adu4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Mitochondrial electron transport chain (ETC) function modulates macrophage biology; however, mechanisms underlying mitochondria ETC control of macrophage immune responses are not fully understood. Here, we report that mutant mice with mitochondria ETC complex III (CIII)-deficient macrophages exhibit increased susceptibility to influenza A virus (IAV) and LPS-induced endotoxic shock. Cultured bone marrow-derived macrophages (BMDMs) isolated from these mitochondria CIII-deficient mice released less IL-10 than controls following TLR3 or TLR4 stimulation. Unexpectedly, restoring mitochondrial respiration without generating superoxide using alternative oxidase (AOX) was not sufficient to reverse LPS-induced endotoxic shock susceptibility or restore IL-10 release. However, activation of protein kinase A (PKA) rescued IL-10 release in mitochondria CIII-deficient BMDMs following LPS stimulation. In addition, mitochondria CIII deficiency did not affect BMDM responses to interleukin-4 (IL-4) stimulation. Thus, our results highlight the essential role of mitochondria CIII-generated superoxide in the release of anti-inflammatory IL-10 in response to TLR stimulation.
Collapse
Affiliation(s)
- Joshua S. Stoolman
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rogan A. Grant
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leah K. Billingham
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Taylor A. Poor
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel E. Weinberg
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Madeline C. Harding
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyan Lu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marten Szibor
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, Am Klinikum 1, 07747 Jena, Germany
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Tampere, Finland
| | - GR Scott Budinger
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S. Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Pradhan S, Mirdha L, Sengupta T, Chakraborty H. Implications of the Lipidic Ecosystem for the Membrane Binding of ApoE Signal Peptide: Importance of Sphingomyelin. Chembiochem 2024; 25:e202400469. [PMID: 39444133 DOI: 10.1002/cbic.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Indexed: 10/25/2024]
Abstract
The unidirectional movement of nascent secretory proteins in the cell is primarily assisted by the signal recognition particles (SRP). However, this does not completely justify the importance of the signal peptide (SP) which gets eliminated after the protein translocation. We have earlier demonstrated that a negatively charged lipid such as POPG plays an important role in the higher binding affinity and cholesterol-discriminating ability of the apolipoprotein E (ApoE) SP. In this present work, we aimed to understand the role of sphingomyelin, an important constituent of ER, on the membrane binding of ApoE SP. Our results demonstrate that sphingomyelin promotes membrane binding but cannot discriminate cholesterol. However, sphingomyelin shows a synergistic effect with POPG toward the membrane binding of the ApoE SP. We have further shown that the membrane domains do not have any impact on the binding of ApoE SP. Based on our results we propose that the lipid composition of the endoplasmic reticulum (ER) where ApoE translocates, enhances the binding of the ApoE signal peptide to the ER membrane.
Collapse
Affiliation(s)
- Sasmita Pradhan
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India
| | - Lipika Mirdha
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India
| | - Tanusree Sengupta
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India
| |
Collapse
|
5
|
Laslo A, Laslo L, Arbănași EM, Ujlaki-Nagi AA, Chinezu L, Ivănescu AD, Arbănași EM, Cărare RO, Cordoș BA, Popa IA, Brînzaniuc K. Pathways to Alzheimer's Disease: The Intersecting Roles of Clusterin and Apolipoprotein E in Amyloid-β Regulation and Neuronal Health. PATHOPHYSIOLOGY 2024; 31:545-558. [PMID: 39449522 PMCID: PMC11503414 DOI: 10.3390/pathophysiology31040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the deposition of amyloid-β (Aβ) within the extracellular spaces of the brain as plaques and along the blood vessels in the brain, a condition also known as cerebral amyloid angiopathy (CAA). Clusterin (CLU), or apolipoprotein J (APOJ), is a multifunctional glycoprotein that has a role in many physiological and neurological conditions, including AD. The apolipoprotein E (APOE) is a significant genetic factor in AD, and while the primary physiological role of APOE in the brain and peripheral tissues is to regulate lipid transport, it also participates in various other biological processes, having three basic human forms: APOE2, APOE3, and APOE4. Notably, the APOE4 allele substantially increases the risk of developing late-onset AD. The main purpose of this review is to examine the roles of CLU and APOE in AD pathogenesis in order to acquire a better understanding of AD pathogenesis from which to develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Alexandru Laslo
- Department of Urology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Laura Laslo
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
| | - Eliza-Mihaela Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | | | - Laura Chinezu
- Department of Histology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Adrian Dumitru Ivănescu
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| | - Emil-Marian Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | | | - Bogdan Andrei Cordoș
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (L.L.); (B.A.C.)
- Centre for Experimental Medical and Imaging Studies, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Ioana Adriana Popa
- Clinic of Radiology, Mures County Emergency Hospital, 540136 Targu Mures, Romania;
| | - Klara Brînzaniuc
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (A.D.I.); (K.B.)
| |
Collapse
|
6
|
Huang C, Xu S, Chen R, Ding Y, Fu Q, He B, Jiang T, Zeng B, Bao M, Li S. Assessing causal associations of bile acids with obesity indicators: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38610. [PMID: 38905395 PMCID: PMC11191951 DOI: 10.1097/md.0000000000038610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024] Open
Abstract
Maintaining a balanced bile acids (BAs) metabolism is essential for lipid and cholesterol metabolism, as well as fat intake and absorption. The development of obesity may be intricately linked to BAs and their conjugated compounds. Our study aims to assess how BAs influence the obesity indicators by Mendelian randomization (MR) analysis. Instrumental variables of 5 BAs were obtained from public genome-wide association study databases, and 8 genome-wide association studies related to obesity indicators were used as outcomes. Causal inference analysis utilized inverse-variance weighted (IVW), weighted median, and MR-Egger methods. Sensitivity analysis involved MR-PRESSO and leave-one-out techniques to detect pleiotropy and outliers. Horizontal pleiotropy and heterogeneity were assessed using the MR-Egger intercept and Cochran Q statistic, respectively. The IVW analysis revealed an odds ratio of 0.94 (95% confidence interval: 0.88, 1.00; P = .05) for the association between glycolithocholate (GLCA) and obesity, indicating a marginal negative causal association. Consistent direction of the estimates obtained from the weighted median and MR-Egger methods was observed in the analysis of the association between GLCA and obesity. Furthermore, the IVW analysis demonstrated a suggestive association between GLCA and trunk fat percentage, with a beta value of -0.014 (95% confidence interval: -0.027, -0.0004; P = .04). Our findings suggest a potential negative causal relationship between GLCA and both obesity and trunk fat percentage, although no association survived corrections for multiple comparisons. These results indicate a trend towards a possible association between BAs and obesity, emphasizing the need for future studies.
Collapse
Affiliation(s)
- Chunxia Huang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qingming Fu
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Ting Jiang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Bin Zeng
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Meihua Bao
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Pradhan S, Mirdha L, Sengupta T, Chakraborty H. Phosphatidylglycerol Acts as a Switch for Cholesterol-Dependent Membrane Binding of ApoE Signal Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8126-8132. [PMID: 38568020 DOI: 10.1021/acs.langmuir.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The apolipoprotein E (ApoE) signal peptide is a short stretch of N-terminal amino acids that direct the ApoE protein to the endoplasmic reticulum after synthesis. Previous studies have shown that this peptide can bind to lipid membranes in a cholesterol-dependent manner; however, the mechanism of this interaction is yet to be clarified. In this study, we aimed to investigate how the composition of neighboring lipids affects the membrane-binding of the ApoE signal peptide. We found that a negatively charged lipid, such as phosphatidylglycerol, can act as a switch that reduces the binding efficiency of the peptide to cholesterol-rich membranes. Interestingly, phosphatidylethanolamine does not activate the cholesterol-dependent binding of the ApoE signal peptide yet acts synergistically to enhance the cholesterol sensitivity in phosphatidylglycerol-containing membranes. To the best of our knowledge, this is the first report of modulation of the affinity of a peptide for a membrane by a neighboring lipid rather than by the lipid-binding domain of the peptide. Our findings revealed a novel role of lipid diversity in modulating the membrane binding of the ApoE signal peptide and its potential implications in the unidirectional trafficking of a newly synthesized protein from the ribosomes to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Sasmita Pradhan
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Lipika Mirdha
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| | - Tanusree Sengupta
- Department of Chemistry, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
8
|
Yi W, Lv D, Sun Y, Mu J, Lu X. Role of APOE in glaucoma. Biochem Biophys Res Commun 2024; 694:149414. [PMID: 38145596 DOI: 10.1016/j.bbrc.2023.149414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Glaucoma is a chronic blinding eye disease caused by the progressive loss of retinal ganglion cells (RGCs). Currently, no clinically approved treatment can directly improve the survival rate of RGCs. The Apolipoprotein E (APOE) gene is closely related to the genetic risk of numerous neurodegenerative diseases and has become a hot topic in the field of neurodegenerative disease research in recent years. The optic nerve and retina are extensions of the brain's nervous system. The pathogenesis of retinal degenerative diseases is closely related to the degenerative diseases of the nerves in the brain. APOE consists of three alleles, ε4, ε3, and ε2, in a single locus. They have varying degrees of risk for glaucoma. APOE4 and the APOE gene deletion (APOE-/-) can reduce RGC loss. By contrast, APOE3 and the overall presence of APOE genes (APOE+/+) result in significant loss of RGC bodies and axons, increasing the risk of glaucoma RGCs death. Currently, there is no clear literature indicating that APOE2 is beneficial or harmful to glaucoma. This study summarises the mechanism of different APOE genes in glaucoma and speculates that APOE targeted intervention may be a promising method for protecting against RGCs loss in glaucoma.
Collapse
Affiliation(s)
- Wenhua Yi
- Eye School of Chengdu University of TCM, Chengdu City, Sichuan province, China.
| | - De Lv
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, China.
| | - Yue Sun
- Eye School of Chengdu University of TCM, Chengdu City, Sichuan province, China.
| | - Jingyu Mu
- Eye School of Chengdu University of TCM, Chengdu City, Sichuan province, China.
| | - Xuejing Lu
- Eye School of Chengdu University of TCM, Chengdu City, Sichuan province, China; Ineye Hospital of Chengdu University of TCM, Chengdu City, Sichuan province, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu City, Sichuan province, China; Retinal Image Technology and Chronic Vascular Disease Prevention&Control and Collaborative Innovation Center, Chengdu City, Sichuan province, China.
| |
Collapse
|
9
|
Adrian M, Weber M, Tsai MC, Glock C, Kahn OI, Phu L, Cheung TK, Meilandt WJ, Rose CM, Hoogenraad CC. Polarized microtubule remodeling transforms the morphology of reactive microglia and drives cytokine release. Nat Commun 2023; 14:6322. [PMID: 37813836 PMCID: PMC10562429 DOI: 10.1038/s41467-023-41891-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Microglial reactivity is a pathological hallmark in many neurodegenerative diseases. During stimulation, microglia undergo complex morphological changes, including loss of their characteristic ramified morphology, which is routinely used to detect and quantify inflammation in the brain. However, the underlying molecular mechanisms and the relation between microglial morphology and their pathophysiological function are unknown. Here, proteomic profiling of lipopolysaccharide (LPS)-reactive microglia identifies microtubule remodeling pathways as an early factor that drives the morphological change and subsequently controls cytokine responses. We find that LPS-reactive microglia reorganize their microtubules to form a stable and centrosomally-anchored array to facilitate efficient cytokine trafficking and release. We identify cyclin-dependent kinase 1 (Cdk-1) as a critical upstream regulator of microtubule remodeling and morphological change in-vitro and in-situ. Cdk-1 inhibition also rescues tau and amyloid fibril-induced morphology changes. These results demonstrate a critical role for microtubule dynamics and reorganization in microglial reactivity and modulating cytokine-mediated inflammatory responses.
Collapse
Affiliation(s)
- Max Adrian
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
- Department of Pathology, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Martin Weber
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Ming-Chi Tsai
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Caspar Glock
- Department of OMNI Bioinformatics, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Olga I Kahn
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Lilian Phu
- Department of Microchemistry, Proteomics and Lipidomics, South San Francisco, CA, 94080, USA
| | - Tommy K Cheung
- Department of Microchemistry, Proteomics and Lipidomics, South San Francisco, CA, 94080, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Christopher M Rose
- Department of Microchemistry, Proteomics and Lipidomics, South San Francisco, CA, 94080, USA
| | - Casper C Hoogenraad
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
10
|
Zhang R, Liu Q, Pan S, Zhang Y, Qin Y, Du X, Yuan Z, Lu Y, Song Y, Zhang M, Zhang N, Ma J, Zhang Z, Jia X, Wang K, He S, Liu S, Ni M, Liu X, Xu X, Yang H, Wang J, Seim I, Fan G. A single-cell atlas of West African lungfish respiratory system reveals evolutionary adaptations to terrestrialization. Nat Commun 2023; 14:5630. [PMID: 37699889 PMCID: PMC10497629 DOI: 10.1038/s41467-023-41309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
The six species of lungfish possess both lungs and gills and are the closest extant relatives of tetrapods. Here, we report a single-cell transcriptome atlas of the West African lungfish (Protopterus annectens). This species manifests the most extreme form of terrestrialization, a life history strategy to survive dry periods that can last for years, characterized by dormancy and reversible adaptive changes of the gills and lungs. Our atlas highlights the cell type diversity of the West African lungfish, including gene expression consistent with phenotype changes of terrestrialization. Comparison with terrestrial tetrapods and ray-finned fishes reveals broad homology between the swim bladder and lung cell types as well as shared and idiosyncratic changes of the external gills of the West African lungfish and the internal gills of Atlantic salmon. The single-cell atlas presented here provides a valuable resource for further exploration of the respiratory system evolution in vertebrates and the diversity of lungfish terrestrialization.
Collapse
Affiliation(s)
- Ruihua Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Qun Liu
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Shanshan Pan
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yingying Zhang
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yating Qin
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Xiao Du
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
- BGI Research, 518083, Shenzhen, China
| | - Zengbao Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yongrui Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Yue Song
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | | | - Nannan Zhang
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Jie Ma
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | | | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, 252000, Liaocheng, Shandong, P.R. China
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Shanshan Liu
- BGI Research, 518083, Shenzhen, China
- MGI Tech, 518083, Shenzhen, China
| | - Ming Ni
- BGI Research, 518083, Shenzhen, China
- MGI Tech, 518083, Shenzhen, China
| | - Xin Liu
- BGI Research, 518083, Shenzhen, China
| | - Xun Xu
- BGI Research, 518083, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, 518083, Shenzhen, China
| | | | - Jian Wang
- BGI Research, 518083, Shenzhen, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China.
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, 4000, Australia.
| | - Guangyi Fan
- BGI Research, 266555, Qingdao, China.
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China.
- BGI Research, 518083, Shenzhen, China.
| |
Collapse
|
11
|
Gerontas A, Avgerinos D, Charitakis K, Maragou H, Drosatos K. 1821-2021: Contributions of physicians and researchers of Greek descent in the advancement of clinical and experimental cardiology and cardiac surgery. Front Cardiovasc Med 2023; 10:1231762. [PMID: 37600045 PMCID: PMC10436502 DOI: 10.3389/fcvm.2023.1231762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
While the role of Greeks in the development of early western medicine is well-known and appreciated, the contributions of modern Greek medical practitioners are less known and often overlooked. On the occasion of the 200-year anniversary of the Greek War of Independence, this review article sheds light onto the achievements of modern scientists of Greek descent in the development of cardiology, cardiac surgery, and cardiovascular research, through a short history of the development of these fields and of the related institutions in Greece. In the last decades, the Greek cardiology and Cardiac Surgery communities have been active inside and outside Greece and have a remarkable presence internationally, particularly in the United States. This article highlights the ways in which Greek cardiology and cardiovascular research has been enriched by absorbing knowledge produced in international medical centers, academic institutes and pharmaceutical industries in which generations of Greek doctors and researchers trained prior to their return to the homeland; it also highlights the achievements of medical practitioners and researchers of Greek descent who excelled abroad, producing ground-breaking work that has left a permanent imprint on global medicine.
Collapse
Affiliation(s)
- Apostolos Gerontas
- School of Applied Natural Sciences, Coburg University, Coburg, Germany
- School of Liberal Arts and Sciences, The American College of Greece, Athens, Greece
| | - Dimitrios Avgerinos
- Department of Cardiac Surgery, Onassis Cardiac Surgery Center, Athens, Greece
- ARISTEiA-Institute for the Advancement of Research and Education in Arts, Sciences and Technology, McLean, VA, United States
| | - Konstantinos Charitakis
- Department of Internal Medicine, Division of Cardiology, University of Texas Health Science Center, Houston, TX, United States
| | - Helena Maragou
- School of Liberal Arts and Sciences, The American College of Greece, Athens, Greece
| | - Konstantinos Drosatos
- ARISTEiA-Institute for the Advancement of Research and Education in Arts, Sciences and Technology, McLean, VA, United States
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
12
|
Pham MT, Lee JY, Ritter C, Thielemann R, Meyer J, Haselmann U, Funaya C, Laketa V, Rohr K, Bartenschlager R. Endosomal egress and intercellular transmission of hepatic ApoE-containing lipoproteins and its exploitation by the hepatitis C virus. PLoS Pathog 2023; 19:e1011052. [PMID: 37506130 PMCID: PMC10411793 DOI: 10.1371/journal.ppat.1011052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/09/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Liver-generated plasma Apolipoprotein E (ApoE)-containing lipoproteins (LPs) (ApoE-LPs) play central roles in lipid transport and metabolism. Perturbations of ApoE can result in several metabolic disorders and ApoE genotypes have been associated with multiple diseases. ApoE is synthesized at the endoplasmic reticulum and transported to the Golgi apparatus for LP assembly; however, the ApoE-LPs transport pathway from there to the plasma membrane is largely unknown. Here, we established an integrative imaging approach based on a fully functional fluorescently tagged ApoE. We found that newly synthesized ApoE-LPs accumulate in CD63-positive endosomes of hepatocytes. In addition, we observed the co-egress of ApoE-LPs and CD63-positive intraluminal vesicles (ILVs), which are precursors of extracellular vesicles (EVs), along the late endosomal trafficking route in a microtubule-dependent manner. A fraction of ApoE-LPs associated with CD63-positive EVs appears to be co-transmitted from cell to cell. Given the important role of ApoE in viral infections, we employed as well-studied model the hepatitis C virus (HCV) and found that the viral replicase component nonstructural protein 5A (NS5A) is enriched in ApoE-containing ILVs. Interaction between NS5A and ApoE is required for the efficient release of ILVs containing HCV RNA. These vesicles are transported along the endosomal ApoE egress pathway. Taken together, our data argue for endosomal egress and transmission of hepatic ApoE-LPs, a pathway that is hijacked by HCV. Given the more general role of EV-mediated cell-to-cell communication, these insights provide new starting points for research into the pathophysiology of ApoE-related metabolic and infection-related disorders.
Collapse
Affiliation(s)
- Minh-Tu Pham
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Ji-Young Lee
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Christian Ritter
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Roman Thielemann
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Janis Meyer
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility (EMCF), Heidelberg University, Heidelberg, Germany
| | - Vibor Laketa
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
| | - Karl Rohr
- BioQuant Center, IPMB, Biomedical Computer Vision Group, Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Reddel CJ, Pennings GJ, Chen VM, Gnanenthiran S, Kritharides L. Colchicine as a Modulator of Platelet Function: A Systematic Review. Semin Thromb Hemost 2022; 48:552-567. [PMID: 35882248 DOI: 10.1055/s-0042-1749660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The microtubule inhibitor and anti-inflammatory agent colchicine is used to treat a range of conditions involving inflammasome activation in monocytes and neutrophils, and is now known to prevent coronary and cerebrovascular events. In vitro studies dating back more than 50 years showed a direct effect of colchicine on platelets, but as little contemporary attention has been paid to this area, we have critically reviewed the effects of colchicine on diverse aspects of platelet biology in vitro and in vivo. In this systematic review we searched Embase, Medline, and PubMed for articles testing platelets after incubation with colchicine and/or reporting a clinical effect of colchicine treatment on platelet function, including only papers available in English and excluding reviews and conference abstracts. We identified 98 relevant articles and grouped their findings based on the type of study and platelet function test. In vitro, colchicine inhibits traditional platelet functions, including aggregation, clotting, degranulation, and platelet-derived extracellular vesicle formation, although many of these effects were reported at apparently supraphysiological concentrations. Physiological concentrations of colchicine inhibit collagen- and calcium ionophore-induced platelet aggregation and internal signaling. There have been limited studies of in vivo effects on platelets. The colchicine-platelet interaction has the potential to contribute to colchicine-mediated reduction in cardiovascular events, but there is a pressing need for high quality clinical research in this area.
Collapse
Affiliation(s)
- Caroline J Reddel
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia
| | - Gabrielle J Pennings
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia
| | - Vivien M Chen
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney, Australia
| | - Sonali Gnanenthiran
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia.,Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia
| | - Leonard Kritharides
- ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Sydney, Australia.,Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia
| |
Collapse
|
15
|
Sobolczyk M, Boczek T. Astrocytic Calcium and cAMP in Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:889939. [PMID: 35663426 PMCID: PMC9161693 DOI: 10.3389/fncel.2022.889939] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022] Open
Abstract
It is commonly accepted that the role of astrocytes exceeds far beyond neuronal scaffold and energy supply. Their unique morphological and functional features have recently brough much attention as it became evident that they play a fundamental role in neurotransmission and interact with synapses. Synaptic transmission is a highly orchestrated process, which triggers local and transient elevations in intracellular Ca2+, a phenomenon with specific temporal and spatial properties. Presynaptic activation of Ca2+-dependent adenylyl cyclases represents an important mechanism of synaptic transmission modulation. This involves activation of the cAMP-PKA pathway to regulate neurotransmitter synthesis, release and storage, and to increase neuroprotection. This aspect is of paramount importance for the preservation of neuronal survival and functionality in several pathological states occurring with progressive neuronal loss. Hence, the aim of this review is to discuss mutual relationships between cAMP and Ca2+ signaling and emphasize those alterations at the Ca2+/cAMP crosstalk that have been identified in neurodegenerative disorders, such as Alzheimer's and Parkinson's disease.
Collapse
|
16
|
Bancroft EA, Srinivasan R. Emerging Roles for Aberrant Astrocytic Calcium Signals in Parkinson's Disease. Front Physiol 2022; 12:812212. [PMID: 35087422 PMCID: PMC8787054 DOI: 10.3389/fphys.2021.812212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022] Open
Abstract
Astrocytes display a plethora of spontaneous Ca2+ signals that modulate vital functions of the central nervous system (CNS). This suggests that astrocytic Ca2+ signals also contribute to pathological processes in the CNS. In this context, the molecular mechanisms by which aberrant astrocytic Ca2+ signals trigger dopaminergic neuron loss during Parkinson's disease (PD) are only beginning to emerge. Here, we provide an evidence-based perspective on potential mechanisms by which aberrant astrocytic Ca2+ signals can trigger dysfunction in three distinct compartments of the brain, viz., neurons, microglia, and the blood brain barrier, thereby leading to PD. We envision that the coming decades will unravel novel mechanisms by which aberrant astrocytic Ca2+ signals contribute to PD and other neurodegenerative processes in the CNS.
Collapse
Affiliation(s)
- Eric A. Bancroft
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Rahul Srinivasan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, United States
- Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, United States
| |
Collapse
|
17
|
Molecular Dysfunctions of Mitochondria-Associated Endoplasmic Reticulum Contacts in Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2424509. [PMID: 34336087 PMCID: PMC8321742 DOI: 10.1155/2021/2424509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/11/2021] [Indexed: 02/05/2023]
Abstract
Atherosclerosis is a chronic lipid-driven inflammatory disease that results in the formation of lipid-rich and immune cell-rich plaques in the arterial wall, which has high morbidity and mortality in the world. The mechanism of atherosclerosis is still unclear now. Potential hypotheses involved in atherosclerosis are chronic inflammation theory, lipid percolation theory, mononuclear-macrophage theory, endothelial cell (EC) injury theory, and smooth muscle cell (SMC) mutation theory. Changes of phospholipids, glucose, critical proteins, etc. on mitochondria-associated endoplasmic reticulum membrane (MAM) can cause the progress of atherosclerosis. This review describes the structural and functional interaction between mitochondria and endoplasmic reticulum (ER) and explains the role of critical molecules in the structure of MAM during atherosclerosis.
Collapse
|
18
|
Kacperczyk M, Kmieciak A, Kratz EM. The Role of ApoE Expression and Variability of Its Glycosylation in Human Reproductive Health in the Light of Current Information. Int J Mol Sci 2021; 22:ijms22137197. [PMID: 34281251 PMCID: PMC8268793 DOI: 10.3390/ijms22137197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Apolipoprotein E (ApoE), a 34-kDa glycoprotein, as part of the high-density lipoprotein (HDL), has antioxidant, anti-inflammatory and antiatherogenic properties. The variability of ApoE expression in the course of some female fertility disorders (endometriosis, POCS), and other gynecological pathologies such as breast cancer, choriocarcinoma, endometrial adenocarcinoma/hyperplasia and ovarian cancer confirm the multidirectional biological function of ApoE, but the mechanisms of its action are not fully understood. It is also worth taking a closer look at the associations between ApoE expression, the type of its genotype and male fertility disorders. Another important issue is the variability of ApoE glycosylation. It is documented that the profile and degree of ApoE glycosylation varies depending on where it occurs, the type of body fluid and the place of its synthesis in the human body. Alterations in ApoE glycosylation have been observed in the course of diseases such as preeclampsia or breast cancer, but little is known about the characteristics of ApoE glycans analyzed in human seminal and blood serum/plasma in the context of male reproductive health. A deeper analysis of ApoE glycosylation in the context of female and male fertility will both enable us to broaden our knowledge of the biochemical and cellular mechanisms in which glycans participate, having a direct or indirect relationship with the fertilization process, and also give us a chance of contributing to the enrichment of the diagnostic panel in infertile women and men, which is particularly important in procedures involved in assisted reproductive techniques. Moreover, understanding the mechanisms of glycoprotein glycosylation related to the course of various diseases and conditions, including infertility, and the interactions between glycans and their specific ligands may provide us with an opportunity to interfere with their course and thus develop new therapeutic strategies. This brief overview details some of the recent advances, mainly from the last decade, in understanding the associations between ApoE expression and some female and male fertility problems, as well as selected female gynecological diseases and male reproductive tract disorders. We were also interested in how ApoE glycosylation changes influence biological processes in the human body, with special attention to human fertility.
Collapse
|
19
|
Zhang LN, Li MJ, Shang YH, Zhao FF, Huang HC, Lao FX. Independent and Correlated Role of Apolipoprotein E ɛ4 Genotype and Herpes Simplex Virus Type 1 in Alzheimer's Disease. J Alzheimers Dis 2020; 77:15-31. [PMID: 32804091 DOI: 10.3233/jad-200607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ɛ4 allele of the Apolipoprotein E (APOE) gene in individuals infected by Herpes simplex virus type 1 (HSV-1) has been demonstrated to be a risk factor in Alzheimer's disease (AD). APOE-ɛ4 reduces the levels of neuronal cholesterol, interferes with the transportation of cholesterol, impairs repair of synapses, decreases the clearance of neurotoxic peptide amyloid-β (Aβ), and promotes the deposition of amyloid plaque, and eventually may cause development of AD. HSV-1 enters host cells and can infect the olfactory system, trigeminal ganglia, entorhinal cortex, and hippocampus, and may cause AD-like pathological changes. The lifecycle of HSV-1 goes through a long latent phase. HSV-1 induces neurotropic cytokine expression with pro-inflammatory action and inhibits antiviral cytokine production in AD. It should be noted that interferons display antiviral activity in HSV-1-infected AD patients. Reactivated HSV-1 is associated with infectious burden in cognitive decline and AD. Finally, HSV-1 DNA has been confirmed as present in human brains and is associated with APOEɛ4 in AD. HSV-1 and APOEɛ4 increase the risk of AD and relate to abnormal autophagy, higher concentrations of HSV-1 DNA in AD, and formation of Aβ plaques and neurofibrillary tangles.
Collapse
Affiliation(s)
- Li-Na Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Meng-Jie Li
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Ying-Hui Shang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Fan-Fan Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| | - Feng-Xue Lao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, P.R. China.,College of Biochemical Engineering, Beijing Union University, Beijing, P.R. China
| |
Collapse
|
20
|
Rizzo R, Bortolotti D, Gentili V, Rotola A, Bolzani S, Caselli E, Tola MR, Di Luca D. KIR2DS2/KIR2DL2/HLA-C1 Haplotype Is Associated with Alzheimer's Disease: Implication for the Role of Herpesvirus Infections. J Alzheimers Dis 2020; 67:1379-1389. [PMID: 30689576 DOI: 10.3233/jad-180777] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, where neuroinflammation and immune cells are key pathological factors. Recently, it was suggested a possible association between AD and human herpesvirus 6 (HHV-6) infection. Since we recently observed that multiple sclerosis patients with KIR2DL2 expression on natural killer (NK) cells are more susceptible to herpesvirus infection, we tested the possible implication of KIR/HLA genetic for HHV-6A infection. We identified, for the first time, a possible implication of a specific KIR/HLA subset in AD. The combination KIR2DS2/KIR2DL2/C1 correlated with a lower MMSEDi score, representative of a severe AD status and an increased susceptibility to HHV-6A infection. Therefore, the results seem to converge on the hypothesis that herpesvirus infection might play a role in AD. If this hypothesis finds experimental confirmation, a new therapeutic strategy, modulating KIR2DL2 expression on NK cells, for AD might be envisaged.
Collapse
Affiliation(s)
- Roberta Rizzo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Daria Bortolotti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Valentina Gentili
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonella Rotola
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Silvia Bolzani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Maria Rosaria Tola
- Department of Neurosciences and Rehabilitation, University Hospital, Arcispedale S. Anna, Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Abstract
Apolipoprotein E (apoE) is a 34-kDa glycoprotein that is secreted from many cells throughout the body. ApoE is best known for its role in lipoprotein metabolism. Recent studies underline the association of circulating lipoprotein-associated apoE levels and the development for cardiovascular disease (CVD). Besides its well-established role in pathology of CVD, it is also implicated in neurodegenerative diseases and recent new data on adipose-produced apoE point to a novel metabolic role for apoE in obesity. The regulation of apoE production and secretion is remarkably cell and tissue specific. Here, we summarize recent insights into the differential regulation apoE production and secretion by hepatocytes, monocytes/macrophages, adipocytes, and the central nervous system and relevant variations in apoE biochemistry and function.
Collapse
Affiliation(s)
- Maaike Kockx
- Concord Repatriation General Hospital, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Mathew Traini
- Concord Repatriation General Hospital, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Leonard Kritharides
- Concord Repatriation General Hospital, ANZAC Research Institute, Sydney, Australia.
- Sydney Medical School, University of Sydney, Sydney, Australia.
- Department of Cardiology, Concord Repatriation General Hospital, Concord, NSW, 2139, Australia.
| |
Collapse
|
22
|
Yang P, Skiba NP, Tewkesbury GM, Treboschi VM, Baciu P, Jaffe GJ. Complement-Mediated Regulation of Apolipoprotein E in Cultured Human RPE Cells. Invest Ophthalmol Vis Sci 2017. [PMID: 28632844 PMCID: PMC5482245 DOI: 10.1167/iovs.16-20083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose. Complement activation is implicated in the pathogenesis of age-related macular degeneration (AMD). Apolipoprotein E (ApoE) and complement activation products such as membrane attack complex (MAC) are present in eyes of individuals with AMD. Herein, we investigated the effect of complement activation on induction of ApoE accumulation in human retinal pigment epithelial (RPE) cells. Methods. Cultured human RPE cells were primed with a complement-fixing antibody followed by treatment with C1q-depleted (C1q-Dep) human serum to elicit alternative pathway complement activation. Controls included anti-C5 antibody-treated serum and heat-inactivated C1q-Dep. Total protein was determined on RPE cell extracts, conditioned media, and extracellular matrix (ECM) by Western blot. ApoE and MAC colocalization was assessed on cultured RPE cells and human eyes by immunofluorescent stain. ApoE mRNA expression was evaluated by quantitative PCR (qPCR). Results. Complement challenge upregulated cell-associated ApoE, but not apolipoprotein A1. ApoE accumulation was blocked by anti-C5 antibody and enhanced by repetitive complement challenge. ApoE mRNA levels were not affected by complement challenge. ApoE was frequently colocalized with MAC in complement-treated cells and drusen from human eyes. ApoE was released into complement-treated conditioned media after a single complement challenge and accumulated on ECM after repetitive complement challenge. Conclusions. Complement challenge induces time-dependent ApoE accumulation in RPE cells. An understanding of the mechanisms by which complement affects RPE ApoE accumulation may help to better explain drusen composition, and provide insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Ping Yang
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Grace M Tewkesbury
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Victoria M Treboschi
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Peter Baciu
- Department of Biology, Allergan, Inc., Irvine, California, United States
| | - Glenn J Jaffe
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
23
|
Takacs CN, Andreo U, Belote RL, Pulupa J, Scull MA, Gleason CE, Rice CM, Simon SM. Green fluorescent protein-tagged apolipoprotein E: A useful marker for the study of hepatic lipoprotein egress. Traffic 2017; 18:192-204. [PMID: 28035714 DOI: 10.1111/tra.12467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/28/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022]
Abstract
Apolipoprotein E (ApoE), a component of very-low-density and high-density lipoproteins, participates in many aspects of lipid transport in the bloodstream. Underscoring its important functions, ApoE isoforms have been associated with metabolic and circulatory disease. ApoE is also incorporated into hepatitis C virus (HCV) particles, and promotes their production and infectivity. Live cell imaging analysis of ApoE behavior during secretion from producing cells thus has the potential to reveal important details regarding lipoprotein and HCV particle biogenesis and secretion from cells. However, this approach requires expression of fluorescently tagged ApoE constructs that need to faithfully reproduce known ApoE behaviors. Herein, we evaluate the usefulness of using an ApoE-GFP fusion protein in studying hepatocyte-derived, ApoE-containing lipoproteins and HCV particles. We show that while ApoE-GFP alone is not sufficient to support infectious HCV production, it nonetheless colocalizes intracellularly and associates with secreted untagged lipoprotein components. Furthermore, its rate of secretion from hepatic cells is indistinguishable from that of untagged ApoE. ApoE-GFP thus represents a useful marker for ApoE-containing hepatic lipoproteins.
Collapse
Affiliation(s)
- Constantin N Takacs
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York.,Laboratory of Virology and Infectious Disease, and Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Ursula Andreo
- Laboratory of Virology and Infectious Disease, and Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Rachel L Belote
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Joan Pulupa
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Margaret A Scull
- Laboratory of Virology and Infectious Disease, and Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Caroline E Gleason
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, and Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| |
Collapse
|
24
|
Dinnes DLM, White MY, Kockx M, Traini M, Hsieh V, Kim M, Hou L, Jessup W, Rye K, Thaysen‐Andersen M, Cordwell SJ, Kritharides L. Human macrophage cathepsin β‐mediated C‐terminal cleavage of apolipoprotein α‐I at Ser
228
severely impairs antiatherogenic capacity. FASEB J 2016; 30:4239-4255. [DOI: 10.1096/fj.201600508r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/01/2016] [Indexed: 11/11/2022]
Affiliation(s)
| | - Melanie Y. White
- School of Molecular BioscienceDiscipline of Pathology School of Medical Sciences and Charles Perkins Centre University of Sydney Sydney New South Wales Australia
| | - Maaike Kockx
- Atherosclerosis LaboratoryANZAC Research Institute
| | | | - Victar Hsieh
- Department of CardiologySt. George Hospital Sydney New South Wales Australia
| | - Mi‐Jurng Kim
- School of Medical Sciences Sydney New South Wales Australia
| | - Liming Hou
- Lipid Research GroupSchool of Medical Sciences University of New South Wales Sydney New South Wales Australia
| | - Wendy Jessup
- Atherosclerosis LaboratoryANZAC Research Institute
| | - Kerry‐Anne Rye
- Lipid Research GroupSchool of Medical Sciences University of New South Wales Sydney New South Wales Australia
| | - Morten Thaysen‐Andersen
- Department of Chemistry and Biomolecular SciencesFaculty of Science and Engineering Macquarie University Sydney New South Wales Australia
| | - Stuart J. Cordwell
- School of Molecular BioscienceDiscipline of Pathology School of Medical Sciences and Charles Perkins Centre University of Sydney Sydney New South Wales Australia
| | - Leonard Kritharides
- Atherosclerosis LaboratoryANZAC Research Institute
- Department of CardiologyConcord Repatriation General Hospital Sydney New South Wales Australia
| |
Collapse
|
25
|
Kockx M, Karunakaran D, Traini M, Xue J, Huang KY, Nawara D, Gaus K, Jessup W, Robinson PJ, Kritharides L. Pharmacological inhibition of dynamin II reduces constitutive protein secretion from primary human macrophages. PLoS One 2014; 9:e111186. [PMID: 25347775 PMCID: PMC4210248 DOI: 10.1371/journal.pone.0111186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 09/22/2014] [Indexed: 12/14/2022] Open
Abstract
Dynamins are fission proteins that mediate endocytic and exocytic membrane events and are pharmacological therapeutic targets. These studies investigate whether dynamin II regulates constitutive protein secretion and show for the first time that pharmacological inhibition of dynamin decreases secretion of apolipoprotein E (apoE) and several other proteins constitutively secreted from primary human macrophages. Inhibitors that target recruitment of dynamin to membranes (MiTMABs) or directly target the GTPase domain (Dyngo or Dynole series), dose- and time- dependently reduced the secretion of apoE. SiRNA oligo’s targeting all isoforms of dynamin II confirmed the involvement of dynamin II in apoE secretion. Inhibition of secretion was not mediated via effects on mRNA or protein synthesis. 2D-gel electrophoresis showed that inhibition occurred after apoE was processed and glycosylated in the Golgi and live cell imaging showed that inhibited secretion was associated with reduced post-Golgi movement of apoE-GFP-containing vesicles. The effect was not restricted to macrophages, and was not mediated by the effects of the inhibitors on microtubules. Inhibition of dynamin also altered the constitutive secretion of other proteins, decreasing the secretion of fibronectin, matrix metalloproteinase 9, Chitinase-3-like protein 1 and lysozyme but unexpectedly increasing the secretion of the inflammatory mediator cyclophilin A. We conclude that pharmacological inhibitors of dynamin II modulate the constitutive secretion of macrophage apoE as a class effect, and that their capacity to modulate protein secretion may affect a range of biological processes.
Collapse
Affiliation(s)
- Maaike Kockx
- Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Denuja Karunakaran
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
- University of Ottawa Heart Institute, Ottawa, Canada
| | - Mathew Traini
- Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Jing Xue
- Children’s Medical Research Institute, University of Sydney, Sydney, Australia
| | - Kuan Yen Huang
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Diana Nawara
- Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Katharina Gaus
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Wendy Jessup
- Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Phillip J. Robinson
- Children’s Medical Research Institute, University of Sydney, Sydney, Australia
| | - Leonard Kritharides
- Department of Cardiology and ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
26
|
Traini M, Quinn CM, Sandoval C, Johansson E, Schroder K, Kockx M, Meikle PJ, Jessup W, Kritharides L. Sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) is a novel nucleotide phosphodiesterase regulated by cholesterol in human macrophages. J Biol Chem 2014; 289:32895-913. [PMID: 25288789 DOI: 10.1074/jbc.m114.612341] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholesterol-loaded foam cell macrophages are prominent in atherosclerotic lesions and play complex roles in both inflammatory signaling and lipid metabolism, which are underpinned by large scale reprogramming of gene expression. We performed a microarray study of primary human macrophages that showed that transcription of the sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) gene is up-regulated after cholesterol loading. SMPDL3A protein expression in and secretion from primary macrophages are stimulated by cholesterol loading, liver X receptor ligands, and cyclic AMP, and N-glycosylated SMPDL3A protein is detectable in circulating blood. We demonstrate for the first time that SMPDL3A is a functional phosphodiesterase with an acidic pH optimum. We provide evidence that SMPDL3A is not an acid sphingomyelinase but unexpectedly is active against nucleotide diphosphate and triphosphate substrates at acidic and neutral pH. SMPDL3A is a major source of nucleotide phosphodiesterase activity secreted by liver X receptor-stimulated human macrophages. Extracellular nucleotides such as ATP may activate pro-inflammatory responses in immune cells. Increased expression and secretion of SMPDL3A by cholesterol-loaded macrophage foam cells in lesions may decrease local concentrations of pro-inflammatory nucleotides and potentially represent a novel anti-inflammatory axis linking lipid metabolism with purinergic signaling in atherosclerosis.
Collapse
Affiliation(s)
- Mathew Traini
- From the Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139,
| | - Carmel M Quinn
- the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052
| | - Cecilia Sandoval
- the Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052
| | - Erik Johansson
- From the Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139
| | - Kate Schroder
- the Institute for Molecular Bioscience, University of Queensland, Queensland 4072
| | - Maaike Kockx
- From the Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139
| | - Peter J Meikle
- the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, and
| | - Wendy Jessup
- From the Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139
| | - Leonard Kritharides
- From the Atherosclerosis Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales 2139, the Department of Cardiology, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| |
Collapse
|
27
|
Fokin AI, Brodsky IB, Burakov AV, Nadezhdina ES. Interaction of early secretory pathway and Golgi membranes with microtubules and microtubule motors. BIOCHEMISTRY (MOSCOW) 2014; 79:879-93. [DOI: 10.1134/s0006297914090053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
ApoA-I/HDL Generation and Intracellular Cholesterol Transport through Cytosolic Lipid-Protein Particles in Astrocytes. J Lipids 2014; 2014:530720. [PMID: 25197575 PMCID: PMC4146353 DOI: 10.1155/2014/530720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/24/2014] [Indexed: 01/24/2023] Open
Abstract
Exogenous apolipoprotein A-I (apoA-I) associates with ATP-binding cassette transporter A1 (ABCA1) on the cell surface of astrocytes like various peripheral cells and enhances the translocation of newly synthesized cholesterol from the endoplasmic reticulum/Golgi apparatus (ER/Golgi) to the cytosol. The cholesterol translocated to the cytosol is incorporated to cytosolic lipid-protein particles (CLPP) together with phospholipids and proteins such as sphingomyelin, phosphatidylcholine, caveolin-1, protein kinase Cα (PK-Cα), and cyclophilin A. The CLPP are high density lipoproteins- (HDL-)like cytosolic lipid-protein complex with densities of 1.09–1.16 g/mL and diameters of 17-18 nm. The association of exogenous apoA-I with cellular ABCA1 induces tyrosine phosphorylation, activation, and translocation to the CLPP of ABCA1-associated phospholipase Cγ (PL-Cγ) in rat astrocytes. Furthermore, PK-Cα is translocated and activated to/in the CLPP through theproduction of diacylglyceride in the CLPP. ApoA-I enhances both the association of CLPP with microtubules and the phosphorylation of α-tubulin as a component of microtubules. The CLPP are dissociated from microtubules after α-tubulin in microtubules is phosphorylated by the CLPP-associated PK-Cα. The association and dissociation between CLPP and microtubules may participate in the intracellular transport of cholesterol to the plasma membrane.
Collapse
|
29
|
Hervé J, Dubreil L, Tardif V, Terme M, Pogu S, Anegon I, Rozec B, Gauthier C, Bach JM, Blancou P. β2-Adrenoreceptor agonist inhibits antigen cross-presentation by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:3163-71. [PMID: 23420884 DOI: 10.4049/jimmunol.1201391] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite widespread usage of β-adrenergic receptor (AR) agonists and antagonists in current clinical practice, our understanding of their interactions with the immune system is surprisingly sparse. Among the AR expressed by dendritic cells (DC), β2-AR can modify in vitro cytokine release upon stimulation. Because DC play a pivotal role in CD8(+) T cell immune responses, we examined the effects of β2-AR stimulation on MHC class I exogenous peptide presentation and cross-presentation capacities. We demonstrate that β2-AR agonist-exposed mature DC display a reduced ability to cross-present protein Ags while retaining their exogenous peptide presentation capability. This effect is mediated through the nonclassical inhibitory G (Gαi/0) protein. Moreover, inhibition of cross-presentation is neither due to reduced costimulatory molecule expression nor Ag uptake, but rather to impaired phagosomal Ag degradation. We observed a crosstalk between the TLR4 and β2-AR transduction pathways at the NF-κB level. In vivo, β2-AR agonist treatment of mice inhibits Ag protein cross-presentation to CD8(+) T cells but preserves their exogenous MHC class I peptide presentation capability. These findings may explain some side effects on the immune system associated with stress or β-agonist treatment and pave the way for the development of new immunomodulatory strategies.
Collapse
Affiliation(s)
- Julie Hervé
- L'Université Nantes Angers Le Mans, Oniris, Université de Nantes, EA 4644 Immunologie-Endocrinologie Cellulaire et Moléculaire, Nantes F-44300, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Karunakaran D, Kockx M, Owen DM, Burnett JR, Jessup W, Kritharides L. Protein kinase C controls vesicular transport and secretion of apolipoprotein E from primary human macrophages. J Biol Chem 2013; 288:5186-97. [PMID: 23288845 DOI: 10.1074/jbc.m112.428961] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage-specific apolipoprotein E (apoE) secretion plays an important protective role in atherosclerosis. However, the precise signaling mechanisms regulating apoE secretion from primary human monocyte-derived macrophages (HMDMs) remain unclear. Here we investigate the role of protein kinase C (PKC) in regulating basal and stimulated apoE secretion from HMDMs. Treatment of HMDMs with structurally distinct pan-PKC inhibitors (calphostin C, Ro-31-8220, Go6976) and a PKC inhibitory peptide all significantly decreased apoE secretion without significantly affecting apoE mRNA or apoE protein levels. The PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated apoE secretion, and both PMA-induced and apoAI-induced apoE secretion were inhibited by PKC inhibitors. PKC regulation of apoE secretion was found to be independent of the ATP binding cassette transporter ABCA1. Live cell imaging demonstrated that PKC inhibitors inhibited vesicular transport of apoE to the plasma membrane. Pharmacological or peptide inhibitor and knockdown studies indicate that classical isoforms PKCα/β and not PKCδ, -ε, -θ, or -ι/ζ isoforms regulate apoE secretion from HMDMs. The activity of myristoylated alanine-rich protein kinase C substrate (MARCKS) correlated with modulation of PKC activity in these cells, and direct peptide inhibition of MARCKS inhibited apoE secretion, implicating MARCKS as a downstream effector of PKC in apoE secretion. Comparison with other secreted proteins indicated that PKC similarly regulated secretion of matrix metalloproteinase 9 and chitinase-3-like-1 protein but differentially affected the secretion of other proteins. In conclusion, PKC regulates the secretion of apoE from primary human macrophages.
Collapse
Affiliation(s)
- Denuja Karunakaran
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Cholesterol accumulation inhibits ER to Golgi transport and protein secretion: studies of apolipoprotein E and VSVGt. Biochem J 2012; 447:51-60. [PMID: 22747346 DOI: 10.1042/bj20111891] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cholesterol excess is typical of various diseases including atherosclerosis. We have investigated whether cholesterol accumulation in the ER (endoplasmic reticulum) can inhibit exit of vesicular cargo and secretion of proteins by studying apoE (apolipoprotein E), a significant glycoprotein in human health and disease. CHO (Chinese hamster ovary) cells expressing human apoE under a cholesterol-independent promoter incubated with cholesterol-cyclodextrin complexes showed increased levels of cellular free and esterified cholesterol, inhibition of SREBP-2 (sterol-regulatory-element-binding protein 2) processing, and a mild induction of ER stress, indicating significant accumulation of cholesterol in the ER. Secretion of apoE was markedly inhibited by cholesterol accumulation, and similar effects were observed in cells enriched with lipoprotein-derived cholesterol and in primary human macrophages. Removal of excess cholesterol by a cyclodextrin vehicle restored apoE secretion, indicating that the transport defect was reversible. That cholesterol impaired protein trafficking was supported by the cellular accumulation of less sialylated apoE glycoforms, and by direct visualization of altered ER to Golgi transport of thermo-reversible VSVG (vesicular stomatitis virus glycoprotein) linked to GFP (green fluorescent protein). We conclude that intracellular accumulation of cholesterol in the ER reversibly inhibits protein transport and secretion. Strategies to correct ER cholesterol may restore homoeostatic processes and intracellular protein transport in conditions characterized by cholesterol excess.
Collapse
|
32
|
Stanley AC, Lieu ZZ, Wall AA, Venturato J, Khromykh T, Hamilton NA, Gleeson PA, Stow JL. Recycling endosome-dependent and -independent mechanisms for IL-10 secretion in LPS-activated macrophages. J Leukoc Biol 2012; 92:1227-39. [PMID: 23012430 DOI: 10.1189/jlb.0412191] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IL-10 is a key anti-inflammatory cytokine secreted by activated macrophages as a feedback control mechanism to prevent excessive inflammatory responses. Here, we define multiple intracellular trafficking pathways involved in the secretion of newly synthesized IL-10 from macrophages following TLR4 activation with LPS, and show how this relates to the previously defined trafficking pathways for IL-6 and TNF in macrophages simultaneously producing these proinflammatory cytokines. IL-10 exits the Golgi in multiple tubular carriers, including those dependent on p230GRIP. Some of the IL-10 is then delivered to recycling endosomes, where cytokine sorting may occur prior to its release. Another portion of the IL-10 is delivered to the cell surface in distinct vesicles colabeled for apoE. Thus, we show at least two post-Golgi pathways via which IL-10 is trafficked, ensuring its secretion from activated macrophages under different physiological conditions.
Collapse
Affiliation(s)
- A C Stanley
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bachmeier C, Beaulieu-Abdelahad D, Crawford F, Mullan M, Paris D. Stimulation of the Retinoid X Receptor Facilitates Beta-Amyloid Clearance Across the Blood–Brain Barrier. J Mol Neurosci 2012; 49:270-6. [DOI: 10.1007/s12031-012-9866-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/24/2012] [Indexed: 12/12/2022]
|
34
|
Chao SK, Wang Y, Verdier-Pinard P, Yang CPH, Liu L, Rodriguez-Gabin A, McDaid HM, Horwitz SB. Characterization of a human βV-tubulin antibody and expression of this isotype in normal and malignant human tissue. Cytoskeleton (Hoboken) 2012; 69:566-76. [PMID: 22903939 DOI: 10.1002/cm.21043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/17/2012] [Accepted: 05/21/2012] [Indexed: 11/07/2022]
Abstract
There are seven distinct β-tubulin isotypes and eight α-tubulin isotypes in mammals that are hypothesized to have tissue- and cell-specific functions. There is an interest in the use of tubulin isotypes as prognostic markers of malignancy. βV-tubulin, like βIII-tubulin, has been implicated in malignant transformation and drug resistance, however little is known about its localization and function. Thus, we generated for the first time, a rabbit polyclonal antibody specific for human βV-tubulin. The antibody did not cross-react with mouse βV-tubulin or other human β-tubulin isotypes and specifically labeled βV-tubulin by immunoblotting, immunofluorescence and immunohistochemistry. Immunohistochemistry of various human normal tissues revealed that βV-tubulin was expressed in endothelial cells, myocytes and cells with muscle differentiation, structures with transport and/or secretory function such as renal tubules, pancreatic ducts and bile ducts, and epithelium with secretory function such as prostate. βV-tubulin was also specifically expressed in pancreatic islets and intratubular germ cell neoplasia, where it may have diagnostic utility. Initial studies in breast, lung and ovarian cancers indicated aberrant expression of βV-tubulin, suggesting that this isoform may be associated with tumorigenesis. Thus, βV-tubulin expression is a potentially promising prognostic marker of malignancy.
Collapse
Affiliation(s)
- Suzan K Chao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Niculescu LS, Robciuc MR, Sanda GM, Sima AV. Apolipoprotein A–I stimulates cholesteryl ester transfer protein and apolipoprotein E secretion from lipid-loaded macrophages; the role of NF-κB and PKA signaling pathways. Biochem Biophys Res Commun 2011; 415:497-502. [DOI: 10.1016/j.bbrc.2011.10.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 10/21/2011] [Indexed: 11/28/2022]
|
36
|
El Bouhassani M, Gilibert S, Moreau M, Saint-Charles F, Tréguier M, Poti F, Chapman MJ, Le Goff W, Lesnik P, Huby T. Cholesteryl ester transfer protein expression partially attenuates the adverse effects of SR-BI receptor deficiency on cholesterol metabolism and atherosclerosis. J Biol Chem 2011; 286:17227-38. [PMID: 21454568 DOI: 10.1074/jbc.m111.220483] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor SR-BI significantly contributes to HDL cholesterol metabolism and atherogenesis in mice. However, the role of SR-BI may not be as pronounced in humans due to cholesteryl ester transfer protein (CETP) activity. To address the impact of CETP expression on the adverse effects associated with SR-BI deficiency, we cross-bred our SR-BI conditional knock-out mouse model with CETP transgenic mice. CETP almost completely restored the abnormal HDL-C distribution in SR-BI-deficient mice. However, it did not normalize the elevated plasma free to total cholesterol ratio characteristic of hepatic SR-BI deficiency. Red blood cell and platelet count abnormalities observed in mice liver deficient for SR-BI were partially restored by CETP, but the elevated erythrocyte cholesterol to phospholipid ratio remained unchanged. Complete deletion of SR-BI was associated with diminished adrenal cholesterol stores, whereas hepatic SR-BI deficiency resulted in a significant increase in adrenal gland cholesterol content. In both mouse models, CETP had no impact on adrenal cholesterol metabolism. In diet-induced atherosclerosis studies, hepatic SR-BI deficiency accelerated aortic lipid lesion formation in both CETP-expressing (4-fold) and non-CETP-expressing (8-fold) mice when compared with controls. Impaired macrophage to feces reverse cholesterol transport in mice deficient for SR-BI in liver, which was not corrected by CETP, most likely contributed by such an increase in atherosclerosis susceptibility. Finally, comparison of the atherosclerosis burden in SR-BI liver-deficient and fully deficient mice demonstrated that SR-BI exerted an atheroprotective activity in extra-hepatic tissues whether CETP was present or not. These findings support the contention that the SR-BI pathway contributes in unique ways to cholesterol metabolism and atherosclerosis susceptibility even in the presence of CETP.
Collapse
|
37
|
Goyette J, Yan WX, Yamen E, Chung YM, Lim SY, Hsu K, Rahimi F, Di Girolamo N, Song C, Jessup W, Kockx M, Bobryshev YV, Freedman SB, Geczy CL. Pleiotropic roles of S100A12 in coronary atherosclerotic plaque formation and rupture. THE JOURNAL OF IMMUNOLOGY 2009; 183:593-603. [PMID: 19542470 DOI: 10.4049/jimmunol.0900373] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages, cytokines, and matrix metalloproteinases (MMP) play important roles in atherogenesis. The Ca(2+)-binding protein S100A12 regulates monocyte migration and may contribute to atherosclerosis by inducing proinflammatory cytokines in macrophages. We found significantly higher S100A12 levels in sera from patients with coronary artery disease than controls and levels correlated positively with C-reactive protein. S100A12 was released into the coronary circulation from ruptured plaque in acute coronary syndrome, and after mechanical disruption by percutaneous coronary intervention in stable coronary artery disease. In contrast to earlier studies, S100A12 did not stimulate proinflammatory cytokine production by human monocytes or macrophages. Similarly, no induction of MMP genes was found in macrophages stimulated with S100A12. Because S100A12 binds Zn(2+), we studied some functional aspects that could modulate atherogenesis. S100A12 formed a hexamer in the presence of Zn(2+); a novel Ab was generated that specifically recognized this complex. By chelating Zn(2+), S100A12 significantly inhibited MMP-2, MMP-9, and MMP-3, and the Zn(2+)-induced S100A12 complex colocalized with these in foam cells in human atheroma. S100A12 may represent a new marker of this disease and may protect advanced atherosclerotic lesions from rupture by inhibiting excessive MMP-2 and MMP-9 activities by sequestering Zn(2+).
Collapse
Affiliation(s)
- Jesse Goyette
- Centre for Infection and Inflammation Research, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kockx M, Guo DL, Traini M, Gaus K, Kay J, Wimmer-Kleikamp S, Rentero C, Burnett JR, Le Goff W, Van Eck M, Stow JL, Jessup W, Kritharides L. Cyclosporin A decreases apolipoprotein E secretion from human macrophages via a protein phosphatase 2B-dependent and ATP-binding cassette transporter A1 (ABCA1)-independent pathway. J Biol Chem 2009; 284:24144-54. [PMID: 19589783 DOI: 10.1074/jbc.m109.032615] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclosporin A (CsA) is an immunosuppressant that inhibits protein phosphatase 2B (PP2B/calcineurin) and is associated with hyperlipidemia, decreased cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1), and increased risk of atherosclerosis. Apolipoprotein E (apoE) is an important regulator of lipid metabolism and atherosclerosis, the secretion of which from human macrophages is regulated by the serine/threonine protein kinase A (PKA) and intracellular calcium (Ca(2+)) (Kockx, M., Guo, D. L., Huby, T., Lesnik, P., Kay, J., Sabaretnam, T., Jary, E., Hill, M., Gaus, K., Chapman, J., Stow, J. L., Jessup, W., and Kritharides, L. (2007) Circ. Res. 101, 607-616). As PP2B is Ca(2+)-dependent and has been linked to PKA-dependent processes, we investigated whether CsA modulated apoE secretion. CsA dose- and time-dependently inhibited secretion of apoE from primary human macrophages and from Chinese hamster ovary cells stably transfected with human apoE and increased cellular apoE levels without affecting apoE mRNA. [(35)S]Met kinetic modeling studies showed that CsA inhibited both secretion and degradation of apoE, increasing the half-life of cellular apoE 2-fold. CsA also inhibited secretion from primary human Tangier disease macrophages and from mouse macrophages deficient in ABCA1, indicating that the effect is independent of the known inhibition of ABCA1 by CsA. The role of PP2B in mediating apoE secretion was confirmed using additional peptide and chemical inhibitors of PP2B. Importantly, kinetic modeling, live-cell imaging, and confocal microscopy all indicated that CsA inhibited apoE secretion by mechanisms quite distinct from those of PKA inhibition, most likely inducing accumulation of apoE in the endoplasmic reticulum compartment. Taken together, these results establish a novel mechanism for the pro-atherosclerotic effects of CsA, and establish for the first time a role for PP2B in regulating the intracellular transport and secretion of apoE.
Collapse
Affiliation(s)
- Maaike Kockx
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Das R, Burke T, Van Wagoner DR, Plow EF. L-type calcium channel blockers exert an antiinflammatory effect by suppressing expression of plasminogen receptors on macrophages. Circ Res 2009; 105:167-75. [PMID: 19520970 DOI: 10.1161/circresaha.109.200311] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
L-type Ca(2+) channel (LTCC) blockers, represented by amlodipine and verapamil, are widely used antihypertensive drugs that also have antiinflammatory activities. Plasminogen (Plg) is an important mediator of macrophage recruitment, and this role depends on its interaction with Plg receptors (Plg-Rs). Plg-Rs include histone 2B, alpha-enolase, annexin 2, and p11, all proteins which lack signal sequences for cell surface export. When human or murine monocytoid cells were induced to differentiate into macrophages, their Plg binding and Plg-R expression increased by 4-fold. These changes were suppressed by pretreatment with verapamil and amlodipine. Expression of the Ca(v)1.2 LTCC pore subunit was induced in differentiated macrophages, and siRNA against this subunit suppressed the upregulation of Plg binding and Plg-Rs. In vivo, amlodipine and verapamil suppressed peritoneal macrophage recruitment in response to thioglycollate by >60% at doses that did not affect blood pressure. In drug-treated animals, macrophages migrated into but not through the peritoneal membrane tissue and showed reduced surface expression of Plg-Rs. These findings demonstrate that Plg-R expression on macrophages is dependent on Ca(v)1.2 LTCC subunit expression. Suppression of Plg-Rs may contribute to the antiinflammatory effects of the widely used LTCC blockers.
Collapse
Affiliation(s)
- Riku Das
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave/NB50, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
40
|
Pooley RD, Moynihan KL, Soukoulis V, Reddy S, Francis R, Lo C, Ma LJ, Bader DM. Murine CENPF interacts with syntaxin 4 in the regulation of vesicular transport. J Cell Sci 2008; 121:3413-21. [PMID: 18827011 DOI: 10.1242/jcs.032847] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Syntaxin 4 is a component of the SNARE complex that regulates membrane docking and fusion. Using a yeast two-hybrid screen, we identify a novel interaction between syntaxin 4 and cytoplasmic murine CENPF, a protein previously demonstrated to associate with the microtubule network and SNAP-25. The binding domain for syntaxin 4 in CENPF was defined by yeast two-hybrid assay and co-immunoprecipitation. Confocal analyses in cell culture reveal a high degree of colocalization between endogenously expressed proteins in interphase cells. Additionally, the endogenous SNARE proteins can be isolated as a complex with CENPF in immunoprecipitation experiments. Further analyses demonstrate that murine CENPF and syntaxin 4 colocalize with components of plasma membrane recycling: SNAP-25 and VAMP2. Depletion of endogenous CENPF disrupts GLUT4 trafficking whereas expression of a dominant-negative form of CENPF inhibits cell coupling. Taken together, these studies demonstrate that CENPF provides a direct link between proteins of the SNARE system and the microtubule network and indicate a diverse role for murine CENPF in vesicular transport.
Collapse
Affiliation(s)
- Ryan D Pooley
- Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kockx M, Jessup W, Kritharides L. Regulation of endogenous apolipoprotein E secretion by macrophages. Arterioscler Thromb Vasc Biol 2008; 28:1060-7. [PMID: 18388328 DOI: 10.1161/atvbaha.108.164350] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apolipoprotein E has critical roles in the protection against atherosclerosis and is understood to follow the classical constitutive secretion pathway. Recent studies have indicated that the secretion of apoE from macrophages is a regulated process of unexpected complexity. Cholesterol acceptors such as apolipoprotein A-I, high density lipoprotein, and phospholipid vesicles can stimulate apoE secretion. The ATP binding cassette transporter ABCA1 is involved in basal apoE secretion and in lipidating apoE-containing particles secreted by macrophages. However, the stimulation of apoE secretion by apoA-I is ABCA1-independent, indicating the existence of both ABCA1-dependent and -independent pathways of apoE secretion. The release of apoE under basal conditions is also regulated, requiring intact protein kinase A activity, intracellular calcium, and an intact microtubular network. Mathematical modeling of apoE turnover indicates that whereas some pools of apoE are committed to either secretion or degradation, other pools can be diverted from degradation toward secretion. Targeted inhibition or stimulation of specific apoE trafficking pathways will provide unique opportunities to regulate the biology of this important molecule.
Collapse
Affiliation(s)
- Maaike Kockx
- Macrophage Biology Group, Centre for Vascular Research, Room 405C Wallace Wurth Building, University of New South Wales, High Street, Kensington, Sydney, NSW 2050, Australia
| | | | | |
Collapse
|
42
|
Analysis of apolipoprotein E nuclear localization using green fluorescent protein and biotinylation approaches. Biochem J 2008; 409:701-9. [DOI: 10.1042/bj20071261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous results indicate that apoE (apolipoprotein E) may be associated with the nucleus in specific cell types, particularly under stress conditions such as serum starvation. In addition, nuclear apoE localization in ovarian cancer was recently shown to be correlated with patient survival. In order to better understand the factors associated with apoE nuclear localization, we examined intracellular apoE trafficking using live-cell imaging of CHO (Chinese-hamster ovary) cells that constitutively expressed apoE–GFP (green fluorescent protein). In addition, we used biotinylated apoE (in a lipid-free state and as a lipidated discoidal complex) to track the uptake and potential nuclear targeting of exogenous apoE. Our results indicate that a small proportion of apoE–GFP is detected in the nucleus of living apoE–GFP-expressing CHO cells and that the level of apoE–GFP in the nucleus is increased with serum starvation. Exposure of control CHO cells to exogenous apoE–GFP did not result in nuclear apoE–GFP localization in the recipient cells. Similarly, biotinylated apoE did not reach the nucleus of control CHO cells or SK-N-SH neurons. In contrast, when biotinylated apoE was delivered to recipient cells as a lipidated apoE disc, apoE was detected in the nucleus, suggesting that the lipoprotein complex alters the intracellular degradation or trafficking of apoE. Biotinylated apoE discs containing each of the three common human apoE isoforms (E2, E3 and E4) were also tested for nuclear trafficking. All three apoE isoforms were equally detected in the nucleus. These studies provide new evidence that apoE may be targeted to the nucleus and shed light on factors that regulate this process.
Collapse
|