1
|
Gao J, Pan H, Guo X, Huang Y, Luo JY. Endothelial Krüppel-like factor 2/4: Regulation and function in cardiovascular diseases. Cell Signal 2025; 130:111699. [PMID: 40023301 DOI: 10.1016/j.cellsig.2025.111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/09/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
This review presents an overview of the regulation, function, disease-relevance and pharmacological regulation of the critical endothelial transcription factors KLF2/4 in vasculature. The regulatory mechanisms of KLF2/4 expression and activity in vascular endothelium in response to hemodynamic forces and biochemical stimuli are depicted. The functional effects mediated by direct or indirect target genes of KLF2/4 in endothelial cells are systematically summarized. The contributory roles that dysregulated KLF2/4 play in relevant cardiovascular pathologies, such as atherosclerotic vascular lesions, pulmonary arterial hypertension and vascular complications of diabetes were reviewed. Moreover, this review also discusses the pharmacological regulation of KLF2/4 by drugs used in clinics and therapeutic possibility by directly targeting these two transcription factors for treating atherosclerotic cardiovascular diseases. Finally, prospective opinions on the gaps in disclosing novel vascular function mediated by KLF2/4 and future research needs are expressed.
Collapse
Affiliation(s)
- Jing Gao
- Department of Cardiology, Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Hongjie Pan
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Jiang-Yun Luo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
La Rosa F, Montecucco F, Liberale L, Sessarego M, Carbone F. Venous thrombosis and obesity: from clinical needs to therapeutic challenges. Intern Emerg Med 2025; 20:47-64. [PMID: 39269539 PMCID: PMC11794390 DOI: 10.1007/s11739-024-03765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Weight bias and stigma have limited the awareness of the systemic consequences related to obesity. As the narrative evolves, obesity is emerging as a driver and enhancer of many pathological conditions. Among these, the risk of venous thromboembolism (VTE) is a critical concern linked to obesity, ranking as the third most common cardiovascular condition. Obesity is recognized as a multifactorial risk factor for VTE, influenced by genetic, demographic, behavioral, and socio-economic conditions. Despite established links, the exact incidence of obesity related VTE in the general population remains largely unknown. The complexity of distinguishing between provoked and unprovoked VTE, coupled with gaps in obesity definition and assessment still complicates a tailored risk assessment of VTE risk. Obesity reactivity, hypercoagulability, and endothelial dysfunction are driven by the so-called 'adiposopathy'. This state of chronic inflammation and metabolic disturbance amplifies thrombin generation and alters endothelial function, promoting a pro-thrombotic environment. Additionally, the inflammation-induced clot formation-also referred to as 'immunothrombosis' further exacerbates VTE risk in people living with obesity. Furthermore, current evidence highlights significant gaps in the management of obesity related VTE, particularly concerning prophylaxis and treatment efficacy of anticoagulants in people living with obesity. This review underscores the need for tailored therapeutic approaches and well-designed clinical trials to address the unique challenges posed by obesity in VTE prevention and management. Advanced research and innovative strategies are imperative to improve outcomes and reduce the burden of VTE in people living with obesity.
Collapse
Affiliation(s)
- Federica La Rosa
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy.
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Marta Sessarego
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|
3
|
Zhao H, Lin Z, Zhang P, Rao J, Xu S, Luo Q, Li J. KLF2 controls the apoptosis of neutrophils and is associated with disease activity of systemic lupus erythematosus. Arthritis Res Ther 2024; 26:222. [PMID: 39702240 DOI: 10.1186/s13075-024-03461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Neutropenia is more common in patients with systemic lupus erythematosus (SLE) and is a major cause of life-threatening infections. The increased apoptosis of neutrophils is likely to be an essential cause of neutropenia in SLE. However, the detailed mechanisms of increased neutrophil apoptosis in SLE remain unknown. This study focused on the role of Krüppel-like factor 2 (KLF2) in the regulation of neutrophil apoptosis and its association with SLE disease activity. METHODS The levels of KLF2 in neutrophils from SLE patients and healthy controls (HCs) were detected by RT-PCR and western blot. The relationship between the levels of KLF2 and the apoptosis levels of neutrophils in SLE patients was analyzed. The KLF2 inhibitor Geranylgeranyl pyrophosphate (GGPP) and the KLF2 inducer geranylgeranyl transferase inhibitor (GGTI-298) were used to incubate with neutrophils to investigate the role of KLF2 in the regulation of neutrophil apoptosis. To clarify whether serum from SLE patients affects neutrophil KLF2 expression and apoptosis, sera from SLE patients were collected and used to incubate with neutrophils from HCs, followed by the detection of KLF2 levels and apoptosis levels of neutrophils. Additionally, the correlation between KLF2 levels and SLE disease activity index (SLEDAI) was analyzed. RESULTS The expression of KLF2 in neutrophils of SLE patients was significantly suppressed, and the decreased KLF2 was associated with the upregulation of neutrophil apoptosis. Moreover, newly diagnosed SLE patients, SLE patients with higher serum IgG and positive anti-Smith antibodies had lower KLF2 expression. Furthermore, we demonstrated that modulating the expression of KLF2 can regulate the apoptosis of neutrophils. The levels of KLF2 in neutrophils were associated with the SLEDAI. In addition, we found that serum from SLE patients could induce apoptosis in neutrophils by down-regulating the expression of KLF2. CONCLUSIONS KLF2 controls the apoptosis of neutrophils and is associated with SLEDAI, which suggests that KLF2 in neutrophils may be involved in the occurrence and development of SLE.
Collapse
Affiliation(s)
- Hongshuai Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zaichuan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Peiwen Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jiayue Rao
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shumin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qing Luo
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Nanchang Key Laboratory of Diagnosis of Infectious Diseases, Nanchang, Jiangxi, 330006, China.
- Institute of infection and immunity, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, No.17, YongwaiZhengjie, Donghu District, Nanchang, Jiangxi, P.R. China.
| | - Junming Li
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- Institute of infection and immunity, Nanchang University, Nanchang, 330006, Jiangxi, China.
- Medical Center of Burn plastic and wound repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, No.17, YongwaiZhengjie, Donghu District, Nanchang, Jiangxi, P.R. China.
| |
Collapse
|
4
|
Ling S, Xu JW. Phenotypes and functions of "aged" neutrophils in cardiovascular diseases. Biomed Pharmacother 2024; 179:117324. [PMID: 39216451 DOI: 10.1016/j.biopha.2024.117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Neutrophils are important effector cells of innate immunity and undergo several phenotypic changes after release from the bone marrow. Neutrophils with a late life cycle phenotype are often referred to as "aged" neutrophils. These neutrophils undergo functional changes that accompany stimuli of inflammation, tissue senescence and injury, inducing their maturation and senescence in the circulation and locally in damaged tissues, forming a unique late-life neutrophil phenotype. "Aged" neutrophils, although attenuated in antibacterial capacity, are more active in aging and age-related diseases, exhibit high levels of mitochondrial ROS and mitochondrial DNA leakage, promote senescence of neighboring cells, and exacerbate cardiac and vascular tissue damage, including vascular inflammation, myocardial infarction, atherosclerosis, stroke, abdominal aortic aneurysm, and SARS-CoV-2 myocarditis. In this review, we outline the phenotypic changes of "aged" neutrophils characterized by CXCR4high/CD62Llow, investigate the mechanisms driving neutrophil aging and functional transformation, and analyze the damage caused by "aged" neutrophils to various types of heart and blood vessels. Tissue injury and senescence promote neutrophil infiltration and induce neutrophil aging both in the circulation and locally in damaged tissues, resulting in an "aged" neutrophil phenotype characterized by CXCR4high/CD62Llow. We also discuss the effects of certain agents, such as neutralizing mitochondrial ROS, scavenging IsoLGs, blocking VDAC oligomers and mPTP channel activity, activating Nrf2 activity, and inhibiting neutrophil PAD4 activity, to inhibit neutrophil NET formation and ameliorate age-associated cardiovascular disease, providing a new perspective for anti-aging therapy in cardiovascular disease.
Collapse
Affiliation(s)
- Shuang Ling
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Peng Q, Arulsamy K, Lu YW, Wu H, Zhu B, Singh B, Cui K, Wylie-Sears J, Li K, Wong S, Cowan DB, Aikawa M, Wang DZ, Bischoff J, Chen K, Chen H. Novel Role of Endothelial CD45 in Regulating Endothelial-to-Mesenchymal Transition in Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610974. [PMID: 39282400 PMCID: PMC11398423 DOI: 10.1101/2024.09.03.610974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Background Protein-tyrosine-phosphatase CD45 is exclusively expressed in all nucleated cells of the hematopoietic system but is rarely expressed in endothelial cells. Interestingly, our recent study indicated that activation of the endogenous CD45 promoter in human endothelial colony forming cells (ECFCs) induced expression of multiple EndoMT marker genes. However, the detailed molecular mechanisms underlying CD45 that drive EndoMT and the therapeutic potential of manipulation of CD45 expression in atherosclerosis are entirely unknown. Method We generated a tamoxifen-inducible EC-specific CD45 deficient mouse strain (EC-iCD45KO) in an ApoE-deficient (ApoE-/-) background and fed with a Western diet (C57BL/6) for atherosclerosis and molecular analyses. We isolated and enriched mouse aortic endothelial cells with CD31 beads to perform single-cell RNA sequencing. Biomedical, cellular, and molecular approaches were utilized to investigate the role of endothelial CD45-specific deletion in the prevention of EndoMT in ApoE-/- model of atherosclerosis. Results Single-cell RNA sequencing revealed that loss of endothelial CD45 inhibits EndoMT marker expression and transforming growth factor-β signaling in atherosclerotic mice. which is associated with the reductions of lesions in the ApoE-/- mouse model. Mechanistically, the loss of endothelial cell CD45 results in increased KLF2 expression, which inhibits transforming growth factor-β signaling and EndoMT. Consistently, endothelial CD45 deficient mice showed reduced lesion development, plaque macrophages, and expression of cell adhesion molecules when compared to ApoE-/- controls. Conclusions These findings demonstrate that the loss of endothelial CD45 protects against EndoMT-driven atherosclerosis, promoting KLF2 expression while inhibiting TGFβ signaling and EndoMT markers. Thus, targeting endothelial CD45 may be a novel therapeutic strategy for EndoMT and atherosclerosis.
Collapse
Affiliation(s)
- Qianman Peng
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kulandaisamy Arulsamy
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Yao Wei Lu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Bandana Singh
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kui Cui
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Jill Wylie-Sears
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kathryn Li
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Douglas B. Cowan
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Masanori Aikawa
- Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Da-Zhi Wang
- Center for Regenerative Medicine and USF Health Heart Institute, Department of Internal Medicine, University of South Florida, Tampa
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| |
Collapse
|
6
|
Li N, Steiger S, Zhong M, Lu M, Lei Y, Tang C, Chen J, Guo Y, Li J, Zhang D, Li J, Zhu E, Zheng Z, Lichtnekert J, Chen Y, Wang X. IRF8 maintains mononuclear phagocyte and neutrophil function in acute kidney injury. Heliyon 2024; 10:e31818. [PMID: 38845872 PMCID: PMC11153194 DOI: 10.1016/j.heliyon.2024.e31818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Immune cells are key players in acute tissue injury and inflammation, including acute kidney injury (AKI). Their development, differentiation, activation status, and functions are mediated by a variety of transcription factors, such as interferon regulatory factor 8 (IRF8) and IRF4. We speculated that IRF8 has a pathophysiologic impact on renal immune cells in AKI and found that IRF8 is highly expressed in blood type 1 conventional dendritic cells (cDC1s), monocytes, monocyte-derived dendritic cells (moDCs) and kidney biopsies from patients with AKI. In a mouse model of ischemia‒reperfusion injury (IRI)-induced AKI, Irf8 -/- mice displayed increased tubular cell necrosis and worsened kidney dysfunction associated with the recruitment of a substantial amount of monocytes and neutrophils but defective renal infiltration of cDC1s and moDCs. Mechanistically, global Irf8 deficiency impaired moDC and cDC1 maturation and activation, as well as cDC1 proliferation, antigen uptake, and trafficking to lymphoid organs for T-cell priming in ischemic AKI. Moreover, compared with Irf8 +/+ mice, Irf8 -/- mice exhibited increased neutrophil recruitment and neutrophil extracellular trap (NET) formation following AKI. IRF8 primarily regulates cDC1 and indirectly neutrophil functions, and thereby protects mice from kidney injury and inflammation following IRI. Our results demonstrate that IRF8 plays a predominant immunoregulatory role in cDC1 function and therefore represents a potential therapeutic target in AKI.
Collapse
Affiliation(s)
- Na Li
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
- Scientific Research Center, Edmond H. Fischer Translational Medical Research Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Stefanie Steiger
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilian-University Munich, 80336, Munich, Bavaria, Germany
| | - Ming Zhong
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Meihua Lu
- Department of Geriatrics, People's Hospital of Banan District, 401320, Chongqing, China
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Jiasi Chen
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Yao Guo
- Scientific Research Center, Edmond H. Fischer Translational Medical Research Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Jinhong Li
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Dengyang Zhang
- Scientific Research Center, Edmond H. Fischer Translational Medical Research Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Jingyi Li
- Department of Pulmonary & Critical Care Medicine, Shenzhen Hospital of Southern Medical University, 518107, Shenzhen, China
| | - Enyi Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Julia Lichtnekert
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilian-University Munich, 80336, Munich, Bavaria, Germany
| | - Yun Chen
- Scientific Research Center, Edmond H. Fischer Translational Medical Research Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107, Shenzhen, China
| |
Collapse
|
7
|
Singh MK, Rallabandi HR, Zhou XJ, Qi YY, Zhao ZZ, Gan T, Zhang H, Looger LL, Nath SK. KLF2 enhancer variant rs4808485 increases lupus risk by modulating inflammasome machinery and cellular homoeostasis. Ann Rheum Dis 2024; 83:879-888. [PMID: 38373841 PMCID: PMC11168881 DOI: 10.1136/ard-2023-224953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE A recent genome-wide association study linked KLF2 as a novel Asian-specific locus for systemic lupus erythematosus (SLE) susceptibility. However, the underlying causal functional variant(s), cognate target gene(s) and genetic mechanisms associated with SLE risk are unknown. METHODS We used bioinformatics to prioritise likely functional variants and validated the best candidate with diverse experimental techniques, including genome editing. Gene expression was compared between healthy controls (HCs) and patients with SLE with or without lupus nephritis (LN+, LN-). RESULTS Through bioinformatics and expression quantitative trait locus analyses, we prioritised rs4808485 in active chromatin, predicted to modulate KLF2 expression. Luciferase reporter assays and chromatin immunoprecipitation-qPCR demonstrated differential allele-specific enhancer activity and binding of active histone marks (H3K27ac, H3K4me3 and H3K4me1), Pol II, CTCF, P300 and the transcription factor PARP1. Chromosome conformation capture-qPCR revealed long-range chromatin interactions between rs4808485 and the KLF2 promoter. These were directly validated by CRISPR-based genetic and epigenetic editing in Jurkat and lymphoblastoid cells. Deleting the rs4808485 enhancer in Jurkat (KO) cells disrupted NLRP3 inflammasome machinery by reducing KLF2 and increasing CASPASE1, IL-1β and GSDMD levels. Knockout cells also exhibited higher proliferation and cell-cycle progression than wild type. RNA-seq validated interplay between KLF2 and inflammasome machinery in HC, LN+ and LN-. CONCLUSIONS We demonstrate how rs4808485 modulates the inflammasome and cellular homoeostasis through regulating KLF2 expression. This establishes mechanistic connections between rs4808485 and SLE susceptibility.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Harikrishna Reddy Rallabandi
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Xu-Jie Zhou
- Renal Division, Peking University Institute of Nephrology, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Yuan-Yuan Qi
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhan-Zheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ting Gan
- Renal Division, Peking University Institute of Nephrology, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University Institute of Nephrology, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Loren L Looger
- Howard Hughes Medical Institute, Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Swapan K Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| |
Collapse
|
8
|
Baek KI, Ryu K. Role of Flow-Sensitive Endothelial Genes in Atherosclerosis and Antiatherogenic Therapeutics Development. J Cardiovasc Transl Res 2024; 17:609-623. [PMID: 38010480 DOI: 10.1007/s12265-023-10463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that is the underlying cause of cardiovascular disease which initiates from endothelial dysfunction from genetic and environmental risk factors, including biomechanical forces: blood flow. Endothelial cells (ECs) lining the inner arterial wall regions exposed to disturbed flow are prone to atherosclerosis development, whereas the straight regions exposed to stable flow are spared from the disease. These flow patterns induce genome- and epigenome-wide changes in gene expression in ECs. Through the sweeping changes in gene expression, disturbed flow reprograms ECs from athero-protected cell types under the stable flow condition to pro-atherogenic cell conditions. The pro-atherogenic changes induced by disturbed flow, in combination with additional risk factors such as hypercholesterolemia, lead to the progression of atherosclerosis. The flow-sensitive genes and proteins are critical in understanding the mechanisms and serve as novel targets for antiatherogenic therapeutics.
Collapse
Affiliation(s)
- Kyung In Baek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Kitae Ryu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Biotechnology, The University of Suwon, 17, Wauan-Gil, Bongdam-Eup, Hwaseong-Si, Gyeonggi-Do, 18323, Republic of Korea.
| |
Collapse
|
9
|
Shao TY, Jiang TT, Stevens J, Russi AE, Troutman TD, Bernieh A, Pham G, Erickson JJ, Eshleman EM, Alenghat T, Jameson SC, Hogquist KA, Weaver CT, Haslam DB, Deshmukh H, Way SS. Kruppel-like factor 2+ CD4 T cells avert microbiota-induced intestinal inflammation. Cell Rep 2023; 42:113323. [PMID: 37889750 PMCID: PMC10822050 DOI: 10.1016/j.celrep.2023.113323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 09/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Intestinal colonization by antigenically foreign microbes necessitates expanded peripheral immune tolerance. Here we show commensal microbiota prime expansion of CD4 T cells unified by the Kruppel-like factor 2 (KLF2) transcriptional regulator and an essential role for KLF2+ CD4 cells in averting microbiota-driven intestinal inflammation. CD4 cells with commensal specificity in secondary lymphoid organs and intestinal tissues are enriched for KLF2 expression, and distinct from FOXP3+ regulatory T cells or other differentiation lineages. Mice with conditional KLF2 deficiency in T cells develop spontaneous rectal prolapse and intestinal inflammation, phenotypes overturned by eliminating microbiota or reconstituting with donor KLF2+ cells. Activated KLF2+ cells selectively produce IL-10, and eliminating IL-10 overrides their suppressive function in vitro and protection against intestinal inflammation in vivo. Together with reduced KLF2+ CD4 cell accumulation in Crohn's disease, a necessity for the KLF2+ subpopulation of T regulatory type 1 (Tr1) cells in sustaining commensal tolerance is demonstrated.
Collapse
Affiliation(s)
- Tzu-Yu Shao
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Tony T Jiang
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Joseph Stevens
- Division of Neonatology and Pulmonary Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Abigail E Russi
- Division of Gastroenterology, Hepatology and Advanced Nutrition, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Ty D Troutman
- Division of Allergy and Immunology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Anas Bernieh
- Division of Pathology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Giang Pham
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - John J Erickson
- Division of Neonatology and Pulmonary Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Emily M Eshleman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Stephen C Jameson
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kristin A Hogquist
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Casey T Weaver
- Program in Immunology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - David B Haslam
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Hitesh Deshmukh
- Division of Neonatology and Pulmonary Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
10
|
Kotlyarov S, Kotlyarova A. Participation of Krüppel-like Factors in Atherogenesis. Metabolites 2023; 13:448. [PMID: 36984888 PMCID: PMC10052737 DOI: 10.3390/metabo13030448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Atherosclerosis is an important problem in modern medicine, the keys to understanding many aspects of which are still not available to clinicians. Atherosclerosis develops as a result of a complex chain of events in which many cells of the vascular wall and peripheral blood flow are involved. Endothelial cells, which line the vascular wall in a monolayer, play an important role in vascular biology. A growing body of evidence strengthens the understanding of the multifaceted functions of endothelial cells, which not only organize the barrier between blood flow and tissues but also act as regulators of hemodynamics and play an important role in regulating the function of other cells in the vascular wall. Krüppel-like factors (KLFs) perform several biological functions in various cells of the vascular wall. The large family of KLFs in humans includes 18 members, among which KLF2 and KLF4 are at the crossroads between endothelial cell mechanobiology and immunometabolism, which play important roles in both the normal vascular wall and atherosclerosis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
11
|
Pernaa N, Keskitalo S, Chowdhury I, Nissinen A, Glumoff V, Keski-Filppula R, Junttila J, Eklund KK, Santaniemi W, Siitonen S, Seppänen MRJ, Vähäsalo P, Varjosalo M, Åström P, Hautala T. Heterozygous premature termination in zinc-finger domain of Krüppel-like factor 2 gene associates with dysregulated immunity. Front Immunol 2022; 13:819929. [PMID: 36466816 PMCID: PMC9716311 DOI: 10.3389/fimmu.2022.819929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/21/2022] [Indexed: 08/23/2024] Open
Abstract
Krüppel-like factor 2 (KLF2) is a transcription factor with significant roles in development, maturation, differentiation, and proliferation of several cell types. In immune cells, KLF2 regulates maturation and trafficking of lymphocytes and monocytes. KLF2 participates in regulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Although pulmonary arterial hypertension (PAH) related to KLF2 genetic variant has been suggested, genetic role of KLF2 associated with immune dysregulation has not been described. We identified a family whose members suffered from lymphopenia, autoimmunity, and malignancy. Whole exome sequencing revealed a KLF2 p.(Glu318Argfs*87) mutation disrupting the highly conserved zinc finger domain. We show a reduced amount of KLF2 protein, defective nuclear localization and altered protein-protein interactome. The phenotypically variable positive cases presented with B and T cell lymphopenia and abnormalities in B and T cell maturation including low naive T cell counts and low CD27+IgD-IgM- switched memory B cells. KLF2 target gene (CD62L) expression was affected. Although the percentage of (CD25+FOXP3+, CD25+CD127-) regulatory T cells (Treg) was high, the naive Treg cells (CD45RA+) were absent. Serum IgG1 levels were low and findings in one case were consistent with common variable immunodeficiency (CVID). Transcription of NF-κβ pathway genes and p65/RelA phosphorylation were not significantly affected. Inflammasome activity, transcription of genes related with JAK/STAT pathway and interferon signature were also comparable to controls. Evidence of PAH was not found. In conclusion, KLF2 variant may be associated with familial immune dysregulation. Although the KLF2 deficient family members in our study suffered from lymphopenia, autoimmunity or malignancy, additional study cohorts are required to confirm our observations.
Collapse
Affiliation(s)
- Nora Pernaa
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Salla Keskitalo
- Molecular Systems Biology Group, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Iftekhar Chowdhury
- Molecular Systems Biology Group, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Antti Nissinen
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Virpi Glumoff
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Riikka Keski-Filppula
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Juhani Junttila
- Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Kari K. Eklund
- Department of Rheumatology, Inflammation Center, University of Helsinki and Helsinki University Hospital and Orton Orthopedic Hospital, Helsinki, Finland
| | - Wenny Santaniemi
- Oulun University Hospital and Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Sanna Siitonen
- Department of Clinical Chemistry, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Mikko RJ. Seppänen
- Rare Disease Center and Pediatric Research Center, Children and Adolescents; Adult Immunodeficiency Unit, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Paula Vähäsalo
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Pediatrics, Oulu University Hospital, Oulu, Finland
| | - Markku Varjosalo
- Molecular Systems Biology Group, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pirjo Åström
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Timo Hautala
- Infectious Diseases, Oulu University Hospital and Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| |
Collapse
|
12
|
Sharma P, Karnam K, Mahale A, Sedmaki K, Krishna Venuganti V, Kulkarni OP. HDAC5 RNA interference ameliorates acute renal injury by upregulating KLF2 and inhibiting NALP3 expression in a mouse model of oxalate nephropathy. Int Immunopharmacol 2022; 112:109264. [DOI: 10.1016/j.intimp.2022.109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
|
13
|
Wang D, Fan Y, Ma J, Gao C, Liu X, Zhao Z, Wei H, Yang G, Huang J, Jiang R, Zhang J. Atorvastatin combined with dexamethasone promote hematoma absorption in an optimized rat model of chronic subdural hematoma. Aging (Albany NY) 2021; 13:24815-24828. [PMID: 34813498 PMCID: PMC8660610 DOI: 10.18632/aging.203717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
Previous studies found that atorvastatin and dexamethasone were effective in promoting the absorption of chronic subdural hematoma. In this study, we aimed to investigate the effect of pharmacotherapy in an optimized rat model of chronic subdural hematoma. Rat model of chronic subdural hematoma via a bEnd.3 cell and Matrigel mix was established and dynamic changes in different drug treatment groups were tested. The hematoma gradually increased, peaked on the fifth day (263.8±52.85 μl), and was completely absorbed in two weeks. Notably, Kruppelle-like factor 2 expression was significantly decreased with increasing hematoma volume, and then increased in the repair period. The expression of IL-10 was increased and peaked on 7 days, and then decreased at 14 days. The dynamic trends of IL-6, IL-8, MMP-9, and VEGF were also increased first and then decreased. Both monotherapy and the combined treatment by atorvastatin and dexamethasone could counteract the inflammatory activities, decrease hematoma permeability, and improve hematoma absorption, however, most prominent in combined group. The combined treatment could more effectively increase Kruppelle-like factor 2 and ZO-1 expression, attenuate the expression of NF-κb. Most importantly, the combined treatment enhanced the neural functional prognosis and reduced the mortality of chronic subdural hematoma rats. According to our results, the combined treatment could more effectively attenuate inflammatory. And it could also enhance angiogenic activities which could promote the stability of local function and structure of the hematoma cavity, reduce the hematoma volume and improve the outcomes of rats with chronic subdural hematoma than single treatments in the optimized chronic subdural hematoma model.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, Tianjin, China
| | - Yueshan Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, Tianjin, China.,Tianjin Medical University, Tianjin 300070, Tianjin, China
| | - Jun Ma
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, Tianjin, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, Tianjin, China.,Tianjin Medical University, Tianjin 300070, Tianjin, China
| | - Zilong Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, Tianjin, China
| | - Huijie Wei
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, Tianjin, China
| | - Guili Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, Tianjin, China
| | - Jinhao Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, Tianjin, China
| |
Collapse
|
14
|
Tang X, Wang P, Zhang R, Watanabe I, Chang E, Vinayachandran V, Nayak L, Lapping S, Liao S, Madera A, Sweet DR, Luo J, Fei J, Jeong HW, Adams RH, Zhang T, Liao X, Jain MK. KLF2 regulates neutrophil activation and thrombosis in cardiac hypertrophy and heart failure progression. J Clin Invest 2021; 132:147191. [PMID: 34793333 PMCID: PMC8803339 DOI: 10.1172/jci147191] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 11/17/2021] [Indexed: 11/22/2022] Open
Abstract
It is widely recognized that inflammation plays a critical role in cardiac hypertrophy and heart failure. However, clinical trials targeting cytokines have shown equivocal effects, indicating the need for a deeper understanding of the precise role of inflammation and inflammatory cells in heart failure. Leukocytes from human subjects and a rodent model of heart failure were characterized by a marked reduction in expression of Klf2 mRNA. Using a mouse model of angiotensin II–induced nonischemic cardiac dysfunction, we showed that neutrophils played an essential role in the pathogenesis and progression of heart failure. Mechanistically, chronic angiotensin II infusion activated a neutrophil KLF2/NETosis pathway that triggered sporadic thrombosis in small myocardial vessels, leading to myocardial hypoxia, cell death, and hypertrophy. Conversely, targeting neutrophils, neutrophil extracellular traps (NETs), or thrombosis ameliorated these pathological changes and preserved cardiac dysfunction. KLF2 regulated neutrophil activation in response to angiotensin II at the molecular level, partly through crosstalk with HIF1 signaling. Taken together, our data implicate neutrophil-mediated immunothrombotic dysregulation as a critical pathogenic mechanism leading to cardiac hypertrophy and heart failure. This neutrophil KLF2-NETosis-thrombosis mechanism underlying chronic heart failure can be exploited for therapeutic gain by therapies targeting neutrophils, NETosis, or thrombosis.
Collapse
Affiliation(s)
- Xinmiao Tang
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, United States of America
| | - Peiwei Wang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rongli Zhang
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, United States of America
| | - Ippei Watanabe
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, United States of America
| | - Eugene Chang
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, United States of America
| | - Vinesh Vinayachandran
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, United States of America
| | - Lalitha Nayak
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, United States of America
| | - Stephanie Lapping
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, United States of America
| | - Sarah Liao
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, United States of America
| | - Annmarie Madera
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, United States of America
| | - David R Sweet
- Case Western Reserve University, Cleveland, United States of America
| | - Jiemeng Luo
- Cardiology, Minhang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Jinsong Fei
- Cardiology, Minhang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Germany
| | - Teng Zhang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xudong Liao
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, United States of America
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, United States of America
| |
Collapse
|
15
|
Krüppel-like Factor 2 (KLF2) in Immune Cell Migration. Vaccines (Basel) 2021; 9:vaccines9101171. [PMID: 34696279 PMCID: PMC8539188 DOI: 10.3390/vaccines9101171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 01/30/2023] Open
Abstract
Krüppel-like factor 2 (KLF2), a transcription factor of the krüppel-like family, is a key regulator of activation, differentiation, and migration processes in various cell types. In this review, we focus on the functional relevance of KLF2 in immune cell migration and homing. We summarize the key functions of KLF2 in the regulation of chemokine receptors and adhesion molecules and discuss the relevance of the KLF2-mediated control of immune cell migration in the context of immune responses, infections, and diseases.
Collapse
|
16
|
Grieshaber-Bouyer R, Radtke FA, Cunin P, Stifano G, Levescot A, Vijaykumar B, Nelson-Maney N, Blaustein RB, Monach PA, Nigrovic PA. The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nat Commun 2021; 12:2856. [PMID: 34001893 PMCID: PMC8129206 DOI: 10.1038/s41467-021-22973-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 04/01/2021] [Indexed: 02/05/2023] Open
Abstract
Neutrophils are implicated in multiple homeostatic and pathological processes, but whether functional diversity requires discrete neutrophil subsets is not known. Here, we apply single-cell RNA sequencing to neutrophils from normal and inflamed mouse tissues. Whereas conventional clustering yields multiple alternative organizational structures, diffusion mapping plus RNA velocity discloses a single developmental spectrum, ordered chronologically. Termed here neutrotime, this spectrum extends from immature pre-neutrophils, largely in bone marrow, to mature neutrophils predominantly in blood and spleen. The sharpest increments in neutrotime occur during the transitions from pre-neutrophils to immature neutrophils and from mature marrow neutrophils to those in blood. Human neutrophils exhibit a similar transcriptomic pattern. Neutrophils migrating into inflamed mouse lung, peritoneum and joint maintain the core mature neutrotime signature together with new transcriptional activity that varies with site and stimulus. Together, these data identify a single developmental spectrum as the dominant organizational theme of neutrophil heterogeneity.
Collapse
Affiliation(s)
- Ricardo Grieshaber-Bouyer
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix A Radtke
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Pierre Cunin
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Giuseppina Stifano
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anaïs Levescot
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brinda Vijaykumar
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Nathan Nelson-Maney
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel B Blaustein
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul A Monach
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Rheumatology Section, VA Boston Healthcare System, Boston, MA, USA
| | - Peter A Nigrovic
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Sweet DR, Lam C, Jain MK. Evolutionary Protection of Krüppel-Like Factors 2 and 4 in the Development of the Mature Hemovascular System. Front Cardiovasc Med 2021; 8:645719. [PMID: 34079826 PMCID: PMC8165158 DOI: 10.3389/fcvm.2021.645719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/21/2021] [Indexed: 02/02/2023] Open
Abstract
A properly functioning hemovascular system, consisting of circulating innate immune cells and endothelial cells (ECs), is essential in the distribution of nutrients to distant tissues while ensuring protection from invading pathogens. Professional phagocytes (e.g., macrophages) and ECs have co-evolved in vertebrates to adapt to increased physiological demands. Intercellular interactions between components of the hemovascular system facilitate numerous functions in physiology and disease in part through the utilization of shared signaling pathways and factors. Krüppel-like factors (KLFs) 2 and 4 are two such transcription factors with critical roles in both cellular compartments. Decreased expression of either factor in myeloid or endothelial cells increases susceptibility to a multitude of inflammatory diseases, underscoring the essential role for their expression in maintaining cellular quiescence. Given the close evolutionary relationship between macrophages and ECs, along with their shared utilization of KLF2 and 4, we hypothesize that KLF genes evolved in such a way that protected their expression in myeloid and endothelial cells. Within this Perspective, we review the roles of KLF2 and 4 in the hemovascular system and explore evolutionary trends in their nucleotide composition that suggest a coordinated protection that corresponds with the development of mature myeloid and endothelial systems.
Collapse
Affiliation(s)
- David R Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Cherry Lam
- Department of Biology, New York University, New York, NY, United States
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States.,Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
18
|
The molecular mechanism of mechanotransduction in vascular homeostasis and disease. Clin Sci (Lond) 2021; 134:2399-2418. [PMID: 32936305 DOI: 10.1042/cs20190488] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Blood vessels are constantly exposed to mechanical stimuli such as shear stress due to flow and pulsatile stretch. The extracellular matrix maintains the structural integrity of the vessel wall and coordinates with a dynamic mechanical environment to provide cues to initiate intracellular signaling pathway(s), thereby changing cellular behaviors and functions. However, the precise role of matrix-cell interactions involved in mechanotransduction during vascular homeostasis and disease development remains to be fully determined. In this review, we introduce hemodynamics forces in blood vessels and the initial sensors of mechanical stimuli, including cell-cell junctional molecules, G-protein-coupled receptors (GPCRs), multiple ion channels, and a variety of small GTPases. We then highlight the molecular mechanotransduction events in the vessel wall triggered by laminar shear stress (LSS) and disturbed shear stress (DSS) on vascular endothelial cells (ECs), and cyclic stretch in ECs and vascular smooth muscle cells (SMCs)-both of which activate several key transcription factors. Finally, we provide a recent overview of matrix-cell interactions and mechanotransduction centered on fibronectin in ECs and thrombospondin-1 in SMCs. The results of this review suggest that abnormal mechanical cues or altered responses to mechanical stimuli in EC and SMCs serve as the molecular basis of vascular diseases such as atherosclerosis, hypertension and aortic aneurysms. Collecting evidence and advancing knowledge on the mechanotransduction in the vessel wall can lead to a new direction of therapeutic interventions for vascular diseases.
Collapse
|
19
|
Sweet DR, Jain MK. Safeguarding the Vasculature: Redundant Transcriptional Machinery Ensures Endothelial Protection. Arterioscler Thromb Vasc Biol 2021; 41:1124-1126. [PMID: 33625882 DOI: 10.1161/atvbaha.120.315868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- David R Sweet
- Department of Medicine, Case Cardiovascular Research Institute (D.R.S., M.K.J.), Case Western Reserve University, Cleveland, OH.,Department of Pathology (D.R.S.), Case Western Reserve University, Cleveland, OH.,Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, OH (D.R.S., M.K.J.)
| | - Mukesh K Jain
- Department of Medicine, Case Cardiovascular Research Institute (D.R.S., M.K.J.), Case Western Reserve University, Cleveland, OH.,Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, OH (D.R.S., M.K.J.)
| |
Collapse
|
20
|
A pro-inflammatory mediator USP11 enhances the stability of p53 and inhibits KLF2 in intracerebral hemorrhage. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:681-692. [PMID: 34141823 PMCID: PMC8178085 DOI: 10.1016/j.omtm.2021.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
Microglial cell activation and neuroinflammation after intracerebral hemorrhage (ICH) lead to secondary brain damage. Ubiquitin-specific protease 11 (USP11) has been correlated with ICH-induced neuron apoptosis. This study aims to explore the molecular mechanism of USP11 regulating neuroinflammation in ICH. First, an ICH rat model was developed by intracranial administration of collagenase. Silencing USP11 was found to alleviate nerve injury in rats with ICH-like symptoms. Then, through loss- and gain-of-function assays, USP11 knockdown was revealed to alleviate ICH-induced symptoms, corresponding to reduced modified neurological severity scores (mNSS) value, brain water content, blood-brain barrier permeability, neuron apoptosis, microglial cell activation, neutrophil infiltration, and inflammatory factor secretion. It was subsequently shown in microglial cells that USP11 stabilized p53 by deubiquitination and p53 targeted the Kruppel-like factor 2 (KLF2) promoter to repress KLF2 transcription, thereby activating the nuclear factor κB (NF-κB) pathway. Further, rescue experiments were conducted in vivo to validate the function of the USP11/p53/KLF2/NF-κB axis in ICH-induced inflammation, which confirmed that USP11 silencing blocked the release of pro-inflammatory cytokines following ICH by downregulating p53, thus protecting against neurological impairment. Hence silencing USP11 may be a novel anti-inflammatory method for ICH treatment.
Collapse
|
21
|
Circadian Rhythm: Potential Therapeutic Target for Atherosclerosis and Thrombosis. Int J Mol Sci 2021; 22:ijms22020676. [PMID: 33445491 PMCID: PMC7827891 DOI: 10.3390/ijms22020676] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Every organism has an intrinsic biological rhythm that orchestrates biological processes in adjusting to daily environmental changes. Circadian rhythms are maintained by networks of molecular clocks throughout the core and peripheral tissues, including immune cells, blood vessels, and perivascular adipose tissues. Recent findings have suggested strong correlations between the circadian clock and cardiovascular diseases. Desynchronization between the circadian rhythm and body metabolism contributes to the development of cardiovascular diseases including arteriosclerosis and thrombosis. Circadian rhythms are involved in controlling inflammatory processes and metabolisms, which can influence the pathology of arteriosclerosis and thrombosis. Circadian clock genes are critical in maintaining the robust relationship between diurnal variation and the cardiovascular system. The circadian machinery in the vascular system may be a novel therapeutic target for the prevention and treatment of cardiovascular diseases. The research on circadian rhythms in cardiovascular diseases is still progressing. In this review, we briefly summarize recent studies on circadian rhythms and cardiovascular homeostasis, focusing on the circadian control of inflammatory processes and metabolisms. Based on the recent findings, we discuss the potential target molecules for future therapeutic strategies against cardiovascular diseases by targeting the circadian clock.
Collapse
|
22
|
Sweet DR, Vasudevan NT, Fan L, Booth CE, Keerthy KS, Liao X, Vinayachandran V, Takami Y, Tugal D, Sharma N, Chan ER, Zhang L, Qing Y, Gerson SL, Fu C, Wynshaw-Boris A, Sangwung P, Nayak L, Holvoet P, Matoba K, Lu Y, Zhou G, Jain MK. Myeloid Krüppel-like factor 2 is a critical regulator of metabolic inflammation. Nat Commun 2020; 11:5872. [PMID: 33208733 PMCID: PMC7674440 DOI: 10.1038/s41467-020-19760-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Substantial evidence implicates crosstalk between metabolic tissues and the immune system in the inception and progression of obesity. However, molecular regulators that orchestrate metaflammation both centrally and peripherally remains incompletely understood. Here, we identify myeloid Krüppel-like factor 2 (KLF2) as an essential regulator of obesity and its sequelae. In mice and humans, consumption of a fatty diet downregulates myeloid KLF2 levels. Under basal conditions, myeloid-specific KLF2 knockout mice (K2KO) exhibit increased feeding and weight gain. High-fat diet (HFD) feeding further exacerbates the K2KO metabolic disease phenotype. Mechanistically, loss of myeloid KLF2 increases metaflammation in peripheral and central tissues. A combination of pair-feeding, bone marrow-transplant, and microglial ablation implicate central and peripheral contributions to K2KO-induced metabolic dysfunction observed. Finally, overexpression of myeloid KLF2 protects mice from HFD-induced obesity and insulin resistance. Together, these data establish myeloid KLF2 as a nodal regulator of central and peripheral metabolic inflammation in homeostasis and disease. Inflammation contributes to the development of metabolic disease through incompletely understood mechanisms. Here the authors report that deletion of the transcription factor KLF2 in myeloid cells leads to increased feeding and weight gain in mice with concomitant peripheral and central tissue inflammation, while overexpression protects against diet-induced metabolic disease.
Collapse
Affiliation(s)
- David R Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Neelakantan T Vasudevan
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Liyan Fan
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Chloe E Booth
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Komal S Keerthy
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Xudong Liao
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Vinesh Vinayachandran
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yoichi Takami
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Derin Tugal
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nikunj Sharma
- DBPAP/OVRR/CBER, Food and Drug Administration, Silver Spring, MD, USA
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yulan Qing
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.,National Center for Regenerative Medicine, Seidman Cancer Center, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Stanton L Gerson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.,National Center for Regenerative Medicine, Seidman Cancer Center, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Chen Fu
- Department of Genetics and Genome Sciences, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Panjamaporn Sangwung
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Lalitha Nayak
- Division of Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, USA
| | - Paul Holvoet
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Keiichiro Matoba
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yuan Lu
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Charles River Laboratories, Ashland, OH, USA
| | - Guangjin Zhou
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
23
|
Zhong M, Zhang X, Shi X, Zheng C. Halofuginone inhibits LPS-induced attachment of monocytes to HUVECs. Int Immunopharmacol 2020; 87:106753. [DOI: 10.1016/j.intimp.2020.106753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 01/20/2023]
|
24
|
Zhu LM, Zeng D, Lei XC, Huang J, Deng YF, Ji YB, Liu J, Dai FF, Li YZ, Shi DD, Zhu YQ, Dai AG, Wang Z. KLF2 regulates neutrophil migration by modulating CXCR1 and CXCR2 in asthma. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165920. [PMID: 32800946 DOI: 10.1016/j.bbadis.2020.165920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/01/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
Neutrophils are key inflammatory cells in the immunopathogenesis of asthma. Neutrophil migration can be initiated through activation of the CXCR1 and CXCR2 receptors by CXC chemokines, such as IL-8. Although transcription factor KLF2 has been found to maintain T cell migration patterns through repression of several chemokine receptors, whether KLF2 can regulate neutrophil migration via modulation of CXCR1 and CXCR2 is unknown. Here, we aimed to explore the functions of KLF2, CXCR1 and CXCR2 in neutrophil migration in asthma and to establish a regulatory role of KLF2 for CXCR1/2. We demonstrate that with asthma aggravation, the percentages and migration rates of peripheral blood neutrophils gradually increased in asthmatic patients and the guinea pig asthma model. Correspondingly, both the KLF2 mRNA and protein levels in neutrophils were gradually reduced. While CXCR1 and CXCR2 expression was negatively correlated with KLF2. In vitro knockdown of KLF2 dramatically increased the migration of HL-60-drived neutrophil-like cells, which was accompanied by an increase in the CXCR1 and CXCR2 mRNA and protein expression levels. Taken together, our results indicate that decreased KLF2 aggravates asthma progression by promoting neutrophil migration, which is associated with the transcriptional upregulation of CXCR1 and CXCR2. The KLF2 and/or CXCR1/2 expression levels may represent an indicator of asthma severity.
Collapse
Affiliation(s)
- Li-Ming Zhu
- Department of Geriatric Respiratory Medicine, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, China; Institute of Respiratory Disease, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, China.
| | - Dan Zeng
- Institute of Respiratory Disease, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Xue-Chun Lei
- Department of Geriatric Respiratory Medicine, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Jin Huang
- Department of Geriatric Respiratory Medicine, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Yan-Feng Deng
- Department of Geriatric Respiratory Medicine, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Yu-Bin Ji
- Department of Geriatric Respiratory Medicine, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Jing Liu
- Molecular Biology Research Center, School of life Sciences, Central South University, Changsha 410008, China
| | - Fang-Fang Dai
- Department of Geriatric Respiratory Medicine, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Yu-Zhu Li
- Department of Geriatric Respiratory Medicine, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Dan-Dan Shi
- Department of Geriatric Respiratory Medicine, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha 410016, China
| | - Ying-Qun Zhu
- Department of Respiratory Medicine, The Third Hospital of Changsha, Changsha 410015, China
| | - Ai-Guo Dai
- Institute of Respiratory Disease, Changsha medical University, Changsha 410219, China
| | - Zi Wang
- Molecular Biology Research Center, School of life Sciences, Central South University, Changsha 410008, China; Key Laboratory of Nanobiological Technology of Chinese Minisitry of Health, Xiangya Hospital, Central South Universeity, Changsha 410008, China.
| |
Collapse
|
25
|
Roche-Molina M, Hardwick B, Sanchez-Ramos C, Sanz-Rosa D, Gewert D, Cruz FM, Gonzalez-Guerra A, Andres V, Palma JA, Ibanez B, Mckenzie G, Bernal JA. The pharmaceutical solvent N-methyl-2-pyrollidone (NMP) attenuates inflammation through Krüppel-like factor 2 activation to reduce atherogenesis. Sci Rep 2020; 10:11636. [PMID: 32669659 PMCID: PMC7363918 DOI: 10.1038/s41598-020-68350-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/19/2020] [Indexed: 12/25/2022] Open
Abstract
N-methyl-2-pyrrolidone (NMP) is a versatile water-miscible polar aprotic solvent. It is used as a drug solubilizer and penetration enhancer in human and animal, yet its bioactivity properties remain elusive. Here, we report that NMP is a bioactive anti-inflammatory compound well tolerated in vivo, that shows efficacy in reducing disease in a mouse model of atherosclerosis. Mechanistically, NMP increases the expression of the transcription factor Kruppel-like factor 2 (KLF2). Monocytes and endothelial cells treated with NMP express increased levels of KLF2, produce less pro-inflammatory cytokines and adhesion molecules. We found that NMP attenuates monocyte adhesion to endothelial cells inflamed with tumor necrosis factor alpha (TNF-α) by reducing expression of adhesion molecules. We further show using KLF2 shRNA that the inhibitory effect of NMP on endothelial inflammation and subsequent monocyte adhesion is KLF2 dependent. Enhancing KLF2 expression and activity improves endothelial function, controls multiple genes critical for inflammation, and prevents atherosclerosis. Our findings demonstrate a consistent effect of NMP upon KLF2 activation and inflammation, biological processes central to atherogenesis. Our data suggest that inclusion of bioactive solvent NMP in pharmaceutical compositions to treat inflammatory disorders might be beneficial and safe, in particular to treat diseases of the vascular system, such as atherosclerosis.
Collapse
Affiliation(s)
- Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain
| | - Bryn Hardwick
- MRC Cancer Unit At the University of Cambridge, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Hills Road, Cambridge, CB2 0XZ, UK
| | - Cristina Sanchez-Ramos
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain.,CIBERCV, Madrid, Spain.,Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
| | - Dirk Gewert
- DG Bioconsult Ltd, 50 Gilbert Road, Cambridge, CB4 3PE, UK
| | - Francisco M Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain
| | - Andres Gonzalez-Guerra
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain
| | - Vicente Andres
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain.,CIBERCV, Madrid, Spain
| | - Joaquin A Palma
- Department of Development, Grupo STIG, Velázquez 11, 28001, Madrid, CP, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain.,CIBERCV, Madrid, Spain.,IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Grahame Mckenzie
- MRC Cancer Unit At the University of Cambridge, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Hills Road, Cambridge, CB2 0XZ, UK.
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro 3, CP28029, Madrid, Spain. .,CIBERCV, Madrid, Spain.
| |
Collapse
|
26
|
van der Heijden CDCC, Smeets EMM, Aarntzen EHJG, Noz MP, Monajemi H, Kersten S, Kaffa C, Hoischen A, Deinum J, Joosten LAB, Netea MG, Riksen NP. Arterial Wall Inflammation and Increased Hematopoietic Activity in Patients With Primary Aldosteronism. J Clin Endocrinol Metab 2020; 105:5686861. [PMID: 31875423 PMCID: PMC7105350 DOI: 10.1210/clinem/dgz306] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022]
Abstract
CONTEXT Primary aldosteronism (PA) confers an increased risk of cardiovascular disease (CVD), independent of blood pressure. Animal models have shown that aldosterone accelerates atherosclerosis through proinflammatory changes in innate immune cells; human data are scarce. OBJECTIVE The objective of this article is to explore whether patients with PA have increased arterial wall inflammation, systemic inflammation, and reprogramming of monocytes. DESIGN A cross-sectional cohort study compared vascular inflammation on 2'-deoxy-2'-(18F)fluoro-D-glucose; (18F-FDG) positron emission tomography-computed tomography, systemic inflammation, and monocyte phenotypes and transcriptome between PA patients and controls. SETTING This study took place at Radboudumc and Rijnstate Hospital, the Netherlands. PATIENTS Fifteen patients with PA and 15 age-, sex-, and blood pressure-matched controls with essential hypertension (EHT) participated. MAIN OUTCOME MEASURES AND RESULTS PA patients displayed a higher arterial 18F-FDG uptake in the descending and abdominal aorta (P < .01, P < .05) and carotid and iliac arteries (both P < .01). In addition, bone marrow uptake was higher in PA patients (P < .05). Although PA patients had a higher monocyte-to-lymphocyte ratio (P < .05), systemic inflammatory markers, cytokine production capacity, and transcriptome of circulating monocytes did not differ. Monocyte-derived macrophages from PA patients expressed more TNFA; monocyte-derived macrophages of healthy donors cultured in PA serum displayed increased interleukin-6 and tumor necrosis factor-α production. CONCLUSIONS Because increased arterial wall inflammation is associated with accelerated atherogenesis and unstable plaques, this might importantly contribute to the increased CVD risk in PA patients. We did not observe inflammatory reprogramming of circulating monocytes. However, subtle inflammatory changes are present in the peripheral blood cell composition and monocyte transcriptome of PA patients, and in their monocyte-derived macrophages. Most likely, arterial inflammation in PA requires interaction between various cell types.
Collapse
Affiliation(s)
- Charlotte D C C van der Heijden
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther M M Smeets
- Department of Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erik H J G Aarntzen
- Department of Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marlies P Noz
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Houshang Monajemi
- Department of Internal Medicine, Rijnstate Hospital, Arnhem, the Netherlands
| | - Simone Kersten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte Kaffa
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medicine, University Hospital Dresden, Technische Universität, Dresden, Germany
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences 12 Institute, University of Bonn, Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
27
|
Knights AJ, Yang L, Shah M, Norton LJ, Green GS, Stout ES, Vohralik EJ, Crossley M, Quinlan KGR. Krüppel-like factor 3 (KLF3) suppresses NF-κB-driven inflammation in mice. J Biol Chem 2020; 295:6080-6091. [PMID: 32213596 DOI: 10.1074/jbc.ra120.013114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial products such as lipopolysaccharides (or endotoxin) cause systemic inflammation, resulting in a substantial global health burden. The onset, progression, and resolution of the inflammatory response to endotoxin are usually tightly controlled to avoid chronic inflammation. Members of the NF-κB family of transcription factors are key drivers of inflammation that activate sets of genes in response to inflammatory signals. Such responses are typically short-lived and can be suppressed by proteins that act post-translationally, such as the SOCS (suppressor of cytokine signaling) family. Less is known about direct transcriptional regulation of these responses, however. Here, using a combination of in vitro approaches and in vivo animal models, we show that endotoxin treatment induced expression of the well-characterized transcriptional repressor Krüppel-like factor 3 (KLF3), which, in turn, directly repressed the expression of the NF-κB family member RELA/p65. We also observed that KLF3-deficient mice were hypersensitive to endotoxin and exhibited elevated levels of circulating Ly6C+ monocytes and macrophage-derived inflammatory cytokines. These findings reveal that KLF3 is a fundamental suppressor that operates as a feedback inhibitor of RELA/p65 and may be important in facilitating the resolution of inflammation.
Collapse
Affiliation(s)
- Alexander J Knights
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lu Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Manan Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Laura J Norton
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Gamran S Green
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Elizabeth S Stout
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
28
|
Jiang T, Jiang D, You D, Zhang L, Liu L, Zhao Q. Agonism of GPR120 prevents ox-LDL-induced attachment of monocytes to endothelial cells. Chem Biol Interact 2020; 316:108916. [PMID: 31870843 DOI: 10.1016/j.cbi.2019.108916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL)-induced endothelial inflammation plays an important role in the development of cardiovascular diseases. G protein-coupled receptors (GPCR) are gaining traction as potential treatment targets due to their roles in mediating a wide range of physiological processes. GPR120 is a recently identified omega-3 fatty acid receptor. We hypothesized that agonism of GPR120 might attenuate ox-LDL-induced endothelial dysfunction. In the present study, we tested the effects of two GPR120 agonists-GW9508 and TUG-891-in mitigating endothelial insult induced by ox-LDL in human aortic endothelial cells (HAECs). Real-time PCR, western blot, and ELISA analyses were used in our experiments. Our findings demonstrate that GPR120 is downregulated by exposure to ox-LDL, suggesting a role for GPR120 in mediating ox-LDL insult. Furthermore, we found that agonism of GPR120 could suppress oxidative stress and inflammation by inhibiting the production of reactive oxygen species and the expression of proinflammatory cytokines. Importantly, we show that agonism of GPR120 prevents the attachment of monocytes to endothelial cells by suppressing the expression of VCAM-1 and E-selectin. Finally, we show that agonism of GPR120 exerts a remarkable atheroprotective effect by elevating the expression level of Krüppel-like factor 2 (KLF2). Together, our results demonstrate a potential role for specific agonism of GPR120 in the prevention of endothelial damages induced by ox-LDL.
Collapse
Affiliation(s)
- Tiechao Jiang
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China; Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033, China
| | - Dongli Jiang
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Dong You
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lirong Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Long Liu
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China; Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033, China.
| | - Qini Zhao
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China; Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033, China.
| |
Collapse
|
29
|
Xie W, Li L, Gong D, Zhang M, Lv YC, Guo DM, Zhao ZW, Zheng XL, Zhang DW, Dai XY, Yin WD, Tang CK. Krüppel-like factor 14 inhibits atherosclerosis via mir-27a-mediated down-regulation of lipoprotein lipase expression in vivo. Atherosclerosis 2019; 289:143-161. [DOI: 10.1016/j.atherosclerosis.2019.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022]
|
30
|
Manoharan P, Song T, Radzyukevich TL, Sadayappan S, Lingrel JB, Heiny JA. KLF2 in Myeloid Lineage Cells Regulates the Innate Immune Response during Skeletal Muscle Injury and Regeneration. iScience 2019; 17:334-346. [PMID: 31326700 PMCID: PMC6652133 DOI: 10.1016/j.isci.2019.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/10/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle repair and regeneration after injury requires coordinated interactions between the innate immune system and the injured muscle. Myeloid cells predominate in these interactions. This study examined the role of KLF2, a zinc-finger transcription factor that regulates immune cell activation, in specifying myeloid cell functions during muscle regeneration. Loss of KLF2 in myeloid lineage cells (myeKlf2-/- mice) dramatically enhanced the initial inflammatory response to acute muscle injury (cardiotoxin). Injured muscles showed dramatically elevated expression of inflammatory mediators and greater numbers of infiltrating, pro-inflammatory monocytes that matured earlier into activated macrophages. Notably, the inflammatory phase resolved earlier and regeneration progressed to myogenesis, marked by elevated expression of factors that promote the formation of new fibers from satellite cells. Regeneration was completed earlier, with phenotypically normal adult fibers integrated into the muscle syncytium. These findings identify myeloid KLF2 as a key regulator of myeloid cell functions in adult skeletal muscle regeneration.
Collapse
Affiliation(s)
- Palanikumar Manoharan
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| | - Taejeong Song
- Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Tatiana L Radzyukevich
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Jerry B Lingrel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Judith A Heiny
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
31
|
Niu N, Xu S, Xu Y, Little PJ, Jin ZG. Targeting Mechanosensitive Transcription Factors in Atherosclerosis. Trends Pharmacol Sci 2019; 40:253-266. [PMID: 30826122 DOI: 10.1016/j.tips.2019.02.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is the primary underlying cause of cardiovascular disease which preferentially develops at arterial regions exposed to disturbed flow (DF), but much less at regions of unidirectional laminar flow (UF). Recent studies have demonstrated that DF and UF differentially regulate important aspects of endothelial function, such as vascular inflammation, oxidative stress, vascular tone, cell proliferation, senescence, mitochondrial function, and glucose metabolism. DF and UF regulate vascular pathophysiology via differential regulation of mechanosensitive transcription factors (MSTFs) (KLF2, KLF4, NRF2, YAP/TAZ/TEAD, HIF-1α, NF-κB, AP-1, and others). Emerging studies show that MSTFs represent promising therapeutic targets for the prevention and treatment of atherosclerosis. We present here a comprehensive overview of the role of MSTFs in atherosclerosis, and highlight future directions for developing novel therapeutic agents by targeting MSTFs.
Collapse
Affiliation(s)
- Niu Niu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Yanni Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; National Health Commission (NHC) Key Laboratory of Biotechnology of Antibiotics, National Center for Drug (Microbiology) Screening Laboratory, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Beijing, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-Sen University, Guangzhou 510520, China
| | - Zheng-Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
32
|
Chistiakov DA, Grechko AV, Myasoedova VA, Melnichenko AA, Orekhov AN. The role of monocytosis and neutrophilia in atherosclerosis. J Cell Mol Med 2018; 22:1366-1382. [PMID: 29364567 PMCID: PMC5824421 DOI: 10.1111/jcmm.13462] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Monocytosis and neutrophilia are frequent events in atherosclerosis. These phenomena arise from the increased proliferation of hematopoietic stem and multipotential progenitor cells (HSPCs) and HSPC mobilization from the bone marrow to other immune organs and circulation. High cholesterol and inflammatory signals promote HSPC proliferation and preferential differentiation to the myeloid precursors (i.e., myelopoiesis) that than give rise to pro-inflammatory immune cells. These cells accumulate in the plaques thereby enhancing vascular inflammation and contributing to further lesion progression. Studies in animal models of atherosclerosis showed that manipulation with HSPC proliferation and differentiation through the activation of LXR-dependent mechanisms and restoration of cholesterol efflux may have a significant therapeutic potential.
Collapse
MESH Headings
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Atherosclerosis/pathology
- Bone Marrow/immunology
- Bone Marrow/pathology
- Cell Differentiation
- Cell Proliferation
- Cholesterol/immunology
- Disease Models, Animal
- Gene Expression Regulation
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/pathology
- Humans
- Hypercholesterolemia/genetics
- Hypercholesterolemia/immunology
- Hypercholesterolemia/pathology
- Liver X Receptors/genetics
- Liver X Receptors/immunology
- Mice
- Monocytes/immunology
- Monocytes/pathology
- Multipotent Stem Cells/immunology
- Multipotent Stem Cells/pathology
- Neutrophils/immunology
- Neutrophils/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/pathology
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- Department of NeurochemistryDivision of Basic and Applied NeurobiologySerbsky Federal Medical Research Center of Psychiatry and NarcologyMoscowRussia
| | - Andrey V. Grechko
- Federal Scientific Clinical Center for Resuscitation and RehabilitationMoscowRussia
| | - Veronika A. Myasoedova
- Skolkovo Innovative CenterInstitute for Atherosclerosis ResearchMoscowRussia
- Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
| | - Alexandra A. Melnichenko
- Skolkovo Innovative CenterInstitute for Atherosclerosis ResearchMoscowRussia
- Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
| | - Alexander N. Orekhov
- Skolkovo Innovative CenterInstitute for Atherosclerosis ResearchMoscowRussia
- Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
| |
Collapse
|
33
|
Sweet DR, Fan L, Hsieh PN, Jain MK. Krüppel-Like Factors in Vascular Inflammation: Mechanistic Insights and Therapeutic Potential. Front Cardiovasc Med 2018; 5:6. [PMID: 29459900 PMCID: PMC5807683 DOI: 10.3389/fcvm.2018.00006] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022] Open
Abstract
The role of inflammation in vascular disease is well recognized, involving dysregulation of both circulating immune cells as well as the cells of the vessel wall itself. Unrestrained vascular inflammation leads to pathological remodeling that eventually contributes to atherothrombotic disease and its associated sequelae (e.g., myocardial/cerebral infarction, embolism, and critical limb ischemia). Signaling events during vascular inflammation orchestrate widespread transcriptional programs that affect the functions of vascular and circulating inflammatory cells. The Krüppel-like factors (KLFs) are a family of transcription factors central in regulating vascular biology in states of homeostasis and disease. Given their abundance and diversity of function in cells associated with vascular inflammation, understanding the transcriptional networks regulated by KLFs will further our understanding of the pathogenesis underlying several pervasive health concerns (e.g., atherosclerosis, stroke, etc.) and consequently inform the treatment of cardiovascular disease. Within this review, we will discuss the role of KLFs in coordinating protective and deleterious responses during vascular inflammation, while addressing the potential targeting of these critical transcription factors in future therapies.
Collapse
Affiliation(s)
- David R Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Liyan Fan
- Case Cardiovascular Research Institute, Case Western Reserve University, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Paishiun N Hsieh
- Case Cardiovascular Research Institute, Case Western Reserve University, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
34
|
Pollak NM, Hoffman M, Goldberg IJ, Drosatos K. Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci 2018; 3:132-156. [PMID: 29876529 PMCID: PMC5985828 DOI: 10.1016/j.jacbts.2017.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors that regulate various pathways that control metabolism and other cellular mechanisms. Various KLF isoforms have been associated with cellular, organ or systemic metabolism. Altered expression or activation of KLFs has been linked to metabolic abnormalities, such as obesity and diabetes, as well as with heart failure. In this review article we summarize the metabolic functions of KLFs, as well as the networks of different KLF isoforms that jointly regulate metabolism in health and disease.
Collapse
Affiliation(s)
- Nina M. Pollak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Hoffman
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
KLF2 in Regulation of NF-κB-Mediated Immune Cell Function and Inflammation. Int J Mol Sci 2017; 18:ijms18112383. [PMID: 29125549 PMCID: PMC5713352 DOI: 10.3390/ijms18112383] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/17/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
KLF2 (Kruppel-like factor 2) is a member of the zinc finger transcription factor family, which critically regulates embryonic lung development, function of endothelial cells and maintenance of quiescence in T-cells and monocytes. It is expressed in naïve T-cells and monocytes, however its level of expression decreases during activation and differentiation. KLF2 also plays critical regulatory role in various inflammatory diseases and their pathogenesis. Nuclear factor-kappaB (NF-κB) is an important inducer of inflammation and the inflammation is mediated through the transcription of several proinflammatory cytokines, chemokines and adhesion molecules. So, both transcriptional factors KLF2 and NF-κB are being associated with the similar cellular functions and their maintenance. It was shown that KLF2 regulates most of the NF-κB-mediated activities. In this review, we focused on emphasizing the involvement of KLF2 in health and disease states and how they interact with transcriptional master regulator NF-κB.
Collapse
|
36
|
Francisco NM, Fang YM, Ding L, Feng S, Yang Y, Wu M, Jacobs M, Ryffel B, Huang X. Diagnostic accuracy of a selected signature gene set that discriminates active pulmonary tuberculosis and other pulmonary diseases. J Infect 2017; 75:499-510. [PMID: 28941629 DOI: 10.1016/j.jinf.2017.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/23/2017] [Accepted: 09/13/2017] [Indexed: 01/22/2023]
Abstract
OBJECTIVE We validated the accuracy of host selected signature gene set using unstimulated whole blood (WB), and peripheral blood mononuclear cells (PBMC) in the diagnosis of tuberculosis (TB). METHODS The unstimulated WB and PBMC from 1417 individuals with active pulmonary TB patients, other lung diseases and healthy participants were analyzed using real time polymerase chain reaction (RT-PCR). RESULTS The WB cohort test demonstrates that the combination of GBP5 and KLF2 can differentiate active TB versus HC with sensitivity and specificity of 77.8% and 87.1%, respectively; but most importantly active TB versus OD with sensitivity and specificity of 96.1% and 85.2%, respectively. Again during treatment course, the TB score of GBP5 and KLF2, analytes secretion and clinical parameters were found to be associated in disease progression. In the PBMC cohort test, we found that the only and best discriminatory combination was GBP5, DUSP3 and KLF2 inthe active TB versus HC with a sensitivity and specificity of 76.4% and 85.9%, respectively. CONCLUSIONS Our study reveals that GBP5 and KLF2 may be useful as a diagnostic tool for active TB, also the two-gene set may serve as surrogate biomarkers for monitoring TB therapy.
Collapse
Affiliation(s)
- Ngiambudulu M Francisco
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China; Institute of Tuberculosis Control, Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, PR China
| | - Yi-Min Fang
- Guangzhou Chest Hospital, Guangzhou, PR China
| | - Li Ding
- Department of Infectious Diseases, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, PR China
| | - Siyuan Feng
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China; Institute of Tuberculosis Control, Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, PR China
| | - Yiying Yang
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China; Institute of Tuberculosis Control, Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, PR China
| | - Minhao Wu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China; Institute of Tuberculosis Control, Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, PR China
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Health Sciences Faculty, University of Cape Town, Cape Town, South Africa
| | - Bernhard Ryffel
- CNRS UMR7355, Experimental and Molecular Immunology and Neurogenetics, 45071 Orleans, France
| | - Xi Huang
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China; Institute of Tuberculosis Control, Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, PR China; Guangzhou Chest Hospital, Guangzhou, PR China; Department of Infectious Diseases, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, PR China.
| |
Collapse
|
37
|
Xu Y, Liu P, Xu S, Koroleva M, Zhang S, Si S, Jin ZG. Tannic acid as a plant-derived polyphenol exerts vasoprotection via enhancing KLF2 expression in endothelial cells. Sci Rep 2017; 7:6686. [PMID: 28751752 PMCID: PMC5532219 DOI: 10.1038/s41598-017-06803-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022] Open
Abstract
The transcription factor Kruppel-like factor 2 (KLF2) is a critical anti-inflammatory and anti-atherogenic molecule in vascular endothelium. Enhancing KLF2 expression and activity improves endothelial function and prevents atherosclerosis. However, the pharmacological and molecular regulators for KLF2 are scarce. Using high-throughput luciferase reporter assay to screen for KLF2 activators, we have identified tannic acid (TA), a polyphenolic compound, as a potent KLF2 activator that attenuates endothelial inflammation. Mechanistic studies suggested that TA induced KLF2 expression in part through the ERK5/MEF2 pathway. Functionally, TA markedly decreased monocyte adhesion to ECs by reducing expression of adhesion molecule VCAM1. Using lung ECs isolated from Klf2+/+ and Klf2+/− mice, we showed that the anti-inflammatory effect of TA is dependent on KLF2. Collectively, our results demonstrate that TA is a potent KLF2 activator and TA attenuated endothelial inflammation through upregulation of KLF2. Our findings provide a novel mechanism for the well-established beneficial cardiovascular effects of TA and suggest that KLF2 could be a novel therapeutic target for atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Yanni Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA.,Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA.,Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
| | - Marina Koroleva
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
| | - Shuya Zhang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, China
| | - Shuyi Si
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA. .,Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA.
| |
Collapse
|
38
|
Vogel ME, Idelman G, Konaniah ES, Zucker SD. Bilirubin Prevents Atherosclerotic Lesion Formation in Low-Density Lipoprotein Receptor-Deficient Mice by Inhibiting Endothelial VCAM-1 and ICAM-1 Signaling. J Am Heart Assoc 2017; 6:JAHA.116.004820. [PMID: 28365565 PMCID: PMC5532999 DOI: 10.1161/jaha.116.004820] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Numerous epidemiological studies support an inverse association between serum bilirubin levels and the incidence of cardiovascular disease; however, the mechanism(s) by which bilirubin may protect against atherosclerosis is undefined. The goals of the present investigations were to assess the ability of bilirubin to prevent atherosclerotic plaque formation in low‐density lipoprotein receptor‐deficient (Ldlr−/−) mice and elucidate the molecular processes underlying this effect. Methods and Results Bilirubin, at physiological concentrations (≤20 μmol/L), dose‐dependently inhibits THP‐1 monocyte migration across tumor necrosis factor α–activated human umbilical vein endothelial cell monolayers without altering leukocyte binding or cytokine production. A potent antioxidant, bilirubin effectively blocks the generation of cellular reactive oxygen species induced by the cross‐linking of endothelial vascular cell adhesion molecule 1 (VCAM‐1) or intercellular adhesion molecule 1 (ICAM‐1). These findings were validated by treating cells with blocking antibodies or with specific inhibitors of VCAM‐1 and ICAM‐1 signaling. When administered to Ldlr−/− mice on a Western diet, bilirubin (30 mg/kg intraperitoneally) prevents atherosclerotic plaque formation, but does not alter circulating cholesterol or chemokine levels. Aortic roots from bilirubin‐treated animals exhibit reduced lipid and collagen deposition, decreased infiltration of monocytes and lymphocytes, fewer smooth muscle cells, and diminished levels of chlorotyrosine and nitrotyrosine, without changes in VCAM‐1 or ICAM‐1 expression. Conclusions Bilirubin suppresses atherosclerotic plaque formation in Ldlr−/− mice by disrupting endothelial VCAM‐1‐ and ICAM‐1‐mediated leukocyte migration through the scavenging of reactive oxygen species signaling intermediaries. These findings suggest a potential mechanism for the apparent cardioprotective effects of bilirubin.
Collapse
Affiliation(s)
- Megan E Vogel
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Gila Idelman
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Eddy S Konaniah
- Department of Pathology and Laboratory Medicine, Metabolic Disease Institute, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Stephen D Zucker
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
39
|
Chen Y, Liu W, Wang Y, Zhang L, Wei J, Zhang X, He F, Zhang L. Casein Kinase 2 Interacting Protein-1 regulates M1 and M2 inflammatory macrophage polarization. Cell Signal 2017; 33:107-121. [PMID: 28212865 DOI: 10.1016/j.cellsig.2017.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 12/18/2022]
Abstract
The importance of macrophage plasticity, albeit being discovered recently, has been highlighted in a broad spectrum of biological processes operative in physiological and pathological environments. Macrophage polarized activation and inactivation has profound effects on immune and inflammatory responses with several major pathways being elucidated in the past few years. However, transcriptional regulation mechanisms governing macrophage polarization is still preliminary. In this study, we identify the Casein Kinase 2 Interacting Protein 1 (CKIP-1) as a molecular toggle manipulating macrophage speciation. CKIP-1 expression was strongly induced by pro-inflammatory M1 stimuli (LPS and IFN-γ) and robustly suppressed by M2 stimuli (IL-4 and IL-13) in human and murine macrophage. Gain and loss of function studies suggest that CKIP-1 is a prerequisite for optimal LPS-induced pro-inflammatory gene activation, which exhibits its roles in a NF-κB dependent manner. Furthermore, CKIP-1 inhibits anti-inflammatory gene expression by negatively regulating JAK1-STAT6 activation in macrophages. Taken together, these data integrated CKIP-1 expression and function as a novel transcriptional regulator of macrophage polarization and identified a double feedback loop consisting of CKIP-1 and the key regulators of the M1 and M2 macrophage effectors in polarization pathway. Moreover, the inhibitory roles of CKIP-1 in LPS-mediated sepsis and TPA-mediated cutaneous provide a new target for treatments of acute inflammation.
Collapse
Affiliation(s)
- Yuhan Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China; Bayi Children's Hospital, Army General Hospital, Beijing, China
| | - Wen Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Yiwu Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China; Department of Infectious Diseases, Chinese PLA 532 Hospital, Huangshan, Anhui, China
| | - Luo Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China; 307-lvy Translational Medicine Center, Laboratory of Oncology, Chinese PLA 307 Hospital, Beijing, China
| | - Jun Wei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China; Shanghai Fengxian Central Hospital Graduate Training Base, Department of General Surgery, Fengxian Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Xueli Zhang
- Shanghai Fengxian Central Hospital Graduate Training Base, Department of General Surgery, Fengxian Hospital Affiliated to Southern Medical University, Shanghai, China.
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China.
| |
Collapse
|
40
|
Hsieh PN, Sweet DR, Fan L, Jain MK. Aging and the Krüppel-like factors. TRENDS IN CELL & MOLECULAR BIOLOGY 2017; 12:1-15. [PMID: 29416266 PMCID: PMC5798252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mammalian Krüppel-like factors (KLFs) are a family of zinc-finger containing transcription factors with diverse patterns of expression and a wide array of cellular functions. While their roles in mammalian physiology are well known, there is a growing appreciation for their roles in modulating the fundamental progression of aging. Here we review the current knowledge of Krüppel-like factors with a focus on their roles in processes regulating aging and age-associated diseases.
Collapse
Affiliation(s)
- Paishiun N. Hsieh
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - David R. Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Liyan Fan
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Mukesh K. Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
41
|
Alberts-Grill N, Engelbertsen D, Bu D, Foks A, Grabie N, Herter JM, Kuperwaser F, Chen T, Destefano G, Jarolim P, Lichtman AH. Dendritic Cell KLF2 Expression Regulates T Cell Activation and Proatherogenic Immune Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4651-4662. [PMID: 27837103 PMCID: PMC5136303 DOI: 10.4049/jimmunol.1600206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/17/2016] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) have been implicated as important regulators of innate and adaptive inflammation in many diseases, including atherosclerosis. However, the molecular mechanisms by which DCs mitigate or promote inflammatory pathogenesis are only partially understood. Previous studies have shown an important anti-inflammatory role for the transcription factor Krüppel-like factor 2 (KLF2) in regulating activation of various cell types that participate in atherosclerotic lesion development, including endothelial cells, macrophages, and T cells. We used a pan-DC, CD11c-specific cre-lox gene knockout mouse model to assess the role of KLF2 in DC activation, function, and control of inflammation in the context of hypercholesterolemia and atherosclerosis. We found that KLF2 deficiency enhanced surface expression of costimulatory molecules CD40 and CD86 in DCs and promoted increased T cell proliferation and apoptosis. Transplant of bone marrow from mice with KLF2-deficient DCs into Ldlr-/- mice aggravated atherosclerosis compared with control mice, most likely due to heightened vascular inflammation evidenced by increased DC presence within lesions, enhanced T cell activation and cytokine production, and increased cell death in atherosclerotic lesions. Taken together, these data indicate that KLF2 governs the degree of DC activation and hence the intensity of proatherogenic T cell responses.
Collapse
Affiliation(s)
- Noah Alberts-Grill
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Daniel Engelbertsen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Dexiu Bu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Amanda Foks
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Nir Grabie
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Jan M Herter
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Felicia Kuperwaser
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Tao Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Gina Destefano
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02460
| |
Collapse
|
42
|
Kawecki M, Kraut M, Klama-Baryła A, Łabuś W, Kitala D, Nowak M, Glik J, Sieroń AL, Utrata-Wesołek A, Trzebicka B, Dworak A, Szweda D. Transfer of fibroblast sheets cultured on thermoresponsive dishes with membranes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:111. [PMID: 27153827 PMCID: PMC4859842 DOI: 10.1007/s10856-016-5718-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/12/2016] [Indexed: 05/05/2023]
Abstract
In cell or tissue engineering, it is essential to develop a support for cell-to-cell adhesion, which leads to the generation of cell sheets connected by extracellular matrix. Such supports must be hydrophobic and should result in a detachable cell sheet. A thermoresponsive support that enables the cultured cell sheet to detach using only a change in temperature could be an interesting alternative in regenerative medicine. The aim of this study was to evaluate plates covered with thermoresponsive polymers as supports for the formation of fibroblast sheets and to develop a damage-free procedure for cell sheet transfer with the use of membranes as transfer tools. Human skin fibroblasts were seeded on supports coated with a thermoresponsive polymer: commercial UpCell™ dishes (NUNC™) coated with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and dishes coated with thermoresponsive poly(tri(ethylene glycol) monoethyl ether methacrylate) (P(TEGMA-EE)). Confluent fibroblast sheets were effectively cultured and harvested from both commercial PNIPAM-coated dishes and laboratory P(TEGMA-EE)-coated dishes. To transfer a detached cell sheet, two membranes, Immobilon-P(®) and SUPRATHEL(®), were examined. The use of SUPRATHEL for relocating the cell sheets opens a new possibility for the clinical treatment of wounds. This study established the background for implementing thermoresponsive supports for transplanting in vitro cultured fibroblasts.
Collapse
Affiliation(s)
- Marek Kawecki
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland
- Faculty of Health Sciences, University of Bielsko-Biala, Willowa 2, 43-309, Bielsko-Biała, Poland
| | - Małgorzata Kraut
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland
| | - Agnieszka Klama-Baryła
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland
| | - Wojciech Łabuś
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland
| | - Diana Kitala
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland.
| | - Mariusz Nowak
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland
| | - Justyna Glik
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland
| | - Aleksander L Sieroń
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland
- Department of Molecular Biology and Genetics, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Alicja Utrata-Wesołek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819, Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819, Zabrze, Poland
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819, Zabrze, Poland
| | - Dawid Szweda
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819, Zabrze, Poland
| |
Collapse
|
43
|
Conditional knockout mice demonstrate function of Klf5 as a myeloid transcription factor. Blood 2016; 128:55-9. [PMID: 27207790 DOI: 10.1182/blood-2015-12-684514] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Krüppel-like factor 5 (Klf5) encodes a zinc-finger transcription factor and has been reported to be a direct target of C/EBPα, a master transcription factor critical for formation of granulocyte-macrophage progenitors (GMP) and leukemic GMP. Using an in vivo hematopoietic-specific gene ablation model, we demonstrate that loss of Klf5 function leads to a progressive increase in peripheral white blood cells, associated with increasing splenomegaly. Long-term hematopoietic stem cells (HSCs), short-term HSCs (ST-HSCs), and multipotent progenitors (MPPs) were all significantly reduced in Klf5(Δ/Δ) mice, and knockdown of KLF5 in human CD34(+) cells suppressed colony-forming potential. ST-HSCs, MPPs, and total numbers of committed progenitors were increased in the spleen of Klf5(Δ/Δ) mice, and reduced β1- and β2-integrin expression on hematopoietic progenitors suggests that increased splenic hematopoiesis results from increased stem and progenitor mobilization. Klf5(Δ/Δ) mice show a significant reduction in the fraction of Gr1(+)Mac1(+) cells (neutrophils) in peripheral blood and bone marrow and increased frequency of eosinophils in the peripheral blood, bone marrow, and lung. Thus, these studies demonstrate dual functions of Klf5 in regulating hematopoietic stem and progenitor proliferation and localization in the bone marrow, as well as lineage choice after GMP, promoting increased neutrophil output at the expense of eosinophil production.
Collapse
|
44
|
Sweeney TE, Braviak L, Tato CM, Khatri P. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. THE LANCET RESPIRATORY MEDICINE 2016; 4:213-24. [PMID: 26907218 DOI: 10.1016/s2213-2600(16)00048-5] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Active pulmonary tuberculosis is difficult to diagnose and treatment response is difficult to effectively monitor. A WHO consensus statement has called for new non-sputum diagnostics. The aim of this study was to use an integrated multicohort analysis of samples from publically available datasets to derive a diagnostic gene set in the peripheral blood of patients with active tuberculosis. METHODS We searched two public gene expression microarray repositories and retained datasets that examined clinical cohorts of active pulmonary tuberculosis infection in whole blood. We compared gene expression in patients with either latent tuberculosis or other diseases versus patients with active tuberculosis using our validated multicohort analysis framework. Three datasets were used as discovery datasets and meta-analytical methods were used to assess gene effects in these cohorts. We then validated the diagnostic capacity of the three gene set in the remaining 11 datasets. FINDINGS A total of 14 datasets containing 2572 samples from 10 countries from both adult and paediatric patients were included in the analysis. Of these, three datasets (N=1023) were used to discover a set of three genes (GBP5, DUSP3, and KLF2) that are highly diagnostic for active tuberculosis. We validated the diagnostic power of the three gene set to separate active tuberculosis from healthy controls (global area under the ROC curve (AUC) 0·90 [95% CI 0·85-0·95]), latent tuberculosis (0·88 [0·84-0·92]), and other diseases (0·84 [0·80-0·95]) in eight independent datasets composed of both children and adults from ten countries. Expression of the three-gene set was not confounded by HIV infection status, bacterial drug resistance, or BCG vaccination. Furthermore, in four additional cohorts, we showed that the tuberculosis score declined during treatment of patients with active tuberculosis. INTERPRETATION Overall, our integrated multicohort analysis yielded a three-gene set in whole blood that is robustly diagnostic for active tuberculosis, that was validated in multiple independent cohorts, and that has potential clinical application for diagnosis and monitoring treatment response. Prospective laboratory validation will be required before it can be used in a clinical setting. FUNDING National Institute of Allergy and Infectious Diseases, National Library of Medicine, the Stanford Child Health Research Institute, the Society for University Surgeons, and the Bill and Melinda Gates Foundation.
Collapse
Affiliation(s)
- Timothy E Sweeney
- Stanford Institute for Immunity, Transplantation and Infection, Stanford, CA, USA; Division of Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lindsay Braviak
- Stanford Institute for Immunity, Transplantation and Infection, Stanford, CA, USA
| | - Cristina M Tato
- Stanford Institute for Immunity, Transplantation and Infection, Stanford, CA, USA
| | - Purvesh Khatri
- Stanford Institute for Immunity, Transplantation and Infection, Stanford, CA, USA; Division of Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
45
|
Affiliation(s)
- Hanrui Zhang
- From the Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Muredach P Reilly
- From the Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
46
|
Kruppel-Like Factor 2-Mediated Suppression of MicroRNA-155 Reduces the Proinflammatory Activation of Macrophages. PLoS One 2015; 10:e0139060. [PMID: 26406238 PMCID: PMC4583437 DOI: 10.1371/journal.pone.0139060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/07/2015] [Indexed: 12/21/2022] Open
Abstract
Objective Recent evidence indicates that significant interactions exist between Kruppel-like factor 2 (KLF2) and microRNAs (miRNAs) in endothelial cells. Because KLF2 is known to exert anti-inflammatory effects and inhibit the pro-inflammatory activation of monocytes, we sought to identify how inflammation-associated miR-155 is regulated by KLF2 in macrophages. Approach and Results Peritoneal macrophages from wild-type (WT) C57Bl/6 mice were transfected with either recombinant adenovirus vector expressing KLF2 (Ad-KLF2) or siRNA targeting KLF2 (KLF2-siRNA) for 24 h–48 h, then stimulated with oxidized low-density lipoproteins (ox-LDL, 50 μg/mL) for 24 h. Quantitative real-time polymerase chain reaction showed that KLF2 markedly reduced the expression of miR-155 in quiescent/ox-LDL-stimulated macrophages. We also found that the increased expression of miR-155, monocyte chemoattractant protein (MCP-1) and interleukin (IL)-6 and the decreased expression of the suppressor of cytokine signaling (SOCS)-1 and IL-10 in ox-LDL-treated macrophages were significantly suppressed by KLF2. Most importantly, over-expression of miR-155 could partly reverse the suppressive effects of KLF2 on the inflammatory response of macrophages. Conversely, the suppression of miR-155 in KLF2 knockdown macrophages significantly overcame the pro-inflammatory properties associated with KLF2 knockdown. Finally, Ad-KLF2 significantly attenuated the diet-induced formation of atherosclerotic lesions in apolipoprotein E-deficient (apoE-/-) mice, which was associated with a significantly reduced expression of miR-155 and its relative inflammatory cytokine genes in the aortic arch and in macrophages. Conclusion KLF2-mediated suppression of miR-155 reduced the inflammatory response of macrophages.
Collapse
|
47
|
Nalpas NC, Magee DA, Conlon KM, Browne JA, Healy C, McLoughlin KE, Rue-Albrecht K, McGettigan PA, Killick KE, Gormley E, Gordon SV, MacHugh DE. RNA sequencing provides exquisite insight into the manipulation of the alveolar macrophage by tubercle bacilli. Sci Rep 2015; 5:13629. [PMID: 26346536 PMCID: PMC4642568 DOI: 10.1038/srep13629] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/31/2015] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium bovis, the agent of bovine tuberculosis, causes an estimated $3 billion annual losses to global agriculture due, in part, to the limitations of current diagnostics. Development of next-generation diagnostics requires a greater understanding of the interaction between the pathogen and the bovine host. Therefore, to explore the early response of the alveolar macrophage to infection, we report the first application of RNA-sequencing to define, in exquisite detail, the transcriptomes of M. bovis-infected and non-infected alveolar macrophages from ten calves at 2, 6, 24 and 48 hours post-infection. Differentially expressed sense genes were detected at these time points that revealed enrichment of innate immune signalling functions, and transcriptional suppression of host defence mechanisms (e.g., lysosome maturation). We also detected differentially expressed natural antisense transcripts, which may play a role in subverting innate immune mechanisms following infection. Furthermore, we report differential expression of novel bovine genes, some of which have immune-related functions based on orthology with human proteins. This is the first in-depth transcriptomics investigation of the alveolar macrophage response to the early stages of M. bovis infection and reveals complex patterns of gene expression and regulation that underlie the immunomodulatory mechanisms used by M. bovis to evade host defence mechanisms.
Collapse
Affiliation(s)
- Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin M Conlon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Healy
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kirsten E McLoughlin
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kévin Rue-Albrecht
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.,UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Paul A McGettigan
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kate E Killick
- Systems Biology Ireland, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Centre, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.,UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
48
|
Abstract
Initiation and progression of atherosclerosis depend on local inflammation and accumulation of lipids in the vascular wall. Although many cells are involved in the development and progression of atherosclerosis, macrophages are fundamental contributors. For nearly a decade, the phenotypic heterogeneity and plasticity of macrophages has been studied. In atherosclerotic lesions, macrophages are submitted to a large variety of micro-environmental signals, such as oxidized lipids and cytokines, which influence the phenotypic polarization and activation of macrophages resulting in a dynamic plasticity. The macrophage phenotype spectrum is characterized, at the extremes, by the classical M1 macrophages induced by T-helper 1 (Th-1) cytokines and by the alternative M2 macrophages induced by Th-2 cytokines. M2 macrophages can be further classified into M2a, M2b, M2c, and M2d subtypes. More recently, additional plaque-specific macrophage phenotypes have been identified, termed as Mox, Mhem, and M4. Understanding the mechanisms and functional consequences of the phenotypic heterogeneity of macrophages will contribute to determine their potential role in lesion development and plaque stability. Furthermore, research on macrophage plasticity could lead to novel therapeutic approaches to counteract cardiovascular diseases such as atherosclerosis. The present review summarizes our current knowledge on macrophage subsets in atherosclerotic plaques and mechanism behind the modulation of the macrophage phenotype.
Collapse
Affiliation(s)
- Sophie Colin
- Université Lille 2, Lille, France; Inserm, U1011, Lille, France; Institut Pasteur de Lille, Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | | | | |
Collapse
|
49
|
Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. ACTA ACUST UNITED AC 2015; 209:13-22. [PMID: 25869663 PMCID: PMC4395483 DOI: 10.1083/jcb.201412052] [Citation(s) in RCA: 742] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Atherosclerosis occurs in the subendothelial space (intima) of medium-sized arteries at regions of disturbed blood flow and is triggered by an interplay between endothelial dysfunction and subendothelial lipoprotein retention. Over time, this process stimulates a nonresolving inflammatory response that can cause intimal destruction, arterial thrombosis, and end-organ ischemia. Recent advances highlight important cell biological atherogenic processes, including mechanotransduction and inflammatory processes in endothelial cells, origins and contributions of lesional macrophages, and origins and phenotypic switching of lesional smooth muscle cells. These advances illustrate how in-depth mechanistic knowledge of the cellular pathobiology of atherosclerosis can lead to new ideas for therapy.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Department of Pathology and Cell Biology, and Department of Physiology, Columbia University Medical Center, New York, NY 10032 Department of Medicine, Department of Pathology and Cell Biology, and Department of Physiology, Columbia University Medical Center, New York, NY 10032 Department of Medicine, Department of Pathology and Cell Biology, and Department of Physiology, Columbia University Medical Center, New York, NY 10032
| | - Guillermo García-Cardeña
- Program in Human Biology and Translational Medicine, Harvard Medical School, Boston, MA 02115 Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
50
|
Hartmann P, Schober A, Weber C. Chemokines and microRNAs in atherosclerosis. Cell Mol Life Sci 2015; 72:3253-66. [PMID: 26001902 PMCID: PMC4531138 DOI: 10.1007/s00018-015-1925-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/09/2015] [Accepted: 05/05/2015] [Indexed: 01/10/2023]
Abstract
The crucial role of chemokines in the initiation and progression of atherosclerosis has been widely recognized. Through essential functions in leukocyte recruitment, chemokines govern the infiltration with mononuclear cells and macrophage accumulation in atherosclerotic lesions. Beyond recruitment, chemokines also provide homeostatic functions supporting cell survival and mediating the mobilization and homing of progenitor cells. As a new regulatory layer, several microRNAs (miRNAs) have been found to modulate the function of endothelial cells (ECs), smooth muscle cells and macrophages by controlling the expression levels of chemokines and thereby affecting different stages in the progression of atherosclerosis. For instance, the expression of CXCL1 can be down-regulated by miR-181b, which inhibits nuclear factor-κB activation in atherosclerotic endothelium, thus attenuating the adhesive properties of ECs and exerting early atheroprotective effects. Conversely, CXCL12 expression can be induced by miR-126 in ECs through an auto-amplifying feedback loop to facilitate endothelial regeneration, thus limiting atherosclerosis and mediating plaque stabilization. In contrast, miR-155 plays a pro-atherogenic role by promoting the expression of CCL2 in M1-type macrophages, thereby enhancing vascular inflammation. Herein, we will review novel aspects of chemokines and their regulation by miRNAs during atherogenesis. Understanding the complex cross-talk of miRNAs controlling chemokine expression may open novel therapeutic options to treat atherosclerosis.
Collapse
Affiliation(s)
- Petra Hartmann
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | | | | |
Collapse
|