1
|
Si S, Zhao X, Su F, Lu H, Zhang D, Sun L, Wang F, Xu L. New advances in clinical application of neostigmine: no longer focusing solely on increasing skeletal muscle strength. Front Pharmacol 2023; 14:1227496. [PMID: 37601044 PMCID: PMC10436336 DOI: 10.3389/fphar.2023.1227496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023] Open
Abstract
Neostigmine is a clinical cholinesterase inhibitor, that is, commonly used to enhance the function of the cholinergic neuromuscular junction. Recent studies have shown that neostigmine regulates the immune-inflammatory response through the cholinergic anti-inflammatory pathway, affecting perioperative neurocognitive function. This article reviews the relevant research evidence over the past 20 years, intending to provide new perspectives and strategies for the clinical application of neostigmine.
Collapse
Affiliation(s)
- Shangkun Si
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohu Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fan Su
- Department of Anesthesiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongxiu Lu
- Department of Anesthesiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongbin Zhang
- Department of Anesthesiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Sun
- Department of Anesthesiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fulei Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Xu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Liu T, Fu Y, Shi J, He S, Chen D, Li W, Chen Y, Zhang L, Lv Q, Yang Y, Jin Q, Wang J, Xie M. Noninvasive ultrasound stimulation to treat myocarditis through splenic neuro-immune regulation. J Neuroinflammation 2023; 20:94. [PMID: 37069636 PMCID: PMC10108488 DOI: 10.1186/s12974-023-02773-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND The cholinergic anti-inflammatory pathway (CAP) has been widely studied to modulate the immune response. Current stimulating strategies are invasive or imprecise. Noninvasive low-intensity pulsed ultrasound (LIPUS) has become increasingly appreciated for targeted neuronal modulation. However, its mechanisms and physiological role on myocarditis remain poorly defined. METHODS The mouse model of experimental autoimmune myocarditis was established. Low-intensity pulsed ultrasound was targeted at the spleen to stimulate the spleen nerve. Under different ultrasound parameters, histological tests and molecular biology were performed to observe inflammatory lesions and changes in immune cell subsets in the spleen and heart. In addition, we evaluated the dependence of the spleen nerve and cholinergic anti-inflammatory pathway of low-intensity pulsed ultrasound in treating autoimmune myocarditis in mice through different control groups. RESULTS The echocardiography and flow cytometry of splenic or heart infiltrating immune cells revealed that splenic ultrasound could alleviate the immune response, regulate the proportion and function of CD4+ Treg and macrophages by activating cholinergic anti-inflammatory pathway, and finally reduce heart inflammatory injury and improve cardiac remodeling, which is as effective as an acetylcholine receptor agonists GTS-21. Transcriptome sequencing showed significant differential expressed genes due to ultrasound modulation. CONCLUSIONS It is worth noting that the ultrasound therapeutic efficacy depends greatly on acoustic pressure and exposure duration, and the effective targeting organ was the spleen but not the heart. This study provides novel insight into the therapeutic potentials of LIPUS, which are essential for its future application.
Collapse
Affiliation(s)
- Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yanan Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Shukun He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Dandan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
3
|
Zirkenbach VA, Ignatz RM, Öttl R, Cehreli Z, Stroikova V, Kaya M, Lehmann LH, Preusch MR, Frey N, Kaya Z. Effect of SARS-CoV-2 mRNA-Vaccine on the Induction of Myocarditis in Different Murine Animal Models. Int J Mol Sci 2023; 24:ijms24055011. [PMID: 36902442 PMCID: PMC10002951 DOI: 10.3390/ijms24055011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
In the course of the SARS-CoV-2 pandemic, vaccination safety and risk factors of SARS-CoV-2 mRNA-vaccines were under consideration after case reports of vaccine-related side effects, such as myocarditis, which were mostly described in young men. However, there is almost no data on the risk and safety of vaccination, especially in patients who are already diagnosed with acute/chronic (autoimmune) myocarditis from other causes, such as viral infections, or as a side effect of medication and treatment. Thus, the risk and safety of these vaccines, in combination with other therapies that could induce myocarditis (e.g., immune checkpoint inhibitor (ICI) therapy), are still poorly assessable. Therefore, vaccine safety, with respect to worsening myocardial inflammation and myocardial function, was studied in an animal model of experimentally induced autoimmune myocarditis. Furthermore, it is known that ICI treatment (e.g., antibodies (abs) against PD-1, PD-L1, and CTLA-4, or a combination of those) plays an important role in the treatment of oncological patients. However, it is also known that treatment with ICIs can induce severe, life-threatening myocarditis in some patients. Genetically different A/J (most susceptible strain) and C57BL/6 (resistant strain) mice, with diverse susceptibilities for induction of experimental autoimmune myocarditis (EAM) at various age and gender, were vaccinated twice with SARS-CoV-2 mRNA-vaccine. In an additional A/J group, an autoimmune myocarditis was induced. In regard to ICIs, we tested the safety of SARS-CoV-2 vaccination in PD-1-/- mice alone, and in combination with CTLA-4 abs. Our results showed no adverse effects related to inflammation and heart function after mRNA-vaccination, independent of age, gender, and in different mouse strains susceptible for induction of experimental myocarditis. Moreover, there was no worsening effect on inflammation and cardiac function when EAM in susceptible mice was induced. However, in the experiments with vaccination and ICI treatment, we observed, in some mice, low elevation of cardiac troponins in sera, and low scores of myocardial inflammation. In sum, mRNA-vaccines are safe in a model of experimentally induced autoimmune myocarditis, but patients undergoing ICI therapy should be closely monitored when vaccinated.
Collapse
Affiliation(s)
| | - Rebecca M. Ignatz
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Renate Öttl
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Zeynep Cehreli
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Vera Stroikova
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Mansur Kaya
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Lorenz H. Lehmann
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael R. Preusch
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ziya Kaya
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-5639617
| |
Collapse
|
4
|
The α7 nAChR allosteric modulator PNU-120596 amends neuroinflammatory and motor consequences of parkinsonism in rats: Role of JAK2/NF-κB/GSk3β/ TNF-α pathway. Biomed Pharmacother 2022; 148:112776. [PMID: 35272136 DOI: 10.1016/j.biopha.2022.112776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and a leading cause of disability. The current gold standard for PD treatment, L-Dopa, has limited clinical efficacy and multiple side effects. Evidence suggests that activation of α7 nicotinic acetylcholine receptors (α7nAChRs) abrogates neuronal and inflammatory insults. Here we tested whether PNU-120596 (PNU), a type II positive allosteric modulator of α7 nAChR, has a critical role in regulating motor dysfunction and neuroinflammation correlated with the associated PD dysfunction. Neuroprotective mechanisms were investigated through neurobehavioral, molecular, histopathological, and immunohistochemical studies. PNU reversed motor incoordination and hypokinesia induced via the intrastriatal injection of 6-hydroxydopamine and manifested by lower falling latency in the rotarod test, short ambulation time and low rearing incidence in open field test. Tyrosine hydroxylase immunostaining showed a significant restoration of dopaminergic neurons following PNU treatment, in addition to histopathological restoration in nigrostriatal tissues. PNU halted striatal neuroinflammation manifested as a suppressed expression of JAK2/NF-κB/GSk3β accompanied by a parallel decline in the protein expression of TNF-α in nigrostriatal tissue denoting the modulator anti-inflammatory capacity. Moreover, the protective effects of PNU were partially reversed by the α7 nAChR antagonist, methyllycaconitine, indicating the role of α7 nAChR modulation in the mechanism of action of PNU. This is the first study to reveal the positive effects of PNU-120596 on motor derangements of PD via JAK2/NF-κB/GSk3β/ TNF-α neuroinflammatory pathways, which could offer a potential therapeutic strategy for PD.
Collapse
|
5
|
Zhang W, Lin H, Zou M, Yuan Q, Huang Z, Pan X, Zhang W. Nicotine in Inflammatory Diseases: Anti-Inflammatory and Pro-Inflammatory Effects. Front Immunol 2022; 13:826889. [PMID: 35251010 PMCID: PMC8895249 DOI: 10.3389/fimmu.2022.826889] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
As an anti-inflammatory alkaloid, nicotine plays dual roles in treating diseases. Here we reviewed the anti-inflammatory and pro-inflammatory effects of nicotine on inflammatory diseases, including inflammatory bowel disease, arthritis, multiple sclerosis, sepsis, endotoxemia, myocarditis, oral/skin/muscle inflammation, etc., mainly concerning the administration methods, different models, therapeutic concentration and duration, and relevant organs and tissues. According to the data analysis from recent studies in the past 20 years, nicotine exerts much more anti-inflammatory effects than pro-inflammatory ones, especially in ulcerative colitis, arthritis, sepsis, and endotoxemia. On the other hand, in oral inflammation, nicotine promotes and aggravates some diseases such as periodontitis and gingivitis, especially when there are harmful microorganisms in the oral cavity. We also carefully analyzed the nicotine dosage to determine its safe and effective range. Furthermore, we summarized the molecular mechanism of nicotine in these inflammatory diseases through regulating immune cells, immune factors, and the vagus and acetylcholinergic anti-inflammatory pathways. By balancing the “beneficial” and “harmful” effects of nicotine, it is meaningful to explore the effective medical value of nicotine and open up new horizons for remedying acute and chronic inflammation in humans.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingmin Zou
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qinghua Yuan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoying Pan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| |
Collapse
|
6
|
Gajić D, Despotović S, Koprivica I, Miljković Đ, Saksida T. Ethyl Pyruvate Ameliorates Experimental Autoimmune Myocarditis. Biomolecules 2021; 11:biom11121768. [PMID: 34944410 PMCID: PMC8698267 DOI: 10.3390/biom11121768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Ethyl pyruvate (EP) has profound anti-inflammatory and immunomodulatory properties. Here, its effects were determined on experimental autoimmune myocarditis (EAM) induced in mice by heart-specific myosin-alpha heavy chain peptide immunization. EP was applied intraperitoneally, daily, starting with the immunization. Severity of EAM was determined by histological assessment of immune cell infiltrates into the heart. Cells were phenotypically characterized by flow cytometry. Concentration of cytokines in cell culture supernatants and sera was determined by ELISA. EP reduced the infiltration of immune cells into the heart and lessened heart inflammation. Smaller number of total immune cells, as well as of CD11b+ and CD11c+ cells were isolated from the hearts of EP-treated mice. A reduced number of antigen-presenting cells, detected by anti-CD11c, MHC class II and CD86 antibodies, as well as of T helper (Th)1 and Th17 cells, detected by anti-CD4, IFN-γ and IL-17 antibodies, was determined in mediastinal lymph nodes draining the heart, in parallel. In the spleen, only the number of CD11c+ cells were reduced, but not of the other examined populations, thus implying limited systemic effect of EP. Reduced production of IFN-γ and IL-17 by myosin-alpha heavy chain peptide-restimulated cells of the lymph nodes draining the site of immunization was observed in EP-treated mice. Our results clearly imply that EP restrains autoimmunity in EAM. Therapeutic application of EP in the treatment of myocarditis in humans should be addressed in the forthcoming studies.
Collapse
Affiliation(s)
- Dragica Gajić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.G.); (I.K.); (T.S.)
| | - Sanja Despotović
- Faculty of Medicine, Institute of Histology and Embryology, University of Belgrade, Dr Subotića 9, 11000 Belgrade, Serbia;
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.G.); (I.K.); (T.S.)
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.G.); (I.K.); (T.S.)
- Correspondence: ; Tel.: +381-11-2078390
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.G.); (I.K.); (T.S.)
| |
Collapse
|
7
|
Fujiu K, Manabe I. Nerve-macrophage interactions in cardiovascular disease. Int Immunol 2021; 34:81-95. [PMID: 34173833 DOI: 10.1093/intimm/dxab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
The heart is highly innervated by autonomic neurons, and dynamic autonomic regulation of the heart and blood vessels is essential for animals to carry out the normal activities of life. Cardiovascular diseases, including heart failure and myocardial infarction, are often characterized in part by an imbalance in autonomic nervous system activation, with excess sympathetic and diminished parasympathetic activation. Notably, however, this is often accompanied by chronic inflammation within the cardiovascular tissues, which suggests there are interactions between autonomic dysregulation and inflammation. Recent studies have been unraveling the mechanistic links between autonomic nerves and immune cells within cardiovascular disease. The autonomic nervous system and immune system also act in concert to coordinate the actions of multiple organs that not only maintain homeostasis but also likely play key roles in disease-disease interactions, such as cardiorenal syndrome and multimorbidity. In this review, we summarize the physiological and pathological interactions between autonomic nerves and macrophages in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan.,Department of Advanced Cardiology, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo, Chiba, Chiba, Japan
| |
Collapse
|
8
|
Lai Y, Zhou X, Guo F, Jin X, Meng G, Zhou L, Chen H, Liu Z, Yu L, Jiang H. Non-invasive transcutaneous vagal nerve stimulation improves myocardial performance in doxorubicin-induced cardiotoxicity. Cardiovasc Res 2021; 118:1821-1834. [PMID: 34145895 DOI: 10.1093/cvr/cvab209] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/17/2021] [Indexed: 12/29/2022] Open
Abstract
AIMS The clinical use of antitumor agent doxorubicin (DOX) is hampered by its dose-dependent cardiotoxicity. Development of highly efficient and safe adjuvant intervention for preventing DOX-induced adverse cardiac events is urgently needed. We aimed to investigate whether transcutaneous vagal nerve stimulation (tVNS) plays a cardio-protective role in DOX-induced cardiotoxicity. METHODS AND RESULTS Healthy male adult Sprague Dawley rats were used in the experiment and were randomly divided into four groups including control, DOX, tVNS and DOX+tVNS groups. A cumulative dose of 15 mg/kg DOX was intraperitoneally injected into rats to generate cardiotoxicity. Non-invasive tVNS was conducted for 6 weeks (30 min/day). After six-week intervention, the indices from the echocardiography revealed that tVNS significantly improved left ventricular function compared to the DOX group. The increased malondialdehyde (MDA) and Interleukin-1β (IL-1β), and decreased superoxide dismutase (SOD) were observed in the DOX group, while tVNS significantly prevented these changes. From cardiac histopathological analysis, the DOX+tVNS group showed a mild myocardial damage, and decreases in cardiac fibrosis and myocardial apoptosis compared to the DOX group. Heart rate variability (HRV) analysis showed that tVNS significantly inhibited DOX-induced sympathetic hyperactivity compared to the DOX group. Additionally, the results of RNA-sequencing analysis showed that there were 245 differentially expressed genes in the DOX group compared to the control group, among which 39 genes were downregulated by tVNS and most of these genes were involved in immune system. Moreover, tVNS significantly downregulated the relative mRNA expressions of chemokine-related genes and macrophages recruitment compared to the DOX group. CONCLUSION These results suggest that tVNS prevented DOX-induced cardiotoxicity by rebalancing autonomic tone, ameliorating cardiac dysfunction and remodeling. Notably, crosstalk between autonomic neuromodulation and innate immune cells macrophages mediated by chemokines might be involved in the underlying mechanisms. A TRANSLATIONAL PERSPECTIVE Non-invasive tVNS has been identified an effective neuromodulation strategy exerting beneficial effects on rebalancing autonomic tone and cardiac pathological conditions. The present study provided direct evidence for a beneficial role of tVNS in preventing DOX-induced autonomic dysfunction and cardiotoxicity in vivo. Additionally, recent studies revealed the importance of sympathetic nerve fibers involving in tumorigenesis and the benefits of higher vagal tone for tumor prognosis either in animal or human trials. Together, tVNS may not only become a novel, nonpharmacological adjuvant therapy for preventing doxorubicin-induced cardiotoxicity, but also may be beneficial for prognosis of cancer patients during chemotherapy. In our future study, we would investigate the effect of tVNS on both combined chemotherapy-induced cardiotoxicity and the antitumor efficacy of DOX in tumor models.
Collapse
Affiliation(s)
- Yanqiu Lai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, 430060, China
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, 430060, China
| | - Fuding Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, 430060, China
| | - Xiaoxing Jin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, 430060, China
| | - Guannan Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, 430060, China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, 430060, China
| | - Hu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, 430060, China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, 430060, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, 430060, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, 430060, China
| |
Collapse
|
9
|
Morales JY, Young-Stubbs CM, Shimoura CG, Kem WR, Uteshev VV, Mathis KW. Systemic Administration of α7-Nicotinic Acetylcholine Receptor Ligands Does Not Improve Renal Injury or Behavior in Mice With Advanced Systemic Lupus Erythematosus. Front Med (Lausanne) 2021; 8:642960. [PMID: 33928103 PMCID: PMC8076522 DOI: 10.3389/fmed.2021.642960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/18/2021] [Indexed: 01/04/2023] Open
Abstract
There is a critical need for safe treatment options to control inflammation in patients with systemic lupus erythematosus (SLE) since the inflammation contributes to morbidity and mortality in advanced disease. Endogenous neuroimmune mechanisms like the cholinergic anti-inflammatory pathway can be targeted to modulate inflammation, but the ability to manipulate such pathways and reduce inflammation and end organ damage has not been fully explored in SLE. Positive allosteric modulators (PAM) are pharmacological agents that inhibit desensitization of the nicotinic acetylcholine receptor (α7-nAChR), the main anti-inflammatory feature within the cholinergic anti-inflammatory pathway, and may augment α7-dependent cholinergic tone to generate therapeutic benefits in SLE. In the current study, we hypothesize that activating the cholinergic anti-inflammatory pathway at the level of the α7-nAChR with systemic administration of a partial agonist, GTS-21, and a PAM, PNU-120596, would reduce inflammation, eliminating the associated end organ damage in a mouse model of SLE with advanced disease. Further, we hypothesize that systemic α7 ligands will have central effects and improve behavioral deficits in SLE mice. Female control (NZW) and SLE mice (NZBWF1) were administered GTS-21 or PNU-120596 subcutaneously via minipumps for 2 weeks. We found that the increased plasma dsDNA autoantibodies, splenic and renal inflammation, renal injury and hypertension usually observed in SLE mice with advanced disease at 35 weeks of age were not altered by GTS-21 or PNU-120596. The anxiety-like behavior presented in SLE mice was also not improved by GTS-21 or PNU-120596. Although no significant beneficial effects of α7 ligands were observed in SLE mice at this advanced stage, we predict that targeting this receptor earlier in the pathogenesis of the disease may prove to be efficacious and should be addressed in future studies.
Collapse
Affiliation(s)
- Jessica Y Morales
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Cassandra M Young-Stubbs
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Caroline G Shimoura
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
10
|
El-Emam MA, El Achy S, Abdallah DM, El-Abhar HS, Gowayed MA. Neuroprotective role of galantamine with/without physical exercise in experimental autoimmune encephalomyelitis in rats. Life Sci 2021; 277:119459. [PMID: 33836162 DOI: 10.1016/j.lfs.2021.119459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022]
Abstract
AIMS The fact that physical activity besides central cholinergic enhancement contributes in improving neuronal function and spastic plasticity, recommends the use of the anticholinesterase and cholinergic drug galantamine with/without exercise in the management of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). MATERIALS AND METHODS Sedentary and 14 days exercised male Sprague Dawley rats were subjected to EAE. Hereafter, exercised rats continued on rotarod for 30 min for 17 consecutive days. At the onset of symptoms (day 13), EAE sedentary/exercised groups were subdivided into untreated and post-treated with galantamine. The disease progression was assessed by EAE score, motor performance, and biochemically using cerebrospinal fluid (CSF). Cerebellum and brain stem samples were used for histopathology and immunohistochemistry analysis. KEY FINDINGS Galantamine decreased EAE score of sedentary/exercised rats and enhanced their motor performance. Galantamine with/without exercise inhibited CSF levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6), and Bcl-2-associated X protein (Bax), besides caspase-3 and forkhead box P3 (Foxp3) expression in the brain stem. Contrariwise, it has elevated CSF levels of brain derived neurotrophic factor (BDNF) and B-cell lymphoma (Bcl-2) and enhanced remyelination of cerebral neurons. Noteworthy, exercise boosted the drug effect on Bcl-2 and Bax. SIGNIFICANCE The neuroprotective effect of galantamine against EAE was associated with anti-inflammatory and anti-apoptotic potentials, along with increasing BDNF and remyelination. It also normalized regulatory T-cells levels in the brain stem. The impact of the add-on of exercise was markedly manifested in reducing neuronal apoptosis.
Collapse
Affiliation(s)
- Mohamed A El-Emam
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
11
|
Lu J, Wu W. Cholinergic modulation of the immune system - A novel therapeutic target for myocardial inflammation. Int Immunopharmacol 2021; 93:107391. [PMID: 33548577 DOI: 10.1016/j.intimp.2021.107391] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
The immune system and the nervous system depend on each other for their fine tuning and working, thus cooperating to maintain physiological homeostasis and prevent infections. The cholinergic system regulates the mobilization, differentiation, secretion, and antigen presentation of adaptive and innate immune cells mainly through α7 nicotinic acetylcholine receptors (α7nAChRs). The neuro-immune interactions are established and maintained by the following mechanisms: colocalization of immune and neuronal cells at defined anatomical sites, expression of the non-neuronal cholinergic system by immune cells, and the acetylcholine receptor-mediated activation of intracellular signaling pathways. Based on these immunological mechanisms, the protective effects of cholinergic system in animal models of diseases were summarized in this paper, such as myocardial infarction/ischemia-reperfusion, viral myocarditis, and endotoxin-induced myocardial damage. In addition to maintaining hemodynamic stability and improving the energy metabolism of the heart, both non-neuronal acetylcholine and neuronal acetylcholine in the heart can alleviate myocardial inflammation and remodeling to exert a significant cardioprotective effect. The new findings on the role of cholinergic agonists and vagus nerve stimulation in immune regulation are updated, so as to develop improved approaches to treat inflammatory heart disease.
Collapse
Affiliation(s)
- Jing Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| | - Weifeng Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Shuangyong Road 22, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
12
|
Rocha-Resende C, da Silva AM, Prado MAM, Guatimosim S. Protective and anti-inflammatory effects of acetylcholine in the heart. Am J Physiol Cell Physiol 2020; 320:C155-C161. [PMID: 33264077 DOI: 10.1152/ajpcell.00315.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The innate and adaptive immune systems play an important role in the development of cardiac diseases. Therefore, it has become critical to identify molecules that can modulate inflammation in the injured heart. In this regard, activation of the cholinergic system in animal models of heart disease has been shown to exert protective actions that include immunomodulation of cardiac inflammation. In this mini-review, we briefly present our current understanding on the cardiac cellular sources of acetylcholine (ACh) (neuronal vs. nonneuronal), followed by a discussion on its contribution to the regulation of inflammatory cells. Although the mechanism behind ACh-mediated protection still remains to be fully elucidated, the beneficial immunomodulatory role of the cholinergic signaling emerges as a potential key regulator of cardiac inflammation.
Collapse
Affiliation(s)
- Cibele Rocha-Resende
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Aristóbolo Mendes da Silva
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Marco A M Prado
- Robarts Research Institute, Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
13
|
Gowayed MA, Mahmoud SA, Michel TN, Kamel MA, El-Tahan RA. Galantamine in rheumatoid arthritis: A cross talk of parasympathetic and sympathetic system regulates synovium-derived microRNAs and related pathogenic pathways. Eur J Pharmacol 2020; 883:173315. [DOI: 10.1016/j.ejphar.2020.173315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/18/2023]
|
14
|
Han X, Zhou N, Hu H, Li X, Liu H. Nicotine Alleviates Cortical Neuronal Injury by Suppressing Neuroinflammation and Upregulating Neuronal PI3K-AKT Signaling in an Eclampsia-Like Seizure Model. Neurotox Res 2020; 38:665-681. [PMID: 32767216 DOI: 10.1007/s12640-020-00265-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Our previous studies showed that treatment with alpha7 nicotinic acetylcholine receptor (α7nAChR) agonist nicotine could alleviate systemic inflammation and reduce neuronal loss in the hippocampus and seizure severity in eclampsia. In this study, we further investigated whether there is also neuronal damage in the cortex after eclamptic seizure, elucidated the potential mechanisms underlying the neuroprotective roles of nicotine in eclampsia. Retrospective analysis of MRI data of severe preeclampsia (SPE) patients was conducted. A preeclampsia model was established by lipopolysaccharide injection (PE group), and pentylenetetrazol was used to induce eclamptic seizure (E group). α7nAChR agonist nicotine and its antagonist (α-BGT) and PI3K inhibitor wortmannin were used for drug administration. Neuronal damage was detected by Nissl staining, and changes in neuroinflammation, neuronal apoptosis, α7nAChR expression, and PI3K-AKT signaling on cortical neurons were detected by immunohistochemistry and western blotting. MRI images showed that most abnormal signals from the brain of SPE patients were located in the cortex. The neuron survival ratio was lower in the cortex than in the hippocampus within the E group; such ratios in the cortex were significantly lower in the E and PE groups compared with those of the control group. Nicotine markedly decreased the production of inflammatory cytokines and microglial activation in the cortex of the E group. Moreover, nicotine increased p-AKT levels and decreased cleaved caspase-3 levels in cortical neurons. Treatment with α-BGT reversed effects of nicotine. Wortmannin also blocked the anti-neuronal apoptosis action of nicotine. Our results suggest that nicotine protects against neuronal injury in the cortex following eclampsia possibly by inhibiting neuroinflammation and activating neuronal PI3K-AKT pathway.
Collapse
Affiliation(s)
- Xinjia Han
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Ning Zhou
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiping Hu
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Xin Li
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Hefei, China
| | - Huishu Liu
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|
15
|
Liu C, Jiang H, Yu L, S Po S. Vagal Stimulation and Arrhythmias. J Atr Fibrillation 2020; 13:2398. [PMID: 33024499 DOI: 10.4022/jafib.2398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
I mbalance of the sympathetic and parasympathetic nervous systems is probably the most prevalent autonomic mechanism underlying many a rrhythmias . Recently, vagus nerve stimulation ( VNS has emerged as a novel therapeutic modality to treat arrhythmias through its anti adrenergic and anti inflammatory actions . C linical trials applying VNS to the cervical vagus nerve in heart failure pati en ts yielded conflicting results, possibly due to limited understanding of the optimal stimulation parameters for the targeted cardiovascular diseases. Transcutaneous VNS by stimulating the auricular branch of the vagus nerve, has attracted great attention d ue to its noninvasiveness. In this r eview, we summarize current knowledge about the complex relationship between VNS and cardiac arrhythmias and discuss recent advances in using VNS , particularly transcutaneous VNS , to treat arrhythmias.
Collapse
Affiliation(s)
- Chengzhe Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Sunny S Po
- Heart Rhythm Institute and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, O K USA
| |
Collapse
|
16
|
May SM, Reyes A, Martir G, Reynolds J, Paredes LG, Karmali S, Stephens RCM, Brealey D, Ackland GL. Acquired loss of cardiac vagal activity is associated with myocardial injury in patients undergoing noncardiac surgery: prospective observational mechanistic cohort study. Br J Anaesth 2019; 123:758-767. [PMID: 31492527 DOI: 10.1016/j.bja.2019.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/02/2019] [Accepted: 08/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myocardial injury is more frequent after noncardiac surgery in patients with preoperative cardiac vagal dysfunction, as quantified by delayed heart rate (HR) recovery after cessation of cardiopulmonary exercise testing. We hypothesised that serial and dynamic measures of cardiac vagal activity are also associated with myocardial injury after noncardiac surgery. METHODS Serial autonomic measurements were made before and after surgery in patients undergoing elective noncardiac surgery. Cardiac vagal activity was quantified by HR variability and HR recovery after orthostatic challenge (supine to sitting). Revised cardiac risk index (RCRI) was calculated for each patient. The primary outcome was myocardial injury (high-sensitivity troponin ≥15 ng L-1) within 48 h of surgery, masked to investigators. The exposure of interest was cardiac vagal activity (high-frequency power spectral analysis [HFLn]) and HR recovery 90 s from peak HR after the orthostatic challenge. RESULTS Myocardial injury occurred in 48/189 (25%) patients, in whom 41/48 (85%) RCRI was <2. In patients with myocardial injury, vagal activity (HFLn) declined from 5.15 (95% confidence interval [CI]: 4.58-5.72) before surgery to 4.33 (95% CI: 3.76-4.90; P<0.001) 24 h after surgery. In patients who remained free of myocardial injury, HFLn did not change (4.95 [95% CI: 4.64-5.26] before surgery vs 4.76 [95% CI: 4.44-5.08] after surgery). Before and after surgery, the orthostatic HR recovery was slower in patients with myocardial injury (5 beats min-1 [95% CI: 3-7]), compared with HR recovery in patients who remained free of myocardial injury (10 beats min-1 [95% CI: 7-12]; P=0.02). CONCLUSIONS Serial HR measures indicating loss of cardiac vagal activity are associated with perioperative myocardial injury in lower-risk patients undergoing noncardiac surgery.
Collapse
Affiliation(s)
- Shaun M May
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Anna Reyes
- University College London NHS Hospitals Trust, London, UK
| | - Gladys Martir
- University College London NHS Hospitals Trust, London, UK
| | - Joseph Reynolds
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Shamir Karmali
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - David Brealey
- University College London NHS Hospitals Trust, London, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
17
|
Lin ZH, Li YC, Wu SJ, Zheng C, Lin YZ, Lian H, Lin WQ, Lin JF. Eliciting α7-nAChR exerts cardioprotective effects on ischemic cardiomyopathy via activation of AMPK signalling. J Cell Mol Med 2019; 23:4746-4758. [PMID: 31062470 PMCID: PMC6584557 DOI: 10.1111/jcmm.14363] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 01/23/2023] Open
Abstract
Our previous studies have reported that agonist of α7 nicotinic acetylcholine receptors prevented electrophysiological dysfunction of rats with ischaemic cardiomyopathy (ICM) by eliciting the cholinergic anti‐inflammatory pathway (CAP). Adenosine monophosphate‐activated protein kinase (AMPK) signalling is widely recognized exerting cardioprotective effect in various cardiomyopathy. Here, we aimed to investigate whether the protective effects of the CAP are associated with AMPK signalling in ICM. In vivo, coronary artery of rats was ligated for 4 weeks to induce the ICM and then treated with PNU‐282987 (CAP agonist) and BML‐275 dihydrochloride (AMPK antagonist) for 4 weeks. In vitro, primary macrophages harvested from rats were induced inflammation by Lipopolysaccharide (LPS) treatment and then treated with PNU‐282987 and BML‐275 dihydrochloride. In vivo, exciting CAP by PUN‐282987 elicited an activation of AMPK signalling, alleviated ventricular remodeling, modified the cardiac electrophysiological function, reduced the cardiac expression of collagens and inflammatory cytokines and maintained the integrity of ultrastructure in the ischemic heart. However, the benefits of CAP excitation were blunted by AMPK signaling antagonization. In vitro, excitation of the CAP was observed inhibiting the nuclear transfer of NF‐κB p65 of macrophages and promoting the transformation of Ly‐6Chigh macrophages into Ly‐6Clow macrophages. However, inhibiting AMPK signalling by BML‐275 dihydrochloride reversed the CAP effect on LPS‐treated macrophages. Finally, our findings suggest that eliciting the CAP modulates the inflammatory response in ICM through regulating AMPK signalling.
Collapse
Affiliation(s)
- Zhong-Hao Lin
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue-Chun Li
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shu-Jie Wu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng Zheng
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan-Zheng Lin
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Lian
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-Qian Lin
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Feng Lin
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Wang H, Li X, Zhangsun D, Yu G, Su R, Luo S. The α9α10 Nicotinic Acetylcholine Receptor Antagonist αO-Conotoxin GeXIVA[1,2] Alleviates and Reverses Chemotherapy-Induced Neuropathic Pain. Mar Drugs 2019; 17:md17050265. [PMID: 31060282 PMCID: PMC6562493 DOI: 10.3390/md17050265] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
Oxaliplatin is a third-generation platinum drug and is widely used as a first-line therapy for the treatment of colorectal cancer (CRC). However, a large number of patients receiving oxaliplatin develop dose-limiting painful neuropathy. Here, we report that αO-conotoxin GeXIVA[1,2], a highly potent and selective antagonist of the α9α10 nicotinic acetylcholine receptor (nAChR) subtype, can relieve and reverse oxaliplatin-induced mechanical and cold allodynia after single and repeated intramuscular (IM) injections in rats. Treatments were started at 4 days post oxaliplatin injection when neuropathic pain emerged and continued for 8 and 16 days. Cold score and mechanical paw withdrawal threshold (PWT) were detected by the acetone test and von Frey test respectively. GeXIVA[1,2] significantly relieved mechanical and cold allodynia in oxaliplatin-treated rats after a single injection. After repeated treatments, GeXIVA[1,2] produced a cumulative analgesic effect without tolerance and promoted recovery from neuropathic pain. Moreover, the long lasting analgesic effect of GeXIVA[1,2] on mechanical allodynia continued until day 10 after the termination of the 16-day repeated treatment procedure. On the contrary, GeXIVA[1,2] did not affect acute mechanical and thermal pain behaviors in normal rats after repeated injections detected by the von Frey test and tail flick test. GeXIVA[1,2] had no influence on rat hind limb grip strength and body weight after repeated treatments. These results indicate that αO-conotoxin GeXIVA[1,2] could provide a novel strategy to treat chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Huanbai Wang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou, Hainan 570228, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | - Xiaodan Li
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou, Hainan 570228, China.
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou, Hainan 570228, China.
| | - Gang Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
19
|
De-Pu Z, Li-Sha G, Guang-Yi C, Xiaohong G, Chao X, Cheng Z, Wen-Wu Z, Jia L, Jia-Feng L, Maoping C, Yue-Chun L. The cholinergic anti-inflammatory pathway ameliorates acute viral myocarditis in mice by regulating CD4 + T cell differentiation. Virulence 2019; 9:1364-1376. [PMID: 30176160 PMCID: PMC6141146 DOI: 10.1080/21505594.2018.1482179] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many studies have found that abnormalities in the proportion and differentiation of CD4+ T cells (Th cells) are closely related to the pathogenesis of viral myocarditis (VMC). Our previous research indicates that the cholinergic anti-inflammatory pathway (CAP) attenuates the inflammatory response of VMC and downregulates the expression of cytokines in Th1 and Th17 cells. This suggests that the cholinergic anti-inflammatory pathway likely attenuates the inflammatory response in VMC by altering Th cell differentiation. The aim of this study is to investigate the effect of CAP on CD4+ T cell differentiation in VMC mice. CD4+ T cells in the spleen of VMC mice were obtained and cultured in the presence of nicotine or methyllycaconitine (MLA). Cells were harvested and analyzed for the percentage of each Th cell subset by flow cytometry and transcription factor release by Western blot. Then, we detected the effect of CAP on the differentiation of Th cells in vivo. Nicotine or MLA was used to activate and block CAP, respectively, in acute virus-induced myocarditis. Nicotine treatment increased the proportion of Th2 and Treg cells, decreased the proportion of Th1 and Th17 cells in the spleen, reduced the level of proinflammatory cytokines, and attenuated the severity of myocardium lesions and cellular infiltration in viral myocarditis. MLA administration had the opposite effect. Our result demonstrated that CAP effectively protects the myocardium from virus infection, which may be attributable to the regulation of Th cell differentiation.
Collapse
Affiliation(s)
- Zhou De-Pu
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Ge Li-Sha
- b Department of Pediatric Emergency , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Chen Guang-Yi
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Gu Xiaohong
- c Children's Heart Center and Department of Pediatrics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Xing Chao
- d Department of Clinical Laboratory , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Zheng Cheng
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Zhang Wen-Wu
- e Department of Intensive Care Unit , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Li Jia
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Lin Jia-Feng
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Chu Maoping
- c Children's Heart Center and Department of Pediatrics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Li Yue-Chun
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
20
|
Nicotinic Agonist Inhibits Cardiomyocyte Apoptosis in CVB3-Induced Myocarditis via α3 β4-nAChR/PI3K/Akt-Dependent Survivin Upregulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9496419. [PMID: 30984342 PMCID: PMC6431489 DOI: 10.1155/2019/9496419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022]
Abstract
Background Cardiomyocyte apoptosis is critical for the development of coxsackievirus B3- (CVB3-) induced myocarditis, which is a common cardiac disease that may result in heart failure or even sudden death. Previous studies have associated CVB3-induced apoptosis with the downregulation of antiapoptotic proteins. Here, attempts were made to examine whether nicotinic acetylcholine receptors (nAChRs), especially α3β4-nAChRs, were a novel therapeutic antiapoptotic target via the activation of survivin, a strong antiapoptotic protein, in viral myocarditis (VMC). Methods and Results In the present study, we demonstrated that nAChRs, α3β4-nAChR subunits in particular, were present and upregulated in CVB3-infected neonatal rat cardiomyocytes (NRC) and H9c2 cells by RT-qPCR. The function of α3β4-nAChRs was next examined using its specific blocker α-CTX AuIB in vitro. The results of the TUNEL assay and western blot experiments showed that the block of α3β4-nAChRs abrogated nicotine-mediated protection of NRC from CVB3-induced apoptosis, and this effect displayed a substantial correlation with the protein expressions of pAkt, survivin, and Cleaved Caspase-3. Hence, the involvement of the PI3K/Akt pathway was further verified by LY294002, a selective inhibitor of PI3K. As a result, nicotine-mediated induction of pAkt and survivin was abolished by LY294002; meanwhile, apoptotic NRC were increased accompanied by an increase of Cleaved Caspase-3 expression. Regarding CVB3-infected BALB/c mice, the α-CTX AuIB- and LY294002-treated groups had a lower survival rate, deteriorative ventricular systolic function, and more severe inflammation than the nicotine-treated group and the modulation of pAkt, survivin, and Cleaved Caspase-3 protein expressions was similar to that in CVB3-infected NRC. In addition, we found that a nicotinic agonist reduced CVB3 replication in a dose-dependent manner in vitro, which indicates that nAChR activation may serve as a possible protection mechanism of CVB3-induced myocarditis. Conclusions Our study demonstrated that α3β4-nAChR subunits are essential in the nicotine-mediated antiapoptotic effect of protecting cardiomyocytes from CVB3-induced apoptosis in vivo and in vitro. This protection correlated with the PI3K/Akt pathway and the inducement of the antiapoptotic protein survivin. A combination of these mechanisms serves as a novel protective response to treat viral myocarditis.
Collapse
|
21
|
Abbott TEF, Pearse RM, Cuthbertson BH, Wijeysundera DN, Ackland GL. Cardiac vagal dysfunction and myocardial injury after non-cardiac surgery: a planned secondary analysis of the measurement of Exercise Tolerance before surgery study. Br J Anaesth 2018; 122:188-197. [PMID: 30686304 PMCID: PMC6354047 DOI: 10.1016/j.bja.2018.10.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/14/2022] Open
Abstract
Background The aetiology of perioperative myocardial injury is poorly understood and not clearly linked to pre-existing cardiovascular disease. We hypothesised that loss of cardioprotective vagal tone [defined by impaired heart rate recovery ≤12 beats min−1 (HRR ≤12) 1 min after cessation of preoperative cardiopulmonary exercise testing] was associated with perioperative myocardial injury. Methods We conducted a pre-defined, secondary analysis of a multi-centre prospective cohort study of preoperative cardiopulmonary exercise testing. Participants were aged ≥40 yr undergoing non-cardiac surgery. The exposure was impaired HRR (HRR≤12). The primary outcome was postoperative myocardial injury, defined by serum troponin concentration within 72 h after surgery. The analysis accounted for established markers of cardiac risk [Revised Cardiac Risk Index (RCRI), N-terminal pro-brain natriuretic peptide (NT pro-BNP)]. Results A total of 1326 participants were included [mean age (standard deviation), 64 (10) yr], of whom 816 (61.5%) were male. HRR≤12 occurred in 548 patients (41.3%). Myocardial injury was more frequent amongst patients with HRR≤12 [85/548 (15.5%) vs HRR>12: 83/778 (10.7%); odds ratio (OR), 1.50 (1.08–2.08); P=0.016, adjusted for RCRI). HRR declined progressively in patients with increasing numbers of RCRI factors. Patients with ≥3 RCRI factors were more likely to have HRR≤12 [26/36 (72.2%) vs 0 factors: 167/419 (39.9%); OR, 3.92 (1.84–8.34); P<0.001]. NT pro-BNP greater than a standard prognostic threshold (>300 pg ml−1) was more frequent in patients with HRR≤12 [96/529 (18.1%) vs HRR>12 59/745 (7.9%); OR, 2.58 (1.82–3.64); P<0.001]. Conclusions Impaired HRR is associated with an increased risk of perioperative cardiac injury. These data suggest a mechanistic role for cardiac vagal dysfunction in promoting perioperative myocardial injury.
Collapse
Affiliation(s)
- T E F Abbott
- William Harvey Research Institute, Queen Mary University of London, London, UK; University College London Hospital, London, UK
| | - R M Pearse
- William Harvey Research Institute, Queen Mary University of London, London, UK; Barts Health NHS Trust, London, UK
| | - B H Cuthbertson
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - D N Wijeysundera
- University of Toronto, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Toronto General Hospital, Toronto, ON, Canada
| | - G L Ackland
- William Harvey Research Institute, Queen Mary University of London, London, UK; Barts Health NHS Trust, London, UK.
| | | |
Collapse
|
22
|
The mouse autonomic nervous system modulates inflammation and epithelial renewal after corneal abrasion through the activation of distinct local macrophages. Mucosal Immunol 2018; 11:1496-1511. [PMID: 29988115 DOI: 10.1038/s41385-018-0031-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 02/04/2023]
Abstract
Inflammation and reepithelialization after corneal abrasion are critical for the rapid restoration of vision and the prevention of microbial infections. However, the endogenous regulatory mechanisms are not completely understood. Here we report that the manipulation of autonomic nervous system (ANS) regulates the inflammation and healing processes. The activation of sympathetic nerves inhibited reepithelialization after corneal abrasion but increased the influx of neutrophils and the release of inflammatory cytokines. Conversely, the activation of parasympathetic nerves promoted reepithelialization and inhibited the influx of neutrophils and the release of inflammatory cytokines. Furthermore, we observed that CD64+CCR2+ macrophages in the cornea preferentially expressed the β-2 adrenergic receptor (AR), whereas CD64+CCR2- macrophages preferentially expressed the α-7 nicotinic acetylcholine receptor (α7nAChR). After abrasion, the topical administration of a β2AR agonist further enhanced the expression of the proinflammatory genes in the CD64+CCR2+ cell subset sorted from injured corneas. In contrast, the topical administration of an α7nAChR agonist further enhanced the expression of the anti-inflammatory genes in the CD64+CCR2- subset. Thus crosstalk between the ANS and local macrophage populations is necessary for the progress of corneal wound repair. Manipulation of ANS inputs to the wounded cornea may represent an alternative approach to the treatment of impaired wound healing.
Collapse
|
23
|
Hernandez J, Volland A, Leyshon BJ, Juda M, Ridlon JM, Johnson RW, Steelman AJ. Effect of imidacloprid ingestion on immune responses to porcine reproductive and respiratory syndrome virus. Sci Rep 2018; 8:11615. [PMID: 30072754 PMCID: PMC6072715 DOI: 10.1038/s41598-018-30093-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
Nicotine and acetylcholine cause immunosuppresion by signaling to the α7 nicotinic acetylcholine receptor (α7 nAChR) on immune cells. Neonicotinoids are nAChR agonists and widly used insecticides. We aimed to define the immunosuppressive potential of dietary exposure to the neonicotinoid imidacloprid (IMI) on the generation of innate and adaptive immune responses to porcine reproductive and respiratory syndrome virus (PRRSV). Piglets were randomized into groups based on diet and infection. Behavioral signs of illness were recorded. Urine IMI levels were measured by high performance liquid chromatography-mass spectrometry. Flow cytometry was used to determine the expression pattern of the α7 nAChR on porcine leukocytes as well as the effects of infection and treatment on circulating leukocyte populations. Serum cytokines and PRRSV-specific antibody levels were determined by ELISA. Viral RNA in lung, spleen and plasma was determined by RT-qPCR. Pigs in the treatment group had elevated urine levels of IMI. Treatment with IMI reduced body weight, caused bouts of hypothermia, increased serum IL-10 and elevated levels of virus-specific antibodies. Viral RNA levels in the spleen showed a trend toward being increased in pigs fed IMI. Our data indicates that IMI injection may modulate virus specific immune function during PRRSV infection.
Collapse
Affiliation(s)
- J Hernandez
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.,Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - A Volland
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - B J Leyshon
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - M Juda
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - J M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genome Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - R W Johnson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.,Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Neuroscience, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - A J Steelman
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA. .,Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA. .,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Neuroscience, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
24
|
Chavan SS, Ma P, Chiu IM. Neuro-immune interactions in inflammation and host defense: Implications for transplantation. Am J Transplant 2018; 18:556-563. [PMID: 28941325 PMCID: PMC5820210 DOI: 10.1111/ajt.14515] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/13/2017] [Accepted: 09/16/2017] [Indexed: 01/25/2023]
Abstract
Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine.
Collapse
Affiliation(s)
- Sangeeta S. Chavan
- Center for Biomedical Science, Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Pingchuan Ma
- Harvard Medical School, Department of Microbiology and Immunobiology, Division of Immunology, Boston, MA, USA
| | - Isaac M. Chiu
- Harvard Medical School, Department of Microbiology and Immunobiology, Division of Immunology, Boston, MA, USA
| |
Collapse
|
25
|
Cholinergic anti-inflammatory pathway inhibits neointimal hyperplasia by suppressing inflammation and oxidative stress. Redox Biol 2017; 15:22-33. [PMID: 29197233 PMCID: PMC5723281 DOI: 10.1016/j.redox.2017.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Neointimal hyperplasia as a consequence of vascular injury is aggravated by inflammatory reaction and oxidative stress. The α7 nicotinic acetylcholine receptor (α7nAChR) is a orchestrator of cholinergic anti-inflammatory pathway (CAP), which refers to a physiological neuro-immune mechanism that restricts inflammation. Here, we investigated the potential role of CAP in neointimal hyperplasia using α7nAChR knockout (KO) mice. Male α7nAChR-KO mice and their wild-type control mice (WT) were subjected to wire injury in left common carotid artery. At 4 weeks post injury, the injured aortae were isolated for examination. The neointimal hyperplasia after wire injury was significantly aggravated in α7nAChR-KO mice compared with WT mice. The α7nAChR-KO mice had increased collagen contents and vascular smooth muscle cells (VSMCs) amount. Moreover, the inflammation was significantly enhanced in the neointima of α7nAChR-KO mice relative to WT mice, evidenced by the increased expression of tumor necrosis factor-α/interleukin-1β, and macrophage infiltration. Meanwhile, the chemokines chemokine (C-C motif) ligand 2 and chemokine (CXC motif) ligand 2 expression was also augmented in the neointima of α7nAChR-KO mice compared with WT mice. Additionally, the depletion of superoxide dismutase (SOD) and reduced glutathione (GSH), and the upregulation of 3-nitrotyrosine, malondialdehyde and myeloperoxidase were more pronounced in neointima of α7nAChR-KO mice compared with WT mice. Accordingly, the protein expression of NADPH oxidase 1 (Nox1), Nox2 and Nox4, was also higher in neointima of α7nAChR-KO mice compared with WT mice. Finally, pharmacologically activation of CAP with a selective α7nAChR agonist PNU-282987, significantly reduced neointima formation, arterial inflammation and oxidative stress after vascular injury in C57BL/6 mice. In conclusion, our results demonstrate that α7nAChR-mediated CAP is a neuro-physiological mechanism that inhibits neointima formation after vascular injury via suppressing arterial inflammation and oxidative stress. Further, these results imply that targeting α7nAChR may be a promising interventional strategy for in-stent stenosis.
Collapse
|
26
|
Chavan SS, Tracey KJ. Essential Neuroscience in Immunology. THE JOURNAL OF IMMUNOLOGY 2017; 198:3389-3397. [PMID: 28416717 DOI: 10.4049/jimmunol.1601613] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Abstract
The field of immunology is principally focused on the molecular mechanisms by which hematopoietic cells initiate and maintain innate and adaptive immunity. That cornerstone of attention has been expanded by recent discoveries that neuronal signals occupy a critical regulatory niche in immunity. The discovery is that neuronal circuits operating reflexively regulate innate and adaptive immunity. One particularly well-characterized circuit regulating innate immunity, the inflammatory reflex, is dependent upon action potentials transmitted to the reticuloendothelial system via the vagus and splenic nerves. This field has grown significantly with the identification of several other reflexes regulating discrete immune functions. As outlined in this review, the delineation of these mechanisms revealed a new understanding of immunity, enabled a first-in-class clinical trial using bioelectronic devices to inhibit cytokines and inflammation in rheumatoid arthritis patients, and provided a mosaic view of immunity as the integration of hematopoietic and neural responses to infection and injury.
Collapse
Affiliation(s)
- Sangeeta S Chavan
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030; and Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Kevin J Tracey
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030; and Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| |
Collapse
|
27
|
Fairley AS, Mathis KW. Cholinergic agonists reduce blood pressure in a mouse model of systemic lupus erythematosus. Physiol Rep 2017; 5:e13213. [PMID: 28400502 PMCID: PMC5392509 DOI: 10.14814/phy2.13213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
Increased inflammation arising from an abnormal immune response can damage healthy tissue and lead to disease progression. An important example of this is the accumulation of inflammatory mediators in the kidney, which can subsequently lead to hypertension and renal injury. The origin of this inflammation may involve neuro-immune interactions. For example, the novel vagus nerve-to-spleen mechanism known as the "cholinergic anti-inflammatory pathway" controls inflammation upon stimulation. However, if this pathway is dysfunctional, inflammation becomes less regulated and chronic inflammatory diseases such as hypertension may develop. Systemic lupus erythematosus (SLE) is an autoimmune disease with aberrant immune function, increased renal inflammation, and prevalent hypertension. We hypothesized that the cholinergic anti-inflammatory pathway is impaired in SLE and that stimulation of this pathway would protect from the progression of hypertension in SLE mice. Female SLE (NZBWF1) and control (NZW) mice were administered nicotine or vehicle for 7 days (2 mg/kg/day, subcutaneously) in order to stimulate the cholinergic anti-inflammatory pathway at the level of the splenic nicotinic acetylcholine receptor (α7-nAChR). Blood pressure was assessed posttreatment. Nicotine-treated SLE mice did not develop hypertension and this lower blood pressure (compared to saline-treated SLE mice) coincided with lower splenic and renal cortical expression of pro-inflammatory cytokines. These data provide evidence that the cholinergic anti-inflammatory pathway is impaired in SLE In addition, these data suggest that stimulation of the cholinergic anti-inflammatory pathway can protect the kidney by dampening inflammation and therefore prevent the progression of hypertension in the setting of SLE.
Collapse
Affiliation(s)
- Amber S Fairley
- Institute for Cardiovascular and Metabolic Diseases University of North Texas Health Science Center, Fort Worth, Texas
| | - Keisa W Mathis
- Institute for Cardiovascular and Metabolic Diseases University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
28
|
Li-Sha G, Xing-Xing C, Lian-Pin W, De-Pu Z, Xiao-Wei L, Jia-Feng L, Yue-Chun L. Right Cervical Vagotomy Aggravates Viral Myocarditis in Mice Via the Cholinergic Anti-inflammatory Pathway. Front Pharmacol 2017; 8:25. [PMID: 28197102 PMCID: PMC5281590 DOI: 10.3389/fphar.2017.00025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/16/2017] [Indexed: 12/21/2022] Open
Abstract
The autonomic nervous system dysfunction with increased sympathetic activity and withdrawal of vagal activity may play an important role in the pathogenesis of viral myocarditis. The vagus nerve can modulate the immune response and control inflammation through a ‘cholinergic anti-inflammatory pathway’ dependent on the α7-nicotinic acetylcholine receptor (α7nAChR). Although the role of β-adrenergic stimulation on viral myocarditis has been investigated in our pervious studies, the direct effect of vagal tone in this setting has not been yet studied. Therefore, in the present study, we investigated the effects of cervical vagotomy in a murine model of viral myocarditis. In a coxsackievirus B3 murine myocarditis model (Balb/c), effects of right cervical vagotomy and nAChR agonist nicotine on echocardiography, myocardial histopathology, viral RNA, and proinflammatory cytokine levels were studied. We found that right cervical vagotomy inhibited the cholinergic anti-inflammatory pathway, aggravated myocardial lesions, up-regulated the expression of TNF-α, IL-1β, and IL-6, and worsened the impaired left ventricular function in murine viral myocarditis, and these changes were reversed by co-treatment with nicotine by activating the cholinergic anti-inflammatory pathway. These results indicate that vagal nerve plays an important role in mediating the anti-inflammatory effect in viral myocarditis, and that cholinergic stimulation with nicotine also plays its peripheral anti-inflammatory role relying on α7nAChR, without requirement for the integrity of vagal nerve in the model. The findings suggest that vagus nerve stimulation mediated inhibition of the inflammatory processes likely provide important benefits in myocarditis treatment.
Collapse
Affiliation(s)
- Ge Li-Sha
- Department of Pediatrics, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Chen Xing-Xing
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China; Department of Cardiology, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Wu Lian-Pin
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Zhou De-Pu
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Li Xiao-Wei
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Lin Jia-Feng
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Li Yue-Chun
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| |
Collapse
|
29
|
Autonomic function in adults with allergic rhinitis and its association with disease severity and duration. Ann Allergy Asthma Immunol 2016; 118:174-178. [PMID: 28041676 DOI: 10.1016/j.anai.2016.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND The association between allergic rhinitis (AR) and the autonomic nervous system (ANS) has recently received substantial attention. However, no studies have assessed how the heart rate variability (HRV) parameters are associated with duration and disease severity in AR. OBJECTIVE To compare the difference in autonomic conditions among individuals with AR of various durations and severities and healthy controls. METHODS We divided individuals with AR into subgroups based on duration and severity of disease. Next, we measured HRV, and the results were compared among subgroups and healthy controls. RESULTS High frequency (HF) and normalized high frequency (NHF) were significantly higher in the intermittent group than in the control group, whereas normalized low frequency (NLF) and the ratio of absolute LF to HF power (LF/HF) were significantly lower in the intermittent group than in the control group. Furthermore, NLF was significantly higher in the persistent group than in the intermittent group. HF and NHF were significantly higher in the mild group than in the control group, whereas NLF and LF/HF were significantly lower in the mild group than in the control group. The total nasal symptom and itchy nose scores were negatively correlated with NHF. CONCLUSION Our results indicate that patients with intermittent and mild AR have hypervagal activity and hyposympathetic activity, and the predominance lessens in patients with more persistent AR and severe symptoms. Further investigation of the mechanisms underlying the association between autonomic function and persistent and severe AR is needed.
Collapse
|
30
|
Kocaturk M, Eralp-Inan O, Tvarijonaviciute A, Cansev M, Ozyigit MO, Ceron JJ, Yilmaz Z, Kahraman MM. Effects of choline treatment in concentrations of serum matrix metalloproteinases (MMPs), MMP tissue inhibitors (TIMPs) and immunoglobulins in an experimental model of canine sepsis. Vet Immunol Immunopathol 2016; 180:9-14. [PMID: 27692098 DOI: 10.1016/j.vetimm.2016.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Abstract
The aim of the present study was to investigate effects of intravenous (i.v.) choline treatment on serum matrix metalloproteinases (MMP), MMP tissue inhibitors (TIMP) and immunoglobulins (Igs), and to determine if there were relations between serum MMPs/TIMPs and C-reactive protein (CRP) (as a marker of the acute phase response), immunoglobulin G and M (IgG and IgM) (as a maker of the Ig responses) and markers of organ damage such as muscular damage (creatine phosphokinase, [CPK]), liver damage (alanine aminotransferase [ALT]) and renal dysfunction (blood urea nitrogen [BUN] and creatinine, [Cr]) in dogs with endotoxemia. Healthy dogs (n=24) were randomized to Saline, Choline (C), Lipopolysaccharide (LPS), and LPS+C groups and received 0.9% NaCl (5mL/i.v.), choline chloride (20mg/kg/i.v.), LPS (0.02mg/kg/i.v.) and LPS (0.02mg/kg/i.v.) plus choline chloride (20mg/kg/i.v.), respectively. Serum MMPs and TIMPs concentrations were analyzed by commercial ELISA kits. MMP and TIMP increased at 1-48h (P<0.05), whereas IgG and IgM decreased at 24-48h in LPS group, compared to their baselines. Choline treatment reduced changes in serum MMPs, TIMPs and markers of organ damage, and prevented the hypoimmunoglobulinemia in LPS+C. MMPs and TIMPs were correlated positively (P<0.05) with serum CRP, CPK, ALT, BUN and Cr, but not with serum Igs. Our findings suggest that the serum MMPs, TIMPs and Igs are involved in the pathophysiology of endotoxemia, and MMPs and TIMPs are correlated with the acute phase reaction and multi-organ failure. In addition, we demonstrated a direct effect of choline administration in decreasing serum MMPs and TIMPs, and preserving serum Igs in the course of endotoxemia.
Collapse
Affiliation(s)
- Meric Kocaturk
- Department of Internal Medicine, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey.
| | - Oya Eralp-Inan
- Medical-Surgical Research Center, Agricultural Faculty, Osmangazi University Eskişehir, Turkey.
| | - A Tvarijonaviciute
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Mehmet Cansev
- Department of Pharmacology, Medical Faculty, Uludag University, Bursa, Turkey.
| | - M Ozgur Ozyigit
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Uludag University, Bursa, Turkey.
| | - J J Ceron
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Espinardo, Murcia, Spain.
| | - Zeki Yilmaz
- Department of Internal Medicine, Faculty of Veterinary Medicine, Uludag University, Bursa 16059, Turkey.
| | - M Mufit Kahraman
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
31
|
Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems. Mediators Inflamm 2016; 2016:5902947. [PMID: 27242392 PMCID: PMC4868905 DOI: 10.1155/2016/5902947] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/25/2016] [Accepted: 04/03/2016] [Indexed: 02/07/2023] Open
Abstract
Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described.
Collapse
|
32
|
Bock K, Plaass C, Coger V, Peck CT, Reimers K, Stukenborg-Colsman C, Claassen L. What is the effect of nicotinic acetylcholine receptor stimulation on osteoarthritis in a rodent animal model? SAGE Open Med 2016; 4:2050312116637529. [PMID: 27026802 PMCID: PMC4790423 DOI: 10.1177/2050312116637529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/10/2016] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Despite the rising number of patients with osteoarthritis, no sufficient chondroprotective and prophylactic therapy for osteoarthritis has been established yet. The purpose of this study was to verify whether stimulation of the nicotinic acetylcholine receptor via nicotine has a beneficial effect on cartilage degeneration in the development of osteoarthritis and is capable of reducing the expression of proinflammatory cytokines and cartilage degrading enzymes in synovial membranes after osteoarthritis induction. METHODS Experimental osteoarthritis was induced in Lewis rats using a standardized osteoarthritis model with monoiodoacetate. A total of 16 Lewis rats were randomized into four groups: control, sham + nicotine application, osteoarthritis, and osteoarthritis + nicotine application. Nicotine (0.625 mg/kg twice daily) was administered intraperitoneally for 42 days. We analyzed histological sections, radiological images and the expression of the proinflammatory cytokines, such as interleukin-1β, tumor necrosis factor-α and interleukin-6, and of matrix metalloproteases 3, 9 and 13 and tissue inhibitors of metalloprotease-1 in synovial membranes via quantitative polymerase chain reaction. RESULTS Histological and x-ray examination revealed cartilage degeneration in the osteoarthritis group compared to control or sham + nicotine groups (histological control vs osteoarthritis: p = 0.002 and x-ray control vs osteoarthritis: p = 0.004). Nicotine treatment reduced the cartilage degeneration without significant differences. Osteoarthritis induction led to a higher expression of proinflammatory cytokines and matrix metalloproteases as compared to control groups. This effect was attenuated after nicotine administration. The differences of proinflammatory cytokines and matrix metalloproteases did not reach statistical significance. CONCLUSION With the present small-scale study, we could not prove a positive effect of nicotinic acetylcholine receptor stimulation on osteoarthritis due to a conservative statistical analysis and the consecutive lack of significant differences. Nevertheless, we found promising tendencies of relevant parameters that might prompt further experiments designed to evaluate the potency of stimulation of this receptor system as an additional treatment approach for osteoarthritis.
Collapse
Affiliation(s)
- Kilian Bock
- Orthopedic Department, Hannover Medical School, Hannover, Germany
| | - Christian Plaass
- Orthopedic Department, Hannover Medical School, Hannover, Germany
| | - Vincent Coger
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Claas-Tido Peck
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Kerstin Reimers
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | | | - Leif Claassen
- Orthopedic Department, Hannover Medical School, Hannover, Germany
| |
Collapse
|
33
|
Li-Sha G, Jing-Lin Z, Li L, Guang-Yi C, Xiao-Wei L, Yue-Chun L. Nicotine inhibits the production of proinflammatory cytokines of mice infected with coxsackievirus B3. Life Sci 2016; 148:9-16. [PMID: 26851533 DOI: 10.1016/j.lfs.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/21/2016] [Accepted: 02/02/2016] [Indexed: 01/07/2023]
Abstract
AIMS Although excessive sympathetic activation in viral myocarditis and the protective effects of sympathetic inhibition with β-blockers are clear, the effects of enhancing vagal tone on viral myocarditis remain unclear. In several models, vagus nerve activation with the α7 nicotinic acetylcholine receptor (α7-nAChR) agonists has been demonstrated to ameliorate inflammation. This study was therefore designed to examine the effects of cholinergic stimulation with α7-nAChR agonist nicotine in a murine model of acute viral myocarditis. MATERIALS AND METHODS BALB/C mice were infected by an intraperitoneally injection with coxsackievirus B3. Nicotine and methyllycaconitine (an α7-nAChR antagonist) were administered at doses of 0.4mg/kg and 0.8mg/kg three times per day for 7 or 14 consecutive days, respectively. The effects of nicotine and methyllycaconitine on survival rate, myocardial histopathological changes, cardiac function, cytokine levels, viral RNA, malondialdehyde, and superoxide dismutase contents were investigated. KEY FINDINGS Nicotine significantly increased survival rate of the infected mice, decreased myocardial inflammation, and improved the impairment of left ventricular function in murine coxsackievirus B3-induced myocarditis compared with methyllycaconitine. The proinflammatory cytokines TNF-α, IL-1β, IL-6 and IL-17A were significantly decreased in the infected mice treated with nicotine compared with methyllycaconitine. Nicotine had no significant anti-oxidative and antiviral effects in coxsackievirus B3-infected mice. SIGNIFICANCE The results indicate that cholinergic stimulation with nicotine significantly reduced the severity of viral myocarditis in mice. The findings suggest that alpha7 nAChR agonists may be a promising new strategy for patients with myocarditis.
Collapse
Affiliation(s)
- Ge Li-Sha
- Department of Pediatrics, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhao Jing-Lin
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Liu Li
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chen Guang-Yi
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Li Xiao-Wei
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Li Yue-Chun
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
34
|
Watanabe A, Ichiki T, Kojima H, Takahara Y, Hurt-Camejo E, Michaëlsson E, Sankoda C, Ikeda J, Inoue E, Tokunou T, Kitamoto S, Sunagawa K. Suppression of abdominal aortic aneurysm formation by AR-R17779, an agonist for the α7 nicotinic acetylcholine receptor. Atherosclerosis 2016; 244:113-20. [DOI: 10.1016/j.atherosclerosis.2015.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 10/20/2015] [Accepted: 11/04/2015] [Indexed: 11/27/2022]
|
35
|
Li-Sha G, Jing-Lin Z, Guang-Yi C, Li L, De-Pu Z, Yue-Chun L. Dose-dependent protective effect of nicotine in a murine model of viral myocarditis induced by coxsackievirus B3. Sci Rep 2015; 5:15895. [PMID: 26507386 PMCID: PMC4623743 DOI: 10.1038/srep15895] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022] Open
Abstract
The alpha 7 nicotinic acetylcholine receptor (alpha7 nAChR) was recently described as an anti-inflammatory target in various inflammatory diseases. The aim of this study was to investigate the dose-related effects of nicotine, an alpha7 nAChR agonist, in murine model of viral myocarditis. BALB/C mice were infected by an intraperitoneally injection with coxsackievirus B3. Nicotine was administered at doses of 0.1, 0.2 or 0.4 mg/kg three times per day for 7 or 14 consecutive days. The effects of nicotine on survival, myocardial histopathological changes, cardiac function, and cytokine levels were studied. The survival rate on day 14 increased in a dose-dependent fashion and was markedly higher in the 0.2 and 0.4 mg/kg nicotine groups than in the infected untreated group. Treatment with high-dose nicotine reduced the myocardial inflammation and improved the impaired left ventricular function in infected mice. The mRNA expressions and protein levels of TNF-α, IL-1β, IL-6, and IL-17A were significantly downregulated in dose-dependent manners in the nicotine treatment groups compared to the infected untreated group. Nicotine dose-dependently reduced the severity of viral myocarditis through inhibiting the production of proinflammatory cytokines. The findings suggest that alpha7 nAChR agonists may be a promising new strategy for patients with viral myocarditis.
Collapse
Affiliation(s)
- Ge Li-Sha
- Department of Pediatrics, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhao Jing-Lin
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chen Guang-Yi
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Liu Li
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhou De-Pu
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Li Yue-Chun
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
36
|
Transdermal Nicotine Application Attenuates Cardiac Dysfunction after Severe Thermal Injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:292076. [PMID: 26290866 PMCID: PMC4531159 DOI: 10.1155/2015/292076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 05/03/2015] [Indexed: 01/09/2023]
Abstract
Background. Severe burn trauma leads to an immediate and strong inflammatory response inciting cardiac dysfunction that is associated with high morbidity and mortality. The aim of this study was to determine whether transdermal application of nicotine could influence the burn-induced cardiac dysfunction via its known immunomodulatory effects. Material and Methods. A standardized rat burn model was used in 35 male Sprague Dawley rats. The experimental animals were divided into a control group, a burn trauma group, a burn trauma group with additional nicotine treatment, and a sham group with five experimental animals per group. The latter two groups received nicotine administration. Using microtip catheterization, functional parameters of the heart were assessed 12 or 24 hours after infliction of burn trauma. Results. Burn trauma led to significantly decreased blood pressure (BP) values whereas nicotine administration normalized BP. As expected, burn trauma also induced a significant deterioration of myocardial contractility and relaxation parameters. After application of nicotine these adverse effects were attenuated. Conclusion. The present study showed that transdermal nicotine administration has normalizing effects on burn-induced myocardial dysfunction parameters. Further research is warranted to gain insight in molecular mechanisms and pathways and to evaluate potential treatment options in humans.
Collapse
|
37
|
Mathis KW. An impaired neuroimmune pathway promotes the development of hypertension in systemic lupus erythematosus. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1074-7. [PMID: 26084696 DOI: 10.1152/ajpregu.00143.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/15/2015] [Indexed: 11/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disorder that affects nearly 2 million people in the United States. The majority of SLE cases occur in women at an age in which the prevalence of hypertension and cardiovascular disease is typically low. However, women with SLE have a high prevalence of hypertension for reasons that remain unclear. Because immune cells and chronic inflammation have been implicated in the pathogenesis of both hypertension and SLE and because inflammation has been shown to be regulated by the autonomic nervous system, studies investigating neuroimmune mechanisms of hypertension could have direct and significant clinical implications. The purpose of this review is to introduce a recently described neuroimmune pathway and discuss its potential importance in the development of hypertension and renal injury during SLE.
Collapse
Affiliation(s)
- Keisa W Mathis
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
38
|
Mao Y, Tokudome T, Kishimoto I, Otani K, Nishimura H, Yamaguchi O, Otsu K, Miyazato M, Kangawa K. Endogenous ghrelin attenuates pressure overload-induced cardiac hypertrophy via a cholinergic anti-inflammatory pathway. Hypertension 2015; 65:1238-44. [PMID: 25870195 DOI: 10.1161/hypertensionaha.114.04864] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/01/2015] [Indexed: 01/20/2023]
Abstract
Cardiac hypertrophy, which is commonly caused by hypertension, is a major risk factor for heart failure and sudden death. Endogenous ghrelin has been shown to exert a beneficial effect on cardiac dysfunction and postinfarction remodeling via modulation of the autonomic nervous system. However, ghrelin's ability to attenuate cardiac hypertrophy and its potential mechanism of action are unknown. In this study, cardiac hypertrophy was induced by transverse aortic constriction in ghrelin knockout mice and their wild-type littermates. After 12 weeks, the ghrelin knockout mice showed significantly increased cardiac hypertrophy compared with wild-type mice, as evidenced by their significantly greater heart weight/tibial length ratios (9.2±1.9 versus 7.9±0.8 mg/mm), left ventricular anterior wall thickness (1.3±0.2 versus 1.0±0.2 mm), and posterior wall thickness (1.1±0.3 versus 0.9±0.1 mm). Furthermore, compared with wild-type mice, ghrelin knockout mice showed suppression of the cholinergic anti-inflammatory pathway, as indicated by reduced parasympathetic nerve activity and higher plasma interleukin-1β and interleukin-6 levels. The administration of either nicotine or ghrelin activated the cholinergic anti-inflammatory pathway and attenuated cardiac hypertrophy in ghrelin knockout mice. In conclusion, our results show that endogenous ghrelin plays a crucial role in the progression of pressure overload-induced cardiac hypertrophy via a mechanism that involves the activation of the cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Yuanjie Mao
- From the Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (Y.M., T.T., I.K., H.N., M.M., K.K.); Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute (K.O.), Department of Cardiovascular Medicine, Graduate School of Medicine (O.Y.), Osaka University, Suita, Japan; and Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (K.O.)
| | - Takeshi Tokudome
- From the Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (Y.M., T.T., I.K., H.N., M.M., K.K.); Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute (K.O.), Department of Cardiovascular Medicine, Graduate School of Medicine (O.Y.), Osaka University, Suita, Japan; and Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (K.O.)
| | - Ichiro Kishimoto
- From the Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (Y.M., T.T., I.K., H.N., M.M., K.K.); Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute (K.O.), Department of Cardiovascular Medicine, Graduate School of Medicine (O.Y.), Osaka University, Suita, Japan; and Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (K.O.).
| | - Kentaro Otani
- From the Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (Y.M., T.T., I.K., H.N., M.M., K.K.); Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute (K.O.), Department of Cardiovascular Medicine, Graduate School of Medicine (O.Y.), Osaka University, Suita, Japan; and Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (K.O.)
| | - Hirohito Nishimura
- From the Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (Y.M., T.T., I.K., H.N., M.M., K.K.); Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute (K.O.), Department of Cardiovascular Medicine, Graduate School of Medicine (O.Y.), Osaka University, Suita, Japan; and Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (K.O.)
| | - Osamu Yamaguchi
- From the Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (Y.M., T.T., I.K., H.N., M.M., K.K.); Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute (K.O.), Department of Cardiovascular Medicine, Graduate School of Medicine (O.Y.), Osaka University, Suita, Japan; and Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (K.O.)
| | - Kinya Otsu
- From the Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (Y.M., T.T., I.K., H.N., M.M., K.K.); Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute (K.O.), Department of Cardiovascular Medicine, Graduate School of Medicine (O.Y.), Osaka University, Suita, Japan; and Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (K.O.)
| | - Mikiya Miyazato
- From the Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (Y.M., T.T., I.K., H.N., M.M., K.K.); Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute (K.O.), Department of Cardiovascular Medicine, Graduate School of Medicine (O.Y.), Osaka University, Suita, Japan; and Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (K.O.)
| | - Kenji Kangawa
- From the Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan (Y.M., T.T., I.K., H.N., M.M., K.K.); Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute (K.O.), Department of Cardiovascular Medicine, Graduate School of Medicine (O.Y.), Osaka University, Suita, Japan; and Cardiovascular Division, King's College London British Heart Foundation Centre, London, United Kingdom (K.O.)
| |
Collapse
|
39
|
Li Y, Xuan YH, Liu SS, Dong J, Luo JY, Sun ZJ. Short‑term vagal nerve stimulation improves left ventricular function following chronic heart failure in rats. Mol Med Rep 2015; 12:1709-16. [PMID: 25873055 PMCID: PMC4464404 DOI: 10.3892/mmr.2015.3597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 03/10/2015] [Indexed: 01/01/2023] Open
Abstract
Increasing numbers of animal and clinical investigations have demonstrated the effectiveness of long-term electrical vagal nerve stimulation (VNS) on chronic heart failure (CHF). The present study investigated the effects of short-term VNS on the hemodynamics of cardiac remodeling and cardiac excitation-contraction coupling (ECP) in an animal model of CHF following a large myocardial infarction. At 3 weeks subsequent to ligation of the left coronary artery, the surviving rats were randomized into vagal and sham-stimulated groups. The right vagal nerve of the CHF rats was stimulated for 72 h. The vagal nerve was stimulated with rectangular pulses of 40 ms duration at 1 Hz, 5 V. The treated rats, compared with the untreated rats, had significantly higher left ventricular ejection fraction (54.86±9.73, vs. 45.60±5.51%; P=0.025) and left ventricular fractional shortening (25.31±6.30, vs. 15.42±8.49%; P=0.013), and lower levels of brain natriuretic peptide (10.07±2.63, vs. 19.95±5.22 ng/ml; P=0.001). The improvement in cardiac pumping function was accompanied by a decrease in left ventricular end diastolic volume (1.11±0.50, vs. 1.54±0.57 cm3; P=0.032) and left ventricular end systolic volume (0.50±0.28, vs. 0.87±0.36 cm3; P=0.007). Furthermore, the expression levels of ryanodine receptor type 2 (RyR2) and sarcoplasmic reticulum calcium adenosine triphosphatase (SERCA2) were significantly higher in the treated rats compared with the untreated rats (P=0.011 and P=0.001 for RyR2 and SERCA2, respectively). Therefore, VNS was beneficial to the CHF rats through the prevention of cardiac remodeling and improvement of cardiac ECP.
Collapse
Affiliation(s)
- Yan Li
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yan-Hua Xuan
- Department of Cardiology Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuang-Shuang Liu
- Department of Cardiology Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jing Dong
- Department of Cardiology Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jia-Ying Luo
- Department of Cardiology Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhi-Jun Sun
- Department of Cardiology Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
40
|
Cheng Z, Li-Sha G, Jing-Lin Z, Wen-Wu Z, Xue-Si C, Xing-Xing C, Yue-Chun L. Protective role of the cholinergic anti-inflammatory pathway in a mouse model of viral myocarditis. PLoS One 2014; 9:e112719. [PMID: 25396421 PMCID: PMC4232511 DOI: 10.1371/journal.pone.0112719] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/10/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Activation of the cholinergic anti-inflammatory pathway, which relies on the α7nAchR (alpha 7 nicotinic acetylcholine receptor), has been shown to decrease proinflammatory cytokines. This relieves inflammatory responses and improves the prognosis of patients with experimental sepsis, endotoxemia, ischemia/reperfusion injury, hemorrhagic shock, pancreatitis, arthritis and other inflammatory syndromes. However, whether the cholinergic anti-inflammatory pathway has an effect on acute viral myocarditis has not been investigated. Here, we studied the effects of the cholinergic anti-inflammatory pathway on acute viral myocarditis. METHODOLOGY/PRINCIPAL FINDINGS In a coxsackievirus B3 murine myocarditis model (Balb/c), nicotine and methyllycaconitine were used to stimulate and block the cholinergic anti-inflammatory pathway, respectively. Relevant signal pathways were studied to compare their effects on myocarditis, survival rate, histopathological changes, ultrastructural changes, and cytokine levels. Nicotine treatments significantly improved survival rate, attenuated myocardial lesions, and downregulated the expression of TNF-α and IL-6. Methyllycaconitine decreased survival rate, aggravated myocardial lesions, and upregulated the expression of TNF-α and IL-6. In addition, levels of the signaling protein phosphorylated STAT3 were higher in the nicotine group and lower in the methyllycaconitine group compared with the untreated myocarditis group. CONCLUSIONS/SIGNIFICANCE These results show that nicotine protects mice from CVB3-induced viral myocarditis and that methyllycaconitine aggravates viral myocarditis in mice. Because nicotine is a α7nAchR agonist and methyllycaconitine is a α7nAchR antagonist, we conclude that α7nAchR activation increases the phosphorylation of STAT3, reduces the expression of TNF-α and IL-6, and, ultimately, alleviates viral myocarditis. We also conclude that blocking α7nAchR reduces the phosphorylation of STAT3, increases the expression of TNF-α and IL-6, aggravating viral myocarditis.
Collapse
Affiliation(s)
- Zheng Cheng
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ge Li-Sha
- Department of Pediatric, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhao Jing-Lin
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhang Wen-Wu
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chen Xue-Si
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chen Xing-Xing
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Li Yue-Chun
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- * E-mail:
| |
Collapse
|
41
|
Machino-Ohtsuka T, Tajiri K, Kimura T, Sakai S, Sato A, Yoshida T, Hiroe M, Yasutomi Y, Aonuma K, Imanaka-Yoshida K. Tenascin-C aggravates autoimmune myocarditis via dendritic cell activation and Th17 cell differentiation. J Am Heart Assoc 2014; 3:e001052. [PMID: 25376187 PMCID: PMC4338691 DOI: 10.1161/jaha.114.001052] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Tenascin‐C (TN‐C), an extracellular matrix glycoprotein, appears at several important steps of cardiac development in the embryo, but is sparse in the normal adult heart. TN‐C re‐expresses under pathological conditions including myocarditis, and is closely associated with tissue injury and inflammation in both experimental and clinical settings. However, the pathophysiological role of TN‐C in the development of myocarditis is not clear. We examined how TN‐C affects the initiation of experimental autoimmune myocarditis, immunologically. Methods and Results A model of experimental autoimmune myocarditis was established in BALB/c mice by immunization with murine α‐myosin heavy chains. We found that TN‐C knockout mice were protected from severe myocarditis compared to wild‐type mice. TN‐C induced synthesis of proinflammatory cytokines, including interleukin (IL)‐6, in dendritic cells via activation of a Toll‐like receptor 4, which led to T‐helper (Th)17 cell differentiation and exacerbated the myocardial inflammation. In the transfer experiment, dendritic cells loaded with cardiac myosin peptide acquired the functional capacity to induce myocarditis when stimulated with TN‐C; however, TN‐C‐stimulated dendritic cells generated from Toll‐like receptor 4 knockout mice did not induce myocarditis in recipients. Conclusions Our results demonstrated that TN‐C aggravates autoimmune myocarditis by driving the dendritic cell activation and Th17 differentiation via Toll‐like receptor 4. The blockade of Toll‐like receptor 4‐mediated signaling to inhibit the proinflammatory effects of TN‐C could be a promising therapeutic strategy against autoimmune myocarditis.
Collapse
Affiliation(s)
- Tomoko Machino-Ohtsuka
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Kazuko Tajiri
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Taizo Kimura
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Satoshi Sakai
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Akira Sato
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Toshimichi Yoshida
- Mie University Research Center for Matrix Biology and Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan (T.Y., K.I.Y.)
| | - Michiaki Hiroe
- Department of Cardiology, National Center of Global Health and Medicine, Tokyo, Japan (M.H.)
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institution of Biomedical Innovation, Tsukuba, Japan (Y.Y.)
| | - Kazutaka Aonuma
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.M.O., K.T., T.K., S.S., A.S., K.A.)
| | - Kyoko Imanaka-Yoshida
- Mie University Research Center for Matrix Biology and Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan (T.Y., K.I.Y.)
| |
Collapse
|
42
|
Vagus nerve through α7 nAChR modulates lung infection and inflammation: models, cells, and signals. BIOMED RESEARCH INTERNATIONAL 2014; 2014:283525. [PMID: 25136575 PMCID: PMC4127262 DOI: 10.1155/2014/283525] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 12/27/2022]
Abstract
Cholinergic anti-inflammatory pathway (CAP) bridges immune and nervous systems and plays pleiotropic roles in modulating inflammation in animal models by targeting different immune, proinflammatory, epithelial, endothelial, stem, and progenitor cells and signaling pathways. Acute lung injury (ALI) is a devastating inflammatory disease. It is pathogenically heterogeneous and involves many cells and signaling pathways. Here, we emphasized the research regarding the modulatory effects of CAP on animal models, cell population, and signaling pathways that involved in the pathogenesis of ALI. By comparing the differential effects of CAP on systemic and pulmonary inflammation, we postulated that a pulmonary parasympathetic inflammatory reflex is formed to sense and respond to pathogens in the lung. Work targeting the formation and function of pulmonary parasympathetic inflammatory reflex would extend our understanding of how vagus nerve senses, recognizes, and fights with pathogens and inflammatory responses.
Collapse
|
43
|
Stimulation of α7 nicotinic acetylcholine receptor by AR-R17779 suppresses atherosclerosis and aortic aneurysm formation in apolipoprotein E-deficient mice. Vascul Pharmacol 2014; 61:49-55. [PMID: 24685818 DOI: 10.1016/j.vph.2014.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/10/2014] [Accepted: 03/20/2014] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease. It has been appreciated that vagus nerve inhibits macrophage activation via α7 nicotinic acetylcholine receptor (nAChR), termed the cholinergic anti-inflammatory pathway. We explored the effects of AR-R17779, a selective α7nAChR agonist, on atherosclerosis and aneurysm formation in apolipoprotein E (ApoE)-deficient mice. ApoE-deficient mice were fed a high-fat diet (HFD) and angiotensin II (Ang II) was infused by osmotic minipumps from 10-week-old for 4weeks. AR-R17779 was given in drinking water ad libitum. Oil red O staining of the aorta showed that combined loading of HFD and Ang II induced marked atherosclerosis compared with control mice fed a normal chow. Treatment with AR-R17779 significantly reduced atherosclerotic plaque area and improved survival of mice. Treatment with AR-R17779 also suppressed abdominal aortic aneurysm formation. Quantitative RT-PCR of the aorta revealed that mRNA expression levels of interleukin-1β, interleukin-6 and NOX2 were significantly decreased in AR-R17779-treated mice compared with Ang II+HFD mice. AR-R17779 treatment also reduced blood pressure and serum lipid levels. In conclusion, α7nAChR activation attenuates atherogenesis and aortic abdominal aneurysm formation in ApoE-deficient mice possibly through an anti-inflammatory effect and reduction of blood pressure and lipid levels. Pharmacological activation of α7nAChR may have a therapeutic potential against atherosclerotic vascular diseases through multiple mechanisms.
Collapse
|
44
|
Leib C, Katus HA, Kaya Z. Cholinergic control of inflammation in cardiovascular diseases. Trends Cardiovasc Med 2012; 23:46-51. [PMID: 23266154 DOI: 10.1016/j.tcm.2012.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 11/18/2022]
Abstract
A neuroimmunological reflexive signaling pathway with potent anti-inflammatory capacity has been discovered recently. Within this so called cholinergic anti-inflammatory pathway the vagus nerve plays a central role in both signal integration and signal output, by measuring and influencing levels of circulating pro-inflammatory cytokines. Our group has recently shown that parasympathomimetic stimulation of the vagus nerve has the potential to inhibit inflammatory processes in experimental autoimmune myocarditis. Although vagus nerve stimulation has been shown to be protective in several inflammatory diseases, its potential as a therapeutic strategy has not been studied extensively in clinical settings. In this review we will discuss general molecular mechanisms of the cholinergic anti-inflammatory pathway with emphasis on autoimmune myocarditis. Furthermore, clinical and experimental studies that investigate the role of vagus nerve stimulation in cardiovascular diseases will be discussed.
Collapse
Affiliation(s)
- Christoph Leib
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
45
|
Abstract
The vagus nerve has an important role in regulation of metabolic homeostasis, and efferent vagus nerve-mediated cholinergic signalling controls immune function and proinflammatory responses via the inflammatory reflex. Dysregulation of metabolism and immune function in obesity are associated with chronic inflammation, a critical step in the pathogenesis of insulin resistance and type 2 diabetes mellitus. Cholinergic mechanisms within the inflammatory reflex have, in the past 2 years, been implicated in attenuating obesity-related inflammation and metabolic complications. This knowledge has led to the exploration of novel therapeutic approaches in the treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Center for Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.
| | | |
Collapse
|
46
|
The Editors. Circulation Research
Thematic Synopsis Cardiac Myocyte Biology and Function. Circ Res 2012. [DOI: 10.1161/circresaha.112.280974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Postconditioning with vagal stimulation attenuates local and systemic inflammatory responses to myocardial ischemia reperfusion injury in rats. Inflamm Res 2012; 61:1273-82. [PMID: 22825626 DOI: 10.1007/s00011-012-0527-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 06/11/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE To assess effects of postconditioning with the vagal stimulation (VS) on the local and systematic inflammatory responses to acute myocardial ischemia reperfusion injury (IRI). METHODS Sixty male Sprague-Dawley rats were randomly allocated into three groups: sham group, ischemia reperfusion group (IR group), and postconditioning with the VS group (POVS group). Serum levels of inflammatory cytokines during reperfusion and myocardial levels of inflammatory cytokines in both ischemic and non-ischemic regions at the end of the experiment were assayed. The infarct size was assessed by Evans blue and triphenyltetrazolium chloride staining. RESULTS The infarct size was significantly reduced in the POVS group compared to the IR group. Serum levels of TNF-α at 30, 60, and 120 min of reperfusion and serum levels of HMGB-1, ICAM-1, IL-1, and IL-6 at 120 min of reperfusion were significantly lower in the POVS group than in the IR group. Myocardial levels of TNF-α, HMGB-1, ICAM-1, IL-1, and IL-6 in both ischemic and non-ischemic regions were also significantly reduced in the POVS group compared with the IR group. CONCLUSIONS Postconditioning with the VS can significantly attenuate the local and systemic inflammatory responses to myocardial IRI, and provide an obvious cardioprotection.
Collapse
|