1
|
Kaplan A, El‐Samadi L, Zahreddine R, Amin G, Booz GW, Zouein FA. Canonical or non-canonical, all aspects of G protein-coupled receptor kinase 2 in heart failure. Acta Physiol (Oxf) 2025; 241:e70010. [PMID: 39960030 PMCID: PMC11831727 DOI: 10.1111/apha.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
G protein-coupled receptor kinase 2 (GRK2) with its multidomain structure performs various crucial cellular functions under both normal and pathological conditions. Overexpression of GRK2 is linked to cardiovascular diseases, and its inhibition or deletion has been shown to be protective. The functions of GRK2 extend beyond G protein-coupled receptor (GPCR) signaling, influencing non-GPCR substrates as well. Increased GRK2 in heart failure (HF) initially may be protective but ultimately leads to maladaptive effects such as GPCR desensitization, insulin resistance, and apoptosis. The multifunctional nature of GRK2, including its action in hypertrophic gene expression, insulin signaling, and cardiac fibrosis, highlights its complex role in HF pathogenesis. Additionally, GRK2 is involved in mitochondrial biogenesis and lipid metabolism. GRK2 also regulates epinephrine secretion from the adrenal gland and its increase in circulating lymphocytes can be used to monitor HF status. Overall, GRK2 is a multifaceted protein with significant implications for HF and the regulation of GRK2 is crucial for understanding and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and ToxicologyAmerican University of Beirut Faculty of MedicineBeirutLebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of ExcellenceAmerican University of Beirut Medical CenterBeirutLebanon
- Cardiology ClinicKemer Public HospitalAntalyaTurkey
| | - Lana El‐Samadi
- Department of Pharmacology and ToxicologyAmerican University of Beirut Faculty of MedicineBeirutLebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of ExcellenceAmerican University of Beirut Medical CenterBeirutLebanon
| | - Rana Zahreddine
- Department of Pharmacology and ToxicologyAmerican University of Beirut Faculty of MedicineBeirutLebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of ExcellenceAmerican University of Beirut Medical CenterBeirutLebanon
| | - Ghadir Amin
- Department of Pharmacology and ToxicologyAmerican University of Beirut Faculty of MedicineBeirutLebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of ExcellenceAmerican University of Beirut Medical CenterBeirutLebanon
- Department of Pharmacology and Toxicology, School of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Fouad A. Zouein
- Department of Pharmacology and ToxicologyAmerican University of Beirut Faculty of MedicineBeirutLebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of ExcellenceAmerican University of Beirut Medical CenterBeirutLebanon
- Department of Pharmacology and Toxicology, School of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| |
Collapse
|
2
|
Bledzka KM, Manaserh IH, Ifft AD, Rennison JH, Bohacek M, Vasiliauskas KM, Grondolsky J, Ampong I, Van Wagoner DR, Schumacher SM. Female Specific Restrictive Cardiomyopathy and Metabolic Dysregulation in transgenic mice expressing a Peptide of the Amino-Terminus of GRK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618348. [PMID: 39463972 PMCID: PMC11507674 DOI: 10.1101/2024.10.14.618348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cardiovascular disease and heart failure are a major health challenge, with sex differences in pathophysiology and treatment responses critically influencing patient outcomes. G protein-coupled receptor (GPCR) kinase 2 (GRK2) is a pivotal regulator of cellular signaling whose elevation is a hallmark of heart failure progression. Its complex network of protein interactions impact a wide range of physiological and pathophysiological processes including cardiac function. In this study, we examined the effects of cardiac-restricted expression of an amino-terminal peptide of GRK2 (βARKnt) in female mice subjected to acute and chronic pressure overload. Our findings reveal that that βARKnt affects hypertrophy development and cardiac function differently in female mice than in males, leading to a transition to heart failure not observed in control females or βARKnt males. Notably, the βARKnt female mice exhibited baseline hypertrophy with distinct left atrial morphology, increased fibrosis, and immune cell infiltration compared to the controls, which progressed under chronic stress, indicating adverse cardiac remodeling. Furthermore, βARKnt female mice, unlike males, exhibit impaired tissue respiration following acute pressure overload and altered glucose sensitivity and insulin tolerance, highlighting significant remodeling of cardiac and systemic metabolism.
Collapse
|
3
|
Underwood L, Jiang CS, Oh JY, Sato PY. Unheralded Adrenergic Receptor Signaling in Cellular Oxidative Stress and Death. CURRENT OPINION IN PHYSIOLOGY 2024; 40:100766. [PMID: 39070968 PMCID: PMC11271747 DOI: 10.1016/j.cophys.2024.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Catecholamines (CAs) bind and activate adrenergic receptors (ARs), thus exuding a key role in cardiac adaptations to global physiological queues. Prolonged exposure to high levels of CAs promotes deleterious effects on the cardiovascular system, leading to organ dysfunction and heart failure (HF). In addition to the prominent role of ARs in inotropic and chronotropic responses, recent studies have delved into elucidating mechanisms contributing to CA toxicity and cell death. Central to this process is understanding the involvement of α1AR and βAR in cardiac remodeling and mechanisms of cellular survival. Here, we highlight the complexity of AR signaling and the fundamental need for a better understanding of its contribution to oxidative stress and cell death. This crucial informational nexus remains a barrier to the development of new therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Lilly Underwood
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Chun-Sun Jiang
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Joo-Yeun Oh
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Priscila Y Sato
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
4
|
Manaserh IH, Bledzka KM, Ampong I, Junker A, Grondolsky J, Schumacher SM. A cardiac amino-terminal GRK2 peptide inhibits insulin resistance yet enhances maladaptive cardiovascular and brown adipose tissue remodeling in females during diet-induced obesity. J Mol Cell Cardiol 2023; 183:81-97. [PMID: 37714510 PMCID: PMC10591815 DOI: 10.1016/j.yjmcc.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/06/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Obesity and metabolic disorders are increasing in epidemic proportions, leading to poor outcomes including heart failure. With a growing recognition of the effect of adipose tissue dysfunction on heart disease, it is less well understood how the heart can influence systemic metabolic homeostasis. Even less well understood is sex differences in cardiometabolic responses. Previously, our lab investigated the role of the amino-terminus of GRK2 in cardiometabolic remodeling using transgenic mice with cardiac restricted expression of a short peptide, βARKnt. Male mice preserved insulin sensitivity, enhanced metabolic flexibility and adipose tissue health, elicited cardioprotection, and improved cardiac metabolic signaling. To examine the effect of cardiac βARKnt expression on cardiac and metabolic function in females in response to diet-induced obesity, we subjected female mice to high fat diet (HFD) to trigger cardiac and metabolic adaptive changes. Despite equivalent weight gain, βARKnt mice exhibited improved glucose tolerance and insulin sensitivity. However, βARKnt mice displayed a progressive reduction in energy expenditure during cold challenge after acute and chronic HFD stress. They also demonstrated reduced cardiac function and increased markers of maladaptive remodeling and tissue injury, and decreased or aberrant metabolic signaling. βARKnt mice exhibited reduced lipid deposition in the brown adipose tissue (BAT), but delayed or decreased markers of BAT activation and function suggested multiple mechanisms contributed to the decreased thermogenic capacity. These data suggest a non-canonical cardiac regulation of BAT lipolysis and function that highlights the need for studies elucidating the mechanisms of sex-specific responses to metabolic dysfunction.
Collapse
Affiliation(s)
- Iyad H Manaserh
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kamila M Bledzka
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Isaac Ampong
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alex Junker
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Grondolsky
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sarah M Schumacher
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
5
|
Wang J, Tomar D, Martin TG, Dubey S, Dubey PK, Song J, Landesberg G, McCormick MG, Myers VD, Merali S, Merali C, Lemster B, McTiernan CF, Khalili K, Madesh M, Cheung JY, Kirk JA, Feldman AM. Bag3 Regulates Mitochondrial Function and the Inflammasome Through Canonical and Noncanonical Pathways in the Heart. JACC Basic Transl Sci 2023; 8:820-839. [PMID: 37547075 PMCID: PMC10401293 DOI: 10.1016/j.jacbts.2022.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 08/08/2023]
Abstract
B-cell lymphoma 2-associated athanogene-3 (Bag3) is expressed in all animal species, with Bag3 levels being most prominent in the heart, the skeletal muscle, the central nervous system, and in many cancers. Preclinical studies of Bag3 biology have focused on animals that have developed compromised cardiac function; however, the present studies were performed to identify the pathways perturbed in the heart even before the occurrence of clinical signs of dilatation and failure of the heart. These studies show that hearts carrying variants that knockout one allele of BAG3 have significant alterations in multiple cellular pathways including apoptosis, autophagy, mitochondrial homeostasis, and the inflammasome.
Collapse
Affiliation(s)
- JuFang Wang
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Dhadendra Tomar
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas G. Martin
- Department of Cell and Molecular Physiology, Loyola University Strich School of Medicine, Maywood, Illinois, USA
| | - Shubham Dubey
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Praveen K. Dubey
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jianliang Song
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Gavin Landesberg
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Michael G. McCormick
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | | - Salim Merali
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Carmen Merali
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Bonnie Lemster
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Charles F. McTiernan
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kamel Khalili
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Muniswamy Madesh
- Department of Medicine, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Joseph Y. Cheung
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan A. Kirk
- Department of Cell and Molecular Physiology, Loyola University Strich School of Medicine, Maywood, Illinois, USA
| | - Arthur M. Feldman
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Fu L, Adu-Amankwaah J, Sang L, Tang Z, Gong Z, Zhang X, Li T, Sun H. Gender differences in GRK2 in cardiovascular diseases and its interactions with estrogen. Am J Physiol Cell Physiol 2023; 324:C505-C516. [PMID: 36622065 DOI: 10.1152/ajpcell.00407.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a multifunctional protein involved in regulating G protein-coupled receptor (GPCR) and non-GPCR signaling in the body. In the cardiovascular system, increased expression of GRK2 has been implicated in the occurrence and development of several cardiovascular diseases (CVDs). Recent studies have found gender differences in GRK2 in the cardiovascular system under physiological and pathological conditions, where GRK2's expression and activity are increased in males than in females. The incidence of CVDs in premenopausal women is lower than in men of the same age, which is related to estrogen levels. Given the shared location of GRK2 and estrogen receptors, estrogen may interact with GRK2 by modulating vital molecules such as calmodulin (CaM), caveolin, RhoA, nitrate oxide (NO), and mouse double minute 2 homolog (Mdm2), via signaling pathways mediated by estrogen's genomic (ERα and ERβ), and non-genomic (GPER) receptors, conferring cardiovascular protection in females. Highlighting the gender differences in GRK2 and understanding its interaction with estrogen in the cardiovascular system is pertinent in treating gender-related CVDs. As a result, this article explores the gender differences of GRK2 in the cardiovascular system and its relationship with estrogen during disease conditions. Estrogen's protective and therapeutic effects and its mechanism on GRK2-related cardiovascular diseases have also been discussed.
Collapse
Affiliation(s)
- Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Lili Sang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ziqing Tang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zheng Gong
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China.,School of Public Affairs & Governance, Silliman University, Dumaguete, Philippines
| | - Xiaoyan Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Tao Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
7
|
Ferrero KM, Koch WJ. GRK2 in cardiovascular disease and its potential as a therapeutic target. J Mol Cell Cardiol 2022; 172:14-23. [PMID: 35878706 DOI: 10.1016/j.yjmcc.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases (CVDs) represent the leading cause of death globally. Despite major advances in the field of pharmacological CVD treatments, particularly in the field of heart failure (HF) research, case numbers and overall mortality remain high and have trended upwards over the last few years. Thus, identifying novel molecular targets for developing HF therapeutics remains a key research focus. G protein-coupled receptors (GPCRs) are critical myocardial signal transducers which regulate cardiac contractility, growth, adaptation and metabolism. Additionally, GPCR dysregulation underlies multiple models of cardiac pathology, and most pharmacological therapeutics currently used in HF target these receptors. Currently-approved treatments have improved patient outcomes, but therapies to stop or reverse HF are lacking. A recent focus on GPCR intracellular-regulating proteins such as GPCR kinases (GRKs) has uncovered GRK2 as a promising target for combating HF. Current literature strongly establishes increased levels and activity of GRK2 in multiple models of CVD. Additionally, the GRK2 interactome includes numerous proteins which interact with differential domains of GRK2 to modulate both beneficial and deleterious signaling pathways in the heart, indicating that these domains can be targeted with a high level of specificity unique to various cardiac pathologies. These data support the premise that GRK2 should be at the forefront of a novel investigative drug search. This perspective reviews cardiac GPCRs, describes the structure and functions of GRK2 in cardiac function and maladaptive pathology, and summarizes the ongoing and future research for targeting this critical kinase across cellular, animal and human models of cardiac dysfunction and HF.
Collapse
Affiliation(s)
- Kimberly M Ferrero
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Philadelphia, PA, USA; Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, USA
| | - Walter J Koch
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Philadelphia, PA, USA; Lewis Katz School of Medicine at Temple University, Center for Translational Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Gallinat A, Mendieta G, Vilahur G, Padró T, Badimon L. DJ-1 administration exerts cardioprotection in a mouse model of acute myocardial infarction. Front Pharmacol 2022; 13:1002755. [PMID: 36210822 PMCID: PMC9539284 DOI: 10.3389/fphar.2022.1002755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/09/2022] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases, and particularly acute myocardial infarction (MI), are the most common causes of death worldwide. Infarct size is the major predictor of clinical outcomes in MI. The Parkinson’s disease associated protein, DJ-1 (also known as PARK7), is a multifunctional protein with chaperone, redox sensing and mitochondrial homeostasis activities. Previously, we provided the evidence for a central role of endogenous DJ-1 in the cardioprotection of post-conditioning. In the present study, we tested the hypothesis that systemic administration of recombinant DJ-1 exerts cardioprotective effects in a mouse model of MI and also explored the associated transcriptional response. We report a significant treatment-induced reduction in infarct size, leukocyte infiltration, apoptosis and oxidative stress. Effects potentially mediated by G-protein-coupled receptor signaling and modulation of the immune response. Collectively, our results indicate a protective role for the exogenously administrated DJ-1 upon MI, and provide the first line of evidence for an extracellular activity of DJ-1 regulating cardiac injury in vivo.
Collapse
Affiliation(s)
- Alex Gallinat
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Guiomar Mendieta
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CIBERCV-Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Padró
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CIBERCV-Instituto de Salud Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC, IR-Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CIBERCV-Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular Research Chair, UAB, Barcelona, Spain
- *Correspondence: Lina Badimon,
| |
Collapse
|
9
|
Jiang H, Galtes D, Wang J, Rockman HA. G protein-coupled receptor signaling: transducers and effectors. Am J Physiol Cell Physiol 2022; 323:C731-C748. [PMID: 35816644 PMCID: PMC9448338 DOI: 10.1152/ajpcell.00210.2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are of considerable interest due to their importance in a wide range of physiological functions and in a large number of Food and Drug Administration (FDA)-approved drugs as therapeutic entities. With continued study of their function and mechanism of action, there is a greater understanding of how effector molecules interact with a receptor to initiate downstream effector signaling. This review aims to explore the signaling pathways, dynamic structures, and physiological relevance in the cardiovascular system of the three most important GPCR signaling effectors: heterotrimeric G proteins, GPCR kinases (GRKs), and β-arrestins. We will first summarize their prominent roles in GPCR pharmacology before transitioning into less well-explored areas. As new technologies are developed and applied to studying GPCR structure and their downstream effectors, there is increasing appreciation for the elegance of the regulatory mechanisms that mediate intracellular signaling and function.
Collapse
Affiliation(s)
- Haoran Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Daniella Galtes
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
10
|
Zhai R, Snyder J, Montgomery S, Sato PY. Double life: How GRK2 and β-arrestin signaling participate in diseases. Cell Signal 2022; 94:110333. [PMID: 35430346 PMCID: PMC9929935 DOI: 10.1016/j.cellsig.2022.110333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
Abstract
G-protein coupled receptor (GPCR) kinases (GRKs) and β-arrestins play key roles in GPCR and non-GPCR cellular responses. In fact, GRKs and arrestins are involved in a plethora of pathways vital for physiological maintenance of inter- and intracellular communication. Here we review decades of research literature spanning from the discovery, identification of key structural elements, and findings supporting the diverse roles of these proteins in GPCR-mediated pathways. We then describe how GRK2 and β-arrestins partake in non-GPCR signaling and briefly summarize their involvement in various pathologies. We conclude by presenting gaps in knowledge and our prospective on the promising pharmacological potential in targeting these proteins and/or downstream signaling. Future research is warranted and paramount for untangling these novel and promising roles for GRK2 and arrestins in metabolism and disease progression.
Collapse
Affiliation(s)
| | | | | | - Priscila Y. Sato
- Corresponding author at: Drexel University College of Medicine, Department of Pharmacology and Physiology, 245 N 15th Street, NCB 8152, Philadelphia, PA 19102, USA. (P.Y. Sato)
| |
Collapse
|
11
|
Lycium barbarum polysaccharide antagonizes cardiomyocyte apoptosis by inhibiting the upregulation of GRK2 induced by I/R injury, and salvage mitochondrial fission/fusion imbalance and AKT/eNOS signaling. Cell Signal 2022; 92:110252. [DOI: 10.1016/j.cellsig.2022.110252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022]
|
12
|
de Lucia C, Grisanti LA, Borghetti G, Piedepalumbo M, Ibetti J, Lucchese AM, Barr EW, Roy R, Okyere AD, Murphy HC, Gao E, Rengo G, Houser SR, Tilley DG, Koch WJ. G protein-coupled receptor kinase 5 (GRK5) contributes to impaired cardiac function and immune cell recruitment in post-ischemic heart failure. Cardiovasc Res 2022; 118:169-183. [PMID: 33560342 PMCID: PMC8752360 DOI: 10.1093/cvr/cvab044] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS Myocardial infarction (MI) is the most common cause of heart failure (HF) worldwide. G protein-coupled receptor kinase 5 (GRK5) is upregulated in failing human myocardium and promotes maladaptive cardiac hypertrophy in animal models. However, the role of GRK5 in ischemic heart disease is still unknown. In this study, we evaluated whether myocardial GRK5 plays a critical role post-MI in mice and included the examination of specific cardiac immune and inflammatory responses. METHODS AND RESULTS Cardiomyocyte-specific GRK5 overexpressing transgenic mice (TgGRK5) and non-transgenic littermate control (NLC) mice as well as cardiomyocyte-specific GRK5 knockout mice (GRK5cKO) and wild type (WT) were subjected to MI and, functional as well as structural changes together with outcomes were studied. TgGRK5 post-MI mice showed decreased cardiac function, augmented left ventricular dimension and decreased survival rate compared to NLC post-MI mice. Cardiac hypertrophy and fibrosis as well as fetal gene expression were increased post-MI in TgGRK5 compared to NLC mice. In TgGRK5 mice, GRK5 elevation produced immuno-regulators that contributed to the elevated and long-lasting leukocyte recruitment into the injured heart and ultimately to chronic cardiac inflammation. We found an increased presence of pro-inflammatory neutrophils and macrophages as well as neutrophils, macrophages and T-lymphocytes at 4-days and 8-weeks respectively post-MI in TgGRK5 hearts. Conversely, GRK5cKO mice were protected from ischemic injury and showed reduced early immune cell recruitment (predominantly monocytes) to the heart, improved contractility and reduced mortality compared to WT post-MI mice. Interestingly, cardiomyocyte-specific GRK2 transgenic mice did not share the same phenotype of TgGRK5 mice and did not have increased cardiac leukocyte migration and cytokine or chemokine production post-MI. CONCLUSIONS Our study shows that myocyte GRK5 has a crucial and GRK-selective role on the regulation of leucocyte infiltration into the heart, cardiac function and survival in a murine model of post-ischemic HF, supporting GRK5 inhibition as a therapeutic target for HF.
Collapse
Affiliation(s)
- Claudio de Lucia
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Michela Piedepalumbo
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Anna Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Eric W Barr
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Rajika Roy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ama Dedo Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Haley Christine Murphy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, Division of Geriatrics, Federico II University, Via S. Pansini, 5, Naples, Italy
- Laboratory of neurovegetative system pathophysiology, Istituti Clinici Scientifici ICS Maugeri, IRCCS Istituto Scientifico di Telese Terme, Benevento, Italy
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Pilgrim T, Vollenbroich R, Deckarm S, Gräni C, Dobner S, Stark AW, Erne SA, Babongo Bosombo F, Fischer K, Stortecky S, Reusser N, Fürholz M, Siontis GCM, Heg D, Hunziker L, Windecker S, Lanz J. Effect of Paroxetine-Mediated G-Protein Receptor Kinase 2 Inhibition vs Placebo in Patients With Anterior Myocardial Infarction: A Randomized Clinical Trial. JAMA Cardiol 2021; 6:1171-1176. [PMID: 34259826 DOI: 10.1001/jamacardio.2021.2247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Importance Left ventricular remodeling following acute myocardial infarction results in progressive myocardial dysfunction and adversely affects prognosis. Objective To investigate the efficacy of paroxetine-mediated G-protein-coupled receptor kinase 2 inhibition to mitigate adverse left ventricular remodeling in patients presenting with acute myocardial infarction. Design, Setting, and Participants This double-blind, placebo-controlled randomized clinical trial was conducted at Bern University Hospital, Bern, Switzerland. Patients with acute anterior ST-segment elevation myocardial infarction with left ventricular ejection fraction (LVEF) of 45% or less were randomly allocated to 2 study arms between October 26, 2017, and September 21, 2020. Interventions Patients in the experimental arm received 20 mg of paroxetine daily; patients in the control group received a placebo daily. Both treatments were provided for 12 weeks. Main Outcomes and Measures The primary end point was the difference in patient-level improvement of LVEF between baseline and 12 weeks as assessed by cardiac magnetic resonance tomography. Secondary end points were changes in left ventricular dimensions and late gadolinium enhancement between baseline and follow-up. Results Fifty patients (mean [SD] age, 62 [13] years; 41 men [82%]) with acute anterior myocardial infarction were randomly allocated to paroxetine or placebo, of whom 38 patients underwent cardiac magnetic resonance imaging both at baseline and 12 weeks. There was no difference in recovery of LVEF between the experimental group (mean [SD] change, 4.0% [7.0%]) and the control group (mean [SD] change, 6.3% [6.3%]; mean difference, -2.4% [95% CI, -6.8% to 2.1%]; P = .29) or changes in left ventricular end-diastolic volume (mean difference, 13.4 [95% CI, -12.3 to 39.0] mL; P = .30) and end-systolic volume (mean difference, 11.4 [95% CI, -3.6 to 26.4] mL; P = .13). Late gadolinium enhancement as a percentage of the total left ventricular mass decreased to a larger extent in the experimental group (mean [SD], -13.6% [12.9%]) compared with the control group (mean [SD], -4.5% [9.5%]; mean difference, -9.1% [95% CI, -16.6% to -1.6%]; P = .02). Conclusions and Relevance In this trial, treatment with paroxetine did not improve LVEF after myocardial infarction compared with placebo. Trial Registration ClinicalTrials.gov Identifier: NCT03274752.
Collapse
Affiliation(s)
- Thomas Pilgrim
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - René Vollenbroich
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sarah Deckarm
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Dobner
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anselm W Stark
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie A Erne
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Kady Fischer
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefan Stortecky
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicole Reusser
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Monika Fürholz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - George C M Siontis
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dik Heg
- Clinical Trials Unit, University of Bern, Bern, Switzerland
| | - Lukas Hunziker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jonas Lanz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Kwon JS, Schumacher SM, Gao E, Chuprun JK, Ibetti J, Roy R, Khan M, Kishore R, Koch WJ. Characterization of βARKct engineered cellular extracellular vesicles and model specific cardioprotection. Am J Physiol Heart Circ Physiol 2021; 320:H1276-H1289. [PMID: 33513081 PMCID: PMC8260382 DOI: 10.1152/ajpheart.00571.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
Recent data supporting any benefit of stem cell therapy for ischemic heart disease have suggested paracrine-based mechanisms via extracellular vesicles (EVs) including exosomes. We have previously engineered cardiac-derived progenitor cells (CDCs) to express a peptide inhibitor, βARKct, of G protein-coupled receptor kinase 2, leading to improvements in cell proliferation, survival, and metabolism. In this study, we tested whether βARKct-CDC EVs would be efficacious when applied to stressed myocytes in vitro and in vivo. When isolated EVs from βARKct-CDCs and control GFP-CDCs were added to cardiomyocytes in culture, they both protected against hypoxia-induced apoptosis. We tested whether these EVs could protect the mouse heart in vivo, following exposure either to myocardial infarction (MI) or acute catecholamine toxicity. Both types of EVs significantly protected against ischemic injury and improved cardiac function after MI compared with mice treated with EVs from mouse embryonic fibroblasts; however, βARKct EVs treated mice did display some unique beneficial properties including significantly altered pro- and anti-inflammatory cytokines. Importantly, in a catecholamine toxicity model of heart failure (HF), myocardial injections of βARKct-containing EVs were superior at preventing HF compared with control EVs, and this catecholamine toxicity protection was recapitulated in vitro. Therefore, introduction of the βARKct into cellular EVs can have improved reparative properties in the heart especially against catecholamine damage, which is significant as sympathetic nervous system activity is increased in HF.NEW & NOTEWORTHY βARKct, the peptide inhibitor of GRK2, improves survival and metabolic functions of cardiac-derived progenitor cells. As any benefit of stem cells in the ischemic and injured heart suggests paracrine mechanisms via secreted EVs, we investigated whether CDC-βARKct engineered EVs would show any benefit over control CDC-EVs. Compared with control EVs, βARKct-containing EVs displayed some unique beneficial properties that may be due to altered pro- and anti-inflammatory cytokines within the vesicles.
Collapse
Affiliation(s)
- Jin-Sook Kwon
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Sarah M Schumacher
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | | | - J Kurt Chuprun
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jessica Ibetti
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Rajika Roy
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Raj Kishore
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Coleman RC, Eguchi A, Lieu M, Roy R, Barr EW, Ibetti J, Lucchese AM, Peluzzo AM, Gresham K, Chuprun JK, Koch WJ. A peptide of the N terminus of GRK5 attenuates pressure-overload hypertrophy and heart failure. Sci Signal 2021; 14:14/676/eabb5968. [PMID: 33785612 DOI: 10.1126/scisignal.abb5968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aberrant changes in gene expression underlie the pathogenesis and progression of pressure-overload heart failure, leading to maladaptive cardiac hypertrophy, ventricular remodeling, and contractile dysfunction. Signaling through the G protein Gq triggers maladaptation and heart failure, in part through the activation of G protein-coupled receptor kinase 5 (GRK5). Hypertrophic stimuli induce the accumulation of GRK5 in the nuclei of cardiomyocytes, where it regulates pathological gene expression through multiple transcription factors including NFAT. The nuclear targeting of GRK5 is mediated by an amino-terminal (NT) domain that binds to calmodulin (CaM). Here, we sought to prevent GRK5-mediated pathology in pressure-overload maladaptation and heart failure by expressing in cardiomyocytes a peptide encoding the GRK5 NT (GRK5nt) that encompasses the CaM binding domain. In cultured cardiomyocytes, GRK5nt expression abrogated Gq-coupled receptor-mediated hypertrophy, including attenuation of pathological gene expression and the transcriptional activity of NFAT and NF-κB. We confirmed that GRK5nt bound to and blocked Ca2+-CaM from associating with endogenous GRK5, thereby preventing GRK5 nuclear accumulation after pressure overload. We generated mice that expressed GRKnt in a cardiac-specific fashion (TgGRK5nt mice), which exhibited reduced cardiac hypertrophy, ventricular dysfunction, pulmonary congestion, and cardiac fibrosis after chronic transverse aortic constriction. Together, our data support a role for GRK5nt as an inhibitor of pathological GRK5 signaling that prevents heart failure.
Collapse
Affiliation(s)
- Ryan C Coleman
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Akito Eguchi
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Melissa Lieu
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Rajika Roy
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Eric W Barr
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Anna-Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Amanda M Peluzzo
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kenneth Gresham
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - J Kurt Chuprun
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
16
|
Chaudhary PK, Kim S. The GRKs Reactome: Role in Cell Biology and Pathology. Int J Mol Sci 2021; 22:ijms22073375. [PMID: 33806057 PMCID: PMC8036551 DOI: 10.3390/ijms22073375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptor kinases (GRKs) are protein kinases that function in concert with arrestins in the regulation of a diverse class of G protein-coupled receptors (GPCRs) signaling. Although GRKs and arrestins are key participants in the regulation of GPCR cascades, the complex regulatory mechanisms of GRK expression, its alternation, and their function are not thoroughly understood. Several studies together with the work from our lab in recent years have revealed the critical role of these kinases in various physiological and pathophysiological processes, including cardiovascular biology, inflammation and immunity, neurodegeneration, thrombosis, and hemostasis. A comprehensive understanding of the mechanisms underlying functional interactions with multiple receptor proteins and how these interactions take part in the development of various pathobiological processes may give rise to novel diagnostic and therapeutic strategies. In this review, we summarize the current research linking the role of GRKs to various aspects of cell biology, pathology, and therapeutics, with a particular focus on thrombosis and hemostasis.
Collapse
|
17
|
Bledzka KM, Manaserh IH, Grondolsky J, Pfleger J, Roy R, Gao E, Chuprun JK, Koch WJ, Schumacher SM. A peptide of the amino-terminus of GRK2 induces hypertrophy and yet elicits cardioprotection after pressure overload. J Mol Cell Cardiol 2021; 154:137-153. [PMID: 33548241 DOI: 10.1016/j.yjmcc.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptor (GPCR) kinase 2 (GRK2) expression and activity are elevated early on in response to several forms of cardiovascular stress and are a hallmark of heart failure. Interestingly, though, in addition to its well-characterized role in regulating GPCRs, mounting evidence suggests a GRK2 "interactome" that underlies a great diversity in its functional roles. Several such GRK2 interacting partners are important for adaptive and maladaptive myocyte growth; therefore, an understanding of domain-specific interactions with signaling and regulatory molecules could lead to novel targets for heart failure therapy. Herein, we subjected transgenic mice with cardiac restricted expression of a short, amino terminal fragment of GRK2 (βARKnt) to pressure overload and found that unlike their littermate controls or previous GRK2 fragments, they exhibited an increased left ventricular wall thickness and mass prior to cardiac stress that underwent proportional hypertrophic growth to controls after acute pressure overload. Importantly, despite this enlarged heart, βARKnt mice did not undergo the expected transition to heart failure observed in controls. Further, βARKnt expression limited adverse left ventricular remodeling and increased cell survival signaling. Proteomic analysis to identify βARKnt binding partners that may underlie the improved cardiovascular phenotype uncovered a selective functional interaction of both endogenous GRK2 and βARKnt with AKT substrate of 160 kDa (AS160). AS160 has emerged as a key downstream regulator of insulin signaling, integrating physiological and metabolic cues to couple energy demand to membrane recruitment of Glut4. Our preliminary data indicate that in βARKnt mice, cardiomyocyte insulin signaling is improved during stress, with a coordinate increase in spare respiratory activity and ATP production without metabolite switching. Surprisingly, these studies also revealed a significant decrease in gonadal fat weight, equivalent to human abdominal fat, in male βARKnt mice at baseline and following cardiac stress. These data suggest that the enhanced AS160-mediated signaling in the βARKnt mice may ameliorate pathological cardiac remodeling through direct modulation of insulin signaling within cardiomyocytes, and translate these to beneficial effects on systemic metabolism.
Collapse
Affiliation(s)
- Kamila M Bledzka
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Iyad H Manaserh
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Grondolsky
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Pfleger
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rajika Roy
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - J Kurt Chuprun
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sarah M Schumacher
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
18
|
Eguchi A, Coleman R, Gresham K, Gao E, Ibetti J, Chuprun JK, Koch WJ. GRK5 is a regulator of fibroblast activation and cardiac fibrosis. Proc Natl Acad Sci U S A 2021; 118:e2012854118. [PMID: 33500351 PMCID: PMC7865138 DOI: 10.1073/pnas.2012854118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathological remodeling of the heart is a hallmark of chronic heart failure (HF) and these structural changes further perpetuate the disease. Cardiac fibroblasts are the critical cell type that is responsible for maintaining the structural integrity of the heart. Stress conditions, such as a myocardial infarction (MI), can activate quiescent fibroblasts into synthetic and contractile myofibroblasts. G protein-coupled receptor kinase 5 (GRK5) is an important mediator of cardiovascular homeostasis through dampening of GPCR signaling, and is expressed in the heart and up-regulated in human HF. Of note, GRK5 has been demonstrated to translocate to the nucleus in cardiomyocytes in a calcium-calmodulin (Ca2+-CAM)-dependent manner, promoting hypertrophic gene transcription through activation of nuclear factor of activated T cells (NFAT). Interestingly, NFAT is also involved in fibroblast activation. GRK5 is highly expressed and active in cardiac fibroblasts; however, its pathophysiological role in these crucial cardiac cells is unknown. We demonstrate using adult cardiac fibroblasts that genetic deletion of GRK5 inhibits angiotensin II (AngII)-mediated fibroblast activation. Fibroblast-specific deletion of GRK5 in mice led to decreased fibrosis and cardiac hypertrophy after chronic AngII infusion or after ischemic injury compared to nontransgenic littermate controls (NLCs). Mechanistically, we show that nuclear translocation of GRK5 is involved in fibroblast activation. These data demonstrate that GRK5 is a regulator of fibroblast activation in vitro and cardiac fibrosis in vivo. This adds to previously published data which demonstrate the potential beneficial effects of GRK5 inhibition in the context of cardiac disease.
Collapse
Affiliation(s)
- Akito Eguchi
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Ryan Coleman
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Kenneth Gresham
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - J Kurt Chuprun
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140;
- Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| |
Collapse
|
19
|
GRKs and Epac1 Interaction in Cardiac Remodeling and Heart Failure. Cells 2021; 10:cells10010154. [PMID: 33466800 PMCID: PMC7830799 DOI: 10.3390/cells10010154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/25/2022] Open
Abstract
β-adrenergic receptors (β-ARs) play a major role in the physiological regulation of cardiac function through signaling routes tightly controlled by G protein-coupled receptor kinases (GRKs). Although the acute stimulation of β-ARs and the subsequent production of cyclic AMP (cAMP) have beneficial effects on cardiac function, chronic stimulation of β-ARs as observed under sympathetic overdrive promotes the development of pathological cardiac remodeling and heart failure (HF), a leading cause of mortality worldwide. This is accompanied by an alteration in cAMP compartmentalization and the activation of the exchange protein directly activated by cAMP 1 (Epac1) signaling. Among downstream signals of β-ARs, compelling evidence indicates that GRK2, GRK5, and Epac1 represent attractive therapeutic targets for cardiac disease. Here, we summarize the pathophysiological roles of GRK2, GRK5, and Epac1 in the heart. We focus on their signalosome and describe how under pathological settings, these proteins can cross-talk and are part of scaffolded nodal signaling systems that contribute to a decreased cardiac function and HF development.
Collapse
|
20
|
Adenoviral βARKct Cardiac Gene Transfer Ameliorates Postresuscitation Myocardial Injury in a Porcine Model of Cardiac Arrest. Shock 2020; 52:631-638. [PMID: 31725109 DOI: 10.1097/shk.0000000000001320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of the study was to determine whether the inhibition of the G-protein-coupled receptor kinase 2 by adenoviral βARKct cardiac gene transfer can ameliorate postresuscitation myocardial injury in pigs with cardiac arrest (CA) and explore the mechanism of myocardial protection. METHODS Male landrace domestic pigs were randomized into the sham group (anesthetized and instrumented, but ventricular fibrillation was not induced) (n = 4), control group (ventricular fibrillation 8 min, n = 8), and βARKct group (ventricular fibrillation 8 min, n = 8). Hemodynamic parameters were monitored continuously. Blood samples were collected at baseline, 30 min, 2 h, 4 h, and 6 h after the return of spontaneous circulation (ROSC). Left ventricular ejection fraction was assessed by echocardiography at baseline and 6 h after ROSC. These animals were euthanized, and the cardiac tissue was removed for analysis at 6 h after ROSC. RESULTS Compared with those in the sham group, left ventricular +dp/dtmax, -dp/dtmax, cardiac output (CO), and ejection fraction (EF) in the control group and the βARKct group were significantly decreased at 6 h after the restoration of spontaneous circulation. However, the βARKct treatment produced better left ventricular +dp/dtmax, -dp/dtmax, CO, and EF after ROSC. The βARKct treatment also produced lower serum cardiac troponin I, CK-MB, and lactate after ROSC. Furthermore, the adenoviral βARKct gene transfer significantly increased β1 adrenergic receptors, SERCA2a, RyR2 levels, and decreased GRK2 levels compared to control. CONCLUSIONS The inhibition of GRK2 by adenoviral βARKct cardiac gene transfer can ameliorate postresuscitation myocardial injury through beneficial effects on restoring the sarcoplasmic reticulum Ca-handling proteins expression and upregulating the β1-adrenergic receptor level after cardiac arrest.
Collapse
|
21
|
Pfleger J, Coleman RC, Ibetti J, Roy R, Kyriazis ID, Gao E, Drosatos K, Koch WJ. Genomic Binding Patterns of Forkhead Box Protein O1 Reveal Its Unique Role in Cardiac Hypertrophy. Circulation 2020; 142:882-898. [PMID: 32640834 DOI: 10.1161/circulationaha.120.046356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cardiac hypertrophic growth is mediated by robust changes in gene expression and changes that underlie the increase in cardiomyocyte size. The former is regulated by RNA polymerase II (pol II) de novo recruitment or loss; the latter involves incremental increases in the transcriptional elongation activity of pol II that is preassembled at the transcription start site. The differential regulation of these distinct processes by transcription factors remains unknown. Forkhead box protein O1 (FoxO1) is an insulin-sensitive transcription factor that is also regulated by hypertrophic stimuli in the heart. However, the scope of its gene regulation remains unexplored. METHODS To address this, we performed FoxO1 chromatin immunoprecipitation-deep sequencing in mouse hearts after 7 days of isoproterenol injections (3 mg·kg-1·mg-1), transverse aortic constriction, or vehicle injection/sham surgery. RESULTS Our data demonstrate increases in FoxO1 chromatin binding during cardiac hypertrophic growth, which positively correlate with extent of hypertrophy. To assess the role of FoxO1 on pol II dynamics and gene expression, the FoxO1 chromatin immunoprecipitation-deep sequencing results were aligned with those of pol II chromatin immunoprecipitation-deep sequencing across the chromosomal coordinates of sham- or transverse aortic constriction-operated mouse hearts. This uncovered that FoxO1 binds to the promoters of 60% of cardiac-expressed genes at baseline and 91% after transverse aortic constriction. FoxO1 binding is increased in genes regulated by pol II de novo recruitment, loss, or pause-release. In vitro, endothelin-1- and, in vivo, pressure overload-induced cardiomyocyte hypertrophic growth is prevented with FoxO1 knockdown or deletion, which was accompanied by reductions in inducible genes, including Comtd1 in vitro and Fstl1 and Uck2 in vivo. CONCLUSIONS Together, our data suggest that FoxO1 may mediate cardiac hypertrophic growth via regulation of pol II de novo recruitment and pause-release; the latter represents the majority (59%) of FoxO1-bound, pol II-regulated genes after pressure overload. These findings demonstrate the breadth of transcriptional regulation by FoxO1 during cardiac hypertrophy, information that is essential for its therapeutic targeting.
Collapse
Affiliation(s)
- Jessica Pfleger
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Ryan C Coleman
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jessica Ibetti
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Rajika Roy
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Ioannis D Kyriazis
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Erhe Gao
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Konstantinos Drosatos
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
22
|
Nemani N, Dong Z, Daw CC, Madaris TR, Ramachandran K, Enslow BT, Rubannelsonkumar CS, Shanmughapriya S, Mallireddigari V, Maity S, SinghMalla P, Natarajanseenivasan K, Hooper R, Shannon CE, Tourtellotte WG, Singh BB, Reeves WB, Sharma K, Norton L, Srikantan S, Soboloff J, Madesh M. Mitochondrial pyruvate and fatty acid flux modulate MICU1-dependent control of MCU activity. Sci Signal 2020; 13:eaaz6206. [PMID: 32317369 PMCID: PMC7667998 DOI: 10.1126/scisignal.aaz6206] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The tricarboxylic acid (TCA) cycle converts the end products of glycolysis and fatty acid β-oxidation into the reducing equivalents NADH and FADH2 Although mitochondrial matrix uptake of Ca2+ enhances ATP production, it remains unclear whether deprivation of mitochondrial TCA substrates alters mitochondrial Ca2+ flux. We investigated the effect of TCA cycle substrates on MCU-mediated mitochondrial matrix uptake of Ca2+, mitochondrial bioenergetics, and autophagic flux. Inhibition of glycolysis, mitochondrial pyruvate transport, or mitochondrial fatty acid transport triggered expression of the MCU gatekeeper MICU1 but not the MCU core subunit. Knockdown of mitochondrial pyruvate carrier (MPC) isoforms or expression of the dominant negative mutant MPC1R97W resulted in increased MICU1 protein abundance and inhibition of MCU-mediated mitochondrial matrix uptake of Ca2+ We also found that genetic ablation of MPC1 in hepatocytes and mouse embryonic fibroblasts resulted in reduced resting matrix Ca2+, likely because of increased MICU1 expression, but resulted in changes in mitochondrial morphology. TCA cycle substrate-dependent MICU1 expression was mediated by the transcription factor early growth response 1 (EGR1). Blocking mitochondrial pyruvate or fatty acid flux was linked to increased autophagy marker abundance. These studies reveal a mechanism that controls the MCU-mediated Ca2+ flux machinery and that depends on TCA cycle substrate availability. This mechanism generates a metabolic homeostatic circuit that protects cells from bioenergetic crisis and mitochondrial Ca2+ overload during periods of nutrient stress.
Collapse
Affiliation(s)
- Neeharika Nemani
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Center for Translational Medicine, Lewis Katz School of Me.dicine at Temple University, Philadelphia, PA, 19140, USA
| | - Zhiwei Dong
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Center for Translational Medicine, Lewis Katz School of Me.dicine at Temple University, Philadelphia, PA, 19140, USA
| | - Cassidy C Daw
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Travis R Madaris
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Karthik Ramachandran
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Benjamin T Enslow
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Cherubina S Rubannelsonkumar
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Santhanam Shanmughapriya
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Center for Translational Medicine, Lewis Katz School of Me.dicine at Temple University, Philadelphia, PA, 19140, USA
- Heart and Vascular Institute, Department of Medicine and Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA 17601, USA
| | - Varshini Mallireddigari
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Center for Translational Medicine, Lewis Katz School of Me.dicine at Temple University, Philadelphia, PA, 19140, USA
| | - Soumya Maity
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Pragya SinghMalla
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Kalimuthusamy Natarajanseenivasan
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Center for Translational Medicine, Lewis Katz School of Me.dicine at Temple University, Philadelphia, PA, 19140, USA
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Robert Hooper
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
| | - Christopher E Shannon
- Department of Medicine/Diabetes Division, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Warren G Tourtellotte
- Pathology & Laboratory Medicine, Neurology, Neurosurgery, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Brij B Singh
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - W Brian Reeves
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Kumar Sharma
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Luke Norton
- Department of Medicine/Diabetes Division, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Subramanya Srikantan
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jonathan Soboloff
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
- Center for Translational Medicine, Lewis Katz School of Me.dicine at Temple University, Philadelphia, PA, 19140, USA
- Department of Medicine/Nephrology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
23
|
Lieu M, Traynham CJ, de Lucia C, Pfleger J, Piedepalumbo M, Roy R, Petovic J, Landesberg G, Forrester SJ, Hoffman M, Grisanti LA, Yuan A, Gao E, Drosatos K, Eguchi S, Scalia R, Tilley DG, Koch WJ. Loss of dynamic regulation of G protein-coupled receptor kinase 2 by nitric oxide leads to cardiovascular dysfunction with aging. Am J Physiol Heart Circ Physiol 2020; 318:H1162-H1175. [PMID: 32216616 PMCID: PMC7346533 DOI: 10.1152/ajpheart.00094.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) and S-nitrosothiol (SNO) are considered cardio- and vasoprotective substances. We now understand that one mechanism in which NO/SNOs provide cardiovascular protection is through their direct inhibition of cardiac G protein-coupled receptor (GPCR) kinase 2 (GRK2) activity via S-nitrosylation of GRK2 at cysteine 340 (C340). This maintains GPCR homeostasis, including β-adrenergic receptors, through curbing receptor GRK2-mediated desensitization. Previously, we have developed a knockin mouse (GRK2-C340S) where endogenous GRK2 is resistant to dynamic S-nitrosylation, which led to increased GRK2 desensitizing activity. This unchecked regulation of cardiac GRK2 activity resulted in significantly more myocardial damage after ischemic injury that was resistant to NO-mediated cardioprotection. Although young adult GRK2-C340S mice show no overt phenotype, we now report that as these mice age, they develop significant cardiovascular dysfunction due to the loss of SNO-mediated GRK2 regulation. This pathological phenotype is apparent as early as 12 mo of age and includes reduced cardiac function, increased cardiac perivascular fibrosis, and maladaptive cardiac hypertrophy, which are common maladies found in patients with cardiovascular disease (CVD). There are also vascular reactivity and aortic abnormalities present in these mice. Therefore, our data demonstrate that a chronic and global increase in GRK2 activity is sufficient to cause cardiovascular remodeling and dysfunction, likely due to GRK2’s desensitizing effects in several tissues. Because GRK2 levels have been reported to be elevated in elderly CVD patients, GRK2-C340 mice can give insight into the aged-molecular landscape leading to CVD. NEW & NOTEWORTHY Research on G protein-coupled receptor kinase 2 (GRK2) in the setting of cardiovascular aging is largely unknown despite its strong established functions in cardiovascular physiology and pathophysiology. This study uses a mouse model of chronic GRK2 overactivity to further investigate the consequences of long-term GRK2 on cardiac function and structure. We report for the first time that chronic GRK2 overactivity was able to cause cardiac dysfunction and remodeling independent of surgical intervention, highlighting the importance of GRK activity in aged-related heart disease.
Collapse
Affiliation(s)
- Melissa Lieu
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Christopher J Traynham
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Claudio de Lucia
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jessica Pfleger
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Michela Piedepalumbo
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Medical, Surgical, Neurological, Metabolic, and Aging Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Rajika Roy
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jennifer Petovic
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Gavin Landesberg
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Matthew Hoffman
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Laurel A Grisanti
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Ancai Yuan
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Erhe Gao
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Konstantinos Drosatos
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Douglas G Tilley
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
β2AR-dependent signaling contributes to in-vivo reendothelialization capacity of endothelial progenitor cells by shear stress. J Hypertens 2020; 38:82-94. [DOI: 10.1097/hjh.0000000000002203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Cong R, Yang J, Zhou J, Shi J, Zhu Y, Zhu J, Xiao J, Wang P, He Y, He B. The Potential Role of Protein Tyrosine Phosphatase, Receptor Type C (CD45) in the Intestinal Ischemia-Reperfusion Injury. J Comput Biol 2019; 27:1303-1312. [PMID: 31855448 DOI: 10.1089/cmb.2019.0244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was designed to identify several key genes and their functions in preventing or ameliorating intestinal ischemia-reperfusion (IR) injury, which could provide rationale for further exploring the regulatory mechanisms or clinical treatment for intestinal IR injury. The microarray GSE37013 of human intestinal IR injury was downloaded from Gene Expression Omnibus database. The differentially expressed genes (DEGs) with changes of reperfusion time were screened using Short Time-series Expression Miner, followed by function enrichment analysis, protein-protein interaction (PPI) network, and module construction. Subsequently, the key DEGs were identified with VEEN analysis based on the significant results of function enrichment analysis and PPI module. Finally, the gene-drug interactions were predicted using DGIdb 2.0. The DEGs of intestinal IR injury were significantly divided into three clusters with changes of reperfusion time. The genes in the three clusters were mainly enriched in transmembrane transport, defense responses, and cellular component assembly related pathways, respectively. There were 121 nodes and 281 interactions in PPI network, including one significant submodule. Protein tyrosine phosphatase, receptor type C (PTPRC) was a hub code both in PPI network and in submodule. A total of eight key DEGs were identified but only PTPRC was predicted to be interacted with eight drugs, such as infliximab. Totally, eight key genes associated with intestinal IR were identified; PTPRC especially was the most prominent potential drug target. These findings provided several potential therapeutic targets or potential breakthrough area in the study of intestinal IR injury.
Collapse
Affiliation(s)
- Ruochen Cong
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Jushun Yang
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Jie Zhou
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Jianhua Shi
- Department of Biochemistry, Nantong University Medical School, Nantong, Jiangsu, China
| | - Yihua Zhu
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Jianfeng Zhu
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Jing Xiao
- Department of Epidemiology and Medical Statistics, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Ping Wang
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| | - Ying He
- Department of Ultrasound, Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Bosheng He
- Department of Radiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.,Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
26
|
Penela P, Inserte J, Ramos P, Rodriguez-Sinovas A, Garcia-Dorado D, Mayor F. Degradation of GRK2 and AKT is an early and detrimental event in myocardial ischemia/reperfusion. EBioMedicine 2019; 48:605-618. [PMID: 31594751 PMCID: PMC6838402 DOI: 10.1016/j.ebiom.2019.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Identification of signaling pathways altered at early stages after cardiac ischemia/reperfusion (I/R) is crucial to develop timely therapies aimed at reducing I/R injury. The expression of G protein-coupled receptor kinase 2 (GRK2), a key signaling hub, is up-regulated in the long-term in patients and in experimental models of heart failure. However, whether GRK2 levels change at early time points following myocardial I/R and its functional impact during this period remain to be established. METHODS We have investigated the temporal changes of GRK2 expression and their potential relationships with the cardioprotective AKT pathway in isolated rat hearts and porcine preclinical models of I/R. FINDINGS Contrary to the maladaptive up-regulation of GRK2 reported at later times after myocardial infarction, successive GRK2 phosphorylation at specific sites during ischemia and early reperfusion elicits GRK2 degradation by the proteasome and calpains, respectively, thus keeping GRK2 levels low during early I/R in rat hearts. Concurrently, I/R promotes decay of the prolyl-isomerase Pin1, a positive regulator of AKT stability, and a marked loss of total AKT protein, resulting in an overall decreased activity of this pro-survival pathway. A similar pattern of concomitant down-modulation of GRK2/AKT/Pin1 protein levels in early I/R was observed in pig hearts. Calpain and proteasome inhibition prevents GRK2/Pin1/AKT degradation, restores bulk AKT pathway activity and attenuates myocardial I/R injury in isolated rat hearts. INTERPRETATION Preventing transient degradation of GRK2 and AKT during early I/R might improve the potential of endogenous cardioprotection mechanisms and of conditioning strategies.
Collapse
Affiliation(s)
- Petronila Penela
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier Inserte
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; Cardiovascular Diseases Research Group, Vall d'Hebron University Hospital and Research Institute, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Paula Ramos
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), 28049 Madrid, Spain
| | - Antonio Rodriguez-Sinovas
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; Cardiovascular Diseases Research Group, Vall d'Hebron University Hospital and Research Institute, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - David Garcia-Dorado
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; Cardiovascular Diseases Research Group, Vall d'Hebron University Hospital and Research Institute, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| |
Collapse
|
27
|
See Hoe LE, Bartnikowski N, Wells MA, Suen JY, Fraser JF. Hurdles to Cardioprotection in the Critically Ill. Int J Mol Sci 2019; 20:E3823. [PMID: 31387264 PMCID: PMC6695809 DOI: 10.3390/ijms20153823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the largest contributor to worldwide mortality, and the deleterious impact of heart failure (HF) is projected to grow exponentially in the future. As heart transplantation (HTx) is the only effective treatment for end-stage HF, development of mechanical circulatory support (MCS) technology has unveiled additional therapeutic options for refractory cardiac disease. Unfortunately, despite both MCS and HTx being quintessential treatments for significant cardiac impairment, associated morbidity and mortality remain high. MCS technology continues to evolve, but is associated with numerous disturbances to cardiac function (e.g., oxidative damage, arrhythmias). Following MCS intervention, HTx is frequently the destination option for survival of critically ill cardiac patients. While effective, donor hearts are scarce, thus limiting HTx to few qualifying patients, and HTx remains correlated with substantial post-HTx complications. While MCS and HTx are vital to survival of critically ill cardiac patients, cardioprotective strategies to improve outcomes from these treatments are highly desirable. Accordingly, this review summarizes the current status of MCS and HTx in the clinic, and the associated cardiac complications inherent to these treatments. Furthermore, we detail current research being undertaken to improve cardiac outcomes following MCS/HTx, and important considerations for reducing the significant morbidity and mortality associated with these necessary treatment strategies.
Collapse
Affiliation(s)
- Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia.
- Faculty of Medicine, University of Queensland, Chermside 4032, Australia.
| | - Nicole Bartnikowski
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- Science and Engineering Faculty, Queensland University of Technology, Chermside 4032, Australia
| | - Matthew A Wells
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- School of Medical Science, Griffith University, Southport 4222, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- Faculty of Medicine, University of Queensland, Chermside 4032, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- Faculty of Medicine, University of Queensland, Chermside 4032, Australia
| |
Collapse
|
28
|
Abstract
G protein-coupled receptors (GPCRs) are critical cellular sensors that mediate numerous physiological processes. In the heart, multiple GPCRs are expressed on various cell types, where they coordinate to regulate cardiac function by modulating critical processes such as contractility and blood flow. Under pathological settings, these receptors undergo aberrant changes in expression levels, localization and capacity to couple to downstream signalling pathways. Conventional therapies for heart failure work by targeting GPCRs, such as β-adrenergic receptor and angiotensin II receptor antagonists. Although these treatments have improved patient survival, heart failure remains one of the leading causes of mortality worldwide. GPCR kinases (GRKs) are responsible for GPCR phosphorylation and, therefore, desensitization and downregulation of GPCRs. In this Review, we discuss the GPCR signalling pathways and the GRKs involved in the pathophysiology of heart disease. Given that increased expression and activity of GRK2 and GRK5 contribute to the loss of contractile reserve in the stressed and failing heart, inhibition of overactive GRKs has been proposed as a novel therapeutic approach to treat heart failure.
Collapse
|
29
|
Murga C, Arcones AC, Cruces-Sande M, Briones AM, Salaices M, Mayor F. G Protein-Coupled Receptor Kinase 2 (GRK2) as a Potential Therapeutic Target in Cardiovascular and Metabolic Diseases. Front Pharmacol 2019; 10:112. [PMID: 30837878 PMCID: PMC6390810 DOI: 10.3389/fphar.2019.00112] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a central signaling node involved in the modulation of many G protein-coupled receptors (GPCRs) and also displaying regulatory functions in other cell signaling routes. GRK2 levels and activity have been reported to be enhanced in patients or in preclinical models of several relevant pathological situations, such as heart failure, cardiac hypertrophy, hypertension, obesity and insulin resistance conditions, or non-alcoholic fatty liver disease (NAFLD), and to contribute to disease progression by a variety of mechanisms related to its multifunctional roles. Therefore, targeting GRK2 by different strategies emerges as a potentially relevant approach to treat cardiovascular disease, obesity, type 2 diabetes, or NAFLD, pathological conditions which are frequently interconnected and present as co-morbidities.
Collapse
Affiliation(s)
- Cristina Murga
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alba C Arcones
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Marta Cruces-Sande
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Ana M Briones
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Mercedes Salaices
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Farmacología, Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| |
Collapse
|
30
|
Lieu M, Koch WJ. GRK2 and GRK5 as therapeutic targets and their role in maladaptive and pathological cardiac hypertrophy. Expert Opin Ther Targets 2019; 23:201-214. [PMID: 30701991 DOI: 10.1080/14728222.2019.1575363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION One in every four deaths in the United States is attributed to cardiovascular disease, hence the development and employment of novel and effective therapeutics are necessary to improve the quality of life and survival of affected patient. Pathological hypertrophy is a maladaptive response by the heart to relieve wall stress that could result from cardiovascular disease. Maladaptive hypertrophy can lead to further disease progression and complications such as heart failure; hence, efforts to target hypertrophy to prevent and treat further morbidity and mortality are necessary. Areas covered: This review summarizes the compelling literature that describes the mechanistic role of GRK2 and GRK5 in maladaptive cardiac hypertrophy; it examines the approaches to inhibit these kinases in hypertrophic animal models and furthermore, it assesses the potential of GRK2 and GRK5 as therapeutic targets for hypertrophy. Expert opinion: GRK2 and GRK5 are novel therapeutic targets for pathological hypertrophy and may have added benefits of ameliorating morbidity and mortality. Despite the lesser researched role of GRK2 in cardiac hypertrophy, it may be the advantageous strategy for treating cardiac hypertrophy because of its role in other maladaptive pathways. Anti-GRK2 therapy optimization and the discovery and development of specific GRK2 and GRK5 small-molecule inhibitors is necessary for the eventual application of successful, effective therapeutics.
Collapse
Affiliation(s)
- Melissa Lieu
- a Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Walter J Koch
- a Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| |
Collapse
|
31
|
Sorriento D, Gambardella J, Fiordelisi A, Iaccarino G, Illario M. GRKs and β-Arrestins: "Gatekeepers" of Mitochondrial Function in the Failing Heart. Front Pharmacol 2019; 10:64. [PMID: 30809146 PMCID: PMC6379454 DOI: 10.3389/fphar.2019.00064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/18/2019] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial regulation of energy production, calcium homeostasis, and cell death are critical for cardiac function. Accordingly, the structural and functional abnormalities of these organelles (mitochondrial dysfunction) contribute to developing cardiovascular diseases and heart failure. Therefore the preservation of mitochondrial integrity is essential for cardiac cell survival. Mitochondrial function is regulated by several proteins, including GRK2 and β-arrestins which act in a GPCR independent manner to orchestrate intracellular signaling associated with key mitochondrial processes. It is now ascertained that GRK2 is able to recover mitochondrial function in response to insults. β-arrestins affect several intracellular signaling pathways within the cell which in turn are involved in the regulation of mitochondrial function, but a direct regulation of mitochondria needs further investigations. In this review, we discuss the recent acquisitions on the role of GRK2 and β-arrestins in the regulation of mitochondrial function.
Collapse
Affiliation(s)
- Daniela Sorriento
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Jessica Gambardella
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Antonella Fiordelisi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
32
|
Hendrickx JO, van Gastel J, Leysen H, Santos-Otte P, Premont RT, Martin B, Maudsley S. GRK5 - A Functional Bridge Between Cardiovascular and Neurodegenerative Disorders. Front Pharmacol 2018; 9:1484. [PMID: 30618771 PMCID: PMC6304357 DOI: 10.3389/fphar.2018.01484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
Complex aging-triggered disorders are multifactorial programs that comprise a myriad of alterations in interconnected protein networks over a broad range of tissues. It is evident that rather than being randomly organized events, pathophysiologies that possess a strong aging component such as cardiovascular diseases (hypertensions, atherosclerosis, and vascular stiffening) and neurodegenerative conditions (dementia, Alzheimer's disease, mild cognitive impairment, Parkinson's disease), in essence represent a subtly modified version of the intricate molecular programs already in place for normal aging. To control such multidimensional activities there are layers of trophic protein control across these networks mediated by so-called "keystone" proteins. We propose that these "keystones" coordinate and interconnect multiple signaling pathways to control whole somatic activities such as aging-related disease etiology. Given its ability to control multiple receptor sensitivities and its broad protein-protein interactomic nature, we propose that G protein coupled receptor kinase 5 (GRK5) represents one of these key network controllers. Considerable data has emerged, suggesting that GRK5 acts as a bridging factor, allowing signaling regulation in pathophysiological settings to control the connectivity between both the cardiovascular and neurophysiological complications of aging.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Jaana van Gastel
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Hanne Leysen
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt-Universitat zu Berlin, Berlin, Germany
| | - Richard T. Premont
- Harrington Discovery Institute, Case Western Reserve University, Cleveland, GA, United States
| | - Bronwen Martin
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| |
Collapse
|
33
|
Sato PY, Chuprun JK, Grisanti LA, Woodall MC, Brown BR, Roy R, Traynham CJ, Ibetti J, Lucchese AM, Yuan A, Drosatos K, Tilley DG, Gao E, Koch WJ. Restricting mitochondrial GRK2 post-ischemia confers cardioprotection by reducing myocyte death and maintaining glucose oxidation. Sci Signal 2018; 11:11/560/eaau0144. [PMID: 30538174 DOI: 10.1126/scisignal.aau0144] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increased abundance of GRK2 [G protein-coupled receptor (GPCR) kinase 2] is associated with poor cardiac function in heart failure patients. In animal models, GRK2 contributes to the pathogenesis of heart failure after ischemia-reperfusion (IR) injury. In addition to its role in down-regulating activated GPCRs, GRK2 also localizes to mitochondria both basally and post-IR injury, where it regulates cellular metabolism. We previously showed that phosphorylation of GRK2 at Ser670 is essential for the translocation of GRK2 to the mitochondria of cardiomyocytes post-IR injury in vitro and that this localization promotes cell death. Here, we showed that mice with a S670A knock-in mutation in endogenous GRK2 showed reduced cardiomyocyte death and better cardiac function post-IR injury. Cultured GRK2-S670A knock-in cardiomyocytes subjected to IR in vitro showed enhanced glucose-mediated mitochondrial respiratory function that was partially due to maintenance of pyruvate dehydrogenase activity and improved glucose oxidation. Thus, we propose that mitochondrial GRK2 plays a detrimental role in cardiac glucose oxidation post-injury.
Collapse
Affiliation(s)
- Priscila Y Sato
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - J Kurt Chuprun
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Laurel A Grisanti
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Meryl C Woodall
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Brett R Brown
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rajika Roy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Christopher J Traynham
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Anna M Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ancai Yuan
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Konstantinos Drosatos
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Doug G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA. .,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
34
|
Pfleger J, Gross P, Johnson J, Carter RL, Gao E, Tilley DG, Houser SR, Koch WJ. G protein-coupled receptor kinase 2 contributes to impaired fatty acid metabolism in the failing heart. J Mol Cell Cardiol 2018; 123:108-117. [PMID: 30171848 DOI: 10.1016/j.yjmcc.2018.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Abstract
Increased G protein-coupled receptor kinase (GRK)2 is central to heart failure (HF) pathogenesis, via desensitization of β-adrenergic receptors and loss of contractile reserve. Since GRK2 has been shown to compromise fatty acid (FA) oxidation, this kinase may link metabolic and contractile defects in HF. The aim of this study was to investigate the mechanistic role of GRK2 in FA metabolism and bioenergetics in the heart. For that purpose, we measured FA uptake and cluster of differentiation (CD)36 expression, phosphorylation, and ubiquitination in mice with cardiac-specific overexpression of GRK2 (TgGRK2) or expression of its c-terminus (GRK2 inhibitor- TgβARKct) or in global heterozygous GRK2 knockout (GRK2+/-) mice. Cellular bioenergetics were also measured in isolated cardiomyocytes following adenoviral delivery of exogenous GRK2, βARKct, or short hairpin GRK2 (shGRK2). Additionally, CD36 expression and phosphorylation were evaluated following transverse aortic constriction (TAC) in wild type (WT) and GRK2+/- mice. Our results show a 33% ± 0.81 reduction in FA uptake rate, accompanied by 51% ± 0.17 lower CD36 protein, and 70% ± 0.23 and 69% ± 0.18 increases in CD36 phosphorylation and ubiquitination, respectively, in the TgGRK2 mice. Moreover, an in vitro kinase assay suggests that GRK2 directly phosphorylates CD36. In isolated cardiomyocytes, GRK2 overexpression induced a 26% ± 2.21 decrease in maximal respiration, which was enhanced (20% ± 4.02-5.14) with inhibition of the kinase. Importantly, in hearts with systolic dysfunction, notable reductions in CD36 mRNA and protein, as well as a significant increase in CD36 phosphorylation were normalized in the GRK2+/- mice post-TAC. Thus, we propose that GRK2 up-regulation in HF is, at least partly, responsible for reduced FA uptake and oxidation and may be a nodal link between metabolic and contractile defects.
Collapse
Affiliation(s)
- Jessica Pfleger
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Polina Gross
- Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jaslyn Johnson
- Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rhonda L Carter
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Steven R Houser
- Cardiovascular Research Center, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
35
|
Grisanti LA, Schumacher SM, Tilley DG, Koch WJ. Designer Approaches for G Protein-Coupled Receptor Modulation for Cardiovascular Disease. JACC Basic Transl Sci 2018; 3:550-562. [PMID: 30175279 PMCID: PMC6115700 DOI: 10.1016/j.jacbts.2017.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022]
Abstract
The new horizon for cardiac therapy may lie beneath the surface, with the downstream mediators of G protein–coupled receptor (GPCR) activity. Targeted approaches have shown that receptor activation may be biased toward signaling through G proteins or through GPCR kinases (GRKs) and β-arrestins, with divergent functional outcomes. In addition to these canonical roles, numerous noncanonical activities of GRKs and β-arrestins have been demonstrated to modulate GPCR signaling at all levels of receptor activation and regulation. Further, research continues to identify novel GRK/effector and β-arrestin/effector complexes with distinct impacts on cardiac function in the normal heart and the diseased heart. Coupled with the identification of once orphan receptors and endogenous ligands with beneficial cardiovascular effects, this expands the repertoire of GPCR targets. Together, this research highlights the potential for focused therapeutic activation of beneficial pathways, with simultaneous exclusion or inhibition of detrimental signaling, and represents a new wave of therapeutic development.
Collapse
Key Words
- AR, adrenergic receptor
- AT1R, angiotensin II type 1A receptor
- CRF, corticotropin-releasing factor
- EGFR, epidermal growth factor receptor
- ERK1/2, extracellular signal-regulated kinase
- G protein–coupled receptor kinases
- G protein–coupled receptors
- GPCR, G protein–coupled receptor
- GRK, G protein–coupled receptor kinase
- HF, heart failure
- ICL, intracellular loop
- PI3K, phosphoinositide 3-kinase
- SERCA2a, sarco(endo)plasmic reticulum Ca2+-ATPase
- SII, [Sar(1), Ile (4), Ile(8)]-angiotensin II
- biased ligands
Collapse
Affiliation(s)
- Laurel A Grisanti
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Sarah M Schumacher
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Douglas G Tilley
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Karuppagounder V, Bajpai A, Meng S, Arumugam S, Sreedhar R, Giridharan VV, Guha A, Bhimaraj A, Youker KA, Palaniyandi SS, Karmouty-Quintana H, Kamal F, Spiller KL, Watanabe K, Thandavarayan RA. Small molecule disruption of G protein βγ subunit signaling reprograms human macrophage phenotype and prevents autoimmune myocarditis in rats. PLoS One 2018; 13:e0200697. [PMID: 30024944 PMCID: PMC6053176 DOI: 10.1371/journal.pone.0200697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/02/2018] [Indexed: 01/13/2023] Open
Abstract
The purpose of this study was to determine whether blocking of G protein βγ (Gβγ) signaling halts heart failure (HF) progression by macrophage phenotype manipulation. Cardiac Gβγ signaling plays a crucial role in HF pathogenesis. Previous data suggested that inhibiting Gβγ signaling reprograms T helper cell 1 (Th1) and Th2 cytokines, suggesting that Gβγ might be a useful drug target for treating HF. We investigated the efficacy of a small molecule Gβγ inhibitor, gallein, in a clinically relevant, experimental autoimmune myocarditis (EAM) model of HF as well as in human macrophage phenotypes in vitro. In the myocardium of HF patients, we observed that G protein coupled receptor kinase (GRK)2 levels were down-regulated compared with healthy controls. In rat EAM, treatment with gallein effectively improved survival and cardiac function, suppressed cardiac remodeling, and further attenuated myocardial protein expression of GRK2 as well as high mobility group box (HMGB)1 and its cascade signaling proteins. Furthermore, gallein effectively inhibited M1 polarization and promoted M2 polarization in vivo in the EAM heart and in vitro in human monocyte-derived macrophages. Taken together, these data suggest that the small molecule Gβγ inhibitor, gallein, could be an important pharmacologic therapy for HF as it can switch the phenotypic reprogramming from M1 to M2 phenotype in a rat model of EAM heart and in human macrophages.
Collapse
Affiliation(s)
- Vengadeshprabhu Karuppagounder
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
- Department of Orthopaedic and Rehabilitation, Penn State college of medicine, Hershey, Pennsylvania, United States of America
| | - Anamika Bajpai
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Shu Meng
- Department of Biochemistry and Molecular Biology, Houston Medical School, University of Texas, Houston, United States of America
| | - Somasundaram Arumugam
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Remya Sreedhar
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Vijayasree V. Giridharan
- Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, Houston, Texas, United States of America
| | - Ashrith Guha
- Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, Texas, United States of America
| | - Arvind Bhimaraj
- Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, Texas, United States of America
| | - Keith A. Youker
- Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, Texas, United States of America
| | - Suresh S. Palaniyandi
- Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, Houston Medical School, University of Texas, Houston, United States of America
| | - Fadia Kamal
- Department of Orthopaedic and Rehabilitation, Penn State college of medicine, Hershey, Pennsylvania, United States of America
| | - Kara L. Spiller
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Kenichi Watanabe
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
- * E-mail: (KW); (RAT)
| | - Rajarajan A. Thandavarayan
- Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, Texas, United States of America
- * E-mail: (KW); (RAT)
| |
Collapse
|
37
|
Abstract
G protein-coupled receptor kinases (GRKs) are classically known for their role in regulating the activity of the largest known class of membrane receptors, which influence diverse biological processes in every cell type in the human body. As researchers have tried to uncover how this family of kinases, containing only 7 members, achieves selective and coordinated control of receptors, they have uncovered a growing number of noncanonical activities for these kinases. These activities include phosphorylation of nonreceptor targets and kinase-independent molecular interactions. In particular, GRK2, GRK3, and GRK5 are the predominant members expressed in the heart. Their canonical and noncanonical actions within cardiac and other tissues have significant implications for cardiovascular function in healthy animals and for the development and progression of disease. This review summarizes what is currently known regarding the activity of these kinases, and particularly the role of GRK2 and GRK5 in the molecular alterations that occur during heart failure. This review further highlights areas of GRK regulation that remain poorly understood and how they may represent novel targets for therapeutic development.
Collapse
|
38
|
Abstract
Proinflammatory reaction by the body occurs acutely in response to injury that is considered primarily beneficial. However, sustained proinflammatory cytokines observed with chronic pathologies such as metabolic syndrome, cancer, and arthritis are detrimental and in many cases is a major cardiovascular risk factor. Proinflammatory cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor α (TNFα) have long been implicated in cardiovascular risk and considered to be a major underlying cause for heart failure (HF). The failure of the anti-TNFα therapy for HF indicates our elusive understanding on the dichotomous role of proinflammatory cytokines on acutely beneficial effects versus long-term deleterious effects. Despite these well-described observations, less is known about the mechanistic underpinnings of proinflammatory cytokines especially TNFα in pathogenesis of HF. Increasing evidence suggests the existence of an active cross-talk between the TNFα receptor signaling and G-protein-coupled receptors such as β-adrenergic receptor (βAR). Given that βARs are the key regulators of cardiac function, the review will discuss the current state of understanding on the role of proinflammatory cytokine TNFα in regulating βAR function.
Collapse
Affiliation(s)
- Maradumane L Mohan
- *Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and †Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH
| | | | | |
Collapse
|
39
|
G protein-coupled receptor kinase 2 (GRK2) as an integrative signalling node in the regulation of cardiovascular function and metabolic homeostasis. Cell Signal 2018; 41:25-32. [DOI: 10.1016/j.cellsig.2017.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/22/2017] [Accepted: 04/03/2017] [Indexed: 12/23/2022]
|
40
|
Schlegel P, Reinkober J, Meinhardt E, Tscheschner H, Gao E, Schumacher SM, Yuan A, Backs J, Most P, Wieland T, Koch WJ, Katus HA, Raake PW. G protein-coupled receptor kinase 2 promotes cardiac hypertrophy. PLoS One 2017; 12:e0182110. [PMID: 28759639 PMCID: PMC5536362 DOI: 10.1371/journal.pone.0182110] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/12/2017] [Indexed: 01/06/2023] Open
Abstract
The increase in protein activity and upregulation of G-protein coupled receptor kinase 2 (GRK2) is a hallmark of cardiac stress and heart failure. Inhibition of GRK2 improved cardiac function and survival and diminished cardiac remodeling in various animal heart failure models. The aim of the present study was to investigate the effects of GRK2 on cardiac hypertrophy and dissect potential molecular mechanisms. In mice we observed increased GRK2 mRNA and protein levels following transverse aortic constriction (TAC). Conditional GRK2 knockout mice showed attenuated hypertrophic response with preserved ventricular geometry 6 weeks after TAC operation compared to wild-type animals. In isolated neonatal rat ventricular cardiac myocytes stimulation with angiotensin II and phenylephrine enhanced GRK2 expression leading to enhanced signaling via protein kinase B (PKB or Akt), consecutively inhibiting glycogen synthase kinase 3 beta (GSK3β), such promoting nuclear accumulation and activation of nuclear factor of activated T-cells (NFAT). Cardiac myocyte hypertrophy induced by in vitro GRK2 overexpression increased the cytosolic interaction of GRK2 and phosphoinositide 3-kinase γ (PI3Kγ). Moreover, inhibition of PI3Kγ as well as GRK2 knock down prevented Akt activation resulting in halted NFAT activity and reduced cardiac myocyte hypertrophy. Our data show that enhanced GRK2 expression triggers cardiac hypertrophy by GRK2-PI3Kγ mediated Akt phosphorylation and subsequent inactivation of GSK3β, resulting in enhanced NFAT activity.
Collapse
Affiliation(s)
- Philipp Schlegel
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Julia Reinkober
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Eric Meinhardt
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Henrike Tscheschner
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Erhe Gao
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sarah M. Schumacher
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ancai Yuan
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Johannes Backs
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Heidelberg, Germany
| | - Patrick Most
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Thomas Wieland
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Hugo A. Katus
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Philip W. Raake
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
41
|
Impact of paroxetine on proximal β-adrenergic receptor signaling. Cell Signal 2017; 38:127-133. [PMID: 28711716 DOI: 10.1016/j.cellsig.2017.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/10/2017] [Indexed: 11/21/2022]
Abstract
β-adrenergic receptors (βAR) regulate numerous functions throughout the body, however G protein-coupled receptor kinase (GRK)-dependent desensitization of βAR has long been recognized as a maladaptive process in the progression of various disease states. Thus, the development of small molecule inhibitors of GRKs for the study of these processes and as potential therapeutics has been at the forefront of recent research efforts. Via structural and biochemical analyses, the selective serotonin reuptake inhibitor (SSRI) paroxetine was identified as a GRK2 inhibitor that enhances βAR-dependent cardiomyocyte and cardiac contractility and reverses cardiac dysfunction and myocardial βAR expression in mouse models of heart failure. Despite these functional outcomes, consistent with diminished βAR desensitization, the proximal βAR signaling mechanisms sensitive to paroxetine have not been reported. In this study, we aimed to determine whether paroxetine prevents classic βAR desensitization-related signaling mechanisms at a molecular level. Therefore, via immunoblotting, radioligand binding, fluorescence resonance energy transfer (FRET) and microscopy assays, we have performed an assessment of the effect of paroxetine on proximal βAR signaling responses. Indeed, paroxetine treatment inhibited ligand-induced β2AR phosphorylation in a concentration-dependent manner. Additionally, for both β1AR and β2AR, paroxetine decreased ligand-induced βarrestin2 recruitment and subsequent receptor internalization. Thus, paroxetine inhibits βAR desensitization mechanisms consistent with GRK2 inhibition and provides a useful pharmacological tool for studying these proximal GPCR signaling responses.
Collapse
|
42
|
Steury MD, McCabe LR, Parameswaran N. G Protein-Coupled Receptor Kinases in the Inflammatory Response and Signaling. Adv Immunol 2017; 136:227-277. [PMID: 28950947 DOI: 10.1016/bs.ai.2017.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptor kinases (GRKs) are serine/threonine kinases that regulate a large and diverse class of G protein-coupled receptors (GPCRs). Through GRK phosphorylation and β-arrestin recruitment, GPCRs are desensitized and their signal terminated. Recent work on these kinases has expanded their role from canonical GPCR regulation to include noncanonical regulation of non-GPCR and nonreceptor substrates through phosphorylation as well as via scaffolding functions. Owing to these and other regulatory roles, GRKs have been shown to play a critical role in the outcome of a variety of physiological and pathophysiological processes including chemotaxis, signaling, migration, inflammatory gene expression, etc. This diverse set of functions for these proteins makes them popular targets for therapeutics. Role for these kinases in inflammation and inflammatory disease is an evolving area of research currently pursued in many laboratories. In this review, we describe the current state of knowledge on various GRKs pertaining to their role in inflammation and inflammatory diseases.
Collapse
Affiliation(s)
| | - Laura R McCabe
- Michigan State University, East Lansing, MI, United States
| | | |
Collapse
|
43
|
Paquot F, Huart J, Defraigne JO, Krzesinski JM, Jouret F. Implications of the calcium-sensing receptor in ischemia/reperfusion. Acta Cardiol 2017; 72:125-131. [PMID: 28597792 DOI: 10.1080/00015385.2017.1291136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) which was first isolated from bovine parathyroid glands. Its complex structure has been well characterized, which helped to better understand its function. The CaSR activity can be modulated by various ligands, either activators (also called "calcimimetics") or inhibitors (or "calcilytics"). The main role of the CaSR concerns Ca2+ homeostasis. In bone, intestine and kidney, the CaSR acts as a sensor for extracellular ionized Ca2+ concentration ([Ca2+]e) to keep it stable. Such a homeostatic function is well illustrated by human inherited diseases caused by mutations in CASR gene, characterized by Ca2+ balance disturbances. Interestingly, the CaSR is also expressed in numerous tissues which are not directly involved in Ca2+ regulation. There, the CaSR has been implicated in regulatory pathways, including cell proliferation, differentiation and apoptosis. Moreover, recent observations suggest that the CaSR may be involved in ischaemia/reperfusion (I/R) cascades. In cardiomyocytes, the expression and activation of the CaSR are significantly induced at the time of I/R, which induces apoptotic pathways. Likewise, the activation of the CaSR in I/R in brain, liver and kidney has been associated with increased cell death and aggravated structural and functional damage. The present review summarizes these observations and hypothesizes a novel therapeutic option targeting the CaSR in I/R.
Collapse
Affiliation(s)
- François Paquot
- Division of Nephrology, University of Liège Hospital, Liège, Belgium
| | - Justine Huart
- Division of Nephrology, University of Liège Hospital, Liège, Belgium
| | - Jean-Olivier Defraigne
- Division of Cardiovascular Surgery, University of Liège Hospital, Liège, Belgium
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Jean-Marie Krzesinski
- Division of Nephrology, University of Liège Hospital, Liège, Belgium
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - François Jouret
- Division of Nephrology, University of Liège Hospital, Liège, Belgium
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
44
|
Rorabaugh BR, Chakravarti B, Mabe NW, Seeley SL, Bui AD, Yang J, Watts SW, Neubig RR, Fisher RA. Regulator of G Protein Signaling 6 Protects the Heart from Ischemic Injury. J Pharmacol Exp Ther 2017; 360:409-416. [PMID: 28035008 PMCID: PMC5325075 DOI: 10.1124/jpet.116.238345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/28/2016] [Indexed: 01/07/2023] Open
Abstract
Gαi-coupled receptors play important roles in protecting the heart from ischemic injury. Regulator of G protein signaling (RGS) proteins suppress Gαi signaling by accelerating the GTPase activity of Gαi subunits. However, the roles of individual RGS proteins in modulating ischemic injury are unknown. In this study, we investigated the effect of RGS6 deletion on myocardial sensitivity to ischemic injury. Hearts from RGS6 knockout (RGS6-/-) and RGS6 wild-type (RGS6+/+) mice were subjected to 30 minutes of ischemia and 2 hours of reperfusion on a Langendorff heart apparatus. Infarcts in RGS6-/- hearts were significantly larger than infarcts in RGS6+/+ hearts. RGS6-/- hearts also exhibited increased phosphorylation of β2-adrenergic receptors and G protein-coupled receptor kinase 2 (GRK2). Mitochondrial GRK2 as well as caspase-3 cleavage were increased significantly in RGS6-/- hearts compared with RGS6+/+ hearts after ischemia. Chronic propranolol treatment of mice prevented the observed increases in ischemic injury and the GRK2 phosphorylation observed in RGS6-/- hearts. Our findings suggest that loss of RGS6 predisposes the ventricle to prodeath signaling through a β2AR-GRK2-dependent signaling mechanism, and they provide evidence for a protective role of RGS6 in the ischemic heart. Individuals expressing genetic polymorphisms that suppress the activity of RGS6 may be at increased risk of cardiac ischemic injury. Furthermore, the development of agents that increase RGS6 expression or activity might provide a novel strategy for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Boyd R Rorabaugh
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Bandana Chakravarti
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Nathaniel W Mabe
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Sarah L Seeley
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Albert D Bui
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Jianqi Yang
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Stephanie W Watts
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Richard R Neubig
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Rory A Fisher
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| |
Collapse
|
45
|
Targeting GPCR-Gβγ-GRK2 signaling as a novel strategy for treating cardiorenal pathologies. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1883-1892. [PMID: 28130200 DOI: 10.1016/j.bbadis.2017.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023]
Abstract
The pathologic crosstalk between the heart and kidney is known as cardiorenal syndrome (CRS). While the specific mechanisms underlying this crosstalk remain poorly understood, CRS is associated with exacerbated dysfunction of either or both organs and reduced survival. Maladaptive fibrotic remodeling is a key component of both heart and kidney failure pathogenesis and progression. G-protein coupled receptor (GPCR) signaling is a crucial regulator of cardiovascular and renal function. Chronic/pathologic GPCR signaling elicits the interaction of the G-protein Gβγ subunit with GPCR kinase 2 (GRK2), targeting the receptor for internalization, scaffolding to pathologic signals, and receptor degradation. Targeting this pathologic Gβγ-GRK2 interaction has been suggested as a possible strategy for the treatment of HF. In the current review, we discuss recent updates in understanding the role of GPCR-Gβγ-GRK2 signaling as a crucial mediator of maladaptive organ remodeling detected in HF and kidney dysfunction, with specific attention to small molecule-mediated inhibition of pathologic Gβγ-GRK2 interactions. Further, we explore the potential of GPCR-Gβγ-GRK2 signaling as a possible therapeutic target for cardiorenal pathologies.
Collapse
|
46
|
Cannavo A, Koch WJ. GRK2 as negative modulator of NO bioavailability: Implications for cardiovascular disease. Cell Signal 2017; 41:33-40. [PMID: 28077324 DOI: 10.1016/j.cellsig.2017.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/06/2017] [Indexed: 02/01/2023]
Abstract
Nitric oxide (NO), initially identified as endothelium-derived relaxing factor (EDRF), is a gaso-transmitter with important regulatory roles in the cardiovascular, nervous and immune systems. In the former, this diatomic molecule and free radical gas controls vascular tone and cardiac mechanics, among others. In the cardiovascular system, it is now understood that β-adrenergic receptor (βAR) activation is a key modulator of NO generation. Therefore, it is not surprising that the up-regulation of G protein-coupled receptor kinases (GRKs), in particular GRK2, that restrains βAR activity contributes to impaired cardiovascular functions via alteration of NO bioavailability. This review, will explore the specific interrelation between βARs, GRK2 and NO in the cardiovascular system and their inter-relationship for the pathogenesis of the onset of disease. Last, we will update the readers on the current status of GRK2 inhibitors as a potential therapeutic strategy for heart failure with an emphasis on their ability of rescuing NO bioavailability.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA.
| |
Collapse
|
47
|
Woodall MC, Woodall BP, Gao E, Yuan A, Koch WJ. Cardiac Fibroblast GRK2 Deletion Enhances Contractility and Remodeling Following Ischemia/Reperfusion Injury. Circ Res 2016; 119:1116-1127. [PMID: 27601479 DOI: 10.1161/circresaha.116.309538] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/06/2016] [Indexed: 12/30/2022]
Abstract
RATIONALE G protein-coupled receptor kinase 2 (GRK2) is an important molecule upregulated after myocardial injury and during heart failure. Myocyte-specific GRK2 loss before and after myocardial ischemic injury improves cardiac function and remodeling. The cardiac fibroblast plays an important role in the repair and remodeling events after cardiac ischemia; the importance of GRK2 in these events has not been investigated. OBJECTIVE The aim of this study is to elucidate the in vivo implications of deleting GRK2 in the cardiac fibroblast after ischemia/reperfusion injury. METHODS AND RESULTS We demonstrate, using Tamoxifen inducible, fibroblast-specific GRK2 knockout mice, that GRK2 loss confers a protective advantage over control mice after myocardial ischemia/reperfusion injury. Fibroblast GRK2 knockout mice presented with decreased infarct size and preserved cardiac function 24 hours post ischemia/reperfusion as demonstrated by increased ejection fraction (59.1±1.8% versus 48.7±1.2% in controls; P<0.01). GRK2 fibroblast knockout mice also had decreased fibrosis and fibrotic gene expression. Importantly, these protective effects correlated with decreased infiltration of neutrophils to the ischemia site and decreased levels of tumor necrosis factor-α expression and secretion in GRK2 fibroblast knockout mice. CONCLUSIONS These novel data showing the benefits of inhibiting GRK2 in the cardiac fibroblast adds to previously published data showing the advantage of GRK2 ablation and reinforces the therapeutic potential of GRK2 inhibition in the heart after myocardial ischemia.
Collapse
Affiliation(s)
- Meryl C Woodall
- From the Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (M.C.W., B.P.W., E.G., A.Y., W.J.K.); and Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China (A.Y.)
| | - Benjamin P Woodall
- From the Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (M.C.W., B.P.W., E.G., A.Y., W.J.K.); and Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China (A.Y.)
| | - Erhe Gao
- From the Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (M.C.W., B.P.W., E.G., A.Y., W.J.K.); and Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China (A.Y.)
| | - Ancai Yuan
- From the Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (M.C.W., B.P.W., E.G., A.Y., W.J.K.); and Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China (A.Y.)
| | - Walter J Koch
- From the Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (M.C.W., B.P.W., E.G., A.Y., W.J.K.); and Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China (A.Y.).
| |
Collapse
|
48
|
Woodall BP, Woodall MC, Luongo TS, Grisanti LA, Tilley DG, Elrod JW, Koch WJ. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy. J Biol Chem 2016; 291:21913-21924. [PMID: 27566547 DOI: 10.1074/jbc.m116.721282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 02/04/2023] Open
Abstract
GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2fl/fl) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β2-adrenergic receptor (β2AR) agonist, was significantly enhanced in MLC-Cre:GRK2fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β2AR-induced hypertrophy.
Collapse
Affiliation(s)
- Benjamin P Woodall
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140-4106
| | - Meryl C Woodall
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140-4106
| | - Timothy S Luongo
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140-4106
| | - Laurel A Grisanti
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140-4106
| | - Douglas G Tilley
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140-4106
| | - John W Elrod
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140-4106
| | - Walter J Koch
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140-4106
| |
Collapse
|
49
|
Cheng Y, Di S, Fan C, Cai L, Gao C, Jiang P, Hu W, Ma Z, Jiang S, Dong Y, Li T, Wu G, Lv J, Yang Y. SIRT1 activation by pterostilbene attenuates the skeletal muscle oxidative stress injury and mitochondrial dysfunction induced by ischemia reperfusion injury. Apoptosis 2016; 21:905-916. [PMID: 27270300 DOI: 10.1007/s10495-016-1258-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ischemia reperfusion (IR) injury is harmful to skeletal muscles and causes mitochondrial oxidative stress. Pterostilbene (PTE), an analogue of resveratrol, has organic protective effects against oxidative stress. However, no studies have investigated whether PTE can protect against IR-related skeletal muscular injury. In this study, we sought to evaluate the protective effect of PTE against IR-related skeletal muscle injury and to determine the mechanisms in this process. Male Sprague-Dawley rats were pretreated with PTE for a week and then underwent limb IR surgery. The IR injury induced segmental necrosis and apoptosis, myofilament disintegration, thicker interstitial spaces, and inflammatory cell infiltration. Furthermore, mitochondrial respiratory chain activity in the muscular tissue was inhibited, methane dicarboxylic aldehyde concentration and myeloperoxidase activity were up-regulated, and superoxide dismutase was down-regulated after IR. However, these effects were significantly inhibited by PTE in a dose-dependent manner. The mechanism underlying IR injury is attributed to the down-regulation of silent information regulator 1 (SIRT1)-FOXO1/p53 pathway and the increase of the Bax/Bcl2 ratio, Cleaved poly ADP-ribose polymerase 1, Cleaved Caspase 3, which can be reversed with PTE. Furthermore, EX527, an SIRT1 inhibitor, counteracted the protective effects of PTE on IR-related muscle injury. In conclusion, PTE has protective properties against IR injury of the skeletal muscles. The mechanism of this protective effect depends on the activation of the SIRT1-FOXO1/p53 signaling pathway and the decrease of the apoptotic ratio in skeletal muscle cells.
Collapse
Affiliation(s)
- Yedong Cheng
- Department of Orthopaedics, The 82th Hospital of PLA, 100# Jiankang Road, Huaian, 213002, China.
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Liping Cai
- Department of Orthopaedics, The 82th Hospital of PLA, 100# Jiankang Road, Huaian, 213002, China
| | - Chao Gao
- Department of Orthopaedics, The 82th Hospital of PLA, 100# Jiankang Road, Huaian, 213002, China
| | - Peng Jiang
- Department of Orthopaedics, The 82th Hospital of PLA, 100# Jiankang Road, Huaian, 213002, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, 110016, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Guiling Wu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
50
|
Kamal FA, Travers JG, Schafer AE, Ma Q, Devarajan P, Blaxall BC. G Protein-Coupled Receptor-G-Protein βγ-Subunit Signaling Mediates Renal Dysfunction and Fibrosis in Heart Failure. J Am Soc Nephrol 2016; 28:197-208. [PMID: 27297948 DOI: 10.1681/asn.2015080852] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/08/2016] [Indexed: 12/13/2022] Open
Abstract
Development of CKD secondary to chronic heart failure (CHF), known as cardiorenal syndrome type 2 (CRS2), clinically associates with organ failure and reduced survival. Heart and kidney damage in CRS2 results predominantly from chronic stimulation of G protein-coupled receptors (GPCRs), including adrenergic and endothelin (ET) receptors, after elevated neurohormonal signaling of the sympathetic nervous system and the downstream ET system, respectively. Although we and others have shown that chronic GPCR stimulation and the consequent upregulated interaction between the G-protein βγ-subunit (Gβγ), GPCR-kinase 2, and β-arrestin are central to various cardiovascular diseases, the role of such alterations in kidney diseases remains largely unknown. We investigated the possible salutary effect of renal GPCR-Gβγ inhibition in CKD developed in a clinically relevant murine model of nonischemic hypertrophic CHF, transverse aortic constriction (TAC). By 12 weeks after TAC, mice developed CKD secondary to CHF associated with elevated renal GPCR-Gβγ signaling and ET system expression. Notably, systemic pharmacologic Gβγ inhibition by gallein, which we previously showed alleviates CHF in this model, attenuated these pathologic renal changes. To investigate a direct effect of gallein on the kidney, we used a bilateral ischemia-reperfusion AKI mouse model, in which gallein attenuated renal dysfunction, tissue damage, fibrosis, inflammation, and ET system activation. Furthermore, in vitro studies showed a key role for ET receptor-Gβγ signaling in pathologic fibroblast activation. Overall, our data support a direct role for GPCR-Gβγ in AKI and suggest GPCR-Gβγ inhibition as a novel therapeutic approach for treating CRS2 and AKI.
Collapse
Affiliation(s)
- Fadia A Kamal
- The Heart Institute, Molecular Cardiovascular Biology and
| | | | | | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|