1
|
Tian M, Du W, Yang S, Liao Q, Guo F, Li S. Application and progress of hyperbaric oxygen therapy in cardiovascular diseases. Med Gas Res 2025; 15:427-434. [PMID: 40251023 PMCID: PMC12054664 DOI: 10.4103/mgr.medgasres-d-24-00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 12/12/2024] [Indexed: 04/20/2025] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, underscoring the urgent need for additional therapeutic strategies to reduce their mortality rates. This review systematically outlines the historical development and recent advances of hyperbaric oxygen therapy in cardiovascular diseases, with a focus on its therapeutic mechanisms and clinical outcomes. Hyperbaric oxygen therapy enhances oxygen delivery to ischemic and reperfused tissues, promotes angiogenesis, and significantly suppresses oxidative stress, inflammatory cascades, and cardiomyocyte apoptosis, demonstrating multifaceted therapeutic potential in cardiovascular conditions. Specifically, hyperbaric oxygen therapy combined with reperfusion strategies has been shown to markedly improve left ventricular ejection fraction in acute myocardial infarction. In heart failure, it facilitates myocardial repair and enhances cardiac function. For arrhythmias, hyperbaric oxygen therapy effectively reduces the frequency and duration of premature ventricular contractions and paroxysmal tachycardia, while mitigating the risk of neurological complications following atrial fibrillation ablation. Furthermore, hyperbaric oxygen therapy preconditioning in cardiac surgery has demonstrated improvements in left ventricular stroke work, reductions in postoperative myocardial injury, and a decrease in related complications. Despite its promising applications, the widespread adoption of hyperbaric oxygen therapy remains hindered by the lack of standardized treatment protocols and high-quality evidence from rigorous clinical trials. In conclusion, this review underscores the potential value of hyperbaric oxygen therapy in the cardiovascular domain while highlighting the need for further optimization of therapeutic parameters and exploration of its synergistic effects with conventional therapies to provide clearer guidance for clinical implementation.
Collapse
Affiliation(s)
- Menglin Tian
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Wenyin Du
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Sen Yang
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Qiwei Liao
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Fuding Guo
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Shaolong Li
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
2
|
Liang X, Liu S, Liu G, Fan Q, Ma F, Yin Y, Li Z, Wu Y, Zheng M. LncRNA SNHG15 promotes angiogenesis and improves cardiac repair after myocardial infarction through MiR-665-mediated KDR expression. Cell Mol Life Sci 2025; 82:211. [PMID: 40418321 DOI: 10.1007/s00018-025-05737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/30/2025] [Accepted: 04/30/2025] [Indexed: 05/27/2025]
Abstract
Angiogenesis is crucial for prolonging survival of the injured myocardium following myocardial infarction (MI). Long non-coding RNAs (lncRNAs), recognized as a novel class of regulatory RNAs, play significant roles in various biological processes. However, their role in cardiac angiogenesis is not well elucidated. This study aimed to identify angiogenic lncRNAs and investigate their roles and mechanisms following MI. In our study utilizing lncRNA sequencing within a mouse model of MI, systematic lncRNA profiling identified differentially expressed transcripts in the MI border zone at 7 days post-MI, with SNHG15 being notably upregulated in cardiac tissue and endothelial cells (ECs) of the peri-infarct area. Overexpression of SNHG15 in human coronary artery endothelial cells (HCAECs) led to an increase in kinase insert domain receptor (KDR) expression and enhanced angiogenic activity. Furthermore, adeno-associated virus 9 (AAV9)-mediated overexpression of SNHG15, under the control of an endothelial-specific promoter, resulted in improved cardiac function, reduced infarct size, and increased angiogenesis in the infarcted myocardium in vivo. However, after endothelial-specific knockdown of SNHG15, cardiac function in mice with MI deteriorated. Localization studies revealed that SNHG15 is primarily found in the cytoplasm of HCAECs and mechanistic investigations indicated that SNHG15 acts as a competing endogenous RNA for miR-665, thereby regulating KDR signaling and expression. And KDR overexpression rescues both MI exacerbation and EC dysfunction induced by SNHG15 silencing in MI hearts. Collectively, our study has uncovered lncRNA SNHG15 as a novel regulator of angiogenesis that enhances the endogenous repair mechanisms of ECs in response to pathophysiological remodeling post-MI. These findings position SNHG15 as a promising therapeutic target for inhibiting infarct expansion and promoting cardiac repair and regeneration following MI.
Collapse
Affiliation(s)
- Xiaoyun Liang
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050031, China
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, Hebei, 050031, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, Hebei, 050031, China
| | - Shangyu Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050031, China.
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, Hebei, 050031, China.
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, Hebei, 050031, China.
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050031, China
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, Hebei, 050031, China
- Hebei Engineering Research Center of Intelligent Medical Clinical Application, Shijiazhuang, Hebei, 050031, China
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, Hebei, 050031, China
| | - Qiankun Fan
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050031, China
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, Hebei, 050031, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, Hebei, 050031, China
| | - Fangfang Ma
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050031, China
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, Hebei, 050031, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, Hebei, 050031, China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050031, China
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, Hebei, 050031, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, Hebei, 050031, China
| | - ZhaoMing Li
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050031, China
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, Hebei, 050031, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, Hebei, 050031, China
| | - Yuming Wu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
- Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Shijiazhuang, Hebei, 050017, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei, 050017, China.
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, 050017, China.
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050031, China.
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, Hebei, 050031, China.
| |
Collapse
|
3
|
Boichenko V, Noakes VM, Reilly-O’Donnell B, Luciani GB, Emanueli C, Martelli F, Gorelik J. Circulating Non-Coding RNAs as Indicators of Fibrosis and Heart Failure Severity. Cells 2025; 14:553. [PMID: 40214506 PMCID: PMC11989213 DOI: 10.3390/cells14070553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality worldwide, representing a complex clinical syndrome in which the heart's ability to pump blood efficiently is impaired. HF can be subclassified into heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF), each with distinct pathophysiological mechanisms and varying levels of severity. The progression of HF is significantly driven by cardiac fibrosis, a pathological process in which the extracellular matrix undergoes abnormal and uncontrolled remodelling. Cardiac fibrosis is characterized by excessive matrix protein deposition and the activation of myofibroblasts, increasing the stiffness of the heart, thus disrupting its normal structure and function and promoting lethal arrythmia. MicroRNAs, long non-coding RNAs, and circular RNAs, collectively known as non-coding RNAs (ncRNAs), have recently gained significant attention due to a growing body of evidence suggesting their involvement in cardiac remodelling such as fibrosis. ncRNAs can be found in the peripheral blood, indicating their potential as biomarkers for assessing HF severity. In this review, we critically examine recent advancements and findings related to the use of ncRNAs as biomarkers of HF and discuss their implication in fibrosis development.
Collapse
Affiliation(s)
- Veronika Boichenko
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular and Surgical Sciences, The University of Verona, Policlinico G. B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milano, Italy
| | - Victoria Maria Noakes
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Benedict Reilly-O’Donnell
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular and Surgical Sciences, The University of Verona, Policlinico G. B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milano, Italy
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
4
|
Duan Y, Zhang S, Xia Y, Li H, Liu D, Du Y. Identification of novel target genes in exaggerated cardiac remodeling following myocardial infarction in diabetes. Front Endocrinol (Lausanne) 2025; 16:1536639. [PMID: 40162308 PMCID: PMC11949792 DOI: 10.3389/fendo.2025.1536639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Diabetes mellitus is a major risk factor for myocardial infarction (MI), yet its molecular mechanisms exacerbating post-MI cardiac remodeling remain unclear. Methods Type 2 diabetes mellitus mouse model was developed through a high-sugar and high-fat diet (HFD), followed by MI surgery. Four weeks post-surgery, cardiac function was evaluated via echocardiography, and cardiac pathology was examined using Masson's trichrome and wheat germ agglutinin staining. High-throughput sequencing identified differentially expressed mRNAs and long non-coding RNAs (LncRNAs) in diabetic mice with MI. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, along with LncRNA-target-gene analysis, were performed. Validation in human samples of diabetic patients with STEMI confirmed the influence of HFD on the expression of specific genes. Results The results demonstrate that diabetes significantly impairs cardiac function, exacerbates cardiac fibrosis and hypertrophy. In addition, our extensive examination of human samples has conclusively demonstrated that diabetes significantly modulates the expression of genes (Rapgef5 and Ing1) within the cardiac tissue of individuals afflicted with STEMI, underscoring the intricate interplay between these conditions. In addition, we have found that Rapgef5 and Ing1 are involved in diabetes-mediated cardiomyocyte apoptosis and proliferation following myocardial infarction. Discussion Diabetes aggravates post-MI remodeling via Rapgef5/Ing1-mediated apoptosis and proliferation, these findings highlight novel therapeutic targets for diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Yanru Duan
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shihan Zhang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Clinical Discipline of Pediatric Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Yihua Xia
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Huili Li
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Emergency Department, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Demin Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunhui Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
5
|
Sivan S, Vijayakumar G, Pillai IC. Non-coding RNAs mediating the regulation of genes and signaling pathways in aortic valve calcification. Gene 2025; 936:149117. [PMID: 39580125 DOI: 10.1016/j.gene.2024.149117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Affiliation(s)
- Silpa Sivan
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, Kollam 690 525, Kerala, India
| | - Gayathri Vijayakumar
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, Kollam 690 525, Kerala, India
| | - Indulekha Cl Pillai
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, Kollam 690 525, Kerala, India.
| |
Collapse
|
6
|
Shen Y, Li J, Zhao Z, Chen X. Progress on long non-coding RNAs in calcific aortic valve disease. Front Cardiovasc Med 2025; 12:1522544. [PMID: 39898106 PMCID: PMC11782120 DOI: 10.3389/fcvm.2025.1522544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Calcific aortic valve disease (CAVD) is a common cardiovascular condition in the elderly population. The aortic valve, influenced by factors such as endothelial dysfunction, inflammation, oxidative stress, lipid metabolism disorders, calcium deposition, and extracellular matrix remodeling, undergoes fibrosis and calcification, ultimately leading to stenosis. In recent years, long non-coding RNAs (lncRNAs) have emerged as significant regulators of gene expression, playing crucial roles in the occurrence and progression of various diseases. Research has shown that lncRNAs participate in the pathological process underlying CAVD by regulating osteogenic differentiation and inflammatory response of valve interstitial cells. Specifically, lncRNAs, such as H19, MALAT1, and TUG1, are closely associated with CAVD. Some lncRNAs can act as miRNA sponges, form complex regulatory networks, and modulate the expression of calcification-related genes. In brief, this review discusses the mechanisms and potential therapeutic targets of lncRNAs in CAVD.
Collapse
Affiliation(s)
- Yan Shen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jiahui Li
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zehao Zhao
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiaomin Chen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
7
|
He Y, Cai Y, Cao Y, Wang Y, Wang J, Ding H. Application Strategies of Super-Enhancer RNA in Cardiovascular Diseases. Biomedicines 2025; 13:117. [PMID: 39857701 PMCID: PMC11762524 DOI: 10.3390/biomedicines13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of death worldwide, and new therapeutic strategies are urgently needed. In recent years, enhancer RNAs (eRNAs) have gradually attracted attention because they offer new directions for the treatment of CVDs. Super-enhancer RNAs (seRNAs) are a subset of non-coding RNAs that are transcribed from regions of the genome known as super enhancers, which are large clusters of enhancers with a high density of transcription factors and cofactors. These regions play a pivotal role in regulating genes involved in cell identity and disease progression. This article reviews the characteristics of seRNAs, their expression patterns, and regulatory mechanisms in the cardiovascular system. We also explore their role in the occurrence and development of CVDs, as well as their potential as diagnostic biomarkers and therapeutic targets. Currently, therapies targeting seRNAs are a research hotspot. The development of specific inhibitors or activators is expected to facilitate precise interventions for CVDs. In addition, the use of gene editing techniques to modify relevant eRNA introduces new possibilities for disease treatment. This review aims to provide a comprehensive overview of seRNAs in CVDs and discusses their potential as a novel class of therapeutic targets.
Collapse
Affiliation(s)
- Yi He
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yuwei Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yanyan Cao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.H.); (Y.C.); (Y.C.); (Y.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Hassan M, Malik A, Yaseen Z, Shahzadi S, Yasir M, Kloczkowski A. A Glimpse of Noncoding RNAs: Secondary Structure, Emerging Trends, and Potential Applications in Human Diseases. Methods Mol Biol 2025; 2867:331-344. [PMID: 39576590 DOI: 10.1007/978-1-0716-4196-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
An appealing strategy for the treatment of several diseases is the therapeutic targeting of noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Many antisense oligonucleotides and small interfering RNAs have been tested in clinical studies over the past 10 years, and several of these have received FDA approval. However, trial results have thus far been mixed, with some studies reporting strong effects and others showing low effectiveness or side effects, including toxicity. Clinical trials for alternative entities like antimiRNAs are underway, and interest in lncRNA-based therapies is constantly growing. From this perspective, we discuss the basic overview of ncRNAs, their significant role as therapeutic biomarkers against different diseases, and the role of secondary structure in noncoding RNAs.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amal Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zainab Yaseen
- Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Bai S, Wang X, Hou Y, Cui Y, Song Q, Du J, Zhang Y, Xu J. lncRNA-056298 Regulates GAP43 and Promotes Cardiac Intrinsic Autonomic Nerve Remodelling in a Canine Model of Atrial Fibrillation Induction after Ganglionated Plexus Ablation. Curr Med Chem 2025; 32:136-159. [PMID: 38299396 DOI: 10.2174/0109298673289298240129103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Cardiac intrinsic autonomic nerve remodelling has been reported to play an important role in the recurrence of atrial fibrillation after radiofrequency ablation, which significantly affects the long-term efficacy of this procedure. lncRNAs have been shown to interact in the pathological processes underlying heart diseases. However, the roles and mechanisms of lncRNAs in cardiac intrinsic autonomic nerve remodelling during atrial fibrillation reduction after ganglionated plexus ablation remain unknown. OBJECTIVE The aim of this study was to investigate the mechanism by which lncRNA- 056298 modulates GAP43 to affect cardiac intrinsic autonomic nerve remodelling and facilitate the induction of atrial fibrillation after ganglionated plexus ablation. METHODS A canine model of right atrial ganglionated plexus ablation was established. The atrial electrophysiological characteristics and neural markers were detected before and after 6 months of ganglionated plexus ablation. High-throughput sequencing was used to screen differentially expressed lncRNAs in target atrial tissues, and lncRNA- 056298 was selected to further explore its effects and mechanisms on cardiac intrinsic autonomic nerve remodelling. RESULTS The induction rate of atrial fibrillation increased in dogs after ganglionated plexus ablation. Overexpression of lncRNA-056298 by lentivirus can shorten the atrial effective refractory period and increase the induction of atrial fibrillation. lncRNA- 056298 promoted cardiac intrinsic autonomic nerve remodelling via endogenous competition with cfa-miR-185 to induce transcription of its target gene GAP43, thereby affecting the induction of atrial fibrillation. CONCLUSION lncRNA-056298 regulates GAP43 by sponging miR-185, which affects cardiac intrinsic autonomic nerve remodelling and mediates atrial fibrillation induction after ganglionated plexus ablation.
Collapse
Affiliation(s)
- Shuting Bai
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ximin Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yansong Cui
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Qiyuan Song
- Department of Cardiology, Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Juanjuan Du
- Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yujiao Zhang
- Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jingwen Xu
- Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
10
|
Lu C, Gao C, Wei J, Dong D, Sun M. SIRT1-FOXOs signaling pathway: A potential target for attenuating cardiomyopathy. Cell Signal 2024; 124:111409. [PMID: 39277092 DOI: 10.1016/j.cellsig.2024.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Cardiomyopathy constitutes a global health burden. It refers to myocardial injury that causes alterations in cardiac structure and function, ultimately leading to heart failure. Currently, there is no definitive treatment for cardiomyopathy. This is because existing treatments primarily focus on drug interventions to attenuate symptoms rather than addressing the underlying causes of the disease. Notably, the cardiomyocyte loss is one of the key risk factors for cardiomyopathy. This loss can occur through various mechanisms such as metabolic disturbances, cardiac stress (e.g., oxidative stress), apoptosis as well as cell death resulting from disorders in autophagic flux, etc. Sirtuins (SIRTs) are categorized as class III histone deacetylases, with their enzyme activity primarily reliant on the substrate nicotinamide adenine dinucleotide (NAD (+)). Among them, Sirtuin 1 (SIRT1) is the most intensively studied in the cardiovascular system. Forkhead O transcription factors (FOXOs) are the downstream effectors of SIRT1. Several reports have shown that SIRT1 can form a signaling pathway with FOXOs in myocardial tissue, and this pathway plays a key regulatory role in cell loss. Thus, this review describes the basic mechanism of SIRT1-FOXOs in inhibiting cardiomyocyte loss and its favorable role in cardiomyopathy. Additionally, we summarized the SIRT1-FOXOs related regulation factor and prospects the SIRT1-FOXOs potential clinical application, which provide reference for the development of cardiomyopathy treatment.
Collapse
Affiliation(s)
- Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China.
| |
Collapse
|
11
|
Soubeyrand S, Lau P, Nikpay M, Ma L, Bjorkegren JLM, McPherson R. Long Noncoding RNA TRIBAL Links the 8q24.13 Locus to Hepatic Lipid Metabolism and Coronary Artery Disease. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004674. [PMID: 39624902 DOI: 10.1161/circgen.124.004674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/11/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Genome-wide association studies identified a 20-Kb region of chromosome 8 (8q24.13) associated with plasma lipids, hepatic steatosis, and risk for coronary artery disease. The region is proximal to TRIB1, and given its well-established role in lipid regulation in animal models, TRIB1 has been proposed to mediate the contribution of the 8q24.13 locus to these traits. This region overlaps a gene encoding the primate-specific long noncoding RNA transcript TRIBAL/TRIB1AL (TRIB1-associated locus), but the contribution of TRIBAL to coronary artery disease risk remains untested. METHODS Using recently available expression quantitative trait loci data and hepatocyte models, we further investigated this locus by Mendelian randomization analysis. Following antisense oligonucleotide targeting of TRIBAL, transcription array, quantitative reverse transcription polymerase chain reaction, and enrichment analyses were performed and effects on apoB and triglyceride secretion were determined. RESULTS Mendelian randomization analysis supports a causal relationship between genetically determined hepatic TRIBAL expression and markers of hepatic steatosis and coronary artery disease risk. By contrast, expression data sets did not support expression quantitative trait loci relationships between coronary artery disease-associated variants and TRIB1. TRIBAL suppression reduced the expression of key regulators of triglyceride metabolism and bile acid synthesis. Enrichment analyses identified patterns consistent with impaired metabolic functions, including reduced triglyceride and cholesterol handling ability. Furthermore, TRIBAL suppression was associated with reduced hepatocyte secretion of triglycerides. CONCLUSIONS This work identifies TRIBAL as a gene bridging the genotype-phenotype relationship at the 8q24.13 locus with effects on genes regulating hepatocyte lipid metabolism and triglyceride secretion.
Collapse
Affiliation(s)
- Sébastien Soubeyrand
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
| | - Paulina Lau
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
| | - Majid Nikpay
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (L.M., J.L.M.B.)
| | - Johan L M Bjorkegren
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (L.M., J.L.M.B.)
- Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden (J.L.M.B.)
| | - Ruth McPherson
- Atherogenomics Laboratory (S.S., P.L., M.N., R.M.), University of Ottawa Heart Institute, Canada
- Division of Cardiology, Ruddy Canadian Cardiovascular Genetics Centre (R.M.), University of Ottawa Heart Institute, Canada
| |
Collapse
|
12
|
Shi H, Wang P, Wang J, Chen L, Qin Y, Lv J. Global lncRNA expression signature in pre-metastatic lung and their regulatory effects in pulmonary metastasis. Front Immunol 2024; 15:1506561. [PMID: 39676873 PMCID: PMC11638156 DOI: 10.3389/fimmu.2024.1506561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Background Lung metastasis has garnered significant attention due to its prevalent occurrence. Pre-metastatic niche (PMN) establishment is a critical prerequisite for the onset of lung metastasis. Emerging evidence indicates that long noncoding RNAs (lncRNAs) play pivotal roles in the metastatic cascade to the lungs. However, the relationship between lncRNA expression profiles and the formation of PMN remains uncharacterized. This study aims to explore the expression profiles and potential roles of lncRNAs in the context of pre-metastatic lung microenvironment. Methods RNA sequencing was utilized to elucidate the lncRNA landscape in pre-metastatic lung of murine models. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to infer the prospective functions of the differentially expressed lncRNAs. Among these, lncRNA Gm5144-202 in alveolar macrophages (AMs) was further scrutinized for its role in driving M2 macrophage polarization, facilitating the formation of PMN, and orchestrating the apoptosis, proliferation, and migration of tumor cells in vitro. Results A total of 232 lncRNAs exhibited differential expression in pre-metastatic murine lungs compared to normal controls, predominantly enriching pathways such as PI3K-Akt signaling, calcium signaling, neuroactive ligand-receptor interaction, and NF-κB signaling. Notably, lncRNA Gm5144-202 exhibited the most pronounced difference, with elevated level in alveolar macrophages (AMs) during the pre-metastatic phase. Silencing of lncRNA Gm5144-202 impeded the polarization of M2-like macrophages, suppressed the expression of factors critical for the formation of the PMN, and inhibited tumor cell invasion. Conclusions Our research delineated the lncRNA expression profiles in pre-metastatic pulmonary tissues and identified, for the first time, the pivotal role of lncRNA Gm5144-202 in modulating M2 macrophage polarization and tumor cell invasiveness. Consequently, targeting lncRNA Gm5144-202 holds substantial promise for translational applications aimed at mitigating pulmonary metastasis.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Peng Wang
- Clinical Laboratory, Rizhao Center for Disease Control and Prevention, Rizhao, Shandong, China
| | - Jiaan Wang
- Blood Transfusion Department, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Lei Chen
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yan Qin
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Jie Lv
- Clinical Laboratory, The Rizhao People’s Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
13
|
Zhang Y, Arzaghi H, Ma Z, Roye Y, Musah S. Epigenetics of Hypertensive Nephropathy. Biomedicines 2024; 12:2622. [PMID: 39595187 PMCID: PMC11591919 DOI: 10.3390/biomedicines12112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Hypertensive nephropathy (HN) is a leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD), contributing to significant morbidity, mortality, and rising healthcare costs. In this review article, we explore the role of epigenetic mechanisms in HN progression and their potential therapeutic implications. We begin by examining key epigenetic modifications-DNA methylation, histone modifications, and non-coding RNAs-observed in kidney disease. Next, we discuss the underlying pathophysiology of HN and highlight current in vitro and in vivo models used to study the condition. Finally, we compare various types of HN-induced renal injury and their associated epigenetic mechanisms with those observed in other kidney injury models, drawing inferences on potential epigenetic therapies for HN. The information gathered in this work indicate that epigenetic mechanisms can drive the progression of HN by regulating key molecular signaling pathways involved in renal damage and fibrosis. The limitations of Renin-Angiotensin-Aldosterone System (RAAS) inhibitors underscore the need for alternative treatments targeting epigenetic pathways. This review emphasizes the importance of further research into the epigenetic regulation of HN to develop more effective therapies and preventive strategies. Identifying novel epigenetic markers could provide new therapeutic opportunities for managing CKD and reducing the burden of ESRD.
Collapse
Affiliation(s)
- Yize Zhang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Hamidreza Arzaghi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Zhehan Ma
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27708, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, and Duke MEDx Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
14
|
Wang X, Li Y, Tian J. Predictive value of lncRNA DBH-AS1 for cardiovascular events in patients with type 2 diabetes mellitus with coronary heart disease. Diab Vasc Dis Res 2024; 21:14791641241303948. [PMID: 39700477 DOI: 10.1177/14791641241303948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The frequency of type 2 diabetes mellitus (T2DM) is rising annually. Coronary heart disease (CHD) is a prevalent complication affecting individuals with T2DM. OBJECTIVE The aim of this investigation was to assess the level of DBH-AS1 in T2DM with CHD, and to determine its potential role in forecasting the occurrence of significant cardiovascular events. METHODS The DBH-AS1 levels were detected by qRT-PCR. The diagnostic value of DBH-AS1 was assessed through receiver operating characteristic (ROC) curve analysis. Logistic regression was conducted to identify the risk factors for cardiovascular events among patients with T2DM with CHD. Cell proliferation was detected by Cell Counting Kit-8 (CCK-8) assay, apoptosis was detected by flow cytometry, and the concentration of inflammatory factors was detected by Enzyme Linked Immunosorbent (ELISA) kit. RESULTS DBH-AS1 was down-regulated in serum of both T2DM with CHD and cardiovascular events patients. Of the cardiovascular events that occurred, major events included recurrent angina (20%), cardiovascular death (7.5%), acute myocardial infarction (23.75%), severe arrhythmia (22.50%), acute heart failure (18.75%) and stroke (7.5%). And DBH-AS1 had a predictive value for each adverse of cardiovascular events. DBH-AS1 regulated the expression of miR-483-5p and affected the proliferation, apoptosis, and secretion of inflammatory factors of HCAECs. CONCLUSION DBH-AS1 may serve as a predictor for the occurrence of cardiovascular events in T2DM with CHD patients.
Collapse
Affiliation(s)
- Xintong Wang
- Department of Pharmacy, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Yan Li
- Clinical Laboratory, Beidaihe Rehabilitation and Convalescence Center, Qinhuangdao, China
| | - Jiaoding Tian
- Endocrinology of Chinese Medicine, Qinhuangdao Hospital of Traditional Chinese Medicine, Qinhuangdao, China
| |
Collapse
|
15
|
Gao J, Liu M, Lu M, Zheng Y, Wang Y, Yang J, Xue X, Liu Y, Tang F, Wang S, Song L, Wen L, Wang J. Integrative analysis of transcriptome, DNA methylome, and chromatin accessibility reveals candidate therapeutic targets in hypertrophic cardiomyopathy. Protein Cell 2024; 15:796-817. [PMID: 38780967 PMCID: PMC11528543 DOI: 10.1093/procel/pwae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and is characterized by primary left ventricular hypertrophy usually caused by mutations in sarcomere genes. The mechanism underlying cardiac remodeling in HCM remains incompletely understood. An investigation of HCM through integrative analysis at multi-omics levels will be helpful for treating HCM. DNA methylation and chromatin accessibility, as well as gene expression, were assessed by nucleosome occupancy and methylome sequencing (NOMe-seq) and RNA-seq, respectively, using the cardiac tissues of HCM patients. Compared with those of the controls, the transcriptome, DNA methylome, and chromatin accessibility of the HCM myocardium showed multifaceted differences. At the transcriptome level, HCM hearts returned to the fetal gene program through decreased sarcomeric and metabolic gene expression and increased extracellular matrix gene expression. In the DNA methylome, hypermethylated and hypomethylated differentially methylated regions were identified in HCM. At the chromatin accessibility level, HCM hearts showed changes in different genome elements. Several transcription factors, including SP1 and EGR1, exhibited a fetal-like pattern of binding motifs in nucleosome-depleted regions in HCM. In particular, the inhibition of SP1 or EGR1 in an HCM mouse model harboring sarcomere mutations markedly alleviated the HCM phenotype of the mutant mice and reversed fetal gene reprogramming. Overall, this study not only provides a high-precision multi-omics map of HCM heart tissue but also sheds light on the therapeutic strategy by intervening in the fetal gene reprogramming in HCM.
Collapse
Affiliation(s)
- Junpeng Gao
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Mengya Liu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Minjie Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| | - Yuxuan Zheng
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Wang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jingwei Yang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Xiaohui Xue
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yun Liu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuiyun Wang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lei Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
- Cardiomyopathy Ward, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jizheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
16
|
Oguntoyinbo IO, Goyal R. The Role of Long Intergenic Noncoding RNA in Fetal Development. Int J Mol Sci 2024; 25:11453. [PMID: 39519006 PMCID: PMC11546696 DOI: 10.3390/ijms252111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The role of long intergenic noncoding RNAs (lincRNAs) in fetal development has emerged as a significant area of study, challenging the traditional protein-centric view of gene expression. While messenger RNAs (mRNAs) have long been recognized for their role in encoding proteins, recent advances have illuminated the critical functions of lincRNAs in various biological processes. Initially identified through high-throughput sequencing technologies, lincRNAs are transcribed from intergenic regions between protein-coding genes and exhibit unique regulatory functions. Unlike mRNAs, lincRNAs are involved in complex interactions with chromatin and chromatin-modifying complexes, influencing gene expression and chromatin structure. LincRNAs are pivotal in regulating tissue-specific development and embryogenesis. For example, they are crucial for proper cardiac, neural, and reproductive system development, with specific lincRNAs being associated with organogenesis and differentiation processes. Their roles in embryonic development include regulating transcription factors and modulating chromatin states, which are essential for maintaining developmental programs and cellular identity. Studies using RNA sequencing and genetic knockout models have highlighted the importance of lincRNAs in processes such as cell differentiation, tissue patterning, and organ development. Despite their functional significance, the comprehensive annotation and understanding of lincRNAs remain limited. Ongoing research aims to elucidate their mechanisms of action and potential applications in disease diagnostics and therapeutics. This review summarizes current knowledge on the functional roles of lincRNAs in fetal development, emphasizing their contributions to tissue-specific gene regulation and developmental processes.
Collapse
Affiliation(s)
- Ifetoluwani Oluwadunsin Oguntoyinbo
- School of Animal and Comparative Biomedical Sciences, College of Agriculture, Life & Environmental Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | - Ravi Goyal
- Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
17
|
Hu Y, Luo M, Xue Y, Lv D, Huang L, Li X, Shen J. LncRNA Pvt1 aggravates cardiomyocyte apoptosis via the microRNA-216/Ccnd3 axis. Heliyon 2024; 10:e38261. [PMID: 39398060 PMCID: PMC11466676 DOI: 10.1016/j.heliyon.2024.e38261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Objective Our study aims to evaluate the role of long non-coding RNA variant translocation gene Pvt1 in cardiomyocyte apoptosis, as well as the potential targets and mechanisms involved in Pvt1-miRNA-mRNA axis. Methods 1.Pvt1 knockdown in cells by transfection with small interfering RNA (si-Pvt1), HL-1 cells were randomly divided into control group, hypoxia group, hypoxia + negative control group and hypoxia + si-Pvt1 group. Apoptosis-related genes expression was detected by Western blot assay, RT-qPCR and Flow cytometry assay. 2.Pvt1 knockdown model (sh-Pvt1) was established by injecting adeno-associated virus (AAV) vector shRNA-Pvt1 into the caudal vein 7 days before myocardial infarction, and echocardiography was used to measure cardiac function 7 days after myocardial infarction induced by ligation of the left anterior descending branch. HE staining was used to evaluate the pathological injury of mouse heart tissue, and the apoptotic protein expression was detected by Western blot. 3.lncRNA-related microRNAs were predicted by bioinformatics tools and further verified by dual luciferase experiment. Western blot analysis was used to identify the expression of apoptotic genes following the simultaneous transfection of si-Pvt1 and miR-216 mimics. Genes differentially expressed in hypoxia + si-NC and hypoxia + si-Pvt1 groups were identified by RNA sequencing. These genes were then compared with the target genes of miR-216 predicted by bioinformatics tools. The gene of interest Ccnd3 was excluded from the analysis. Western blot analysis was used to assess the expression of Apoptosis-related proteins in HL-1 cells co-transfected with miR-216 mimics and overexpressed Ccnd3. Results 1. Pvt1 was highly expressed in HL-1 induced by hypoxia, and Pvt1 knockdown can reduce cell apoptosis in hypoxia cells. 2. MI causes myocardial injury in mice, and inhibition of Pvt 11 can improve the cardiac function of mice with myocardial infarction, prevent some inflammatory cell infiltration, and reduce myocardial cell apoptosis. 3. Pvt1 acts as a sponge for miR-216 and promotes the expression of Ccnd3. Conclusion Pvt1 may promote myocardial infarct-induced apoptosis through the miR-216/Ccnd3 axis.
Collapse
Affiliation(s)
- Yu Hu
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Minghao Luo
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhou Xue
- Department of Cardiology and Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
| | - Dingyi Lv
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Longxiang Huang
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Li
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Shen
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Młynarska E, Badura K, Kurciński S, Sinkowska J, Jakubowska P, Rysz J, Franczyk B. The Role of MicroRNA in the Pathophysiology and Diagnosis of Viral Myocarditis. Int J Mol Sci 2024; 25:10933. [PMID: 39456716 PMCID: PMC11507602 DOI: 10.3390/ijms252010933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Myocarditis is a non-ischemic condition with a heterogeneous etiology, clinical course and prognosis. The most common etiology of myocarditis are viral infections, whereas the most severe complications are acute and chronic heart failure and sudden cardiac death. The heterogeneous clinical course of the disease, as well as the availability and costs of diagnostic tools such as cardiac magnetic resonance and endomyocardial biopsy, hinder the diagnosis of myocarditis and its underlying cause. Non-coding RNAs such as micro-RNAs (miRNAs; miR) have been shown to be involved in the disease's pathophysiology; however, their potential in disease diagnosis and treatment should also be considered. Non-coding RNAs are RNAs that are not translated into proteins, and they have the ability to regulate several intracellular pathways. MiRNAs regulate gene expression by binding with their targets and inhibiting protein synthesis by interfering with the translation of coding genes or causing the degradation of messenger RNA. Several miRNAs, such as miR-1, -133, -21, -15, -98, -126, -155, -148, -203, -208, -221, -222, -203 and -590, have been shown to be involved in the pathophysiology of viral myocarditis (VMC), and some of them have been shown to have diagnostic abilities. This article summarizes the available data on miRNAs and their associations with VMC.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Krzysztof Badura
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Szymon Kurciński
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Julia Sinkowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Paulina Jakubowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
19
|
He B, Xu HM, Li SW, Zhang YF, Tian JW. Emerging regulatory roles of noncoding RNAs induced by bisphenol a (BPA) and its alternatives in human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124447. [PMID: 38942269 DOI: 10.1016/j.envpol.2024.124447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Bisphenols (BPs), including BPA, BPF, BPS, and BPAF, are synthetic phenolic organic compounds and endocrine-disrupting chemicals. These organics have been broadly utilized to produce epoxy resins, polycarbonate plastics, and other products. Mounting evidence has shown that BPs, especially BPA, may enter into the human body and participate in the development of human diseases mediated by nuclear hormone receptors. Moreover, BPA may negatively affect human health at the epigenetic level through processes such as DNA methylation and histone acetylation. Recent studies have demonstrated that, as part of epigenetics, noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs), have vital impacts on BP-related diseases, such as reproductive system diseases, nervous system diseases, digestive system diseases, endocrine system diseases, and other diseases. Moreover, based on the bioinformatic analysis, changes in ncRNAs may be relevant to normal activities and functions and BP-induced diseases. Thus, we conducted a meta-analysis to identify more promising ncRNAs as biomarkers and therapeutic targets for BP exposure and relevant human diseases. In this review, we summarize the regulatory functions of ncRNAs induced by BPs in human diseases and latent molecular mechanisms, as well as identify prospective biomarkers and therapeutic targets for BP exposure and upper diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shu-Wei Li
- Department of Neurology, Qingdao Huangdao District Central Hospital, Qingdao 266555, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
20
|
Keles M, Grein S, Froese N, Wirth D, Trogisch FA, Wardman R, Hemanna S, Weinzierl N, Koch PS, Uhlig S, Lomada S, Dittrich GM, Szaroszyk M, Haustein R, Hegermann J, Martin-Garrido A, Bauersachs J, Frank D, Frey N, Bieback K, Cordero J, Dobreva G, Wieland T, Heineke J. Endothelial derived, secreted long non-coding RNAs Gadlor1 and Gadlor2 aggravate cardiac remodeling. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102306. [PMID: 39281699 PMCID: PMC11402397 DOI: 10.1016/j.omtn.2024.102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024]
Abstract
Pathological cardiac remodeling predisposes individuals to developing heart failure. Here, we investigated two co-regulated long non-coding RNAs (lncRNAs), termed Gadlor1 and Gadlor2, which are upregulated in failing hearts of patients and mice. Cardiac overexpression of Gadlor1 and Gadlor2 aggravated myocardial dysfunction and enhanced hypertrophic and fibrotic remodeling in mice exposed to pressure overload. Compound Gadlor1/2 knockout (KO) mice showed markedly reduced myocardial hypertrophy, fibrosis, and dysfunction, while exhibiting increased angiogenesis during short and prolonged periods of pressure overload. Paradoxically, Gadlor1/2 KO mice suffered from sudden death during prolonged overload, possibly due to cardiac arrhythmia. Gadlor1 and Gadlor2, which are mainly expressed in endothelial cells (ECs) in the heart, where they inhibit pro-angiogenic gene expression, are strongly secreted within extracellular vesicles (EVs). These EVs transfer Gadlor lncRNAs to cardiomyocytes, where they bind and activate calmodulin-dependent kinase II, and impact pro-hypertrophic gene expression and calcium homeostasis. Therefore, we reveal a crucial lncRNA-based mechanism of EC-cardiomyocyte crosstalk during heart failure, which could be specifically modified in the future for therapeutic purposes.
Collapse
Affiliation(s)
- Merve Keles
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Steve Grein
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Natali Froese
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Dagmar Wirth
- Helmholtz Center for Infection Research, Model Systems for Infection and Immunity, 38124 Braunschweig, Germany
| | - Felix A Trogisch
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Rhys Wardman
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Shruthi Hemanna
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Nina Weinzierl
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Philipp-Sebastian Koch
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Stefanie Uhlig
- CFPM, FlowCore, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Santosh Lomada
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- ECAS, Department of Experimental Pharmacology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Gesine M Dittrich
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Malgorzata Szaroszyk
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Ricarda Haustein
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Abel Martin-Garrido
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Derk Frank
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
- DZHK, partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Norbert Frey
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- Department of Internal Medicine III, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Karen Bieback
- CFPM, FlowCore, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Julio Cordero
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Gergana Dobreva
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Thomas Wieland
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- ECAS, Department of Experimental Pharmacology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Joerg Heineke
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
21
|
Vilaça A, Jesus C, Lino M, Hayman D, Emanueli C, Terracciano CM, Fernandes H, de Windt LJ, Ferreira L. Extracellular vesicle transfer of lncRNA H19 splice variants to cardiac cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102233. [PMID: 38974998 PMCID: PMC11225836 DOI: 10.1016/j.omtn.2024.102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
The delivery of therapeutic long non-coding RNAs (lncRNA) to the heart by extracellular vesicles (EVs) is promising for heart repair. H19, a lncRNA acting as a major regulator of gene expression within the cardiovascular system, is alternatively spliced, but the loading of its different splice variants into EVs and their subsequent uptake by recipient cardiac cells remain elusive. Here, we dissected the cellular expression of H19 splice variants and their loading into EVs secreted by Wharton-Jelly mesenchymal stromal/stem cells (WJ-MSCs). We demonstrated that overexpression of the mouse H19 gene in WJ-MSCs induces the expression of H19 splice variants at different levels. Interestingly, EVs isolated from the H19-transfected WJ-MSCs (EV-H19) showed similar expression levels for all tested splice variant sets. In vitro, we further demonstrated that EV-H19 was taken up by cardiomyocytes, fibroblasts, and endothelial cells (ECs). Finally, analysis of EV tropism in living rat myocardial slices indicated that EVs were internalized mostly by cardiomyocytes and ECs. Collectively, our results indicated that EVs can be loaded with different lncRNA splice variants and successfully internalized by cardiac cells.
Collapse
Affiliation(s)
- Andreia Vilaça
- Center for Neuroscience and Cell Biology (CNC), Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
- Department of Cardiology, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands
- PhD Program in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Carlos Jesus
- Center for Neuroscience and Cell Biology (CNC), Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - Miguel Lino
- Center for Neuroscience and Cell Biology (CNC), Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - Danika Hayman
- Imperial College London, National Heart and Lung Institute, London, UK
| | - Costanza Emanueli
- Imperial College London, National Heart and Lung Institute, London, UK
| | | | - Hugo Fernandes
- Center for Neuroscience and Cell Biology (CNC), Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
- Multidisciplinary Institute of Ageing (MIA-Portugal), University of Coimbra, Coimbra, Portugal
| | - Leon J. de Windt
- Department of Cardiology, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology (CNC), Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
22
|
Lam F, Leisegang MS, Brandes RP. LncRNAs Are Key Regulators of Transcription Factor-Mediated Endothelial Stress Responses. Int J Mol Sci 2024; 25:9726. [PMID: 39273673 PMCID: PMC11395311 DOI: 10.3390/ijms25179726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The functional role of long noncoding RNAs in the endothelium is highly diverse. Among their many functions, regulation of transcription factor activity and abundance is one of the most relevant. This review summarizes the recent progress in the research on the lncRNA-transcription factor axes and their implications for the vascular endothelium under physiological and pathological conditions. The focus is on transcription factors critical for the endothelial response to external stressors, such as hypoxia, inflammation, and shear stress, and their lncRNA interactors. These regulatory interactions will be exemplified by a selected number of lncRNAs that have been identified in the endothelium under physiological and pathological conditions that are influencing the activity or protein stability of important transcription factors. Thus, lncRNAs can add a layer of cell type-specific function to transcription factors. Understanding the interaction of lncRNAs with transcription factors will contribute to elucidating cardiovascular disease pathologies and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Frederike Lam
- Goethe University, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Matthias S Leisegang
- Goethe University, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- Goethe University, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| |
Collapse
|
23
|
Zhai X, Zhou J, Huang X, Weng J, Lin H, Sun S, Chi J, Meng L. LncRNA GHET1 from bone mesenchymal stem cell-derived exosomes improves doxorubicin-induced pyroptosis of cardiomyocytes by mediating NLRP3. Sci Rep 2024; 14:19078. [PMID: 39154102 PMCID: PMC11330485 DOI: 10.1038/s41598-024-70151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Doxorubicin (DOX) is an important chemotherapeutic agent for the treatment of hematologic tumors and breast carcinoma. However, its clinical application is limited owing to severe cardiotoxicity. Pyroptosis is a form of programmed cell death linked to DOX-induced cardiotoxicity. Bone mesenchymal stem cell-derived exosomes (BMSC-Exos) and endothelial progenitor cells-derived exosomes (EPC-Exos) have a protective role in the myocardium. Here we found that BMSC-Exos could improve DOX-induced cardiotoxicity by inhibiting pyroptosis, but EPC-Exos couldn't. Compared with EPCs-Exo, BMSC-Exo-overexpressing lncRNA GHET1 more effectively suppressed pyroptosis, protecting against DOX-induced cardiotoxicity. Further studies showed that lncRNA GHET1 effectively decreased the expression of Nod-like receptor protein 3 (NLRP3), which plays a vital role in pyroptosis by binding to IGF2 mRNA-binding protein 1 (IGF2BP1), a non-catalytic posttranscriptional enhancer of NLRP3 mRNA. In summary, lncRNA GHET1 released by BMSC-Exo ameliorated DOX-induced pyroptosis by targeting IGF2BP1 to reduce posttranscriptional stabilization of NLRP3.
Collapse
Affiliation(s)
- Xiaoya Zhai
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Jiedong Zhou
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xingxiao Huang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Jingfan Weng
- Department of Cardiac Rehabilitation, Zhejiang Hospital, Hangzhou, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Shimin Sun
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China.
| |
Collapse
|
24
|
Liu Y, Zhang L, Jia H, Feng X, Ma M, Wang J, Han B. Long noncoding RNA NONHSAT122636.2 attenuates myocardial inflammation and apoptosis in myocarditis. PLoS One 2024; 19:e0307779. [PMID: 39150929 PMCID: PMC11329147 DOI: 10.1371/journal.pone.0307779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 07/10/2024] [Indexed: 08/18/2024] Open
Abstract
OBJECTIVE The main pathological change of myocarditis is an inflammatory injury of cardiomyocytes. Long noncoding RNAs (lncRNAs) are closely related to inflammation, and our previous study showed that differential expression of lncRNAs is associated with myocarditis. This study aimed to investigate the impact of lncRNAs on the onset of myocarditis. METHODS RNA expression was measured by quantitative reverse-transcription polymerase chain reaction (RT-qPCR). Lipopolysaccharide (LPS) was used to induce inflammation in human cardiomyocytes (HCMs). The expression of inflammatory cytokines and myocardial injury markers was detected by enzyme-linked immunosorbent assay (ELISA) and RT-qPCR. Cell viability and apoptosis were measured by the cell counting kit-8 assay and flow cytometry. The binding force between lncRNA NONHSAT122636.2 and microRNA miRNA-2110 was detected using the dual-luciferase assay. RESULTS NONHSAT122636.2 was dynamically expressed in patients with myocarditis and negatively correlated with inflammation severity. The overexpression of NONHSAT122636.2 improved inflammatory injury in LPS-stimulated HCMs. The study observed that there was a weak binding force between NONHSAT122636.2 and miR-2110. CONCLUSION NONHSAT122636.2 attenuates myocardial inflammation and apoptosis in myocarditis. Additionally, its expression decreases in the peripheral blood of children suffering from myocarditis and in patients who are diagnosed for the first time showing higher diagnostic sensitivity and specificity. This decrease is negatively correlated with the degree of inflammation. Overall, the study suggests that NONHSAT122636.2 can be exploited as a potential diagnostic biomarker for pediatric myocarditis.
Collapse
Affiliation(s)
- Yongjiao Liu
- Department of Pediatrics, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Pediatrics, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Li Zhang
- Department of Pediatrics, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Hailin Jia
- Department of Pediatrics, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Xinxin Feng
- Department of Pediatrics, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Mengjie Ma
- Department of Pediatrics, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jing Wang
- Department of Pediatrics, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Bo Han
- Department of Pediatrics, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
25
|
Wang J, Luo H, Yang L, Yuan H. ARAP1-AS1: a novel long non-coding RNA with a vital regulatory role in human cancer development. Cancer Cell Int 2024; 24:270. [PMID: 39090630 PMCID: PMC11295494 DOI: 10.1186/s12935-024-03435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have garnered significant attention in biomedical research due to their pivotal roles in gene expression regulation and their association with various human diseases. Among these lncRNAs, ArfGAP With RhoGAP Domain, Ankyrin Repeat, And PH Domain 1 - Antisense RNA 1 (ARAP1-AS1) has recently emerged as an novel oncogenic player. ARAP1-AS1 is prominently overexpressed in numerous solid tumors and wields influence by modulating gene expression and signaling pathways. This regulatory impact is realized through dual mechanisms, involving both competitive interactions with microRNAs and direct protein binding. ARAP1-AS1 assumes an important role in driving tumorigenesis and malignant tumor progression, affecting biological characteristics such as tumor expansion and metastasis. This paper provides a concise review of the regulatory role of ARAP1-AS1 in malignant tumors and discuss its potential clinical applications as a biomarker and therapeutic target. We also address existing knowledge gaps and suggest avenues for future research. ARAP1-AS1 serves as a prototypical example within the burgeoning field of lncRNA studies, offering insights into the broader landscape of non-coding RNA molecules. This investigation enhances our comprehension of the complex mechanisms that govern the progression of cancer.
Collapse
Affiliation(s)
- Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Lu Yang
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330008, China
| | - Huazhao Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi Province, 332007, P.R. China.
| |
Collapse
|
26
|
Duan X, Hou R, Huang Y, Wang C, Liu L, Du H, Shi J. Comprehensive expression, prognostic and validation analysis of necroptosis-related lncRNAs in esophageal cancer. Transl Oncol 2024; 46:101983. [PMID: 38797018 PMCID: PMC11152745 DOI: 10.1016/j.tranon.2024.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Previous studies have shown that necroptosis-related long noncoding RNA (lncRNA) risk models can be used to predict prognosis and immune infiltration in patients with esophageal cancer. However, further analysis of the regulatory mechanisms of necroptosis-related lncRNAs used in risk models remains to be conducted. The purpose of the present study was to identify valuable necroptosis-related lncRNAs in esophageal cancer and to verify their molecular and cellular functions. METHODS Esophageal cancer data were downloaded from The Cancer Genome Atlas (TCGA). The expression of eight genes (LINC00299, AC090912.2, AC244197.2, AL158166.1, AC079684.1, AP003696.1, AC079684.1 and AP003696.1) in the necroptosis-related lncRNA risk model, their relationships with clinicopathological stage, and their diagnostic receiver operating characteristic (ROC) curves were analyzed. The prognostic value of these lncRNAs for overall survival (OS) and disease specific survival (DSS) was analyzed, and time-dependent ROC curves were generated. The AP003696.1 target gene (lncRNA ENSG00000253385.1) was further investigated through immune infiltration analysis, Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) enrichment analyses, and gene coexpression analysis. Finally, in vitro functional assays based on lncRNA ENSG00000253385.1 were conducted to explore its regulatory role in esophageal cancer. RESULTS A bioinformatics approach was used to study the eight genes in the necroptosis-related lncRNA risk model. AP003696.1 (lncRNA ENSG00000253385.1) was highly expressed in esophageal cancer tissues, and its high expression was correlated with poor OS and DFdS. Both univariate and multivariate Cox regression analyses revealed that lncRNA ENSG00000253385.1 is an independent prognostic factor. The lncRNA ENSG00000253385.1 gene was demonstrated to play a definite role in the invasion of esophageal cancer immune cells and in signaling pathways in these cells. In vitro cell functional assays revealed that lncRNA ENSG00000253385.1 expression was elevated in the KYSE150 and KYSE410 esophageal cancer cell lines. Small interfering RNA (siRNA)-mediated silencing of lncRNA ENSG00000253385.1 significantly inhibited the proliferation, migration, and invasion of KYSE150 and KYSE410 cells, as well as promoted their apoptosis. CONCLUSIONS The ENSG00000253385.1 gene may be a key gene in the occurrence, development, and prognosis of esophageal cancer. These findings provide new ideas and references for the screening of therapeutic targets, as well as the development of targeted drugs, for esophageal cancer treatment.
Collapse
Affiliation(s)
| | - Ran Hou
- Departments of Medical Oncology, PR China
| | | | | | - Lie Liu
- Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Huazhen Du
- Emergency department The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China.
| | - Jian Shi
- Departments of Medical Oncology, PR China.
| |
Collapse
|
27
|
Yang Z, Cui Y, Xu S, Li L. LncRNA HCG18 affects aortic dissection through the miR-103a-3p/HMGA2 axis by modulating proliferation and apoptosis of vascular smoothing muscle cells. Clinics (Sao Paulo) 2024; 79:100400. [PMID: 39089097 PMCID: PMC11342200 DOI: 10.1016/j.clinsp.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/07/2024] [Accepted: 05/18/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Aortic Dissection (AD) is a vascular disease with a high mortality rate and limited treatment strategies. The current research analyzed the function and regulatory mechanism of lncRNA HCG18 in AD. METHODS HCG18, miR-103a-3p, and HMGA2 levels in the aortic tissue of AD patients were examined by RT-qPCR. After transfection with relevant plasmids, the proliferation of rat aortic Vascular Smoothing Muscle Cells (VSMCs) was detected by CCK-8 and colony formation assay, Bcl-2 and Bax was measured by Western blot, and apoptosis was checked by flow cytometry. Then, the targeting relationship between miR-103a-3p and HCG18 or HMGA2 was verified by bioinformation website analysis and dual luciferase reporter assay. Finally, the effect of HCG18 was verified in an AD rat model induced by β-aminopropionitrile. RESULTS HCG18 and HMGA2 were upregulated and miR-103a-3p was downregulated in the aortic tissues of AD patients. Downregulating HCG18 or upregulating miR-103a-3p enhanced the proliferation of VSMCs and limited cell apoptosis. HCG18 promoted HMGA2 expression by competing with miR-103a-3p and restoring HMGA2 could impair the effect of HCG18 downregulation or miR-103a-3p upregulation in mediating the proliferation and apoptosis of VSMCs. In addition, down-regulation of HCG18 could improve the pathological injury of the aorta in AD rats. CONCLUSION HCG18 reduces proliferation and induces apoptosis of VSMCs through the miR-103a-3p/HMGA2 axis, thus aggravating AD.
Collapse
Affiliation(s)
- ZhiHong Yang
- Department of Invasive Technology, Ningde Municipal Hospital of Ningde Normal University, Ningde City, Fujian Province, China
| | - YuanSheng Cui
- Department of Invasive Technology, Ningde Municipal Hospital of Ningde Normal University, Ningde City, Fujian Province, China
| | - ShuGuo Xu
- Department of Invasive Technology, Ningde Municipal Hospital of Ningde Normal University, Ningde City, Fujian Province, China
| | - LongBiao Li
- Department of Invasive Technology, Ningde Municipal Hospital of Ningde Normal University, Ningde City, Fujian Province, China.
| |
Collapse
|
28
|
Thibodeau SÈ, Labbé EA, Walsh-Wilkinson É, Morin-Grandmont A, Arsenault M, Couet J. Plasma and Myocardial miRNomes Similarities and Differences during Cardiac Remodelling and Reverse Remodelling in a Murine Model of Heart Failure with Preserved Ejection Fraction. Biomolecules 2024; 14:892. [PMID: 39199280 PMCID: PMC11351983 DOI: 10.3390/biom14080892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome characterised by multiple risk factors touching various organs outside the heart. Using a murine HFpEF model, we studied cardiac reverse remodelling (RR) after stopping the causing metabolic-hypertensive stress (MHS; Angiotensin II [AngII] and a high-fat diet [HFD]) after 28 days and introducing voluntary exercise (VE) for four more weeks. We measured the effects of MHS and RR on the plasma and myocardial microRNA (miR) profile (miRNome) to characterise better cardiac and non-cardiac responses to HFpEF-inducing risk factors and their reversibility. AngII alone, the HFD or the MHS caused cardiac hypertrophy (CH), left ventricular (LV) concentric remodelling and left atrial enlargement in females. Only AngII and the MHS, but not HFD, did in males. After RR, CH, LV concentric remodelling and atrial enlargement were normalised. Among the 25 most abundant circulating miRs, 10 were modulated by MHS. Plasma miRNomes from AngII, HFD or MHS mice shared 31 common significantly modulated miRs (24 upregulated and 7 downregulated), suggesting that the response of organs producing the bulk of those circulating miRs was similar even for seemingly different stress. In the LV, 19 out of 25 most expressed miRs were modulated. RR restored normality for the plasma miRNome but not for the LV miRNome, which remained mostly unchanged. Our results suggest that abnormalities persist in the myocardium of the HFpEF mice and that the normalisation of circulatory markers may be falsely reassuring after recovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacques Couet
- Groupe de Recherche sur les Valvulopathies, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC G1V 4G5, Canada; (S.-È.T.); (E.-A.L.); (É.W.-W.); (A.M.-G.); (M.A.)
| |
Collapse
|
29
|
Tapia A, Liu X, Malhi NK, Yuan D, Chen M, Southerland KW, Luo Y, Chen ZB. Role of long noncoding RNAs in diabetes-associated peripheral arterial disease. Cardiovasc Diabetol 2024; 23:274. [PMID: 39049097 PMCID: PMC11271017 DOI: 10.1186/s12933-024-02327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that heightens the risks of many vascular complications, including peripheral arterial disease (PAD). Various types of cells, including but not limited to endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages (MΦs), play crucial roles in the pathogenesis of DM-PAD. Long non-coding RNAs (lncRNAs) are epigenetic regulators that play important roles in cellular function, and their dysregulation in DM can contribute to PAD. This review focuses on the developing field of lncRNAs and their emerging roles in linking DM and PAD. We review the studies investigating the role of lncRNAs in crucial cellular processes contributing to DM-PAD, including those in ECs, VSMCs, and MΦ. By examining the intricate molecular landscape governed by lncRNAs in these relevant cell types, we hope to shed light on the roles of lncRNAs in EC dysfunction, inflammatory responses, and vascular remodeling contributing to DM-PAD. Additionally, we provide an overview of the research approach and methodologies, from identifying disease-relevant lncRNAs to characterizing their molecular and cellular functions in the context of DM-PAD. We also discuss the potential of leveraging lncRNAs in the diagnosis and therapeutics for DM-PAD. Collectively, this review provides a summary of lncRNA-regulated cell functions contributing to DM-PAD and highlights the translational potential of leveraging lncRNA biology to tackle this increasingly prevalent and complex disease.
Collapse
Affiliation(s)
- Alonso Tapia
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Xuejing Liu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Muxi Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Kevin W Southerland
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA.
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
30
|
Chen Z, Liu Y, Ma R, Zhang M, Wu X, Pen H, Gui F, Liu Y, Xia H, Hu N, Ai B, Xiong J, Xia H, Li W, Ai F. Protective Effect of Long Noncoding RNA OXCT1-AS1 on Doxorubicin-Induced Apoptosis of Human Myocardial Cells by the Competitive Endogenous RNA Pattern. Arq Bras Cardiol 2024; 121:e20230675. [PMID: 38958296 PMCID: PMC11216341 DOI: 10.36660/abc.20230675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/26/2024] [Accepted: 03/11/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The anthracycline chemotherapeutic antibiotic doxorubicin (DOX) can induce cumulative cardiotoxicity and lead to cardiac dysfunction. Long non-coding RNAs (lncRNAs) can function as important regulators in DOX-induced myocardial injury. OBJECTIVE This study aims to investigate the functional role and molecular mechanism of lncRNA OXCT1 antisense RNA 1 (OXCT1-AS1) in DOX-induced myocardial cell injury in vitro. METHODS Human cardiomyocytes (AC16) were stimulated with DOX to induce a myocardial cell injury model. OXCT1-AS1, miR-874-3p, and BDH1 expression in AC16 cells were determined by RT-qPCR. AC16 cell viability was measured by XTT assay. Flow cytometry was employed to assess the apoptosis of AC16 cells. Western blotting was used to evaluate protein levels of apoptosis-related markers. Dual-luciferase reporter assay was conducted to verify the binding ability between miR-874-3p and OXCT1-AS1 and between miR-874-3p and BDH1. The value of p<0.05 indicated statistical significance. RESULTS OXCT1-AS1 expression was decreased in DOX-treated AC16 cells. Overexpression of OXCT1-AS1 reversed the reduction of cell viability and promotion of cell apoptosis caused by DOX. OXCT1-AS1 is competitively bound to miR-874-3p to upregulate BDH1. BDH1 overexpression restored AC16 cell viability and suppressed cell apoptosis under DOX stimulation. Knocking down BDH1 reversed OXCT1-AS1-mediated attenuation of AC16 cell apoptosis under DOX treatment. CONCLUSION LncRNA OXCT1-AS1 protects human myocardial cells AC16 from DOX-induced apoptosis via the miR-874-3p/BDH1 axis.
Collapse
Affiliation(s)
- Zhen Chen
- Huazhong University of Science and TechnologyTongji Medical CollegeThe Central Hospital of WuhanWuhanChinaDepartment of Emergency – The Central Hospital of Wuhan – Tongji Medical College – Huazhong University of Science and Technology, Wuhan – China
| | - Yijue Liu
- Huazhong University of Science and TechnologyTongji Medical CollegeThe Central Hospital of WuhanWuhanChinaDepartment of Emergency – The Central Hospital of Wuhan – Tongji Medical College – Huazhong University of Science and Technology, Wuhan – China
| | - Rui Ma
- Hubei University of MedicineSinopharm Dongfeng General HospitalDepartment of Geriatric MedicineShiyanChinaDepartment of Geriatric Medicine – Sinopharm Dongfeng General Hospital – Hubei University of Medicine, Shiyan – China
| | - Mengli Zhang
- Huazhong University of Science and TechnologyTongji Medical CollegeThe Central Hospital of WuhanWuhanChinaDepartment of Emergency – The Central Hospital of Wuhan – Tongji Medical College – Huazhong University of Science and Technology, Wuhan – China
| | - Xian Wu
- Huazhong University of Science and TechnologyTongji Medical CollegeThe Central Hospital of WuhanWuhanChinaDepartment of Emergency – The Central Hospital of Wuhan – Tongji Medical College – Huazhong University of Science and Technology, Wuhan – China
| | - Huan Pen
- Huazhong University of Science and TechnologyTongji Medical CollegeThe Central Hospital of WuhanWuhanChinaDepartment of Emergency – The Central Hospital of Wuhan – Tongji Medical College – Huazhong University of Science and Technology, Wuhan – China
| | - Feng Gui
- Huazhong University of Science and TechnologyTongji Medical CollegeThe Central Hospital of WuhanWuhanChinaDepartment of Emergency – The Central Hospital of Wuhan – Tongji Medical College – Huazhong University of Science and Technology, Wuhan – China
| | - Yafeng Liu
- Renmin Hospital of Wuhan UniversityDepartment of EmergencyWuhanChinaDepartment of Emergency – Renmin Hospital of Wuhan University, Wuhan – China
| | - Hao Xia
- Renmin Hospital of Wuhan UniversityDepartment of CardiologyWuhanChinaDepartment of Cardiology – Renmin Hospital of Wuhan University, Wuhan – China
| | - Niandan Hu
- Renmin Hospital of Wuhan UniversityDepartment of EmergencyWuhanChinaDepartment of Emergency – Renmin Hospital of Wuhan University, Wuhan – China
| | - Bo Ai
- Renmin Hospital of Wuhan UniversityDepartment of EmergencyWuhanChinaDepartment of Emergency – Renmin Hospital of Wuhan University, Wuhan – China
| | - Jun Xiong
- Renmin Hospital of Wuhan UniversityDepartment of EmergencyWuhanChinaDepartment of Emergency – Renmin Hospital of Wuhan University, Wuhan – China
| | - Hongxia Xia
- Renmin Hospital of Wuhan UniversityDepartment of EmergencyWuhanChinaDepartment of Emergency – Renmin Hospital of Wuhan University, Wuhan – China
| | - Wenqiang Li
- Renmin Hospital of Wuhan UniversityDepartment of EmergencyWuhanChinaDepartment of Emergency – Renmin Hospital of Wuhan University, Wuhan – China
| | - Fen Ai
- Huazhong University of Science and TechnologyTongji Medical CollegeThe Central Hospital of WuhanWuhanChinaDepartment of Emergency – The Central Hospital of Wuhan – Tongji Medical College – Huazhong University of Science and Technology, Wuhan – China
| |
Collapse
|
31
|
Khoshnam SE, Moalemnia A, Anbiyaee O, Farzaneh M, Ghaderi S. LncRNA MALAT1 and Ischemic Stroke: Pathogenesis and Opportunities. Mol Neurobiol 2024; 61:4369-4380. [PMID: 38087169 DOI: 10.1007/s12035-023-03853-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/21/2023] [Indexed: 07/11/2024]
Abstract
Ischemic stroke (IS) stands as a prominent cause of mortality and long-term disability around the world. It arises primarily from a disruption in cerebral blood flow, inflicting severe neural injuries. Hence, there is a pressing need to comprehensively understand the intricate mechanisms underlying IS and identify novel therapeutic targets. Recently, long noncoding RNAs (lncRNAs) have emerged as a novel class of regulatory molecules with the potential to attenuate pathogenic mechanisms following IS. Among these lncRNAs, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) has been extensively studied due to its involvement in the pathophysiological processes of IS. In this review, we provide an in-depth analysis of the essential role of MALAT1 in the development and progression of both pathogenic and protective mechanisms following IS. These mechanisms include oxidative stress, neuroinflammation, cell death signaling, blood brain barrier dysfunction, and angiogenesis. Furthermore, we summarize the impact of MALAT1 on the susceptibility and severity of IS. This review highlights the potential risks associated with the therapeutic use of MALAT1 for IS, which are attributable to the stimulatory action of MALAT1 on ischemia/reperfusion injury. Ultimately, this review sheds light on the potential molecular mechanisms and associated signaling pathways underlying MALAT1 expression post-IS, with the aim of uncovering potential therapeutic targets.
Collapse
Affiliation(s)
- Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Omid Anbiyaee
- School of Medicine, Cardiovascular Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
32
|
Wu R, Wu T, Wang Q, Shi Y, Dong Q, Rong X, Chen M, He Z, Fu Y, Liu L, Shao S, Guan X, Zhang C. The ischemia-enhanced myocardial infarction protection-related lncRNA protects against acute myocardial infarction. MedComm (Beijing) 2024; 5:e632. [PMID: 38988491 PMCID: PMC11234438 DOI: 10.1002/mco2.632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 07/12/2024] Open
Abstract
Long non-coding RNA RP11-64B16.4 (myocardial infarction protection-related lncRNA [MIPRL]) is among the most abundant and the most upregulated lncRNAs in ischemic human hearts. However, its role in ischemic heart disease is unknown. We found MIPRL was conserved between human and mouse and its expression was increased in mouse hearts after acute myocardial infarction (AMI) and in cultured human and mouse cardiomyocytes after hypoxia. The infarcted size, cardiac cell apoptosis, cardiac dysfunction, and cardiac fibrosis were aggravated in MIPRL knockout mice after AMI. The above adverse results could be reversed by re-expression of MIPRL via adenovirus expressing MIPRL. Both in vitro and in vivo, we identified that heat shock protein beta-8 (HSPB8) was a target gene of MIPRL, which was involved in MIPRL-mediated anti-apoptotic effects on cardiomyocytes. We further discovered that MIPRL could combine with the messenger RNA (mRNA) of HSPB8 and increase its expression in cardiomyocytes by enhancing the stability of HSPB8 mRNA. In summary, we have found for the first time that the ischemia-enhanced lncRNA MIPRL protects against AMI via its target gene HSPB8. MIPRL might be a novel promising therapeutic target for ischemic heart diseases such as AMI.
Collapse
Affiliation(s)
- Rongzhou Wu
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Tingting Wu
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Qiaoyu Wang
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Youyang Shi
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Qianqian Dong
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Xing Rong
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Meiting Chen
- Department of Biomedical EngineeringThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Zhiyu He
- Department of Biomedical EngineeringThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Yu Fu
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Lei Liu
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Shuai Shao
- Department of CardiologyKey Laboratory of Medical ElectrophysiologyMinistry of EducationInstitute of Cardiovascular ResearchInstitute of Metabolic Diseasesthe Affiliated Hospital of Southwest Medical UniversitySouthwest Medical UniversityLuzhouChina
| | - Xueqiang Guan
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Chunxiang Zhang
- Children's Heart CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityInstitute of Cardiovascular Development and Translational MedicineThe Second School of MedicineWenzhou Medical UniversityWenzhouChina
- Department of CardiologyKey Laboratory of Medical ElectrophysiologyMinistry of EducationInstitute of Cardiovascular ResearchInstitute of Metabolic Diseasesthe Affiliated Hospital of Southwest Medical UniversitySouthwest Medical UniversityLuzhouChina
| |
Collapse
|
33
|
Gu J, Zhou D. Long non-coding RNA MEG3 knockdown represses airway smooth muscle cells proliferation and migration via sponging miR-143-3p/FGF9 in asthma. J Cardiothorac Surg 2024; 19:314. [PMID: 38824534 PMCID: PMC11143653 DOI: 10.1186/s13019-024-02798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/25/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Asthma is a respiratory disease characterized by airway remodeling. We aimed to find out the role and mechanism of lncRNA MEG3 in asthma. METHODS We established a cellular model of asthma by inducing human airway smooth muscle cells (HASMCs) with PDGF-BB, and detected levels of lncRNA MEG3, miR-143-3p and FGF9 in HASMCs through qRT-PCR. The functions of lncRNA MEG3 or miR-143-3p on HASMCs were explored by cell transfection. The binding sites of miR-143-3p and FGF9 were subsequently analyzed with bioinformatics software, and validated with dual-luciferase reporter assay. MTT, 5-Ethynyl-2'-deoxyuridine (EdU) assay, and Transwell were used to detect the effects of lncRNA MEG3 or miR-143-3p on proliferation and migration of HASMCs. QRT-PCR and western blot assay were used to evaluate the level of proliferation-related marker PCNA in HASMCs. RESULTS The study found that lncRNA MEG3 negatively correlated with miR-143-3p, and miR-143-3p could directly target with FGF9. Silence of lncRNA MEG3 can suppress migration and proliferation of PDGF-BB-induced HASMCs via increasing miR-143-3p. Further mechanistic studies revealed that miR-143-3p negatively regulated FGF9 expression in HASMCs. MiR-143-3p could inhibit PDGF-BB-induced HASMCs migration and proliferation through downregulating FGF9. CONCLUSION LncRNA MEG3 silencing could inhibit the migration and proliferation of HASMCs through regulating miR-143-3p/FGF9 signaling axis. These results imply that lncRNA MEG3 plays a protective role against asthma.
Collapse
Affiliation(s)
- Jiaying Gu
- Department of Pulmonary and Critical Care Medicine, Wuhan Fourth Hospital, No. 76 Jiefang Avenue, Qiaokou District, Wuhan, 430000, China
| | - Dengfeng Zhou
- Department of Pulmonary and Critical Care Medicine, Wuhan Fourth Hospital, No. 76 Jiefang Avenue, Qiaokou District, Wuhan, 430000, China.
| |
Collapse
|
34
|
Nie X, Fan J, Wang Y, Xie R, Chen C, Li H, Wang DW. lncRNA ZNF593-AS inhibits cardiac hypertrophy and myocardial remodeling by upregulating Mfn2 expression. Front Med 2024; 18:484-498. [PMID: 38743133 DOI: 10.1007/s11684-023-1036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/15/2023] [Indexed: 05/16/2024]
Abstract
lncRNA ZNF593 antisense (ZNF593-AS) transcripts have been implicated in heart failure through the regulation of myocardial contractility. The decreased transcriptional activity of ZNF593-AS has also been detected in cardiac hypertrophy. However, the function of ZNF593-AS in cardiac hypertrophy remains unclear. Herein, we report that the expression of ZNF593-AS reduced in a mouse model of left ventricular hypertrophy and cardiomyocytes in response to treatment with the hypertrophic agonist phenylephrine (PE). In vivo, ZNF593-AS aggravated pressure overload-induced cardiac hypertrophy in knockout mice. By contrast, cardiomyocyte-specific transgenic mice (ZNF593-AS MHC-Tg) exhibited attenuated TAC-induced cardiac hypertrophy. In vitro, vector-based overexpression using murine or human ZNF593-AS alleviated PE-induced myocyte hypertrophy, whereas GapmeR-induced inhibition aggravated hypertrophic phenotypes. By using RNA-seq and gene set enrichment analyses, we identified a link between ZNF593-AS and oxidative phosphorylation and found that mitofusin 2 (Mfn2) is a direct target of ZNF593-AS. ZNF593-AS exerts an antihypertrophic effect by upregulating Mfn2 expression and improving mitochondrial function. Therefore, it represents a promising therapeutic target for combating pathological cardiac remodeling.
Collapse
Affiliation(s)
- Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Yanwen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Rong Xie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
35
|
Li H, Song S, Shi A, Hu S. Identification of Potential lncRNA-miRNA-mRNA Regulatory Network Contributing to Arrhythmogenic Right Ventricular Cardiomyopathy. J Cardiovasc Dev Dis 2024; 11:168. [PMID: 38921668 PMCID: PMC11204167 DOI: 10.3390/jcdd11060168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) can lead to sudden cardiac death and life-threatening heart failure. Due to its high fatality rate and limited therapies, the pathogenesis and diagnosis biomarker of ARVC needs to be explored urgently. This study aimed to explore the lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network in ARVC. The mRNA and lncRNA expression datasets obtained from the Gene Expression Omnibus (GEO) database were used to analyze differentially expressed mRNA (DEM) and lncRNA (DElnc) between ARVC and non-failing controls. Differentially expressed miRNAs (DEmiRs) were obtained from the previous profiling work. Using starBase to predict targets of DEmiRs and intersecting with DEM and DElnc, a ceRNA network of lncRNA-miRNA-mRNA was constructed. The DEM and DElnc were validated by real-time quantitative PCR in human heart tissue. Protein-protein interaction network and weighted gene co-expression network analyses were used to identify hub genes. A logistic regression model for ARVC diagnostic prediction was established with the hub genes and their ceRNA pairs in the network. A total of 448 DEMs (282 upregulated and 166 downregulated) were identified, mainly enriched in extracellular matrix and fibrosis-related GO terms and KEGG pathways, such as extracellular matrix organization and collagen fibril organization. Four mRNAs and two lncRNAs, including COL1A1, COL5A1, FBN1, BGN, XIST, and LINC00173 identified through the ceRNA network, were validated by real-time quantitative PCR in human heart tissue and used to construct a logistic regression model. Good ARVC diagnostic prediction performance for the model was shown in both the training set and the validation set. The potential lncRNA-miRNA-mRNA regulatory network and logistic regression model established in our study may provide promising diagnostic methods for ARVC.
Collapse
Affiliation(s)
| | | | | | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; (H.L.); (S.S.); (A.S.)
| |
Collapse
|
36
|
Di Fiore V, Cappelli F, Del Punta L, De Biase N, Armenia S, Maremmani D, Lomonaco T, Biagini D, Lenzi A, Mazzola M, Tricò D, Masi S, Mengozzi A, Pugliese NR. Novel Techniques, Biomarkers and Molecular Targets to Address Cardiometabolic Diseases. J Clin Med 2024; 13:2883. [PMID: 38792427 PMCID: PMC11122330 DOI: 10.3390/jcm13102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are interrelated and multifactorial conditions, including arterial hypertension, type 2 diabetes, heart failure, coronary artery disease, and stroke. Due to the burden of cardiovascular morbidity and mortality associated with CMDs' increasing prevalence, there is a critical need for novel diagnostic and therapeutic strategies in their management. In clinical practice, innovative methods such as epicardial adipose tissue evaluation, ventricular-arterial coupling, and exercise tolerance studies could help to elucidate the multifaceted mechanisms associated with CMDs. Similarly, epigenetic changes involving noncoding RNAs, chromatin modulation, and cellular senescence could represent both novel biomarkers and targets for CMDs. Despite the promising data available, significant challenges remain in translating basic research findings into clinical practice, highlighting the need for further investigation into the complex pathophysiology underlying CMDs.
Collapse
Affiliation(s)
- Valerio Di Fiore
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Federica Cappelli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Lavinia Del Punta
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Nicolò De Biase
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Silvia Armenia
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Davide Maremmani
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (T.L.)
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (T.L.)
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (T.L.)
| | - Matteo Mazzola
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Nicola Riccardo Pugliese
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| |
Collapse
|
37
|
Robert Li Y, Traore K, Zhu H. Novel molecular mechanisms of doxorubicin cardiotoxicity: latest leading-edge advances and clinical implications. Mol Cell Biochem 2024; 479:1121-1132. [PMID: 37310587 DOI: 10.1007/s11010-023-04783-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
Doxorubicin (Dox) is among the most widely used cancer chemotherapeutic drugs. The clinical use of Dox is, however, limited due to its cardiotoxicity. Studies over the past several decades have suggested various mechanisms of Dox-induced cardiotoxicity (DIC). Among them are oxidative stress, topoisomerase inhibition, and mitochondrial damage. Several novel molecular targets and signaling pathways underlying DIC have emerged over the past few years. The most notable advances include discovery of ferroptosis as a major form of cell death in Dox cytotoxicity, and elucidation of the involvement of cardiogenetics and regulatory RNAs as well as multiple other targets in DIC. In this review, we discuss these advances, focusing on latest cutting-edge research discoveries from mechanistic studies reported in influential journals rather than surveying all research studies available in the literature.
Collapse
Affiliation(s)
- Y Robert Li
- Department of Pharmacology, Campbell University Jerry Wallace School of Osteopathic Medicine, Buies Creek, NC, 27560, USA.
| | - Kassim Traore
- Department of Biochemistry, Duquesne University College of Osteopathic Medicine, Pittsburgh, PA, 15282, USA
| | - Hong Zhu
- Department of Physiology and Pathophysiology, Campbell University Jerry Wallace School of Osteopathic Medicine, Buies Creek, NC, 27560, USA
| |
Collapse
|
38
|
Han H, Huang H, Chen AP, Tang Y, Huang X, Chen C. High CASC expression predicts poor prognosis of lung cancer: A systematic review with meta-analysis. PLoS One 2024; 19:e0292726. [PMID: 38573879 PMCID: PMC10994294 DOI: 10.1371/journal.pone.0292726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/26/2023] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The long non-coding RNA cancer susceptibility candidate (CASC) has abnormal expression in lung cancer tissues and may correlate with lung cancer prognosis. This study aimed to comprehensively evaluate the association between CASC expression and the cancer prognosis. METHODS PubMed, Embase, Web of Science, Google Scholar, Cochrane Library, and China National Knowledge Infrastructure databases were searched until April 1, 2023, to obtain the relevant literature. Studies that met the predefined eligibility criteria were included, and their quality was independently assessed by 2 investigators according to the Newcastle-Ottawa Scale (NOS) score. Detailed information was obtained, such as first author, year of publication, and number of patients. Hazard ratio (HR) with a 95% confidence interval (CI) was extracted and grouped to assess the relationship between CASC expression and cancer prognosis. The dichotomous data was merged and shown as the odds ratio (OR) with a 95% CI was extracted to assess the relationship between CASC expression and clinicopathological parameters. RESULTS A total of 12 studies with 746 patients with lung cancer were included in the meta-analysis. The expression levels of lncRNA CASC2 and CASC7 were decreased, while those of CASC9, 11, 15, and 19 were induced in lung cancer tissues compared with paracancerous tissues. In the population with low CASC expression (CASC2 and CASC7), high CASC expression indicated a good lung cancer prognosis (HR = 0.469; 95% CI, 0.271-0.668). Conversely, in the population with high CASC expression (CASC9, 11, 15, and 19), high CASC expression predicted a poor lung cancer outcome (HR = 1.910; 95% CI, 1.628-2.192). High CASC expression also predicted worse disease-free survival (DFS) (HR = 2.803; 95% CI, 1.804-6.319). Combined OR with 95% CI revealed an insignificant positive association between high CASC expression and advanced TNM stage (OR = 1.061; 95% CI, 0.775-1.454), LNM (OR = 0.962; 95% CI, 0.724-1.277), tumor size (OR = 0.942; 95% CI, 0.667-1.330), and histological grade (OR = 1.022; 95% CI, 0.689-1.517). CONCLUSION The CASC expression levels negatively correlate with lung cancer prognosis. Therefore, CASC expression may serve as a prognostic marker and a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Hao Han
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Huan Huang
- Department of Thoracic Surgery, People’s Hospital of Dongxihu District, Wuhan, Hubei, China
| | - An-ping Chen
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yang Tang
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Huang
- Department of Thoracic Surgery, People’s Hospital of Dongxihu District, Wuhan, Hubei, China
| | - Cheng Chen
- Department of Thoracic Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
39
|
Huang C, Aghaei-Zarch SM. From molecular pathogenesis to therapy: Unraveling non-coding RNAs/DNMT3A axis in human cancers. Biochem Pharmacol 2024; 222:116107. [PMID: 38438051 DOI: 10.1016/j.bcp.2024.116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Cancer is a comprehensive classification encompassing more than 100 forms of malignancies that manifest in diverse tissues within the human body. Recent studies have provided evidence that aberrant epigenetic modifications are pivotal indicators of cancer. Epigenetics encapsulates DNA methyltransferases as a crucial class of modifiers. DNMTs, including DNMT3A, assume central roles in DNA methylation processes that orchestrate normal biological functions, such as gene transcription, predominantly in mammals. Typically, deviations in DNMT3A function engender distortions in factors that drive tumor growth and progression, thereby exacerbating the malignant phenotype of tumors. Consequently, such abnormalities pose significant challenges in cancer therapy because they impede treatment efficacy. Non-coding RNAs (ncRNAs) represent a group of RNA molecules that cannot encode functional proteins. Recent investigation attests to the crucial significance of regulatory ncRNAs in epigenetic regulation. Notably, recent reports have illuminated the complex interplay between ncRNA expression and epigenetic regulatory machinery, including DNMT3A, particularly in cancer. Recent findings have demonstrated that miRNAs, namely miR-770-5p, miR-101, and miR-145 exhibit the capability to target DNMT3A directly, and their aberration is implicated in diverse cellular abnormalities that predispose to cancer development. This review aims to articulate the interplay between DNMT3A and the ncRNAs, focusing on its impact on the development and progression of cancer, cancer therapy resistance, cancer stem cells, and prognosis. Importantly, the emergence of such reports that suggest a connection between DNMT3A and ncRNAs in several cancers indicates that this connecting axis offers a valuable target with significant therapeutic potential that might be exploited for cancer management.
Collapse
Affiliation(s)
- Chunjie Huang
- School of Medicine, Nantong University, Nantong 226001, China
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Huang Q, Xia YG, Huang YJ, Qin HF, Zhang QX, Wei CF, Tang WR, Liao Y. An increase in SNHG5 expression is associated with poor cancer prognosis, according to a meta-analysis. Eur J Med Res 2024; 29:160. [PMID: 38475928 DOI: 10.1186/s40001-024-01745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND He long noncoding RNA small nucleolar host RNA 5 (SNHG5) is highly expressed in many cancers, and there is a notable correlation between the elevated expression of SNHG5 and survival outcome in cancer patients. The objective of this study was to conduct a meta-analysis to evaluate the correlation between SNHG5 expression and the clinical outcome of cancer patients. METHODS Six relevant electronic databases were exhaustively searched, and, depending on the inclusion and exclusion criteria, appropriate literature was obtained. The Newcastle-Ottawa Scale (NOS) score was utilized to evaluate the quality of the research for every article included, and pertinent data from each study were carefully extracted. Hazard ratios (HRs), odds ratios (ORs) and 95% confidence intervals (CIs) were combined to explore the association of SNHG5 expression levels with cancer prognosis, and sensitivity analyses and assessments of publication bias were also conducted to investigate any possibility in the publication of the studies. RESULTS Eleven studies encompassing 721 patients were ultimately collected. When combined, the hazard ratios (HRs) revealed a substantial direct correlation between elevated SNHG5 expression and an unfavourable prognosis for cancer patients (HR = 1.90, 95% CI 0.87-4.15); however, the correlation did not reach statistical significance. Furthermore, high SNHG5 expression was predictive of advanced TNM stage (OR: 1.988, 95% CI 1.205-3.278) and larger tumour size (OR: 1.571, 95% CI 1.090-2.264); moreover, there were nonsignificant relationships between SNHG5 expression and DM (OR: 0.449, 95% CI 0.077-2.630), lymph node metastasis (OR: 1.443, 95% CI 0.709-2.939), histological grade (OR: 2.098, 95% CI 0.910-4.838), depth of invasion (OR: 1.106, 95% CI 0.376-3.248), age (OR: 0.946, 95% CI 0.718-1.247) and sex (OR: 0.762, 95% CI 0.521-1.115). CONCLUSION SNHG5 expression is typically increased in the majority of tumour tissues. Elevated SNHG5 expression may indicate poor prognosis in cancer patients. Therefore, SNHG5 is a promising potential therapeutic target for tumours and a reliable prognostic biomarker.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Laboratory Medicine, Hechi Hospital Affiliated to Youjiang Medical University for Nationalities, the People's Hospital of Hechi, Hechi, 547000, Guangxi, China
| | - Yi-Gui Xia
- Department of Laboratory Medicine, Hechi Hospital Affiliated to Youjiang Medical University for Nationalities, the People's Hospital of Hechi, Hechi, 547000, Guangxi, China
| | - Yong-Jian Huang
- Department of Laboratory Medicine, Hechi Hospital Affiliated to Youjiang Medical University for Nationalities, the People's Hospital of Hechi, Hechi, 547000, Guangxi, China
| | - Hai-Feng Qin
- Department of Oncology, Hechi Hospital Affiliated to Youjiang Medical University for Nationalities, the People's Hospital of Hechi, Hechi, 547000, Guangxi, China
| | - Qun-Xian Zhang
- Department of Laboratory Medicine, Hechi Hospital Affiliated to Youjiang Medical University for Nationalities, the People's Hospital of Hechi, Hechi, 547000, Guangxi, China
| | - Chun-Feng Wei
- Department of Laboratory Medicine, Hechi Hospital Affiliated to Youjiang Medical University for Nationalities, the People's Hospital of Hechi, Hechi, 547000, Guangxi, China
| | - Wu-Ru Tang
- Department of Nuclear Medicine, Hechi Hospital Affiliated to Youjiang Medical University for Nationalities, the People's Hospital of Hechi, Hechi, 547000, Guangxi, China
| | - Yuan Liao
- Department of Nuclear Medicine, Hechi Hospital Affiliated to Youjiang Medical University for Nationalities, the People's Hospital of Hechi, Hechi, 547000, Guangxi, China.
| |
Collapse
|
41
|
Wu H, Hu Y, Jiang C, Chen C. Global scientific trends in research of epigenetic response to exercise: A bibliometric analysis. Heliyon 2024; 10:e25644. [PMID: 38370173 PMCID: PMC10869857 DOI: 10.1016/j.heliyon.2024.e25644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
The purpose of this work is to comprehensively understand the adaptive response of multiple epigenetic modifications on gene expression changes driven by exercise. Here, we retrieved literatures from publications in the PubMed and Web of Science Core Collection databases up to and including October 15, 2023. After screening with the exclusion criteria, 1910 publications were selected in total, comprising 1399 articles and 511 reviews. Specifically, a total of 512, 224, and 772 publications is involved in DNA methylation, histone modification, and noncoding RNAs, respectively. The correlations between publication number, authors, institutions, countries, references, and the characteristics of hotspots were explored by CiteSpace. Here, the USA (621 publications) ranked the world's most-influential countries, the University of California System (68 publications) was the most productive, and Tiago Fernandes (14 publications) had the most-published publications. A comprehensive keyword analysis revealed that cardiovascular disease, cancer, skeletal muscle development, and metabolic syndrome, and are the research hotspots. The detailed impact of exercise was further discussed in different aspects of these three categories of epigenetic modifications. Detailed analysis of epigenetic modifications in response to exercise, including DNA methylation, histone modification, and changes in noncoding RNAs, will offer valuable information to help researchers understand hotspots and emerging trends.
Collapse
Affiliation(s)
- Huijuan Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Yue Hu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Cai Jiang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Cong Chen
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, 350122 Fuzhou, Fujian, China
- Fujian Key Laboratory of Cognitive Rehabilitation, Fujian University of Traditional Chinese Medicine, 350122, Fuzhou, Fujian, China
| |
Collapse
|
42
|
Wang J, Xu R, Cao Q, Ma B, Duan L, Shao Z. HAND2-AS1 associates with outcomes of acute coronary syndrome and regulates cell viability of vascular endothelial cells. Ir J Med Sci 2024; 193:131-138. [PMID: 37464074 DOI: 10.1007/s11845-023-03466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVE Acute coronary syndrome (ACS) is an emergency and severe disorder of the cardiovascular system. This paper assessed the expression of plasma HAND2-AS1 in patients with ACS, researched its diagnostic and prognostic significance, and studied its possible mechanism for participating in ACS. METHODS The concentration of HAND2-AS1 of 101 included patients with ACS was certified by qRT-PCR and its possible diagnostic function was revealed by the receiver operating characteristic (ROC) curve. All patients were followed up for 6 months after percutaneous coronary intervention (PCI) therapy and Kaplan-Meier (K-M) curve and COX regression analysis was performed to estimate the short-term prognostic value of HAND2-AS1 in ACS. The interrelationship between HAND2-AS1 and Gensini score and endothelial injury was identified via Pearson correlation. The function of HAND2-AS1 on the viability, migration, and apoptosis of human umbilical vein endothelial cells (HUVECs) was estimated by the Cell Counting Kit-8 (CCK-8), Transwell chamber, and flow cytometry. RESULTS In ACS patients, the expression of serum HAND2-AS1 was prominently decreased and closely correlated with the Gensini score. The decreased HAND2-AS1 expression was of diagnostic significance. Declined plasma HAND2-AS1 was observed in patients with the major adverse cardio-cerebrovascular event (MACCE) and was an independent risk for the poor prognosis of ACS patients. In the cell model, upregulation of HAND2-AS1 improved cell viability and migration and inhibited cell apoptosis. CONCLUSION HAND2-AS1 was an independent biomarker for the diagnosis and prognosis of ACS. HAND2-AS1 might be involved in ACS development by regulating endothelial damage.
Collapse
Affiliation(s)
- Jing Wang
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, No. 2, Xihuan South Road, Daxing District, Beijing, 100176, China
| | - Ruiming Xu
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, No. 2, Xihuan South Road, Daxing District, Beijing, 100176, China
| | - Qiumei Cao
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, No. 2, Xihuan South Road, Daxing District, Beijing, 100176, China.
| | - Bingchen Ma
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, No. 2, Xihuan South Road, Daxing District, Beijing, 100176, China
| | - Lijun Duan
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, No. 2, Xihuan South Road, Daxing District, Beijing, 100176, China
| | - Zhengyi Shao
- Department of Emergency, Beijing Tongren Hospital (South District), Capital Medical University, No. 2, Xihuan South Road, Daxing District, Beijing, 100176, China
| |
Collapse
|
43
|
Yang B, Jiao Z, Feng N, Zhang Y, Wang S. Long non-coding RNA MIR600HG as a ceRNA inhibits the pancreatic cancer progression through regulating the miR-1197/PITPNM3 axis. Heliyon 2024; 10:e24546. [PMID: 38312687 PMCID: PMC10834820 DOI: 10.1016/j.heliyon.2024.e24546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Objective Pancreatic cancer (PC) is considered to be a highly malignant cancer with poor prognosis. Long non-coding RNAs (lncRNAs) is the potential factor to predict cancer prognosis. The effect of MIR600HG in PC needs to be further studied. Our work mainly focused on the importance of MIR600HG for PC prognosis and its underlying molecular mechanism of regulating PC progression. Methods Data set was acquired from TCGA database to find differentially expressed genes and prognostic significance of MIR600HG in PC, and to construct the MIR600HG competitive endogenous RNA (ceRNA). Clinical specimens were collected to prove the analysis results. Vector over-expressed MIR600HG was transfected to study the roles of MIR600HG in proliferation, apoptosis, invasion and migration. The methods of CCK-8, flow cytometry, Transwell and scratch assays were all used in order to explore the apoptosis, migration and invasion. We evaluated the proliferation-related genes (PCNA, CyclinD1 and P27), as well as invasion and migration-related genes such as MMP-9, MMP-7 and ICAM-1. The transcriptional regulation between MIR600HG and miR-1197/PITPNM3 axis was determined with luciferase reporter assays. Results In present study, MIR600HG was dropped in both PC tissues and cells, and the down-regulated MIR600HG was closely related to the poor clinical outcomes in PC patients. MIR600HG could inhibit proliferation, migration and invasion in PC cells. We also investigated whether MIR600HG acting as a sponge of microRNA-1197 (miR-1197) and miR-1197 acting on PITPNM3. We found the positive association between MIR600HG and PITPNM3, as well as the negative association of miR-1197 and MIR600HG (or PITPNM3). Moreover, PITPNM3 mRNA and protein expression saw a simultaneous increase after the MIR600HG-overexpression (MIR600HG-OE), but this result partially diminished in MIR600HG-OE cells and miR-1197 mimics. Conclusions Our study explored the anticancer action of MIR600HG in PC by regulating miR-1197 to increase the expression of PITPNM3, which might help the diagnosis and therapy of PC.
Collapse
Affiliation(s)
- Baoming Yang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zhikai Jiao
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ningning Feng
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yueshan Zhang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shunxiang Wang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
44
|
Wu S, Zhu J, Jiang T, Cui T, Zuo Q, Zheng G, Li G, Zhou J, Chen X. Long non-coding RNA ACTA2-AS1 suppresses metastasis of papillary thyroid cancer via regulation of miR-4428/KLF9 axis. Clin Epigenetics 2024; 16:10. [PMID: 38195623 PMCID: PMC10775490 DOI: 10.1186/s13148-023-01622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Metastasis is the primary cause of recurrence and death in patients with papillary thyroid carcinoma (PTC). LncRNA ACTA2-AS1, a long non-coding RNA, acts as a tumor suppressor in multiple types of human malignancies, while the role of ACTA2-AS1 in PTC metastasis remains unclear. METHODS The ACTA2-AS1 expression in PTC tissues was analyzed. The sponged roles of ACTA2-AS1 via miR-4428/KLF9 axis were identified using starBase tool. The function of ACTA2-AS1 in PTC was performed with in vitro and in vivo experiments. The correlation between DNA methylation and mRNA expressions of these gene in the TCGA dataset was explored. RESULTS ACTA2-AS1 expression was downregulated in PTC tissues without metastasis and further decreased in PTC tissues with lymph node metastasis compared with that in normal tissues. Functionally, the overexpression of ACTA2-AS1 inhibited the growth, proliferation, and invasion of PTC cells, whereas its depletion exerted opposite effect. In vivo, ACTA2-AS1 expression inhibited PTC metastasis. Furthermore, ACTA2-AS1 acted as a competing endogenous RNA for miR-4428, thereby positively regulating the expression of miR-4428 target gene, KLF9. Finally, miR-4428 overexpression enhanced invasive potential of PTC cells and significantly weakened the effects of ACTA2-AS1 on promotion and inhibition of KLF9 expression as well as invasive ability of PTC cells, respectively. In the TCGA dataset, the methylation level of ACTA2-AS1 was significantly correlated with its mRNA expression (r = 0.21, p = 2.1 × e-6). CONCLUSIONS Our findings demonstrate that ACTA2-AS1 functions as a tumor suppressor in PTC progression at least partly by regulating the miR-4428-dependent expression of KLF9.
Collapse
Affiliation(s)
- Shuhui Wu
- Department of Otorhinolaryngology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jingjing Zhu
- Department of Otorhinolaryngology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Tingting Jiang
- Department of Otorhinolaryngology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ting Cui
- Department of Thyroid Surgery, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Qi Zuo
- Department of Otorhinolaryngology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Guibin Zheng
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Thyroid Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jieyu Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Xiang Chen
- Department of Thyroid Surgery, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
45
|
Ma M, Chen S, Zhang X, Yang R, Zhang L, Guo K, Wang J, Jia H, You Y, Han B. Identification and functional analysis of circulating small extracellular vesicle lncRNA signatures in children with fulminant myocarditis. J Cell Mol Med 2024; 28:e18034. [PMID: 37942713 PMCID: PMC10826448 DOI: 10.1111/jcmm.18034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Fulminant myocarditis (FM) is the most serious type of myocarditis. However, the molecular mechanism underlying the pathogenesis of FM has not been fully elucidated. Small extracellular vesicles (sEVs) play important roles in many diseases, but any potential role in paediatric FM has not been reported. Here, the differential signatures of lncRNAs in plasma sEVs were studied in FM children and healthy children using transcriptome sequencing followed by functional analysis. Then immune-related lncRNAs were screened to study their role in immune mechanisms, the levels and clinical relevance of core immune-related lncRNAs were verified by qRT-PCR in a large sample size. Sixty-eight lncRNAs had increased levels of plasma sEVs in children with FM and 11 had decreased levels. Functional analysis showed that the sEVs-lncRNAs with different levels were mainly related to immunity, apoptosis and protein efflux. Seventeen core immune-related sEVs-lncRNAs were screened, functional enrichment analysis showed that these lncRNAs were closely related to immune activation, immune cell migration and cytokine pathway signal transduction. The results of the study show that sEVs-lncRNAs may play an important role in the pathogenesis of fulminant myocarditis in children, especially in the mechanism of immune regulation.
Collapse
Affiliation(s)
- Mengjie Ma
- Department of Pediatrics, Shandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of PediatricsThe Second Affiliated Hospital of Shandong First Medical UniversityTaianShandongChina
| | - Siyu Chen
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Xinyue Zhang
- Department of Pediatrics, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Rulin Yang
- Department of Pediatrics, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Li Zhang
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Kaiyin Guo
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Jing Wang
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Hailin Jia
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yingnan You
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Bo Han
- Department of Pediatrics, Shandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| |
Collapse
|
46
|
Yang J, Jiang G, Huang L, Liu Z, Jiang R, Cao G, Cao J, Zhu H, Chen L, Chen X, Pei F. The Long non-coding RNA MALAT1 functions as a competing endogenous RNA to regulate vascular remodeling by sponging miR-145-5p/HK2 in hypertension. Clin Exp Hypertens 2023; 45:2284658. [PMID: 38010958 DOI: 10.1080/10641963.2023.2284658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Long non-coding RNAs (LncRNAs) have been found to play a regulatory role in the pathophysiology of vascular remodeling-associated illnesses through the lncRNA-microRNA (miRNA) regulation axis. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is thought to be involved in proliferation, migration, apoptosis, and calcification of vascular smooth muscle cells (VSMCs). The purpose of this study was to investigate the regulatory role of MALAT1 on vascular remodeling in hypertension. Our data indicate that the expression of MALAT1 is significantly upregulated in hypertensive aortic smooth muscle. Knockdown of MALAT1 inhibited the proliferation, migration, and phenotypic transition of VSMCs induced by Ang II. Bioinformatics analysis was used to predict the complementary binding of miR-145-5p to the 3'-untranslated region of MALAT1. Besides, the expressions of MALAT1 and miR-145-5p were negatively correlated, while luciferase reporter assays and RNA immunoprecipitation assay validated the interaction between miR-145-5p and MALAT1. The proliferation, migration and phenotypic transformation of VSMCs induced by overexpression of MALAT1 were reversed in the presence of miR-145-5p. Furthermore, we verified that miR-145-5p could directly target and bind to hexokinase 2 (HK2) mRNA, and that HK2 expression was negatively correlated with miR-145-5p in VSMCs. Knockdown of HK2 significantly inhibited the effects of overexpression of MALAT1 on Ang II-induced VSMCs proliferation, migration and phenotypic transformation. Taken together, the MALAT1/miR-145-5p/HK2 axis may play a critical regulatory role in the vascular remodeling of VSMCs in hypertension.
Collapse
Affiliation(s)
- Jiangyong Yang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Guojun Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Ling Huang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Zhongyi Liu
- Department of Medical Research, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Rengui Jiang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Gang Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Jun Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Hengqing Zhu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Lemei Chen
- Department of Medical Research, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Xiaoming Chen
- Department of Medical Research, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Fang Pei
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
47
|
Jha S, Thasma Loganathbabu VK, Kumaran K, Krishnasamy G, Aruljothi KN. Long Non-Coding RNAs (lncRNAs) in Heart Failure: A Comprehensive Review. Noncoding RNA 2023; 10:3. [PMID: 38250803 PMCID: PMC10801533 DOI: 10.3390/ncrna10010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Heart failure (HF) is a widespread cardiovascular condition that poses significant risks to a wide spectrum of age groups and leads to terminal illness. Although our understanding of the underlying mechanisms of HF has improved, the available treatments still remain inadequate. Recently, long non-coding RNAs (lncRNAs) have emerged as crucial players in cardiac function, showing possibilities as potential targets for HF therapy. These versatile molecules interact with chromatin, proteins, RNA, and DNA, influencing gene regulation. Notable lncRNAs like Fendrr, Trpm3, and Scarb2 have demonstrated therapeutic potential in HF cases. Additionally, utilizing lncRNAs to forecast survival rates in HF patients and distinguish various cardiac remodeling conditions holds great promise, offering significant benefits in managing cardiovascular disease and addressing its far-reaching societal and economic impacts. This underscores the pivotal role of lncRNAs in the context of HF research and treatment.
Collapse
Affiliation(s)
- Shambhavi Jha
- Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur Campus, Chengalpattu 603203, Tamilnadu, India; (S.J.); (V.K.T.L.); (K.K.)
| | - Vasanth Kanth Thasma Loganathbabu
- Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur Campus, Chengalpattu 603203, Tamilnadu, India; (S.J.); (V.K.T.L.); (K.K.)
| | - Kasinathan Kumaran
- Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur Campus, Chengalpattu 603203, Tamilnadu, India; (S.J.); (V.K.T.L.); (K.K.)
| | | | - Kandasamy Nagarajan Aruljothi
- Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur Campus, Chengalpattu 603203, Tamilnadu, India; (S.J.); (V.K.T.L.); (K.K.)
| |
Collapse
|
48
|
Samidurai A, Olex AL, Ockaili R, Kraskauskas D, Roh SK, Kukreja RC, Das A. Integrated Analysis of lncRNA-miRNA-mRNA Regulatory Network in Rapamycin-Induced Cardioprotection against Ischemia/Reperfusion Injury in Diabetic Rabbits. Cells 2023; 12:2820. [PMID: 38132140 PMCID: PMC10742118 DOI: 10.3390/cells12242820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The inhibition of mammalian target of rapamycin (mTOR) with rapamycin (RAPA) provides protection against myocardial ischemia/reperfusion (I/R) injury in diabetes. Since interactions between transcripts, including long non-coding RNA (lncRNA), microRNA(miRNA) and mRNA, regulate the pathophysiology of disease, we performed unbiased miRarray profiling in the heart of diabetic rabbits following I/R injury with/without RAPA treatment to identify differentially expressed (DE) miRNAs and their predicted targets of lncRNAs/mRNAs. Results showed that among the total of 806 unique miRNAs targets, 194 miRNAs were DE after I/R in diabetic rabbits. Specifically, eight miRNAs, including miR-199a-5p, miR-154-5p, miR-543-3p, miR-379-3p, miR-379-5p, miR-299-5p, miR-140-3p, and miR-497-5p, were upregulated and 10 miRNAs, including miR-1-3p, miR-1b, miR-29b-3p, miR-29c-3p, miR-30e-3p, miR-133c, miR-196c-3p, miR-322-5p, miR-499-5p, and miR-672-5p, were significantly downregulated after I/R injury. Interestingly, RAPA treatment significantly reversed these changes in miRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated the participation of miRNAs in the regulation of several signaling pathways related to I/R injury, including MAPK signaling and apoptosis. Furthermore, in diabetic hearts, the expression of lncRNAs, HOTAIR, and GAS5 were induced after I/R injury, but RAPA suppressed these lncRNAs. In contrast, MALAT1 was significantly reduced following I/R injury, with the increased expression of miR-199a-5p and suppression of its target, the anti-apoptotic protein Bcl-2. RAPA recovered MALAT1 expression with its sponging effect on miR-199-5p and restoration of Bcl-2 expression. The identification of novel targets from the transcriptome analysis in RAPA-treated diabetic hearts could potentially lead to the development of new therapeutic strategies for diabetic patients with myocardial infarction.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Amy L. Olex
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Ramzi Ockaili
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Donatas Kraskauskas
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Sean K. Roh
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Rakesh C. Kukreja
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| |
Collapse
|
49
|
Hoque P, Romero B, Akins RE, Batish M. Exploring the Multifaceted Biologically Relevant Roles of circRNAs: From Regulation, Translation to Biomarkers. Cells 2023; 12:2813. [PMID: 38132133 PMCID: PMC10741722 DOI: 10.3390/cells12242813] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
CircRNAs are a category of regulatory RNAs that have garnered significant attention in the field of regulatory RNA research due to their structural stability and tissue-specific expression. Their circular configuration, formed via back-splicing, results in a covalently closed structure that exhibits greater resistance to exonucleases compared to linear RNAs. The distinctive regulation of circRNAs is closely associated with several physiological processes, as well as the advancement of pathophysiological processes in several human diseases. Despite a good understanding of the biogenesis of circular RNA, details of their biological roles are still being explored. With the steady rise in the number of investigations being carried out regarding the involvement of circRNAs in various regulatory pathways, understanding the biological and clinical relevance of circRNA-mediated regulation has become challenging. Given the vast landscape of circRNA research in the development of the heart and vasculature, we evaluated cardiovascular system research as a model to critically review the state-of-the-art understanding of the biologically relevant functions of circRNAs. We conclude the review with a discussion of the limitations of current functional studies and provide potential solutions by which these limitations can be addressed to identify and validate the meaningful and impactful functions of circRNAs in different physiological processes and diseases.
Collapse
Affiliation(s)
- Parsa Hoque
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Robert E Akins
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA;
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA;
| |
Collapse
|
50
|
Peng W, Xie Y, Xia J, Qi H, Liu K, Li B, Zhang F, Wen F, Zhang L. Integrated analysis of the lncRNA-associated competing endogenous RNA network in salt sensitivity of blood pressure. Heliyon 2023; 9:e22466. [PMID: 38125519 PMCID: PMC10731005 DOI: 10.1016/j.heliyon.2023.e22466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Accumulating evidence showed that competing endogenous RNA (ceRNA) mechanism plays a pivotal role in salt sensitivity of blood pressure (SSBP). We constructed a ceRNA network based on SSBP-related differently expressed lncRNAs (2), mRNAs (73) and miRNAs (18). Bioinformatic analyses were utilized to analyze network and found network genes participate in biological pathways related to SSBP pathogenesis such as regulation of nitric oxide biosynthetic process (GO:0045,428) and cellular response to cytokine stimulus (GO:0071,345). Fourteen candidate ceRNA pathways were selected from network to perform qRT-PCR validation and found nine RNAs (KCNQ1OT1, SLC8A1-AS1, IL1B, BCL2L11, KCNJ15, CX3CR1, KLF2, hsa-miR-362-5p and hsa-miR-423-5p) differently expressed between salt-sensitive (SS) and salt-resistant (SR) groups (P < 0.05). Four ceRNA pathways were further validated by luciferase reporter assay and found KCNQ1OT1→hsa-miR-362-5p/hsa-miR-423-5p→IL1B pathways may influence the pathogenic mechanism of SS. Our findings suggested the ceRNA pathway and network may affect SS occurrence mainly through endothelial dysfunction and inflammatory activation.
Collapse
Affiliation(s)
- Wenjuan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yunyi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Juan Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Han Qi
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Bingxiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Fengxu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Fuyuan Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, And Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| |
Collapse
|